
Mapping Powerlists onto HypercubesJacob Kornerup�Dept. of Computer SciencesTaylor HallThe University of Texas at AustinAustin, TX 78712E{mail: kornerup@cs.utexas.eduAugust 4, 1994AbstractThe theory of powerlists was recently introduced by Jay Misra. Itgives us the ability to specify and verify certain parallel algorithms andconnection structures. The notation is similar to sequential functionalprogramming languages (such as MirandaTM [Tur86]) but with constructsfor expressing balanced division of lists.In the �rst part of this work we study how some known algorithmsfor the hypercube can be speci�ed succinctly in the powerlist notation.These speci�cations can then be veri�ed quite succinctly in comparisonto the original proofs of the algorithms.The second part of this work is to study how algorithms written inthe powerlist notation can be mapped e�ciently onto the hypercube. Itturns out that many algorithms have a mapping to the hypercube that isas e�cient as mappings to architectures that have all to all connections.This mapping is known in the literature as the Gray code. Operators onthese Gray coded powerlists can be implemented e�ciently on a hyper-cube. Algebraically the Gray coding is an isomorphism between powerlistsexpressions and their Gray coded equivalents.0 IntroductionIn the �eld of parallel algorithm research most papers focus on improving thepreviously best known results in terms of either time{complexity or parallel work(parallel time multiplied by number of processors utilized). This is achieved by�This material is based in part upon work supported by the Texas Advanced ResearchProgram under Grant No. 003658-219 and by the National Science Foundation Award CCR{9111912. 0



exhibiting new algorithms along with proofs of correctness and an analysis oftheir complexity. In these papers it is often the case that the proof of correctnessgiven leaves something to be desired, since the important aspect of the paperas seen by the authors is the analysis of the complexity rather than the proofof correctness. Often these proofs are very operational or use some ill de�nedformalism. While we do not claim that these algorithms are faulty, althoughsome of them may well be, we do believe that the lack of clear formalismsfor expressing and proving these algorithms correct has been an obstacle inproducing elegant solutions.We do not propose to revolutionize the �eld, but we feel that the powerlistnotation is a signi�cant step forward in the process of deriving certain algorithmsfor parallel architectures. This notation was recently introduced by Jay Misra[Mis94], and acts the foundation for our work.In this work we will focus on algorithms for hypercube architectures, sincethere is a very close correspondence between powerlists and abstract hyper-cubes. We will �rst study how some known algorithms for the hypercube canbe expressed and veri�ed in the powerlist notation, then we turn to the problemof mapping functions written in the powerlist notation to abstract hypercubes.This work is a direct o�spring of discussions I have had with Al Carruth; theproof of lemma 2 was done jointly with him. Without his comments this workwould not have reached the stage it is at now. My advisor Jay Misra providedthe theory that the work is based on. He shared it with us in a very early stageof development. Thanks to Greg Plaxton, Markus Kaltenbach, Will Adams andMarco Schneider for helpful comments along the way.1 PowerlistsIn this section we summarize the powerlist notation, as developed by Jay Misra[Mis94]. For a more complete description of the notation the reader should lookthere.1.0 De�nitionsA powerlist is a list of length equal to a nonnegative power of two. The elementsof the list are all of the same type and size, either scalars (uninterpreted valuesfrom outside the theory) or powerlists themselves. A powerlist with the �rst 4natural numbers is written as: h0 1 2 3iA powerlist h�i containing one element is called a singleton. Unless we stateotherwise all functions de�ned in this paper act as the identity function on1



singleton lists: K:h�i = h�iand we omit this from the function de�nition. Similarly we omit the base casein the proofs of a property that holds trivially for functions like the above.Two powerlists of equal length and component type can be combined to forma powerlist of twice the length and the same component type using the operators./ (\zip"), and j (\tie"). Zip produces a powerlist that has alternating elementsfrom its arguments, whereas tie produces a powerlist with the elements from the�rst argument followed by the elements from the second argument. The orderof the elements in the argument lists is preserved in the resulting list for bothzip and tie. h0 1 2 3i ./ h4 5 6 7i = h0 4 1 5 2 6 3 7ih0 1 2 3i j h4 5 6 7i = h0 1 2 3 4 5 6 7iAny non{singleton powerlist can be written uniquely as the zip of two powerlistsand as the tie of two powerlists. Proofs of properties on powerlists are done bystructural induction: a property holds for all powerlists if we can show it forsingletons, and assuming it holds for u and v we can show it for (u ./ v) (or(u j v)).There is no way to directly address a particular element of a list in thenotation. The only way to access the elements of a list is to break down the listusing ./ and j as deconstructors.The only law relating ./ and j is called Commutativity:(p j q) ./ (u j v) = (p ./ u) j (q ./ v)Functions are de�ned using pattern matching known from functional pro-gramming languages like MirandaTM [Tur86]. The function R returns the pow-erlist where the order of the elements of the argument list are reversed:R:(u j v) = R:v j R:uR can also be de�ned using zip as the deconstuctor:R:(u ./ v) = R:v ./ R:uIf � is a scalar binary operator then p�q is a powerlist of the same length asp (and q) where the elements are the result of applying � to the correspondingelements of p and q in that order. This can be seen from the commutativitylaws for � and ./ and j:(p j q)� (u j v) = (p� u) j (q � v)(p ./ q) � (u ./ v) = (p� u) ./ (q � v)and the law for singletons: h�i � h�i = h�� �i2



1.1 NotationThroughout this paper we will use the proof format of Dijkstra and Scholten[DS90]: lines with formulas alternate with lines consisting of an relational sym-bol and a hint (inside curly braces) explaining why the relation holds betweenthe formulas. If the hint is just the name of a function, this means that thede�nition of a function has been used in the step.We denote function composition by � and function application by an in�xperiod. The binding power of the operators used is described by the followingtable where the lines are listed in decreasing order and operators on a the sameline have equal binding power: ?:� � z y 
./ j=We will use uppercase letters to denote functions, lowercase letters from the endof the alphabet to denote powerlists, lowercase letters from the beginning of thealphabet to denote scalars, and � and � to denote either a scalar or a powerlist.2 HypercubesLike powerlists, hypercubes only comes in sizes that are powers of two. Theyalso share the property that two hypercubes of the same size can be combinedinto a single hypercube of twice the size.Many commercial supercomputer architectures are based on the hypercube,e.g. Intel iPSC/860. In this work we will not get into the details of theseparticular architectures, but rather study abstract hypercubes. For instance wewill make the assumption that the abstract hypercube we are mapping to hasenough nodes. We will not develop a notation to describe hypercubes, insteadwe will note the close correspondence between hypercubes and powerlists andreason using the theory of powerlists.A (n{dimensional) hypercube can be viewed as graph with 2n nodes, eachuniquely labeled with an n{bit string. Two nodes are connected by an edge iftheir labels di�er in exactly one position, so each node has n neighbors. Wenote that the diameter (maximum distance between any two nodes) is n. Inthis work we will not quantify the di�erence in time between neighbor commu-nications and communication between arbitrary nodes on the hypercube. Forour purposes communication between neighbors is cheap and communicationbetween non{neighboring nodes is expensive, and should be avoided. We con-sider an algorithm e�cient if each parallel step consists of a constant numberof basic operations and communications with neighbors.3



Two hypercubes each of size 2n can be combined in n+ 1 di�erent ways, inan \orderly" fashion, to form a hypercube of size 2n+1, one for each position:connect the nodes from the two cubes with the same label by an edge, andrelabel each node to an n+1 bit index by shifting the bits from a �xed positionone position to the left. The nodes from the �rst cube all obtain a zero bit inthe �xed position, whereas the nodes from the second cube obtain a one bit.The hypercube topology is very versatile, most other architectures can beembedded e�ciently (in a loose meaning of the word) on the hypercube; Leighton[Lei92] shows a number of these embeddings. The connection between powerlistsand hypercubes is even stronger: label each element of a powerlist of length 2n,with a bitstring (of length n) representing the position of the element in the list,this element can be mapped to the node with the same label on a hypercube ofsize 2n. We refer to this encoding as the standard encoding. By the constructionabove, it follows by induction that the zip (tie) of the representation of two listscan be implemented e�ciently by combining the representing cubes in the low(high) order bit.3 Hypercube Algorithms in PowerlistsIn this section we will show how two algorithms from the literature can beexpressed in the powerlist notation: pre�x sum and matrix multiplication. Toshow how a proof of correctness appears we include one for the pre�x sumalgorithm.3.0 Pre�x SumThe pre�x sum algorithm is one of the most fundamental parallel algorithms.Given a list of scalars and an associative, binary operator � on these scalars,the pre�x sum returns a list of the same length where each element is the resultof applying the operator on the elements up to and including the element inthat position in the original list. In order to specify the problem we assumethat the operator � has an identity element 0, if an element with property isnot part of the scalar type it is added.The operator ? on powerlists shifts the elements of the list one position tothe right and adds a zero in the leftmost position (the rightmost element is lostby this operation). hai? = h0i(u ./ v)? = v? ./ uThe pre�x sum of a list l, PS:l, can be speci�ed [Mis94] as the unique solutionto the equation (in z) z : z = z? � l4



A well known algorithm for computing the pre�x sum is due to Ladner andFischer [LF80]. In the powerlist notation it can be written as:LF:(p ./ q) = (LF:(p� q))? � p ./ LF:(p� q)It can be shown that LF:l is a solution to the de�ning equation for PS:l [Mis94].The direct mapping of powerlists to a hypercube for the algorithm above isnot e�cient since the ? operation cannot be performed e�ciently on a hyper-cube. We will return to this problem in the next section. Instead we look atanother algorithm designed for the pre�x sum problem on a hypercubeHPS:u = H:(u
 u)H:(u ./ v) = H:(u y v) ./ H:(u z v)H:(hai 
 hbi) = haiHere 
 is pointwise pairing and y and z are the scalar operators de�ned asfollows (x
 y) y (z 
w) = x
 (y � w)(x 
 y) z (z 
 w) = (y � z)
 (y � w)The correctness of HPS follows from the following lemma, by setting u = vLemma 0H:(u
 v) = (PS:v)? � uProof By inductionBase case:H:(hai 
 hbi)= f De�nition of H ghai= f (PS:hbi)? = h0 i g(PS:hbi)? � haiInductive step (let t = PS:(p� q)):H:((u ./ v) 
 (p ./ q))= f Commutativity 
; ./ gH:((u
 p) ./ (v 
 q))= f H gH:((u
 p) y (v 
 q)) ./ H:((u
 p) z (v 
 q))5



= f y and z gH:(u
 (p� q)) ./ H:((p� v) 
 (p� q))= f Induction hypothesis gt? � u ./ t? � (p� v)= f Associativity of � gt? � u ./ (t? � p)� v= f Commutativity ./;� g(t? ./ (t? � p))� (u ./ v)= f De�nition ? g((t? � p) ./ t)? � (u ./ v)= f By the de�nition of Ladner and Fischer, t = PS:(p� q) g(PS:(p ./ q))? � (u ./ v) End ProofNote that in the above proof there is usually only one next step to take, dictatedby the formula at hand.3.1 Matrix MultiplicationThe following algorithm for matrix multiplication was developed by Dekel, Nas-simi and Sahni [DNS81]. The following description of the algorithm is notsatisfactory, but it is typical of the descriptions found in the literature. It isincluded to expose this fact, but also to explain an algorithm that is di�cult tounderstand, even when speci�ed in the powerlist notation.Given matrices A and B of size 2n � 2n. The algorithm �rst replicates theelements on a 23n node hypercube in the following way:� The ij'th element of A is replicated to all nodes with labelbin(i); bin(j); bin(x) for all x such that 0 � x ^ x < 2n� The jk'th element of B is replicated to all nodes with labelbin(x); bin(j); bin(k) for all x such that 0 � x ^ x < 2nhere ; denotes concatenation of bitstrings and bin(x) is the binary string (oflength n) representing x.At the next step of the algorithm each node multiplies its A value and its Bvalue producing a C value. Then for each bit position between n and 2n � 1,nodes with labels that di�er only in that position exchange their C value and6



add the received value to the C value. After the algorithm has �nished the ikthelement of A � B is the C value at node bin(i);~0; bin(k) where ~0 is a string ofn zeros.To describe the matrix multiplication in powerlists we need to expand thenotation to higher dimension structures. These structures are also referred toas powerarrays. A powerarray is either a singleton h�i or constructed fromtwo similar shaped powerarrays by using a member of one of the two familiesof combinators ./i and ji where i is a natural number. ./i (ji) zips (ties) itstwo arguments together along the i'th dimension. Any two di�erent operatorsfrom the above families commute. The theory behind powerarrays is beyondthe scope of this paper, it is currently being pursued by Will Adams and JayMisra [AM93].Assuming that the input matrices are encoded with columns in dimension 0and rows in dimension 1 we can express the algorithm as follows:M:a:b = S:(L:a �H:b)L:(u j1 v) = (L:u j2 L:v) j0 (L:u j2 L:v)L:(u j0 v) = L:u j1 L:vL:hai = haiH:(u j1 v) = (H:u j1 H:v) j2 (H:u j1 H:v)H:(u j0 v) = H:u j0 H:vH:hai = haiS:(u j1 v) = S:u+ S:vS:(u j0 v) = S:u j0 S:vS:(u j2 v) = S:u j1 S:vS:hai = haiThe proof of this algorithm is omitted, it is fairly involved since the recursivede�nition of matrix multiplication is complicated although very regular. It takes12 proof steps using the de�nitions of the above functions and commutativity.4 Mapping Powerlists onto HypercubesIn this section we will show how fundamental operators on powerlists can beimplemented e�ciently on a hypercube. As noted above the ? operator cannotbe implemented e�ciently if the standard encoding is used. This is due to thefact that adjacent elements of the list can be as far apart on the hypercube asits diameter. A similar problem arises with the function R, de�ned in section1, that reverses the order of the elements of a list.The technique we will use is to encode the powerlists with a reected Graycode. This encoding can be viewed as a domain transformation like the FastFourier Transform, transforming the operands into a domain where the opera-tions can be performed e�ciently. Algebraically it is an isomorphism betweenthe algebra of powerlists and the algebra of Gray coded powerlists.7



4.0 Gray CodesGray coding is a standard technique in computer science. It was originally de-veloped for coding integers in binary, in order to minimize the e�ect of corruptedbits in the transmission of integer values across a noisy channel. The inventorwas Dr. Frank Gray and in 1953 the method was patented by his employer, BellLabs (US patent number 2,632,058) [Wil89].The Gray coding of a list permutes the elements in such a way that neigh-boring elements in the original list are placed in positions of the coded listwhose indices written as a binary string only di�er in one position. This de-scription does not de�ne Gray codes uniquely, but the following de�nition of apermutation of a powerlist is the one usually referred to in the literature:G:(u j v) = G:u j G:(R:v)Since G is a permutation function it has an inverse, IG de�ned byIG:(u j v) = IG:u j R:(IG:v)The proof that IG is the inverse of G is straightforward and omitted for thesake of brevity.4.1 Implementing the OperatorsIn order to implement a powerlist operator 5 on Gray coded lists we need tode�ne an operator 5G that makes the following diagram commute:
-?-?(G;G) G5G

5
Scalar operators are the simplest to implement under the Gray coded map-ping. Since G is a permutation function we have:G:(u� v) = G:u� G:vThis is the property expressed by the diagram above. There is no point inintroducing a �G operator since we have �G = � from the above.8



4.1.0 Implementing ZipIn order to implement ./ under the Gray coded mapping we need to de�ne theoperator ./G satisfying: G:u ./G G:v = G:(u ./ v)To see how ./G can be implemented e�ciently we will de�ne the functionsF;O; and E and study their properties. F is de�ned by:F:((x ./ y) ./ (p ./ q)) = (x ./ q) ./ (p ./ y)F:ha bi = ha biWe note that F is its own inverse.Lemma 1G:F:(u ./ v) = G:u ./ G:vProof By induction (Two base cases: lists of length 2 and 4, induction step based on lists of length 8)Base cases: lists of length 2 are trivial since both F and G are the identity on these lists)G:(F:ha b c di)= f F gG:ha b d ci= f G, ./, G gG:ha ci ./ G:hb diInductive Step:G:(F:(((p j q) ./ (r j s)) ./ ((u j v) ./ (x j y))))= f F gG:(((p j q) ./ (x j y)) ./ ((u j v) ./ (r j s)))= f Commutativity ./; j twice gG:(((p ./ x) ./ (u ./ r)) j ((q ./ y) ./ (v ./ s)))= f G gG:((p ./ x) ./ (u ./ r)) j G:(R:((q ./ y) ./ (v ./ s)))= f Property of R twice, F gG:(F:((p ./ r) ./ (u ./ x)) j G:(F:((R:s ./ R:q) ./ (R:y ./ R:v))= f Induction hypothesis g 9



(G:(p ./ r) ./ G:(u ./ x)) j (G:(R:s ./ R:q) ./ G:(R:y ./ R:v))= f Commutativity ./; j, Property of R g(G:(p ./ r) j G:(R:(q ./ s))) ./ (G:(u ./ x) j G:(R:(v ./ y)))= f G g(G:((p ./ r) j (q ./ s))) ./ (G:((u ./ x) j (v ./ y)))= f Commutativity ./; j g(G:((p j q) ./ (r j s))) ./ (G:((u j v) ./ (x j y))) End ProofThe function F is introduced to prove important facts about the followingfunctions: E:(u j v) = E:u j O:v for length u � 4O:(u j v) = O:u j E:v for length u � 4E:ha b c di = ha b d ciO:ha b c di = hb a c diE:ha bi = ha biO:ha bi = ha biE:(u ./ v) is the permutation on u ./ v that swaps each element of u withindex (in u) of odd parity with the element in v with the same index. The twolists are then zip'ed back together. If the list u ./ v is encoded directly on thehypercube, this operation can be performed e�ciently by swapping elementsamong the nodes with this property.The fact that both E and O are their own inverses follows from:Lemma 2E:x = (G � F � IG):xO:x = (G �R � F �R � IG):xProof By induction on the length of xBase case (for length of x equal to 1 and 2 it is trivial)(G � F � IG):ha b c d i (G �R � F �R � IG):ha b c di= f IG g = f IG g(G � F ):ha b d ci) (G �R � F �R):ha b d ci= f F g = f R gG:ha b c d i (G: �R � F ):hc d b ai10



= f G g = f F gha b d ci (G �R):hc d a bi= f E g = f R gE:ha b c di G:hb a d ci= f G ghb a c d i= f O gO:ha b c diInductive step:(G � F � IG):(u j v) (G �R � F �R � IG):(u j v)= f IG g = f IG g(G � F ):(IG:u j R:(IG:v)) (G �R � F �R):(IG:u j R:(IG:v))= f Property of F g = f R gG:(F:(IG:u) j (F �R � IG):v) (G �R � F ):(IG:v j R:(IG:u))= f G g = f Property of F g(G � F � IG):u j (G �R � F �R � IG):v (G �R):((F � IG):v j (F �R � IG):u)= f Induction hypothesis g = f R gE:u j O:v G:((R � F �R � IG):u j (R � F � IG):v)= f E g = f G gE:(u j v) (G �R � F �R � IG):u j (G � F � IG):v= f Induction hypothesis gO:u j E:v= f O gO:(u j v) End ProofIn the above proof we used the property that F:(u j v) = F:u j F:v. Thisproperty is easy to show and its proof is omitted for the sake of brevity.We are now ready to prove the following theorem relating E and G:11



Theorem 0E:(G:(u ./ v)) = G:u ./ G:vProofE:(G:(u ./ v))= f Lemma 2 gG:(F:(IG �G):(u ./ v))= f IG is inverse of G gG:(F:(u ./ v))= f Lemma 1 gG:u ./ G:v End ProofThe operator ./G can be implemented e�ciently on a hypercube, since E ise�ciently implementable on the hypercube and we have:Lemma 3u ./G v = E:(u ./ v)ProofE:(u ./ v)= f G:(IG:x) = x gE:(G:(IG:u) ./ G:(IG:v))= f Theorem 0 gG:(IG:u ./ IG:v)= f ./G gG:(IG:u) ./G G(IG:v)= f G:(IG:x) = x gu ./G v End Proof12



4.1.1 Implementing TieJust as we introduced ./G as the operation that made the transformation dia-gram commute, we can introduce jG by:G:p jG G:q = G:(p j q)It is fairly straightforward to show that if we de�neFLIP:((u j v) j (p j q)) = (u j v) j (q j p)FLIP:hx yi = hx yithen we have:Theorem 1 FLIP:(u j v) = u jG vFor the sake of brevity the proof is omitted.FLIP is also easy to implement on a hypercube: nodes with a one in thehighest bit of the label exchange their value with their neighbor in the next tohighest dimension. So jG can also be implemented e�ciently on the hypercube.4.1.2 Implementing the Star OperatorJust as the other Gray coded operators the Gray coded star operator ?G isde�ned by a commuting property:(G:u)?G = G:(u?)By substituting IG:u for u we getu?G = G:((IG:u)?)The operator ?G is e�ciently implementable on a hypercube since adja-cency is preserved under G and IG. If the length of the powerlist u is knownG:((IG:u)?) can be implemented e�ciently if each node computes the neigh-bor that has the next value in the Gray code sequence and sends the powerlistelement on to that node. It can be proven that13



(u ./G v)?G = v?G ./G uThis is the same equation as the one de�ning ?, except that all operators aresubstituted with their Gray coded counterparts. This follows from an unprovenconjecture that functions de�ned exclusively with the Gray coded operatorsobey the same laws as their unencoded counterparts. This claim is supportedby the observation below.4.2 Generalizing the MappingAs we observed, properties from the original theory seem to carry over into theGray coded domain. As an example we revisit the Ladner and Fischer Algorithmfor pre�x sum; using the Gray coded operators we can de�ne the Gray codedversion of Ladner and Fischers algorithm:LFG:(p ./G q) = (LFG:(p� q))?G � p ./G LFG:(p� q)The following theorem shows the correspondence between the two versionsof the algorithm:Theorem 2LFG �G = G � LFProof Induction, base case is omitted:(LFG �G):(p ./ q))= f ./G gLFG:(G:p ./G G:q)= f LFG g(LFG:(G:p�G:q))?G � G:p ./G LFG:(G:p� G:q)= f � is scalar g(LFG:(G:(p� q)))?G � G:p ./G LFG:(G:(p� q))= f Induction hypothesis g(G:(LF:(p� q)))?G �G:p ./G G:(LF:(p� q))= f ?G gG:((LF:(p� q))?)� G:p ./G G:(LF:(p� q))= f � is scalar gG:((LF:(p� q))? � p) ./G G:(LF:(p� q))14



= f ./G gG:((LF:(p� q))? � p ./ LF:(p� q))= f LF g(G � LF ):(p ./ q) End ProofThe Ladner and Fischer Pre�x sum algorithm can be implemented e�ciently ona hypercube since all the operators in the de�nition of LFG can be implementede�ciently.It is worth noting how mechanical the above proof is. It uses the commutingproperty between G and the Gray coded operators. With a general argumentusing these facts one should be able to prove that any function de�ned in termsof the Gray coded operators will also have the commuting property. This proofwould be a structural induction proof on the structure of the functions that canbe de�ned using the Gray coded operators. At the present this proof is notcomplete. We have not yet completed the the study of the algebraic structureof the two involved domains.5 Related WorkThe work by Mou and Hudak [MH88] introduces an algebraic programmingnotation that is more general than the powerlist notation. This notation wasdeveloped more as a programming notation than for doing proofs of correct-ness. It has been implemented on a hypercube (Connection Machine), and thisimplementation is worth studying in order to assess how di�cult it would be toimplement the powerlist notation on an actual hypercube architecture.The hypercube is a member of a larger class of hypercubic architectures[Lei92] that includes the Buttery, Shu�e{exchange graph [Sto71], and CubeConnected Cycles [PV81]. It is worthwhile to study whether functions writtenin powerlists can be implemented e�ciently on these architectures.The powerlist notation is similar to RUBY [JS90] a notation to specify VLSIcircuits. RUBY can be used to transform a VLSI design into an equivalentsystolic design. There should be a wealth of knowledge that can be integratedin the theory of powerlists.6 Future WorkMany algorithms for the hypercube can be found in the literature. Most arebeing presented as \results": the complexity measure is better than previouslypublished algorithms. Unfortunately, since the emphasis of these papers is to15



show that this holds, little emphasis is made on presenting the algorithm andits proof of correctness. We believe that for certain algorithms the powerlistnotation is an elegant way to present the algorithm and its proof of correctness.Among the algorithms from the literature we propose to study are:� Batchers sorting algorithm for the hypercube [Bat68]� Cubesort, an algorithm that generalizes Batchers sorting algorithm andimproves the time complexity [CS92]� Graphsort, a sorting algorithm for the hypercube that utilizes Gray coding[Gor89]It is an obvious extension of the above work to examine whether the rest ofthe powerlist operators can be implemented e�ciently on the hypercube, if thearguments are transformed using the Gray coding. If this is the case then wehave a general translation scheme for mapping functions written in the powerlistnotation onto the hypercube.In this paper we have avoided giving a formal model of the hypercube. Thisled to some vague operational reasoning on how certain operators can be im-plemented on the hypercube. This is highly unsatisfactory, instead a formalmodel of the hypercube is needed. One way to approach this is to view thehypercube as a certain class of synchronous UNITY programs [CM88]. We canthen prove formally that the operators indeed do as claimed, using existingtechniques [CM88], [Kor91].A formal model of the hypercube would give us a way to deal with theassumption that the hypercube has more nodes than the lists we are mappingto. This assumption is unrealistic, but it can be overcome by assigning logicalhypercubes to each physical node in such a way that there are enough nodes.However, this might not work for an arbitrary function de�nition, as it mightnot be possible to statically determine how large the involved powerlists will be.7 LiteratureAM93 W. Adams and J. Misra: \Powerarrays", unpublished manuscript, 1993.Bat68 K. Batcher: \Sorting networks and their applications", in ProceedingsJoint Computer Conference, volume 32: pages 307{314, 1968.CM88 K. M. Chandy, J. Misra: \Parallel Program Design { A Foundation",Addison{Wesley, 1988.CS92 R. Cypher, J. L. C. Sanz: \Cubesort: A Parallel Algorithm for SortingN Data items with S{Sorters", Journal of Algorithms 13:211{234, 1992DNS81 E. Dekel, D. Nassimi and S. Sahni: \Parallel matrix and graph algo-rithms", SIAM Journal on Computing, 10,4:657{675 1981.16



DS90 E. W. Dijkstra and C. S. Scholten: \Predicate Calculus and ProgramSemantics", Springer{Verlag, 1990.Gor89 D. M. Gordon: \Parallel Sorting on Caley Graphs", Preprint, Depart-ment of Computer Scince, University of Georgia, 1989.JS90 G. Jones andM. Sheeran: \Circuit Design in Ruby", in J�rgen Staunstrup,editor, Formal Methods for VLSI Design, North{Holland, 1990.Kor91 J. Kornerup: \Verifying Synchronous Programs", Technical Report,Department of Computer Science, Technical University of Denmark, 1991.Lei92 F. Thompson Leighton: \Introduction to Parallel Algorithms and Ar-chitectures", Morgan Kaufmann Publishers, San Mateo, California, 1992.LF80 R. E. Ladner and M. J. Fischer: \Parallel pre�x computation", Journalof the ACM, 27:831{838, 1980.MH88 Z. G. Mou and P. Hudak: \ An Algebraic Model for DIVIDE{and{Conquer and its Parallelism", Journal of Supercomputing 2:257{278, 1988.Mis94 J. Misra: \Powerlists: A Structure for Parallel Recursion PreliminaryVersion)", in \A classical Mind: Essays in Honour of C.A.R. Hoare",edited by A.W. Roscoe, p295-316, Prentice Hall International, 1994PV81 F. P. Preparata and J. Vuillemin: \The Cube{Connected Cycles: AVersatile Network for Parallel Computation", CACM 24,5:300{309, 1981.Sto71 H. S. Stone: \Parallel processing with the perfect shu�e", IEEE Trans-actions on Computers C{20, no. 2: 153-161, 1971.Tur86 D. Turner: \An overview of Miranda", ACM SIGPLAN Notices, 21:156{166, 1986.Wil89 H. S. Wilf: \Combinatorial Algorithms: An Update" CBMS{NSF Re-gional Conference Series in Applied Mathematics, SIAM 1989
17


