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Abstract

The theory of powerlists was recently introduced by Jay Misra. It
gives us the ability to specify and verify certain parallel algorithms and
connection structures. The notation is similar to sequential functional
programming languages (such as Miranda™ [Tur86]) but with constructs
for expressing balanced division of lists.

In the first part of this work we study how some known algorithms
for the hypercube can be specified succinctly in the powerlist notation.
These specifications can then be verified quite succinctly in comparison
to the original proofs of the algorithms.

The second part of this work is to study how algorithms written in
the powerlist notation can be mapped efficiently onto the hypercube. It
turns out that many algorithms have a mapping to the hypercube that is
as efficient as mappings to architectures that have all to all connections.
This mapping is known in the literature as the Gray code. Operators on
these Gray coded powerlists can be implemented efficiently on a hyper-
cube. Algebraically the Gray coding is an isomorphism between powerlists
expressions and their Gray coded equivalents.

0 Introduction

In the field of parallel algorithm research most papers focus on improving the
previously best known results in terms of either time—complexity or parallel work
(parallel time multiplied by number of processors utilized). This is achieved by
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exhibiting new algorithms along with proofs of correctness and an analysis of
their complexity. In these papers it is often the case that the proof of correctness
given leaves something to be desired, since the important aspect of the paper
as seen by the authors is the analysis of the complexity rather than the proof
of correctness. Often these proofs are very operational or use some ill defined
formalism. While we do not claim that these algorithms are faulty, although
some of them may well be, we do believe that the lack of clear formalisms
for expressing and proving these algorithms correct has been an obstacle in
producing elegant solutions.

We do not propose to revolutionize the field, but we feel that the powerlist
notation is a significant step forward in the process of deriving certain algorithms
for parallel architectures. This notation was recently introduced by Jay Misra
[Mis94], and acts the foundation for our work.

In this work we will focus on algorithms for hypercube architectures, since
there 1s a very close correspondence between powerlists and abstract hyper-
cubes. We will first study how some known algorithms for the hypercube can
be expressed and verified in the powerlist notation, then we turn to the problem
of mapping functions written in the powerlist notation to abstract hypercubes.

This work is a direct offspring of discussions I have had with Al Carruth; the
proof of lemma 2 was done jointly with him. Without his comments this work
would not have reached the stage it is at now. My advisor Jay Misra provided
the theory that the work is based on. He shared it with us in a very early stage
of development. Thanks to Greg Plaxton, Markus Kaltenbach, Will Adams and
Marco Schneider for helpful comments along the way.

1 Powerlists

In this section we summarize the powerlist notation, as developed by Jay Misra
[Mis94]. For a more complete description of the notation the reader should look
there.

1.0 Definitions

A powerlist is a list of length equal to a nonnegative power of two. The elements
of the list are all of the same type and size, either scalars (uninterpreted values
from outside the theory) or powerlists themselves. A powerlist with the first 4
natural numbers is written as:

(0123)

A powerlist {a) containing one element is called a singleton. Unless we state
otherwise all functions defined in this paper act as the identity function on



singleton lists:
K.{a) = ()

and we omit this from the function definition. Similarly we omit the base case
in the proofs of a property that holds trivially for functions like the above.

Two powerlists of equal length and component type can be combined to form
a powerlist of twice the length and the same component type using the operators
> (“zip”), and | (“tie”). Zip produces a powerlist that has alternating elements
from its arguments, whereas tie produces a powerlist with the elements from the
first argument followed by the elements from the second argument. The order
of the elements in the argument lists is preserved in the resulting list for both
zip and tie.

(0123)a(4567)=(04152637)
(0123)[(4567)=(01234567)

Any non-singleton powerlist can be written uniquely as the zip of two powerlists
and as the tie of two powerlists. Proofs of properties on powerlists are done by
structural induction: a property holds for all powerlists if we can show it for
singletons, and assuming it holds for « and v we can show it for (u < v) (or

(u|v)).

There is no way to directly address a particular element of a list in the
notation. The only way to access the elements of a list is to break down the list
using 1 and | as deconstructors.

The only law relating <t and | is called Commutativity:

(plg)ea(ulv)=(prau)|(qgeav)

Functions are defined using pattern matching known from functional pro-
gramming languages like Miranda” ¥ [Tur86]. The function R returns the pow-
erlist where the order of the elements of the argument list are reversed:

R.(u|v)=Ruv| Ru
R can also be defined using zip as the deconstuctor:
R.(uxv) = Rovxt Ru

If & is a scalar binary operator then p®q is a powerlist of the same length as
p (and ¢) where the elements are the result of applying @ to the corresponding
elements of p and ¢ in that order. This can be seen from the commutativity
laws for & and < and |:

rlod|v)=(pdu)|(¢®v)
(peg) @ (urav) = (pBu)(gdv)

and the law for singletons:

() ®(0) =(a®f)



1.1 Notation

Throughout this paper we will use the proof format of Dijkstra and Scholten
[DS90]: lines with formulas alternate with lines consisting of an relational sym-
bol and a hint (inside curly braces) explaining why the relation holds between
the formulas. If the hint is just the name of a function, this means that the
definition of a function has been used in the step.

We denote function composition by o and function application by an infix
period. The binding power of the operators used 1s described by the following
table where the lines are listed in decreasing order and operators on a the same
line have equal binding power:

We will use uppercase letters to denote functions, lowercase letters from the end
of the alphabet to denote powerlists, lowercase letters from the beginning of the
alphabet to denote scalars, and « and 3 to denote either a scalar or a powerlist.

2 Hypercubes

Like powerlists, hypercubes only comes in sizes that are powers of two. They
also share the property that two hypercubes of the same size can be combined
into a single hypercube of twice the size.

Many commercial supercomputer architectures are based on the hypercube,
e.g. Intel iPSC/860. In this work we will not get into the details of these
particular architectures, but rather study abstract hypercubes. For instance we
will make the assumption that the abstract hypercube we are mapping to has
enough nodes. We will not develop a notation to describe hypercubes, instead
we will note the close correspondence between hypercubes and powerlists and
reason using the theory of powerlists.

A (n-dimensional) hypercube can be viewed as graph with 2" nodes, each
uniquely labeled with an n-bit string. Two nodes are connected by an edge if
their labels differ in exactly one position, so each node has n neighbors. We
note that the diameter (maximum distance between any two nodes) is n. In
this work we will not quantify the difference in time between neighbor commu-
nications and communication between arbitrary nodes on the hypercube. For
our purposes communication between neighbors is cheap and communication
between non—neighboring nodes is expensive, and should be avoided. We con-
sider an algorithm efficient if each parallel step consists of a constant number
of basic operations and communications with neighbors.



Two hypercubes each of size 2”7 can be combined in n + 1 different ways, in
an “orderly” fashion, to form a hypercube of size 271! one for cach position:
connect the nodes from the two cubes with the same label by an edge, and
relabel each node to an n+ 1 bit index by shifting the bits from a fixed position
one position to the left. The nodes from the first cube all obtain a zero bit in
the fixed position, whereas the nodes from the second cube obtain a one bit.

The hypercube topology is very versatile, most other architectures can be
embedded efficiently (in a loose meaning of the word) on the hypercube; Leighton
[Lei92] shows a number of these embeddings. The connection between powerlists
and hypercubes is even stronger: label each element of a powerlist of length 27,
with a bitstring (of length n) representing the position of the element in the list,
this element can be mapped to the node with the same label on a hypercube of
size 2. We refer to this encoding as the standard encoding. By the construction
above, it follows by induction that the zip (tie) of the representation of two lists
can be implemented efficiently by combining the representing cubes in the low

(high) order bit.

3 Hypercube Algorithms in Powerlists

In this section we will show how two algorithms from the literature can be
expressed in the powerlist notation: prefix sum and matrix multiplication. To
show how a proof of correctness appears we include one for the prefix sum
algorithm.

3.0 Prefix Sum

The prefix sum algorithm is one of the most fundamental parallel algorithms.
Given a list of scalars and an associative, binary operator @ on these scalars,
the prefix sum returns a list of the same length where each element is the result
of applying the operator on the elements up to and including the element in
that position in the original list. In order to specify the problem we assume
that the operator & has an identity element 0, if an element with property is
not part of the scalar type it 1s added.

The operator * on powerlists shifts the elements of the list one position to
the right and adds a zero in the leftmost position (the rightmost element is lost
by this operation).

{a)" =(0)

(utv)" =v" :u

The prefix sum of alist [, PS.l, can be specified [Mis94] as the unique solution
to the equation (in z)
2z 2 =2"dl



A well known algorithm for computing the prefix sum is due to Ladner and
Fischer [LF80]. In the powerlist notation it can be written as:

LE.(peaq) = (LF.(p®q))"®p = LF.(pDq)

It can be shown that LF.l is a solution to the defining equation for PS.l [Mis94].
The direct mapping of powerlists to a hypercube for the algorithm above is
not efficient since the * operation cannot be performed efficiently on a hyper-
cube. We will return to this problem in the next section. Instead we look at
another algorithm designed for the prefix sum problem on a hypercube

HPSu=H.(u® u)
H(uvav)=H.(ujv) x H(utiv)
H.((a) @ (b)) = (a)

(b)
Here ® is pointwise pairing and { and I
follows

are the scalar operators defined as

(Foyiow =r0(ysw)
(zoy)izow =(Eys:)0([ydw)
The correctness of HPS follows from the following lemma, by setting u = v
Lemma 0
H.(u®v) = (PSv) @ u
Proof By induction
Base case:
H.((a) @ (b))
= { Definition of H }
(a)
= {(PS0))*=(0)}
(PS(6))* & (a)
Inductive step (let t = PS.(p & q)):
H.((upav) @ (peag))
= { Commutativity @, }
H.((u®p)pa(veq))
= {0}
H((u@p)t(v@q) ea H((u@p)i(veq))



= {tandi}
H{u@ (p®g)) > H((pov) @ (pDq)
= { Induction hypothesis }
*Pu D (pPo)
= { Associativity of & }
" Pua t*Dp) D
= { Commutativity o<, @& }
(1% o4 (1* & 1) & (upav)
= { Definition * }
(¢ & p) )" & (e v)
= { By the definition of Ladner and Fischer, t = PS.(p® ¢) }
(PS.(peq)) & (urav)
End Proof

Note that in the above proof there is usually only one next step to take, dictated
by the formula at hand.

3.1 Matrix Multiplication

The following algorithm for matrix multiplication was developed by Dekel, Nas-
simi and Sahni [DNS81]. The following description of the algorithm is not
satisfactory, but it is typical of the descriptions found in the literature. It is
included to expose this fact, but also to explain an algorithm that is difficult to
understand, even when specified in the powerlist notation.

Given matrices A and B of size 2" x 2". The algorithm first replicates the
elements on a 257 node hypercube in the following way:

e The ij5’th element of A is replicated to all nodes with label
bin(7); bin(j); bin(z) for all  such that 0 <2 A » < 27

e The jk’th element of B is replicated to all nodes with label
bin(x); bin(j); bin(k) for all  such that 0 <2 A 2 < 2"

here ; denotes concatenation of bitstrings and bin(z) is the binary string (of
length n) representing .

At the next step of the algorithm each node multiplies its A value and its B
value producing a C' value. Then for each bit position between n and 2n — 1,
nodes with labels that differ only in that position exchange their C' value and



add the received value to the C' value. After the algorithm has finished the ¢kth
element of A x B is the C' value at node bin(i); 0; bin(k) where 0 is a string of
n Zeros.

To describe the matrix multiplication in powerlists we need to expand the
notation to higher dimension structures. These structures are also referred to
as powerarrays. A powerarray is either a singleton («) or constructed from
two similar shaped powerarrays by using a member of one of the two families
of combinators p<; and |; where ¢ is a natural number. <; (|;) zips (ties) its
two arguments together along the ’th dimension. Any two different operators
from the above families commute. The theory behind powerarrays is beyond
the scope of this paper, it is currently being pursued by Will Adams and Jay
Misra [AM93].

Assuming that the input matrices are encoded with columns in dimension 0
and rows in dimension 1 we can express the algorithm as follows:

M.ab=S.(L.ax H.b)

L(uliv)=(Lau|2 L) o (Luls L)

L(ulov)=Lul|y L
(

The proof of this algorithm is omitted, it 1s fairly involved since the recursive
definition of matrix multiplication is complicated although very regular. It takes
12 proof steps using the definitions of the above functions and commutativity.

4 Mapping Powerlists onto Hypercubes

In this section we will show how fundamental operators on powerlists can be
implemented efficiently on a hypercube. As noted above the * operator cannot
be implemented efficiently if the standard encoding is used. This is due to the
fact that adjacent elements of the list can be as far apart on the hypercube as
its diameter. A similar problem arises with the function R, defined in section
1, that reverses the order of the elements of a list.

The technique we will use is to encode the powerlists with a reflected Gray
code. This encoding can be viewed as a domain transformation like the Fast
Fourier Transform, transforming the operands into a domain where the opera-
tions can be performed efficiently. Algebraically it is an isomorphism between
the algebra of powerlists and the algebra of Gray coded powerlists.



4.0 Gray Codes

Gray coding is a standard technique in computer science. It was originally de-
veloped for coding integers in binary, in order to minimize the effect of corrupted
bits in the transmission of integer values across a noisy channel. The inventor
was Dr. Frank Gray and in 1953 the method was patented by his employer, Bell
Labs (US patent number 2,632,058) [Wil89].

The Gray coding of a list permutes the elements in such a way that neigh-
boring elements in the original list are placed in positions of the coded list
whose indices written as a binary string only differ in one position. This de-
scription does not define Gray codes uniquely, but the following definition of a
permutation of a powerlist is the one usually referred to in the literature:

G.(u]v) =Gu|G.(Rv)
Since (G is a permutation function it has an inverse, IGG defined by
IG.(u|v)=IGu | R.(IG.v)
The proof that IG is the inverse of G is straightforward and omitted for the
sake of brevity.

4.1 Implementing the Operators

In order to implement a powerlist operator 7 on Gray coded lists we need to
define an operator 7 that makes the following diagram commute:

Y

vG

Scalar operators are the simplest to implement under the Gray coded map-
ping. Since (G 1s a permutation function we have:
Gludv)=Gud G

This is the property expressed by the diagram above. There is no point in
introducing a &% operator since we have $% = @ from the above.



4.1.0 Implementing Zip

In order to implement < under the Gray coded mapping we need to define the
operator > satisfying:

Gux® G = G.(urav)

To see how 4% can be implemented efficiently we will define the functions

F,0, and F and study their properties. F' is defined by:
F(zoay) o (prag)) = (xeag) > (pray)
Fla by ="{ab)
We note that F' is its own inverse.
Lemma 1
G.F.(uv) = Gusa Gy
Proof By induction (Two base cases: lists of length 2 and 4, induction step based on lists of length 8)
Base cases: lists of length 2 are trivial since both F and G are the identity on these lists)
G.(Flabecd))
= { F}
Glabde)
= { GG}
G.ac)yaG.(b d)
Inductive Step:
G.(E(((p | g) o< (r | 5)) o ((u | 0) > (2 [ 9))))
= {r}
G.(((p | g)pa (2| y)) 2 ((u]v)pa(r]s)))
= { Commutativity o<, | twice }
G.(((pra @) b (usar)) | (g5 9) o (v 5 5)))
- { G}
G ((p v 2) 5 (w3 1) | G(Ru((g5 9) b (0 5 5)))
= { Property of R twice, F }
G.(F((prar)oa(upa)) | G(F.((R.s R.q) > (R.y 1 R.v))
= { Induction hypothesis }



(G.par)a G (uan)) | (G.(R.s> R.q) 1 G.(R.y 1 R.v))
= { Commutativity <, |, Property of R }
(G.pear) | G(R.(grx5))) a1 (G(uxz) | G(R.(vay)))
= { G}
(G-(poar) | (a1 8))) o4 (G-((upa ) | (0.5 1))
= { Commutativity o<, | }
(G(p 1 4) 0 (1] 8))) o (G-((u | 0) 5 (& | 1)
End Proof

The function F' is introduced to prove important facts about the following
functions:

E(u|v) =F.u|O.w forlength u >4
O.(u|v) =0.u|FE.v forlength u >4
Elabed)={(abdc)
Ofabed)y=(bacd)
E{ab)=/{ab)

O.(ab)="{ab)

E.(u > v) is the permutation on u 1 v that swaps each element of u with
index (in u) of odd parity with the element in v with the same index. The two
lists are then zip’ed back together. If the list u <t v is encoded directly on the
hypercube, this operation can be performed efficiently by swapping elements
among the nodes with this property.

The fact that both £ and O are their own inverses follows from:

Lemma 2

Eax=(GoFol@)x
OQx=(GoRoFoRolIG)x

Proof By induction on the length of z

Base case (for length of # equal to 1 and 2 it is trivial)

(GoFolG)labcd) (GoRoFoRolG).(abecd)
= {IG} = {IG}
(GoF)abdc)) (GoRoFoR).{abdc)

= {F) = {R)

G.{a b cd) (G.oRoF).(cdb a)

10



= {G} = {F}

(abdc) (GoR){cdab)
- {F) - (R}
Elabed) Gbadc)
= {G}
(bacd)
- {0}
Ofabecd)

Inductive step:

(GoFolG).(ulv) (GoRoFoRolIG).(u]v)
= {IG} = {IG}
(G o F).(IG.u | R.(IG.v)) (GoRoFoR).(IGu|R.(IG.v))
= { Property of F } = {R}
G.(F.(IGw) | (FoRolIG).v) (GoRo F).(IG.w | R.(IG.w))
= {G} = { Property of F }
(GoFolG)u|(GoRoFoRoIG)w (GoR).((FolG)w|(FoRolIG).u)
= { Induction hypothesis } = {R}
Ea|Ow G.((RoFoRolIG)u|(RoFolG)w)
= (£} = {G)
E.(u ] v) (GoRoFoRoIG)u|(GoF olIG)w
= { Induction hypothesis }
O | Ew
= {0}
O0.(u | v)

End Proof
In the above proof we used the property that F.(u | v) = F.u | Fu. This

property is easy to show and its proof 1s omitted for the sake of brevity.
We are now ready to prove the following theorem relating £ and G-

11



Theorem 0
E(G(uxav)) =GuraGuw
Proof
E.(G.(urav))
= { Lemma?2}
G.(F.(IGoG).(uxav))
= { IG is inverse of G }
G.(F.(uxv))
= { Lemmal }
Gura G

End Proof

The operator =<“ can be implemented efficiently on a hypercube, since E is

efficiently implementable on the hypercube and we have:
Lemma 3
u<® v = F.(uxv)
Proof
E.(urav)
= {GUGx)==}
E(G.(IGu) 1 G.(IG.v))
= { Theorem 0 }
G.(IG.ua IG.v)

= (=)
G.(IG.u) =% G(IG.v)
= {GUGx)==}
u s v

End Proof

12



4.1.1 Implementing Tie

Just as we introduced ¢ as the operation that made the transformation dia-
gram commute, we can introduce | by:

Gpl%Ga=G.(plq)
It is fairly straightforward to show that if we define

FLIP.((u]v)|(plq) = (ulv)|(q]p)
FLIP{zy)={(zy)
then we have:

Theorem 1

FLIP.(u|v)=u|%v

For the sake of brevity the proof is omitted.

FLIP is also easy to implement on a hypercube: nodes with a one in the
highest bit of the label exchange their value with their neighbor in the next to
highest dimension. So |“ can also be implemented efficiently on the hypercube.

4.1.2 Implementing the Star Operator
Just as the other Gray coded operators the Gray coded star operator 7 s
defined by a commuting property:

G

(Gu)" =G.(u¥)

By substituting IG.u for u we get

G

v = G.((IG.u)")
The operator 7 s efficiently implementable on a hypercube since adja-
cency is preserved under GG and IG. If the length of the powerlist u 1s known
G.((IG.u)") can be implemented efficiently if each node computes the neigh-
bor that has the next value in the Gray code sequence and sends the powerlist
element on to that node. It can be proven that

13



(upa™ v) =v* 1" u

This is the same equation as the one defining *, except that all operators are

substituted with their Gray coded counterparts. This follows from an unproven
conjecture that functions defined exclusively with the Gray coded operators
obey the same laws as their unencoded counterparts. This claim is supported
by the observation below.

4.2 Generalizing the Mapping

As we observed, properties from the original theory seem to carry over into the
Gray coded domain. As an example we revisit the Ladner and Fischer Algorithm
for prefix sum; using the Gray coded operators we can define the Gray coded
version of Ladner and Fischers algorithm:

*G
LF% (pa® q) = (LF9.(p@ q)) ®p = LF%.(p@q)

The following theorem shows the correspondence between the two versions
of the algorithm:

Theorem 2

LFSoG=GolLF
Proof Induction, base case is omitted:
(LFS 0 G).(praq))
= {=“}
LFC.(G.p= G.q)
- [LFG)
(LFG(Gp® G.q)" @ Gp € LF(Gpe Gq)
= { & isscalar }
(LFG.(G.(p@q)))*G D Gp =% LEC(G.(p®q))
= { Induction hypothesis }
(GLE.(p® q))* & G.p 0¥ G.(LF.(p®q))
= {*}
G((LF.(p®q))®Gp = G(LF.(paq))
= {@is scalar }
G((LF.(p®q)" ®p) =7 G(LF.(po q))

14



= {=“}
G((LF(p®q) ®p > LF(p&q))
= {LF}
(GoLF).(praq)
End Proof

The Ladner and Fischer Prefix sum algorithm can be implemented efficiently on
a hypercube since all the operators in the definition of LF can be implemented
efficiently.

It is worth noting how mechanical the above proof is. It uses the commuting
property between (G and the Gray coded operators. With a general argument
using these facts one should be able to prove that any function defined in terms
of the Gray coded operators will also have the commuting property. This proof
would be a structural induction proof on the structure of the functions that can
be defined using the Gray coded operators. At the present this proof is not
complete. We have not yet completed the the study of the algebraic structure
of the two involved domains.

5 Related Work

The work by Mou and Hudak [MHS88] introduces an algebraic programming
notation that is more general than the powerlist notation. This notation was
developed more as a programming notation than for doing proofs of correct-
ness. It has been implemented on a hypercube (Connection Machine), and this
implementation is worth studying in order to assess how difficult it would be to
implement the powerlist notation on an actual hypercube architecture.

The hypercube is a member of a larger class of hypercubic architectures
[Lei92] that includes the Butterfly, Shuffle-exchange graph [Sto71], and Cube
Connected Cycles [PV81]. Tt is worthwhile to study whether functions written
in powerlists can be implemented efficiently on these architectures.

The powerlist notation is similar to RUBY [JS90] a notation to specify VLSI
circuits. RUBY can be used to transform a VLSI design into an equivalent
systolic design. There should be a wealth of knowledge that can be integrated
in the theory of powerlists.

6 Future Work

Many algorithms for the hypercube can be found in the literature. Most are
being presented as “results”: the complexity measure is better than previously
published algorithms. Unfortunately, since the emphasis of these papers is to

15



show that this holds, little emphasis is made on presenting the algorithm and

its proof of correctness. We believe that for certain algorithms the powerlist

notation is an elegant way to present the algorithm and its proof of correctness.
Among the algorithms from the literature we propose to study are:

e Batchers sorting algorithm for the hypercube [Bat68]

e Cubesort, an algorithm that generalizes Batchers sorting algorithm and
improves the time complexity [CS92]

e Graphsort, a sorting algorithm for the hypercube that utilizes Gray coding
[Gor89]

It is an obvious extension of the above work to examine whether the rest of
the powerlist operators can be implemented efficiently on the hypercube, if the
arguments are transformed using the Gray coding. If this is the case then we
have a general translation scheme for mapping functions written in the powerlist
notation onto the hypercube.

In this paper we have avoided giving a formal model of the hypercube. This
led to some vague operational reasoning on how certain operators can be im-
plemented on the hypercube. This is highly unsatisfactory, instead a formal
model of the hypercube is needed. One way to approach this is to view the
hypercube as a certain class of synchronous UNITY programs [CM8&8]. We can
then prove formally that the operators indeed do as claimed, using existing
techniques [CM88], [Kor91].

A formal model of the hypercube would give us a way to deal with the
assumption that the hypercube has more nodes than the lists we are mapping
to. This assumption is unrealistic, but it can be overcome by assigning logical
hypercubes to each physical node in such a way that there are enough nodes.
However, this might not work for an arbitrary function definition, as 1t might
not be possible to statically determine how large the involved powerlists will be.
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