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Abstract

Consider an on-line scheduling problem in which a set of abstract processes are competing for the
use of a number of resources. Further assume that it is either prohibitively expensive or impossible for
any two of the processes to directly communicate with one another. If several processes simultaneously
attempt to allocate a particular resource (as may be expected to occur, since the processes cannot easily
coordinate their allocations), then none succeed. In such a framework, it is a challenge to design efficient
contention resolution protocols.

Two recently-proposed approaches to the problem of PRAM emulation give rise to scheduling prob-
lems of the above kind. In one approach, the resources (in this case, the shared memory cells) are
duplicated and distributed randomly. We analyze a simple and efficient deterministic algorithm for ac-
cessing some subset of the duplicated resources. In the other approach, we analyze how quickly we can
access the given (nonduplicated) resource using a simple randomized strategy. We obtain precise bounds
on the performance of both strategies. We anticipate that our results will find other applications.

1 Introduction

Let k balls be thrown independently and uniformly at random into n bins, and let random variable X
denote the maximum number of balls landing in any single bin. If k& = ©O(n), it is well known that
X = O(lgn/lglgn) wvhp. (Throughout this paper, we use “wvhp” to mean “with probability at least
1—n~¢ for any positive constant ¢”, and we use “whp” to mean “with probability at least 1 —n~¢ for some
positive constant ¢”.) If k = O(nlgn), it is similarly well known that X = ©(lgn) wvhp. (These claims
are straightforward to prove using standard bounds on the tail of the binomial distribution [7].) These
sharp threshold phenomena have important consequences in a wide variety of hashing-related applications.
In this paper, we explore two similar (but more complex) threshold phenomena, one arising in each of two
fundamental families of contention resolution protocols.

To make our discussion of contention resolution protocols more concrete, we will focus our attention
primarily on a single application, namely that of efficiently emulating an EREW PRAM on a c-collision
crossbar network. We begin by reviewing the definitions of these two computational models. An FREW
PRAM is a collection of n processors along with a global shared memory. Input and output are provided in
the shared memory. In a single computational step, each processor can read or write one memory location.
The sole restriction is that no two processors are allowed to access the same memory location in a single
step. (If two processors attempt to access the same memory location in a single step, then the machine

halts.)
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A c-collision crossbar network (or simply, a c-collision crossbar) is a more realistic model of parallel
computation in which the global shared memory is distributed over n disjoint memory modules. Input and
output are provided in the distributed memory. Each computational step consists of a read/write phase
followed by an acknowledgement phase. During the read/write phase each processor can issue one read or
write request for a specific memory location. If the total number of read /write requests involving memory
locations stored in any particular memory module M is less than or equal to ¢, then all requests involving
M succeed and are acknowledged during the acknowledgment phase. On the other hand, if more than ¢
processors attempt to access memory locations stored in the same memory module M, then all requests
involving M fail and no corresponding acknowledgements are sent. A c-arbitrary crossbar is defined in
the same manner as a c-collision crossbar, except that if more than ¢ processors attempt to access some
memory module M, then an arbitrary subset of ¢ of the requests succeed and are acknowledged.

The c-collision and c-arbitrary crossbar models have been studied previously under different names.
(Our terminology is new.) The local memory PRAM model of Anderson and Miller [5], later studied under
the name OCPC (optical communication parallel computer) in [10, 11, 12], corresponds to the 1-collision
crossbar model. Valiant’s SYPRAM model [24] corresponds to the l-arbitrary crossbar model. Assuming
a complete interconnection between processors and memory modules, the c-collision (resp., c-arbitrary)
DMM models of [9] corresponds to the c-collision (resp., c-arbitrary) crossbar model.

We now return to the question of efficiently emulating an EREW PRAM on a ¢-collision crossbar. More
specifically, assume that we wish to emulate a k-processor EREW PRAM on an n-processor c-collision
crossbar, where k is some multiple of n. If we map k/n EREW PRAM processors to each processor of the
crossbar, and employ a random hash function to map each location of the EREW PRAM shared memory
to some memory module of the crossbar, we can easily see the connection between the random “balls and
bins” experiment stated at the outset and the desired emulation: Each of the at most k£ read or write
requests generated in a single step of the EREW PRAM computation corresponds to a ball, and each
memory module corresponds to a bin.

If £k =n and ¢ = O(1), we can conclude that any scheme based on a single hash function requires
Q(lgn/lglgn) time to emulate one step of the EREW PRAM. On the other hand, Dietzfelbinger and
Meyer auf der Heide [9] have recently shown that a bound of O(lglgn) time per EREW PRAM step is
attainable for the same settings of k£ and ¢. They present a contention resolution protocol that minimizes the
effect of the inevitable “hot-spot” memory modules (e.g., those memory modules receiving O(lgn/lglg n)
requests under a given hash function) by employing three different hash functions. Thus, at the expense of
increasing the total storage requirement by a factor of 3, the running time of the emulation is exponentially
decreased. The fast performance of the Dietzfelbinger and Meyer auf der Heide emulation relies on a sharp
threshold phenomenon that is the focus of Section 2. An overview of our results in this area is given in
Section 1.1.

If Kk = nlgn and ¢ = O(1), the second “balls in bins” claim made at the outset of the paper shows
that the emulation of a single EREW PRAM step will correspond to a ©(lgn)-relation routing problem
wvhp. (An h-relation routing problem is one in which each processor is the source of at most h packets
and each memory module is the destination of at most h packets.) Thus, a variety of authors have
considered the complexity of h-relation routing on the 1-collision crossbar. We are particularly interested
in a natural randomized h-relation routing algorithm proposed by Geréb-Graus and Tsantilas [10]. The
idea of their algorithm is to use randomization to break the symmetry between sets of processors with
packets to be sent to the same same memory module: In a given “round” a processor with p packets left
to send attempts to send a randomly chosen packet with probability roughly p/h, and does nothing with
probability roughly 1 — p/h. The resulting running time is ©(h + lgnlgh). (Remark: the running time
is stated as O(h + lgnlglgn) in [10], since they only considered the case h > logn.) Thus, the algorithm
leads to a work-optimal EREW PRAM emulation only for A = Q(lgnlglgn).

The symmetry-breaking idea employed by Geréb-Graus and Tsantilas is central to many other ran-



domized algorithms and communication protocols (e.g., the standard Ethernet protocol [20] and the classic
ALOHA packet radio network protocol [1]). As we have seen, such randomized symmetry-breaking does
not always lead to performance that is obviously optimal (i.e., that matches a trivial lower bound). (For
example, we might have hoped that the algorithm of Geréb-Graus and Tsantilas would run in O(lgn)
time for the case h = O(Ilgn).) The main result of the Section 3 is a tight lower bound on the running
time of certain randomized symmetry-breaking procedures. In particular, with respect to the problem of
randomized h-relation routing on the 1-collision crossbar, we have completely characterized the power of
the natural symmetry-breaking paradigm. An overview of our results in this area is given in Section 1.2.

1.1 Redundancy-Based Protocols

In this section we give a brief overview of our emulation results related to protocols employing multiple
hash functions. As mentioned earlier, Dietzfelbinger and Meyer auf der Heide [9] have presented a protocol
using three hash functions that emulates an n-processor EREW PRAM in O(lglgn) time on an n-processor
c-collision crossbar. Under their protocol, a read or write operation of memory location z by EREW
PRAM processor ¢ is emulated by having processor ¢ of the c-collision crossbar access 2 out of the 3 copies
corresponding to memory location . (A similar protocol was presented in [17]; the idea that accessing 2 out
of 3 copies is sufficient for the purposes of such an emulation was first used by Upfal and Wigderson [23].)
The analysis presented in [9] requires some slack in the constants; in particular, they require ¢ > 3, and
are only able to analyze the protocol when it is used to emulate en processors at a time, where ¢ is a
sufficiently small positive constant. (Thus, the overall running time of the protocol is increased by a factor
of 1/¢.)

The protocol of [9] is easily generalized to the case where b hash functions are used, and each processor
of the c-collision crossbar is required to access a out of b copies of a particular memory location, a < b. In
Section 2.3, we focus on the case ¢ = 1, and pinpoint the asymptotic complexity of the resulting protocol
for all possible choices of the parameters b and ¢. (Furthermore, our analysis goes through with ¢ = 1, that
is, we consider the most basic form of the protocol in which the action of all n EREW PRAM processors
is emulated at once.) For ¢ = 1, we prove that the protocol runs in ©(lglgn) time whp if b > 3. For ¢ =1
and b = 2, we prove that the protocol runs in Q(lgn) time wvhp. For any b > 2 and any constant ¢ > 2,
we prove that the protocol runs in O(lglgn) time whp. (The protocol will run faster for non-constant c.
It would not be difficult to extend our analysis to obtain tight bounds for non-constant ¢.) In the case
of a c-arbitrary crossbar, the protocol runs in ©(lglgn) time whp for b > 2. In Section 2.4 we show that
the above results hold even if the hash functions are only O(log® n)-wise independent, where « is a real
constant.

In Section 2.5, we observe that any “a out of §” problem with a > 1 can be efficiently reduced to a
number of “1 out of £” problems, where £ = 2 or £ = 3. Thus, we are able to easily upper bound the
complexity of a (new) protocol for essentially any “a out of b” problem. One might suspect that a reduction
of this sort, while making the analysis easier, is only doing so at the expense of a significant constant factor
in performance. Interestingly, this is not the case; rather, as discussed in Section 2.5, our reduction yields
a faster “a out of ” protocol than is obtained via the natural generalization of [9] for virtually all possible
values of @ and b.

The main idea underlying the aforementioned results may be explained as follows. While the process of
throwing k& balls independently and uniformly at random into n bins is well understood (e.g., we can easily
compute a sharp bound on the number of bins receiving exactly one ball), we find that the sequence of
distributions arising in the analysis of any “a out of b” protocol quickly deviates from such simple behavior.
In [9, 21], this problem is attacked by studying certain structures related to the sequence of distributions.
We are able to provide a more accurate analysis by precisely characterizing this sequence of distributions
in terms of “truncated & balls in n bins” distributions (e.g., throw & balls into n bins and then remove all



balls contained in bins with less than or equal to ¢ balls).

1.2 Symmetry-Breaking Protocols

In this section we give a brief overview of our results on symmetry-breaking protocols in multiple access
channels and for h-relation routing on a 1-collision crossbar.

There has been considerable effort in proving bounds on symmetry-breaking protocols to resolve con-
tention in Ethernet-like multiple access channels [14, 15, 18, 19]. Specifically, it is assumed that some h
of n stations wish to transmit to a single shared channel, but a station succeeds in its transmission if and
only if it is the only station transmitting at that time. A symmetry-breaking protocol generates a schedule
of transmission attempts for each station so that all & stations eventually transmit successfully. Previously
studied protocols assume that all stations receive a feedback of 0, 1, or > 2 at each step, depending on
how many stations attempt to transmit. We call this the Fthernet model. For the Ethernet model, a lower
bound of Q((h/ logh) log n) was shown for the time of any deterministic protocol [15], and it was shown that
an O(hlogn) time (non-adaptive) deterministic protocol exists [18]. We study protocols in which only the
transmitting stations receive feedback (1 or > 2) at a given step. We call the general contention resolution
problem on this model the Control Tower problem. Protocols to solve the Control Tower problem corre-
spond to non-adaptive protocols for contention resolution on the Ethernet model. Thus the lower bound of
Q((h/logh)logn) above applies to any deterministic solution to the Control Tower problem also. We show
a slightly stronger result, that to send even one message (in the Control Tower model, or non-adaptive
Ethernet model) requires Q((h/ min{logh,loglogn})logn) steps. From a technical standpoint, it is most
natural to view the Control Tower problem as a problem on hypergraphs. Our lower bound relies on a
combinatorial argument for extracting “thick” hypergraphs and another combinatorial argument showing
the existence of contention-generating “near transversals”.

Much faster protocols can be obtained for the Control Tower problem using randomization. For in-
stance, the randomized protocol in Geréb-Graus and Tsantilas [10] solves the Control Tower problem in
O(h+loghlogn) steps, wvhp. We show a tight lower bound of Q(h + log i log n) for randomized protocols
for the Control Tower problem that succeed with probability at least 1 — n=3/%. (Naturally, this provides
the same lower bound for non-adaptive randomized protocols in the Ethernet model.) Again, we find it
technically useful to view the Control Tower problem as a problem on hypergraphs. The randomized lower
bound then relies on a combinatorial argument for extracting “thick” hypergraphs (where the “thickness”
quality is fundamentally different than that in the deterministic lower bound), and a probabilistic argument
showing a non-trivial probability of the existence of contention-generating “near transversals” in random
sets of vertices.

We now turn to the problem of direct h-relation routing on a 1-collision crossbar. In a direct algorithm
for a given routing problem, the messages to be routed can only be sent directly from the source to the
destination without any intermediate hops, and no additional information can be sent between the proces-
sors. Direct algorithms have the advantage of simplicity and low overhead. While non-direct algorithms
may have better asymptotic behavior, it is likely that this improved asymptotic behavior is only achieved
at the expense of large constant factors. The previously mentioned h-relation routing algorithm of Geréb-
Graus and Tsantilas [10] is a direct algorithm, and direct h-relation routing algorithms have also been
studied in [11, 12]. We refer the reader to these previous papers for further details. (For previous work
on non-direct h-relation routing on the OCPC, see [5, 11, 12, 24]; for recent work that also incorporates
redundancy-based techniques, see [13].)

There is a close correspondence between results for the Control Tower problem and results for direct
h-relation routing on a l-collision crossbar. In fact, the lower bound for deterministic protocols for the
Control Tower problem directly gives the same lower bound for deterministic direct h-relation routing.
The correspondence is not exact in terms of deterministic upper bounds, however, as the upper bound of



O(hlogn) on the Control Tower problem, only indicates that there is an O(h?logn) deterministic direct
h-relation routing algorithm. We show that this bound can be improved to O(hloghlogn), by slightly
modifying the deterministic Control Tower protocol. Finally, we show that the tight lower bound for
randomized protocols for the Control Tower problem can also be used to prove a tight lower bound of
Q(h + log hlogn) for direct randomized h-relation routing on a l-collision crossbar.

2 Multiple Hash Functions

In this section, we address the a out of b problem discussed in Section 1 on c-arbitrary and c-collision
crossbars. In an a out of b problem on an n-processor crossbar, each shared memory cell is uniformly and
independently hashed b times into the memory modules of the crossbar, and each processor has to access
a out of the b copies of a particular shared memory cell.

Consider the 1 out of £ problem, £ > 2. Let the £ hash functions be labeled h;, 0 < < £, and the shared
memory request of processor j be for cell z;. Processor j needs to access one of the memory locations
hi(z;), 0 <@ < L. To solve this problem, the following simple sequence of ¢ rounds can be repeated until
each processor has had one successful access: In the jth round, if processor ¢ has not successfully accessed
any copy of z;, then processor 7 accesses h;(z;). (This is analogous to Access Schedule 2 of [9], defined
for the 2 out of 3 problem.) On a c-collision crossbar, processor j succeeds on its access if and only if
there are at most ¢ — 1 other processors accessing the same memory module. Each round is executed in a
synchronous fashion. We refer to this protocol as the 1 out of £ protocol.

We analyze the above process in an equivalent balls-and-bins setup. Let n balls labeled 0 through n—1
represent the messages, and n bins labeled 0 through n — 1 represent the destinations. Each hash function,
a random function from [n] to [r], is equivalent to a random throw of n balls uniformly and independently
into n bins. Let h* denote the function & with domain restricted to the set A C [n]. Let R; denote the set
of balls remaining after round ¢. For convenience, define RE_; to be the set of balls left before round 0, i.e.,
R_, = [n]. Note that for i > 0, R; is the subset of R;_; given by the following recurrence:

Ri={jeRi_y:[fH(f(4)] > ¢},

Ri_
where f = h;. 24,

Recall that a bag (or multiset) is an unordered set in which repetition is allowed. For any set A we
define a bag B to be an A-bag if every element of B is also an element of A.

Let F,,, denote the set of functions from [m] to [n]. For each f € F,, ,, note that the bag {f(j):j €
[m]} is an m-size [n]-bag. Hence, the uniform distribution over F,, , induces a probability distribution,
which we denote D,, ,, over the set of all m-size [n]-bags. For any bag B and A C [n], let Bap = {f*:
[ € Fonand f(A) = B}. Let S; and 1; denote the bags hjmoar(Ri—1) and h;meqe(R;), respectively. Let
ti = |T;| = |R;| (thus t_; = n) and s; = |S;|. Note that (¢;) is a nonincreasing sequence. The protocol
terminates after the first round ¢ for which ¢; = 0. The protocol fails to terminate if and only if ¢; = ¢;,, > 0
for some ¢ > —1. (In such a case, the protocol enters an infinite loop with ¢; = ¢; for all j > 7.) The
goal of our analysis is twofold: (i) to bound the probability that the protocol fails to terminate, and (ii) to
analyze the number of rounds required by the protocol when it does terminate. We begin our analysis by
establishing some properties of D,, , and By 5.

Let random variable X be drawn from D,, ,, B be an arbitrary [n]-bag of size m, and m,; denote the
number of copies of element ¢ in B, 0 <1 < n. Then

Pr[X=B=—1—— . —. 1

il ] mol - om,_q! ™ (1)

Lemma 2.1 Let 0 < m < n and assume that X is a random variable drawn from D, ,. Let Y | X =

X \ {z}, where z is an element of X chosen uniformly at random. Then Y is a random variable with
probability distribution D,;, ,,.



Proof: Let B be any m-size [n]-bag and B; = BU {i}, 0 < i < n. Let the number of copies of element ¢
in B be m;. (Hence 27! m; = m.) Using Equation 1 we have

n—1

PrY =B] = Y PiX=8B]-

i=0 m—l—l

B ’il 1 '(m+1)!HL m; + 1
P nmtl (mi—l—l)!j#mj! m4+1

B TS 1 m!

N ot omgleomy, !

B m! 1

omgleeemy,_y ! nm

Corollary 2.1.1 Let a, m, and n be integers such that 0 <t < m < n. Let X be a random variable drawn
from D,,,. Let Y | X be a random a-size subbag of X. Then Y is a random variable with probability
distribution D, ,,.

Lemma 2.2 Let h | R, B be a function drawn uniformly at random from By . For arbitrary A C R,

h(A)| R, B is a random |A|-size subbag of B.

Proof: Consider an arbitrary element € R. Clearly h(z) is a random element of B. Applying this for
each element in A, h(A) is a random | A|-size subbag of B. B

Using Corollary 2.1.1 and 2.2, we prove the following claims related to the 1 out of £ protocol.

Lemma 2.3 For all 7 > 0, the random variable h/%_,, | R;, T; is drawn uniformly at random from Bg, 7,

3 . . . R; . .
Proof:  Since hjpoqe is drawn uniformly at random from F, ,, ki, | R;,T; is drawn uniformly at

random from the set of functions that map R, to [n]-bag T;, namely Bg, r,. R

Lemma 2.4 Let S/ denote the random variable S; | {(R;,1;) : 0 < j < ¢}. For 0 <17 < ¢, S/ is drawn
from D;, |, and for ¢ > {, S| is a t;,_;-size random subbag of T;_,.

Proof: By definition, S; = hijmeae(Ri—1). If 0 < ¢ < £, then S! = himoar(Ri—1)|Ri—1. Let S = himoar([n]).
Thus S is drawn from D,, , and hjmear|S is drawn uniformly at random from B, s. By Lemma 2.2, for
arbitrary R;_1, himoae(M;_1)|S is a random ¢;_;-size subbag of S. Therefore, applying Corollary 2.1.1, with
(ti—1,n,n,9,8)) for (a,n,n, X,Y), we find that S is drawn from D;, , ,.

If « > £, then S = hfn’lgéz(Ri_lﬂRi_z,ﬂ_z,Ri_l. By Lemma 2.3, Rl |R;_¢, T;_, is drawn uniformly

imod/{
at random from Bg, ,r,_,. By Lemma 2.2, for any R,_q, hfn’lgéz(Ri_lﬂ(Ri_z,ﬂ_z) is a random ¢;_;-size

subbag of T;_,. Hence, S! is a random t;_;-size subbag of T;_,. B

Now we are ready to describe the protocol in terms of the S;’s and T}’s alone. Let RandomBag(m,n)
return a bag drawn from D,), ,,. Let RandomSubbag(B, m) return a new bag that is a random m-size subbag
of B. Let PrunedBag(B,c) return a bag that contains exactly those elements of S that have more than ¢
copies. By Lemma 2.4, Algl(n,(, c) describes the random process occuring in the 1-out-of-¢ protocol on a
c-collision n-processor crossbar.



Algl(n,(,c)
=0
repeat
if + < £ then
S; := RandomBag(|T;_1|, n)
else
S; := RandomSubbag(T;_,,|T;_1|);
T; :== PrunedBag(S;, c);
1:=14+1
until |7;_,| =0

AAAAA,_\,_\,_\,_\
T e e e e e T
O 0 ~I O O = W N
NN NN N NP2

In order to analyze Algl we will estimate the size of T; after round . We propose a modified version
of the above algorithm that simplifies the estimation of |T;|. Observe that for 0 < ¢ < £, S; is the bag
obtained by throwing |S;| balls at random into n bins, and 7} is PrunedBag(S;, c). Below we present the
modified algorithm Alg2(n,(, c) that approximately maintains this invariant after every round, under a
suitable redefinition of S;. The analysis in Section 2.3 will make this precise. Alg2 is the same as Algl
except that Lines (1.5) and (1.6) are replaced by Lines (2.1) through (2.7), stated below.

(2.1) else {

(2 2) Si Ty = Si_, Ti_y;

(23)  while [T > [Ty {

(2.4) “Select x at random from .5;”;
(2.5 ST = 5\ {o}, T\ {x}
26) 1

(2.7)

b

Since each element z in line (2.4) is selected at random from S;, any element selected from 7} is also
random in 7;. Moreover exactly |T;_;| of the elements from T;_, are retained after the execution of the
while loop.

Lemma 2.5 Let S}, T} (resp., S?, T?) denote bags S;, T; in Algl (resp., Alg2) after round 4, i > 0.

K3

Then 7! and T7? have the same probability distribution.
Proof: We use induction on the number of rounds. For the basis, we observe that Ty, ..., T,_; in Algl
and Alg2 are obtained in exactly the same way. (Lines (1.5) and (1.6) of Algl and the corresponding
lines (2.1) through (2.7) of Alg2 are not executed.)

Consider round ¢ > £. By the induction hypothesis le and sz have the same probability distribution,
0 < j <. In Line (1.6), Algl computes S} by selecting a random subbag of size |T}' || from the subbag
T! ,. In Lines (2.3) through (2.6), Alg2 computes S? by removing at random elements from S? , until
|T2 | elements are retained from subbag T2 ,. Thus T7 is a |T2 ,|-size subbag chosen randomly from
T2 ,. By the induction hypothesis, the probability distribution of T}, (resp., T} |) is the same as that of
T2, (resp., T7 ). Therefore, S} after Line (1.6) of Algl and 77 after Line (2.6) of Alg2 have the same

probability distribution. Let S’ (resp., T”) denote S? (resp., T7) after Line (2.6) of Alg2 . Because 17,
contains all elements of S? , with more than ¢ copies, T’ contains all elements of S’ with more than ¢
copies.

After Line (1.7), T} is the subbag of S} containing all elements with more than ¢ copies, and 77 is the
subbag of S’ containing all elements with more than ¢ copies. Since T contains all elements of S’ with
more than ¢ copies, T7 is the subbag of 7" containing all elements with more than ¢ copies. Therefore, the

probability distribution of T} after round 7 is the same as that of 77 after round i. W



Corollary 2.5.1 The probability that Algl(n,[, c) terminates after round ¢, ¢ > 0, is equal to the proba-
bility that Alg2(n,[, c) terminates after round i. W

In the remainder of this section, we analyze Alg2 under different assignments to the parameters £ and
c. In Section 2.1 we present some results on large deviations which we use for our analysis. In Section 2.2
we analyze certain “balls and bins” experiments. Section 2.3 uses these results to analyze Alg2(n,(,1).
Among other results, we show that Alg2(n,3,1) and Alg2(n,2,2) each terminates in O(loglogn) rounds
whp. The analysis can be easily generalized to apply to Alg2(n,(, ¢) for other values of £ and ¢. Section 2.5
presents simple ideas for extending the above results to general a out of b problems.

2.1 Large Deviations
For our analysis, we make frequent use of the Chernoff bounds for the tail of the binomial distributions [4, 7].

Theorem 1 Let X be a random variable drawn from B(n,p), i.e., X is the number of successes in n
independent Bernoulli trials, where each trial succeeds with probability p. Then,

PrX < (1—g)np] < e/ 0<e<1 (2)
Pr[X > (1+e)np] < e ™3 0<e<1 (3)
PrlX > (1+e)np] < [e7(14¢)7 0] (4)

Lemma 2.6 Let S be a set of s balls, T be a subset of S, ¢t = |T'|, and p = t/s. Let s balls be chosen
uniformly at random from S, and ' be the random variable representing the number of balls that are
chosen from T'. Then, for any real € > 0,

IAN A

Proof: By [8, 16],

The lower bound on ' can be proved by using the upper bound on s’ — ¢'. Thus,
Prft' < (p—e)s'] =Prfs' —t' > (1 —p+e)s] <e >,
|
Corollary 2.6.1 Let S be a set of s balls, and T be a subset of S, t = |T'|. Let s’ balls be chosen uniformly

at random from .S, and ¢’ be the random variable representing the number of balls that are chosen from
T. Then,

e—slt2/(252 log® n)

Pt
Pt

(1+1/(2log” n))s't/s]

< , and
(1 — 1/(2 log n))s t/S] < 6—5’t2/(28210g5 n)

>
<

Proof: Apply Lemma 2.6 with ¢ = ¢/(2slog’n). W

Lemma 2.7 Let S be a set of s balls and T be a subset of S, ¢t = |T|. Let s’ balls be chosen at random
from S, and let ¢ be the random variable representing the number of balls that are chosen from 7. If
s't/s > log”n, then t' > s't/(3s) wvhp.



Proof: Let p=t/s. Consider the ¢’ balls being chosen in s rounds - one ball in each round. If the number
of balls chosen from bag T in rounds 1,...,7 — 1 is less than ps’'/3, the probability that a ball from T is
chosen in round ¢ is at least 2p/3. Let X be a random variable drawn from B(s’,2p/3). The probability
that ¢’ > ps'/3 is at least the probability that X > ps'/3. By Equation (2), Pr[X > ps'/3] > 1 — e#*'/12,
Since ps’ > log” n, the lemma is proven. W

In Alg2(n, ¢, 1), T; is that subbag of S;, each element of which has at least 2 copies. We call such
elements (as well as the associated balls) non-singletons. Similarly in Alg2(n,(,2), each element of T} has
at least 3 copies. We call these elements (and the associated balls) non-pairs. In Section 2.3, we show
that the probability distribution of S; is approximately Dy, ,. Thus, in Alg2(n,(, 1) (resp., Alg2(n,(,2))
t; is approximately the number of non-singletons (resp., non-pairs) in a random bag drawn from Dy, . In
order to get sharp estimates on the number of non-singletons and non-pairs in a random bag drawn from
D,, », we use a martingale analysis. The following two theorems are used to bound large deviations for
martingales [4].

Theorem 2 Let = A® denote the set of functions g : B — A. Fix a gradation § = B, C B, C --- C
B,, = B. Let L : 2 — R be a functional. Define a martingale X, ..., X,, by setting

X;(h) = E[L(g) | g(b) = h(b) for all b € B;].

Assume that for all 7, whenever h and A’ differ only on B;;; — B;, we have |L(h') — L(h)| < 1. Then
| Xip1(h) = X;(h)| <1, forall0<i<m,heQ. N

Theorem 3 (Azuma’s Inequality) Let Xy, ..., X be a martingale with |X;;; — X;| < 1, for all 0 <
t < k. Then for real A > 0,
Pr[|X, = Xo| > AWVk| < 2e7/2,

2.2 Lemmas on Balls and Bins

In this section, we estimate the number of non-singletons and non-pairs in a random bag with distribution
D,, , using some of the large deviations results mentioned in Section 2.1. By linearity of expectation, the
expected number of non-singletons (resp., non-pairs) of a random bag X drawn from D,,, is given by
f(m,n) (resp., g(m,n)), where

flm,n) = m (1 - (1 - %)m_l) ,and
m(i- (=LY ome o,

Throughout this section n will be fixed, so we use f(m) (resp., g(m)) to denote f(m,n) (resp., g(m,n)).
Lemmas A.1 and A.2 show that f(m) = ©(m?/n), and g(m) = O(m?*/n?). Let

g(m,n)

§ = 1—1/log’n, and
A = 1—|—1/10g3n.

Now we bound the probability that the number of non-singletons in a random bag drawn from D,, ,
deviates from the mean f(m). Lemma 2.8 is used to bound deviations to within a o(1) factor for m suitably
large, and Lemma 2.9 bounds deviations to within a constant factor for all m.



Lemma 2.8 Let m, n be integers such that 3 < m < n, and h : [m] — [n] be a random function
drawn from F,,,, and t(h) be the number of non-singletons in bag h([m]). If m > n*/®log®n, then
5 (m) < t(h) < Af(m) wehp.

Proof: Consider the martingale Xy, ..., X}, defined as:
X;(h) = Elt(p) | p and h agree on balls in [7]].

If two functions p and p’ differ only on ball 7, ¢(p) and ¢(p’) differ by at most 2. We apply Theorem 2 by
scaling the random variable ¢ by 2 and thus obtain, | X;;; — X;| < 2. Similarly after scaling X;’s by 2, we
apply Theroem 3 to get

Pr[| X, — Xo| > 20y/m] < 2e72/2 (5)

The expected value X, of the functional ¢, is f(m). For a function h, t(h) is X,,(h). By Equation 5 with
A= f(m)/(2y/mlog’ n), we find that

Prllip) = fom] > L] < gemsomriomete,
log” n

Since for all m > 2, f(m) > m*/3n,

Pr [|t(p) — f(m)] > f(m)] < 9e=m*/(72n%1og® n)

log® n
For m > n*?log® n, m3/(72%log® n) > (log” n)/72. Therefore, §f(m) < t(p) < Af(m) wvhp. B

Corollary 2.8.1 Let m and n be integers such that 3 < m < n and S be a random bag drawn from D,, ,,
and t be the number of non-singletons in S. If m > n*/®log” n, then §f(m) <t < Af(m) wvhp. B

Lemma 2.9 Let m and n be integers such that 3 <m < n and S be a random bag drawn from D,, ,,. Let
t represent the number of non-singletons in S. Then,

1. The probability that a particular ball is a non-singleton is at most m/n.
2. For \/ﬁlogE’ n < m < n, we have t < 4m?/n wvhp.

3. For m < y/nlog® n, we have t < 4log'® n wvhp.

Proof: Let the m balls be thrown one-by-one. Since the balls occupy at most m bins, when a ball is
thrown the probability that it falls into a non-empty bin is at most m/n. Thus the probability that a
particular ball is a non-singleton is at most m/n. This establishes Part 1 of the lemma.

Let X be the random variable representing the number of balls that fall into non-empty bins. The
number of non-singletons is at most 25. Hence, X is stochastically dominated by the random variable Y
drawn from B(m, m/n). The expected value of Y is m*/n.

For m > /nlog’® n, we apply Equation 3 with € = 1, and obtain Pr[Y > 2s?/n] < e=7"/3" < ¢=(log™*n)/3,
Therefore the number of non-singletons is at most 4m?/n wvhp, proving Part 2 of the lemma.

For m < \/ﬁlog5 n, we upper bound ¢ by the number of non-singletons in a bag drawn from D /71045, -
By Part 1, t < 4log'®n wvhp, proving Part 3 of the lemma. W

The following two lemmas establish bounds on the number of non-pairs, analogous to Lemmas 2.8
and 2.9.
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Lemma 2.10 Let m, n be integers such that 6 < m < n. Let h : [m] — [n] be a random function drawn
from 7, ,, and t(h) be the number of non-pairs in bag hA([m]). If m > n*/log”n, then g(m) < t(p) <
Ag(m) wvhp.

Proof: Consider the martingale Xy, ..., X}, defined as:
X;(h) = E[t(p) | p and S agree on balls in [7]].

If two functions p and p’ differ only on ball 7, ¢(p) and ¢(p’) differ by at most 3. We apply Theorem 2 by
scaling the random variable ¢ by 3 and thus obtain, |X;;; — X;| < 3. Similarly, after scaling X;’s by 3, we
apply Theorem 3 to get

Pr[| X, — Xo| > 3\/m] < 2¢77/2, (6)

The expected value X, of the functional ¢, is g(m). For a function h, t(h) is X,,(h). By Equation 6 with
A= g(m)/(3y/mlog’ n), we find that

Pr [|t(p) . g(m)| > g(?)] < 2€—g(m)2/(18m10g5n)‘ (7)
log” n

Since for 6 < m < n, g(m) > m*/12n*,

b ['t@) —g(m)| > g(?)] < 2e~m"/(18:12%n* log® )
log”n
If m > n*5log” n, m5/(18-12%n*log’® n) > (log” n)/18-122. Therefore, for m > n*/*log® n, §g(m) < t(p) <
Ag(m) wvhp. B

Corollary 2.10.1 Let m, n be integers such that 6 < m < n, and S be a random bag drawn from D,, ,,
and ¢ be the number of non-pairs in S. If m > n*/5log”® n, then §g(m) <t < Ag(m) wvhp. B

Lemma 2.11 Let m, n be integers such that 6 < m < n, and S be a random bag drawn from D,, ,,. Let
t be the random variable denoting the number of non-pairs in .S.

1. The probability that a particular ball is a non-pair is at most max{3m?/n?, 3(log'’ n)/n}.
2. For n*?log®n < m < n, t is at most 12m>/n* wvhp.
3. For m < n*3log®n, t is at most 12log” n wvhp.

Proof: Let m > \/nlog’ n. Consider the experiment of throwing balls one-by-one into n bins until either
there are 4m?/n non-singletons or all the m balls have been thrown. Let ¢ be the number of non-pairs
in this experiment. Since by Part 1 of Lemma 2.9, the number of non-singletons in a random bag from
D, is at most 4m?/n wvhp, when the experiment terminates all the m balls have been thrown wvhp.
Therefore any upper bound on ¢ wvhp (resp., whp) is an upper bound on ¢ wvhp (resp., whp).

During the above experiment, the non-singletons occupy at most 2m?/n bins. Therefore when a ball is
thrown the probability that it falls into a bin with non-singletons (referred to as “non-singleton bins”) is
at most 2m?/n®. Thus the probability that a particular ball is a non-pair is at most 2m?/n?+1/n¢ for any
real constant ¢ > 0. Since m > /nlog’ n, this probability is at most 3m?/n?. This establishes Part 1 of the
lemma. (Note that for m < \/nlog’ n we can bound the probability by 3(y/7log’ n)?/n* = 3(log" n)/n.)

Let X be the random variable representing the number of balls that fall into non-singleton bins. The
number of non-pairs ¢’ is at most 3.X. The random variable X is stochastically dominated by the random
variable Z drawn from B(m,min{1,2m?/n?}). The expected value of Z is at most 2m?/n*.

For m > n*?log®n, we apply Equation 3 with ¢ = 1, and obtain Pr[Z > 4m?/n] < e~ 27°/3° <
e~ (2198°n)/3  Therefore t' (and hence t) is at most 12m3/n? wvhp, establishing Part 2 of the lemma.

For m < n*?log® n, we upper bound t by the number of non-pairs in a bag drawn from D 2751085 n -
By Part 1, t < 12log” n wvhp, establishing Part 3 of the lemma. B
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2.3 Analysis of Alg2

In this section, we analyze the number of rounds Alg2 takes before termination. For 0 < ¢ < £, we have
s; = t;_,. Corollaries 2.12.1 and 2.12.2, and Lemma 2.13 establish bounds on s; in terms of the s}’s,
0<g3<.

Lemma 2.12 In Alg2(n,(,c)let i >, s, = As;_yt;_1/tiy and s_ = ds;_ot;_1/t;_¢. Then

2 2 6
Prls; > 54] mrtid (sl log"n) o

Prs; < s_]

e—s_tf_l/(Zsf_[ log® n) .

IN IV

Proof: In round i, Alg2 removes elements at random from S;_, until ¢;_; elements are left from the
subbag T;_, of S;_,. Hence, Pr[s; > s,] equals the probability that less than t;_; elements are left from
T;_, after s;_, — sy elements are removed. This is equal to the probability that less than ¢;_; elements
are chosen from 7;_, in a random selection of s, elements from 5; ,. Applying Corollary 2.6.1 with
(s,t,s") = (Si—e,ti—e, S4), the desired probability is at most e Htine/ (257 log® n) (Here we use the fact that
for n sufficiently large, (1 — 1/(2log”n))A > 1.)

Similarly Pr[s; < s_] equals the probability that more than t;_; elements are left from T;_, after
s;_¢ — s_ elements are removed from S;_,. This is equal to the probability that more than t;_; elements
are chosen from T;_, in a random selection of s_ elements from S;_,. Applying Corollary 2.6.1 with
(s,t,s") = (Si—e,ti—e, 5_), the desired probability is at most ems-tine/ (257, log® n) (Here we use that fact that
for n sufficiently large, (1+ 1/(2log’n))6 < 1.) W

Corollary 2.12.1 In Alg2(n,(,¢),if i > £, s;_gt;_1/ti_ > 20*/®log® n and t,_, > s?_,/4n, then wvhp,
8si_gtiog[tie < si < Asi_gtisg [t
Proof: Let s,,s_ be as defined in Lemma 2.12. By Lemma 2.12, we have
Prls; > As;_gt;1/tie] < s+t (251 log" ),

Since sy, 8-, > 2n*3log®n and t;,_, > s?_,/4n, the right hand side of the above inequality is at most

e+ i-e/32n 0% n < o—log®n /4 Similarly we can prove the desired lower bound on s; wvhp using the lower
bound in Lemma 2.12. (Note that s_ > 26n*3log® n > n*?log® n for n sufficiently large.) W

Corollary 2.12.2 In Alg2(n,{,c), if s;_¢ti_1/ti_e > 204 %log® n and t;_, > s?_,/13n?, then wvhp,
8si_gtiog[tie < si < Asi_gtisg [t
Proof: Let s,,s_ be as defined in Lemma 2.12. By Lemma 2.12, we have
Prls; < As;_gt;q/tie] < ot/ (251 log" ),

Since s,,5;_¢ > 2n*/°log’ n and t,_, > s> ,/13n>, the right hand side of the above inequality is at most
ems45i-s/ (21370 o n) o= (1610g" n)/(13%)  Qimilarly we can prove the desired lower bound on s; wvhp using
the lower bound in Lemma 2.12. (Note that s_ > 26n*/%log” n > n*/%log” n for n sufficiently large.) W

Lemma 2.13 Let ¢ > (. In Alg2(n,(,c),if t;_, > log” n, then s; < 3si_gti_1/ti_g wvhp. If t;_; < log” n,
then s; < 33i_£(10g2 n)/t;_y wvhp.
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Proof: In Alg2, Pr[s; < 3s;_¢t;_1/t;_¢] is equal to the probability that more than ¢;_; elements are se-
lected from T;_, in a random selection of 3s;_,t;_1/t;_, elements from S;_,. If t;_; > log2 n, then we apply
Lemma 2.7 with (s,t,5") = (sj_¢, ti—e, 3Si_eti_1/ti—s) to establish that s; < 3s;_¢t;_1/t;_, wvhp. Similarly
Pr[s; < 33i_£(10g2 n)/ti_i] is equal to the probability that more than ¢;_; elements are selected from T;_,

in a random selection of 33i_£(10g2 n)/ti_, elements from S;_,. If t;_; > log2 n, then we apply Lemma 2.7
with (s,¢,5) = (si_e, ties 33i_£(10g2 n)/ti_s) to establish that s; > 33i_£(10g2 n)/ti_y wvhp. B

Lemma 2.14 relates ¢; to s; for ¢« > /.

Lemma 2.14 Let m balls be thrown uniformly and independently into n bins and .S be the associated
random bag. Let balls be removed at random from S until the remaining bag, denoted by 5’, satisfies
condition C'. Let X denote the set of balls that are non-singletons, m = |5’|, and ¢’ = | X|. Let condition
C be such that there exist integers d, u satisfying d < m’ < u wvhp.

1. If d,u > n*?log®n, then §f(d) <t < Af(u) wvhp.
2. If u > \/nlog® n, then ¢’ < 4u®/n wvhp.
3. If u < /nlog® n, then ¢ < 4log"" n wvhp.

4. For any ball z, Pr[z € X] < u?/(mn) + 1/n° for any real constant ¢ > 0.

Proof: Consider the experiment of removing balls one-by-one at random from . Let S; (resp., X;) be
the bag (resp., set of non-singleton balls) obtained when m — u balls have been removed and S, be the
bag obtained when m — d balls have been removed. Therefore S| = w and |S5| = d. Also, S, is a subbag
of S;. Wvhp, the condition C occurs after m — u balls are removed and before m — d balls are removed
from S. Thus wvhp, S” is a subbag of S, and a superbag of S;. Let t; (resp. ¢;) denote the number of
non-singletons in S; (resp., S;). Hence t5 < ¢ < t; wvhp. Note that by Corollary 2.1.1, S; and S5 have
probability distributions D, ,, and Dy ,,, respectively.

1. If d,u > n*?log® n, then by Corollary 2.8.1, t, > §f(d) and t; < Af(u) wvhp, thus establishing Part
1 of the lemma.

2. If u > /nlog’ n, then by Part 2 of Lemma 2.9, t; < 4u®/n wvhp, thus establishing Part 2 of the
lemma.

3. Ifu < \/ﬁlog5 n, then by Part 3 of Lemma 2.9, t; < 4log'®n wvhp. Hence ¢/ < 4log'® n wvhp, thus
establishing Part 3 of the lemma.

4. For any ball z, Prla € X] < Pr[z € X;]+ 1/n° for any ¢ > 0. By symmetry, the probability that
remains when u balls are left is u/m. Since S; is drawn uniformly at random from D, ,,, by Part 1
of Lemma 2.9, Pr[z € X,] < (u/m)(u/n) = u?/(mn), thus establishing Part 4 of the lemma.

Corollary 2.14.1 In Alg2(n,(,1),let ¢ > ¢ and d, u > 0 be integers such that d <'s; < u wvhp. If ¢/ =¢,,
then Parts 1 through 3 of Lemma 2.14 hold. Also, for any ball z € [n], the probability that 2 remains after
round i is at most (u?/n?) + 1/n¢ for any real constant ¢ > 0.

Proof: Fix integer 7« > (. Let k = ¢ mod ¢. Consider the sequence of bags {Sj, | 7 > 0} in Alg2. Bag

Sy is obtained by throwing t,_; (n if £ = 0) balls into n bins. Bag S;.yx, j > 0, is obtained by removing
at random balls from S¢;_1)p4r until £¢;_1ye4r—1 balls are left in a particular subbag T(;_1)e4x of S¢j_1)e4-
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Bag S; can be obtained equivalently the following way: remove n — t,_; (0 if & = 0) balls at random
from S that is a random bag drawn from D, ,. Thus each bag S;yx, 7 > 0 (S;, in particular), can be
viewed as having been obtained from bag S by removing balls at random until a certain condition (say C')
holds. For bag S; thus obtained, it is given that d < |S;| < v wvhp. We invoke Lemma 2.14 substituting
(9,8;, s, t',n,d,u,C) for (S,5",m',t',m,d, u,C) to establish the desired claims. B

Similar to Corollary 2.14.1 we establish the following result for Alg2(n,(,2) using Lemma 2.11
Lemma 2.15 In Alg2(n,(,2),let ¢ > ¢ and d,u > 0 be integers such that d <s; < u wvhp.

1. If d,u > n*5log®n, then dg(d) < t; < Ag(u) wvhp.

2. If u > n*log® n, then t; < 12u®/n® wvhp.

3. If u < n?/3log® n, then t; < 12log” n wvhp.

4. For any x € [n] the probability that z remains after round i is at most max{3u?/n?, (ulog'® n)/n?} +
1/n¢ for any real constant ¢ > 0.

2.3.1 Analysis of the 1-collision crossbar

Using results from Section 2.2, we show that the probability that Alg2(n, ¢, 1) deviates significantly from
the “expected” behavior is polynomially small. Let s} be defined as follows:

n if i =0,
s = f(si_y if0<i</{ and
Z IO (Y

i—4 f(slz—l)

otherwise.

Let t; = f(s;) for all # > 0. (Note that for all i > 0, s} is the expected value of s; given that (s;,t;) = (s},1})
/

for 0 < j <4 and ¢; is the expected value of ¢; given that (s;,t;) = (s},;) for 0 < j <7 and s; = s}.)

Lemma 2.16 In Alg2(n, ¢, 1), for all 0 < i < glog3 logn, if s} > 4n*3log® n and n is sufficiently large,
then wvhp,

§%s <5 < A%S, and (8)
ST <t < AT (9)

Proof: We use induction on ¢. For the basis, ¢ = 0 and sp = n = s,. By Lemma 2.8, §f(n) < t; < Af(n)
wvhp and since tj = f(n) the desired claims hold for i = 0.

Assume the claim holds for all j < i. We first establish Equation 8 from which we then derive
Equation 9. We consider two cases. If ¢+ < £, then s; = ¢;_;. Since s;_;, > s} > 4n2/310g3 n, by the
induction hypothesis, we have 6237 +1¢/_ < t,_; < AZ37+1¢/_ wvhp. Since 3' > 2-3i=1 41 for i < /,
58l < 5y < SLA wvhp.

If i > ¢, we use Corollary 2.12.1 to bound s;. By induction hypothesis, since s/_,, si_, > 4n*/?log® n,

—4 —4

8 s, <sie <A s,
i—£ i—4£
&M, <t < AP, and
2.3 7141 s 2.3° 7141 s
) 1 <t;1 < A ti_q-



Substituting appropriate bounds on s;_,,t;_,, and t;_;, we get the following bounds on s = s;_,t;_1/t;_,
wvhp:
FEAT gy APy g

A2'3’_l+1t’. . S S S
5—

2.3t 4 14/
1] i,

By the fact that § < A=, and A? > §~! for n sufficiently large, we have

i—1 i—4 i—1 1—4
523 +3-3 +28;_Zt;_1 A2~3 +5-3 +3
<s<

t - - t
i—4L i—4L

! !
Si_eti_y

(10)

Since 3° > 2-3149for £ > 3, 3" > 23171 43.3"¢ 4+ 2. Therefore s > §'s,_,t!_ /t'_, = §s, wvhp. Since
i < Zlogglogn, 3" < log®? n, and &' > « for any real o < 1 for n sufficiently large. Hence s > 2n%/3log® n.
Next we show that t;_, > s2_,/4n wvhp. By the induction hypothesis, t;_, > §23 7~ +1¢/_, = §23 7 +1 f(s_,)
wvhp. Since f(s)_,) > (s/_,)?/3n and s;_, < A* "s/_, wvhp, we have

qi—t qi—t
. GO g
i > = >

JAZ3 Ty 3n '

wvhp. In the last step we use § < A~!. For any real @ < 1, 83" > 6% > a for n sufficiently large.
Therefore, §437+1 > 3/4 for n sufficiently large and thus it follows that ¢t;_, > s? ,/4n wvhp.

Now we apply Corollary 2.12.1 to obtain ds < s; < As wvhp. By Equation 10, wvhp,

2.3""143.3°"%43 s / 2.3°"145.3" =444 s /
) ti_y A ti_y

S, _ S, _
i—0 S s S i—0

/ /
ti—z ti—z

Since for £ >3,3°>2.3 "1 49, we have 3 > 2.3"1 4+ 5.3~ 4+ +4 and 3" > 2-3"1 4+ 3.3=¢+ 3. Since
si=s,_,ti_ /ti_,, Equation 8 holds wvhp.

Now we invoke Part 1 of Corollary 2.14.1 to obtain bounds on #;. Note that §%'s}, A®'s} > n*3log®n
for n sufficiently large. Thus wvhp,

SF(6¥'s)) <t < Af(AP'S)),

and hence by Corollary A.3.1,
52~36’+1f(82) S tz S A2~3’+1f(82)‘

Since t; = f(s}), Equation 9 follows wvhp. H

Lemma 2.16 implies that we can analyze Alg2(n,(, 1) by studying how s, decreases as ¢ increases.

Lemma 2.17 For all 0 < ¢ < £, we have

IT si=s II 76,

0<j<i+1 0<j<i

and for ¢ > £, we have

I[I =< II 7).

i—l+1<j<it1 i— 1< <i
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Proof: For 0 < </, the desired claim follows directly from the definition of s}, 0 < j < ¢+ 1. Observe

that for ¢ = £ — 1, we have H s; = 5

i lH1<G<it1
Assume that for £ — 1 < k < 7, we have

!
II j

i— 1< <it1

H J(s5_,). We use this fact as a basis for the case i > (.

H f(s5). Then

k—t4+1<j<k

LT
/ J

Si—e i—0<j<i

i— 1< <i

[I

k—04+1<j<k+1

N |
s; = g

sof(si_1)

IT 76

/
f(si—z) i—£<j<i—1
= s I 6.
i—t1<j<i
|
Lemma 2.18 For all 1 < ¢ < () if s;_, and n are sufficiently large, then
1 s 4 s’
e | e |
Fohogia M T T G
For ¢ > ¢, if s,_, and n are sufficiently large, then
/ /
L H 5% < i < 5%
=1 == :
icbi<i<a U g
Proof: By Lemma 2.17 and Lemma A.1l, if s,_, and n are sufficiently large, then for all 0 < i < £, we
have (5)? (5)?
86 55 / / 55
31 II LS II &< 0
0<j<i 0<j<i4l 0<j<i

and the claim of the lemma follows after dividing by s; ;. By Lemma 2.17 and Lemma A.1, if s}_,
0<5<s

and n are sufficiently large, then for all ¢ > 0, we have

I1 I1

i— 1< <i i— 1< <it1

!
So
—1

II ,

i— 1< <

!
II Sj-

i— 1< <

/ /
s; < 8

and the claim of the lemma follows after dividing by s{ [ |

Lemma 2.18 can be used to analyze Alg2(n,(,1) for any ¢ > 2. In the remainder of this subsection,
we restrict our attention to the case £ = 3. Let w; = log,(n/s;) and w} = log,(n/s}), where r = n/f(n).
(Note that e/(e — 1) <r <2 forall n > 2.)

Lemma 2.19 In Alg2(n,3,1), for all ¢ > 0, if s;_, > 3, then
Wiy +wi_y < wp < wi_y+ wi_y +2log, 3.
Proof: Follows directly from the definition of w} and Lemma 2.18. W
Lemma 2.20 In Alg2(n,3,1) for all i > 0, if s;_, > 3, then pi™' < w! < pi~!, where py, p, > 1 satisfy

(11)
(12)

pi—p—1<0
Py —p2—2log.3-1>0
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Proof: The proof is by induction on i. We have s| = n/r, hence p$ =1 = w| = pj.
Let the claimed lower and upper bounds on w! hold for all 0 < j < 7,7 > 1. By Lemma 2.19 and the
induction hypothesis,
P AT < wp < ph 4 pi? 4 2log, 3
Equations 11 and 12, together with the fact that p, > 1, establish that pf{~" < wj < p5~'. W

We now place tight bounds on the number of rounds Alg2(n, 3, 1) takes before termination.
Lemma 2.21 There exists integer j = O(loglogn) such that s; < n*/® wvhp in Alg2(n,3,1).

Proof: Let ¢ = (1 ++/5)/2. Since ¢* — ¢ — 1 = 0, Lemma 2.20 implies that w, > ¢'~' for all
i > 0. Let £ = min{¢ : w} > logr(%)}. For i = [log, log, %} + 1, wi > logr(%)
k < log,log, % + 2. (Also note that since wj, < 14 2log, 3, £ > 3 for n sufficiently large.) Since
#%? > 3, k < 5/2logylog n for n sufficiently large. Thus, Equations 8 and 9 of Lemma 2.16 hold for all
i < k. (Also note that s, = n/r“s < 4n*?log®n.)

By Lemma 2.16, £,_; > 623" +1¢/_ wvhp. Since t)_, = f(sh_,) > (sh_1)2/3n, ty_q > 16623" '+ (n1/310g° n) /3 >

log” n wvhp for n sufficiently large. By Lemma 2.13, s, < 38k _sti_1/tk_3 wvhp. Substituting appropriate
bounds on s;_3, t;_3, and t;_; from Lemma 2.16, we have wvhp

. Therefore,

3k—3

sp < BATITHR TR < AT <4y (13)

The last step follows from the fact that A% < o for any real o < 1 and for n sufficiently large. We consider
two cases depending on the value of s.

Case 1: s, < \/ﬁlogE’ n. By Equation 13, s, < 4\/ﬁlog5 n wvhp. Therefore, by Part 3 of Lemma 2.14.1,
t, < 64 loglon wvhp. We consider two cases. If ¢, > log2 n, by Lemma 2.13, s;41 < 3sp_sly/tr_o wvhp.
If t;, < log”n, then Skr1 < 3s,_»log” n/ti_». In any case, s, < (1925k_210g10 n)/tx—o wvhp. Now we
substitute appropriate bounds on s;_5 and ¢,_5 from Lemma 2.16 and obtain wvhp,

192A% s, _,log'' n
Sk+1 > gk—2
§F Y

2
576nA>3 2 og' 0 p
Sk_o
144A3" p1/3 log” n

2/5

<
< n
for n sufficiently large. (Note: The penultimate step follows from the fact that 3* > 5372 4 2 and
8l _y > 403 log® n.)

Case 2: s, > \/ﬁlogE’ n. By Equation 13, s, < 4s, wvhp. We again consider two cases, depending on
whether ¢, < log2 n or t > log2 n.

Ift, < log2 n then Lemma 2.13 implies that s; 11 < 35,5 log2 n/t;_» wvhp. Arguing as in Case 2, sz

is at most n2/®

wvhp.

If t;, > log2 n then Lemma 2.13 implies that s,y < 3sp_oty/ti_» wvhp. Since s, < 4s}, by Part 2 of
Lemma 2.14.1, t;, < 64(s})?/n < 192t wvhp. Substituting this upper bound on ¢, and appropriate bounds
on s;_; and t,_, obtained from Lemma 2.16, we have s;,;; < 1000s;, ., wvhp for n sufficiently large. We
now derive an upper bound on sj_,.

By Lemma 2.19, w;, < wj,_, + wj,_, + 2log, 3. Since wj_, > wj,_,, we have

log,n  3log, logn
6 2

w;c—l > (w;c - 210g7‘ 3) > - logr 6.

N | —
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Thus, by Lemma 2.19,

Wiy > Wy + Wi,
> logQT no 910g;10gn ~log, 24, and

Sk < /nlog’n,

for n sufficiently large. Now we apply an analysis similar to Case 2 with k replaced by k4 1 to establish
that sy, is at most n*® wvhp.

Cases 1 and 2 establish that wvhp after j = k4 2 = O(loglog n) rounds s; is at most n?% wvhp. B

Lemma 2.22 For any ball # € [n], the probability that & remains after O(loglog n) rounds of Alg2(n, 3, 1)
is at most 2/n%° for n sufficiently large.

Proof: By Lemma 2.21, after j = O(loglogn) rounds, s; < n* wvhp. By Corollary 2.14.1, the prob-
ability that z remains after round j is at most 2n*/®/n? for n sufficiently large. Since 2n*/®/n? = 2/n%/>,
the desired claim follows. B

The following theorem is an easy consequence of the above lemma.

Theorem 4 Alg2(n,3,1) terminates in O(loglogn) rounds whp. B
Theorem 5 Alg2(n,3,1) terminates in Q(loglog n) rounds wvhp.

Proof: A possible solution to Equation 12 is p, = 3. Thus by Lemma 2.20, w! < 3~! for all 7 > 0. After
k = |logs((log, n)/4)] rounds, w, < (log, n)/4 and s, > n®*. For n sufficiently large n3/* > 4n?/3log® n.
Therefore, by Lemma 2.16, t, > 623" t1t, > §23"+1(s,)2/3n > 0 for n sufficiently large. This shows that
Alg2(n, 3, 1) executes at least logs((log, n)/4) > log,((logn)/4) = Q(loglog n) rounds before termination.
|

The recurrence in Lemma 2.18 for £ = 2 yields s/, ,/n > s//3n for all + > 0. Thus w; = O(i). Using an
analysis similar to the above theorem we establish an Q(logn) lower bound for Alg2(n,2,1).

Theorem 6 Alg2(n,2,1) terminates in Q(logn) rounds wvhp. W

2.3.2 Analysis of the 2-collision crossbar

The analysis of Alg2 with the collision factor set to 2 is similar to the l-collision case. Analogous to
Section 2.3.1 we define s; as follows:

n ifte=0,
s =4 9(si_y) if0<e<d,

glsio .
Sh_y- ( =1 otherwise.
i g(si_,)

For all i > 0 let t; = ¢(s}).

Lemma 2.23 Let ¢ be the positive root of ¢ = 4c¢+ 13. In Alg2(n, (,2), for all 0 < i < (11/4) log, log n,
if s/ > 4n/®log® n, then wvhp,

58 <5 < A%s) (14)
ST <t < AT (15)
(16)
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Proof: We use induction on ¢. For the basis, ¢ = 0 and s = n = sj. By Corollary 2.10, dg(n) < t; <
Ag(n) wvhp and since tj, = g(n), the desired claims hold for i = 0.

Assume the claim holds for all j < ¢, ¢ > 1. We first establish Equation 14, from which we then derive
Equation 15. We consider two cases: ¢ < £ and ¢ > £.

If i < ¢, then s; = t,_, and s, = t,_,. Since s,_, > s, > 4n*/®log®n, by the induction hypothesis,
ST <ty < A*THY_ wvhp. Since ¢ > 5, we have ¢ > 4¢7' 41 for all i > 1. Hence
5 st < s < A8t wvhp. If i > £, we use Corollary 2.12.2 to bound s;. By the induction hypothesis, since
sh_1,si_, > 4n*®log® n, we have wvhp,

i—4£ i—4£

8 s, <sie <A s,
4c 41 4t 41y
o iy <tie< A ti_g, and
4t 41 4t 41
) 1 <t;1 < A ti_q.

Substituting appropriate bounds on s;_,,¢;_,, and t;_;, we obtain the following bounds on s = s;_,t;_1/t;_,
wvhp:
54cl_l+c’_l+18/ t/ A4c’_1+c’_l+18

_ Piotinl oooo
Ade =41y, ==
i

/ /
z’—Zti—l

dei—t41y
o,

Since § < A~! and A% > §~! we have

i—1 i—4 i—1 1—4
546 +5¢ +2S;’-Zt;’—1 A4c +9¢ +3 {_ Ly
<s< . (17)

Since £ > 2, we have ¢! > 4c¢*=!' 4+ 13. Hence, ¢ > 4¢'=! + 5¢7=f + 2. Therefore s > §'s,_,ti_,/t._, = 55!
wvhp. Since ¢ < (11/4) log, logn, we have ¢ < log'/*n and &' > « for any real o < 1 for n sufficiently
large. Hence s > 2n*5log’n wvhp. Next we show that t;_, > s> ,/(13n) wvhp. By the induction
hypothesis, t;,_, > %" *1¢/_, = §*" *lg(s,_,) wvhp. Since g(si_,) > (s}_,)?/12n? and s;_, < A" 's/_,
wvhp, we have

PR FXCRER
i—t 2 = > =,

12A3¢7 n? 12n?

wvhp. For any real @ < 1, 6~ > §¢° > « for n sufficiently large. Therefore, §TeTIHL > 12/13 for n
sufficiently large and thus ¢;_, > s?_,/(13n?) wvhp.

i

i—4£

Now we apply Corollary 2.12.2 to obtain és < s; < As wvhp. By Equation 17,

i—1 i—4 i—1 1—4
546 +5¢ +38;_Zt;_ L < < A4c +9¢ +4
Si

! !
Si_eti_y
/ — — / °
tize tize

Since ¢ > 4¢'~1 4+ 13, we have ¢ > 4c=! + 57  + 3 and ¢ > 41 4 9¢'~f 4 4. Hence Equation 8 holds
wvhp.
Now we invoke Part 1 of Lemma 2.15 to obtain bounds on #;. Note that 6¢ s}, A®'s; > n*/5log® n for n
sufficiently large. Thus wvhp,
5g(6°'s)) < t; < Ag(A®'s)),
and hence by Corollary A.4.1,
S g (sh) <t < A'Fg(s).

K3

Since t; = ¢(s}), Equation 9 follows wvhp. W

Lemmas 2.24 and 2.25 determine the rate at which s} decreases with increasing 7. Using Lemma 2.23,
we can then determine the rate of change of s; as ¢ increases.
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Lemma 2.24 For all 0 < ¢ < £, we have

II s =5 II 9(s)),

0<j<i+ 0<j<i
and for ¢ > £, we have
;o /
[I =< II o)
i—f4+1<j<i+1 i—L+1<5<i

Proof: Similar to the proof of Lemma 2.17. B
Lemma 2.25 For all 1 < ¢ < () if s;_, and n are sufficiently large, then

2

1 S;» s s
_J < X< .

=11 () <2<l (

0<j<i i<j<i

For ¢ > (,if s;_, and n are sufficiently large, then

1 S/» 2 ’ 2
J ] J
el (2) << I (%) '
i— 1< < i— 1< <i

Proof: By Lemma 2.24 and Lemma A.2, if s,_, and n are sufficiently large, then for all 0 < i < £, we

have / (/)3 (/)3
So S s
oot 1l =< II si<s ] =

n? ’
0<j<i 0<j<idl 0<j<i

3 |
YA

and the claim of the lemma follows after dividing by s; H ;. By Lemma 2.17 and Lemma A.1, if s}_,
0<5<s
and n are sufficiently large, then for all ¢ > 0, we have

s (5)° (5)°
12¢-1 H n2 S H S‘/i S 86 H n2 ’

=l 1< <i i—lH1<G<itl i— 1< <s

and the claim of the lemma follows after dividing by sj H s;. W

i— 1< <

In the remainder of this section, we restrict our attention to the case where ¢ = 2. We set r = n/g(n).
(Note that e/(e —2) <r <9 for n > 3.)

Lemma 2.26 In Alg2(n,2,2), for all ¢ > 0, if s;_, > 6, then
2wi_, < wi < 2w, +log, 12
Proof: Follows directly from the definition of w} and Lemma 2.25. Bl

Lemma 2.27 In Alg2(n,2,2), for all i > 0, if s;_, > 6, then pi™' < w) < py ', where p; < 2 and
p2 > 2+ log, 12.
Proof: The proof is by induction on i. We have s| = n/r, hence p$ =1 = w| = pj.

Let the claimed lower and upper bounds on w} hold for all 0 < j < ¢, ¢ > 1. Then by Lemma 2.26, and
the induction hypothesis,

PP < wl < pi P4 ph? 4 210g, 3
Since p; < 2 and py, > 2+ log, 12, it follows that pf ™' < w/, < p5~'. W

Now we place tight bounds on the number of rounds Alg2(n,2,2) takes before termination.
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Lemma 2.28 There exists integer j = O(loglogn) such that s; < n°® wvhp in Alg2(n,2,2).

Proof: By Lemma 2.27, w} > 2! for all ¢+ > 0. Let & = min{: | w! > log, %}. Therefore
k < [loglog, %} +1 <loglog, % +2. (Also note that since w} = 1, we have k£ > 2 for n sufficiently
large.) Now we apply Lemma 2.23 with ¢ = 2. Let ¢ be the root of the equation ¢* = 4c¢ + 13. Since
21/4 > ¢ k < (11/4)log, log, n for n sufficiently large. Therefore by Lemma 2.23, t,_; > 6" '+, _,
wvhp. Since t,_, > (s,_,)?/(12n2), we have t,_; > 6% +1(1602/5log” n)/3 > log” n for n sufficiently
large. By Lemma 2.13, sp < 3s;_otx_1/ti_» wvhp. Substituting the appropriate bounds on s;_», t,_; and
tp_s given by Lemma 2.23, we have wvhp,

dek—tyck—241 /
3A Sttty

Sk <
= dek—241 44
Gt

3A4FT 4+ 9cF 72 4 35, Ltk — 1

/
tk—z

Since ¢? = 4c + 13, we have ¢ > 4¢871 4 9¢8=2 + 3. Therefore,
se < 3A” s, < 4, (18)

wvhp for n sufficiently large.
We consider two cases, depending on whether ¢, < log”n or t;, > log” n.

Ift, < log2 n, then by Lemma 2.13, sy < 33k_110g2 n/t,_1 wvhp. Substituting appropriate bounds
on s;_; and t,_; given by Lemma 2.23, we have wvhp,

3A s, log’n

Sk+1 S 54ck_1+1t;€ .

< 36A%" " +2p2og” n

B (Sk-1)”
9A T p2/s

< P —

- 4log*n
92¢p?/®

< T
4log™ n

< pils

for n sufficiently large. (The second step follows from the lower bound on t,_; given by Lemma A.2. In
the third step we use s,_, > n*5log’n. And in the penultimate step we use A < 2forn sufficiently
large.)

If t, > log”n then by Lemma 2.13, spyy < 3sp_1ty/tr_y wvhp. If s, < (n*/®log®n)/4, then since
s < 4s, wvhp, by Part 3 of Lemma 2.15, ¢, < 121log” n wvhp. Hence, as in the case t, < log”n above,
we can establish that t,,; is zero whp. If s, > (n*/®log®n)/4, then by Lemma 2.15, t, < 768(s,_,)?/n?
wvhp. Therefore, by Lemma A.2, ¢, < 12-768¢,. Substituting this bound on ¢, and appropriate bounds
on s;_; and t,_; given by Lemma 2.23, we have wvhp,

36 - T68A 5| _ 1)

Sk‘-l—l S ck—1
Fg
< 36 T68A T2,
< 36768275, .
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By Lemma 2.26 with { = 2, wj, > 2w}, Thus wj,, > 2log,(
5/8

%), and s}, < 16n%/5log®n. Hence,
Spr1 < n°/° for n sufficiently large. B

In Lemma 2.29 we place a bound on the probability that a particular ball remains after O(loglogn)
rounds.

Lemma 2.29 For any ball # € [n], the probability that & remains after O(loglog n) rounds of Alg2(n, 3, 1)
is at most 4/n°® for n sufficiently large.

Proof: By Lemma 2.28, after j = O(loglog n) rounds, s; < n5/® wvhp. By Part 4 of Lemma 2.15, the
probability that = remains after round j is at most 4n'%/8/n3 for n sufficiently large. Since 4n'5/%/n® =
4/n°/%, the desired claim follows. W

The following theorem follows easily from Lemma 2.29.

Theorem 7 Alg2(n,2,2) terminates in O(loglogn) rounds whp. B
Theorem 8 Alg2(n,2,2) terminates in Q(loglogn) rounds wvhp.

Proof: For n > 3, since r > ¢/(e — 2) we have 2+ log, 12 < 10. Therefore, by Lemma 2.27, w! < 10°~*
for all ¢ > 0. After k = [log,,((log, n)/6)], rounds wj, < (log, n)/6, and s, > n®/°. For n sufficiently large
n%/% > 4n*®log® n. Therefore, by Lemma 2.23, 1, > 6*" 1, > §*"+1(s)3/12n% > 1 wvhp for n sufficiently
large. (Here ¢ is the positive root of ¢* = 4¢ 4 13. Note that §*"+! > 12\/n for n sufficiently large.) This
shows that Alg2(n,2,2) executes at least |log,,((log, n)/6)] > |log,y((logs n)/6)] = Q2(loglogn) rounds
wvhp before termination. H

2.4 Limited Independence

In this section we analyze the 1 out of ¢ protocol when the £ hash functions are chosen from a k-wise
independent family of hash functions. As before, we view each hash function as a throw of n balls into
n bins. We show that on any c-collision crossbar, the probability that a particular ball remains after r
rounds of the k-wise independent 1 out of £ protocol is close to that of the fully independent protocol for
r = O(loglogn), even when k < n. Importing the results in Lemma 2.22 and 2.29 in Section 2.3, we
obtain the following main theorems.

Theorem 9 For integers £ > 3 and ¢ > 1, the 1 out of £ problem is solved on a c-collision crossbar in
O(loglogn) rounds whp, when the ¢ hash functions are chosen independently and uniformly at random
from a k-wise independent family of hash functions for k = Q(log™ n), where « is a real constant. W

Theorem 10 For integers £ > 2 and ¢ > 2, the 1 out of £ problem is solved on a c-collision crossbar in
O(loglogn) rounds whp, when the ¢ hash functions are chosen independently and uniformly at random
from a k-wise independent family of hash functions for & = Q(log® n) where « is a real constant. H

Let 7, denote a k-wise independent family of functions from [m] to [n], that is, for {z; : 0 < i < j} C
[m], Yo, ..., ye—1 € [n}7, 0 < j <k, it holds that if & is drawn uniformly at random from ]—'f;ym then
Prih(z;) = y; for 0 <i < j]=1/n’.
If k < \/n, F),, can be constructed as in [17] using the families Hya, and H), . defined in [6] and [22]
respectively. (Here d is an appropriate constant.) A hash function h chosen uniformly at random from
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]—‘,’;yn is defined as r o s, where r and s are chosen uniformly at random from H,«, and H} . respectively.
Both r and s can be evaluated in constant time [22, 6], and hence so can be h.

In order to analyze the 1 out of £ protocol, we restrict our attention to the at most n memory requests
of the processors. The hash functions with the domain restricted to this set of requests can be viewed as
mapping m < n memory locations into n memory modules k-wise independently. First, we establish a few
simple properties of k-wise independent hash functions.

Lemma 2.30 Let &k, m, and n be integers such that 0 < £ < m < n. Let h be drawn uniformly at random
from FJ . For any A C [n], |A] < (k—1)/e*, we have

Pr[h=H(A) = 0] < (1 = A]/n)" (1 + e~ =177,

Proof: If k is even, let &' = k; otherwise let ¥’ = k — 1. By inclusion-exclusion we have

Pr[h~ (A) = 0] = 1+f: ST (=1 Prlh(ao), - h(xiy) € A]

i=1 0<2p<...<zj—1<m

1+ Y (<) Prfh(@o), ..., k(e € A]

<

= 1Y X DAy

= 1+(2 > <—1>Z’<|A|/n>i)+(Z?)<|A|/n>k’
< 1+(i > <—1>Z’<|A|/n>l’)+(Z?)<|A|/n>k’
< (1-|Al/m)" + (m) (JA] /)

< (L= AR (L4 (em/K)F (JAlfn) emialim)

< (L= JAl/m)™ (1 + (e] Al/R)¥ mIAllm)

< (1 JAl/m)™ (14 ¥ e

< (L= AR (L 4B,

(In the seventh step we use the inequalities 1 — 2 > e™% for 0 < 2 < 1/2 and |A| < k'/e? < n/2. The last
step follows since |A] < k' /e?.) A

Lemma 2.31 Let k£, m, and n be integers such that 0 < £ < m < n. Let h be drawn uniformly at random
from F¥ .. Let B C [n] satisfy | B| < k//3, where real § > 0. If S = h='(B), then Pr[|S] > 5|B|] < (e/c)I?l.

Proof: By the definition of S, Pr[|S| > 3|B|] is the probability that there exists aset T' C [m], |T'| = 5|B],
such that h(T) C B. Since §|B| < k and h is chosen uniformly from a k-wise independent family of hash
functions, this is at most <ﬁ|B|)(|B|/n)ﬁ|B| < (e/B)"15. M

Corollary 2.31.1 Let k, m, n, and p be integers such that 0 < p < k < m < n. Let h be drawn uniformly
at random from F¥ .. For 0 <i < p,let X ={2;: 0< i< p} C[m]and y = (yo,...,yp_1) € [n]F. Let F
be the event that for 0<i<p,h(x;)=y;. Let AC[n], |A] < min{p, (k—p—1)/e*}, and E’ be the event
that for all € X, h(z) ¢ A. Let B C [n] satisfy |B| < (k—p—1)/3, where real § > 0. If S = h™'(B),
then Pr[|S| > 8|B| + p | E N E] < 2e4l(e/3)P15l.
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Proof: Let Y denote [m]\ X. Thus, ¢ = h¥ | F is drawn uniformly from a (k — p)-wise independent
family of functions from Y to [n]. The event E’ | E is equivalent to the event that g1 (A) =0. If k — p is
odd, let &' = k — p; otherwise let ¥ = k — p — 1. By inclusion-exclusion we have

= (7)o
e=21A1m=0)/n _ (o] 4|/ (K))
o214l _ (26)_2|A|

e~24l /g,

Pi{E' | ]

v

(AVARAVAN AV

(In the second step we use the inequality (1 — |A|/n) > e~ 2I4I/" gince |A| < n/2. The third step follows
from the inequality &' > 2€|A| > 2|A|.)

Pr{(([S] = BB +p) 0 &) | £]
P | E]
Pr{([S] > 8|B| +p) | E]
P | E]
Prlg™'(B) > 5| B[]
Pr[F’]
< 2€2|A|(6/5)0|3|‘

Pr((IS| = 8Bl +p) | ENET] =

IN

IN

(In the last step we invoke Lemma 2.31 substituting (m — p,n, k — p, 3, B, S) for (m,n, k, o, B,S).) A

For the rest of the section, we fix integers £, ¢ > 1, and analyze the 1 out of £ protocol on the c-collision
crossbar. Let i = (ho, ..., he_1) represent a tuple of £ hash functions, where h; : [m] — [n], 0 < i < (. For
x € [m], let AFFECTZ'(/;7 z) denote the set of balls that could affect the success of ball z in round j for all
0 < 7 < 2. Formally, we define

AFFECT;(h,z) = { {z € [m] : Pimodae(2) = Pimoae(y) for some y € AFFECT;_,(h,z)} otherwise.

Lemma 2.32 Let k, m, and n be integers such that 0 < k < m < n. Let h = (hoy ..., he_1), denote ¢
hash functions chosen independently and uniformly at random from ]—',’f%n, For any o € [m] and @ > 0, if
k > max{4log®n, 10| AFFECT;_,(h,x)|}, then |AFFECT;(h,z)| < max{4log® n, 10|AFFECT;_,(h,z)|}
wvhp.

Proof: In the following we use A; as a shorthand for AFFECTZ'(E7$). Let 7 = ¢mod £. Let A;,_; =
{zg,...,2p_1}, where 0 < p < m. If ¢ > -1, let A = A;_;\ Aj_y; otherwise let A = A, ;. Let
B = hj(Aiy), C = hj(A), and S = A;\ A;_y. Thus S C h;'(C). Fix y = (yo,...,Yp-1) € [n] and
let I be the event that for all 0 < ¢ < a, (h;(20),...,hj(zp-1)) = y. Let E’ be the event that for all
g Ay hi(z) € C. Set 8 = max{(e’p)/|C|, (log" n)/|C|}. We now apply Corollary 2.31.1 substituting
(k,m,n,h;,p, X,y,B,C,S,E,E', 3) for (k,m,n,h,p,X,y, A, B, S, E, ', 3) to obtain |S| < B|C| + a with
probability at least 1 — 2e218l(e/B)PI€1. Since 3 > €2p/|C| > €2, we have

9¢21BI=5IC]

9e=PIC1/2

96218l (e/ﬁ)ﬁlcl

AN VAN VAN

2¢~ log? n
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(In the second step we use the inequality 2|B| < 2p < 28|C|/e* < 5|C]/2.) Thus,
|A;] <A1+ |S| < max{e’p, 2log” n} + 2p < max{4log” n, 10|A;_,|}

wvhp.

Forr > 0, h = (hoy..yhe—1), hy = [m] — [n] for 0 < i < {, and & € [m], define ASSIGNT(E,w)
as {(y,holy), ... heo1(y)) 1 y € AFFECTT(E,w)}. We note that given h, ASSIGNT(E,w) completely
determines whether # succeeds in r rounds under h.

Let 2; € [m], y;; €[n], 0<i<p, 0<j<{ Let A= {(2s,Yi0,- - Yie—1):0 <7< p}. Wecall Aan
assignment. Let X denote {z; : 0 < i < p}. For any r > 0, we call A a valid r-assignment for x € [m]
if ASSIGN,(g,x) = A, where § = (go,...,9¢-1), ¢; : X — [n] defined by g¢;(z;) = y;;, 0 < i < p, for all
0<j <t

In the following let Pr,[EVENT(h)] denote the probability of EVENT (k) when each hash function in
h is chosen independently and uniformly from ]—',’f%n

1)/(e* +1). Let

Lemma 2.33 Let k, m, n and p be integers such that 0 <k <m <n and 0 <p < (k-
= {(xwyz 07‘"7%’,2—1) :

z; € [m], 0 < ¢ < p be distinct integers and y; ; € [n], 0 < i< p, 0<j <l Let A
0 < i< p}. For arbitrary @ € [m] and integer r > 0, we have

Pry[ASSIGN, (h,2) = A] < Pr,[ASSIGN, (h, z) = A](1+ e~ ¢(=r)/3)L,

Proof: Let I be the event that h;(z;) = y;; for 0 < i < p, 0 < j <l Let X = {2;: 0 <i < p}
and Y; = {y;; 10 <7< p}, 0 <j <L (Notethat |Y;| < pfor 0 < j < ) Let Z denote [m]\ X
and E' be the event that AFFECT,(h,2) = X. Thus ASSIGN,(h,2) = A if and only if E and E'
occur. Since p < k, we have Pri[E] = Pr,,[F]. The event E’ occurs if A is an affecting r-assignment
and for some B; C Y;, 0 < j < {, determined by A, hj_l(Bj) NZ = 0. (The B;’s are determined from
A as follows. Let ¢ = (go,...,¢0—1), where g; : X — [n] is defined by g;(z;) = v ;, 0 < i < p for all
0<j<dl For0<j<d{ ifr<jthen B; = (. Otherwise, we consider two cases. If r mod ¢ < j, then
Bj = g;(AFFECT (|,je/-1ye4;(§, ®)); otherwise B; = g;(AFFECT ;010457 2)).)

If A is not a valid r-assignment the claim holds trivially. So we assume that A is a valid r-assignment.
For any p < ¢ < m, if h; is drawn from a ¢g-wise independent family of hash functions from [m] to [n], then
g; = hjZ | F' can be viewed as having been drawn from a (¢ — p)-wise independent family of hash functions
from Z to [n]. We invoke Lemma 2.30 substituting (k — p, m — p, n, g;, B;) for (k,m,n, h, A) to obtain

Pri[g7 ! (B;) = 0] < Pry[g7(B;) = 0](1 + e~ =072
for 0 < j < . Therefore,

Pfk[EﬂE’] - Prk[E]PI’k[E/ | E]
Pr,,[E]Pr, [E' | E](1+ ¢ *-p)/3)
= Pr,[ENE(1+ e B2/

IN

Lemma 2.34 Let k, m and n be integers such that 0 < k& < m < n. For any real ¥ > 0, € [m] and
integer r < yloglog n, if k > 8log"™ ™ n, then
Pry.[z remains after r rounds under k] < Pr,,[z remains after r rounds under 7] + 1/n”

for n sufficiently large.
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Proof: Let A be the set of valid r-assignments for 2 under which z fails. By Lemma 2.32, |ASSIGN, (57 z)| <
4(log” n)10"} < 4log"**n wvhp. By Lemma 2.33, for any assignment A such that |A| < 4log™ ™ n,

)
)

for n sufficiently large. (Here we use the fact that k& > 8log""*? n > 2|A|.) Thus,

Pry[ASSIGN, (h, ) = A Pr,,[ASSIGN,(

Pr,,, [ASSIGN,(

Al(1+ e—(k—lAl)/B)Z
AJ(L+1/2%),

< /;,x
< /;,x

—

Pry[z fails in r rounds under h] < Pr,JASSIGN, (h,z) € Al
< Pri[(ASSIGN, (h,2) € A) and |ASSIGN, (b, z)| < 4log"*? n] +1/n?
< S Py[ASSIGN,(h,x) = Al +1/n°
A1<itog i 47 0
< ST Pr,[ASSIGN, (h,z) = A(1+1/n°) + 1/n®
A1<itog i 47 0
< Prn[ASSIGN,(h,z) € A|(1+1/n%) + 1/n?
< Pry[e fails in r rounds under A] + 1/n”

for n sufficiently large. B

By Lemma 2.22, for any = € [n], Pr, [ remains after O(loglogn) rounds] is at most 2/n%° in the 1 out
of 3 protocol on the 1-collision crossbar. Similarly, for the 1 out of 2 protocol on the 2-collision crossbar,
Lemma 2.29 implies that Pr,[z remains after O(loglogn) rounds] is at most 4/n°® for any = € [n]. We
now apply Lemma 2.34 to establish Theorems 9 and 10.

2.5 Generalizations

Algl can be generalized to apply to any a out of b problem by changing the RandomSubbag and PrunedBag
routines appropriately; after each step, we need to keep track of how many successes each processor has
had, and only those processors with fewer than @ successes participate. In the following discussion, we
refer to this protocol as the generic protocol. For given a and b, the analysis of the generic protocol can
be done using the approach of Subsection 2.3, but involves more complicated calculations and recurrences.
In [9], the authors use a different analysis of this protocol for the 2 out of 3 case and show an O(loglogn)
upper bound when the collision factor is greater than 3. In this section, we present a simple variant of the
generic protocol that solves any a out of b problem on a 2-collision crossbar in O(loglogn) time whp.

In particular we can solve any a out of a+ 1 problem by running Algl(n,2, 1) with (a‘gl) different hash-
function pairs. Since each run fails with a polynomially small probability, and there are only a constant
number of runs, the entire algorithm succeeds whp. For instance, in the case of 2 out of 3, we simply
perform 3 runs of Algl. At first glance, it may appear that this revised protocol is only of interest because
it is simpler to analyze. Actually, the new protocol is competitive with the generic one for small ¢ and
is much faster for large a¢. Comparing it for the 2 out of 3 problem, we first note that since each of the
3 runs use 2 hash functions only, while the generic protocol uses 3, the revised protocol will be at most
twice as slow as the generic one. Moreover, the 1 out of 2 problem is clearly a simpler problem than the
2 out of 3 problem. So each run will involve a fewer rounds than in the generic algorithm. For large a,
this phenomenon is exaggerated. For a generic a out of @ + 1 protocol to make “progress”, a number of
processors must have a large number of successes. But at the outset, the fraction of processors that have
succeeded on d < @ hash functions decreases exponentially with d. Therefore, while the revised protocol
experiences only a quadratic slowdown in running time, the generic procotol will suffer an exponential
increase in running time with increasing a.
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The basic idea outlined above can be used to solve any a out of b problem by choosing any a + 1 hash
functions and solving the corresponding a out of ¢ + 1 problem.

Theorem 11 For integer constants @ and b with 1 < a < b, the corresponding a out of b problem can be
solved on a 2-collision crossbar in O(loglogn) time whp. W

The above generalizations can be made for the 1-collision crossbar as well. Since Algl solves the 1 out
of 3 problem on a 1-collision crossbar in O(loglogn) time whp, any @ out of a + 2 problem can be solved

in the same asymptotic time bound by running Algl(n,3,1) on (a-gz) different triples of hash functions.

Theorem 12 For integer constants ¢ and b with 1 < a < b — 1, the corresponding a out of b problem can
be solved on a 1-collision crossbar in O(loglogn) time whp. B

It is worth noting that by the above result, a 1-collision crossbar can solve the 3 out of 5 problem and
hence can simulate an EREW PRAM with n processors in O(loglogn) time whp using 5 hash functions.
Thus a 1-collision crossbar is asymptotically as powerful as a 2-collision one.

3 Symmetry Breaking

In this section we analyze algorithms for the Control Tower problem. In the Control Tower problem, there
is one central control tower and n remote stations, h of which contain a message destined for the control
tower. Each station can only transmit a message to and receive a message from the control tower, and
only in discrete time slots. When two or more stations attempt to transmit a message in the same time
slot, all of the transmitted messages are lost. Note that the control tower can transmit a message to only
one remote station in one time slot. We will consider each time slot to be a step; the goal is to transmit
all h messages to the control tower in as few steps as possible. (Throughout our analysis, we will assume
that the remote stations are numbered from 1 to n, and that the control tower sends an acknowledgement
upon receipt of a message.)

The Control Tower problem is related to the problem of direct routing of h-relations on a l-collision
crossbar, as discussed in Section 1. Specifically, since each processor is only permitted to transmit a
message directly to its destination, we are able to analyze each destination independently. Transmitting a
set of at most h messages to a destination is then equivalent to the Control Tower problem. Thus the lower
bound we obtain for the Control Tower problem can be used to obtain a lower bound for direct h-relation
routing.

To give some intuition into the Control Tower problem, let us first examine the case when h = 2. In
this case, the problem is that two stations are trying to transmit messages, but if they transmit at the
same time, then both of the transmissions are blocked. Note that some sort of symmetry breaking is
required, or the messages may never be successfully transmitted. A simple randomized strategy to break
the symmetry would be for each station to flip a coin and transmit if and only if it comes up “heads”. Then
the expected number of steps before both messages are successfully transmitted is constant. To achieve
success wvhp requires ©(logn) steps, however. Still, this turns out to be the best strategy possible, as
shown by Goldberg, Jerrum, Leighton, and Rao [12]. Generalizing to h > 2, we can easily verify that if
there are k messages left to transmit (k < h), then by having each station transmit with probability 1/k,
we maximize the probability of obtaining a successful transmission. The difficulty is that the stations are
not able to communicate with each other, and consequently they do not know exactly how many messages
are left to transmit at any intermediate step of the algorithm. If the number of messages left to transmit
were known to all stations at every step, then the Control Tower problem could be solved in O(h + log n)
steps wvhp. If not, Geréb-Graus and Tsantilas [10] showed that the Control Tower problem could be solved
in O(h + log hlogn) time wvhp, but it was not known whether the extra log h factor could be eliminated.
We show that the extra factor of log h is indeed necessary.
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We also examine deterministic solutions for the Control Tower problem and direct h-relation routing.
As mentioned in Section 1.2, a deterministic lower bound of Q((h/logh)logn) for the Control Tower
problem follows from the same lower bound for routing all & messages in the Ethernet model [15]. We
show a lower bound of Q((h/ min{log h,loglogn})logn) (which improves the previous lower bound for h
larger than polylog(n)), and we show this lower bound holds for successfully transmitting any of the h
messages in the Control Tower problem. (This result does not hold in the Ethernet model, where it is
trivial to successfully transmit one of the messages in ©(logn) time.) Finally, we prove the existence of a
©(hloghlogn) time deterministic algorithm for direct h-relation routing.

Lower bounds for the Control Tower problem can most easily be studied in the context of hypergraphs,
so here we review the definition of a hypergraph and related concepts.

Let V be a set of elements, called vertices. Let F be a set of nonempty subsets of V', called edges.
Then a hypergraph is given by a pair (V, ). Given a hypergraph H = (V, F), the hypergraph induced by
a set of vertices V! C V' is H' = (V| E'), where ' = {e € E:enV’' # 0}. Also the hypergraph induced
by a set of edges E' C E'is H' = (V, E’). A subset of vertices T C V covers an edge e € E'if eNT # (.
A transversal of H is a set of vertices T C V that covers every edge in F. For convenience, we define an
a-transversal to be a set of vertices ' C V that covers at least a edges of IV.

We define a hypergraph H = (V, E') to be a-thick if min.cp |e| > a, Note that if F'is empty, then H is
a-thick for every a. A hypergraph H = (V, E) is (a,b)-thick if H is a-thick and Y, -, fx27" < b, where f
denotes the number of edges e € F such that a2* < |e| < a2F1 k > 0. -

We will make use of the inequalities: (i) 142 < e” for all real 2, and (ii) 1 —2 > e ** for 0 < 2 < 1/2.

3.1 Deterministic Algorithm for Direct Routing

Here we give an improved upper bound for deterministic direct routing on the 1-collision crossbar. This
improved bound is obtained by slightly modifying a technique in Goldberg and Jerrum [11]. They show
that one can solve the Control Tower problem deterministically in ©(hlogn) steps. (Their proof is much
simpler than the proof in Komlés and Greenberg [18].) This directly implies the existence of a deterministic
direct h-relation routing algorithm for the 1-collision crossbar which takes ©(h?logn) steps. By modifying
their technique, however, we are able to obtain an upper bound of ©(hloghlogn) on deterministic direct
h-relation routing on the 1-collision crossbar. Thus, in combination with the lower bounds shown later, we
obtain an exponential decrease in the gap between the upper and lower bounds for this problem.

As in Goldberg and Jerrum [11], define an (h, k)-relation as a routing problem in which each processor
is the source of at most h packets and each memory module is the destination of at most £k packets.

Lemma 3.1 There exists a deterministic algorithm that, given an arbitrary (h, k)-relation (k < h < n),
terminates after O(hlogn) communication steps such that the remaining communication problem is a

(h, [k/2])-relation.

Proof: We employ the probabilistic method to prove this. Assume each processor has h slots numbered
1,...,h and each slot contains at most one message. Consider the following randomized communication
step: Each processor selects one of its slots at random, and if the slot has a message, attempts to transmit
it.

At any step, if there are ¢ messages, k/2 < { < k, yet to be received by a memory module M, the
probability of a successful transmission to M is at least:

ox (1 E)H S ok (1 l)h_l L
AT, TR TR T el
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The probability that in chlogn communication steps there exist at least chlogn — |k/2] failed trans-
missions to M is at most

chlogn fe N\ BRI k/2_ —kelogn/4e 1
( s ) (1_ﬂ) < (chlogn)*"e SW

for n sufficiently large. (The last inequality is obtained by choosing an appropriate ¢.) Since the number
of choices for the sources and the slots of the messages destined to M are at most

("kh) < (nh)* <,

the expected number of message assignments such that this algorithm fails to send |k/2] messages is
bounded above by 1/n*. Thus there exists a deterministic algorithm that transmits at least | k/2] messages
destined to M. Now we note that any assignment of messages destined to another module P is also a
possible assignment for messages to M. Therefore the same deterministic algorithm that routes at least
|k/2]| messages to M will also route at least |k/2| messages to P, for any other P. B

Theorem 13 There exists a deterministic algorithm that realizes any h-relation , A < n,in O((hlog h) log n)
steps.

Proof:  There are [logh| phases in the algorithm. The ith phase reduces an (h,[h/2=1])-relation
problem to an (h,[h/2])-relation using the algorithm in Lemma 3.1. Thus after [logh] phases, the
remaining communication problem is an (h, 1)-relation that can be realized in O(h) steps. B

3.2 Deterministic Lower Bound

To obtain a lower bound on the number of steps required for a deterministic solution to the Control Tower
problem, we will first find a subset of stations such that a good fraction of those stations transmit at each
step, and then show that there are two small disjoint groups of stations which always transmit during
exactly the same steps. By placing messages at all stations in both groups, no station in either group
would succeed in transmitting its message, due to contention.

Some preliminary results which will aid in our proof are presented here.

Given that the number of edges in a hypergraph is small (compared to the number of vertices), the
following lemma shows that we can find a large subset of vertices which all cover exactly the same set of
edges. By using this relatively simple lemma, we would be able to prove a logarithmic lower bound on the
Control Tower problem. It will be much more difficult, however, to prove a superlogarithmic lower bound.

Lemma 3.2 Any hypergraph H = (V, F') with n vertices and m edges has a subset V' of V' with |V'| >
n2~™ in which every vertex in V' covers exactly the same set of edges.

Proof: By induction on m. If m = 0 then £ =0, so let V' = V. Then |V’'| = n = n2°, and every vertex
in V' covers no edges. If m > 0, choose an edge e € F, and consider the hypergraph Hy, = (V, E — {e})
induced by E — {e}. By induction we can find a subset V" of V with |V”| > n2=(™=Y in which every
vertex in V" covers exactly the same set of edges. Then let V' be the larger of V" Ne and V" — e, one of
which is guaranteed to be at least of size |V"|/2 > n27™. Also, all vertices in V' cover exactly the same
set of edges in £/ — {e}, and either all vertices in V' cover e or all do not cover e. B

The following lemma shows that we can find a subset of vertices such that every edge induced by that
subset contains a large fraction of those vertices.

29



Lemma 3.3 Let 2 > 0. Then any hypergraph H = (V, F) with n vertices and m edges has a subset V' of
V with |[V'| > n(1 — 1/2)™ that induces a |V’|/z-thick hypergraph H' = (V’, F’).

Proof: Construct V'’ from V iteratively by removing vertices for m steps. Let V; be the set of vertices
remaining after step i, with V, = V', and V' = V,,,. Atstep ¢, if V;_; induces a hypergraph which is |V;_;|/a-
thick, let V; = V;_;. Otherwise, let ¢ € F be an edge with |[e N V;_{| < |Vi_1|/z, and let V; = V;_; — e.
By induction, we have |V;| > n(1 — 1/2z)%, and thus |V'| = |V,,| > n(1l — 1/z)™. If at some step ¢, the
hypergraph induced by V; is |V;|/a-thick, then by construction, V' = V;, and V' induces a hypergraph
which is |V’|/z-thick. Otherwise, the number of edges in the hypergraph induced by V; is at least one less
than the number of edges in the hypergraph induced by V;_;. Thus the hypergraph induced by V' =V,
contains no edges, and consequently, it is |V’|/z-thick. B

Corollary 3.3.1 Let # > 2. Then any hypergraph H = (V, F) with n vertices and m edges has a subset
V' of V with |V’/| > ne=?™/® that induces a |V'|/z-thick hypergraph H' = (V'  E'). B

Next we formulate some results about transversals and “near-transversals” (small subsets of vertices
which cover almost all of the edges).

The following lemma is given by (Alon [2], Proposition 2.1, with « set to ﬂg_}éfl)
Lemma 3.4 (Alon [2]) Let 2 > 1. Then any n/a-thick hypergraph H = (V, E') with n vertices and m
edges has a transversal of size at most  + zIn(m/z). B

We will need to use the following simple corollary.

Corollary 3.4.1 Let # > 1. Then any 2n/z-thick hypergraph H = (V, F) with n vertices and m edges
where 2n/z > 2(z + x In(m/z)) has two disjoint transversals of size at most z + = In(m/z).

Proof: Using the fact that H is n/z thick, we can construct one transversal of size at most z 4+ In(m/z)
using Lemma 3.4. Note that after removing that transversal from the set of vertices, the remaining hyper-
graph is also n/x thick. Thus we can construct another (disjoint) transversal of size  + 2 In(m/z). R

Using these results, we would only be able to prove the desired lower bound on the Control Tower
problem for A = Q(logn). In order to prove our bound for small &, we must use a much more involved
argument using near-transversals. We first present a lemma which is similar to the lemma by Alon above,
except that it allow us to trade off the size of a near-transversal with the number of edges covered by the
near-transversal.

Lemma 3.5 Let 2,z > 1. Then any n/z-thick hypergraph H = (V, E) with n vertices and m edges has
an (m — m/z)-transversal of size at most [z In z].

Proof: Iteratively choose a set of vertices to be in the (m —m/z)-transversal. Let T; be the set of vertices
chosen by step 7, and let F; be the set of edges which are covered by T;. Then T, = 0 and F, = 0. We
will proceed for at most ¢ = [2In z] steps. At step ¢, if B = F,_y, then let T, = T;,_, and E; = F,;_;.
Otherwise, T;_; does not intersect any edge in &/ — F;_; and thus each edge in I/ — F;_; contains at least
n/x vertices of V — T;_;. Then by an averaging argument, some vertex v € V — T;_; must be contained
in at least |F — E;_y|/x edges. Let T; = T;_; U {v}. Then F; = F;_; U{e: en{v} # 0}. By induction,
we have |E — F;| < m(1 — 1/2)". Then |E — F;| < me™"/*. Thus |E — E,| < me™* = m/z, implying
|E:] > m —m/z. Then Ty is an (m — m/z)-transversal, and |T;| <t = [zIlnz|. B
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For explanation purposes, call an (m — m/z)-transversal constructed in Lemma 3.5 a near-transversal.
To obtain our desired result, we will need two disjoint near-transversals. It would be trivial to simply find
two of these by applying the previous lemma twice, but it is necessary that these two near-transversals
have the property that they cover exactly the same edges. (Notice that when using full transversals, this
property is trivially satisfied.) Here we show that for certain hypergraphs there exist two small disjoint
near-transversals covering almost all of the edges, and furthermore, they cover exactly the same edges.

Lemma 3.6 Let y > 2, k > 1, and ¢t = [2yIny*]|. Then any n/y-thick hypergraph H = (V, E) with n

vertices and m edges where
Lm/y*]
n m
— > E ,

K3

has two disjoint (m — m/y*)-transversals each of size at most ¢ which cover exactly the same edges.

Proof: If m = 0, then the lemma holds trivially, so assume that m > 1. Iteratively construct |n/(2yt)|
disjoint (m — m/y")-transversals, each having size at most ¢, using the method from Lemma 3.5 with
x = 2y and z = y*. After constructing each near-transversal, remove the vertices in that near-transversal
from the hypergraph. This ensures that the near-transversals constructed will be disjoint. Note that after
constructing ¢ near-transversals of size ¢, we will have removed at most it vertices. Therefore, we will
remove a total of at most |n/(2yt) |t < n/2y vertices, which implies that the remaining hypergraph will be
n/2y-thick. This guarantees that we can use the value = 2y in Lemma 3.5 at each step.

Now the number of ways to choose at most m/y* edges from m edges is
k
T
i=0 Z

By the condition stated in the lemma, this is less than the number of near-transversals we created, and
thus two of these near-transversals must cover exactly the same edges. B

Corollary 3.6.1 Let y > 2. Then any n/y-thick hypergraph H = (V, F') with n vertices and m edges,
where y > 4m/Inn and

n 1/4
— | > mn'?,
{Qy(Gyln le

has two disjoint (m — m/y?)-transversals each of size at most [6yIn y] which cover exactly the same edges.

Proof: If m = 0, the corollary holds trivially, so assume m > 1. Use Lemma A.5 to show that the
conditions of Lemma 3.6 apply (with k set to 3), as follows

[m/y*]
Z (m) < menlY
=0 ¢
< me(lnn)/4
< mnt/
< |
2y[6yIny]]”

Then Lemma 3.6 states that there are two disjoint (m — m/y?)-transversals, each of size at most [6y1n y]
which cover exactly the same edges. B

Now we can place a bound on the number of transmission steps required to solve the Control Tower
problem.
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Theorem 14 A deterministic algorithm for the Control Tower problem with h messages (2 < h < n!/10)
to transmit requires at least Q((h/ min{log h,loglogn})logn) steps to successfully transmit any message.

Proof: Let V be the set of all n stations, and I be a set of edges, where edge 7 contains all stations that
would attempt to transmit a signal in step 4, if they had a message to transmit. Let m = |F|. We will show
that if m < (h/128 min{ln A, InInn})Inn, then we can select a group of h stations such that no station
succeeds in transmitting its message. To select a group such that at least two stations do not succeed, we
would need to select two disjoint subgroups of stations that try to transmit at exactly the same time steps.
In terms of hypergraphs, this is equivalent to selecting two disjoint sets of vertices which cover exactly
the same set of edges. (Note that this would be enough to prove a lower bound for the Control Tower
problem.) To select a group such that no stations succeed, we need to make sure that in all steps where a
station is attempting to transmit, another station is also attempting to transmit. In terms of hypergraphs
this is equivalent to selecting two disjoint sets of vertices which cover exactly the same set of edges, where
the size of the union of the two disjoint sets is exactly h.

If b < 64, then m < %log n. Then by Lemma 3.2, we can find a group of y/n vertices which cover
exactly the same set of edges. Then we simply select h vertices from this group. (This case is also shown
in Goldberg, Jerrum, Leighton, Rao [12].)

If h > 64 and h > Inn, then m < (h/1281Inlnn)Inn, and we choose z such that h = 4z Inlnn. Note
that « > h/4Inlnn > 32m/Inn, and z > 2. By Corollary 3.3.1, there is a subset V' of V such that
V| > ne~*™/® > n7/® and V' induces a 2|V’|/z-thick hypergraph H' = (V', E'). Let m' = |F'|. By
Corollary 3.4.1, there are two disjoint transversals of H’ whose sizes sum to at most 2(z + zInlnn) < h
Then we can select the vertices in these two transversals, and select the rest of the h vertices arbitrarily
from V'. Then none of the h stations corresponding to the selected vertices successfully transmits its
message.

If 64 < h < Inn, then choose x such that h = 4 + 12z Inz. Note that « > h/16Inh > 8m/Inn and
z > 2. By Corollary 3.3.1, there is a subset V’ of V such that |V’| > ne=?™/ > p3% and V'’ induces a
|V'|/z-thick hypergraph H' = (V' E’). Let m’ = |F’|. Then by Corollary 3.6.1, there are two disjoint
(m’ — m’/a3)-covers Ty and T, of H' which cover exactly the same set of edges and whose sizes sum to at
most 2(6z Inz + 1) < h —2. Then to obtain a lower bound for the Control Tower problem, we could select
the vertices in T} and T, and select the other h — |T) U T5| vertices arbitrarily.

To prove the theorem, however, requires that we obtain two disjoint subsets of V' which cover the same
edges and whose sizes sum to h. We proceed as follows. First we note that we will be selecting the vertices
from V', and thus they will not cover any edge in F — FE’. We will start with the two disjoint subsets
T, and T, found above. Let E” be the set of edges in F’ that are not covered by T; or T,. Note that
|E"] < m/ /23 < m/fe < B2 By Lemma 3.2, there is a subset V” of V/ with [V"| > [V7/|2=(nn)/4 > pi/2
in which all vertices cover exactly the same set of edges in F”. Then add one vertex from V" to T}, and
another h — [T, UT,| — 1 from V" to T,. A

Corollary 14.1 Any deterministic algorithm for direct routing of an h-relation (2 < h < n'/1%) on a
1-collision crossbar with n processors requires Q((h/ min{log i, loglog n})logn) steps.

Proof: Consider one memory module to be the control tower, and the other n processors to be the
stations. The collision protocol is the same in the 1-collision crossbar and the Control Tower problem. By
the previous theorem then, there is a way to place h messages on the n processors such that they do not all
succeed in being sent to the destination memory module in less than (h/128 min{In h,Inlnn})Inn steps.
|
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3.3 Randomized Lower Bound

A randomized algorithm can solve the Control Tower problem in expected O(h) steps. However, for many
applications, including the analysis of direct h-relation routing on a c-collision crossbar, it is necessary to
determine the number of steps required to achieve a polynomially small probability of failure. That is what
we analyze in this section.

Our lower bound will make use of a result of Yao [25], which states that any lower bound for deterministic
algorithms on random inputs implies the same lower bound for randomized algorithms on worst case inputs.
In particular, we will proceed by developing a lower bound for deterministic algorithms solving the Control
Tower problem, where we assume that the h stations that have messages to transmit are chosen randomly
from the n stations.

To begin, we convert the problem into the hypergraph domain. Then we show how to reduce the
hypergraph corresponding to a given deterministic algorithm to a thick hypergraph, and show that with a
significant probability, the processors corresponding to vertices in this thick hypergraph contain messages
that are not successfully transmitted.

The following lemma is a modification of a result of Alon, Bar-Noy, Linial and Peleg [3, Lemma 3.1],
with a similar proof. For completeness, we will present the entire proof.

Lemma 3.7 Given ry,ry > 1, where ry < ry, let r = ro —r; and H = (V, F) be a hypergraph with n
vertices and m edges. Then for some k, ry < k < ry, there is a subset V' of V' with |V'| > ne=8m27"/" that
induces a (|V'|27%, 4m/r)-thick hypergraph H' = (V'  F’).

Proof: Define a permutation ey, ..., e, of the edges inductively as follows. Let e; be a minimum size
edge in . Then assuming edges ey, ..., e; have already been chosen (1 < ¢ < m), let e;;, be the edge in

E\{ei,...,e;} such that

€ir1 \Ulgjgiej‘ is minimum. For 1 <1 < 'm, define p; =0 if ‘U1§j<i€j = n, else

€; \U1§j<z’€j‘
pi=—7—7.
n—= ‘U1§j<i€j‘

For each k > 0, r; < k < ry, let j(k) be the smallest ¢ such that p; > 27%. (If there is no such ¢, let
j(k) = m + 1). Notice that by the definition of the permutation ey, ..., e, for every k > 0 and every

3"z k),

‘ej’ \ U1§i<j(k)ei

> 27",
n—= ‘U1§i<j(k)ei
Now for each k& > 0, let
dy = [{i:1<i<mand 27" <p; <275}, and
dyyi
i>1

Then

Zd;c < de < m.

E>0 E>0

Call an index k good if r; < k < ry and dj, < 2m/r. The average value of d over r; < k < r, is at most
m/r, and thus at least half of the indices k, r; < k < r,, are good. Note that if & is good, then we have

= n H (1—pi)

1<i<j (k)

n-— ‘U1§i<j(k)ei
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> H _ ogl-K dk/
a k'>k

ne_(22k1>k dklzl_kl)
; n6_22_kd;€
> ne—SmZ_k/r

Thus, for any good k there exists some subset V' of the required size that induces a |V’|27*-thick hyper-
graph.

Next we show that for at least for some good k, there exists a subset V' that induces a (|V’|27%, 4m/r)-
thick hypergraph. For each good k and each edge e; with j(k) < j' < m, define s(k, j’) to be the unique
integer ¢ if

b o ‘ej’ \ U1§i<j(k)e
n - ‘U1§i<j(k)e
Note that if &',k are both good and &' < k, then j(k') > j(k). Thus, if 7/ > j(k’) then

20 < 2L7RHL

‘ef’ \Uicicjen€i

< ‘ej’ \ U1§i<j(k)e
n - ‘U1§i<j(k)e

Consequently, s(k’,j’) < s(k,j’) — 1. Therefore, for every fixed j' < m,

Z 9-ski) <« 9

k good
Jk)<d’

n - ‘U1§i<j(k’)ei

For each good k, define y, = Zj,zj(k)Q_s(k’jl). Then

Zykﬁ Z 22 ) < 2m.

k good 1<j'<m+1 k good
Jk)<d’
Since at least r/2 indices are good, there is some index k with y, < 4m/r. Hence V' =V \ Ui<icin)€i
satisfies the conditions of the lemma. H

Next we show that large random sets of vertices in a thick hypergraph cover many edges with non-trivial
probability.

Lemma 3.8 Let @ > 1 and ¢ = [13z]. Given an (n/z,y)-thick hypergraph H = (V, ) with n vertices
and m edges, and a randomly chosen subset T of V with |T'| = t, then with probability at least (2a)~*, for
every j > 0, T will cover all but y2=0U+Y of the edges with thickness in the range [n27 /2, n2/+!/x).

Proof: Note that [132] > [1+ [logz| + 42 3;50(5)7']. For each j, 0 < j <logz, let
E;={e€ F:n2 )z <|e| < n2/t!/a}.

Then F = UUO“J F;. By the fact that H is (n/z,y)-thick, |E;| < y2/. View T as a collection of disjoint
randomly chosen subsets Ty, ..., Tjioge|, I’y Where t; = |T;| = [42(1.5)77]. Note that ¢ > Z]U;%“ t;. We
will show that the vertices from the set Tj, cover all but y2~! edges in F, with probability at least (2z)~'0,
the vertices from the set T cover all but y2~% edges in E; that were not covered by T, with probability
at least (22)~%1, and in general the vertices from the set T; cover all but y2=U+Y of the edges in F; that

were not covered by U, ;7; with probability at least (22)7%. The lemma then follows easily from this.
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Assume we have chosen the vertices in sets Ty, ..., T;_1, 7 > 0. Let

B =B\ {e: ‘emUOSKjTi £0}.

Consider choosing the vertices in T one at a time. Let Tj(i) be the set containing the first ¢ vertices chosen.

Let E](»i) be the set of edges in I not covered by Tj(i)7 with E](»O) = F}. Let
Vj(Z) — V\ (Tj(z) U U0§i<jTi) .

The hypergraph H; = (Vj(i)7 E](Z)) is |Vj(i)|2j/av—thick7 so the average number of edges covered by a vertex in
Vj(i) is at least |E](»i)|2j/ac7 and the maximum number of edges covered by a vertex in Vj(i) is |E](Z)| Hence,
with probability at least 27/(2z) > (2z)~", the number of edges of E](»i)covered by the next vertex added is
at least |E](»i)|2j/(2x). Therefore, with probability at least (2z)7, |E](Z)| < Ef(1-27/(22))" < |E}|e‘i2j/(2x).
Thus with probability at least (22)7's, |E](»tj)| < |E}|e‘2(4/3)j < y2iem 23 < =i+, (Here we use the
fact that for all integers j > 0, 27e~2(4/3)" < 2-U+1)) W

Corollary 3.8.1 Let 2 > 1 and t = [13z]. Given an (n/z,y)-thick hypergraph H = (V, F) with n vertices
and m edges, there are at least (?)(Qx)_t subsets of vertices of size ¢t that cover, for every j > 0, all but
y2~U*D of the edges with thickness in the range [n27/z,n2/*'/z). B

Using Corollary 3.8.1 we establish a lower bound on the probability that a random set of vertices contains
two near transversals covering exactly the same set of edges.

Lemma 3.9 Let 2 > 1 and ¢ = [13z]. Given an (n/z,y)-thick hypergraph H = (V, ) with n vertices
and m edges, where n > 4t, the probability that two randomly chosen disjoint t-size subsets of V' cover
exactly the same set of edges is at least

1 ( 1 4t2)
2(2z)t \2ylogy(2z)tel®  n )

Proof: 1If m =0, then the lemma holds trivially, so assume m > 1. Call a t-size subset of V an attempt,
and an attempt that satisfies the condition of Corollary 3.8.1 a good attempt. From Lemma A.7, the number
of different subsets of edges that could possibly fail to be covered by a good attempt is at most y'°s¥e'8¥,
Let A be the set containing exactly these subsets. For a given attempt, define the uncovered set to be the
subset of edges not covered by that attempt. Using Corollary 3.8.1, we find that on average each subset

in A is the uncovered set for at least
_[n 4 1
o= (t) (2$) ylogyel&t/

good attempts. Let B C A be the set containing the subsets of edges that are the uncovered set for at
most a/2 good attempts. Then at most

aylogyel&/ :1 n (2$)_t
2 2\¢

good attempts correspond to uncovered sets in B. Hence, the probability that a single random attempt 7T}
is one of the good attempts with associated uncovered set in A\ B is at least £(2x)~". If this is so, then
the number of attempts that are disjoint from 7T} and that cover the same edges as T} is at least

1({n 1 n n—t
(- [0)- (7))
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Note that we are subtracting the total number of subsets of size ¢ that intersect T;. Hence, the probability
that a random attempt 75 covers the same edges as T} without intersecting 7} is at least

Holz s (R V)]

By Lemma A.8, the probability that two randomly chosen t-size disjpoint subsets of V' cover exactly
the same set of vertices is at least

1 ( 1 4t2)
2(2z)t \2ylogy(2z)tel®  n )

Now we can place a bound on the number of transmission steps required to solve the Control Tower
problem with probability of failure polynomially small in n.

Theorem 15 Let A be a deterministic algorithm for the Control Tower problem where i > 2 messages are
placed randomly at h of the n stations. If A succeeds in T'(n, h) steps with probability at least 1 — n=3/%,
then for some constant ¢ > 0, T'(n, h) > log hlog n.

Proof: Let e = 107°. For h > lognloglogn, the result is trivial, since T'(n,h) > h > 107%log hlog n.
So assume 2 < h < lognloglogn. Let V be the set of n stations, and I be a set of edges, where edge ¢
contains each station that would attempt to transmit a message in step i, if it had a message to transmit.
Let m = |F|, and assume that m < 107°loghlogn < 107*log hlnn. In what follows, we show that with
probability at least n=3/* there are two disjoint sets of stations that attempt to transmit at exactly the
same time steps. In terms of hypergraphs, this is equivalent to showing that with probability at least n=3/4,
a random set of h vertices contains two disjoint sets of vertices that cover exactly the same set of edges.

If b < 219%° then m < L logn. If n < 2'° then m = 0, and the theorem holds trivially. Otherwise, by

Lemma 3.2, we can find a group of n°/'° vertices that cover exactly the same set of edges. The probability
that two of the h randomly placed messages lie in this group is at least

n—l/lO((n9/10 _ 1)/(n _ 1)) > n—3/4‘

(Goldberg, Jerrum, Leighton, and Rao [12] prove a similar result.)

If 21990 <, < log nloglogn < log”n, then n > 22" and h < n'/'°, If m < logh then m < l%goﬂ, and
the argument in the previous paragraph holds; otherwise, from Lemma 3.7 with r, = 282 and p, = 318k

10 10
there is a subset V' of V with
|V/| > ne—(40m)/(xlogh)

that induces a (|V'|/z,20m/ logh)-thick hypergraph, for some z, h*/1° < z < h3/'°. By our assumption
that m < 107 *log i In n, we have

—1 _ -1
|V/| > ne ogn/(250z) _ nl (250) 7

and the induced hypergraph is (|[V’|/x, (Inn)/500)-thick. Note that for h > 2'°%° we have |[V'| > 52z + 4
and h'/?/5 > 2[132]. Furthermore, with y set to (Inn)/500 and ¢ set to [132], we have

1 ( 1 4t2) s
—— ] 2>n .
2(2x)t \2yloey(2z)te'® n / ~
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Hence, the probability that at least 2[132| of the stations with messages belong to V' is at least

ios0m-1\ 201377
(nl (2502) ) > p-l/59-2(130]
2n -

> 725,
By Lemma 3.9, the probability that two disjoint [13z]-size random subsets of these vertices each cover
exactly the same set of edges is at least n~'/®. Hence, the probability that two disjoint subsets of the
randomly chosen set of & vertices covers exactly the same set of edges is at least n=%/°n=1/5 > n=3/4 R

Corollary 15.1 Let A be a randomized algorithm for the Control Tower problem with h > 2 messages
and n processors. If A succeeds in T'(n, h) steps with probability at least 1 —n~3/% then for some constant
e>0,T(n,h) > cloghlogn.

Proof: With ¢ = 107", this Corollary follows from Theorem 15 and Yao [25, Theorem 1] B

Corollary 15.2 Let h > 2, and let A be a randomized algorithm for direct routing of an h-relation on a
1-collision crossbar with n processors. If the expected time of A is T'(n, k) then for some constant € > 0,

T(n,h) > max{h,cloghlogn}.

Proof: Let ¢ = 107° The claim that T'(n,h) > h is trivial. Also, for all A > 2, if n < 2'%° or h > n'/3,
h > 107°log hlogn, so the claimed bound on T'(n, h) is trivial.

In the case of n > 2'°° and h < n'/?, by Yao [25, Theorem 1], we only need to show that the lower
bound holds for the expected time of any deterministic algorithm over some input distribution. We choose
an input distribution as follows. Let S = {5y, ..., Spui/01} be a set of [n'/?] disjoint groups of [n'/?] > n'/?
processors, and let T = {pi,...,pp,/51} be a set of processors that is disjoint from each 5, 1 <7 < [n/37].
For all 7, 1 < i < [n'/3], let h messages, each with destination p;, be placed randomly at i processors in ;.
By Theorem 15, for any deterministic algorithm using at most (107°/5) log hlogn steps, the probability
of a group S; successfully transmitting all 2 messages to p; is at most 1 — n~'/%. Hence the probability
of success in all groups is at most (1 — n_1/4)”1/3 < e (Notice that the analysis for each group is
independent, since we are dealing with direct algorithms.) Therefore the expected number of steps required
is at least (107°)loghlogn. W

4 Concluding Remarks

For appropriate choices of @ and b, the a out of b protocol can be used to emulate a single step of an
n-processor EREW PRAM on an n-processor crossbar. As shown in Section 2, the delay associated with
this simulation is O(loglogn) whp. One way to optimize delay is to introduce parallel slackness. By
simulating an m-processor PRAM on an n-processor crossbar (m > n) with delay O(m/n), time-processor-
optimal simulations can be obtained [17]. It would be interesting to see if the techniques of Section 2
used to analyze the a out of b protocol can be applied to obtain tight analysis of time-processor-optimal
simulations.

The randomized lower bound for the Control Tower and the h-relation routing problems in Section 3
matches the upper bound of [10] up to a constant factor. In the deterministic case, however, there is
factor of min{log h,loglogn} (resp., min{log h,loglogn}log i) separating the best known upper and lower
bounds for the Control Tower problem (resp., h-relation routing problem). Closing this gap is an important
open problem.
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A Technical Lemmas

Lemma A.1 For all integers m and n such that 3 < m < n, we have
m’/3n < f(m) < m*/n.
Proof: By definition,
F(m) = m(1 = (1= 1/n)™).
Since (1 —1/n)™"'>1— (m—1)/n,

f(m) m(l =1+ (m—1)/n)

<
< m*/n.

For the lower bound, since (1 —1/n)"™~* < 1— (") /n+4 ("]")/n?,

fm) > m<1—1+(m;1)/n—(m;1)/n2>
> (m(m—1)/n)(1 = (m - 2)/2n)
> m(m—1)/(2n)
> m?/3n.

In the penultimate step we use (m —2)/2n < 1/2, and in the last step we use (m —1)/2 > m/3 for m > 3.
|
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Lemma A.2 For all integers m and n such that 6 < m < n, we have
m?®/12n* < g(m) < m®/n’.
Proof: By definition,
g(m) = m(1 = (1= 1/n)™" = ((m = 1)/n)(1 = 1/n)™"2,

Since (1 —=1/n)""'>1—-(m—1)/nand (1-1/n)"2>1—(m-2)/n,

IN

g(m)

m(l— 1+ (ml_l)/n—(m—l)/n—l—(m—1)(m1_2)/n2)

m®/n?.

IN

For the lower bound,

o(m) > m(l_l_l_(ml—l)/n_(m;l)/nz_l_(mg—l)/ng_(m;l)/nzl

—m—1)/n+ (m—1) (ml_Q)/nz —(m—1) (m;Q)/n?’

+(m — 1) (m; 2) Jut — (m — 1) (m; 2) /)

> m((m—1)(m—2)/2n* — (m — 1)(m — 2)(m — 3)/3n>
F(m = 1) (m = 2)(m — 3)(m — 4)/24n* — (m — 1) (m; 2) /n)
> (m(m—1)(m=2)/n*)(1/2 = (m = 3)/3n)
> m(m—1)(m—2)/6n
> m?/12n°.

In the last step we use (m — 1)(m —2) > m?/2 for m > 6. R

Lemma A.3 If n and m are integers such that 2y/n < m < n, then for all real > 0,
Fm(1+2)) < (1+2)"f(m).
Proof: By the definition of f,
Flm(L+2)) = m(l+2)(1 = (1= 1/n)m+07h),

We establish the desired inequality by proving that (1—(1—1/n)"~ ™) < (142)(1—(1—1/n)™"!), which
is equivalent to showing that (1 —1/n)"~ ™ > (1—-1/n)""!(142)— 2. Since (1—1/n)™" > (1 —ma/n),

(1—1/n)mttme

v

(1-1/n)""(1 — ma/n)
1-1/m)" " (14+2)—2(1+m/n)(1-1/n)""!
> (1-1/n)"""(142) - a.

The last step follows from the fact that for m > 2¢/n, (1+m/n) < (1 —1/n)'"™. R
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Corollary A.3.1 If n and m are integers and « is real such that 0 < 2 < 1 and 2¢/n < m(l—z) < m < n,
then:

f(m(1+2)) (1+2)*f(m), and
f(m(1 = 2)) (1 —a)"f(m).

Proof: The first inequality follows directly from Lemma A.3. The second inequality is proved by applying
Lemma A.3 substituting (m(1 —z),1/(1 —2) — 1) for (m,z). R

<
>

Lemma A.4 If n and m are integers such that n > 9 and 10y/n < m < n, then for real z > 0,
g(m(1+2)) < (1+2)"g(m)
Proof: By the definition of g,
g(m(1+2)) = m(1+2)(1 = (1= 1/n)"*70 = ((m(1L+2) = 1)/n) (1 1/n)"H272),

We establish the desired inequality by showing that (1 — (1 — 1/n)™0+®) =t — ((m(1 +2) — 1)/n)(1 —
I/n)m0+0=2y < (14 2)3(1— (1 = 1/n)™ " — ((m—1)/n)(1 — 1/n)™"2). This is equivalent to showing that
(L= 1/m)m=2m 4 (m(1 4 2) = 1)/n) (1= 1/n)™ =57 > (1 +2)2(1 = 1/n)" ="+ (1 +2)?((m = 1) /n) (1 -
1/n)"=% — 2% — 327 — 3u.

(1= 1/m)" = 4 ((m(1+ ) = 1)/n)(1L = 1/m)" 72

> (1= /)™ (1= ma/n) + ((m(1 + ) — 1)/)(1 - 1/~
=((ma(m(L+z) = 1))/n*)(1 = 1/n)"""

> (1= 1/n)™ (1= ma/n) + ((m— 1)(1+2)/)(1 - 1/
+Ha/n)(1 = 1/n)"7" = ((ma(m(l+ ) = 1)) /n°)(1 = 1/n)" "

= (14+2)*(1-1/n)""" = (2 4+ 32" + 3z + ma/n)(1 - 1/n)"""
HI+2)’((m = 1)/n) (1= 1/n)" 7" = (2% + 32 + 22)((m = 1) /n)(1 = 1/n)"""
+(z/n—m’z/n® — m*2* /n® + ma/n*) (1 - 1/n)""?

> (1+2)°(1—=1/n)"" — (2® 4+ 32% + 32 + ma/n)(1 — 1/n)""?
H(1 2 (m = 1)) (1= 1/0)™ = (5% + 307 + 22) (m — 1)/n) (1 = 1/)"~
+(z/n — m*z/n® — m*2? /n® + ma/n®)(1 — 1/n)™"?
> (11— )P+ (14 ) ((m = 1) /) (1= 1/n)™
—(1- 1/n)m_2(x3—|— 322 + 3z + ma/n+ mx?’/n — x?’/n
+3ma®/n — 32% /n+ 2ma/n — 2x/n — x/n
+m*x/n® + m*2? /n® — ma/n?)
> (12— )P+ (14 ) ((m = 1) /) (1= 1/n)™

—(1=1/n)"?(2*(1 +m/n — 1/n)
+32*(14+m/n —1/n+m?/3n%) + 32(1 + m/n — 1/n+m*/3n* — m/3n%))
> (1+2)*A=1/n)"" "+ (1+2)*(m—-1)/n)(1-1/n)""" = (2 + 32° + 32).

The last step follows from the fact that (1 + (m — 1)/n + m?/3n?) < (1 - 1/n)=™=% for n > 9 and
10y/n<m<n. W

Corollary A.4.1 If n and m are integers and x is real such that 0 < 2 < 1,n > 9, and 10y/n < m(1—z) <
m < n, then:

g(m(1+z))

(AVARVAN

g(m(1l—z))



Proof: The first inequality follows directly from Lemma A.4. The second inequality is proved by applying
Lemma A.4 substituting (m(1 —2),1/(1—2) — 1) for (m,z). B

Lemma A.5 Let m > 1 be an integer, and let y > 2 be a real. The number of ways to choose at most
m/y® items from a set of m items is at most me™/Y.

Proof: If m/y® < 1, then we are considering the number of ways to choose 0 items, which is 1 < me™/¥.
If m/y® > 1, then the number of ways to choose at most m/y® items can be bounded as follows. Note that
we use the fact that for y > 2, 1 +1n2+3Iny < y°.

(m/y®] m m m
Z ; < 3 3
i=0 ¢ y2 \m/y?]
m 7 2em \ /Y]
< (/7
Ty <m/y3)
< me(l+ln2+31ny)m/yk
< me™Y

Lemma A.6 Let y > 1 be a real number, and 7 > 0 be an integer. The number of ways to choose at most

y2-U+D items from a set of at most y2/ items is at most ye®®/277

Proof: If y2=U*Y < 1 then we are considering the number of ways to choose 0 items, which is 1 <

ye®3/277  Otherwise, we have
Lyz—(j+1)J . .
3 e P ] I
i=0 Z B Ly2_(3+1)J

2ey2i \Y
Y (yQ—(j-I-l))

_ ye(1+(2j+2)1n2)y2_(j+1)

< y€6y(3/2)_j

IN

where the last inequality holds since (14 (25 + 2)In2)2-U+Y < 6(3/2)77 for all integers j > 0. B

Lemma A.7 Let y > 1 be a real number. Let (S;) be a sequence of disjoint sets with |.S;] < y27 for all
j > 0. The number of ways to choose a sequence of sets (T;) with 7; C S; and |T;| < y2=U+ for all j > 0,
is at most y'°8Yel®Y,

Proof: We will consider the product over all j > 0, of the number of ways to choose T} from 5;. Note
that we only need to be concerned with j < logy, because for j > logy, y2=U+) < 1, so we would be
choosing 0 items. By Lemma A.6, we can bound the desired product by

logy

H y€6y(3/2)_j < ylogye6y ZjZD(l.S)_j
j=0

S ylogyel&t/‘
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Lemma A.8 For all positive integers n and ¢ such that n > 4t, we have

(7)) e

Proof:
t
1 n—1t n < 1_<n—2t—|—1)
t t n—t+1
t
= 1—(1—
n—t+1
26\ "
< 1-(1-—
n
S 1 —4t2/n
4¢2
S P
n
[ |
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