
On Contention Resolution Protocolsand Associated Probabilistic Phenomena�P. D. MacKenzie C. G. Plaxton R. RajaramanDepartment of Computer ScienceUniversity of Texas at AustinAbstractConsider an on-line scheduling problem in which a set of abstract processes are competing for theuse of a number of resources. Further assume that it is either prohibitively expensive or impossible forany two of the processes to directly communicate with one another. If several processes simultaneouslyattempt to allocate a particular resource (as may be expected to occur, since the processes cannot easilycoordinate their allocations), then none succeed. In such a framework, it is a challenge to design e�cientcontention resolution protocols.Two recently-proposed approaches to the problem of PRAM emulation give rise to scheduling prob-lems of the above kind. In one approach, the resources (in this case, the shared memory cells) areduplicated and distributed randomly. We analyze a simple and e�cient deterministic algorithm for ac-cessing some subset of the duplicated resources. In the other approach, we analyze how quickly we canaccess the given (nonduplicated) resource using a simple randomized strategy. We obtain precise boundson the performance of both strategies. We anticipate that our results will �nd other applications.1 IntroductionLet k balls be thrown independently and uniformly at random into n bins, and let random variable Xdenote the maximum number of balls landing in any single bin. If k = �(n), it is well known thatX = �(lg n= lg lg n) wvhp. (Throughout this paper, we use \wvhp" to mean \with probability at least1�n�c for any positive constant c", and we use \whp" to mean \with probability at least 1�n�c for somepositive constant c".) If k = �(n lgn), it is similarly well known that X = �(lg n) wvhp. (These claimsare straightforward to prove using standard bounds on the tail of the binomial distribution [7].) Thesesharp threshold phenomena have important consequences in a wide variety of hashing-related applications.In this paper, we explore two similar (but more complex) threshold phenomena, one arising in each of twofundamental families of contention resolution protocols.To make our discussion of contention resolution protocols more concrete, we will focus our attentionprimarily on a single application, namely that of e�ciently emulating an EREW PRAM on a c-collisioncrossbar network. We begin by reviewing the de�nitions of these two computational models. An EREWPRAM is a collection of n processors along with a global shared memory. Input and output are provided inthe shared memory. In a single computational step, each processor can read or write one memory location.The sole restriction is that no two processors are allowed to access the same memory location in a singlestep. (If two processors attempt to access the same memory location in a single step, then the machinehalts.)�This research was supported by NSF Research Initiation Award CCR{9111591, and the Texas Advanced Research Programunder Grant Nos. 003658{461 and 003658{480. 1



A c-collision crossbar network (or simply, a c-collision crossbar) is a more realistic model of parallelcomputation in which the global shared memory is distributed over n disjoint memory modules. Input andoutput are provided in the distributed memory. Each computational step consists of a read/write phasefollowed by an acknowledgement phase. During the read/write phase each processor can issue one read orwrite request for a speci�c memory location. If the total number of read/write requests involving memorylocations stored in any particular memory module M is less than or equal to c, then all requests involvingM succeed and are acknowledged during the acknowledgment phase. On the other hand, if more than cprocessors attempt to access memory locations stored in the same memory module M , then all requestsinvolving M fail and no corresponding acknowledgements are sent. A c-arbitrary crossbar is de�ned inthe same manner as a c-collision crossbar, except that if more than c processors attempt to access somememory module M , then an arbitrary subset of c of the requests succeed and are acknowledged.The c-collision and c-arbitrary crossbar models have been studied previously under di�erent names.(Our terminology is new.) The local memory PRAM model of Anderson and Miller [5], later studied underthe name OCPC (optical communication parallel computer) in [10, 11, 12], corresponds to the 1-collisioncrossbar model. Valiant's S*PRAM model [24] corresponds to the 1-arbitrary crossbar model. Assuminga complete interconnection between processors and memory modules, the c-collision (resp., c-arbitrary)DMM models of [9] corresponds to the c-collision (resp., c-arbitrary) crossbar model.We now return to the question of e�ciently emulating an EREW PRAM on a c-collision crossbar. Morespeci�cally, assume that we wish to emulate a k-processor EREW PRAM on an n-processor c-collisioncrossbar, where k is some multiple of n. If we map k=n EREW PRAM processors to each processor of thecrossbar, and employ a random hash function to map each location of the EREW PRAM shared memoryto some memory module of the crossbar, we can easily see the connection between the random \balls andbins" experiment stated at the outset and the desired emulation: Each of the at most k read or writerequests generated in a single step of the EREW PRAM computation corresponds to a ball, and eachmemory module corresponds to a bin.If k = n and c = O(1), we can conclude that any scheme based on a single hash function requires
(lgn= lg lgn) time to emulate one step of the EREW PRAM. On the other hand, Dietzfelbinger andMeyer auf der Heide [9] have recently shown that a bound of O(lg lgn) time per EREW PRAM step isattainable for the same settings of k and c. They present a contention resolution protocol that minimizes thee�ect of the inevitable \hot-spot" memory modules (e.g., those memory modules receiving �(lg n= lg lg n)requests under a given hash function) by employing three di�erent hash functions. Thus, at the expense ofincreasing the total storage requirement by a factor of 3, the running time of the emulation is exponentiallydecreased. The fast performance of the Dietzfelbinger and Meyer auf der Heide emulation relies on a sharpthreshold phenomenon that is the focus of Section 2. An overview of our results in this area is given inSection 1.1.If k = n lgn and c = O(1), the second \balls in bins" claim made at the outset of the paper showsthat the emulation of a single EREW PRAM step will correspond to a �(lgn)-relation routing problemwvhp. (An h-relation routing problem is one in which each processor is the source of at most h packetsand each memory module is the destination of at most h packets.) Thus, a variety of authors haveconsidered the complexity of h-relation routing on the 1-collision crossbar. We are particularly interestedin a natural randomized h-relation routing algorithm proposed by Ger�eb-Graus and Tsantilas [10]. Theidea of their algorithm is to use randomization to break the symmetry between sets of processors withpackets to be sent to the same same memory module: In a given \round" a processor with p packets leftto send attempts to send a randomly chosen packet with probability roughly p=h, and does nothing withprobability roughly 1 � p=h. The resulting running time is �(h + lgn lg h). (Remark: the running timeis stated as �(h + lgn lg lgn) in [10], since they only considered the case h � logn.) Thus, the algorithmleads to a work-optimal EREW PRAM emulation only for h = 
(lgn lg lgn).The symmetry-breaking idea employed by Ger�eb-Graus and Tsantilas is central to many other ran-2



domized algorithms and communication protocols (e.g., the standard Ethernet protocol [20] and the classicALOHA packet radio network protocol [1]). As we have seen, such randomized symmetry-breaking doesnot always lead to performance that is obviously optimal (i.e., that matches a trivial lower bound). (Forexample, we might have hoped that the algorithm of Ger�eb-Graus and Tsantilas would run in �(lg n)time for the case h = �(lgn).) The main result of the Section 3 is a tight lower bound on the runningtime of certain randomized symmetry-breaking procedures. In particular, with respect to the problem ofrandomized h-relation routing on the 1-collision crossbar, we have completely characterized the power ofthe natural symmetry-breaking paradigm. An overview of our results in this area is given in Section 1.2.1.1 Redundancy-Based ProtocolsIn this section we give a brief overview of our emulation results related to protocols employing multiplehash functions. As mentioned earlier, Dietzfelbinger and Meyer auf der Heide [9] have presented a protocolusing three hash functions that emulates an n-processor EREW PRAM in O(lg lgn) time on an n-processorc-collision crossbar. Under their protocol, a read or write operation of memory location x by EREWPRAM processor i is emulated by having processor i of the c-collision crossbar access 2 out of the 3 copiescorresponding to memory location x. (A similar protocol was presented in [17]; the idea that accessing 2 outof 3 copies is su�cient for the purposes of such an emulation was �rst used by Upfal and Wigderson [23].)The analysis presented in [9] requires some slack in the constants; in particular, they require c � 3, andare only able to analyze the protocol when it is used to emulate "n processors at a time, where " is asu�ciently small positive constant. (Thus, the overall running time of the protocol is increased by a factorof 1=".)The protocol of [9] is easily generalized to the case where b hash functions are used, and each processorof the c-collision crossbar is required to access a out of b copies of a particular memory location, a < b. InSection 2.3, we focus on the case a = 1, and pinpoint the asymptotic complexity of the resulting protocolfor all possible choices of the parameters b and c. (Furthermore, our analysis goes through with " = 1, thatis, we consider the most basic form of the protocol in which the action of all n EREW PRAM processorsis emulated at once.) For c = 1, we prove that the protocol runs in �(lg lg n) time whp if b � 3. For c = 1and b = 2, we prove that the protocol runs in 
(lgn) time wvhp. For any b � 2 and any constant c � 2,we prove that the protocol runs in �(lg lgn) time whp. (The protocol will run faster for non-constant c.It would not be di�cult to extend our analysis to obtain tight bounds for non-constant c.) In the caseof a c-arbitrary crossbar, the protocol runs in �(lg lgn) time whp for b � 2. In Section 2.4 we show thatthe above results hold even if the hash functions are only O(log� n)-wise independent, where � is a realconstant.In Section 2.5, we observe that any \a out of b" problem with a > 1 can be e�ciently reduced to anumber of \1 out of `" problems, where ` = 2 or ` = 3. Thus, we are able to easily upper bound thecomplexity of a (new) protocol for essentially any \a out of b" problem. One might suspect that a reductionof this sort, while making the analysis easier, is only doing so at the expense of a signi�cant constant factorin performance. Interestingly, this is not the case; rather, as discussed in Section 2.5, our reduction yieldsa faster \a out of b" protocol than is obtained via the natural generalization of [9] for virtually all possiblevalues of a and b.The main idea underlying the aforementioned results may be explained as follows. While the process ofthrowing k balls independently and uniformly at random into n bins is well understood (e.g., we can easilycompute a sharp bound on the number of bins receiving exactly one ball), we �nd that the sequence ofdistributions arising in the analysis of any \a out of b" protocol quickly deviates from such simple behavior.In [9, 21], this problem is attacked by studying certain structures related to the sequence of distributions.We are able to provide a more accurate analysis by precisely characterizing this sequence of distributionsin terms of \truncated k balls in n bins" distributions (e.g., throw k balls into n bins and then remove all3



balls contained in bins with less than or equal to c balls).1.2 Symmetry-Breaking ProtocolsIn this section we give a brief overview of our results on symmetry-breaking protocols in multiple accesschannels and for h-relation routing on a 1-collision crossbar.There has been considerable e�ort in proving bounds on symmetry-breaking protocols to resolve con-tention in Ethernet-like multiple access channels [14, 15, 18, 19]. Speci�cally, it is assumed that some hof n stations wish to transmit to a single shared channel, but a station succeeds in its transmission if andonly if it is the only station transmitting at that time. A symmetry-breaking protocol generates a scheduleof transmission attempts for each station so that all h stations eventually transmit successfully. Previouslystudied protocols assume that all stations receive a feedback of 0, 1, or � 2 at each step, depending onhow many stations attempt to transmit. We call this the Ethernet model. For the Ethernet model, a lowerbound of 
((h= logh) logn) was shown for the time of any deterministic protocol [15], and it was shown thatan O(h logn) time (non-adaptive) deterministic protocol exists [18]. We study protocols in which only thetransmitting stations receive feedback (1 or � 2) at a given step. We call the general contention resolutionproblem on this model the Control Tower problem. Protocols to solve the Control Tower problem corre-spond to non-adaptive protocols for contention resolution on the Ethernet model. Thus the lower bound of
((h= logh) logn) above applies to any deterministic solution to the Control Tower problem also. We showa slightly stronger result, that to send even one message (in the Control Tower model, or non-adaptiveEthernet model) requires 
((h=minflog h; log logng) logn) steps. From a technical standpoint, it is mostnatural to view the Control Tower problem as a problem on hypergraphs. Our lower bound relies on acombinatorial argument for extracting \thick" hypergraphs and another combinatorial argument showingthe existence of contention-generating \near transversals".Much faster protocols can be obtained for the Control Tower problem using randomization. For in-stance, the randomized protocol in Ger�eb-Graus and Tsantilas [10] solves the Control Tower problem inO(h+log h logn) steps, wvhp. We show a tight lower bound of 
(h+log h logn) for randomized protocolsfor the Control Tower problem that succeed with probability at least 1� n�3=4. (Naturally, this providesthe same lower bound for non-adaptive randomized protocols in the Ethernet model.) Again, we �nd ittechnically useful to view the Control Tower problem as a problem on hypergraphs. The randomized lowerbound then relies on a combinatorial argument for extracting \thick" hypergraphs (where the \thickness"quality is fundamentally di�erent than that in the deterministic lower bound), and a probabilistic argumentshowing a non-trivial probability of the existence of contention-generating \near transversals" in randomsets of vertices.We now turn to the problem of direct h-relation routing on a 1-collision crossbar. In a direct algorithmfor a given routing problem, the messages to be routed can only be sent directly from the source to thedestination without any intermediate hops, and no additional information can be sent between the proces-sors. Direct algorithms have the advantage of simplicity and low overhead. While non-direct algorithmsmay have better asymptotic behavior, it is likely that this improved asymptotic behavior is only achievedat the expense of large constant factors. The previously mentioned h-relation routing algorithm of Ger�eb-Graus and Tsantilas [10] is a direct algorithm, and direct h-relation routing algorithms have also beenstudied in [11, 12]. We refer the reader to these previous papers for further details. (For previous workon non-direct h-relation routing on the OCPC, see [5, 11, 12, 24]; for recent work that also incorporatesredundancy-based techniques, see [13].)There is a close correspondence between results for the Control Tower problem and results for directh-relation routing on a 1-collision crossbar. In fact, the lower bound for deterministic protocols for theControl Tower problem directly gives the same lower bound for deterministic direct h-relation routing.The correspondence is not exact in terms of deterministic upper bounds, however, as the upper bound of4



O(h logn) on the Control Tower problem, only indicates that there is an O(h2 logn) deterministic directh-relation routing algorithm. We show that this bound can be improved to O(h log h logn), by slightlymodifying the deterministic Control Tower protocol. Finally, we show that the tight lower bound forrandomized protocols for the Control Tower problem can also be used to prove a tight lower bound of
(h+ log h logn) for direct randomized h-relation routing on a 1-collision crossbar.2 Multiple Hash FunctionsIn this section, we address the a out of b problem discussed in Section 1 on c-arbitrary and c-collisioncrossbars. In an a out of b problem on an n-processor crossbar, each shared memory cell is uniformly andindependently hashed b times into the memory modules of the crossbar, and each processor has to accessa out of the b copies of a particular shared memory cell.Consider the 1 out of ` problem, ` � 2. Let the ` hash functions be labeled hi, 0 � i < `, and the sharedmemory request of processor j be for cell xj . Processor j needs to access one of the memory locationshi(xj), 0 � i < `. To solve this problem, the following simple sequence of ` rounds can be repeated untileach processor has had one successful access: In the jth round, if processor i has not successfully accessedany copy of xi, then processor i accesses hj(xi). (This is analogous to Access Schedule 2 of [9], de�nedfor the 2 out of 3 problem.) On a c-collision crossbar, processor j succeeds on its access if and only ifthere are at most c� 1 other processors accessing the same memory module. Each round is executed in asynchronous fashion. We refer to this protocol as the 1 out of ` protocol.We analyze the above process in an equivalent balls-and-bins setup. Let n balls labeled 0 through n�1represent the messages, and n bins labeled 0 through n� 1 represent the destinations. Each hash function,a random function from [n] to [n], is equivalent to a random throw of n balls uniformly and independentlyinto n bins. Let hA denote the function h with domain restricted to the set A � [n]. Let Ri denote the setof balls remaining after round i. For convenience, de�ne R�1 to be the set of balls left before round 0, i.e.,R�1 = [n]. Note that for i � 0, Ri is the subset of Ri�1 given by the following recurrence:Ri = fj 2 Ri�1 : jf�1(f(j))j> cg;where f = hRi�1imod`.Recall that a bag (or multiset) is an unordered set in which repetition is allowed. For any set A wede�ne a bag B to be an A-bag if every element of B is also an element of A.Let Fm;n denote the set of functions from [m] to [n]. For each f 2 Fm;n, note that the bag ff(j) : j 2[m]g is an m-size [n]-bag. Hence, the uniform distribution over Fm;n induces a probability distribution,which we denote Dm;n, over the set of all m-size [n]-bags. For any bag B and A � [n], let BA;B = ffA :f 2 Fn;n and f(A) = Bg. Let Si and Ti denote the bags himod`(Ri�1) and himod`(Ri), respectively. Letti = jTij = jRij (thus t�1 = n) and si = jSij. Note that htii is a nonincreasing sequence. The protocolterminates after the �rst round i for which ti = 0. The protocol fails to terminate if and only if ti = ti+` > 0for some i � �1. (In such a case, the protocol enters an in�nite loop with tj = ti for all j � i.) Thegoal of our analysis is twofold: (i) to bound the probability that the protocol fails to terminate, and (ii) toanalyze the number of rounds required by the protocol when it does terminate. We begin our analysis byestablishing some properties of Dm;n and BA;B.Let random variable X be drawn from Dm;n, B be an arbitrary [n]-bag of size m, and mi denote thenumber of copies of element i in B, 0 � i < n. ThenPr[X = B] = m!m0! � � �mn�1! � 1nm : (1)Lemma 2.1 Let 0 � m < n and assume that X is a random variable drawn from Dm+1;n. Let Y j X =X n fxg, where x is an element of X chosen uniformly at random. Then Y is a random variable withprobability distribution Dm;n. 5



Proof: Let B be any m-size [n]-bag and Bi = B [ fig, 0 � i < n. Let the number of copies of element iin B be mi. (Hence Pn�1i=0 mi = m.) Using Equation 1 we havePr[Y = B] = n�1Xi=0 Pr[X = Bi] � mi + 1m+ 1= n�1Xi=0 0@ 1nm+1 � (m+ 1)!(mi + 1)!Yj 6=i 1mj!1A mi + 1m+ 1= n�1Xi=0 1nm+1 � m!m0! � � �mn�1!= m!m0! � � �mn�1! � 1nm :Corollary 2.1.1 Let a,m, and n be integers such that 0 � t � m � n. Let X be a random variable drawnfrom Dm;n. Let Y j X be a random a-size subbag of X . Then Y is a random variable with probabilitydistribution Da;n.Lemma 2.2 Let h j R;B be a function drawn uniformly at random from BR;B. For arbitrary A � R,h(A) j R;B is a random jAj-size subbag of B.Proof: Consider an arbitrary element x 2 R. Clearly h(x) is a random element of B. Applying this foreach element in A, h(A) is a random jAj-size subbag of B.Using Corollary 2.1.1 and 2.2, we prove the following claims related to the 1 out of ` protocol.Lemma 2.3 For all i � 0, the random variable hRiimod` j Ri; Ti is drawn uniformly at random from BRi;Ti.Proof: Since himod` is drawn uniformly at random from Fn;n, hRiimod` j Ri; Ti is drawn uniformly atrandom from the set of functions that map Ri to [n]-bag Ti, namely BRi;Ti .Lemma 2.4 Let S0i denote the random variable Si j f(Rj; Tj) : 0 � j < ig. For 0 � i < `, S0i is drawnfrom Dti�1;n and for i > `, S 0i is a ti�1-size random subbag of Ti�`.Proof: By de�nition, Si = himod`(Ri�1). If 0 � i < `, then S0i = himod`(Ri�1)jRi�1. Let S = himod`([n]).Thus S is drawn from Dn;n and himod`jS is drawn uniformly at random from B[n];S . By Lemma 2.2, forarbitrary Ri�1, himod`(Mi�1)jS is a random ti�1-size subbag of S. Therefore, applying Corollary 2.1.1, with(ti�1; n; n; S; S0i) for (a; n; n;X; Y ), we �nd that S 0i is drawn from Dti�1;n.If i � `, then S0i = hRi�`imod`(Ri�1)jRi�`; Ti�`; Ri�1. By Lemma 2.3, hRi�`imod`jRi�`; Ti�` is drawn uniformlyat random from BRi�`;Ti�` . By Lemma 2.2, for any Ri�1, hRi�`imod`(Ri�1)j(Ri�`; Ti�`) is a random ti�1-sizesubbag of Ti�`. Hence, S0i is a random ti�1-size subbag of Ti�`.Now we are ready to describe the protocol in terms of the Si's and Ti's alone. Let RandomBag(m;n)return a bag drawn from Dm;n. Let RandomSubbag(B;m) return a new bag that is a random m-size subbagof B. Let PrunedBag(B; c) return a bag that contains exactly those elements of S that have more than ccopies. By Lemma 2.4, Alg1(n; `; c) describes the random process occuring in the 1-out-of-` protocol on ac-collision n-processor crossbar. 6



Alg1(n; `; c)(1.1) i := 0;(1.2) repeat(1.3) if i < ` then(1.4) Si := RandomBag(jTi�1j; n)(1.5) else(1.6) Si := RandomSubbag(Ti�`; jTi�1j);(1.7) Ti := PrunedBag(Si; c);(1.8) i := i+ 1(1.9) until jTi�1j = 0In order to analyze Alg1 we will estimate the size of Ti after round i. We propose a modi�ed versionof the above algorithm that simpli�es the estimation of jTij. Observe that for 0 � i < `, Si is the bagobtained by throwing jSij balls at random into n bins, and Ti is PrunedBag(Si; c). Below we present themodi�ed algorithm Alg2(n; `; c) that approximately maintains this invariant after every round, under asuitable rede�nition of Si. The analysis in Section 2.3 will make this precise. Alg2 is the same as Alg1except that Lines (1.5) and (1.6) are replaced by Lines (2.1) through (2.7), stated below.(2.1) else f(2.2) Si; Ti := Si�l; Ti�`;(2.3) while jTij > jTi�1j f(2.4) \Select x at random from Si";(2.5) Si; Ti := Si n fxg; Ti n fxg(2.6) g(2.7) g;Since each element x in line (2.4) is selected at random from Si, any element selected from Ti is alsorandom in Ti. Moreover exactly jTi�1j of the elements from Ti�` are retained after the execution of thewhile loop.Lemma 2.5 Let S1i , T 1i (resp., S2i , T 2i ) denote bags Si, Ti in Alg1 (resp., Alg2) after round i, i � 0.Then T 1i and T 2i have the same probability distribution.Proof: We use induction on the number of rounds. For the basis, we observe that T0; : : : ; T`�1 in Alg1and Alg2 are obtained in exactly the same way. (Lines (1.5) and (1.6) of Alg1 and the correspondinglines (2.1) through (2.7) of Alg2 are not executed.)Consider round i � `. By the induction hypothesis T 1j and T 2j have the same probability distribution,0 � j < i. In Line (1.6), Alg1 computes S1i by selecting a random subbag of size jT 1i�1j from the subbagT 1i�`. In Lines (2.3) through (2.6), Alg2 computes S2i by removing at random elements from S2i�` untiljT 2i�1j elements are retained from subbag T 2i�`. Thus T 2i is a jT 2i�1j-size subbag chosen randomly fromT 2i�`. By the induction hypothesis, the probability distribution of T 1i�` (resp., T 1i�1) is the same as that ofT 2i�` (resp., T 2i�1). Therefore, S1i after Line (1.6) of Alg1 and T 2i after Line (2.6) of Alg2 have the sameprobability distribution. Let S0 (resp., T 0) denote S2i (resp., T 2i ) after Line (2.6) of Alg2 . Because T 2i�`contains all elements of S2i�` with more than c copies, T 0 contains all elements of S 0 with more than ccopies.After Line (1.7), T 1i is the subbag of S1i containing all elements with more than c copies, and T 2i is thesubbag of S0 containing all elements with more than c copies. Since T 0 contains all elements of S0 withmore than c copies, T 2i is the subbag of T 0 containing all elements with more than c copies. Therefore, theprobability distribution of T 1i after round i is the same as that of T 2i after round i.7



Corollary 2.5.1 The probability that Alg1(n; l; c) terminates after round i, i � 0, is equal to the proba-bility that Alg2(n; l; c) terminates after round i.In the remainder of this section, we analyze Alg2 under di�erent assignments to the parameters ` andc. In Section 2.1 we present some results on large deviations which we use for our analysis. In Section 2.2we analyze certain \balls and bins" experiments. Section 2.3 uses these results to analyze Alg2(n; `; 1).Among other results, we show that Alg2(n; 3; 1) and Alg2(n; 2; 2) each terminates in �(log logn) roundswhp. The analysis can be easily generalized to apply to Alg2(n; `; c) for other values of ` and c. Section 2.5presents simple ideas for extending the above results to general a out of b problems.2.1 Large DeviationsFor our analysis, we make frequent use of the Cherno� bounds for the tail of the binomial distributions [4, 7].Theorem 1 Let X be a random variable drawn from B(n; p), i.e., X is the number of successes in nindependent Bernoulli trials, where each trial succeeds with probability p. Then,Pr[X � (1� ")np] � e�"2np=2; 0 � " � 1 (2)Pr[X � (1 + ")np] � e�"2np=3; 0 � " � 1 (3)Pr[X � (1 + ")np] � [e"(1 + ")�(1+")]np (4)Lemma 2.6 Let S be a set of s balls, T be a subset of S, t = jT j, and p = t=s. Let s0 balls be chosenuniformly at random from S, and t0 be the random variable representing the number of balls that arechosen from T . Then, for any real " � 0,Pr[t0 � (p+ ")s0] � e�2"2s0 ; andPr[t0 � (p� ")s0] � e�2"2s0 :Proof: By [8, 16], Pr[t0 � (p+ ")s0] � e�2"2s0 :The lower bound on t0 can be proved by using the upper bound on s0 � t0. Thus,Pr[t0 � (p� ")s0] = Pr[s0 � t0 � (1� p+ ")s0] � e�2"2s0 :Corollary 2.6.1 Let S be a set of s balls, and T be a subset of S, t = jT j. Let s0 balls be chosen uniformlyat random from S, and t0 be the random variable representing the number of balls that are chosen fromT . Then, Pr[t0 � (1 + 1=(2 log3 n))s0t=s] � e�s0t2=(2s2 log6 n); andPr[t0 � (1� 1=(2 log3 n))s0t=s] � e�s0t2=(2s2 log6 n):Proof: Apply Lemma 2.6 with " = t=(2s log3 n).Lemma 2.7 Let S be a set of s balls and T be a subset of S, t = jT j. Let s0 balls be chosen at randomfrom S, and let t0 be the random variable representing the number of balls that are chosen from T . Ifs0t=s � log2 n, then t0 � s0t=(3s) wvhp. 8



Proof: Let p = t=s. Consider the s0 balls being chosen in s0 rounds - one ball in each round. If the numberof balls chosen from bag T in rounds 1; : : : ; i� 1 is less than ps0=3, the probability that a ball from T ischosen in round i is at least 2p=3. Let X be a random variable drawn from B(s0; 2p=3). The probabilitythat t0 � ps0=3 is at least the probability that X � ps0=3. By Equation (2), Pr[X � ps0=3] � 1� e�ps0=12.Since ps0 � log2 n, the lemma is proven.In Alg2(n; `; 1), Ti is that subbag of Si, each element of which has at least 2 copies. We call suchelements (as well as the associated balls) non-singletons . Similarly in Alg2(n; `; 2), each element of Ti hasat least 3 copies. We call these elements (and the associated balls) non-pairs . In Section 2.3, we showthat the probability distribution of Si is approximately Dsi;n. Thus, in Alg2(n; `; 1) (resp., Alg2(n; `; 2))ti is approximately the number of non-singletons (resp., non-pairs) in a random bag drawn from Dsi;n. Inorder to get sharp estimates on the number of non-singletons and non-pairs in a random bag drawn fromDm;n, we use a martingale analysis. The following two theorems are used to bound large deviations formartingales [4].Theorem 2 Let 
 = AB denote the set of functions g : B ! A. Fix a gradation ; = B0 � B1 � � � � �Bm = B: Let L : 
! R be a functional. De�ne a martingale X0; : : : ; Xm by settingXi(h) = E[L(g) j g(b) = h(b) for all b 2 Bi]:Assume that for all i, whenever h and h0 di�er only on Bi+1 � Bi, we have jL(h0) � L(h)j � 1. ThenjXi+1(h)�Xi(h)j � 1, for all 0 � i < m, h 2 
.Theorem 3 (Azuma's Inequality) Let X0; : : : ; Xk be a martingale with jXi+1 � Xij � 1, for all 0 �i < k. Then for real � > 0, Pr hjXk �X0j > �pki < 2e��2=2:2.2 Lemmas on Balls and BinsIn this section, we estimate the number of non-singletons and non-pairs in a random bag with distributionDm;n using some of the large deviations results mentioned in Section 2.1. By linearity of expectation, theexpected number of non-singletons (resp., non-pairs) of a random bag X drawn from Dm;n is given byf(m;n) (resp., g(m;n)), wheref(m;n) = m 1� �1� 1n�m�1! ,andg(m;n) = m 1� �1� 1n�m�1 � m� 1n �1� 1n�m�2! :Throughout this section n will be �xed, so we use f(m) (resp., g(m)) to denote f(m;n) (resp., g(m;n)).Lemmas A.1 and A.2 show that f(m) = �(m2=n), and g(m) = �(m3=n2). Let� = 1� 1= log3 n; and� = 1+ 1= log3 n:Now we bound the probability that the number of non-singletons in a random bag drawn from Dm;ndeviates from the mean f(m). Lemma 2.8 is used to bound deviations to within a o(1) factor for m suitablylarge, and Lemma 2.9 bounds deviations to within a constant factor for all m.9



Lemma 2.8 Let m, n be integers such that 3 � m � n, and h : [m] ! [n] be a random functiondrawn from Fm;n, and t(h) be the number of non-singletons in bag h([m]). If m � n2=3 log3 n, then�f(m) � t(h) � �f(m) wvhp.Proof: Consider the martingale X0; : : : ; Xm de�ned as:Xi(h) = E[t(p) j p and h agree on balls in [i]]:If two functions p and p0 di�er only on ball i, t(p) and t(p0) di�er by at most 2. We apply Theorem 2 byscaling the random variable t by 2 and thus obtain, jXi+1 �Xij � 2. Similarly after scaling Xi's by 2, weapply Theroem 3 to get Pr[jXm �X0j > 2�pm] < 2e��2=2: (5)The expected value X0 of the functional t, is f(m). For a function h, t(h) is Xm(h). By Equation 5 with� = f(m)=(2pm log3 n), we �nd thatPr �jt(p)� f(m)j > f(m)log3 n� < 2e�f(m)2=(8m log6 n):Since for all m > 2, f(m) � m2=3n,Pr �jt(p)� f(m)j > f(m)log3 n� < 2e�m3=(72n2 log6 n):For m � n2=3 log3 n, m3=(722 log6 n) � (log3 n)=72. Therefore, �f(m) � t(p) � �f(m) wvhp.Corollary 2.8.1 Let m and n be integers such that 3 � m � n and S be a random bag drawn from Dm;n,and t be the number of non-singletons in S. If m � n2=3 log3 n, then �f(m) � t � �f(m) wvhp.Lemma 2.9 Let m and n be integers such that 3 � m � n and S be a random bag drawn from Dm;n. Lett represent the number of non-singletons in S. Then,1. The probability that a particular ball is a non-singleton is at most m=n.2. For pn log5 n � m � n, we have t � 4m2=n wvhp.3. For m � pn log5 n, we have t � 4 log10 n wvhp.Proof: Let the m balls be thrown one-by-one. Since the balls occupy at most m bins, when a ball isthrown the probability that it falls into a non-empty bin is at most m=n. Thus the probability that aparticular ball is a non-singleton is at most m=n. This establishes Part 1 of the lemma.Let X be the random variable representing the number of balls that fall into non-empty bins. Thenumber of non-singletons is at most 2S. Hence, X is stochastically dominated by the random variable Ydrawn from B(m;m=n). The expected value of Y is m2=n.Form � pn log5 n, we apply Equation 3 with " = 1, and obtain Pr[Y � 2s2=n] � e�m2=3n � e�(log10 n)=3.Therefore the number of non-singletons is at most 4m2=n wvhp, proving Part 2 of the lemma.For m � pn log5 n, we upper bound t by the number of non-singletons in a bag drawn from Dpn log5 n;n.By Part 1, t � 4 log10 n wvhp, proving Part 3 of the lemma.The following two lemmas establish bounds on the number of non-pairs, analogous to Lemmas 2.8and 2.9. 10



Lemma 2.10 Let m, n be integers such that 6 � m � n. Let h : [m]! [n] be a random function drawnfrom Fm;n, and t(h) be the number of non-pairs in bag h([m]). If m � n4=5 log3 n, then �g(m) � t(p) ��g(m) wvhp.Proof: Consider the martingale X0; : : : ; Xm de�ned as:Xi(h) = E[t(p) j p and S agree on balls in [i]]:If two functions p and p0 di�er only on ball i, t(p) and t(p0) di�er by at most 3. We apply Theorem 2 byscaling the random variable t by 3 and thus obtain, jXi+1 �Xij � 3. Similarly, after scaling Xi's by 3, weapply Theorem 3 to get Pr[jXm �X0j > 3�pm] < 2e��2=2: (6)The expected value X0 of the functional t, is g(m). For a function h, t(h) is Xm(h). By Equation 6 with� = g(m)=(3pm log3 n), we �nd thatPr �jt(p)� g(m)j > g(m)log3 n� < 2e�g(m)2=(18m log6 n): (7)Since for 6 � m � n, g(m) � m3=12n2,Pr �jt(p)� g(m)j > g(m)log3 n� < 2e�m5=(18�122n4 log6 n):If m � n4=5 log3 n, m5=(18 �122n4 log6 n) � (log9 n)=18 �122. Therefore, for m � n4=5 log3 n, �g(m) � t(p) ��g(m) wvhp.Corollary 2.10.1 Let m, n be integers such that 6 � m � n, and S be a random bag drawn from Dm;n,and t be the number of non-pairs in S. If m � n4=5 log3 n, then �g(m) � t � �g(m) wvhp.Lemma 2.11 Let m, n be integers such that 6 � m � n, and S be a random bag drawn from Dm;n. Lett be the random variable denoting the number of non-pairs in S.1. The probability that a particular ball is a non-pair is at most maxf3m2=n2; 3(log10 n)=ng.2. For n2=3 log3 n � m � n, t is at most 12m3=n2 wvhp.3. For m � n2=3 log3 n, t is at most 12 log9 n wvhp.Proof: Let m � pn log5 n. Consider the experiment of throwing balls one-by-one into n bins until eitherthere are 4m2=n non-singletons or all the m balls have been thrown. Let t0 be the number of non-pairsin this experiment. Since by Part 1 of Lemma 2.9, the number of non-singletons in a random bag fromDm;n is at most 4m2=n wvhp, when the experiment terminates all the m balls have been thrown wvhp.Therefore any upper bound on t0 wvhp (resp., whp) is an upper bound on t wvhp (resp., whp).During the above experiment, the non-singletons occupy at most 2m2=n bins. Therefore when a ball isthrown the probability that it falls into a bin with non-singletons (referred to as \non-singleton bins") isat most 2m2=n2. Thus the probability that a particular ball is a non-pair is at most 2m2=n2+1=nc for anyreal constant c � 0. Since m � pn log5 n, this probability is at most 3m2=n2. This establishes Part 1 of thelemma. (Note that for m � pn log5 n we can bound the probability by 3(pn log5 n)2=n2 = 3(log10 n)=n.)Let X be the random variable representing the number of balls that fall into non-singleton bins. Thenumber of non-pairs t0 is at most 3X . The random variable X is stochastically dominated by the randomvariable Z drawn from B(m;minf1; 2m2=n2g). The expected value of Z is at most 2m3=n2.For m � n2=3 log3 n, we apply Equation 3 with " = 1, and obtain Pr[Z � 4m2=n] � e�2m3=3n2 �e�(2 log9 n)=3. Therefore t0 (and hence t) is at most 12m3=n2 wvhp, establishing Part 2 of the lemma.For m � n2=3 log3 n, we upper bound t by the number of non-pairs in a bag drawn from Dn2=3 log3 n;n.By Part 1, t � 12 log9 n wvhp, establishing Part 3 of the lemma.11



2.3 Analysis of Alg2In this section, we analyze the number of rounds Alg2 takes before termination. For 0 � i < `, we havesi = ti�1. Corollaries 2.12.1 and 2.12.2, and Lemma 2.13 establish bounds on si in terms of the s0j's,0 � j < i.Lemma 2.12 In Alg2(n; `; c) let i � `, s+ = �si�`ti�1=ti�` and s� = �si�`ti�1=ti�`. ThenPr[si � s+] � e�s+t2i�`=(2s2i�` log6 n); andPr[si � s�] � e�s�t2i�`=(2s2i�` log6 n):Proof: In round i, Alg2 removes elements at random from Si�` until ti�1 elements are left from thesubbag Ti�` of Si�`. Hence, Pr[si � s+] equals the probability that less than ti�1 elements are left fromTi�` after si�` � s+ elements are removed. This is equal to the probability that less than ti�1 elementsare chosen from Ti�` in a random selection of s+ elements from Si�`. Applying Corollary 2.6.1 with(s; t; s0) = (si�`; ti�`; s+), the desired probability is at most e�s+t2i�`=(2s2i�` log6 n). (Here we use the fact thatfor n su�ciently large, (1� 1=(2 log3 n))� � 1.)Similarly Pr[si � s�] equals the probability that more than ti�1 elements are left from Ti�` aftersi�` � s� elements are removed from Si�`. This is equal to the probability that more than ti�1 elementsare chosen from Ti�` in a random selection of s� elements from Si�`. Applying Corollary 2.6.1 with(s; t; s0) = (si�`; ti�`; s�), the desired probability is at most e�s�t2i�`=(2s2i�` log6 n). (Here we use that fact thatfor n su�ciently large, (1 + 1=(2 log3 n))� � 1.)Corollary 2.12.1 In Alg2(n; `; c), if i � `, si�`ti�1=ti�` � 2n2=3 log3 n and ti�` � s2i�`=4n, then wvhp,�si�`ti�1=ti�` � si � �si�`ti�1=ti�`:Proof: Let s+; s� be as de�ned in Lemma 2.12. By Lemma 2.12, we havePr[si � �si�`ti�1=ti�`] � e�s+t2i�`=(2s2i�` log6 n):Since s+; si�` � 2n2=3 log3 n and ti�` � s2i�`=4n, the right hand side of the above inequality is at moste�s+s2i�`=32n2 log6 n � e� log3 n=4. Similarly we can prove the desired lower bound on si wvhp using the lowerbound in Lemma 2.12. (Note that s� � 2�n2=3 log3 n � n2=3 log3 n for n su�ciently large.)Corollary 2.12.2 In Alg2(n; `; c), if si�`ti�1=ti�` � 2n4=5 log3 n and ti�` � s3i�`=13n2, then wvhp,�si�`ti�1=ti�` � si � �si�`ti�1=ti�`:Proof: Let s+; s� be as de�ned in Lemma 2.12. By Lemma 2.12, we havePr[si � �si�`ti�1=ti�`] � e�s+t2i�`=(2s2i�` log6 n):Since s+; si�` � 2n4=5 log3 n and ti�` � s3i�`=13n2, the right hand side of the above inequality is at moste�s+s4i�`=(2�132n4 log6 n) � e�(16 log9 n)=(�132). Similarly we can prove the desired lower bound on si wvhp usingthe lower bound in Lemma 2.12. (Note that s� � 2�n4=5 log3 n � n4=5 log3 n for n su�ciently large.)Lemma 2.13 Let i � `. In Alg2(n; `; c), if ti�1 � log2 n, then si � 3si�`ti�1=ti�` wvhp. If ti�1 � log2 n,then si � 3si�`(log2 n)=ti�` wvhp. 12



Proof: In Alg2, Pr[si � 3si�`ti�1=ti�`] is equal to the probability that more than ti�1 elements are se-lected from Ti�` in a random selection of 3si�`ti�1=ti�` elements from Si�`. If ti�1 � log2 n, then we applyLemma 2.7 with (s; t; s0) = (si�`; ti�`; 3si�`ti�1=ti�`) to establish that si � 3si�`ti�1=ti�` wvhp. SimilarlyPr[si � 3si�`(log2 n)=ti�`] is equal to the probability that more than ti�1 elements are selected from Ti�`in a random selection of 3si�`(log2 n)=ti�` elements from Si�`. If ti�1 � log2 n, then we apply Lemma 2.7with (s; t; s0) = (si�`; ti�`; 3si�`(log2 n)=ti�`) to establish that si � 3si�`(log2 n)=ti�` wvhp.Lemma 2.14 relates ti to si for i � `.Lemma 2.14 Let m balls be thrown uniformly and independently into n bins and S be the associatedrandom bag. Let balls be removed at random from S until the remaining bag, denoted by S0, satis�escondition C. Let X denote the set of balls that are non-singletons, m = jS0j, and t0 = jX j. Let conditionC be such that there exist integers d; u satisfying d � m0 � u wvhp.1. If d; u � n2=3 log3 n, then �f(d) � t0 � �f(u) wvhp.2. If u � pn log5 n, then t0 � 4u2=n wvhp.3. If u � pn log5 n, then t0 � 4 log10 n wvhp.4. For any ball x, Pr[x 2 X ] � u2=(mn) + 1=nc for any real constant c � 0.Proof: Consider the experiment of removing balls one-by-one at random from S. Let S1 (resp., X1) bethe bag (resp., set of non-singleton balls) obtained when m � u balls have been removed and S2 be thebag obtained when m� d balls have been removed. Therefore jS1j = u and jS2j = d. Also, S2 is a subbagof S1. Wvhp, the condition C occurs after m � u balls are removed and before m � d balls are removedfrom S. Thus wvhp, S0 is a subbag of S1 and a superbag of S2. Let t1 (resp. t2) denote the number ofnon-singletons in S1 (resp., S2). Hence t2 � t0 � t1 wvhp. Note that by Corollary 2.1.1, S1 and S2 haveprobability distributions Du;n and Dd;n, respectively.1. If d; u � n2=3 log3 n, then by Corollary 2.8.1, t2 � �f(d) and t1 � �f(u) wvhp, thus establishing Part1 of the lemma.2. If u � pn log5 n, then by Part 2 of Lemma 2.9, t1 � 4u2=n wvhp, thus establishing Part 2 of thelemma.3. If u � pn log5 n, then by Part 3 of Lemma 2.9, t1 � 4 log10 n wvhp. Hence t0 � 4 log10 n wvhp, thusestablishing Part 3 of the lemma.4. For any ball x, Pr[x 2 X ] � Pr[x 2 X1] + 1=nc for any c � 0. By symmetry, the probability that xremains when u balls are left is u=m. Since S1 is drawn uniformly at random from Du;n, by Part 1of Lemma 2.9, Pr[x 2 X1] � (u=m)(u=n) = u2=(mn), thus establishing Part 4 of the lemma.Corollary 2.14.1 In Alg2(n; `; 1), let i � ` and d; u � 0 be integers such that d � si � u wvhp. If t0 = ti,then Parts 1 through 3 of Lemma 2.14 hold. Also, for any ball x 2 [n], the probability that x remains afterround i is at most (u2=n2) + 1=nc for any real constant c � 0.Proof: Fix integer i � `. Let k = i mod `. Consider the sequence of bags fSj`+k j j � 0g in Alg2. BagSk is obtained by throwing tk�1 (n if k = 0) balls into n bins. Bag Sj`+k, j > 0, is obtained by removingat random balls from S(j�1)`+k until t(j�1)`+k�1 balls are left in a particular subbag T(j�1)`+k of S(j�1)`+k.13



Bag Sk can be obtained equivalently the following way: remove n � tk�1 (0 if k = 0) balls at randomfrom S that is a random bag drawn from Dn;n. Thus each bag Sj`+k, j � 0 (Si, in particular), can beviewed as having been obtained from bag S by removing balls at random until a certain condition (say C)holds. For bag Si thus obtained, it is given that d � jSij � u wvhp. We invoke Lemma 2.14 substituting(S; Si; si; t0; n; d; u;C) for (S; S 0; m0; t0; m; d; u;C) to establish the desired claims.Similar to Corollary 2.14.1 we establish the following result for Alg2(n; `; 2) using Lemma 2.11Lemma 2.15 In Alg2(n; `; 2), let i � ` and d; u � 0 be integers such that d � si � u wvhp.1. If d; u � n4=5 log3 n, then �g(d) � ti � �g(u) wvhp.2. If u � n2=3 log3 n, then ti � 12u3=n2 wvhp.3. If u � n2=3 log3 n, then ti � 12 log9 n wvhp.4. For any x 2 [n] the probability that x remains after round i is at most maxf3u3=n3; (u log10 n)=n2g+1=nc for any real constant c � 0.2.3.1 Analysis of the 1-collision crossbarUsing results from Section 2.2, we show that the probability that Alg2(n; `; 1) deviates signi�cantly fromthe \expected" behavior is polynomially small. Let s0i be de�ned as follows:s0i = 8><>: n if i = 0,f(s0i�1) if 0 < i < `, ands0i�` � f(s0i�1)f(s0i�`) otherwise.Let t0i = f(s0i) for all i � 0. (Note that for all i � 0, s0i is the expected value of si given that (sj ; tj) = (s0j ; t0j)for 0 � j < i and t0i is the expected value of ti given that (sj ; tj) = (s0j; t0j) for 0 � j < i and si = s0i.)Lemma 2.16 In Alg2(n; `; 1), for all 0 � i � 52 log3 logn, if s0i � 4n2=3 log3 n and n is su�ciently large,then wvhp, �3is0i � si � �3is0i; and (8)�2�3i+1t0i � ti � �2�3i+1t0i: (9)Proof: We use induction on i. For the basis, i = 0 and s0 = n = s00. By Lemma 2.8, �f(n) � t0 � �f(n)wvhp and since t00 = f(n) the desired claims hold for i = 0.Assume the claim holds for all j < i. We �rst establish Equation 8 from which we then deriveEquation 9. We consider two cases. If i < `, then si = ti�1. Since s0i�1 � s0i � 4n2=3 log3 n, by theinduction hypothesis, we have �2�3i�1+1t0i�1 � ti�1 � �2�3i�1+1t0i�1 wvhp. Since 3i � 2 � 3i�1 + 1 for i < `,�cis0i � si � s0i�ci wvhp.If i � `, we use Corollary 2.12.1 to bound si. By induction hypothesis, since s0i�1; s0i�` � 4n2=3 log3 n,�ci�`s0i�` � si�` � �ci�`s0i�`;�2�3i�`+1t0i�` � ti�` � �2�3i�`+1t0i�`; and�2�3i�1+1t0i�1 � ti�1 � �2�3i�1+1t0i�1:14



Substituting appropriate bounds on si�`; ti�`; and ti�1, we get the following bounds on s = si�`ti�1=ti�`wvhp: �2�3i�1+3i�`+1s0i�`t0i�1�2�3i�`+1t0i�` � s � �2�3i�1+3i�`+1s0i�`t0i�1�2�3i�`+1t0i�`By the fact that � � ��1, and �2 � ��1 for n su�ciently large, we have�2�3i�1+3�3i�`+2s0i�`t0i�1t0i�` � s � �2�3i�1+5�3i�`+3s0i�`t0i�1t0i�` (10)Since 3` � 2 �3`�1+9 for ` � 3, 3i � 2 �3i�1+3 �3i�`+2. Therefore s � �3is0i�`t0i�1=t0i�` = �3is0i wvhp. Sincei � 52 log3 logn, 3i � log5=2 n, and �3i � � for any real � < 1 for n su�ciently large. Hence s � 2n2=3 log3 n.Next we show that ti�` � s2i�`=4n wvhp. By the induction hypothesis, ti�` � �2�3i�`+1t0i�` = �2�3i�`+1f(s0i�`)wvhp. Since f(s0i�`) � (s0i�`)2=3n and si�` � �3i�`s0i�` wvhp, we haveti�` � �2�3i�`+1s2i�`3�2�3i�`n � �4�3i�`+1s2i�`3n ;wvhp. In the last step we use � � ��1. For any real � < 1, �3i�` � �3i � � for n su�ciently large.Therefore, �4�3i�`+1 � 3=4 for n su�ciently large and thus it follows that ti�` � s2i�`=4n wvhp.Now we apply Corollary 2.12.1 to obtain �s � si � �s wvhp. By Equation 10, wvhp,�2�3i�1+3�3i�`+3s0i�`t0i�1t0i�` � si � �2�3i�1+5�3i�`+4s0i�`t0i�1t0i�` :Since for ` � 3, 3` � 2 � 3`�1 + 9, we have 3i � 2 � 3i�1 + 5 � 3i�` ++4 and 3i � 2 � 3i�1 + 3 � 3i�` + 3. Sinces0i = s0i�`t0i�1=t0i�`, Equation 8 holds wvhp.Now we invoke Part 1 of Corollary 2.14.1 to obtain bounds on ti. Note that �3is0i;�3is0i � n2=3 log3 nfor n su�ciently large. Thus wvhp, �f(�3is0i) � ti � �f(�3is0i);and hence by Corollary A.3.1, �2�3ci+1f(s0i) � ti � �2�3i+1f(s0i):Since t0i = f(s0i), Equation 9 follows wvhp.Lemma 2.16 implies that we can analyze Alg2(n; `; 1) by studying how s0i decreases as i increases.Lemma 2.17 For all 0 � i < `, we have Y0�j<i+1s0j = s00 Y0�j<if(s0j);and for i � `, we have Yi�`+1�j<i+1s0j = s00 Yi�`+1�j<if(s0j):15



Proof: For 0 � i < `, the desired claim follows directly from the de�nition of s0j , 0 � j < i+ 1. Observethat for i = `� 1, we have Yi�`+1�j<i+1s0j = s00 Yi�`+1�j<if(s0j�1): We use this fact as a basis for the case i � `.Assume that for `� 1 � k < i, we have Yk�`+1�j<k+1s0j = s00 Yk�`+1�j<kf(s0j). ThenYi�`+1�j<i+1s0j = s0is0i�` Yi�`�j<is0j= s00f(s0i�1)f(s0i�`) Yi�`�j<i�1f(s0j)= s00 Yi�`+1�j<if(s0j):Lemma 2.18 For all 1 � i < `, if s0i�1 and n are su�ciently large, then13i�1 Y0�j<i s0jn � s0in � Yi�j<i s0jn :For i � `, if s0i�1 and n are su�ciently large, then13`�1 Yi�`+1�j<i s0jn � s0in � Yi�`+1�j<i s0jn :Proof: By Lemma 2.17 and Lemma A.1, if s0i�1 and n are su�ciently large, then for all 0 � i < `, wehave s003i�1 Y0�j<i (s0j)2n � Y0�j<i+1s0j � s00 Y0�j<i (s0j)2n ;and the claim of the lemma follows after dividing by s00 Y0�j<is0j . By Lemma 2.17 and Lemma A.1, if s0i�1and n are su�ciently large, then for all i � 0, we haves003`�1 Yi�`+1�j<i (s0j)2n � Yi�`+1�j<i+1 s0j � s00 Yi�`+1�j<i (s0j)2n ;and the claim of the lemma follows after dividing by s00 Yi�`+1�j<is0j .Lemma 2.18 can be used to analyze Alg2(n; `; 1) for any ` � 2. In the remainder of this subsection,we restrict our attention to the case ` = 3. Let wi = logr(n=si) and w0i = logr(n=s0i), where r = n=f(n).(Note that e=(e� 1) � r � 2 for all n � 2.)Lemma 2.19 In Alg2(n; 3; 1), for all i > 0, if s0i�1 � 3, thenw0i�2 + w0i�1 � w0i � w0i�2 + w0i�1 + 2 logr 3:Proof: Follows directly from the de�nition of w0i and Lemma 2.18.Lemma 2.20 In Alg2(n; 3; 1) for all i > 0, if s0i�1 � 3, then pi�11 � w0i � pi�12 , where p1; p2 > 1 satisfyp21 � p1 � 1 � 0 (11)p22 � p2 � 2 logr 3� 1 � 0 (12)16



Proof: The proof is by induction on i. We have s01 = n=r, hence p01 = 1 = w01 = p02.Let the claimed lower and upper bounds on w0i hold for all 0 < j < i, i > 1. By Lemma 2.19 and theinduction hypothesis, pi�31 + pi�21 � w0i � pi�32 + pi�22 + 2 logr 3Equations 11 and 12, together with the fact that p2 > 1, establish that pk�11 � w0k � pk�12 .We now place tight bounds on the number of rounds Alg2(n; 3; 1) takes before termination.Lemma 2.21 There exists integer j = O(log logn) such that sj � n2=5 wvhp in Alg2(n; 3; 1).Proof: Let � = (1 + p5)=2. Since �2 � � � 1 = 0, Lemma 2.20 implies that w0i � �i�1 for alli > 0. Let k = minfi : w0i � logr( n1=34 log3 n)g. For i = dlog� logr n1=34 log3 ne + 1, w0i � logr( n1=34 log3 n). Therefore,k � log� logr n1=34 log3 n + 2. (Also note that since w02 � 1 + 2 logr 3, k � 3 for n su�ciently large.) Since�5=2 > 3, k � 5=2 log3 log n for n su�ciently large. Thus, Equations 8 and 9 of Lemma 2.16 hold for alli < k. (Also note that s0k = n=rw0k � 4n2=3 log3 n.)By Lemma 2.16, tk�1 � �2�3k�1+1t0k�1 wvhp. Since t0k�1 = f(s0k�1) � (s0k�1)2=3n, tk�1 � 16�2�3k�1+1(n1=3 log6 n)=3 �log2 n wvhp for n su�ciently large. By Lemma 2.13, sk � 3sk�3tk�1=tk�3 wvhp. Substituting appropriatebounds on sk�3, tk�3, and tk�1 from Lemma 2.16, we have wvhpsk � 3�2�3k�1+5�3k�3+4s0k � 3�3ks0k � 4s0k: (13)The last step follows from the fact that �3k < � for any real � < 1 and for n su�ciently large. We considertwo cases depending on the value of s0k.Case 1: s0k � pn log5 n. By Equation 13, sk � 4pn log5 n wvhp. Therefore, by Part 3 of Lemma 2.14.1,tk � 64 log10 n wvhp. We consider two cases. If tk � log2 n, by Lemma 2.13, sk+1 � 3sk�2tk=tk�2 wvhp.If tk � log2 n, then sk+1 � 3sk�2 log2 n=tk�2. In any case, sk+1 � (192sk�2 log10 n)=tk�2 wvhp. Now wesubstitute appropriate bounds on sk�2 and tk�2 from Lemma 2.16 and obtain wvhp,sk+1 � 192�3k�2s0k�2 log10 n�2�3k�2+1t0k�2� 576n�5�3k�2+2 log10 ns0k�2� 144�3kn1=3 log7 n� n2=5for n su�ciently large. (Note: The penultimate step follows from the fact that 3k � 5 � 3k�2 + 2 ands0k�2 � 4n2=3 log3 n.)Case 2: s0k � pn log5 n. By Equation 13, sk � 4s0k wvhp. We again consider two cases, depending onwhether tk � log2 n or tk � log2 n.If tk � log2 n then Lemma 2.13 implies that sk+1 � 3sk�2 log2 n=tk�2 wvhp. Arguing as in Case 2, sk+1is at most n2=5 wvhp.If tk � log2 n then Lemma 2.13 implies that sk+1 � 3sk�2tk=tk�2 wvhp. Since sk � 4s0k, by Part 2 ofLemma 2.14.1, tk � 64(s0k)2=n � 192t0k wvhp. Substituting this upper bound on tk and appropriate boundson sk�2 and tk�2 obtained from Lemma 2.16, we have sk+1 � 1000s0k+1 wvhp for n su�ciently large. Wenow derive an upper bound on s0k+1.By Lemma 2.19, w0k � w0k�1+ w0k�2+ 2 logr 3. Since w0k�1 � w0k�2, we havew0k�1 � 12(w0k � 2 logr 3) � logr n6 � 3 logr logn2 � logr 6:17



Thus, by Lemma 2.19, w0k+1 � w0k + w0k�1� logr n2 � 9 logr logn2 � logr 24; ands0k+1 � pn log5 n;for n su�ciently large. Now we apply an analysis similar to Case 2 with k replaced by k + 1 to establishthat sk+2 is at most n2=5 wvhp.Cases 1 and 2 establish that wvhp after j = k + 2 = O(log logn) rounds sj is at most n2=5 wvhp.Lemma 2.22 For any ball x 2 [n], the probability that x remains after O(log logn) rounds ofAlg2(n; 3; 1)is at most 2=n6=5 for n su�ciently large.Proof: By Lemma 2.21, after j = O(log logn) rounds, sj � n2=5 wvhp. By Corollary 2.14.1, the prob-ability that x remains after round j is at most 2n4=5=n2 for n su�ciently large. Since 2n4=5=n2 = 2=n6=5,the desired claim follows.The following theorem is an easy consequence of the above lemma.Theorem 4 Alg2(n; 3; 1) terminates in O(log log n) rounds whp.Theorem 5 Alg2(n; 3; 1) terminates in 
(log log n) rounds wvhp.Proof: A possible solution to Equation 12 is p2 = 3. Thus by Lemma 2.20, w0i � 3i�1 for all i > 0. Afterk = blog3((logr n)=4)c rounds, w0k � (logr n)=4 and s0k � n3=4. For n su�ciently large n3=4 � 4n2=3 log3 n.Therefore, by Lemma 2.16, tk � �2�3k+1t0k � �2�3k+1(s0k)2=3n > 0 for n su�ciently large. This shows thatAlg2(n; 3; 1) executes at least log3((logr n)=4) � log3((logn)=4) = 
(log log n) rounds before termination.The recurrence in Lemma 2.18 for ` = 2 yields s0i+1=n � s0i=3n for all i � 0. Thus w0i = O(i). Using ananalysis similar to the above theorem we establish an 
(logn) lower bound for Alg2(n; 2; 1).Theorem 6 Alg2(n; 2; 1) terminates in 
(logn) rounds wvhp.2.3.2 Analysis of the 2-collision crossbarThe analysis of Alg2 with the collision factor set to 2 is similar to the 1-collision case. Analogous toSection 2.3.1 we de�ne s0i as follows:s0i = 8><>: n if i = 0,g(s0i�1) if 0 < i < `,s0i�` � g(s0i�1)g(s0i�`) otherwise.For all i � 0 let t0i = g(s0i).Lemma 2.23 Let c be the positive root of c2 = 4c+ 13. In Alg2(n; `; 2), for all 0 � i � (11=4) logc log n,if s0i � 4n4=5 log3 n, then wvhp, �cis0i � si � �cis0i (14)�4ci+1t0i � ti � �4ci+1t0i (15)(16)18



Proof: We use induction on i. For the basis, i = 0 and s0 = n = s00. By Corollary 2.10, �g(n) � t0 ��g(n) wvhp and since t00 = g(n), the desired claims hold for i = 0.Assume the claim holds for all j < i, i � 1. We �rst establish Equation 14, from which we then deriveEquation 15. We consider two cases: i < ` and i � `.If i < `, then si = ti�1 and s0i = t0i�1. Since s0i�1 � s0i � 4n4=5 log3 n, by the induction hypothesis,�4ci�1+1t0i�1 � ti�1 � �4ci�1+1t0i�1 wvhp. Since c � 5, we have ci � 4ci�1 + 1 for all i � 1. Hence�cis0i � si � �cis0i wvhp. If i � `, we use Corollary 2.12.2 to bound si. By the induction hypothesis, sinces0i�1; s0i�` � 4n4=5 log3 n, we have wvhp,�ci�`s0i�` � si�` � �ci�`s0i�`;�4ci�`+1t0i�` � ti�` � �4ci�`+1t0i�`, and�4ci�1+1t0i�1 � ti�1 � �4ci�1+1t0i�1:Substituting appropriate bounds on si�`; ti�`; and ti�1, we obtain the following bounds on s = si�`ti�1=ti�`wvhp: �4ci�1+ci�`+1s0i�`t0i�1�4ci�`+1t0i�` � s � �4ci�1+ci�`+1s0i�`t0i�1�4ci�`+1t0i�` :Since � � ��1, and �2 � ��1 we have�4ci�1+5ci�`+2s0i�`t0i�1t0i�` � s � �4ci�1+9ci�`+3s0i�`t0i�1t0i�` : (17)Since ` � 2, we have c` � 4c`�1 + 13. Hence, ci � 4ci�1 + 5ci�` + 2. Therefore s � �cis0i�`t0i�1=t0i�` = �cis0iwvhp. Since i � (11=4) logc logn, we have ci � log11=4 n and �ci � � for any real � < 1 for n su�cientlylarge. Hence s � 2n4=5 log3 n wvhp. Next we show that ti�` � s3i�`=(13n2) wvhp. By the inductionhypothesis, ti�` � �4ci�`+1t0i�` = �4ci�`+1g(s0i�`) wvhp. Since g(s0i�`) � (s0i�`)3=12n2 and si�` � �ci�`s0i�`wvhp, we have ti�` � �4ci�`+1s3i�`12�3ci�`n2 � �7ci�`+1s3i�`12n2 ;wvhp. For any real � < 1, �ci�` � �ci � � for n su�ciently large. Therefore, �7ci�`+1 � 12=13 for nsu�ciently large and thus ti�` � s3i�`=(13n2) wvhp.Now we apply Corollary 2.12.2 to obtain �s � si � �s wvhp. By Equation 17,�4ci�1+5ci�`+3s0i�`t0i�1t0i�` � si � �4ci�1+9ci�`+4s0i�`t0i�1t0i�` :Since c` � 4c`�1 + 13, we have ci � 4ci�1 + 5ci�` + 3 and ci � 4ci�1 + 9ci�` + 4. Hence Equation 8 holdswvhp.Now we invoke Part 1 of Lemma 2.15 to obtain bounds on ti. Note that �cis0i;�cis0i � n4=5 log3 n for nsu�ciently large. Thus wvhp, �g(�cis0i) � ti � �g(�cis0i);and hence by Corollary A.4.1, �4ci+1g(s0i) � ti � �4ci+1g(s0i):Since t0i = g(s0i), Equation 9 follows wvhp.Lemmas 2.24 and 2.25 determine the rate at which s0i decreases with increasing i. Using Lemma 2.23,we can then determine the rate of change of si as i increases.19



Lemma 2.24 For all 0 � i < `, we have Y0�j<i+1s0j = s00 Y0�j<ig(s0j);and for i � `, we have Yi�`+1�j<i+1s0j = s00 Yi�`+1�j<ig(s0j):Proof: Similar to the proof of Lemma 2.17.Lemma 2.25 For all 1 � i < `, if s0i�1 and n are su�ciently large, then112i�1 Y0�j<i s0jn !2 � s0in � Yi�j<i s0jn ! :For i � `, if s0i�1 and n are su�ciently large, then112`�1 Yi�`+1�j<i s0jn !2 � s0in � Yi�`+1�j<i s0jn !2 :Proof: By Lemma 2.24 and Lemma A.2, if s0i�1 and n are su�ciently large, then for all 0 � i < `, wehave s0012i�1 Y0�j<i (s0j)3n2 � Y0�j<i+1s0j � s00 Y0�j<i (s0j)3n2 ;and the claim of the lemma follows after dividing by s00 Y0�j<is0j . By Lemma 2.17 and Lemma A.1, if s0i�1and n are su�ciently large, then for all i � 0, we haves0012`�1 Yi�`+1�j<i (s0j)3n2 � Yi�`+1�j<i+1s0j � s00 Yi�`+1�j<i (s0j)3n2 ;and the claim of the lemma follows after dividing by s00 Yi�`+1�j<is0j .In the remainder of this section, we restrict our attention to the case where ` = 2. We set r = n=g(n).(Note that e=(e� 2) � r � 9 for n � 3.)Lemma 2.26 In Alg2(n; 2; 2), for all i > 0, if s0i�1 � 6, then2w0i�1 � w0i � 2w0i�1+ logr 12Proof: Follows directly from the de�nition of w0i and Lemma 2.25.Lemma 2.27 In Alg2(n; 2; 2), for all i > 0, if s0i�1 � 6, then pi�11 � w0i � pi�12 , where p1 � 2 andp2 � 2 + logr 12.Proof: The proof is by induction on i. We have s01 = n=r, hence p01 = 1 = w01 = p02.Let the claimed lower and upper bounds on w0i hold for all 0 < j < i, i > 1. Then by Lemma 2.26, andthe induction hypothesis, pi�31 + pi�21 � w0i � pi�32 + pi�22 + 2 logr 3Since p1 � 2 and p2 � 2 + logr 12, it follows that pk�11 � w0k � pk�12 .Now we place tight bounds on the number of rounds Alg2(n; 2; 2) takes before termination.20



Lemma 2.28 There exists integer j = O(log logn) such that sj � n5=8 wvhp in Alg2(n; 2; 2).Proof: By Lemma 2.27, w0i � 2i�1 for all i > 0. Let k = minfi j w0i � logr n1=34 log3 ng. Thereforek � dlog logr n1=54 log3 ne+1 � log logr n1=54 log3 n +2. (Also note that since w01 = 1, we have k � 2 for n su�cientlylarge.) Now we apply Lemma 2.23 with ` = 2. Let c be the root of the equation c2 = 4c + 13. Since211=4 > c, k � (11=4) logc logr n for n su�ciently large. Therefore by Lemma 2.23, tk�1 � �4ck�1+1t0k�1wvhp. Since t0k�1 � (s0k�1)3=(12n2), we have tk�1 � �4ck�1+1(16n2=5 log9 n)=3 � log2 n for n su�cientlylarge. By Lemma 2.13, sk � 3sk�2tk�1=tk�2 wvhp. Substituting the appropriate bounds on sk�2, tk�1 andtk�2 given by Lemma 2.23, we have wvhp,sk � 3�4ck�1+ck�2+1s0k�2t0k�1�4ck�2+1t0k�2� 3�4ck�1+ 9ck�2 + 3s0k�2t0k � 1t0k�2 :Since c2 = 4c+ 13, we have ck � 4ck�1+ 9ck�2+ 3. Therefore,sk � 3�cks0k � 4s0k; (18)wvhp for n su�ciently large.We consider two cases, depending on whether tk � log2 n or tk > log2 n.If tk � log2 n, then by Lemma 2.13, sk+1 � 3sk�1 log2 n=tk�1 wvhp. Substituting appropriate boundson sk�1 and tk�1 given by Lemma 2.23, we have wvhp,sk+1 � 3�ck�1s0k�1 log2 n�4ck�1+1t0k�1� 36�9ck�1+2n2 log2 n(s0k�1)2� 9�ck+1n2=54 log4 n� 92cn2=54 log4 n� n5=8for n su�ciently large. (The second step follows from the lower bound on t0k�1 given by Lemma A.2. Inthe third step we use s0k�1 � n4=5 log3 n. And in the penultimate step we use �ck � 2 for n su�cientlylarge.)If tk > log2 n then by Lemma 2.13, sk+1 � 3sk�1tk=tk�1 wvhp. If s0k � (n2=3 log3 n)=4, then sincesk � 4s0k wvhp, by Part 3 of Lemma 2.15, tk � 12 log9 n wvhp. Hence, as in the case tk � log2 n above,we can establish that tk+1 is zero whp. If s0k � (n2=3 log3 n)=4, then by Lemma 2.15, tk � 768(s0k�1)3=n2wvhp. Therefore, by Lemma A.2, tk � 12 � 768t0k. Substituting this bound on tk and appropriate boundson sk�1 and tk�1 given by Lemma 2.23, we have wvhp,sk+1 � 36 � 768�ck�1s0k�1t0k�4ck�1+1t0k�1� 36 � 768�9ck�1+2s0k+1� 36 � 768 � 2cs0k+1:21



By Lemma 2.26 with ` = 2, w0k+1 � 2w0k. Thus w0k+1 � 2 logr( n1=54 log3 n), and s0k+1 � 16n3=5 log6 n. Hence,sk+1 � n5=8 for n su�ciently large.In Lemma 2.29 we place a bound on the probability that a particular ball remains after O(log log n)rounds.Lemma 2.29 For any ball x 2 [n], the probability that x remains after O(log logn) rounds ofAlg2(n; 3; 1)is at most 4=n9=8 for n su�ciently large.Proof: By Lemma 2.28, after j = O(log log n) rounds, sj � n5=8 wvhp. By Part 4 of Lemma 2.15, theprobability that x remains after round j is at most 4n15=8=n3 for n su�ciently large. Since 4n15=8=n3 =4=n9=8, the desired claim follows.The following theorem follows easily from Lemma 2.29.Theorem 7 Alg2(n; 2; 2) terminates in O(log log n) rounds whp.Theorem 8 Alg2(n; 2; 2) terminates in 
(log log n) rounds wvhp.Proof: For n � 3, since r � e=(e� 2) we have 2 + logr 12 � 10. Therefore, by Lemma 2.27, w0i � 10i�1for all i > 0. After k = blog10((logr n)=6)c, rounds w0k � (logr n)=6, and s0k � n5=6. For n su�ciently largen5=6 � 4n4=5 log3 n. Therefore, by Lemma 2.23, tk � �4ck+1t0k � �4ck+1(s0k)3=12n2 > 1 wvhp for n su�cientlylarge. (Here c is the positive root of c2 = 4c+ 13. Note that �4ck+1 > 12pn for n su�ciently large.) Thisshows that Alg2(n; 2; 2) executes at least blog10((logr n)=6)c � blog10((log9 n)=6)c = 
(log log n) roundswvhp before termination.2.4 Limited IndependenceIn this section we analyze the 1 out of ` protocol when the ` hash functions are chosen from a k-wiseindependent family of hash functions. As before, we view each hash function as a throw of n balls inton bins. We show that on any c-collision crossbar, the probability that a particular ball remains after rrounds of the k-wise independent 1 out of ` protocol is close to that of the fully independent protocol forr = O(log log n), even when k � n. Importing the results in Lemma 2.22 and 2.29 in Section 2.3, weobtain the following main theorems.Theorem 9 For integers ` � 3 and c � 1, the 1 out of ` problem is solved on a c-collision crossbar inO(log log n) rounds whp, when the ` hash functions are chosen independently and uniformly at randomfrom a k-wise independent family of hash functions for k = 
(log� n), where � is a real constant.Theorem 10 For integers ` � 2 and c � 2, the 1 out of ` problem is solved on a c-collision crossbar inO(log log n) rounds whp, when the ` hash functions are chosen independently and uniformly at randomfrom a k-wise independent family of hash functions for k = 
(log� n) where � is a real constant.Let Fkm;n denote a k-wise independent family of functions from [m] to [n], that is, for fxi : 0 � i < jg �[m], y0; : : : ; y`�1 2 [n]j, 0 � j � k, it holds that if h is drawn uniformly at random from Fkm;n, thenPr[h(xi) = yi for 0 � i < j] = 1=nj :If k � pn, Fkm;n can be constructed as in [17] using the families Hnd;n and H1m;nd de�ned in [6] and [22]respectively. (Here d is an appropriate constant.) A hash function h chosen uniformly at random from22



Fkm;n is de�ned as r � s, where r and s are chosen uniformly at random from Hnd;n and H1m;nd respectively.Both r and s can be evaluated in constant time [22, 6], and hence so can be h.In order to analyze the 1 out of ` protocol, we restrict our attention to the at most n memory requestsof the processors. The hash functions with the domain restricted to this set of requests can be viewed asmapping m � n memory locations into n memory modules k-wise independently. First, we establish a fewsimple properties of k-wise independent hash functions.Lemma 2.30 Let k, m, and n be integers such that 0 < k � m � n. Let h be drawn uniformly at randomfrom Fkm;n. For any A � [n], jAj � (k � 1)=e2, we havePr[h�1(A) = ;] � (1� jAj=n)m(1 + e�(k�1)=3):Proof: If k is even, let k0 = k; otherwise let k0 = k � 1. By inclusion-exclusion we havePr[h�1(A) = ;] = 1 + mXi=1 X0�x0<:::<xi�1<m(�1)iPr[h(x0); : : : ; h(xi�1) 2 A]� 1 + k0Xi=1 X0�x0<:::<xi�1<m(�1)iPr[h(x0); : : : ; h(xi�1) 2 A]= 1 + k0Xi=1 X0�x0<:::<xi�1<m(�1)i(jAj=n)i= 1 +0@k0�1Xi=1 X0�x0<:::<xi�1<m(�1)i(jAj=n)i1A +  mk0!(jAj=n)k0� 1 +0@ mXi=1 X0�x0<:::<xi�1<m(�1)i(jAj=n)i1A+  mk0!(jAj=n)k0� (1� jAj=n)m +  mk0!(jAj=n)k0� (1� jAj=n)m(1 + (em=k0)k0(jAj=n)k0e2mjAj=n)� (1� jAj=n)m(1 + (ejAj=k0)k0e2mjAj=n)� (1� jAj=n)m(1 + e�k0e2jAj)� (1� jAj=n)m(1 + e�k0=3):(In the seventh step we use the inequalities 1� x � e�2x for 0 � x � 1=2 and jAj � k0=e2 � n=2. The laststep follows since jAj � k0=e2.)Lemma 2.31 Let k, m, and n be integers such that 0 < k � m � n. Let h be drawn uniformly at randomfrom Fkm;n. Let B � [n] satisfy jBj � k=�, where real � > 0. If S = h�1(B), then Pr[jSj � �jBj] � (e=c)cjBj.Proof: By the de�nition of S, Pr[jSj � �jBj] is the probability that there exists a set T � [m], jT j = �jBj,such that h(T ) � B. Since �jBj � k and h is chosen uniformly from a k-wise independent family of hashfunctions, this is at most � m�jBj�(jBj=n)�jBj � (e=�)�jBj.Corollary 2.31.1 Let k, m, n, and p be integers such that 0 � p < k � m � n. Let h be drawn uniformlyat random from Fkm;n. For 0 � i < p, let X = fxi : 0 � i < pg � [m] and y = (y0; : : : ; yp�1) 2 [n]p. Let Ebe the event that for 0 � i < p, h(xi) = yi. Let A � [n], jAj � minfp; (k� p� 1)=e2g, and E 0 be the eventthat for all x 62 X , h(x) 62 A. Let B � [n] satisfy jBj � (k � p� 1)=�, where real � � 0. If S = h�1(B),then Pr[jSj � �jBj+ p j E \E 0] � 2e2jAj(e=�)�jBj. 23



Proof: Let Y denote [m] n X . Thus, g = hY j E is drawn uniformly from a (k � p)-wise independentfamily of functions from Y to [n]. The event E 0 j E is equivalent to the event that g�1(A) = ;. If k � p isodd, let k0 = k � p; otherwise let k0 = k � p� 1. By inclusion-exclusion we havePr[E 0 j E] � (1� jAj=n)m�p �  m� pk0 !(jAj=n)k0� e�2jAj(m�p)=n � (ejAj=(k0))k0� e�2jAj � (2e)�2jAj� e�2jAj=2:(In the second step we use the inequality (1 � jAj=n) � e�2jAj=n since jAj � n=2. The third step followsfrom the inequality k0 � 2e2jAj � 2jAj.)Pr[(jSj � �jBj+ p) j E \E 0] = Pr[((jSj � �jBj+ p) \ E 0) j E]Pr[E 0 j E]� Pr[(jSj � �jBj + p) j E]Pr[E 0 j E]� Pr[g�1(B) � �jBj]Pr[E 0]� 2e2jAj(e=�)�jBj:(In the last step we invoke Lemma 2.31 substituting (m� p; n; k� p; �; B; S) for (m;n; k; �; B; S).)For the rest of the section, we �x integers `; c � 1, and analyze the 1 out of ` protocol on the c-collisioncrossbar. Let ~h = (h0; : : : ; h`�1) represent a tuple of ` hash functions, where hi : [m]! [n], 0 � i < `. Forx 2 [m], let AFFECT i(~h; x) denote the set of balls that could a�ect the success of ball x in round j for all0 � j � i. Formally, we de�neAFFECT i(~h; x) = ( fxg if i = �1,fz 2 [m] : himod`(z) = himod`(y) for some y 2 AFFECT i�1(~h; x)g otherwise.Lemma 2.32 Let k, m, and n be integers such that 0 � k � m � n. Let ~h = (h0; : : : ; h`�1), denote `hash functions chosen independently and uniformly at random from Fkm;n, For any x 2 [m] and i � 0, ifk � maxf4 log2 n; 10jAFFECTi�1(~h; x)jg, then jAFFECT i(~h; x)j � maxf4 log2 n; 10jAFFECTi�1(~h; x)jgwvhp.Proof: In the following we use Ai as a shorthand for AFFECT i(~h; x). Let j = i mod `. Let Ai�1 =fx0; : : : ; xp�1g, where 0 � p � m. If i � ` � 1, let A = Ai�1 n Ai�`; otherwise let A = Ai�1. LetB = hj(Ai�`), C = hj(A), and S = Aj n Aj�1. Thus S � h�1j (C). Fix y = (y0; : : : ; yp�1) 2 [n]p andlet E be the event that for all 0 � q < a, (hj(x0); : : : ; hj(xp�1)) = y. Let E0 be the event that for allx 62 Ai�1 hj(x) 62 C. Set � = maxf(e2p)=jCj; (log2 n)=jCjg. We now apply Corollary 2.31.1 substituting(k;m; n; hj; p;X; y;B; C; S; E;E0; �) for (k;m; n; h; p;X; y;A;B; S;E;E0; �) to obtain jSj � �jCj+ a withprobability at least 1� 2e2jBj(e=�)�jCj. Since � � e2p=jCj � e2, we have2e2jBj(e=�)�jCj � 2e2jBj��jCj� 2e��jCj=2� 2e� log2 n24



(In the second step we use the inequality 2jBj � 2p � 2�jCj=e2 � �jCj=2.) Thus,jAjj � jAj�1j+ jSj � maxfe2p; 2 log2 ng+ 2p � maxf4 log2 n; 10jAj�1jgwvhp.For r � 0, ~h = (h0; : : : ; h`�1), hi : [m] ! [n] for 0 � i < `, and x 2 [m], de�ne ASSIGN r(~h; x)as f(y; h0(y); : : : ; h`�1(y)) : y 2 AFFECTr(~h; x)g. We note that given ~h, ASSIGN r(~h; x) completelydetermines whether x succeeds in r rounds under ~h.Let xi 2 [m], yi;j 2 [n], 0 � i < p, 0 � j < `. Let A = f(xi; yi;0; : : : ; yi;`�1) : 0 � i < pg. We call A anassignment . Let X denote fxi : 0 � i < pg. For any r � 0, we call A a valid r-assignment for x 2 [m]if ASSIGN r(~g; x) = A, where ~g = (g0; : : : ; g`�1), gj : X ! [n] de�ned by gj(xi) = yi;j , 0 � i < p, for all0 � j < `.In the following let Prk[EVENT(~h)] denote the probability of EVENT(~h) when each hash function in~h is chosen independently and uniformly from Fkm;n.Lemma 2.33 Let k, m, n and p be integers such that 0 � k � m � n and 0 � p � (k � 1)=(e2 + 1). Letxi 2 [m], 0 � i < p be distinct integers and yi;j 2 [n], 0 � i < p, 0 � j < `. Let A = f(xi; yi;0; : : : ; yi;`�1) :0 � i < pg. For arbitrary x 2 [m] and integer r � 0, we havePrk[ASSIGN r(~h; x) = A] � Prm[ASSIGN r(~h; x) = A](1 + e�(k�p)=3)`:Proof: Let E be the event that hj(xi) = yi;j for 0 � i < p, 0 � j < `. Let X = fxi : 0 � i < pgand Yj = fyi;j : 0 � i < pg, 0 � j < `. (Note that jYjj � p for 0 � j < `.) Let Z denote [m] n Xand E0 be the event that AFFECTr(~h; x) = X . Thus ASSIGN r(~h; x) = A if and only if E and E 0occur. Since p � k, we have Prk[E] = Prm[E]. The event E0 occurs if A is an a�ecting r-assignmentand for some Bj � Yj , 0 � j < `, determined by A, h�1j (Bj) \ Z = ;. (The Bj 's are determined fromA as follows. Let ~g = (g0; : : : ; g`�1), where gj : X ! [n] is de�ned by gj(xi) = yi;j, 0 � i < p for all0 � j < `. For 0 � j < `, if r < j then Bj = ;. Otherwise, we consider two cases. If r mod ` � j, thenBj = gj(AFFECT (br=`c�1)`+j(~g; x)); otherwise Bj = gj(AFFECTbr=`c`+j(~g; x)).)If A is not a valid r-assignment the claim holds trivially. So we assume that A is a valid r-assignment.For any p � q � m, if hj is drawn from a q-wise independent family of hash functions from [m] to [n], thengj = hZj j E can be viewed as having been drawn from a (q� p)-wise independent family of hash functionsfrom Z to [n]. We invoke Lemma 2.30 substituting (k � p;m� p; n; gj; Bj) for (k;m; n; h; A) to obtainPrk[g�1j (Bj) = ;] � Prm[g�1j (Bj) = ;](1 + e�(k�p)=3)for 0 � j < `. Therefore, Prk[E \E 0] = Prk[E]Prk[E 0 j E]� Prm[E]Prm[E 0 j E](1+ e�(k�p)=3)`= Prm[E \E 0](1 + e�(k�p)=3)`:Lemma 2.34 Let k, m and n be integers such that 0 � k < m � n. For any real  � 0, x 2 [m] andinteger r �  log log n, if k � 8 log4+2 n, thenPrk[x remains after r rounds under ~h] � Prm[x remains after r rounds under ~h] + 1=n2for n su�ciently large. 25



Proof: LetA be the set of valid r-assignments for x under which x fails. By Lemma 2.32, jASSIGN r(~h; x)j �4(log2 n)10rg � 4 log4+2 n wvhp. By Lemma 2.33, for any assignment A such that jAj � 4 log4+2 n,Prk[ASSIGN r(~h; x) = A] � Prm[ASSIGN r(~h; x) = A](1 + e�(k�jAj)=3)`� Prm[ASSIGN r(~h; x) = A](1 + 1=n3);for n su�ciently large. (Here we use the fact that k � 8 log4+2 n � 2jAj.) Thus,Prk[x fails in r rounds under ~h] � Prk[ASSIGN r(~h; x) 2 A]� Prk[(ASSIGN r(~h; x) 2 A) and jASSIGN r(~h; x)j � 4 log4+2 n] + 1=n3� XA2AjAj�4 log4+2 n Prk[ASSIGN r(~h; x) = A] + 1=n3� XA2AjAj�4 log4+2 n Prm[ASSIGN r(~h; x) = A](1 + 1=n3) + 1=n3� Prm[ASSIGN r(~h; x) 2 A](1 + 1=n3) + 1=n3� Prm[x fails in r rounds under ~h] + 1=n2for n su�ciently large.By Lemma 2.22, for any x 2 [n], Prn[x remains after O(log logn) rounds] is at most 2=n6=5 in the 1 outof 3 protocol on the 1-collision crossbar. Similarly, for the 1 out of 2 protocol on the 2-collision crossbar,Lemma 2.29 implies that Prn[x remains after O(log logn) rounds] is at most 4=n9=8 for any x 2 [n]. Wenow apply Lemma 2.34 to establish Theorems 9 and 10.2.5 GeneralizationsAlg1 can be generalized to apply to any a out of b problem by changing the RandomSubbag and PrunedBagroutines appropriately; after each step, we need to keep track of how many successes each processor hashad, and only those processors with fewer than a successes participate. In the following discussion, werefer to this protocol as the generic protocol. For given a and b, the analysis of the generic protocol canbe done using the approach of Subsection 2.3, but involves more complicated calculations and recurrences.In [9], the authors use a di�erent analysis of this protocol for the 2 out of 3 case and show an O(log log n)upper bound when the collision factor is greater than 3. In this section, we present a simple variant of thegeneric protocol that solves any a out of b problem on a 2-collision crossbar in O(log logn) time whp.In particular we can solve any a out of a+1 problem by running Alg1(n; 2; 1) with �a+12 � di�erent hash-function pairs. Since each run fails with a polynomially small probability, and there are only a constantnumber of runs, the entire algorithm succeeds whp. For instance, in the case of 2 out of 3, we simplyperform 3 runs of Alg1. At �rst glance, it may appear that this revised protocol is only of interest becauseit is simpler to analyze. Actually, the new protocol is competitive with the generic one for small a andis much faster for large a. Comparing it for the 2 out of 3 problem, we �rst note that since each of the3 runs use 2 hash functions only, while the generic protocol uses 3, the revised protocol will be at mosttwice as slow as the generic one. Moreover, the 1 out of 2 problem is clearly a simpler problem than the2 out of 3 problem. So each run will involve a fewer rounds than in the generic algorithm. For large a,this phenomenon is exaggerated. For a generic a out of a + 1 protocol to make \progress", a number ofprocessors must have a large number of successes. But at the outset, the fraction of processors that havesucceeded on d � a hash functions decreases exponentially with d. Therefore, while the revised protocolexperiences only a quadratic slowdown in running time, the generic procotol will su�er an exponentialincrease in running time with increasing a. 26



The basic idea outlined above can be used to solve any a out of b problem by choosing any a+ 1 hashfunctions and solving the corresponding a out of a+ 1 problem.Theorem 11 For integer constants a and b with 1 � a < b, the corresponding a out of b problem can besolved on a 2-collision crossbar in O(log logn) time whp.The above generalizations can be made for the 1-collision crossbar as well. Since Alg1 solves the 1 outof 3 problem on a 1-collision crossbar in O(log logn) time whp, any a out of a+ 2 problem can be solvedin the same asymptotic time bound by running Alg1(n; 3; 1) on �a+23 � di�erent triples of hash functions.Theorem 12 For integer constants a and b with 1 � a < b� 1, the corresponding a out of b problem canbe solved on a 1-collision crossbar in O(log logn) time whp.It is worth noting that by the above result, a 1-collision crossbar can solve the 3 out of 5 problem andhence can simulate an EREW PRAM with n processors in O(log logn) time whp using 5 hash functions.Thus a 1-collision crossbar is asymptotically as powerful as a 2-collision one.3 Symmetry BreakingIn this section we analyze algorithms for the Control Tower problem. In the Control Tower problem, thereis one central control tower and n remote stations, h of which contain a message destined for the controltower. Each station can only transmit a message to and receive a message from the control tower, andonly in discrete time slots. When two or more stations attempt to transmit a message in the same timeslot, all of the transmitted messages are lost. Note that the control tower can transmit a message to onlyone remote station in one time slot. We will consider each time slot to be a step; the goal is to transmitall h messages to the control tower in as few steps as possible. (Throughout our analysis, we will assumethat the remote stations are numbered from 1 to n, and that the control tower sends an acknowledgementupon receipt of a message.)The Control Tower problem is related to the problem of direct routing of h-relations on a 1-collisioncrossbar, as discussed in Section 1. Speci�cally, since each processor is only permitted to transmit amessage directly to its destination, we are able to analyze each destination independently. Transmitting aset of at most h messages to a destination is then equivalent to the Control Tower problem. Thus the lowerbound we obtain for the Control Tower problem can be used to obtain a lower bound for direct h-relationrouting.To give some intuition into the Control Tower problem, let us �rst examine the case when h = 2. Inthis case, the problem is that two stations are trying to transmit messages, but if they transmit at thesame time, then both of the transmissions are blocked. Note that some sort of symmetry breaking isrequired, or the messages may never be successfully transmitted. A simple randomized strategy to breakthe symmetry would be for each station to ip a coin and transmit if and only if it comes up \heads". Thenthe expected number of steps before both messages are successfully transmitted is constant. To achievesuccess wvhp requires �(logn) steps, however. Still, this turns out to be the best strategy possible, asshown by Goldberg, Jerrum, Leighton, and Rao [12]. Generalizing to h > 2, we can easily verify that ifthere are k messages left to transmit (k � h), then by having each station transmit with probability 1=k,we maximize the probability of obtaining a successful transmission. The di�culty is that the stations arenot able to communicate with each other, and consequently they do not know exactly how many messagesare left to transmit at any intermediate step of the algorithm. If the number of messages left to transmitwere known to all stations at every step, then the Control Tower problem could be solved in �(h+ log n)steps wvhp. If not, Ger�eb-Graus and Tsantilas [10] showed that the Control Tower problem could be solvedin O(h+ log h logn) time wvhp, but it was not known whether the extra log h factor could be eliminated.We show that the extra factor of log h is indeed necessary.27



We also examine deterministic solutions for the Control Tower problem and direct h-relation routing.As mentioned in Section 1.2, a deterministic lower bound of 
((h= logh) logn) for the Control Towerproblem follows from the same lower bound for routing all h messages in the Ethernet model [15]. Weshow a lower bound of 
((h=minflog h; log logng) logn) (which improves the previous lower bound for hlarger than polylog(n)), and we show this lower bound holds for successfully transmitting any of the hmessages in the Control Tower problem. (This result does not hold in the Ethernet model, where it istrivial to successfully transmit one of the messages in �(logn) time.) Finally, we prove the existence of a�(h log h logn) time deterministic algorithm for direct h-relation routing.Lower bounds for the Control Tower problem can most easily be studied in the context of hypergraphs,so here we review the de�nition of a hypergraph and related concepts.Let V be a set of elements, called vertices . Let E be a set of nonempty subsets of V , called edges .Then a hypergraph is given by a pair (V;E). Given a hypergraph H = (V;E), the hypergraph induced bya set of vertices V 0 � V is H 0 = (V 0; E 0), where E 0 = fe 2 E : e \ V 0 6= ;g. Also the hypergraph inducedby a set of edges E0 � E is H 0 = (V;E 0). A subset of vertices T � V covers an edge e 2 E if e \ T 6= ;.A transversal of H is a set of vertices T � V that covers every edge in E. For convenience, we de�ne ana-transversal to be a set of vertices T � V that covers at least a edges of E.We de�ne a hypergraph H = (V;E) to be a-thick if mine2E jej � a, Note that if E is empty, then H isa-thick for every a. A hypergraph H = (V;E) is (a; b)-thick if H is a-thick and Pk�0 fk2�k � b, where fkdenotes the number of edges e 2 E such that a2k � jej � a2k+1, k � 0.We will make use of the inequalities: (i) 1+ x � ex for all real x, and (ii) 1� x � e�2x for 0 � x � 1=2.3.1 Deterministic Algorithm for Direct RoutingHere we give an improved upper bound for deterministic direct routing on the 1-collision crossbar. Thisimproved bound is obtained by slightly modifying a technique in Goldberg and Jerrum [11]. They showthat one can solve the Control Tower problem deterministically in �(h logn) steps. (Their proof is muchsimpler than the proof in Koml�os and Greenberg [18].) This directly implies the existence of a deterministicdirect h-relation routing algorithm for the 1-collision crossbar which takes �(h2 logn) steps. By modifyingtheir technique, however, we are able to obtain an upper bound of �(h log h logn) on deterministic directh-relation routing on the 1-collision crossbar. Thus, in combination with the lower bounds shown later, weobtain an exponential decrease in the gap between the upper and lower bounds for this problem.As in Goldberg and Jerrum [11], de�ne an (h; k)-relation as a routing problem in which each processoris the source of at most h packets and each memory module is the destination of at most k packets.Lemma 3.1 There exists a deterministic algorithm that, given an arbitrary (h; k)-relation (k � h � n),terminates after O(h logn) communication steps such that the remaining communication problem is a(h; dk=2e)-relation.Proof: We employ the probabilistic method to prove this. Assume each processor has h slots numbered1; : : : ; h and each slot contains at most one message. Consider the following randomized communicationstep: Each processor selects one of its slots at random, and if the slot has a message, attempts to transmitit. At any step, if there are ` messages, k=2 � ` � k, yet to be received by a memory module M , theprobability of a successful transmission to M is at least:` 1h �1� 1h�`�1 � ` 1h �1� 1h�h�1 � k2eh:28



The probability that in ch logn communication steps there exist at least ch logn � bk=2c failed trans-missions to M is at most ch lognk=2 !�1� k2eh�ch logn�k=2 � (ch logn)k=2e�kc logn=4e � 1n3kfor n su�ciently large. (The last inequality is obtained by choosing an appropriate c.) Since the numberof choices for the sources and the slots of the messages destined to M are at most nhk ! � (nh)k � n2k;the expected number of message assignments such that this algorithm fails to send bk=2c messages isbounded above by 1=nk. Thus there exists a deterministic algorithm that transmits at least bk=2c messagesdestined to M . Now we note that any assignment of messages destined to another module P is also apossible assignment for messages to M . Therefore the same deterministic algorithm that routes at leastbk=2c messages to M will also route at least bk=2c messages to P , for any other P .Theorem 13 There exists a deterministic algorithm that realizes any h-relation , h � n, in O((h logh) logn)steps.Proof: There are dlog he phases in the algorithm. The ith phase reduces an (h; dh=2i�1e)-relationproblem to an (h; dh=2ie)-relation using the algorithm in Lemma 3.1. Thus after dlog he phases, theremaining communication problem is an (h; 1)-relation that can be realized in O(h) steps.3.2 Deterministic Lower BoundTo obtain a lower bound on the number of steps required for a deterministic solution to the Control Towerproblem, we will �rst �nd a subset of stations such that a good fraction of those stations transmit at eachstep, and then show that there are two small disjoint groups of stations which always transmit duringexactly the same steps. By placing messages at all stations in both groups, no station in either groupwould succeed in transmitting its message, due to contention.Some preliminary results which will aid in our proof are presented here.Given that the number of edges in a hypergraph is small (compared to the number of vertices), thefollowing lemma shows that we can �nd a large subset of vertices which all cover exactly the same set ofedges. By using this relatively simple lemma, we would be able to prove a logarithmic lower bound on theControl Tower problem. It will be much more di�cult, however, to prove a superlogarithmic lower bound.Lemma 3.2 Any hypergraph H = (V;E) with n vertices and m edges has a subset V 0 of V with jV 0j �n2�m in which every vertex in V 0 covers exactly the same set of edges.Proof: By induction on m. If m = 0 then E = ;, so let V 0 = V . Then jV 0j = n = n20, and every vertexin V 0 covers no edges. If m > 0, choose an edge e 2 E, and consider the hypergraph H0 = (V;E � feg)induced by E � feg. By induction we can �nd a subset V 00 of V with jV 00j � n2�(m�1) in which everyvertex in V 00 covers exactly the same set of edges. Then let V 0 be the larger of V 00 \ e and V 00 � e, one ofwhich is guaranteed to be at least of size jV 00j=2 � n2�m. Also, all vertices in V 0 cover exactly the sameset of edges in E � feg, and either all vertices in V 0 cover e or all do not cover e.The following lemma shows that we can �nd a subset of vertices such that every edge induced by thatsubset contains a large fraction of those vertices. 29



Lemma 3.3 Let x > 0. Then any hypergraph H = (V;E) with n vertices and m edges has a subset V 0 ofV with jV 0j � n(1� 1=x)m that induces a jV 0j=x-thick hypergraph H 0 = (V 0; E 0).Proof: Construct V 0 from V iteratively by removing vertices for m steps. Let Vi be the set of verticesremaining after step i, with V0 = V , and V 0 = Vm. At step i, if Vi�1 induces a hypergraph which is jVi�1j=x-thick, let Vi = Vi�1. Otherwise, let e 2 E be an edge with je \ Vi�1j < jVi�1j=x, and let Vi = Vi�1 � e.By induction, we have jVij > n(1 � 1=x)i, and thus jV 0j = jVmj > n(1 � 1=x)m. If at some step i, thehypergraph induced by Vi is jVij=x-thick, then by construction, V 0 = Vi, and V 0 induces a hypergraphwhich is jV 0j=x-thick. Otherwise, the number of edges in the hypergraph induced by Vi is at least one lessthan the number of edges in the hypergraph induced by Vi�1. Thus the hypergraph induced by V 0 = Vmcontains no edges, and consequently, it is jV 0j=x-thick.Corollary 3.3.1 Let x � 2. Then any hypergraph H = (V;E) with n vertices and m edges has a subsetV 0 of V with jV 0j � ne�2m=x that induces a jV 0j=x-thick hypergraph H 0 = (V 0; E 0).Next we formulate some results about transversals and \near-transversals" (small subsets of verticeswhich cover almost all of the edges).The following lemma is given by (Alon [2], Proposition 2.1, with � set to ln(m=x)ln k )Lemma 3.4 (Alon [2]) Let x � 1. Then any n=x-thick hypergraph H = (V;E) with n vertices and medges has a transversal of size at most x+ x ln(m=x).We will need to use the following simple corollary.Corollary 3.4.1 Let x � 1. Then any 2n=x-thick hypergraph H = (V;E) with n vertices and m edgeswhere 2n=x > 2(x+ x ln(m=x)) has two disjoint transversals of size at most x+ x ln(m=x).Proof: Using the fact that H is n=x thick, we can construct one transversal of size at most x+x ln(m=x)using Lemma 3.4. Note that after removing that transversal from the set of vertices, the remaining hyper-graph is also n=x thick. Thus we can construct another (disjoint) transversal of size x+ x ln(m=x).Using these results, we would only be able to prove the desired lower bound on the Control Towerproblem for h = 
(logn). In order to prove our bound for small h, we must use a much more involvedargument using near-transversals. We �rst present a lemma which is similar to the lemma by Alon above,except that it allow us to trade o� the size of a near-transversal with the number of edges covered by thenear-transversal.Lemma 3.5 Let x; z � 1. Then any n=x-thick hypergraph H = (V;E) with n vertices and m edges hasan (m�m=z)-transversal of size at most dx ln ze.Proof: Iteratively choose a set of vertices to be in the (m�m=z)-transversal. Let Ti be the set of verticeschosen by step i, and let Ei be the set of edges which are covered by Ti. Then T0 = ; and E0 = ;. Wewill proceed for at most t = dx ln ze steps. At step i, if E = Ei�1, then let Ti = Ti�1 and Ei = Ei�1.Otherwise, Ti�1 does not intersect any edge in E �Ei�1 and thus each edge in E � Ei�1 contains at leastn=x vertices of V � Ti�1. Then by an averaging argument, some vertex v 2 V � Ti�1 must be containedin at least jE � Ei�1j=x edges. Let Ti = Ti�1 [ fvg. Then Ei = Ei�1 [ fe : e \ fvg 6= ;g. By induction,we have jE � Eij � m(1 � 1=x)i. Then jE � Eij � me�i=x. Thus jE � Etj � me� ln z = m=z, implyingjEtj � m�m=z. Then Tt is an (m�m=z)-transversal, and jTtj � t = dx ln ze.30



For explanation purposes, call an (m�m=z)-transversal constructed in Lemma 3.5 a near-transversal.To obtain our desired result, we will need two disjoint near-transversals. It would be trivial to simply �ndtwo of these by applying the previous lemma twice, but it is necessary that these two near-transversalshave the property that they cover exactly the same edges. (Notice that when using full transversals, thisproperty is trivially satis�ed.) Here we show that for certain hypergraphs there exist two small disjointnear-transversals covering almost all of the edges, and furthermore, they cover exactly the same edges.Lemma 3.6 Let y � 2, k � 1, and t = d2y ln yke. Then any n=y-thick hypergraph H = (V;E) with nvertices and m edges where � n2yt� > bm=ykcXi=0  mi !;has two disjoint (m�m=yk)-transversals each of size at most t which cover exactly the same edges.Proof: If m = 0, then the lemma holds trivially, so assume that m � 1. Iteratively construct bn=(2yt)cdisjoint (m � m=yk)-transversals, each having size at most t, using the method from Lemma 3.5 withx = 2y and z = yk. After constructing each near-transversal, remove the vertices in that near-transversalfrom the hypergraph. This ensures that the near-transversals constructed will be disjoint. Note that afterconstructing i near-transversals of size t, we will have removed at most it vertices. Therefore, we willremove a total of at most bn=(2yt)ct � n=2y vertices, which implies that the remaining hypergraph will ben=2y-thick. This guarantees that we can use the value x = 2y in Lemma 3.5 at each step.Now the number of ways to choose at most m=yk edges from m edges isbm=ykcXi=0  mi !By the condition stated in the lemma, this is less than the number of near-transversals we created, andthus two of these near-transversals must cover exactly the same edges.Corollary 3.6.1 Let y � 2. Then any n=y-thick hypergraph H = (V;E) with n vertices and m edges,where y � 4m= lnn and � n2yd6y ln ye� > mn1=4;has two disjoint (m�m=y3)-transversals each of size at most d6y ln ye which cover exactly the same edges.Proof: If m = 0, the corollary holds trivially, so assume m � 1. Use Lemma A.5 to show that theconditions of Lemma 3.6 apply (with k set to 3), as followsbm=ykcXi=0  mi ! � mem=y� me(ln n)=4� mn1=4< � n2yd6y ln ye� :Then Lemma 3.6 states that there are two disjoint (m�m=y3)-transversals, each of size at most d6y ln yewhich cover exactly the same edges.Now we can place a bound on the number of transmission steps required to solve the Control Towerproblem. 31



Theorem 14 A deterministic algorithm for the Control Tower problem with h messages (2 � h � n1=10)to transmit requires at least 
((h=minflog h; log logng) logn) steps to successfully transmit any message.Proof: Let V be the set of all n stations, and E be a set of edges, where edge i contains all stations thatwould attempt to transmit a signal in step i, if they had a message to transmit. Let m = jEj. We will showthat if m < (h=128minfln h; ln ln ng) lnn, then we can select a group of h stations such that no stationsucceeds in transmitting its message. To select a group such that at least two stations do not succeed, wewould need to select two disjoint subgroups of stations that try to transmit at exactly the same time steps.In terms of hypergraphs, this is equivalent to selecting two disjoint sets of vertices which cover exactlythe same set of edges. (Note that this would be enough to prove a lower bound for the Control Towerproblem.) To select a group such that no stations succeed, we need to make sure that in all steps where astation is attempting to transmit, another station is also attempting to transmit. In terms of hypergraphsthis is equivalent to selecting two disjoint sets of vertices which cover exactly the same set of edges, wherethe size of the union of the two disjoint sets is exactly h.If h < 64, then m � 12 logn. Then by Lemma 3.2, we can �nd a group of pn vertices which coverexactly the same set of edges. Then we simply select h vertices from this group. (This case is also shownin Goldberg, Jerrum, Leighton, Rao [12].)If h � 64 and h � lnn, then m < (h=128 ln lnn) lnn, and we choose x such that h = 4x ln ln n. Notethat x � h=4 ln lnn � 32m= lnn, and x � 2. By Corollary 3.3.1, there is a subset V 0 of V such thatjV 0j � ne�4m=x � n7=8 and V 0 induces a 2jV 0j=x-thick hypergraph H 0 = (V 0; E 0). Let m0 = jE 0j. ByCorollary 3.4.1, there are two disjoint transversals of H 0 whose sizes sum to at most 2(x + x ln lnn) � hThen we can select the vertices in these two transversals, and select the rest of the h vertices arbitrarilyfrom V 0. Then none of the h stations corresponding to the selected vertices successfully transmits itsmessage.If 64 � h � ln n, then choose x such that h = 4 + 12x ln x. Note that x � h=16 lnh > 8m= lnn andx � 2. By Corollary 3.3.1, there is a subset V 0 of V such that jV 0j � ne�2m=x � n3=4 and V 0 induces ajV 0j=x-thick hypergraph H 0 = (V 0; E 0). Let m0 = jE0j. Then by Corollary 3.6.1, there are two disjoint(m0 �m0=x3)-covers T1 and T2 of H 0 which cover exactly the same set of edges and whose sizes sum to atmost 2(6x lnx+ 1) � h� 2. Then to obtain a lower bound for the Control Tower problem, we could selectthe vertices in T1 and T2 and select the other h� jT1 [ T2j vertices arbitrarily.To prove the theorem, however, requires that we obtain two disjoint subsets of V which cover the sameedges and whose sizes sum to h. We proceed as follows. First we note that we will be selecting the verticesfrom V 0, and thus they will not cover any edge in E � E 0. We will start with the two disjoint subsetsT1 and T2 found above. Let E 00 be the set of edges in E 0 that are not covered by T1 or T2. Note thatjE 00j � m0=x3 � m0=x � lnn4 . By Lemma 3.2, there is a subset V 00 of V 0 with jV 00j � jV 0j2�(lnn)=4 � n1=2in which all vertices cover exactly the same set of edges in E00. Then add one vertex from V 00 to T1, andanother h � jT1 [ T2j � 1 from V 00 to T2.Corollary 14.1 Any deterministic algorithm for direct routing of an h-relation (2 � h � n1=10) on a1-collision crossbar with n processors requires 
((h=minflog h; log log ng) logn) steps.Proof: Consider one memory module to be the control tower, and the other n processors to be thestations. The collision protocol is the same in the 1-collision crossbar and the Control Tower problem. Bythe previous theorem then, there is a way to place h messages on the n processors such that they do not allsucceed in being sent to the destination memory module in less than (h=128minfln h; ln lnng) lnn steps.32



3.3 Randomized Lower BoundA randomized algorithm can solve the Control Tower problem in expected O(h) steps. However, for manyapplications, including the analysis of direct h-relation routing on a c-collision crossbar, it is necessary todetermine the number of steps required to achieve a polynomially small probability of failure. That is whatwe analyze in this section.Our lower bound will make use of a result of Yao [25], which states that any lower bound for deterministicalgorithms on random inputs implies the same lower bound for randomized algorithms on worst case inputs.In particular, we will proceed by developing a lower bound for deterministic algorithms solving the ControlTower problem, where we assume that the h stations that have messages to transmit are chosen randomlyfrom the n stations.To begin, we convert the problem into the hypergraph domain. Then we show how to reduce thehypergraph corresponding to a given deterministic algorithm to a thick hypergraph, and show that with asigni�cant probability, the processors corresponding to vertices in this thick hypergraph contain messagesthat are not successfully transmitted.The following lemma is a modi�cation of a result of Alon, Bar-Noy, Linial and Peleg [3, Lemma 3.1],with a similar proof. For completeness, we will present the entire proof.Lemma 3.7 Given r1; r2 � 1, where r1 < r2, let r = r2 � r1 and H = (V;E) be a hypergraph with nvertices and m edges. Then for some k, r1 � k < r2, there is a subset V 0 of V with jV 0j � ne�8m2�k=r thatinduces a (jV 0j2�k; 4m=r)-thick hypergraph H 0 = (V 0; E 0).Proof: De�ne a permutation e1; : : : ; em of the edges inductively as follows. Let e1 be a minimum sizeedge in E. Then assuming edges e1; : : : ; ei have already been chosen (1 � i < m), let ei+1 be the edge inE n fe1; : : : ; eig such that ���ei+1 nS1�j�i ej��� is minimum. For 1 � i � m, de�ne pi = 0 if ���S1�j<iej��� = n, elsepi = ���ei nS1�j<iej���n � ���S1�j<iej��� :For each k � 0, r1 < k � r2, let j(k) be the smallest i such that pi � 2�k. (If there is no such i, letj(k) = m + 1). Notice that by the de�nition of the permutation e1; : : : ; em, for every k � 0 and everyj0 � j(k), ���ej0 nS1�i<j(k)ei���n � ���S1�i<j(k)ei��� � 2�k:Now for each k � 0, let dk = jfi : 1 � i � m and 2�k � pi < 2�k+1gj; andd0k = Xi�1 dk+i2i :Then Xk�0d0k �Xk�0dk � m:Call an index k good if r1 � k < r2 and d0k � 2m=r. The average value of d0k over r1 � k < r2 is at mostm=r, and thus at least half of the indices k, r1 < k � r2, are good. Note that if k is good, then we haven� ���S1�i<j(k)ei��� = n Y1�i<j(k)(1� pi)33



� n Yk0>k(1� 21�k0)dk0� ne�(2Pk0>k dk021�k0 )= ne�22�kd0k� ne�8m2�k=rThus, for any good k there exists some subset V 0 of the required size that induces a jV 0j2�k-thick hyper-graph.Next we show that for at least for some good k, there exists a subset V 0 that induces a (jV 0j2�k; 4m=r)-thick hypergraph. For each good k and each edge ej0 with j(k) � j 0 � m, de�ne s(k; j 0) to be the uniqueinteger ` if 2`�k � ���ej0 nS1�i<j(k)ei���n � ���S1�i<j(k)ei��� < 2`�k+1:Note that if k0,k are both good and k0 < k, then j(k0) � j(k). Thus, if j 0 � j(k0) then���ej0 nS1�i<j(k0)ei���n � ���S1�i<j(k0)ei��� � ���ej0 nS1�i<j(k)ei���n � ���S1�i<j(k)ei��� :Consequently, s(k0; j 0) � s(k; j 0)� 1. Therefore, for every �xed j0 � m,Xk goodj(k)�j0 2�s(k;j0) � 2:For each good k, de�ne yk =Pj0�j(k)2�s(k;j0). ThenXk goodyk � X1�j0<m+1 Xk goodj(k)�j0 2�s(k;j0) � 2m:Since at least r=2 indices are good, there is some index k with yk � 4m=r. Hence V 0 = V n S1�i<j(k)ejsatis�es the conditions of the lemma.Next we show that large random sets of vertices in a thick hypergraph cover many edges with non-trivialprobability.Lemma 3.8 Let x � 1 and t = d13xe. Given an (n=x; y)-thick hypergraph H = (V;E) with n verticesand m edges, and a randomly chosen subset T of V with jT j = t, then with probability at least (2x)�t, forevery j � 0, T will cover all but y2�(j+1) of the edges with thickness in the range [n2j=x; n2j+1=x).Proof: Note that d13xe � d1 + blog xc + 4xPi�0(32)�ie. For each j, 0 � j � log x, letEj = fe 2 E : n2j=x � jej < n2j+1=xg:Then E = Sblog xcj=0 Ej. By the fact that H is (n=x; y)-thick, jEjj � y2j. View T as a collection of disjointrandomly chosen subsets T0; : : : ; Tblogxc; T 0, where tj = jTjj = d4x(1:5)�je. Note that t � Pblog xcj=0 tj . Wewill show that the vertices from the set T0 cover all but y2�1 edges in E0 with probability at least (2x)�t0,the vertices from the set T1 cover all but y2�2 edges in E1 that were not covered by T1 with probabilityat least (2x)�t1, and in general the vertices from the set Tj cover all but y2�(j+1) of the edges in Ej thatwere not covered by S0�i<jTi with probability at least (2x)�tj . The lemma then follows easily from this.34



Assume we have chosen the vertices in sets T0; : : : ; Tj�1, j � 0. LetE 0j = Ej n ne : ���e \ S0�i<jTi��� 6= 0o :Consider choosing the vertices in Tj one at a time. Let T (i)j be the set containing the �rst i vertices chosen.Let E(i)j be the set of edges in E 0j not covered by T (i)j , with E(0)j = E 0j. LetV (i)j = V n �T (i)j [S0�i<jTi� :The hypergraph Hi = (V (i)j ; E(i)j ) is jV (i)j j2j=x-thick, so the average number of edges covered by a vertex inV (i)j is at least jE(i)j j2j=x, and the maximum number of edges covered by a vertex in V (i)j is jE(i)j j. Hence,with probability at least 2j=(2x) > (2x)�1, the number of edges of E(i)j covered by the next vertex added isat least jE(i)j j2j=(2x). Therefore, with probability at least (2x)�i, jE(i)j j � jE 0jj(1�2j=(2x))i � jE 0jje�i2j=(2x).Thus with probability at least (2x)�tj , jE(tj)j j � jE 0jje�2(4=3)j � y2je�2(4=3)j � y2�(j+1). (Here we use thefact that for all integers j � 0, 2je�2(4=3)j � 2�(j+1)).Corollary 3.8.1 Let x � 1 and t = d13xe. Given an (n=x; y)-thick hypergraph H = (V;E) with n verticesand m edges, there are at least �nt�(2x)�t subsets of vertices of size t that cover, for every j � 0, all buty2�(j+1) of the edges with thickness in the range [n2j=x; n2j+1=x).Using Corollary 3.8.1 we establish a lower bound on the probability that a random set of vertices containstwo near transversals covering exactly the same set of edges.Lemma 3.9 Let x � 1 and t = d13xe. Given an (n=x; y)-thick hypergraph H = (V;E) with n verticesand m edges, where n � 4t, the probability that two randomly chosen disjoint t-size subsets of V coverexactly the same set of edges is at least12(2x)t � 12ylog y(2x)te18y � 4t2n � :Proof: If m = 0, then the lemma holds trivially, so assume m � 1. Call a t-size subset of V an attempt,and an attempt that satis�es the condition of Corollary 3.8.1 a good attempt. From Lemma A.7, the numberof di�erent subsets of edges that could possibly fail to be covered by a good attempt is at most ylog ye18y.Let A be the set containing exactly these subsets. For a given attempt, de�ne the uncovered set to be thesubset of edges not covered by that attempt. Using Corollary 3.8.1, we �nd that on average each subsetin A is the uncovered set for at least � =  nt!(2x)�t 1ylog ye18ygood attempts. Let B � A be the set containing the subsets of edges that are the uncovered set for atmost �=2 good attempts. Then at most�ylog ye18y2 = 12 nt!(2x)�tgood attempts correspond to uncovered sets in B. Hence, the probability that a single random attempt T1is one of the good attempts with associated uncovered set in A n B is at least 12(2x)�t. If this is so, thenthe number of attempts that are disjoint from T1 and that cover the same edges as T1 is at least12 nt! 1(2x)tylogye18y � " nt!�  n � tt !# :35



Note that we are subtracting the total number of subsets of size t that intersect T1. Hence, the probabilitythat a random attempt T2 covers the same edges as T1 without intersecting T1 is at least(12 nt! 1(2x)tylog ye18y � " nt!�  n � tt !#), nt! :By Lemma A.8, the probability that two randomly chosen t-size disjpoint subsets of V cover exactlythe same set of vertices is at least 12(2x)t � 12ylog y(2x)te18y � 4t2n � :Now we can place a bound on the number of transmission steps required to solve the Control Towerproblem with probability of failure polynomially small in n.Theorem 15 Let A be a deterministic algorithm for the Control Tower problem where h � 2 messages areplaced randomly at h of the n stations. If A succeeds in T (n; h) steps with probability at least 1� n�3=4,then for some constant " > 0, T (n; h) � " log h logn.Proof: Let " = 10�5. For h � logn log logn, the result is trivial, since T (n; h) � h � 10�5 log h logn.So assume 2 � h � logn log logn. Let V be the set of n stations, and E be a set of edges, where edge icontains each station that would attempt to transmit a message in step i, if it had a message to transmit.Let m = jEj, and assume that m < 10�5 log h logn < 10�4 log h lnn. In what follows, we show that withprobability at least n�3=4 there are two disjoint sets of stations that attempt to transmit at exactly thesame time steps. In terms of hypergraphs, this is equivalent to showing that with probability at least n�3=4,a random set of h vertices contains two disjoint sets of vertices that cover exactly the same set of edges.If h < 21000, then m � 110 logn. If n < 210, then m = 0, and the theorem holds trivially. Otherwise, byLemma 3.2, we can �nd a group of n9=10 vertices that cover exactly the same set of edges. The probabilitythat two of the h randomly placed messages lie in this group is at leastn�1=10((n9=10� 1)=(n� 1)) � n�3=4:(Goldberg, Jerrum, Leighton, and Rao [12] prove a similar result.)If 21000 � h � logn log logn � log2 n, then n � 22500 and h � n1=10. If m � log h then m � logn10 , andthe argument in the previous paragraph holds; otherwise, from Lemma 3.7 with r1 = log h10 and r2 = 3 log h10 ,there is a subset V 0 of V with jV 0j � ne�(40m)=(x log h);that induces a (jV 0j=x; 20m= logh)-thick hypergraph, for some x, h1=10 � x � h3=10. By our assumptionthat m � 10�4 log h ln n, we have jV 0j � ne� logn=(250x) = n1�(250x)�1;and the induced hypergraph is (jV 0j=x; (lnn)=500)-thick. Note that for h � 21000, we have jV 0j � 52x+ 4and h1=2=5 � 2d13xe. Furthermore, with y set to (lnn)=500 and t set to d13xe, we have12(2x)t � 12ylogy(2x)te18y � 4t2n � � n�1=5:36



Hence, the probability that at least 2d13xe of the stations with messages belong to V 0 is at least n1�(250x)�12n !2d13xe � n�1=52�2d13xe� n�2=5:By Lemma 3.9, the probability that two disjoint d13xe-size random subsets of these vertices each coverexactly the same set of edges is at least n�1=5. Hence, the probability that two disjoint subsets of therandomly chosen set of h vertices covers exactly the same set of edges is at least n�2=5n�1=5 � n�3=4.Corollary 15.1 Let A be a randomized algorithm for the Control Tower problem with h � 2 messagesand n processors. If A succeeds in T (n; h) steps with probability at least 1�n�3=4, then for some constant" > 0, T (n; h) � " log h log n.Proof: With " = 10�5, this Corollary follows from Theorem 15 and Yao [25, Theorem 1]Corollary 15.2 Let h � 2, and let A be a randomized algorithm for direct routing of an h-relation on a1-collision crossbar with n processors. If the expected time of A is T (n; h) then for some constant " > 0,T (n; h) � maxfh; " logh logng.Proof: Let " = 10�6. The claim that T (n; h) � h is trivial. Also, for all h � 2, if n < 2100 or h � n1=3,h � 10�6 log h logn, so the claimed bound on T (n; h) is trivial.In the case of n � 2100 and h < n1=3, by Yao [25, Theorem 1], we only need to show that the lowerbound holds for the expected time of any deterministic algorithm over some input distribution. We choosean input distribution as follows. Let S = fS1; : : : ; Sdn1=3eg be a set of dn1=3e disjoint groups of bn1=3c � n1=5processors, and let T = fp1; : : : ; pdn1=3eg be a set of processors that is disjoint from each Si, 1 � i � dn1=3e.For all i, 1 � i � dn1=3e, let h messages, each with destination pi, be placed randomly at h processors in Si.By Theorem 15, for any deterministic algorithm using at most (10�5=5) logh logn steps, the probabilityof a group Si successfully transmitting all h messages to pi is at most 1 � n�1=4. Hence the probabilityof success in all groups is at most (1 � n�1=4)n1=3 � e�n1=12 . (Notice that the analysis for each group isindependent, since we are dealing with direct algorithms.) Therefore the expected number of steps requiredis at least (10�6) logh logn.4 Concluding RemarksFor appropriate choices of a and b, the a out of b protocol can be used to emulate a single step of ann-processor EREW PRAM on an n-processor crossbar. As shown in Section 2, the delay associated withthis simulation is O(log log n) whp. One way to optimize delay is to introduce parallel slackness. Bysimulating an m-processor PRAM on an n-processor crossbar (m > n) with delay O(m=n), time-processor-optimal simulations can be obtained [17]. It would be interesting to see if the techniques of Section 2used to analyze the a out of b protocol can be applied to obtain tight analysis of time-processor-optimalsimulations.The randomized lower bound for the Control Tower and the h-relation routing problems in Section 3matches the upper bound of [10] up to a constant factor. In the deterministic case, however, there isfactor of minflog h; log logng (resp., minflog h; log logng log h) separating the best known upper and lowerbounds for the Control Tower problem (resp., h-relation routing problem). Closing this gap is an importantopen problem. 37
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Lemma A.2 For all integers m and n such that 6 � m � n, we havem3=12n2 � g(m) � m3=n2:Proof: By de�nition, g(m) = m(1� (1� 1=n)m�1 � ((m� 1)=n)(1� 1=n)m�2:Since (1� 1=n)m�1 � 1� (m� 1)=n and (1� 1=n)m�2 � 1� (m� 2)=n ,g(m) � m(1� 1 +  m� 11 !=n� (m� 1)=n+ (m� 1) m� 21 !=n2)� m3=n2:For the lower bound,g(m) � m(1� 1 +  m� 11 !=n�  m� 12 !=n2 +  m� 13 !=n3 �  m� 14 !=n4�(m� 1)=n+ (m� 1) m� 21 !=n2 � (m� 1) m� 22 !=n3+(m� 1) m� 23 !=n4 � (m� 1) m� 24 !=n5)� m((m� 1)(m� 2)=2n2 � (m� 1)(m� 2)(m� 3)=3n3+(m� 1)(m� 2)(m� 3)(m� 4)=24n4 � (m� 1) m� 24 !=n5)� (m(m� 1)(m� 2)=n2)(1=2� (m� 3)=3n)� m(m� 1)(m� 2)=6n2� m3=12n2:In the last step we use (m� 1)(m� 2) � m2=2 for m � 6.Lemma A.3 If n and m are integers such that 2pn � m � n, then for all real x � 0,f(m(1 + x)) � (1 + x)2f(m):Proof: By the de�nition of f ,f(m(1 + x)) = m(1 + x)(1� (1� 1=n)m(1+x)�1):We establish the desired inequality by proving that (1�(1�1=n)m�1+mx) � (1+x)(1�(1�1=n)m�1), whichis equivalent to showing that (1�1=n)m�1+mx � (1�1=n)m�1(1+x)�x. Since (1�1=n)mx � (1�mx=n),(1� 1=n)m�1+mx � (1� 1=n)m�1(1�mx=n)= (1� 1=n)m�1(1 + x)� x(1 +m=n)(1� 1=n)m�1� (1� 1=n)m�1(1 + x)� x:The last step follows from the fact that for m � 2pn, (1 +m=n) � (1� 1=n)1�m.40



Corollary A.3.1 If n and m are integers and x is real such that 0 � x < 1 and 2pn � m(1�x) � m � n,then: f(m(1 + x)) � (1 + x)2f(m); andf(m(1� x)) � (1� x)2f(m):Proof: The �rst inequality follows directly from Lemma A.3. The second inequality is proved by applyingLemma A.3 substituting (m(1� x); 1=(1� x)� 1) for (m; x).Lemma A.4 If n and m are integers such that n � 9 and 10pn � m � n, then for real x � 0,g(m(1+ x)) � (1 + x)4g(m)Proof: By the de�nition of g,g(m(1+ x)) = m(1 + x)(1� (1� 1=n)m(1+x)�1 � ((m(1 + x)� 1)=n)(1� 1=n)m(1+x)�2):We establish the desired inequality by showing that (1� (1� 1=n)m(1+x)�1 � ((m(1 + x)� 1)=n)(1�1=n)m(1+x)�2) � (1+ x)3(1� (1� 1=n)m�1� ((m� 1)=n)(1� 1=n)m�2). This is equivalent to showing that(1� 1=n)m�1+mx + ((m(1+ x)� 1)=n)(1� 1=n)m�2+mx � (1 + x)3(1� 1=n)m�1 + (1 + x)3((m� 1)=n)(1�1=n)m�2 � x3 � 3x2 � 3x.(1� 1=n)m�1+mx + ((m(1 + x)� 1)=n)(1� 1=n)m�2+mx� (1� 1=n)m�1(1�mx=n) + ((m(1 + x)� 1)=n)(1� 1=n)m�2�((mx(m(1 + x)� 1))=n2)(1� 1=n)m�2� (1� 1=n)m�1(1�mx=n) + ((m� 1)(1 + x)=n)(1� 1=n)m�2+(x=n)(1� 1=n)m�2 � ((mx(m(1+ x)� 1))=n2)(1� 1=n)m�2= (1 + x)3(1� 1=n)m�1 � (x3 + 3x2 + 3x+mx=n)(1� 1=n)m�1+(1 + x)3((m� 1)=n)(1� 1=n)m�2 � (x3 + 3x2 + 2x)((m� 1)=n)(1� 1=n)m�2+(x=n�m2x=n2 �m2x2=n2 +mx=n2)(1� 1=n)m�2� (1 + x)3(1� 1=n)m�1 � (x3 + 3x2 + 3x+mx=n)(1� 1=n)m�2+(1 + x)3((m� 1)=n)(1� 1=n)m�2 � (x3 + 3x2 + 2x)((m� 1)=n)(1� 1=n)m�2+(x=n�m2x=n2 �m2x2=n2 +mx=n2)(1� 1=n)m�2� (1 + x)3(1� 1=n)m�1 + (1 + x)3((m� 1)=n)(1� 1=n)m�2�(1� 1=n)m�2(x3 + 3x2 + 3x+mx=n+mx3=n� x3=n+3mx2=n� 3x2=n+ 2mx=n� 2x=n� x=n+m2x=n2 +m2x2=n2 �mx=n2)� (1 + x)3(1� 1=n)m�1 + (1 + x)3((m� 1)=n)(1� 1=n)m�2�(1� 1=n)m�2(x3(1 +m=n� 1=n)+3x2(1 +m=n� 1=n+m2=3n2) + 3x(1 +m=n� 1=n+m2=3n2 �m=3n2))� (1 + x)3(1� 1=n)m�1 + (1 + x)3((m� 1)=n)(1� 1=n)m�2 � (x3 + 3x2 + 3x):The last step follows from the fact that (1 + (m � 1)=n + m2=3n2) � (1 � 1=n)�(m�2) for n � 9 and10pn � m � n.Corollary A.4.1 If n andm are integers and x is real such that 0 � x < 1, n � 9, and 10pn � m(1�x) �m � n, then: g(m(1+ x)) � (1 + x)4g(m); andg(m(1� x)) � (1� x)4g(m):41



Proof: The �rst inequality follows directly from Lemma A.4. The second inequality is proved by applyingLemma A.4 substituting (m(1� x); 1=(1� x)� 1) for (m; x).Lemma A.5 Let m � 1 be an integer, and let y � 2 be a real. The number of ways to choose at mostm=y3 items from a set of m items is at most mem=y.Proof: If m=y3 < 1, then we are considering the number of ways to choose 0 items, which is 1 � mem=y .If m=y3 � 1, then the number of ways to choose at most m=y3 items can be bounded as follows. Note thatwe use the fact that for y � 2, 1 + ln 2 + 3 ln y � y2.bm=y3cXi=0  mi ! � my3 mbm=y3c!� my3 � 2emm=y3�bm=y3c� me(1+ln 2+3 ln y)m=yk� mem=yLemma A.6 Let y � 1 be a real number, and j � 0 be an integer. The number of ways to choose at mosty2�(j+1) items from a set of at most y2j items is at most ye6y(3=2)�j .Proof: If y2�(j+1) < 1 then we are considering the number of ways to choose 0 items, which is 1 �ye6y(3=2)�j . Otherwise, we have by2�(j+1)cXi=0  y2ji ! � y2�(j+1) y2jby2�(j+1)c!� y� 2ey2jy2�(j+1)�y2�(j+1)= ye(1+(2j+2) ln 2)y2�(j+1)� ye6y(3=2)�j ;where the last inequality holds since (1 + (2j + 2) ln 2)2�(j+1) � 6(3=2)�j for all integers j � 0.Lemma A.7 Let y � 1 be a real number. Let hSji be a sequence of disjoint sets with jSjj � y2j for allj � 0. The number of ways to choose a sequence of sets hTji with Tj � Sj and jTjj � y2�(j+1) for all j � 0,is at most ylog ye18y.Proof: We will consider the product over all j � 0, of the number of ways to choose Tj from Sj. Notethat we only need to be concerned with j � log y, because for j > log y, y2�(j+1) < 1, so we would bechoosing 0 items. By Lemma A.6, we can bound the desired product bylog yYj=0 ye6y(3=2)�j � ylog ye6yPj�0(1:5)�j� ylog ye18y:42



Lemma A.8 For all positive integers n and t such that n � 4t, we have1�  n � tt !, nt! � 4t2=n:Proof: 1�  n� tt !, nt! � 1� �n� 2t+ 1n � t + 1 �t= 1� �1� tn � t+ 1�t� 1� �1� 2tn �t� 1� e�4t2=n� 4t2n :
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