
Minimum Achievable Utilization for Fault-TolerantProcessing of Periodic Tasks �Mihir Pandya Miroslaw MalekDepartment of Electrical and Computer Engineering,The University of Texas at Austin,Austin, Texas 78712.March 23, 1994AbstractRate Monotonic Scheduling (RMS) policy is a widely accepted scheduling strategy for real-time systems due to strong theoretical foundations and features attractive to practical uses. Fora periodic task set of n tasks with deadlines at the end of task periods, it guarantees a feasibleschedule on a single processor as long as the utilization factor of the task set is below n(21=n�1)which converges to 0.69 for large n. We analyze the schedulability of the set of periodic tasksthat are scheduled by RMS policy and are susceptible to a single fault. The recovery action isthe re-execution of all uncompleted tasks. The priority of the RMS policy is maintained evenduring recovery. Under these conditions, we guarantee that no tasks will miss a single deadlineeven in the presence of a fault if the utilization factor on the processor does not exceed 0.5. Thus0.5 is the minimumachievable utilization that permits recovery from faults before the expirationof the deadlines of the tasks. This bound is larger than 0:69=2 = 0:345 that would be obtainedif computation times were doubled to provide for re-executions in RMS analysis. This resultprovides scheduling guarantees for tolerating a variety of intermittent and transient hardwareand software faults that can be handled simply by re-execution. In addition, we demonstratehow permanent faults can be tolerated e�ciently by maintaining common spares among a setof processors that are independently executing periodic tasks.Keywords: fault tolerance, minimum achievable utilization, periodic tasks, rate monotonicscheduling, real-time systems.
�This material is based in part upon research supported by ONR Contract N00014-88-K-0543, ONR Grant N0014-91-J-1858 and Texas Advanced Technology Program Grant No. 386

1 IntroductionIn the realm of real-time computation, we frequently encounter systems where the tasks are requiredto execute periodically. Applications where this requirement is common are often found in, forexample, process control, space applications, avionics and others. Even when the external eventsthat trigger tasks are not periodic, many real-time systems sample the occurrence of these eventsperiodically and execute the associated tasks during the time slots reserved for them. The samplingrate depends on the expected frequency of the external event. The reason why aperiodic or sporadictasks are executed in a periodic manner is because the periodic execution is well understood andpredictable.A variety of scheduling policies for periodic real-time systems have been studied. A schedulingpolicy is de�ned as optimal if it can schedule any feasible set of tasks if any other policy can alsodo the same. A system is called a �xed-priority system if all the tasks have �xed priorities andthese priorities do not change during run time. Rate Monotonic Scheduling (RMS) has been provento be an optimal scheduling policy for scheduling a set of �xed priority tasks on a uniprocessor.Earliest-Deadline-First (EDF) is the optimal scheduling policy for a variable priority system. Notethat a priority of a task is di�erent from its criticality. The former is some measure that is assignedto the tasks by the scheduling policy to facilitate scheduling whereas the latter is the measure ofimportance of the task as de�ned by the application.RMS is widely used in practice because it can be easily implemented. It is a preemptive policywhere the priority of the tasks are assigned in increasing order of their periods and the task of aparticular priority preempts any lower priority task. Liu and Layland proved that as long as theutilization factor of a task set consisting of n tasks is less than n(21=n�1), the task set is guaranteeda feasible schedule on a uniprocessor [1]. This bound approaches 0:69 as n goes to in�nity. However,there may exist task sets which have utilization factors above this bound and still may be feasiblyscheduled. The stochastic analysis of the breakdown utilization factor for randomly generated tasksets is presented in [2].The problem for scheduling periodic tasks on multiprocessors is considered in [3] [4] [5]. Itis easy to demonstrate that neither the RMS nor the EDF algorithms are optimal for schedulinga set of periodic tasks on a multiprocessor system among �xed and variable priority algorithmsrespectively [3]. In fact, no scheduling policy is proven to be optimal for a multiprocessor system.Another issue in real-time computing that is currently gaining increased attention of researchersis fault tolerance. Computers are being introduced to a great extent in critical applications and morereliance is being placed on them while reducing human intervention to a minimum. In situationswhere the demand for hard real-time processing merges with catastrophic consequences of failures,it is not di�cult to imagine why fault tolerance must be provided. Responsive systems [6] whichmust perform computations to successfully meet their deadlines even in the presence of faults areindispensable in many applications. This paper contributes to an evolving framework for the designand implementation of responsive systems. Our goal in this paper is to investigate the issues of faulttolerance in a system of real-time periodic tasks employing Rate Monotonic Scheduling. Previouswork has usually addressed software faults where each task has primary and an alternate code. In[7], an o�-line scheduling strategy is considered for periodic tasks where the period of a particulartask is an integral multiple of the next lower task period. The alternates are scheduled by RMSpolicy �rst and then an e�ort is made to include the maximum number of primary executions in theschedule. A similar problem of scheduling alternate versions of programs called ghosts is consideredin [8]. Dynamic programming is used to perform scheduling and an attempt is made to minimizea cost function. A load balancing scheme is presented for periodic task sets scheduled by RMS in[9] where the neighbors of a faulty processor on a ring take over its tasks which are then eventually1

distributed to the other processors. However, there is no consideration of missing deadlines due toan overload caused by task migration in response to a fault.In this paper, we address the schedulability criterion of a set of periodic tasks for fault-tolerantprocessing. Speci�cally, we prove that the minimum achievable utilization is 0.5 for a set of periodictasks executing in an environment that is susceptible to the occurrence of a single fault where therecovery action is to recompute all the partially executed tasks. This result guarantees that all thetasks will meet their deadlines even in the presence of a fault if the utilization factor of the task seton a processor is less than 0.5. The classes of faults that can be tolerated include intermittent andtransient hardware and software faults. In addition, permanent crash and incorrect computationfaults can also be handled by providing spares to perform recovery and subsequent execution of thetask set.The paper is organized as follows: in Section 2, we provide the background, explain the problemand declare the assumptions. In the following section we present the proof of our assertion thatthe minimum achievable utilization is 0.5. In Section 4, we address practical and implementationissues. Our conclusions are given in the �nal section.2 Background, problem statement and assumptionsAs has been mentioned in the Introduction, RMS has a strong theoretical foundation and is widelyused in practice due to its simplicity. Rate Monotonic Scheduling policy assigns priorities to tasksin the increasing order of their periods. Consider a set S of n tasks. Each Task i is described by atuple (Ci; Ti; Ri) where Ci is the execution time of the task, Ti is the period and Ri is its releasetime, i.e., the time when the �rst invocation of the task occurs. ThusS = f(Ci; Ti; Ri)ji = 1; . . . ; ngWe will assume that tasks are labeled in such a manner that T1 < T2 < . . .< Tn. A task is expectedto complete its computation prior to the end of its period. Thus the jth instance (j = 1; 2; . . .) ofthe Task i is ready for execution at time Ri + (j � 1) � Ti and has a deadline for completion atRi + j � Ti. We assume that we are dealing with a hard real-time system and the aim is to meetthe deadlines under all conditions as opposed to soft real-time systems where the deadlines may bemissed and the aim is to reduce the delay. In this paper, when not explicitly mentioned, all Ri'sare assumed to be zero.The execution of the tasks is preemptive, i.e., during the execution of a Task i, if any higherpriority Task k is ready for execution, the computation of Task i is interrupted and it remainssuspended until Task k completes its execution. Then Task i continues from the state at whichit was suspended, provided no other task of higher priority is waiting for execution. It is usuallyassumed that the time to swap tasks is negligible, or that it is accounted for in the computationtime. Note that the de�nition of preemption is recursive, i.e, if Task k has interrupted Task i, itcan itself be interrupted by another task of still higher priority. The RMS is a �xed priority policysince the priorities of tasks remain static and do not change during the course of execution of thetasks. The priorities are assigned in the increasing order of the task periods. The task with thesmallest period is assigned the highest priority and the task with the largest period the lowest.We will call the arrival time of the task as that instant at which it is ready for execution, i.e.,Ri; Ri + Ti; Ri + 2Ti; . . . and its deadline as the next arrival of the same task. The departure timeof a task is de�ned as the time instant when the task completes its execution. Thus the arrivaltime of the jth instance of Task i is Ri + (j � 1)Ti but its departure time cannot be de�ned easilybecause it depends on the parameters of higher priority tasks.2

The utilization factor U of a task set is de�ned asU = C1T1 + C2T2 + � � �+ CnTnFor a single processor system, a task set is said to fully utilize the processor under a schedulingalgorithm if the task set can be feasibly scheduled using the algorithm but increasing any of theCis will cause the schedule to be infeasible. The least upper bound of the utilization factor is theminimum of the utilization factors for all possible task sets that fully utilize the processor [1] andis also called the minimum achievable utilization [3]. If the task set has a utilization factor whichis less than the minimum achievable utilization, then it is guaranteed a feasible schedule. From[1], for a task set with n tasks, the minimum achievable utilization is n(21=n � 1). As n !1, theminimum achievable utilization converges to ln2 which is approximately 0.69.2.1 Fault classi�cationIn any discussion on fault tolerance, it is necessary to consider the issue of fault assumptions becauseit has a signi�cant impact on the design of the system. Under a crash fault model, the processoris either operating correctly or, if a fault occurs, does not respond at all to any event, internalor external. An incorrect computation fault assumption considers that the processor may fail toproduce a correct result in response to correct inputs. For issues related to fault diagnosis andconsensus in fault-tolerant processing, the reader can refer to [10].In addition, faults are also classi�ed as permanent, intermittent and transient [11]. A per-manent or hard fault is an erroneous state that is continuous and stable. An intermittent faultoccurs occasionally due to unstable nature of hardware. A transient fault results from temporaryenvironmental conditions. A permanent fault can be tolerated only by providing spares which takeover the tasks of a primary processor when the fault occurs. Intermittent and transient faults canbe tolerated by repeating the computations.2.2 Analysis of the problemIn general, scheduling problem is concerned with allocating shared resources to multiple processeswho need the resources simultaneously. This allocation is performed while attempting to achievecertain prespeci�ed goals. In traditional computers, the goal is usually to minimize the total time orincrease the response time for all the requests. However, in real-time systems, the goal is simply toallocate the resources in such a manner that the deadlines associated with the tasks are met. In thispaper, as we are dealing with scheduling tasks for execution, the resources are the processors. Forhard real-time systems, the scheduler has to be such that all tasks are guaranteed to be completedbefore their deadlines.When real-time systems are to be used for critical applications, it is necessary that the systemsurvives in spite of faults that may arise in the system. Unlike non-real-time systems where theoccurrence of faults and subsequent recovery may be permitted to cause delays, it is imperativethat the results of computations in real-time systems meet the deadline even in presence of faults.Thus the notion of guaranteeing a feasible schedule has to be extended to cover the random eventsof fault occurrences. This is a challenging endeavor which has to be addressed nevertheless. In thispaper, we will consider fault tolerance strategies for a set of periodic tasks executed under RMSpolicy which will guarantee that no task will miss even a single deadline due to the occurrenceof a fault at any random moment subject to the fault assumptions explicitly stated therein andmaintaining the priority of the RMS policy. 3

When one considers introducing fault tolerance into the computation, a host of issues need tobe considered in addition to those already existing. The only means of providing fault toleranceis by introducing redundancy in the system. The selection of the appropriate level of time and/orspace redundancy is driven by the requirements of the application. Redundancy is provided bycreating replicas at some level of computation, usually at the task level in real-time systems. Timeredundancy is provided by re-executing the task multiple number of times. The original executionand re-executions can all be performed on a single processor or on di�erent processors. The choiceis dependent on the fault model assumption. For real-time systems, time redundancy is the mostdesirable choice, provided that there is su�cient laxity in the deadlines and there is enough sparecapacity that other tasks do not miss their deadlines. This will allow maximum utilization ofthe available resources. However, if the deadlines are stringent and very little laxity is available,space redundancy is the only choice. Thus an ideal design is one which e�ectively resolves a tradeo�between these two choices such that minimum cost overhead is incurred and all tasks are guaranteedto meet their deadlines under the fault assumptions. This space-time tradeo� is fundamental tothe design of responsive computer systems. The result presented here optimizes the tradeo� toprovide scheduling guarantees for a single fault in an environment for periodic tasks.2.3 Single fault with re-execution of task for recoveryWe analyze the following scenario:� A set of tasks is executing on a single processor and the tasks are scheduled by the RMSpolicy.� All the tasks are independent.� A fault may occur at any instant.� The interval between successive faults is greater than the largest period in the task set.� The fault is detected before the next occurrence of a departure of a task from the processor.For example, if a lower priority tasks is executing during the occurrence of a fault and sometime later another higher priority task is supposed to preempt the �rst task, the fault shouldbe detected before the higher priority task is expected to depart under normal execution.� The recovery action is to re-execute all the partially executed tasks at the instant of the faultdetection. This includes the currently executing task and all the preempted tasks.� The tasks are required to meet their deadlines even if they have to be re-executed due to theoccurrence of a fault.� The priorities of the RMS policy are maintained even during recovery. Maintaining thepriorities of tasks is very important since RMS is a �xed priority scheduling policy and thepriorities are assigned at system design time. This approach simpli�es the design processbecause the designer does not have to worry about assigning separate priorities for recoveryand analyze the e�ect of the change in priorities on the schedulability of the task set.One should note that at this stage that we do not place any restrictions on the kind of faults thatcan be tolerated or the architecture of the system. As long as these conditions are satis�ed bythe design, the results of this paper are valid. For example, if one were to consider a hardwarepermanent crash fault, the recovery and subsequent computation would have to be performed on4

0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35

(a) Regular execution with no faults.

(b) Primary processor, fault occurs just prior to time 17.

(c) Spare processor.

Task 1 Task 2
T1 = 5, C1 = 1 T2 = 7, C2 = 2

Figure 1: Feasible schedule in presence of a fault.a spare processor. On the other hand, if a software fault occurs, the recovery is possible on theprimary processor itself. An incorrect computation fault can be handled if the fault is detected,perhaps by consistency checks, before the task is expected to depart. In addition, the recoveryprogram for a task need not be the same as the one that is normally executed as long as itscomputation time is less than or equal to the computation time of the primary code.Two examples are shown in Figures 1 and 2. Both of them consider a task set consisting of twotasks with periods 5 and 7. In these examples, we assume crash faults of processors. In Figure 1,C1 = 1 and C2 = 2 and the processor state as a function of the time is shown under regular executionin Figure 1(a). We observe that the schedule is feasible when no fault occurs. Figures 1(b) and 1(c)show the state of the processor and the spare respectively when a fault occurs just prior to the timeinstant 17. The fault occurs before Task 2 could complete and so it is re-started on the spare andit meets the deadline of time 21.Figure 2(a) shows the execution pro�le of the two tasks whose periods are again 5 and 7respectively. However, in this example C1 = 2 and C2 = 2. Though the schedule is feasible whenno fault occurs, the same is not true when a fault causes the recovery action to be taken. Thearrival of Task 1 at time 15 preempts Task 2 and a fault occurs just prior to its completion at time17. So the spare restarts the execution of both tasks, starting with Task 1 as it is a higher prioritytask. Task 1 completes at time 19 and manages to meet its deadline of time 20. The re-executionof the Task 2 starts at time 19 but is preempted at time 20 by the arrival of the next instance ofTask 1 and so Task 2 misses its deadline of time 21.It seems obvious from these examples that certain amount of time redundancy should be pro-vided for recovery and that the RMS scheduling criteria (U < 0:69) is not su�cient. A trivial5

0 5 10 15 20 25 30 35

(a) Regular execution with no faults.

0 5 10 15 20 25 30 35

(b) Primary processor, fault occurs just prior to time 17.

Task 2 misses deadline

0 5 10 15 20 25 30 35

(c) Spare processor.

Task 1
T1 = 5, C1 = 2

Task 2
T1 = 7, C2 = 2

Figure 2: Infeasible schedule in presence of a fault.solution is to \reserve" enough space for all tasks so that in the event of a fault, there is enoughspare capacity in terms of time such that the task can be re-executed and still meet its deadline.Since the worst possible time for a fault to occur is just prior to the completion of the task, theamount of extra time to be devoted to task i for recovery is an additional Ci. Thus in the RateMonotonic Analysis of the schedulability of the entire task set, the computation time for all taskshave to be assumed to be 2Ci. This means that, in a general case, the e�ective minimum achievableutilization on each processor is just 0.345, i.e., half of 0.69. However, the situation is not as pes-simistic as it appears. We will prove in the following section that a minimum achievable utilizationof 0.5 guarantees enough time redundancy to complete recovery before the deadlines. Thus as longas the utilization factor of a task set on a processor is less than or equal to 0.5, the task set isguaranteed a feasible schedule in presence of a single fault.2.4 MotivationOne of the popular traditional approaches to the design of fault-tolerant system is the use of N-modular-redundancy (NMR) [11]. In this technique, every processor is provided with extra spares.The spares may be hot, warm or cold. For real-time systems, hot spares is the preferred choiceas no time is wasted to perform recovery. A spare is said to be hot if it synchronously performsall the computations with the primary processor and takes over if the primary processor fails. Forfault models such as incorrect computation and Byzantine faults, there may not be any distinctionbetween the primary and the spares as they all perform the same computation and vote on the resultto mask faulty results. If we assume crash or fail-stop model, NMR requires that each processorbe duplicated to tolerate a single fault and so the number of processors in a fault-tolerant systemis 2m where m is the number of processors in the original system. Such a system, called a duplexsystem, can tolerate up to one fault between the primary and the spare and up to m faults as long6

as no more than one fault a�ects a particular primary and its spare. This is achieved by havingthe space overhead equal to the size of the original system, i.e., by doubling the space resources.The space overhead of duplex system is very high for many applications and it is usually desirableto have a single spare for the group of m processors so that if any processor fails, the spare can besubstituted in its place. Whereas providing a single spare is a simple feat in non-real-time systems,ensuring that the recovery will be performed within the deadlines is not easy. The contributionsof this paper makes it easy to guarantee recovery by limiting the utilization factor on a processorat 0.5. If US is the total utilization factor of a large set of tasks, the number of processors neededin a system with a single spare is dUS=0:5e + 1. This assumes crash faults and even distributionof the utilization factor. This is likely to be signi�cantly less than 2 � dUS=0:69e in the duplexsystem. Interestingly, the trivial solution to ensure recovery by doubling the computation timerequirements will require dUS=0:35e+ 1 processors, which is nearly the same as that required bythe duplex system.In addition to tolerating hardware crash faults, a major application of the result is towardstolerating software faults. We will deal with this in greater detail in Section 4.3 Determination of minimum achievable utilizationBefore we prove that the minimum achievable utilization is 0.5, we present the de�nitions of someterms used in the proof. The recovery is de�ned as re-execution of all the partially executed taskswhere the priority of the RMS is maintained. Thus during the recovery of a lower priority task, if ahigher priority task arrives, the higher priority task will preempt the recovery of the lower prioritytask. In addition, if the fault a�ects multiple tasks, higher priority tasks will perform recoveryaction �rst. A schedule is said to be feasible for a set of tasks if the task set can be guaranteed aschedule under Rate Monotonic Algorithm (i.e., all tasks will meet their deadlines) even if recoveryhas to be performed due to a single fault that can occur at any arbitrary instant of time. A setof tasks is said to fully utilize a processor if the task set has a feasible schedule and increasing thecomputation time of any task in the set causes the schedule to become infeasible. The minimumachievable utilization is the minimum of the utilization factor of every possible sets of tasks thatfully utilize the processor. We de�ne a critical instant for a task to be that instant at which anarrival of the task will have the largest response time in the presence of some fault. The scheduleof a set of tasks that fully utilizes the processor will have at least one critical instant for some taski where the response time is the period of that task. We shall call that time interval between thearrival and the deadline of the task i as the critical period.A fault that occurs just prior to the completion of a task creates the maximum delay for thattask and any lower priority tasks that have been interrupted by it. Hence we only need to examinethe e�ects of a fault at the instants when the tasks are about to be completed.We will consider a number of cases that will lead to the proof of theorem that the minimumachievable utilization is 0.5.3.1 Case 1: Task set with one taskConsider a task set comprising of a single task (C1; T1). In this case, the release time does notmatter.Observation 1 The minimum achievable utilization for a task set with one task is 0.5.Proof: This is obvious since C1 cannot exceed T1=2. If C1 equals some value x such thatT1=2 < x � T1 and if a fault occurs at some instant t such that kT1 + T1=2 < t < kT1 + x,7

Task 1
T1 = 6, C1 = 1

Task 2
T2 = 11, C2 = 4.5

6 11 120

Task 2 misses deadline
44 48 54 55

(a)

(b)

Recovery of Task 2

Recovery of Task 2Recovery of Task 1Figure 3: Schedule of two tasks with periods 6 and 11.k = 0; 1; . . ., then there is not su�cient time to re-execute the task and still meet the deadline attime (k+ 1)T1. The processor is fully utilized when C1 = T1=2 and hence U = 0:5. 2It is important to note that even if the task set has more than one task, the computation timeof each of the tasks cannot exceed half the value of its period, i.e., Ci � Ti=2, i = 0; 1; . . . ; n wheren is the number of tasks in the set.3.2 Case 2: Task set with two tasksBefore we begin the analysis of the minimum achievable utilization for this case, let us consider theissue of release times. In the traditional RMS analysis the worst delay for the Task 2 is observedwhen it arrives simultaneously with the Task 1. If the �rst arrival of the Task 2 can then be feasiblyscheduled, any subsequent arrivals will also meet their deadlines and so one has only to considerthe feasibility conditions of the simultaneous arrivals of the tasks. This is not necessarily true whenone considers the possibility of faults. For example, consider the task set f(1; 6); (4:5; 11)g whererelease times are zero. By considering just the �rst arrival, it would appear that the task set hasa feasible schedule and the processor is fully utilized. This is shown in Figure 3(a). Tasks 1 and 2are released simultaneously and since Task 1 has higher priority, it starts execution and departs attime 1 when Task 2 begins. A fault occurs just prior to the completion of Task 2 at time instant5.5 and it is restarted to perform recovery. Task 1 again arrives at time 6 and it preempts recovery.The recovery just completes at time 11 when the next arrival of Task 2 occurs. However, if a faultoccurs just before time instant 49, the schedule is infeasible. This is shown in Figure 3(b). Task 2arrives at time 44 and is preempted by Task 1 which arrives at time 48. A fault occurs just priorto the completion of Task 1 at time 49 and so both tasks have to be re-executed. Task 1 recoversin time at time instant 50 when the recovery of Task 2 begins. However, the next arrival of Task 1occurs at time 54 and it preempts the recovery of Task 2 and causes it to miss the deadline at time55. Only 4 units of time are available to Task 2 for recovery in the time interval 50{54 whereas itscomputation time is 4.5. Thus the correct value of C2 that fully utilizes the processor is C2 = 4.Hence, in our analysis, we have to consider all possible values of release times.Consider a set of two tasks, f(C1; T1; R1); (C2; T2; R2)g with arbitrary release times. We will�rst consider the case when T2 � 1:5T1. Next we will consider various subcases when T2 < 1:5T1.8

3.2.1 Case 2a: T2 � 1:5T1Theorem 1 The minimum achievable utilization is 0.5 for a set of two tasks satisfying the condi-tion T2 � 1:5T1.Proof: We �rst prove that as long as the utilization factor is less than or equal to 0.5, a feasibleschedule is guaranteed for the task set; then we give a particular instance where the processor isfully utilized and the utilization factor is 0.5.From Observation 1, it is clear that C1 � T1=2. Within any interval [R2+ kT2; R2+ (k+1)T2),k = 0; 1; . . ., there are at most dT2=T1e arrivals of Task 1. The worst possible scenario is when Task2 is about to be completed and is preempted by the arrival of Task 1 and the fault occurs justprior to completion of Task 1. In this case both Tasks 1 and 2 need to be executed again. Task 1will meet its deadline since C1 � T1=2. Task 2 will meet its deadline if the following condition issatis�ed: ��T2T1� + 1�C1 + 2C2 � T2 (1)i.e. if ��T2T1�+ 1� C1T2 + 2C2T2 � 1 (2)Under traditional RMS analysis, the feasibility condition is (dT2=T1e)C1 + C2 � T2. But in afault-tolerant system, each task will have to be executed once more under the worst case scenarioof the occurrence of a single fault.Assume that the utilization factor of the task set is less than or equal to 0.5, i.e.,C1T1 + C2T2 � 0:5 (3)Therefore, 2C1T1 + 2C2T2 � 1) 2C1T1 � ��T2T1� + 1� C1T2 + ��T2T1�+ 1� C1T2 + 2C2T2 � 1 (4)Thus the feasibility condition given by Equation 2 is guaranteed if2C1T1 � ��T2T1�+ 1� C1T2 � 0) 2C1T1 � ��T2T1�+ 1� C1T1 T1T2 � 0) C1T1 �2� ��T2T1�+ 1� T1T2� � 0) 2� ��T2T1�+ 1� T1T2 � 0) ��T2T1�+ 1� T1T2 � 2 (5)Equation 5 is satis�ed when T2=T1 � 1:5, i.e., when T2 � 1:5T1. Thus any task set satisfying thecondition of the Theorem 1 is guaranteed a feasible schedule if the utilization factor is less that orequal to 0.5. 9

R1+jT1
R1+

(j+1)T1 (j+1)T1+T1/2 (j+2)T1

R2+(k-1)T2 R2+kT2 R2+(k+1)T2

C1(a)

jT1+2C1

C1 C1

jT1+T1/2
R1+ R1+ R1+ R1+

jT1+T1/2 (j+1)T1 (j+1)T1+T1/2 (j+2)T1

R2+(k-1)T2 R2+kT2 R2+(k+1)T2

C1 C1
(b)

R1+jT1
R1+ R1+ R1+ R1+

R1+jT1 jT1+T1/2 (j+1)T1 (j+1)T1+T1/2 (j+2)T1

R2+(k-1)T2 R2+kT2 R2+(k+1)T2

C1C1
(c)

R1+ R1+ R1+ R1+Figure 4: Modeling subsequent arrivals of the tasks.Now consider the cases when C1 = T1=2; C2 = 0 and C1 = 0; C2 = T2=2. In each of these twocases, the processor is fully utilized since increasing C2 in the �rst case and C1 in the second casecauses the schedule to become infeasible. In both cases, the utilization factor is 0.5. We have alsoproved that as long as the utilization factor is less than or equal to 0.5, the tasks can be feasiblyscheduled. Hence, when T2 � 1:5T1, the minimum achievable utilization is 0.5. 23.2.2 Case 2b: T2 < 1:5T1We will take the following approach in our proof for this proof: We will �rst show that each instanceof a task can be modeled as the arrival of the �rst instance with some values of release times R01and R02. Then we will prove that the �rst instances can be feasibly scheduled for all possible valuesof release times as long as the utilization factor is less than or equal to 0.5, i.e., we will prove thatthe minimum achievable utilization among all task sets that fully utilize the processor during the�rst instance is 0.5. Also, without loss of generality, we can assume that one of R1 or R2 is zeroand R1 < T2, R2 < T1.Consider Figure 4 where we are interested in the feasibility of meeting the deadline at timeinstant R2+(k+1)T2 of the (k+1)th instance of Task 2 that arrives at time instant R2+kT2. Weconsider various cases below where R1 + jT1 � R2 + kT2 < R1 + (j + 1)T1.� If R2 + kT2 � R1 + jT1 + 2C1 as shown in Figure 4(a), the (k + 1)th instance of the Task 2can be modeled as the �rst instance of the Task 2 in the task set f(C1; T1; R01 = R1 + (j +1)T1 � R2 � kT2); (C2; T2; R02 = 0)g. This is possible because any fault during the executionof the (j + 1)th instance of Task 1 does not a�ect the schedulability of the (k + 1)th instanceof Task 2. 10

� If R2 + kT2 < R1 + jT1 + 2C1 as shown in Figures 4(b) and (c), the (k + 1)th instance ofthe Task 2 can be modeled as the �rst instance of the Task 2 in a task set f(C1; T1; R01 =0); (C2; T2; R02 = R2 + kT2 �R1 � jT1)g.In the Appendix, we consider all possible cases of the release times and the periods of the tasks.For each of those cases, we present the value of the task computation times that fully utilize theprocessor during the �rst instance of the Task 2. For each of those cases, we prove that when theprocessor is fully utilized during the �rst instance of Task 2, the utilization factor is greater then0.5.Theorem 2 The minimum achievable utilization for a set of two tasks satisfying condition T2 <1:5T1 is 0.5.Proof: We have shown that any subsequent instance of two tasks after the �rst instance can bemodeled as the �rst instance with some release times. Then we have proved in the Lemmas 3{14in the Appendix that for all possible values of release times, if the processor is fully utilized for the�rst instance, the utilization factor is greater than or equal to 0.5. Hence, the minimum achievableutilization for a set of two tasks satisfying condition T2 < 1:5T1 is 0.5. 23.3 Case 3: Task set with n > 2 tasksConsider a set of n tasksSn = f(C1; T1; R1); (C2; T2; R2); . . . ; (Cn; Tn; Rn)gwhose utilization is Un = nXi=1 CiTiWe will prove by induction that the minimum achievable utilization for a set of n tasks is 0.5. Letus assume that the minimum achievable utilization for a set of n � 1 tasks is 0.5. We will provethat this is also true for a set of n tasks.Consider the set of the �rst n � 1 tasksSn�1 = f(Ci; Ti; Ri)ji = 1; . . . ; n� 1gwhose utilization is Un�1 = n�1Xi=1 CiTiIf both sets Sn and Sn�1 have a feasible schedule and Un�1 � 0:5 then Un � 0:5 (becauseUn � Un�1). Thus we need to consider only those cases where Un�1 < 0:5. But since Un�1 < 0:5,Sn�1 will have a feasible schedule because of our assumption. Thus we only need to consider thefeasibility of scheduling the Task n.3.3.1 Case 3a: Tn � 1:5Tn�1Theorem 3 The minimum achievable utilization is 0.5 for a set of n tasks satisfying the conditionTn > 1:5Tn�1 and assuming that the minimum achievable utilization of any set of n � 1 tasks is0.5. 11

As in the case of a set of two tasks, if the following condition representing the worst possible scenariois satis�ed, the corresponding task set has a feasible schedule. Note that the reverse is not true,i.e., the task set may not satisfy the following condition and still have a feasible schedule.n�1Xi=1 ��TnTi �+ 1�Ci + 2Cn � Tn (6)i.e., n�1Xi=1 ��TnTi �+ 1� CiTn + 2CnTn � 1 (7)Assume that Un � 0:5. Thereforen�1Xi=1 CiTi + CnTn � 0:5) n�1Xi=1 2CiTi + 2CnTn � 1) n�1Xi=1 �2CiTi � ��TnT1 �+ 1� CiTn �+ n�1Xi=1 ��TnTi �+ 1� CiTn + 2CnTn � 1Thus the condition in Equation 7 is guaranteed ifn�1Xi=1 �2CiTi � ��TnT1 �+ 1� CiTn � � 0 (8)If Tn � 1:5Tn�1, then Tn > 1:5Ti; i = 1; . . . ; n � 2 because Tn > Tn�1 > � � � > T2 > T1.Whenever Tn > 1:5Ti; i = 1; . . . ; n � 1, then h2CiTi � �lTnT1 m+ 1� CiTni � 0. Thus the sum is alsonon-negative and Equation 7 is satis�ed and the task set is guaranteed a feasible schedule. Thusfor all sets of n tasks, the minimum achievable utilization is 0.5 if Tn � 1:5Tn�1. 23.3.2 Case 3b: Tn < 1:5Tn�1When Tn < 1:5Tn�1, we will consider two subcases in the following lemmas. Assume that the set oftasks Sn fully utilizes the processor. We note that the set Sn�1 does not fully utilize the processorsince Un�1 < 0:5. Add task n to the set Sn�1 and increment its computation time till the processoris fully utilized and this value of the computation time is Cn. Hence only the task n has at least onecritical period where the occurrence of a fault and subsequent recovery will cause the task to justmeet its deadline. There are two possible cases: the worst case instant of the occurrence of a faultis just prior to completion of the task n itself in which case the recovery is solely the re-executionof only the task n, or, the worst case instant of occurrence of a fault is just prior to the completionof some other task i, 1 � i � n� 1. In the former case,Cn = Tn � x1C1 � x2C2 � � � � � xn�1Cn�12where xi is the fraction of the time that the processor spends executing the task i in the criticalperiod of Task n and xi � dTn=Tie. In the latter case,Cn = Tn � y1C1 � y2C2 � � � � � yn�1Cn�112

where yi is the fraction of the time that the processor spends in the normal execution and recoveryof the Task i in the critical period of Task n. Here, yi � dTn=Tie+ 1.Lemma 1 The minimum achievable utilization is 0.5 for a set of n tasks satisfying the conditionsTn < 1:5Tn�1 and Cn = (Tn�x1C1�x2C2�� � ��xn�1Cn�1)=2 where xi � dTn=Tie, assuming thatthe minimum achievable utilization for a set of n � 1 tasks is 0.5.Construct a set S 0n�1 of n � 1 tasks as follows:S 0n�1 = f(C1; T1; R1); (C2; T2; R2); . . . ; (Cn�2; Tn�2; Rn�2); (Cn�1 TnTn�1 + Cn; Tn; Rn)gThe utilization factor U 0n�1 of the set S 0n�1 is the same as that of Sn, i.e. U 0n�1 = Un. Now considera fault just prior to the completion of the task (Cn�1 TnTn�1 + Cn; Tn; Rn) during an interval whichis a critical interval for the set Sn. The time to completion of the task istc = x1C1 + x2C2 + � � �+ xn�2Cn�2 + 2 � (Cn�1 TnTn�1 + Cn)= x1C1 + x2C2 + � � �+ xn�2Cn�2 + 2Cn�1 TnTn�1 + Tn � x1C1 � x2C2 � � � � � xn�1Cn�1= Tn � xn�1Cn�1 + 2Cn�1 TnTn�1= Tn + Cn�1(2 TnTn�1 � xn�1)Since xn�1 � dTn=Tn�1e and since Tn < 1:5Tn�1, xn�1 � 2 and sotc > TnThus the last task misses the deadline and so the set S 0n�1 has an infeasible schedule. But since wehave assumed that the minimum achievable utilization of a set of n � 1 tasks 0.5, the utilizationfactor of S 0n�1 must exceed 0.5. However, Un = U 0n�1 and so Un > 0:5. Thus the minimum achiev-able utilization of every set of n tasks that satisfy the conditions of this lemma is 0.5. 2Here we have proved that every set of n tasks that fully utilizes the processor and satis�es theconditions of the Lemma 1 can be converted into another set of n � 1 tasks that has an infeasibleschedule. As an example, consider a set of three tasks S3 = f(0:5; 3; 0); (0:5; 4; 0); (1:5; 5; 0)g. Thistask set fully utilizes the processor. From this task set, we construct the set S02 = f(0:5; 3; 0); (2:125; 5)g.The set S02 has an infeasible schedule because if a fault occurs at a time just prior to the completionof Task 2 at time instant 2.625, there is not enough spare time to recover.Lemma 2 The minimum achievable utilization is 0.5 for a set of n tasks satisfying the conditionsTn < 1:5Tn�1 and Cn = Tn� y1C1� y2C2� � � �� yn�1Cn�1 where yi � dTn=Tie+ 1, assuming thatthe minimum achievable utilization of a set of n � 1 tasks is 0.5.Assume that the set of tasks Sn fully utilizes the processor. Since the set Sn�1 does not fullyutilize the processor, increment the computation time of the Task n�1 in Sn�1 so that the utilizationfactor is 0.5. Let this increase be � and let the new set be S 0n�1 = f(C1; T1; R1); . . . ; (C 0n�1; Tn�1; Rn�1)gwith the utilization factor U 0n�1 = 0:5 where C 0n�1 = Cn + �. It is easy to observe that Cn � 2�.Since the Task n � 1 is the lowest priority task in the set of n � 1 tasks, any reduction of the13

computation time of � from C 0n�1 frees up at least 2� amount of time for Task n that will not beinterrupted by the other tasks. The amount is 2� because reduction of � also frees up an extra �from recovery. Thus, Un = C1T1 + C2T2 + � � �+ Cn�1Tn�1 + CnTn� 0:5� �Tn�1 + 2�Tn> 0:5 2We now prove the following theorem for the general case.Theorem 4 For a set of n tasks, the minimum achievable utilization is 0.5.Proof: In Theorem 3 and Lemmas 1 and 2 we have proved that the minimum achievable uti-lization for a set of n tasks is 0.5 provided that the minimum achievable utilization for a set of n�1tasks is 0.5. In addition, this theorem is true for one task as shown in Observation 1 and has alsobeen proven to be true for a set of two tasks in Theorems 1 and 2. Hence, by induction it is truefor all n. 24 Implementation Issues4.1 Tolerating hardware crash faultsConsider a distributed system with a common spare. The spare is not idle but it monitors the stateof the processors. After completion of each instance of each task, a processor sends a message tothe spare indicating that the task is successfully completed. The spare maintains a list of all tasksin the system and the processor on which they are executing. From this information, it can eitherbe provided a look-up table of all completion times of the tasks or these completion times can beeasily computed \on-the-y". Let Ccomm be the maximum communication latency of the network.If some task was supposed to be completed at time tc, the spare expects a con�rmation by the timetc + Ccomm. In case this message is not received, the processor is declared faulty and the sparetakes over the faulty processor's task set and initiates recovery. In the rate monotonic analysisof the task set on each processor, the communication time and the overhead in recon�guration isassumed to be included in the computation time of the task. So, if some task i has computationrequirement of Ci, then C 0i = Ci + Ccomm + Coverhead is used for analysis. This technique assumesthat the communication delays are �nite and bounded, which is not an unreasonable assumptionfor practical applications. It also requires that the executable code of all tasks be accessible to thespare.As we have discussed in Section 2, the space overhead for guaranteeing deadlines in the presenceof a single fault for duplex systems is 2 � dU=0:69e processors. However, the number of processorsneeded for a system with a single spare with recovery is dU=0:5e + 1. U is the total utilizationfactor of the task set and we assume that the task set is partitioned so that the utilization factor isevenly distributed. Table 1 shows the number of processors required by each scheme for di�erentvalues of the utilization factors. We observe that providing a common spare signi�cantly reducesthe size of the system and the e�ect is more pronounced for large values of utilization factors.14

Table 1: Number of processorsm in systems where computation times are doubled for RMS analysis,duplex systems and in a system with a common spare for recovery for di�erent values of utilizationfactor U Doubling computation Duplex system Common sparetime in RMS analysis with recoverym = l U0:345m+ 1 m = 2 � l U0:69m m = l U0:5m+ 10.5 3 2 20.69 3 2 31 4 4 32 7 6 53 10 10 74 13 12 95 16 14 116 19 18 137 22 22 158 25 24 179 28 28 1910 30 30 21100 291 290 2004.2 Tolerating incorrect computation faults caused by hardware faultTriple Modular Redundancy (TMR) systems are required to tolerate incorrect computation faults.A duplex system can only detect the presence of an incorrect computation fault because the resultsof the two processors do not agree. A third processor is required so the majority result is assumedto be correct. A similar technique as described above can be used to tolerate a single incorrectcomputation fault. Rather than having a TMR system, a duplex system with a spare can be used.In case the duplex pair detects an error, the spare is used to perform recovery. The number ofprocessors required for a TMR system is 3 � dU=0:69e whereas the number of processors requiredfor a duplex with a spare for recovery is 2 � dU=0:5e + 1. Again, U is the total utilization factorfor the entire task set. The number of processors required for both schemes is shown in Table 2.We notice that the duplex with a spare again requires less space overhead as compared to a TMRsystem. However, the bene�t is not as large as that observed for crash faults.4.3 Tolerating software faults and intermittent and transient hardware faultsWe believe that the greatest application of the results of this paper would be towards toleratingsoftware faults and intermittent and transient hardware faults. In space and hostile industrialapplications, outside environment conditions such as alpha particles, electrostatic interference, etc.,cause transient errors. In addition software faults such as stack overows in the operating systems,etc., are best handled by re-execution. By limiting the utilization factor to 0.5 on a processor, wecan guarantee that recovery can be performed within the deadlines. Even though we consider there-execution of all partially executed tasks, it is not necessary if a fault a�ects a single task. Thattask can be re-executed to meet its deadline and we can be con�dent that the re-execution will notcause other tasks to miss their deadlines. In addition, the recovery code need not be the same as the15

Table 2: Number of processors m in TMR system and in a duplex system with a common sparefor recovery for di�erent values of utilization factorU TMR Duplex system withsystem common spare3 � l U0:69m 1 + 2 � l U0:5m0.5 3 30.69 3 51 6 52 9 93 15 134 18 175 21 216 27 257 33 298 36 339 42 3710 45 41100 435 401primary code. This is especially true for software faults where an alternate program is desirable.As long as the time to execute the recovery program is less than or equal to the execution time ofthe primary program, we can be certain that the deadlines will be met.4.4 Tolerating Multiple FaultsMultiple faults can be tolerated under our analysis as long as the interval between successive faultsis larger than the largest period in the task set. Under this assumption, unlimited transient faultscan be tolerated and k permanent crash faults can be tolerated by providing k spares and limitingthe utilization factor on each processor to 0.5. For certain task sets and k, NMR system will yieldlesser space overhead and greater fault coverage and would be easier to implement. This is the caseif k + � U0:5� > (k + 1) � U0:69�where U is the utilization factor for the entire task set. Again we assume that the task set ispartitioned so that the utilization factor is evenly distributed. For example, if the total utilizationfactor U = 0:6, and k = 1, NMR uses only two processors whereas our approach would requirethree processor. But for most general cases, providing k common spares would result in lesseroverheads.5 ConclusionsWe have provided a theoretical foundation for fault-tolerant processing of periodic real-time tasksscheduled by the Rate Monotonic Scheduling policy. Under the scenario that recovery from a faultinvolves restarting all the partially executed tasks while maintaining the priority levels of RMS pol-16

icy, we show that the minimum achievable utilization on a processor is 0.5. This result guaranteesthat all tasks will meet their deadlines even in the presence of a fault if the utilization factor ona processor is restricted to 0.5. This bound is much better than the maximum utilization factorof 0.345 (0.69/2) that would be obtained if the computation times of all tasks were naively dou-bled in RMS analysis to provide for recovery time. The result provides a framework for toleratingtransient and intermittent hardware and software faults where re-execution is the preferred recov-ery technique. In addition, this result is applicable to tolerating permanent crash and incorrectcomputation faults where spares must be employed to replace faulty processors. In such a systemwe show that the space redundancy achieved by maintaining a common pool of spares is, in mostcases, less than that of an NMR system.The contributions of this paper form an important component in the evolution of ResponsiveSystems. The concept of providing guarantees of meeting the deadlines in the system in spiteof the occurrence of faults is integral to the design of fault-tolerant real-time systems for criticalapplications. Providing a simple criterion to ensure the feasibility of meeting all deadlines in thepresence of a single fault considerably reduces the complexity encountered by designers. This willlead to safer and dependable use of real-time systems for critical applications.References[1] C. L. Liu and J. W. Layland, \Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment", Journal of the Association for Computing Machinery, vol. 20, no. 1, pp.46{61, 1973.[2] J. Lehoczky, L. Sha and Y. Ding, \The Rate Monotonic Scheduling Algorithm: Exact Char-acterization and Average Case Behavior", Proceedings of the Real-Time Systems Symposium,pp. 166{171, December 1989.[3] S. K. Dhall and C. L. Liu, \On a Real-Time Scheduling Problem", Operations Research, vol.26, no. 1, pp. 127{140, January-February 1978.[4] E. L. Lawler and C. U. Martel, \Scheduling Periodically Occurring Tasks on Multiple Proces-sors", Information Processing Letters, vol. 12, no. 1, pp. 9{12, 13 February 1981.[5] J. Y.-T. Leung and M. L. Merril, \A Note on Preemptive Scheduling of Periodic, Real-TimeTasks", Information Processing Letters, vol. 11, no. 3, pp. 115{118, 18 November 1980.[6] M. Malek, \Responsive Systems: A Challenge for the Nineties", Keynote Address, EuroMicro90, Microprocessing and Microprogramming, vol. 30, August 1990.[7] A. Liestman and R. H. Campbell, \A Fault-Tolerant Scheduling Problem", IEEE Transactionson Software Engineering, vol. SE-12, no. 11, pp. 1089{1095, November 1986.[8] C. M. Krishna and K. G. Shin, \On Scheduling Tasks with a Quick Recovery from Failure",IEEE Transactions on Computers, vol. C-35, no. 5, pp. 448{455, May 1986.[9] M. Takegaki, H. Kanamaru and M. Fujita, \The Di�usion Model Based Task Remapping forDistributed Real-Time Systems", Proceedings of the Real-Time Systems Symposium, pp. 2{11,December 1991.[10] M. Barborak, M. Malek and A. Dahbura, \The Consensus Problem in Fault-Tolerant Com-puting", ACM Computing Surveys, vol. 25, no. 2, pp. 171{220, June 1993.17

T1 1.5T1T1/2

T1 T2+R2 1.5T1T1/2

T1 1.5T1T1/2

C1’

C1’ Recovery

C2’

C2’

C1’

C1’

C1’

C1’RecoveryC2’

R2

R2

R2

T2+R2

T2+R2

(a)

(b)

(c) Figure 5: Two tasks considered in Lemma 3.[11] D. P. Siewiorek and R. S. Swarz, The Theory and Practice of Reliable System Design, DigitalPress, 1982.A AppendixA.1 Various cases of two tasks where T2 < 1:5T1We consider various cases of two tasks satisfying the condition T2 < 1:5T1. For each case, wepresent the values of the computation times of the tasks that fully utilize the processor during the�rst instance of the Task 2 and show that the utilization factor for all these cases is greater than 0.5.Let C1 = T1=2 and C2 = 0. We observe that the processor is fully utilized and the utilization factorU = 0:5. Now decrement the computation time of Task 1 by an amount � so that C 01 = C1 ��.Increment the computation time of Task 2 to C 02 so that the processor is again fully utilized. Thisvalue of C 02 and the corresponding utilization factor U 0 are considered for various cases below. Weuse the notation tc to denote the time instant of completion (departure) of the Task 2.Case (i): R1 = 0; R2 � 0We will �rst prove a series of lemmas each of which considers di�erent possible values of theparameters of the tasks.Lemma 3 The utilization factor is greater than 0.5 for a task set that fully utilizes the processorfor the �rst instance of the Task 2 if the task set is such that T2 < 1:5T1, R1 = 0; R2 � 0 andsatis�es the following conditions T1 + C 01 � T2 +R2 (9)C 01 � T13 (10)In this case, R2 and C 01 are such that the second instance of the Task 1 completes after thedeadline of Task 2 as shown in Figure 5(a), i.e., T1+C 01 � T2+R2 which also implies that R2 < C 01.In this case C 02 = T1 � 2C 01 = 2�If a fault occurs just before the completion of Task 1 as shown in Figure 5(b),tc = 2C 01 + C 02 = T1 < T2 +R218

T1 1.5T1T1/2

T1 T2+R2 1.5T1T1/2

T1 1.5T1T1/2

C1’

C1’ Recovery

C2’

C2’

C1’

C1’

C1’

C1’RecoveryC2’

R2

R2

R2

T2+R2

T2+R2

(a)

(b)

(c) Figure 6: Two tasks considered in Lemma 4.and so the Task 2 meets its deadline. If the fault a�ects Task 2 as shown in Figure 5(c),tc = C 01 + 2C 02 = 2T1 � 3C 01 < T1The utilization factor is U 0 = C 01T1 + C 02T2= C1T1 � �T1 + 2�T2= 0:5 + 2�� 1T2 � 12T1�> 0:5since T2 < 1:5T1 < 2T1 and so 1=T2� 1=(2T1) is a positive number. 2Lemma 4 The utilization factor is greater than 0.5 for a task set that fully utilizes the processorfor the �rst instance of Task 2 if the task set is such that T2 < 1:5T1, R1 = 0; R2 � 0 and satis�esthe following conditions T1 + C 01 � T2 +R2 (11)C 01 < T13 (12)This is illustrated by Figure 6. If C 01 < T1=3, then C 02 cannot be 2� because even though theschedule can tolerate a fault just prior to completion of Task 1, it cannot tolerate a fault if it occursjust prior to completion of Task 2. In this case,C 02 = T1 � C 012and the largest value of � = 1:5T1�T2�R2 (otherwise we will violate the condition of Equation 11that T1 + C 01 � T2 +R2). If a fault a�ects Task 1 as shown in Figure 6(b),tc = 2C 01 + C 02 = T1 + T14 � 3�2 � T119

T1 1.5T1T1/2

T1 T2+R2 1.5T1T1/2

T1 1.5T1T1/2

C1’

C1’ Recovery

C2’

C2’

C1’

C1’

C1’

C1’RecoveryC2’

R2

R2

R2

T2+R2

T2+R2

(a)

(b)

(c) Figure 7: Two tasks considered in Lemma 5.If the fault a�ects Task 2 as shown in Figure 6(c),tc = C 01 + 2C 02 = T1The utilization factor U 0 = C 01T1 + C 02T2= C1 ��T1 + T1 � C1 + �2T2= 0:5 + �� 12T2 � 1T1�+ T14T2remembering that C1 = T1=2. Since 1=2T2�1=T1 is a negative number, the minimum of right handside occurs when � is maximum and in that case,U 0 = 0:5 + (1:5T1� T2 �R2)� 12T2 � 1T1�+ T14T2= 0:5 + T1T2 + T2T1 � 2 + R2� 1T1 � 12T2�= 0:5 + (T2 � T1)2T2T1 + R2� 1T1 � 12T2�> 0:5since both (T2 � T1)2=(T2T1) and R2(1=T1 � 1=2T2) are non-negative numbers. 2Lemma 5 The utilization factor is greater than 0.5 for a task set that fully utilizes the processorfor the �rst instance of Task 2 if the task set is such that T2 < 1:5T1, R1 = 0; R2 � 0 and satis�esthe following conditions T1 + C 01 < T2 +R2 (13)R2 < C 01 (14)C 01 � T2 +R24 (15)20

Here, the value of C 02 that fully utilizes the processor is given byC 02 = R2 + T2 � 3C 01Figure 7 illustrates this subcase. Let us see what happens when the fault a�ects Task 1 just priorto its completion as shown in Figure 7(b). We note that 2C 01+C 02 = R2+T2�C 01 < T1. Hence, therecovery action of Task 1 delays the Task 2 so that it does not complete before the second arrivalof Task 1, which then preempts it. Thus the time to completion of the second task includes threeexecutions of the �rst task and itself and sotc = 3C 01 + C 02 = R2 + T2;i.e., the second task just meets its deadline at time R2 + T2. If a fault a�ects Task 2, there aretwo possibilities: the recovery might complete before the second arrival of Task 1 or it might not,in which case it will be preempted. In the �rst case, Task 2 obviously meets its deadline. In thelatter case, tc = 2C 01 + 2C 02 = 2R2 + 2T2 � 4C 01 � T2 +R2since C 01 � (T2 + R2)=4.The utilization factor is given byU 0 = C 01T1 + C 02T2= C1 ��T1 + R2 + T2 � 3C 01T2= C1T1 � �T1 + R2 + T2 � C 01 � 2C 01T2= C1T1 � �T1 + (R2 + T2 � C 01)� 2(C1 ��)T2= C1T1 + �� 2T2 � 1T1�+ R2 + T2 � C 01 � T1T2> 0:5since (2=T2 � 1=T1) > 0 and from Equation 13, R2 + T2 > T1 + C 01. 2Lemma 6 The utilization factor is greater than 0.5 for a task set that fully utilizes the processorfor the �rst instance of Task 2 if the task set is such that T2 < 1:5T1, R1 = 0; R2 � 0 and satis�esthe following conditions T1 + C 01 < T2 +R2 (16)R2 < C 01 (17)C 01 < T2 +R24 (18)In this situation, C 02 = T2 +R2 � 2C 01221

T1 1.5T1T1/2

T1 T2+R2 1.5T1T1/2

T1 1.5T1T1/2

C1’

C1’ Recovery

C2’

C2’

C1’

C1’

C1’

C1’

Recovery

C2’

R2

R2

R2

T2+R2

T2+R2Figure 8: Two tasks considered in Lemma 6.The situation is shown in Figure 8. We again verify that Task 2 will meet its deadline when a faultoccurs. If a fault a�ects Task 1, the worst case situation is as before, i.e., the task 2 is delayed andmight be preempted by the second arrival of Task 1. Thus,tc = 3C 01 + C 02 = 2C 01 + R2 + T22 < R2 + T2because C 01 < (T2 + R2)=4 (however, in the Figure 8(b), the Task 2 completes before the secondarrival of the Task 1). If a fault occurs just before Task 2 was to complete as shown in Figure 8(c),then its completion time is given bytc = 2C 01 + 2C 02 = T2 +R2The utilization factor is given byU 0 = C 01T1 + C 02T2= C 01T1 + T2 + R2 � 2C 012T2= 0:5 + C 01� 1T1 � 1T2�+ R22T2� 0:5 2Note that Lemmas 3{ 6 also cover all cases when the two tasks are released simultaneously, i.e.,R1 = R2 = 0.Lemma 7 The utilization factor is greater than 0.5 for a task set that fully utilizes the processorfor the �rst instance of Task 2 if the task set is such that T2 < 1:5T1, R1 = 0; R2 � 0 and satis�esthe following conditions T1 + C 01 < T2 +R2 � T1 + 2C 01 (19)C 01 � R2 < 2C 01 (20)C 01 > T2 + 2R25 (21)22

T1 1.5T1T1/2

C1’ C1’
Recovery

C2’

R2 T2+R2

T1 T2+R21.5T1T1/2

C1’ C2’ C1’

R2

T1 T2+R21.5T1T1/2

C1’ C2’ C1’

R2

RecoveryFigure 9: Two tasks considered in Lemma 7.Note that R2 � C 01 implies T1+C 01 < T2+R2 because T2 > T1. This is the situation where the�rst arrival of Task 2 occurs after Task 1 has completed execution as shown is Figure 9(a). However,if a fault occurs just prior to completion of Task 1, it will a�ect Task 2 because the recovery actionwill delay it. Also, since T1 + 2C 01 � T2 + R2, a fault occurrence just prior to completion of thesecond instance of Task 1 pushes the recovery action beyond the deadline of Task 1. Hence, Task2 should complete prior to T1 in the absence of a fault. Under the conditions of this lemma, theprocessor is fully utilized if C 02 = min(T1 �R2; T2 + R2 � 3C 01)Here min(a; b) is a function that returns the minimum of a and b (Note: min(a; b) � a andmin(a; b) � b). Let us again check if all deadlines are met in the presence of a fault. If the faulta�ects the �rst arrival of Task 1 as shown in Figure 9(b),tc = 3C 01 + C 02= 3C 01 +min(T1 �R2; R2 + T2 � 3C 01)� 3C 01 + R2 + T2 � 3C 01= T2 +R2If the fault occurs just prior to the completion of the Task 2 as shown in Figure 9(c), thentc = R2 + 2C 02 + C 01= R2 + C 01 + 2min(T1 �R2; R2 + T2 � 3C 01)� R2 + C 01 + 2(R2 + T2 � 3C 01)= T2 +R2 + T2 + 2R2 � 5C 01< T2 +R2 From Equation 21A fault during the execution of the second instance of Task 1 does not a�ect the execution of the�rst instance of Task 2 since it has already completed execution. The utilization factorU 0 = C 01T1 + C 02T2If T1 �R2 � T2 +R2 � 3C 01 then C 02 = T1 �R2 and soU 0 = C 01T1 + T1 � R2T2 23

T1 1.5T1T1/2

T1 T2+R2 1.5T1T1/2

T1 1.5T1T1/2

C1’

C1’ Recovery

C2’

C2’

C1’

C1’

C1’

C1’

Recovery

C2’

R2

R2

R2

T2+R2

T2+R2Figure 10: Two tasks considered in Lemma 8.> C 01T1 + T2 � 2C 01T2 From Equation 20> C 01T2 + T2 � 2C 01T2= 1� C 01T2> 0:5because C 01=T2 < C 01=T1 < 0:5. On the other hand, if C 02 = T2 + R2 � 3C 01, then the utilizationfactor is given by U 0 = C 01T1 + T2 +R2 � 3C 01T2= 1 + C 01T1 + R2T2 � 3C 01T2� 1 + C 01T1 + C 01T2 � 3C 01T2 From Equation 20> 1� C 01T1> 0:5 2Lemma 8 The utilization factor is greater than 0.5 for a task set that fully utilizes the processorfor the �rst instance of Task 2 if the task set is such that T2 < 1:5T1, R1 = 0; R2 � 0 and satis�esthe following conditions T1 + C 01 < T2 +R2 � T1 + 2C 01 (22)C 01 � R2 < 2C 01 (23)C 01 � T2 + 2R25 (24)24

Figure 10 illustrates two tasks that satisfy the conditions of Lemma 8. Under the conditionsabove, the processor is fully utilized ifC 02 = min T1 �R2; T2 � C 012 !If the fault occurs just prior to completion of Task 1, thentc = 3C 01 + C 02= 3C 01 +min T1 �R2; T2 � C 012 !� 3C 01 + T2 � C 012= T2 + 5C 012� T2 + R2 From Equation 24If a fault occurs just prior to completion of the Task 2, thentc = R2 + 2C 02 + C 01= R2 + C 01 + 2min T1 �R2; T2 � C 012 !� R2 + C 01 + T2 � C 01= R2 + T2The utilization factor U 0 = C 01T1 + C 02T2If T1 �R2 � (T2 � C 01)=2 then C 02 = T1 �R2 and soU 0 = C 01T1 + T1 � R2T2> C 01T1 + T2 � 2C 01T2 From Equation 23> C 01T2 + T2 � 2C 01T2= 1� C 01T2> 0:5because C 01=T2 < C 01=T1 < 0:5. If T1 �R2 > (T2 � C 01)=2 then C 02 = (T2 � C 01)=2 andU 0 = C 01T1 + T2 � C 012T2= 0:5 + C 01T1 � C 01T2> 0:5 225

Lemma 9 The utilization factor is greater than 0.5 for a task set that fully utilizes the processorfor the �rst instance of Task 2 if the task set is such that T2 < 1:5T1, R1 = 0; R2 � 0 and satis�esthe following conditions T1 + 2C 01 < T2 + R2 � 2T1 (25)C 01 � R2 < 2C 01 (26)In this case the processor is fully utilized ifC 02 = min T1 �R2; T2 � C 012 !Note that the Task 2 completes before the second arrival of Task 1 and so a fault occurrence duringthe execution of the second instance of Task 1 will be after its completion. If a fault occurs justprior to completion of the �rst instance of Task 1, then the completion time of Task 2 istc = 3C10 + C 02= 3C10 +min T1 �R2; T2 � C 012 !� 3C10 + T1 � R2� T1 + 2C10 + C10 �R2< T2 + R2 + C10 � R2 From Equation 25< T2 + C10< T2 + R2 From Equation 26If the fault occurs just prior to completion of Task 2, then,tc = R2 + 2C 02 + C10= R2 + 2min T1 �R2; T2 � C 012 !+ C 01� R2 + T2 � C 01 + C 01� T2 + R2When C 02 = T1 � R2, the utilization factor isU 0 = C 01T1 + T1 � R2T2> C 01T1 + T2 � 2C 01T1 From Equation 26> C 01T2 + T2 � 2C 01T1> 1� C 01T2> 0:5 26

T1 1.5T1T1/2

T1 T2+R21.5T1T1/2

T1 1.5T1T1/2

C1’

C1’ Recovery

C2’

C2’

C1’

C1’

C1’

C1’ RecoveryC2’

R2

R2

R2

T2+R2

T2+R2

2T1

2T1

C1’

C1’

2T1

C1’Figure 11: Two tasks considered in Lemma 10.If C 02 = (T2 � C 01)=2, then U 0 = C 01T1 + 12 � C 012T2> 0:5 2Lemma 10 The utilization factor is greater than 0.5 for a task set that fully utilizes the processorfor the �rst instance of Task 2 if the task set is such that T2 < 1:5T1, R1 = 0; R2 � 0 and satis�esthe following conditions 2T1 < T2 + R2 (27)C 01 � R2 < 2C 01 (28)Here, R2 + T2 is greater than 2T1, i.e., the deadline of Task 2 is beyond the arrival of the thirdinstance of Task 1 as shown in Figure 11. It is easy to observe thatR2 + T2 < 2T1 + C 01 (29)This means that even when the deadline is beyond 2T1, it is e�ectively prior to the completion timeof the third instance of Task 1. Hence, under all conditions when R2 + T2 > 2T1, Task 2 shouldcomplete before time 2T1 and that becomes its e�ective deadline. The value of C 02 that fully utilizesthe processor is C 02 = T1 �R2If the fault occurs just prior to the completion of the �rst instance of Task 1, thentc = 3C 01 + C 02= 3C 01 + T1 � R2� 3C 01 + T1 � C 01 From Equation 28= T1 + 2C 01< T1 + T1= 2T1 27

R1+T1 T2R1+T1/2

C1’ C1’

R1

T21 T22Figure 12: Two tasks considered in Lemma 12.and if the fault occurs just prior to the completion of Task 2, then tc = R2 + 2C 02 + C 01 = R2 +2T1 � 2R2 + C 01 � 2T1. The utilization factorU 0 = C 01T1 + T1 � R2T2> C 01T1 + T1 � 2C 01T2 From Equation 28> 0:5 2Lemma 11 The utilization factor is greater than 0.5 for a task set that fully utilizes the processorfor the �rst instance of Task 2 if the task set is such that T2 < 1:5T1, R1 = 0; R2 � 0 and satis�esthe following conditions 2C 01 < R2 (30)The �rst instance of the Task 2 can be modeled by the �rst instance of the Task 2 in the taskset f(C 01; T1; R1 = T1 �R2); (C 02; T2; R2 = 0)g. As we shall prove in Lemmas 12{14, the above taskset that fully utilizes the processor during the �rst instance of the Task 2 has a utilization factorgreater than 0.5. 2Case (ii): R1 > 0; R2 = 0Lemma 12 The utilization factor is greater than 0.5 for a task set that fully utilizes the processorfor the �rst instance of Task 2 if the task set is such that T2 < 1:5T1, R1 > 0; R2 = 0 and satis�esthe following conditions R1 + T1 � T2 (31)Two tasks that satisfy the conditions of this lemma are illustrated in Figure 12. Consider asplit of task 2 such that T2 = T21 + T22 such that T22 = T2 � R1 and T21 = R1. Consider a taskset S 0 = f(C 01; T1; 0); (C22; T22; 0)g that fully utilizes the processor. Since we have already provedin Lemmas 3{ 6 that when two tasks are released simultaneously, both tasks can meet their �rstdeadlines in the presence of a fault as long as their utilization factor is less than 0.5, i.e., theminimum achievable utilization is 0.5, thenC22T22 + C 01T1 � 0:528

and so C22 � 0:5� C 01T1 ! (T2 � R1)Thus the value of C 02 that fully utilizes the processor is such thatC 02 � R12 + C22The utilization factor is given byU 0 = C 01T1 + C 02T2� C 01T1 + R12T2 + C22T2� C 01T1 + R12T2 + 0:5� C 01T1! (T2 �R1)T2� C 01T1 + R12T2 + 0:5� R12T2 � C 01T1 + C 01R1T1T2� 0:5 + C 01R1T1T2� 0:5 2Lemma 13 The utilization factor is greater than 0.5 for a task set that fully utilizes the processorfor the �rst instance of Task 2 if the task set is such that T2 < 1:5T1, R1 > 0; R2 = 0 and satis�esthe following conditions R1 + T1 > T2 (32)R1 + 2C 01 < T2 (33)We notice that when the processor is fully utilized,C 02 � T2 � 2C 012The worst case scenario occurs when both the tasks have to be executed twice in the presence of asingle fault and so C 02 = (T2 � 2C 01)=2. In this case the completion time of task 2 istc = 2C 01 + 2C 02 = T2In all other cases, C 02 > (T2 � 2C 01)=2. Thus the utilization factor isU 0 = C 01T1 + C 02T2� C 01T1 + T2 � 2C 012T2� 0:5 + C 01T1 � C 01T2� 0:529

2Lemma 14 The utilization factor is greater than 0.5 for a task set that fully utilizes the processorfor the �rst instance of Task 2 if the task set is such that T2 < 1:5T1, R1 > 0; R2 = 0 and satis�esthe following conditions R1 + T1 > T2 (34)T2 � R1 + 2C 01 (35)Under the condition of this lemma given by Equation 35, if a fault occurs during the executionof task 1, the completion of recovery will occur after the deadline of the task 2 has passed. So, inthe absence of faults, the task 2 should complete execution before task 1 arrives at time instantR1. Also if T2 � R2+C 01, then the task 2 should be completed before R1 even in the presence of afault occurrence during task 2. Thus the value of the computation time of task 2 that fully utilizesthe processor is C 02 � R12The utilization factor U 0 = C 01T1 + C 02T2� C 01T1 + R12T2� C 01T1 + T2 � 2C 012T2 From Equation 35� 0:5 + C 01T1 � C 01T2� 0:5 2
30

