
[16] C. G. Plaxton, B. Poonen, and T. Suel. Improved lower bounds for Shellsort. InProceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science,pages 226{235, October 1992.[17] C. G. Plaxton and T. Suel. A lower bound for sorting networks based on the shu�epermutation. In Proceedings of the 4th Annual ACM Symposium on Parallel Algorithmsand Architectures, pages 70{79, June 1992. To appear in Mathematical Systems Theory.[18] V. R. Pratt. Shellsort and Sorting Networks. PhD thesis, Stanford University, Depart-ment of Computer Science, December 1971. Also published by Garland, New York,1979.[19] K. Sado and Y. Igarashi. Some parallel sorts on a mesh-connected processor array.Journal of Parallel and Distributed Computing, 3:389{410, 1986.[20] I. D. Scherson and S. Sen. Parallel sorting in two-dimensional VLSI models of compu-tation. IEEE Transactions on Computers, 38:238{249, 1989.[21] R. Wanka. Fast general sorting on meshes of arbitrary dimension without routing. Tech-nical Report TR{RI{91{087, Department of Computer Science, University of Pader-born, August 1991.

23

References[1] M. Ajtai, J. Koml�os, and E. Szemer�edi. Sorting in c log n parallel steps. Combinatorica,3:1{19, 1983.[2] K. E. Batcher. Sorting networks and their applications. In Proceedings of the AFIPSSpring Joint Computer Conference, vol. 32, pages 307{314, 1968.[3] V. Chv�atal. Lecture notes on the new AKS sorting network. Technical Report DCS{TR{294, Department of Computer Science, Rutgers University, 1992.[4] P. F. Corbett and I. D. Scherson. Sorting in mesh connected multiprocessors. IEEETransactions on Parallel and Distributed Systems, 3:626{632, 1992.[5] R. E. Cypher. A lower bound on the size of Shellsort sorting networks. SIAM J.Comput., 22:62{71, 1993.[6] R. E. Cypher. Theoretical aspects of VLSI pin limitations. SIAM J. Comput., 22:58{63,1993.[7] R. E. Cypher and C. G. Plaxton. Deterministic sorting in nearly logarithmic time onthe hypercube and related computers. JCSS, 47:501{548, 1993.[8] M. Dowd, Y. Perl, L. Rudolph, and M. Saks. The periodic balanced sorting network.JACM, 36:738{757, 1989.[9] M. Kik, M. Kuty lowski, and G. Stachowiak. Periodic constant depth sorting networks.In Proceedings of the 11th Symposium on Theoretical Aspects of Computer Science,pages 201{212, February 1994.[10] D. E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, Reading,MA, 1973.[11] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,and Hypercubes. Morgan-Kaufmann, San Mateo, CA, 1991.[12] F. T. Leighton and C. G. Plaxton. A (fairly) simple circuit that (usually) sorts. InProceedings of the 31st Annual IEEE Symposium on Foundations of Computer Science,pages 264{274, October 1990.[13] F. T. Leighton and C. G. Plaxton. Hypercubic sorting networks. Unpublishedmanuscript, August 1993.[14] M. S. Paterson. Improved sorting networks with O(logN) depth. Algorithmica, 5:75{92,1990.[15] C. G. Plaxton. A hypercubic sorting network with nearly logarithmic depth. In Pro-ceedings of the 24th Annual ACM Symposium on Theory of Computing, pages 405{416,May 1992. 22

natural class of algorithms including the Sharesort algorithm of Cypher and Plaxton [7].Another possible direction for future research would be to consider other restricted classesof sorting networks. As a natural extension of the hypercubic networks, we could de�ne theclass of generalized hypercubic networks, whose structure corresponds to the class of algo-rithms on the hypercube where in each step communication only occurs across a singledimension, but the sequence of dimensions can be arbitrary. (Note that this class of algo-rithms cannot be emulated with constant slowdown on any of the bounded-degree variantsof the hypercube.) Other classes of interest would be sorting networks based on a singlepermutation, or periodic sorting networks [8, 9].Finally, it is an open problem whether our lower bound technique can also be applied toselection networks.

21

the class of ascend algorithms to multi-dimensional meshes. In an ascend algorithm on ad-dimensional mesh of side length m, the dimensions are visited in strictly ascending order.Whenever we visit a dimension, we perform m steps of communication across this dimension.Thus, in a single visit to a dimension, we can completely sort the elements in each lineararray along that dimension. Note that this class of algorithms corresponds to the classof sorting networks built from m-input comparator gates, where consecutive levels of thenetwork are connected by an m-way unshu�e permutation (as de�ned in the register modelof a comparator network).An example of an ascend algorithm on the two-dimensional mesh is the Shearsort algo-rithm [19, 20], which alternatingly sorts along the rows and along the columns. Recently,Corbett and Scherson [4] and Wanka [21] have described two di�erent generalizations of thisalgorithm to meshes of arbitrary dimension. Both of the algorithms can be implemented asascend algorithms, and they achieve a running time of O(d2m lgm) on the d-dimensionalmesh of sidelength m. Using the techniques in this paper, we can show a lower bound ofO(d2m lgm= lg(dm)) for the class of ascend sorting algorithms on multi-dimensional meshes(assuming, as before, that the algorithms are comparison-based, and that no copying ofelements is allowed). For meshes with nonconstant dimension, this implies that no ascendalgorithm can achieve an asymptotically optimal running time.Similarly, we can de�ne natural extensions of the classes of normal algorithms, andnormal algorithms with overlap, to multi-dimensional meshes. Using our proof techniques,we can show lower bounds for these classes that improve asymptotically on the distancebound. We will further elaborate on these results in the full paper.Finally, note that our lower bounds do not apply to probabilistic sorting networks, thatis, networks that sort the vast majority of input permutations, but are not sorting networksin the strict sense. In fact, Leighton and Plaxton [12] have designed a hypercubic comparatornetwork of depth O(lg n) that sorts all but a super-polynomially small fraction of the inputs.Similarly, we cannot hope to extend our lower bounds to \randomized" sorting networks,which may contain additional \randomizing" circuit elements that interchange the inputvalues with probability 1=2, and leave them unchanged otherwise. In [12], Leighton andPlaxton show how to construct a randomized hypercubic network of depth O(lg n) thatsorts every input permutation with high probability.6 Concluding RemarksIn this paper, we have established an
 � lgn lg lgnlg lg lgn � lower bound on the depth of hypercubicsorting networks. Our techniques also apply to certain restricted classes of non-oblivioussorting algorithms on hypercubes and multi-dimensional meshes. A gap remains betweenour lower bound and the best upper bound known, and it would certainly be an interestingimprovement to narrow or close this gap.An important open question is whether we can extend our lower bounds to more generalclasses of non-oblivious sorting algorithms on the hypercube. Of particular interest in thisrespect would be the class of normal comparison-based sorting algorithms, or any other20

� s40 � s41 � 29��(`;s)�4 lg s� s4 � 24 lg s � 29��(`;s)�4 lg s= s4 � 29��(`;s):2Theorem 4.1 Any n-input hypercubic sorting network has depth
 � lgn lg lgnlg lg lgn �.Proof: Let � be an n-input hypercubic network of depth `, n = 2d. Then we can partition� into k = d`=de consecutive hypercubic networks �i, 0 � i < k, with depth `i and spansi � d.Let � be a network containing no comparator elements at all. Clearly, � belongs to�
 �, and � has an incomparable set of size n. We now apply Lemma 4.1 once for eachnetwork �i, 0 � i < k. It follows that there exists an incomparable set of size n0 in �, suchthat nn0 = Y0�i<k s4i � 2� 9(`i�si=2)lg si= lg lg si� � 2(9`lg d= lg lg d);for d su�ciently large. Hence, if ` < 9 � d lg d= lg lg d, then n0 > 1, and it follows that �cannot be a sorting network. 25 ExtensionsThis section discusses a few implications and extensions of our results.First, we point out that the proof of our lower bound also holds for certain restrictedclasses of non-oblivious sorting algorithms on hypercubic machines. More precisely, we canallow our sorting networks to be adaptive in the following sense: If we write the network as asequence of pairs (�i; ~xi), then the labeling ~xi of the ith level with elements from f+;�; 0; 1gcan depend on the outcome of all the comparisons made in all previous levels. Recall thatin our lower bound arguments, it was never assumed that the labeling is �xed beforehand;instead, in every level, we allowed the \adversary" to choose the labeling in an arbitraryway. Hence, the validity of the argument is not a�ected by allowing the construction of thenetwork to be adaptive.Note that this model of a non-oblivious comparator network is quite powerful, andthat it allows, for instance, the on-line routing of permutations in logarithmic time (wherethe permutation to be routed can be an arbitrary function of the outcomes of all previouscomparisons in the network). Similarly, we can also show that our lower bounds still hold inthe case where a node can hold more than one element, provided that elements cannot becopied. It is unclear whether our techniques can be extended to a model where copying ofelements is allowed.We can also extend our lower bounds to some restricted classes of sorting algorithmson multi-dimensional meshes. In [21], Wanka describes the following natural extension of19

where x def= �(`0; s0) + �(`1; s1). Using minfs0; s1g � r, maxfs0; s1g � s, and Equa-tion (1) we obtainmin(lg s0lg lg s0 ; lg s1lg lg s1) � lg rlg lg s� 1lg lg s � lg 9s2 lg s= lg lg s!� 1lg lg s � lg slg s!= lg slg lg s � 1 � lg lg slg s ! :Using this bound, and the fact that 1=(1� �) � 1 + 2� holds for � = lg lg s= lg s < 1=2,we obtainx � `0 � s0=2lg s= lg lg s + `1 � s1=2lg s= lg lg s! 11� lg lg s= lg s!� `0 � s0=2lg s= lg lg s + `1 � s1=2lg s= lg lg s! (1 + 2 lg lg s= lg s)= `0 � s0=2lg s= lg lg s + `1 � s1=2lg s= lg lg s + (`0 � s0=2 + `1 � s1=2) � 2 lg lg slg s !2= ` � s=2 � r=2lg s= lg lg s + (` � s=2� r=2) � 2 lg lg slg s !2� �(`; s) � r2 lg s= lg lg s + (`� s=2) � 2 lg lg slg s !2 :Note that Equation (1) implies ` � s=2 < r lg s9 lg lg s;and hence x � �(`; s) � r2 lg s= lg lg s + 2r9 lg s= lg lg s= �(`; s) � 5r18 lg s= lg lg s� �(`; s) � 5s4(lg s= lg lg s)2� �(`; s) � 4 lg s9 ;where the last two inequalities follow from Equation (1) and s > 216, respectively.Using maxfs0; s1g � s we obtain�� 0 � s40 � s41 � 29x18

4 A Lower Bound for Hypercubic NetworksIn this section we establish our main result, a lower bound on the depth of arbitrary hyper-cubic sorting networks. In order to prove the result, we need one more lemma. Informally,Lemma 4.1 below states that we can maintain a fairly large incomparable set over the levelsof any hypercubic network. The proof of the lemma is based on the idea that any hyper-cubic network with depth ` either has a small overlap relative to `, or can be (recursively)partitioned into several consecutive networks satisfying this property. In the �rst case, wecan use Lemma 3.6 to bound the size of the incomparable set. The second case is handledby induction.Lemma 4.1 Let � be a hypercubic network with depth ` and span s � d, let �(`; s) def=(`� s=2)=(lg s= lg lg s), and let � be an arbitrary comparator network with an incomparableset of size �. Then any network in �
� has an incomparable set of size � 0, where��0 � s4 � 29��(`;s):Proof: The proof is by induction on the depth ` of the network.Base Case: ` � 216Using s � ` � 216, we obtain lg s= lg lg s � 4 and9 � �(`; s) � 9 � `=24 � ` � r:Then the claim follows by a simple application of Lemma 3.6.Induction Step: ` > 216For the induction step, we assume a hypercubic network � with depth `, overlap r,and span s � d. Now suppose that r � 9 � �(`; s). In this case, the claim follows by asimple application of Lemma 3.6.Hence, in the following we assume thatr > 9 � �(`; s) � 9s2 lg s= lg lg s: (1)Note that s � r > 9 � �(`; s) and ` > 216 imply s > 216 and lg lg s= lg s < 1=4.Due to the de�nition of overlap, there exist hypercubic networks �i, 0 � i < 2, withdepth `i and span si, such that � belongs to �0
�1, `0 + `1 = `, and s0 + s1 = s+ r.By applying the induction hypothesis �rst to � and �0 , and then to �
�0 and �1,we obtain �� 0 � s40 � 29��(`0;s0) � s41 � 29��(`1;s1)= s40 � s41 � 29x;17

2Lemma 3.6 Let � be a 2d-input hypercubic network with span s � d and overlap r, andlet � be an arbitrary comparator network with an incomparable set of size �. Then anynetwork in �
� has an incomparable set of size �0 � �s4�2r .Proof: According to De�nition 3.9, there exists an input pattern p0 such that some [Mi0]-set C of p0 is of size � and is non-colliding in � under p0. By Lemma 3.4, we can assumethat i0 = 0, and that p0 contains only the symbols S0, M0, and L0.Every 2d-input hypercubic network with span s � d and overlap r is equivalent to a(d; s; r)-hypercubic network. Hence, we can apply Lemma 3.5 to �. Let k = s, p = �(p0),and A be the [M0]-set of p. Then by Lemma 3.5, there exists an input pattern q with p �A qand t(s) � 2s3 � 2r disjoint sets Mi, 0 � i < t(s) of input wires of � such that� every Mi is the [Mi]-set of q,� every Mi is non-colliding in � under q,� B � A, and� jBj � � � (1� 1=s),where B def= S0�i<t(s)Mi. By averaging, there exists a set Mj0 , 0 � j0 < t(s), of size at leastjBj2s3 � 2r � �s4 � 2r ;where the inequality follows from the fact that 12(1 � 1=s) � 1=s for s � 3. (For s < 3,the claim follows from �0 � �=2s.) By Lemma 3.3, there exists an input pattern q0 withp0 �C q0 such that q = �(q0) and the [Mj0]-set of q0 is non-colliding in �
 � under q0.Since q = �(q0), the [Mj0]-set of q0 also contains at least �s4�2r elements. 2The following lemma can be established by partitioning a hypercubic network of overlapr and depth ` into d`=de consecutive hypercubic networks of overlap r and depth at most d,and applying Lemma 3.6 to each of the networks.Lemma 3.7 Let � be an n-input hypercubic network with depth ` and overlap r � d = lg n.Then � has an incomparable set of size at leastn`4 � 2rd`=de :Lemma 3.7 immediately implies the following lower bound for hypercubic networks withbounded overlap. Note that for the special case r = 0, we obtain the result in [17]. However,if the overlap is �(d), we only get the trivial
(lg n) lower bound.Theorem 3.1 Any n-input hypercubic sorting network with overlap r has depth
 � lg2 nr+lg lgn�.16

� jAj � (s� r � 1) � jAjk2 � jB0jk2� jAj � (s� r) � jAjk2To complete our proof, we construct a re�nement q of p such that Properties (1), (2),and (5) hold for q and the sets Mj . We do this by A0-re�ning q0 to some q00 and A1-re�ning q1 to some q01. Then p0 �A0 q00 and p1 �A1 q01, and by Lemma 3.1 the patternq def= q00 � q01 is an A-re�nement of p.We re�ne q0 to q00 in the following steps:1. First change all pattern symbols Mi and Xi;j with i � t(s � 1) to Mi+k2 andXi+k2;j, respectively.2. Then change the pattern symbols of all wires in Ci;i�i0 with i0 � i < t(s � 1) toXi;j0, where j0 is chosen such that before this step only symbols Xi;j with j < j0appear in the pattern.The steps for the re�nement of q1 to q01 are:10. First change all pattern symbols Mi and Xi;j with i � t(s� 1) + i0 to Mi+k2 andXi+k2;j, respectively.20. Then change all pattern symbols Mi and Xi;j with 0 � i < t(s� 1) to Mi+i0 andXi+i0 ;j, respectively.All re�nement steps described above are order-preserving renamings and, thus, validre�nement steps. Steps 1 and 10 remove all symbolsMi and Xi;j with t(s�1) � i < t(s)from the patterns. Then Steps 2 and 20 can be executed to perform the matchingbetween the sets M0;i and M1;j. Note that Steps 1 and 10 are not really necessary sincewe can assume that the patterns q0 and q1 themselves have been constructed using theabove re�nement steps, and hence that no symbols Mi and Xi;j with t(s�1) � i < t(s)exist in the pattern. However, in order to simplify our induction hypothesis, we havechosen not to make this assumption.The pattern q = q00 � q01 has been constructed such that the sets Mi are the [Mi]-setsof q, so Property (1) is satis�ed.To see that Property (2) holds, note that Ci;j, the set of input wires of M0;i that collidewith an input wire of M1;j in � under q0 � q1, also contains the same colliding wireswith respect to q = q00 � q01. The sets M0;i are non-colliding in �0 under q00 and, thus,also non-colliding in � under q. Similarly, the sets M1;j are non-colliding in � underq. Hence, Mj = (M0;j n Cj;j�i0) [M1;j�i0is non-colliding in � under q.Finally, note that no two elements of any [Mi]-set of �(q) are in the same outputgroup of �, due to the construction of the sets Mi and the pattern q. This establishesProperty (5). 15

each w in M0;i (resp., M1;i) the output group of �0 (resp., �1) containing the outputwire w0 that receives the value �(w) under all � in q0[V] (resp., q1[V]). Thus, anyelement in a set M0;i can collide with at most 2r elements from the sets M1;j, and viceversa.For 0 � i; j < t(s� 1), we de�ne Ci;j as the set of all wires w0 in M0;i that can collidewith some w1 in M1;j in � under q0 � q1.For 0 � i < k2 � 2r and 0 � j < t(s), we de�neM(i; j) def= 8>>><>>>: M0;j 0 � j < i,(M0;j n Cj;j�i) [M1;j�i i � j < t(s� 1),M1;j�i t(s� 1) � j < t(s� 1) + i, and; t(s� 1) + i � j < t(s).By their construction, the sets M(i; j) are non-colliding in � under q0 � q1. If we letLi def= Si�j<t(s�1) Cj;j�i for 0 � i < k2, then[0�j<t(s)M(i; j) = (B0 n Li) [B1:Note that the Ci;j's are not pairwise disjoint. However, every element of B0 can occurat most 2r times in the sets Ci;j. Thus, every element of B0 can occur at most 2rtimes in the sets Li. Hence, by averaging there exists an i0, 0 � i0 < k2 � 2r, such thatjLi0j � jB0jk2 . We use this i0 to determine the partial matching between the M0;i's andthe M1;j's.More precisely, for all j such that 0 � j < t(s), we match the set M0;j with the setM1;j�i0 to obtain a new set Mj def= M(i0; j). (Here we assume M0;i and M1;i to be theempty set for i < 0 and i � t(s� 1).) Thus, the new set Mj is obtained by removingthe wires in Cj;j�i0 from M0;j, and merging the resulting set with M1;j�i0. We nowshow that this choice of Mj satis�es Properties (3) and (4). We haveB def= [0�j<t(s)Mj= (B0 n Li0) [B1� B0 [B1� A0 [A1= A:This establishes Property (3). Verifying Property (4) is also straightforward:jBj = jB0j+ jB1j � jLi0 j� jA0j � (s� r � 1) � jA0jk2 + jA1j � (s� r � 1) � jA1jk2 � jLi0j= (jA0j+ jA1j) 1� (s� r � 1)k2 !� jLi0j14

(3) B � A.(4) jBj � jAj � (s�r)�jAjk2 .(5) No two elements of any [Mi]-set of �(q) are located in the same output group of �.Proof: The proof is by induction on s� r.Base Case: s� r = 0In this case the network � does not contain any comparator elements. We de�ne thesets Mi, 0 � i < t(0), by partitioning A into 2r � k3 sets such that no two elements inany set are located in the same output group. (Each output group has size 2r � 2r �k3,so this is clearly possible.) If we set q = p, then Properties (1) to (5) are satis�ed.Induction Step: s� r > 0A (d; s; r)-hypercubic network consists of two (d� 1; s� 1; r)-hypercubic networks �0and �1, and a network � satisfying the conditions of De�nition 3.4. The input wiresW of � can be partitioned into the sets W0 and W1 of input wires of �0 and �1,respectively. Let p0 def= pjW0 and p1 def= pjW1 . Then A0 def= A \W0 is the [M0]-set of p0and A1 def= A \W1 is the [M0]-set of p1.Applying the induction hypothesis to �0, p0, and A0, we can infer the existence of aninput pattern q0 with p0 �A0 q0, and of t(s � 1) disjoint sets M0;i, 0 � i < t(s � 1),such that� every M0;i is the [Mi]-set of q0,� every M0;i is non-colliding in �0 under q0,� B0 � A0,� jB0j � jA0j � (s�r�1)�jA0jk2 , and� no two elements of any [Mi]-set of �0(q0) are located in the same output groupof �0,where B0 def= S0�i<t(s�1)M0;i.Correspondingly, for �1, p1, and A1, we get an input pattern q1, disjoint sets M1;i,0 � i < t(s� 1), and a set B1, with the same properties.We will now construct the sets Mi, 0 � i < t(s), by combining the sets M0;i of �0with the sets M1;j of �1, according to some partial matching to be determined in thefollowing.Because no [Mi]-set of �0(q0) (resp., �1(q1)) contains any two elements that arelocated in the same output group of �0 (resp., �1), no element of any set M0;i (resp.,M1;i) can collide with any other element of the same set in �.Also, due to the topology of a (d; s; r)-hypercubic network, no element of a set M0;i cancollide in �0��1 with any element of a set M1;j. By Lemma 3.2, we can determine for13

Lemma 3.2 Let � be a comparator network, p be an input pattern for �, and A be the[Mi]-set of p. If A is non-colliding in � under p, then for every input wire w in A thereexists a unique output wire w0 such that �(w) = �(�)(w0) holds for all � in p[V].Informally, the above lemma states that an input value on a wire w in a non-colliding[Mi]-set follows the same \path" through the network under all inputs in p[V]. The proof ofthe lemma is by a simple induction on the depth of the network. This one-to-one correspon-dence between the input and output wires of a non-colliding [Mi]-set is also the underlyingidea in the next lemma.Lemma 3.3 Let � be a comparator network in �0
 �1, i be a nonnegative integer, andp be an input pattern for �0 such that its [Mi]-set A is non-colliding in �0 under p. Letq def= �0(p) be an input pattern for �1 and B be the [Mi]-set of q. Then for every q0 withq �B q0 there exists a p0 with p �A p0 such that q0 = �0(p0). Furthermore, if the [Mi]-set ofq0 is non-colliding in �1 under q0, then the [Mi]-set of p0 is non-colliding in � under p0.To verify the validity of the �nal lemma, note that the paths taken by the Mi-symbolsthrough a network are not changed if we rename the rest of the symbols in the way describedin the lemma.Lemma 3.4 Let � be a comparator network, p be an input pattern for �, and A be the[Mi]-set of p. Let �i(p) be the input pattern obtained from p by changing all pattern symbolsP with P <P Mi to S0, all pattern symbols P with Mi <P P to L0, and all pattern symbolsMi to M0. If A is non-colliding in � under p, then A is also non-colliding in � under �i(p).3.4 The Main LemmaIn this subsection, we establish our main lemma on the size of the incomparable set ina hypercubic network with small overlap. The main technical di�culty is in the proof ofLemma 3.5, which establishes the existence of a pattern p with a \large" [M0]-set that isnon-colliding in a single (d; s; r)-hypercubic network under p. By a direct application, wealso obtain a strong lower bound for hypercubic sorting networks with bounded overlap thatgeneralizes the result in [17].Lemma 3.5 Let � be a (d; s; r)-hypercubic network with r � s � d, and p be an inputpattern for � such that only the pattern symbols S0, L0, and M0 occur in p. Let A bethe [M0]-set of p, and k be any positive integer. Then there exists an input pattern q withp �A q and t(s) def= 2r � k3 + 2r � (s� r) � k2 sets Mi, 0 � i < t(s), of input wires such that thefollowing properties hold, where B def= S0�i<t(s)Mi:(1) Every Mi is the [Mi]-set of q.(2) Every Mi is non-colliding in � under q.12

The ordering <P on P is de�ned by Si <P Si+1;Si <P X0;0;Xi;j <P Xi;j+1;Xi;j <P Mi;Mi <P Xi+1;0;Mi <P Lj ; andLi+1 <P Li;for all nonnegative integers i, j.De�nition 3.8 For a pattern p and a pattern symbol P we de�ne the [P]-set of p as theset fw 2 W : p(w) = Pg.De�nition 3.9 We say that a comparator network � has an incomparable set of size m ifthere exists an input pattern p and an integer i such that the [Mi]-set of p is of size m andis non-colliding in � under p.We can now formally describe our proof strategy: To prove that a network � is not asorting network, we will show that the network has an incomparable set of size at least 2.The input pattern p associated with the incomparable set can then be re�ned to an inputsuch that the wires in the [Mi]-set contain adjacent input values; this implies that � does notsort all inputs in p[V]. The input pattern p will be constructed using stepwise re�nement,starting out with a pattern containing only the symbol M0.3.3 Basic LemmasThe following lemmas will be used in our lower bound argument. Their proofs are fairlystraightforward and we will only sketch some of the proof ideas.Lemma 3.1 Let p be an input pattern on W such that only the pattern symbols S0, M0,and L0 appear in p. Let W0 and W1 be disjoint subsets of W with W = W0 [W1 and letA be the [M0]-set of p. Let q0 and q1 be input patterns on W0 and W1, respectively, withS0 <P q0(w); q1(w) <P L0 for all w in A. Then from pjW0 �A\W0 q0 and pjW1 �A\W1 q1, wecan infer p �A q0 � q1.This lemma ensures that, given an input pattern p for a network � = �0 � �1, weobtain a re�nement of p if we separately re�ne the input patterns pjW0 for �0 and pjW0 for�1 according to the above rules, where W0 and W1 are the sets of input wires of �0 and �1,respectively. 11

Given a network � and an input �, we can always determine whether two input valuesare compared or not. (Recall that we only consider inputs that are permutations.) This isnot the case for input patterns, since an input pattern can contain several occurences of thesame pattern symbol. This motivates the following de�nition of collision for input patterns:De�nition 3.7 Let � be a comparator network, let p be an input pattern for �, and let w0and w1 be two input wires of �.(a) We say that w0 and w1 collide in � under p if they collide in � under every input inp[V].(b) We say that w0 and w1 can collide in � under p if there exists an input in p[V] suchthat w0 and w1 collide in �.(c) We say that w0 and w1 cannot collide in � under p if there is no input in p[V] suchthat w0 and w1 collide in �.(d) A set U �W is called non-colliding in � under p if any two wires in U cannot collidein � under p.Example 3.3 Let W def= fw0; w1; w2; w3g, P def= fS;M;Lg, and let the ordering <P on Pbe given by S <P M <P L. Let the network � consist of a comparator between w1 andw2, followed by a comparator between w2 and w3, followed by a comparator between w0 andw3, where all comparators are directed towards the wire with the larger index. Then thefollowing holds under the input pattern p that maps w0 to S, w1 and w2 to M, and w3 to L:(1) Wires w1 and w2 collide in � under p since the very �rst comparator is between thesetwo wires.(2) Wires w1 and w3 can collide in � under p, since we can re�ne p to an input � thatassigns a larger value to w1 than to w2. In that case, the input value assigned to w1will be compared to that of w3 in the second comparator. Similarly, w2 can collidewith w3 in � under p.(3) Wires w0 and w3 collide in � under p, since no exchange can occur in the secondcomparator of the network under any input � with p �W �. Also, w0 and w1 (resp.w2) cannot collide in � under p.Note that, if two wires collide (cannot collide) in some network � under an input patternp, then they also collide (cannot collide) in � under any re�nement p0 of p. Similarly, if aset U is non-colliding in � under p, then it is also non-colliding in � under p0. The propertycan collide is not preserved under arbitrary re�nement.In the following we restrict our attention to a �xed pattern alphabet P which is usedthroughout the lower bound argument:P def= fSi;Xi;j;Mi;Li : i; j � 0g:10

span s � d and overlap r. Note that the 2d output wires of a (d; s; r)-hypercubic networkare partitioned into 2d�r output groups of size 2r.De�nition 3.4 For r � s � d, a 2d-input comparator network � is called a (d; s; r)-hypercubic network if:(a) s � r = 0, � is a network containing no comparators at all (i.e., the 2d input wiresare directly connected to the 2d output wires), and the output wires of � have beenpartitioned into 2d�r output groups of size 2r, or(b) s� r > 0 and � is an element of (�0 ��1)
 �, where� �0 and �1 are (d� 1; s� 1; r)-hypercubic networks, and� � is the parallel composition of 2d�r�1 disjoint 2r+1-input comparator networks�i, 0 � i < 2d�r�1, of arbitrary size and depth, such that: (i) the 2r+1 input wiresof each network �i are connected to one output group of size 2r of �0 and oneoutput group of size 2r of �1, and (ii) the 2r+1 output wires of each network �iare partitioned to form two of the 2d�r output groups of network �.A comparator network � was identi�ed with a mapping from the set of inputs to the setof outputs. The following de�nition extends � to a function from the set of input patternsto the set of output patterns. (An output pattern is a mapping from the set of output wiresto the set of pattern symbols.)De�nition 3.5 Given a comparator network �, an input pattern p0, and an output patternp1 such that p1(W) = p0(W), we de�ne�(p0) = p1 , �(p0[V]) = p1[V]:Note that this de�nition characterizes the behavior of a comparator network on an inputpattern in the way we would expect: If two pattern symbols P0 and P1 arrive on the inputwires of a comparator gate, then the symbol that is larger according to the ordering <P willappear on the max-output of the gate, and the smaller one will appear on the min-output.This implies that any set of inputs that can be expressed by an input pattern will producea set of outputs that can be expressed by an output pattern.De�nition 3.6 We say that two input wires w0 and w1 collide in a network � under aninput � if the input values �(w0) and �(w1) are compared in � when � is given as input.According to the above de�nition, two wires whose respective values meet in a noncom-parator element, that is, a \0" (do nothing) or \1" (exchange) switch, are not regarded ascolliding. In the rest of the paper, we do not have to distinguish between the di�erent circuitelements any more, since the entire lower bound argument is based on the notion of collisionintroduced above and extended to input patterns in the following.9

(b) We say that p can be U -re�ned to q (written p �U q) if p �W q and p(w) = q(w) holdsfor all w in W n U .De�nition 3.3 Let U0 and U1 be disjoint subsets of W , p0 be an input pattern on U0, andp1 be an input pattern on U1. Then q = p0 � p1 is the input pattern on U0 [U1 such thatqjU0 = p0 and qjU1 = p1.If for two patterns p0 and p1 both p0 �W p1 and p1 �W p0 hold, then we say that p0and p1 are equivalent. In this case, we have p0[V] = p1[V], and the re�nement steps fromp0 to p1 and vice versa can be achieved by simply renaming the pattern symbols in a waythat preserves the ordering <P . Hence, we call this special case of a re�nement step anorder-preserving renaming.Example 3.2 Let W def= fw0; : : : ; wn�1g and P def= fPi : i � 0g with Pi <P Pi+1 for all i � 0.Then any input pattern p is equivalent to the input pattern pk, k � 0 obtained from p bysubstituting every pattern symbol Pi in p by Pi+k, for all i.3.2 Comparator NetworksWe now further formalize our notion of a comparator network, and explain how its domainof operation can be extended from the set of inputs to the set of input patterns.In the following, a comparator network is interpreted as a mapping from a set of possibleinputs to a set of possible outputs. More precisely, a comparator network � on input wiresW and output wires W 0 de�nes a mapping (which we also denote by �) from (W 7! V) to(W 0 7! V) such that every input � : W 7! V is mapped to an output �0 : W 0 7! V that isa \permutation" of �. By this we mean that there exists a bijection � : W 7! W 0 such that�(w) = �0(�(w)) holds for all w in W .Let ��0, ��1 be two sets of n-input comparator networks. Then ��0
��1, the serial compo-sition of ��0 and ��1, denotes the set of all networks � that can be obtained by connecting theoutput wires of a network from ��0 to the input wires of a network from ��1. In some cases,we may want to impose certain special conditions on this connection between the outputwires of the �rst network and the input wires of the second network. If no conditions arestated, then the connections can be made according to an arbitrary one-to-one mapping. Asit happens, we often make use of the serial composition operator in the context of singletonsets ��0 and ��1. In such a case, we may write, for example, �0
 �1 (where �0, �1 arenetworks) rather than f�0g
 f�1g.Given two comparator networks �0 and �1 on disjoint sets of input and output wires,we obtain the parallel composition of �0 and �1 as the union of the two networks, written�0��1. The set of input (output) wires of �0��1 is the union of the sets of input (output)wires of �0 and �1.Below we give an inductive de�nition of a class of comparator networks, called (d; s; r)-hypercubic networks, which properly contains the class of 2d-input hypercubic networks with8

describes a set of inputs with certain common properties. Input pattern re�nement is theprocess of imposing additional constraints on such a set of inputs.De�nition 3.1 Let P be a set and <P be a total ordering on P .(a) An input pattern is a total mapping from W to P .(b) Let p0, p1 be two input patterns. We say that p0 can be re�ned to p1 (written p0 �W p1)if (p0(w) <P p0(w0))) (p1(w) <P p1(w0)) holds for all w and w0 in W .(c) Let p be an input pattern and � be an input. We say that p can be re�ned to � (writtenp �W �) if (p(w) <P p(w0))) (�(w) < �(w0)) holds for all w and w0 in W .The set P will be referred to as the pattern alphabet, and the elements of P are calledpattern symbols. Throughout this paper, pattern symbols are denoted by script letters.Example 3.1 Let W def= fw0; : : : ; wn�1g, P def= fS;M;Lg, and let the ordering <P on P begiven by S <P M <P L. (Informally, the symbols S, M, and L may be interpreted as\Small", \Medium", and \Large", respectively.) Then the input pattern p assigning L tow0 and w1 and M to all other wires can be re�ned to all inputs that assign the two largestvalues to w0 and w1. We could also re�ne p to other input patterns, for example to a patternp0 such that L is assigned to w0 and w1, S is assigned to w2, and M is assigned to all otherwires. The new pattern p0 can itself be re�ned to all inputs that assign the largest values tow0 and w1, and the smallest value to w2.The relation �W de�ned above is a partial ordering on the set of input patterns. Notethat the set V of input values can be regarded as a special case of a pattern alphabet withthe ordering of the natural numbers. Every pattern can be re�ned to some input, and wecould assume that the pattern alphabet P is always a subset of V . The pattern-to-patternre�nement in Part (b) of De�nition 3.1 would then become a special case of the pattern-to-input re�nement in Part (c). However, in the following we will not restrict our choice of Pto subsets of V . We will see that this gives us more power of expression and, thus, simpli�esthe presentation of the proof.We usually think of an input pattern p as a description of the set of inputs to which pcan be re�ned. This set is denoted p[V] def= f� : � is an input such that p �W �g. When were�ne a pattern p0 to p1, then we are imposing additional constraints on this set of inputs.Formally, we have (p0 �W p1) , (p0[V] � p1[V]). Alternatively, the reader may also viewan input pattern p as a shorthand for a logical predicate that holds for exactly the inputs inp[V].De�nition 3.2 Let p and q be input patterns on W , and let U be a subset of W .(a) The input pattern pjU on U is the restriction of p to U .7

a trade-o� between the overlap of the network and the lower bound that can be shown.Second, we show in Section 4 that any hypercubic network can be partitioned into anumber of consecutive hypercubic networks such that the overlap of each network in thepartition is su�ciently smaller than its depth.3 Hypercubic Networks with Small OverlapIn this section, we show that a large incomparable set can be e�ectively maintained overthe levels of any hypercubic network with su�ciently small overlap. The main result of thissection is Lemma 3.6, which bounds the decrease in the size of the incomparable set thatcan occur in any 2d-input hypercubic network with span s � d and overlap r. This lemmais used in Section 4 to establish our lower bound for arbitrary hypercubic sorting networks.The actual argument addressing the size of the incomparable set is contained in theproof of Lemma 3.5, and is described with respect to a more general class of networks,called (d; s; r)-hypercubic networks, which properly contains the class of 2d-input hypercubicnetworks with span s and overlap r. The proof of Lemma 3.5 has a very similar structureto that of Lemma 4.1 in [17], and uses many of the techniques introduced in that paper.However, in addition to these techniques, we need some new ideas to establish the result.Most of the notations used in this section are taken from [17]. For the sake of complete-ness, we de�ne these notations again in the following subsections.The remainder of this section is organized as follows. In the �rst subsection, we introducethe concepts of input patterns and input pattern re�nement. Subsection 3.2 de�nes ournotion of a comparator network and its action on an input pattern, and introduces theclass of (d; s; r)-hypercubic networks. Subsection 3.3 lists a few basic lemmas. Finally,Subsection 3.4 contains the proof of the main lemma, and a lower bound on the depth ofhypercubic sorting networks with small overlap.In the following, unless explicitly stated otherwise, the set of input wires of a comparatornetwork is denoted W . An input to a comparator network is a total mapping from W to a setV of possible input values. We will restrict our attention to inputs � that are permutationsof f0; : : : ; n � 1g, i.e., where jW j = n, V = f0; : : : ; n � 1g, and � is one-to-one. The set ofall one-to-one functions from a set A to a set B will be denoted by (A 7! B), and so the setof all inputs of a given comparator network may be written as (W 7! V). Furthermore, fora function f on a set A and a subset B of A, let fjB denote the functional restriction of f toB. For two functions f0 and f1 on disjoint sets A0 and A1, we write f0� f1 for the union off0 and f1: (f0 � f1)(x) def= (f0(x) for all x in A0, andf1(x) for all x in A1.3.1 Input Patterns and Re�nementIn the following de�nitions, we introduce the notions of input patterns and input patternre�nement, which are fundamental to our proof technique. Informally, an input pattern6

have two di�erent collections of �(lg3 n) incomparable sets coming from two disjoint subnet-works. In [17], it is shown that there exists a partial matching between these two collectionsof sets such that, if we combine the sets according to the matching and remove one elementfrom every pair of elements from the same set that gets compared, we obtain a new collectionof incomparable sets while losing only a very small fraction of our elements. The number ofsets in this new collection is only slightly larger than the number of sets in either of the twoprevious collections. The aforementioned \disjointness property" of the two subnetworks isneeded at this point to make sure that the new sets in the collection each contain adjacentelements.If we repeat this process over all lg n levels of the buttery, then we end up with a singlecollection of �(lg3 n) incomparable sets. The total number of elements in the sets is only aconstant factor smaller than it was when we entered the buttery. If we pick the largest ofthe �(lg3 n) sets as our new incomparable set, then we only lose a polylogarithmic factor inthe size of the set.To formalize this proof idea, the notion of an input pattern representing a class of similarinputs was introduced in [17]. A class of inputs with the desired property (existence of alarge incomparable set) was then constructed by stepwise re�nement of a given input patternin every level of the network.2.3 Hypercubic Sorting NetworksThe above argument does not work for arbitrary hypercubic networks, as they do not satisfythe \disjointness property" of the two subnetworks used in the argument. In this paper, weovercome this obstacle, and derive a super-logarithmic lower bound for arbitrary hypercubicsorting networks. To do so, we introduce the class of hypercubic networks with \boundedoverlap".Assume we are given an arbitrary hypercubic network � with ` levels (�i; ~xi), 0 � i < `,as described in the register model of a comparator network. In order to de�ne the \span"and \overlap" of �, it is convenient to introduce a number of auxiliary variables. Let ai = 1if �i = �sh and ai = �1 if �i = ��1sh , 0 � i < `. (We remark that the value of a0 has noimpact on the de�nitions that follow.) Let bi = P1�j�i aj, 0 � i < `. The span of � maynow be de�ned as jfbi : 0 � i < `gj. The overlap of � is the minimum integer r � 0 suchthat either: (i) bi � bj + r for all 0 � i < j < `, or (ii) bi � bj � r for all 0 � i < j < `. Notethat a network has overlap 0 i� �i = �j for all 1 � i < j < `. Furthermore, the span ofa network is always at least as large as its overlap, with equality occurring only in the case` = 0, where the span and overlap are both 0.The proof of the lower bound in this paper is based on two main new ideas. First, weshow in Section 3 how the lower bound argument for shu�e-based networks can be modi�edto handle hypercubic networks with small overlap. The overall structure of this proof isvery similar to that in [17]. However, a number of subtle changes are required in order toextend the argument to networks with non-zero overlap. The modi�ed proof is based onthe observation that, informally speaking, a shu�e-based network with small overlap stillsatis�es some relaxed version of the \disjointness property". More precisely, we will exhibit5

fm;m + 1g must appear on the input wires of some comparator element. (We assume theinputs to be permutations of f0; : : : ; n�1g.) Thus, one might attempt to prove a lower boundof ` for the depth of a class of comparator networks by showing, for all networks in the class,the existence of an input permutation �, and of a set of adjacent values fm; : : : ;m + igin �, such that no two elements of the set are compared up to level ` of the network. Inthe following, we will call such a set an incomparable set. If we apply this proof idea to ahypercubic network, starting out with the set of all values as our incomparable set, and,whenever two elements of the set get compared, removing one of them from the set, then wemight lose up to half of the elements in any given level. So using this simple approach, wecould only show the trivial lower bound of
(lg n) for the depth of a sorting network.2.2 The Proof for Shu�e-Based Sorting NetworksThe key idea to overcome this problem is to modify the proof technique in a way that allowsus to exploit the structural properties of the particular class of networks that we are studying.To explain this idea, we �rst consider the proof of the lower bound for shu�e-based sortingnetworks in [17]; the case of the unshu�e-based networks is symmetric. Note that a shu�e-based network can be seen as a concatenation of a number of buttery networks of depthlg n each. Thus, if we can show that the size of our incomparable set decreases by at most apolylogarithmic factor in each buttery, then at least
(lg n= lg lg n) consecutive butteriesare needed in order to bring the size of the incomparable set down to 1; this directly impliesthe
(lg2 n= lg lgn) lower bound for shu�e-based sorting networks of [17].The following recursive de�nition of a buttery is crucial for understanding our prooftechnique: A buttery with 2d inputs and depth d consists of two parallel 2d�1-input butter-ies of depth d� 1, followed by a �nal level of up to 2d�1 comparators. Every comparator inthe �nal level takes one input from the outputs of each of the two 2d�1-input subnetworks.Finally, a 1-input buttery is just a wire. This \tournament-like" structure leads to thefollowing important property of a buttery: An observer of a 2d-input buttery tournamentwho sees the outcomes of all comparisons in the two 2d�1-input subnetworks, but not theoutcomes of the �nal level of comparisons, will not be able to say anything about the relativeordering of any two items taken from di�erent subnetworks. In other words, the observerwill not be able to say anything about the relative strength of the two \subtournaments"before the �nal stage. This \disjointness property" of the subnetworks plays a crucial rolein the lower bound argument of [17].Instead of maintaining only a single incomparable set, we now maintain a collection ofincomparable sets in each recursive subnetwork. More precisely, after entering a new butteryof depth lg n, we partition our current incomparable set into n lg3 n disjoint incomparablesets, most of which are empty, with lg3 n sets entering on each wire (recall that a single wireis a 1-input buttery). Thus, every 2-input buttery has two di�erent collections of lg3 nincomparable sets arriving on its two input wires. It is now possible to recombine these setsto get a new collection of roughly lg3 n incomparable sets, containing all of the elements ofthe two collections.More generally, due to the recursive structure of a buttery, in every level we recursively4

The study of shu�e-based sorting networks was proposed by Knuth [10, Exercise 5.3.4.47].The best upper bound for this class is given by Batcher's bitonic sort [2], with a depth ofO(lg2 n). A lower bound of
(lg2 n= lg lg n) was recently established by Plaxton and Suel [17].However, this lower bound does not extend to arbitrary hypercubic networks.The class of hypercubic sorting networks was de�ned by Leighton and Plaxton [13, 15],who show the existence of a family of hypercubic sorting networks with depth 2O(plg lgn) lg n.The construction of these networks is based on a \probabilistic" sorting network describedin [12], which sorts all but a super-polynomially small fraction of the possible input permu-tations. We point out that the depth of the above hypercubic networks is o(lg1+� n), for all� > 0, and that they represent the only known sorting networks of depth o(lg2 n) that arenot based on expanders. Naturally, this raises the question of whether a depth of O(lg n)can be achieved by any hypercubic sorting network.1.2 Overview of this PaperIn this paper, we resolve this question by showing a lower bound of
 � lgn lg lgnlg lg lgn � on thedepth of any hypercubic sorting network. Our lower bound also extends to certain restrictedclasses of non-oblivious sorting algorithms on hypercubic machines and multi-dimensionalmeshes. However, our lower bound argument does not allow the copying of elements by thealgorithm. Thus, the Sharesort sorting algorithm of Cypher and Plaxton [7], which achievesa running time of O(lg n lg lg n) (with preprocessing) on any of the hypercubic machines, isnot subject to our lower bound. Nonetheless, we believe that our present results are alreadyinteresting in their own right, and that they may constitute an important step towards moregeneral lower bounds for sorting on hypercubic machines.The remainder of the paper is organized as follows. Section 2 describes some of thebasic ideas underlying our lower bound argument. Section 3 establishes a lower bound fora restricted class of hypercubic networks. Section 4 then shows our general lower bound.Some possible extensions and implications of our results are discussed in Section 5. Finally,Section 6 lists some open questions for future research.2 Overview of the ProofIn this section, we give a very informal description of the most important ideas in the proofof our lower bound. To do so, we will �rst review the lower bound argument for shu�e-basednetworks given in [17], and explain why this relatively simple argument does not extend tothe more general class of hypercubic sorting networks. We will then describe the new proofideas that are needed in order to get a lower bound for arbitrary hypercubic sorting networks.2.1 A Naive Proof IdeaA simple observation concerning comparator networks is that a sorting network must performa comparison on every pair of adjacent values in every input, that is, every pair of values3

1.1 Hypercubic Sorting NetworksA comparator network is most commonly de�ned as an acyclic circuit of comparator elements,each having two input wires and two output wires. One of the output wires is labeled as themax-output, which receives the larger of the two input values; the other output is called themin-output, and receives the smaller value. We will use this model of a comparator networkthroughout most of the paper, but will also briey consider the following alternative model.In this model, a comparator network on n registers is determined by a sequence of pairs(�i; ~xi), 0 � i < `, where �i is a permutation of f0; : : : ; n � 1g and ~xi is a vector of lengthbn=2c over f+;�; 0; 1g. The network receives as input a permutation of f0; : : : ; n� 1g thatis initially stored in the registers, and then operates on the input in ` consecutive steps. Instep i, 0 � i < `, the register contents are permuted according to �i, and then the operationstored in the kth component of ~xi is applied to registers 2k and 2k + 1. In a \+" operation,the values stored in the two registers are compared, and the smaller of the values is storedin register 2k, the larger one in 2k + 1. In a \�" operation, the values are stored in theopposite order. A \0" means that no operation takes place on the corresponding pair ofregisters. A \1" operation simply exchanges the values of the two registers. A comparatornetwork is called a sorting network if it maps every possible input permutation to the sameoutput permutation.It is well known that the two models of comparator networks described above are equi-valent. (That is, given any network in one model, there exists a network in the other modelwith the same size and depth that implements the same mapping from inputs to outputs.)While the �rst model often appears more intuitive, we can use the second one to de�ne someinteresting special classes of networks by restricting the possible choices for the permutations�i. The shu�e permutation �sh on n = 2d inputs may be de�ned as follows. If jd�1 � � � j0denotes the binary representation of some integer j, 0 � j < n, then �sh(j) has binaryrepresentation jd�2 � � � j0jd�1. A sorting network is called hypercubic if �i = �sh or �i = ��1shholds for all i. A natural subclass of the hypercubic networks can be obtained by requiring�i = �sh for all i; we say that a network satisfying this condition is shu�e-based. Similarly,if �i = ��1sh for all i, then the network is unshu�e-based.The primary motivation for the de�nition of these two classes of networks is given bythe fact that they can be e�ciently implemented on any of the hypercubic interconnectionnetworks (i.e., the hypercube, buttery, cube-connected cycles, or shu�e-exchange). Moreprecisely, the structure of the hypercubic sorting networks corresponds exactly to the class ofnormal algorithms on the hypercube, while the structures of the shu�e-based and unshu�e-based networks correspond to the classes of descend and ascend algorithms, respectively(see [11] for a de�nition of these classes). Most of the important algorithms that have beenproposed for the hypercube are normal (e.g., Fast Fourier Transform, parallel pre�x, bitonicmerging and sorting). In fact, it can be argued that the primary motivation for the de�nitionof the bounded-degree variants of the hypercube (i.e., the buttery, cube-connected cycles,and shu�e-exchange) has been the capability of these networks to e�ciently implement theclass of normal algorithms. 2

1 IntroductionA variety of di�erent classes of sorting networks have been described in the literature. Ofparticular interest here are the so-called AKS network [1] discovered by Ajtai, Koml�os, andSzemer�edi, and the sorting networks proposed by Batcher [2]. While the AKS networkis the only known sorting network with O(lg n) depth, it also su�ers from two signi�cantshortcomings. First, the multiplicative constant hidden by the O-notation is impracticallylarge. Through a series of improvements [3, 14], this constant has been reduced to below2000, but remains impractical. Second, the structure of the network is highly irregular, anddoes not seem to map e�ciently to any of the common interconnection schemes. For example,Cypher [6] has shown that any emulation of the AKS network on the cube-connected cyclesrequires
(lg2 n) time. (A sorting algorithm emulates the AKS network if it performs thesame sequence of comparisons on any input.)In contrast, the networks proposed by Batcher have a relatively simple structure and asmall associated constant, and can be e�ciently implemented on many common intercon-nection schemes, including meshes and hypercubic networks. This makes them the networksof choice in many practical applications, even though they have depth �(lg2 n) and arethus asymptotically inferior to AKS. This situation has motivated a number of attempts toconstruct O(lg n)-depth sorting networks with simpler, more regular topologies, and/or aconsiderably smaller constant. Three classes of networks that have received particular at-tention are Shellsort networks, periodic sorting networks, and hypercubic sorting networks.Shellsort networks have a very simple structure that is based on the sequential Shellsortsorting algorithm. A class of Shellsort networks with depth �(lg2 n) was given by Pratt [18].For Shellsort networks based on monotonically decreasing increment sequences, Cypher [5]has established a lower bound of
(lg2 n= lg lg n). Recently, a more general lower boundwas shown [16] that holds for arbitrary Shellsort networks and even sequential Shellsortalgorithms, thus answering in the negative the longstanding open problem of whether arunning time of O(n lg n) can be achieved by any Shellsort algorithm.A comparator network is called a periodic sorting network if every input permutation canbe sorted by repeatedly passing it through the network. The primary motivation for suchperiodic networks is the reduction in hardware cost achieved by applying the same networkrepeatedly to the input. A periodic sorting network of depth O(lg n) and running timeO(lg2 n) was given by Dowd, Perl, Rudolph, and Saks [8]. Very recently, Kik, Kuty lowski,and Stachowiak [9] have shown the existence of a family of periodic networks of depth O(k)and running time O(k2n1=k) based on expanders. No non-trivial lower bounds for periodicsorting networks are currently known.In this paper, we focus on the class of hypercubic sorting networks, a notion that isformalized below. We establish a lower bound of
 � lgn lg lgnlg lg lgn � for the depth of any sortingnetwork in this class. In fact, our lower bound argument can be extended to apply tocertain restricted classes of non-oblivious sorting algorithms on hypercubic networks andmulti-dimensional meshes. Before elaborating any further on these results, we will brieydescribe the comparator network model, and de�ne several classes of hypercubic networks.1

A Super-Logarithmic Lower Boundfor Hypercubic Sorting NetworksC. Greg Plaxton� Torsten Suel yDepartment of Computer SciencesUniversity of Texas at AustinAbstractHypercubic sorting networks are a class of comparator networks whose structure mapse�ciently to the hypercube and any of its bounded degree variants. Recently, n-inputhypercubic sorting networks with depth 2O(plg lgn) lg n have been discovered. Thesenetworks are the only known sorting networks of depth o(lg2 n) that are not based onexpanders, and their existence raises the question of whether a depth of O(lgn) canbe achieved by any hypercubic sorting network. In this paper, we resolve this questionby establishing an
 � lgn lg lgnlg lg lgn � lower bound on the depth of any n-input hypercubicsorting network. Our lower bound can be extended to certain restricted classes ofnon-oblivious sorting algorithms on hypercubic machines.
�Email: plaxton@cs.utexas.edu. Supported by NSF Research Initiation Award CCR{9111591, and theTexas Advanced Research Program under Grant Nos. 003658{480 and 003658{461.yEmail: torsten@cs.utexas.edu. Supported by the Texas Advanced Research Program under GrantNos. 003658{480 and 003658{461, and by a Schlumberger Graduate Fellowship.

