[16]

[17]

18]

[19]

[20]

[21]

C. G. Plaxton, B. Poonen, and T. Suel. Improved lower bounds for Shellsort. In
Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science,
pages 226-235, October 1992.

C. G. Plaxton and T. Suel. A lower bound for sorting networks based on the shuffle
permutation. In Proceedings of the jth Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 70-79, June 1992. To appear in Mathematical Systems Theory.

V. R. Pratt. Shellsort and Sorting Networks. PhD thesis, Stanford University, Depart-
ment of Computer Science, December 1971. Also published by Garland, New York,
1979.

K. Sado and Y. Igarashi. Some parallel sorts on a mesh-connected processor array.
Journal of Parallel and Distributed Computing, 3:389-410, 1986.

I. D. Scherson and S. Sen. Parallel sorting in two-dimensional VLSI models of compu-
tation. [FEFE Transactions on Computers, 38:238-249, 1989.

R. Wanka. Fast general sorting on meshes of arbitrary dimension without routing. Tech-
nical Report TR-RI-91-087, Department of Computer Science, University of Pader-
born, August 1991.

23

References

[1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

M. Ajtai, J. Komlos, and E. Szemerédi. Sorting in clog n parallel steps. Combinatorica,
3:1-19, 1983.

K. E. Batcher. Sorting networks and their applications. In Proceedings of the AFIPS
Spring Joint Computer Conference, vol. 32, pages 307-314, 1968.

V. Chvatal. Lecture notes on the new AKS sorting network. Technical Report DCS-
TR-294, Department of Computer Science, Rutgers University, 1992.

P. F. Corbett and I. D. Scherson. Sorting in mesh connected multiprocessors. IEEF
Transactions on Parallel and Distributed Systems, 3:626-632, 1992.

R. E. Cypher. A lower bound on the size of Shellsort sorting networks. SIAM J.
Comput., 22:62-71, 1993.

R. E. Cypher. Theoretical aspects of VLSI pin limitations. SIAM J. Comput., 22:58-63,
1993.

R. E. Cypher and C. G. Plaxton. Deterministic sorting in nearly logarithmic time on
the hypercube and related computers. JCSS, 47:501-548, 1993.

M. Dowd, Y. Perl, L. Rudolph, and M. Saks. The periodic balanced sorting network.
JACM, 36:738-757, 1989.

M. Kik, M. Kutylowski, and G. Stachowiak. Periodic constant depth sorting networks.
In Proceedings of the 11th Symposium on Theoretical Aspects of Computer Science,
pages 201-212, February 1994.

D. E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, Reading,
MA, 1973.

F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
and Hypercubes. Morgan-Kaufmann, San Mateo, CA, 1991.

F. T. Leighton and C. G. Plaxton. A (fairly) simple circuit that (usually) sorts. In
Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer Science,
pages 264-274, October 1990.

F. T. Leighton and C. G. Plaxton. Hypercubic sorting networks. Unpublished
manuscript, August 1993.

M. S. Paterson. Improved sorting networks with O(log N') depth. Algorithmica, 5:75-92,
1990.

C. G. Plaxton. A hypercubic sorting network with nearly logarithmic depth. In Pro-
ceedings of the 24th Annual ACM Symposium on Theory of Computing, pages 405-416,
May 1992.

22

natural class of algorithms including the Sharesort algorithm of Cypher and Plaxton [7].

Another possible direction for future research would be to consider other restricted classes
of sorting networks. As a natural extension of the hypercubic networks, we could define the
class of generalized hypercubic networks, whose structure corresponds to the class of algo-
rithms on the hypercube where in each step communication only occurs across a single
dimension, but the sequence of dimensions can be arbitrary. (Note that this class of algo-
rithms cannot be emulated with constant slowdown on any of the bounded-degree variants
of the hypercube.) Other classes of interest would be sorting networks based on a single
permutation, or periodic sorting networks [8, 9].

Finally, it is an open problem whether our lower bound technique can also be applied to
selection networks.

21

the class of ascend algorithms to multi-dimensional meshes. In an ascend algorithm on a
d-dimensional mesh of side length m, the dimensions are visited in strictly ascending order.
Whenever we visit a dimension, we perform m steps of communication across this dimension.
Thus, in a single visit to a dimension, we can completely sort the elements in each linear
array along that dimension. Note that this class of algorithms corresponds to the class
of sorting networks built from m-input comparator gates, where consecutive levels of the
network are connected by an m-way unshuffle permutation (as defined in the register model
of a comparator network).

An example of an ascend algorithm on the two-dimensional mesh is the Shearsort algo-
rithm [19, 20], which alternatingly sorts along the rows and along the columns. Recently,
Corbett and Scherson [4] and Wanka [21] have described two different generalizations of this
algorithm to meshes of arbitrary dimension. Both of the algorithms can be implemented as
ascend algorithms, and they achieve a running time of O(d*mlgm) on the d-dimensional
mesh of sidelength m. Using the techniques in this paper, we can show a lower bound of
O(d*mlgm/lg(dm)) for the class of ascend sorting algorithms on multi-dimensional meshes
(assuming, as before, that the algorithms are comparison-based, and that no copying of
elements is allowed). For meshes with nonconstant dimension, this implies that no ascend
algorithm can achieve an asymptotically optimal running time.

Similarly, we can define natural extensions of the classes of normal algorithms, and
normal algorithms with overlap, to multi-dimensional meshes. Using our proof techniques,
we can show lower bounds for these classes that improve asymptotically on the distance
bound. We will further elaborate on these results in the full paper.

Finally, note that our lower bounds do not apply to probabilistic sorting networks, that
is, networks that sort the vast majority of input permutations, but are not sorting networks
in the strict sense. In fact, Leighton and Plaxton [12] have designed a hypercubic comparator
network of depth O(lgn) that sorts all but a super-polynomially small fraction of the inputs.
Similarly, we cannot hope to extend our lower bounds to “randomized” sorting networks,
which may contain additional “randomizing” circuit elements that interchange the input
values with probability 1/2, and leave them unchanged otherwise. In [12], Leighton and
Plaxton show how to construct a randomized hypercubic network of depth O(lgn) that
sorts every input permutation with high probability.

6 Concluding Remarks

In this paper, we have established an 2 (li%gﬁ;gl;gnn

sorting networks. Our techniques also apply to certain restricted classes of non-oblivious

) lower bound on the depth of hypercubic

sorting algorithms on hypercubes and multi-dimensional meshes. A gap remains between
our lower bound and the best upper bound known, and it would certainly be an interesting
improvement to narrow or close this gap.

An important open question is whether we can extend our lower bounds to more general
classes of non-oblivious sorting algorithms on the hypercube. Of particular interest in this
respect would be the class of normal comparison-based sorting algorithms, or any other

20

4 8411 . 29~a(€,5)—4lg5

IA A
IS

st 24lgs . 29~a(€,5)—4lg5

S4 . 29~a(€,5))
O

Theorem 4.1 Any n-input hypercubic sorting network has depth (I—%gn—légl—;g#).

Proof: Let A be an n-input hypercubic network of depth ¢, n = 2¢. Then we can partition
A into k = [{/d] consecutive hypercubic networks A;, 0 < ¢ < k, with depth ¢; and span
S; S d.

Let A be a network containing no comparator elements at all. Clearly, A belongs to
A ® A, and A has an incomparable set of size n. We now apply Lemma 4.1 once for each
network A;, 0 < < k. It follows that there exists an incomparable set of size n’ in A, such
that

94 —si/2)

— =TI st 2(1g5i/1g1g5i) < 2(%)7

0<i<k
for d sufficiently large. Hence, if { < 9 -dlgd/lglgd, then n’ > 1, and it follows that A
cannot be a sorting network. O

5 Extensions

This section discusses a few implications and extensions of our results.

First, we point out that the proof of our lower bound also holds for certain restricted
classes of non-oblivious sorting algorithms on hypercubic machines. More precisely, we can
allow our sorting networks to be adaptive in the following sense: If we write the network as a
sequence of pairs (II;, #;), then the labeling #; of the ith level with elements from {+, —,0,1}
can depend on the outcome of all the comparisons made in all previous levels. Recall that
in our lower bound arguments, it was never assumed that the labeling is fixed beforehand;
instead, in every level, we allowed the “adversary” to choose the labeling in an arbitrary
way. Hence, the validity of the argument is not affected by allowing the construction of the
network to be adaptive.

Note that this model of a non-oblivious comparator network is quite powerful, and
that it allows, for instance, the on-line routing of permutations in logarithmic time (where
the permutation to be routed can be an arbitrary function of the outcomes of all previous
comparisons in the network). Similarly, we can also show that our lower bounds still hold in
the case where a node can hold more than one element, provided that elements cannot be
copied. It is unclear whether our techniques can be extended to a model where copying of
elements is allowed.

We can also extend our lower bounds to some restricted classes of sorting algorithms
on multi-dimensional meshes. In [21], Wanka describes the following natural extension of

19

where 7 & a(ly, so) + a(lq,s1). Using min{sg, s1} > r, max{sg,s1} < s, and Equa-
tion (1) we obtain

. lg so lg 54 lgr
min , > —
lglgso lglg sy lglg s

Y

1 | 9s
lglgs & (21g5/1g1g5)
1 | s
lglgs © (1g—8)

lg s lglg s
= —|1- .
lglg s lg s

Using this bound, and the fact that 1/(1 —€) <1+ 2¢ holds for e =1glgs/lgs < 1/2,
we obtain

€0—80/2 €1—81/2 1
r < +
lgs/lglgs lgs/lglgs) \1—1glgs/lgs

lo —50/2 by —sy/2
14 2lglgs/]
(1g8/1glgs lgs/lglgs) 1 2l8les/les)

Y

lo— $0/2 {1 — s1/2 lole s>
_ fomsf2 | Gos +(z0_30/2+zl—51/2)-2(ggs)

lgs/lglgs lgs/lglgs lg s
(—s/2—r/2 Iglg s\’
fosj2—rj2 +(£—s/2—r/2)-2(gg5)

lgs/lglgs lg s
r lglg s :
< lg)—————+(l—5/2)-2 .
s alls) 21g5/1g1g3+(5/2) (lg s)
Note that Equation (1) implies
rlgs
(—s/2
o/ <91g1g37
and hence
r 2r
< a(l,s) —
v s alls) 21g3/1g1g5+91g3/1g1g3
or
N A
a(lys) 181lg s/lglg s
5s
Y4 —
a(lss) 4(lg s/ 1glg s)?
41
< alls) - =

where the last two inequalities follow from Equation (1) and s > 2'6, respectively.
Using max{sg, s1} < s we obtain

v
— < osyes)e2™
v

18

4 A Lower Bound for Hypercubic Networks

In this section we establish our main result, a lower bound on the depth of arbitrary hyper-
cubic sorting networks. In order to prove the result, we need one more lemma. Informally,
Lemma 4.1 below states that we can maintain a fairly large incomparable set over the levels
of any hypercubic network. The proof of the lemma is based on the idea that any hyper-
cubic network with depth ¢ either has a small overlap relative to ¢, or can be (recursively)
partitioned into several consecutive networks satisfying this property. In the first case, we
can use Lemma 3.6 to bound the size of the incomparable set. The second case is handled
by induction.

def

Lemma 4.1 Let A be a hypercubic network with depth ¢ and span s < d, let a(l,s) =
((—3s/2)/(lgs/1lglgs), and let A be an arbitrary comparator network with an incomparable
set of size v. Then any network in A ® A has an incomparable set of size v/, where

v 4 9-a(4,s)
; Z s -2 .

Proof: The proof is by induction on the depth ¢ of the network.

Base Case: (< 216
Using s < { < 26, we obtain lgs/lglgs < 4 and

9-4/2 >0 >

9-all >
aftes) = T2 = 0>

Then the claim follows by a simple application of Lemma 3.6.

Induction Step: ¢ > 216

For the induction step, we assume a hypercubic network A with depth ¢, overlap r,
and span s < d. Now suppose that r < 9-«a(l,s). In this case, the claim follows by a
simple application of Lemma 3.6.

Hence, in the following we assume that

9s
9-a(l >
> 9-alls) 2 2lgs/lglg s

(1)

Note that s > r > 9-a(l,s) and { > 2'¢ imply s > 2'¢ and lglgs/lgs < 1/4.

Due to the definition of overlap, there exist hypercubic networks A;, 0 <1 < 2, with
depth ¢; and span s;, such that A belongs to Ag @ Ay, lo+ 01 = {, and sg+ 51 = s+ 7.
By applying the induction hypothesis first to A and Ay , and then to A @ Ay and Ay,
we obtain

14
_ 4 . 9~a(f0,50) . 4 . 9~a(f1,51)
” < s55°2 572

_ 4 9x
- 50'51'2)

17

a

Lemma 3.6 Let A be a 2%-input hypercubic network with span s < d and overlap r, and
let A be an arbitrary comparator network with an incomparable set of size v. Then any

network in A @ A has an incomparable set of size v/ > o

Proof: According to Definition 3.9, there exists an input pattern py such that some [M;,]-
set C of pg is of size v and is non-colliding in A under py. By Lemma 3.4, we can assume
that 79 = 0, and that pg contains only the symbols Sy, Mg, and Ly.

Every 2%-input hypercubic network with span s < d and overlap r is equivalent to a
(d, s, r)-hypercubic network. Hence, we can apply Lemma 3.5 to A. Let k = s, p = A(po),
and A be the [Mg]-set of p. Then by Lemma 3.5, there exists an input pattern ¢ with p D4 ¢
and #(s) < 2s” - 2" disjoint sets M;, 0 <7 < #(s) of input wires of A such that

o cvery M, is the [M,]-set of ¢,

e every M, is non-colliding in A under ¢,
e BC A, and

e |[B|>v-(1-1/s),

def

where B = Uy<cy(s) Mi. By averaging, there exists a set M;

Jo>o

0 < jo < t(s), of size at least
| B| v
253 .20 T gt 207

where the inequality follows from the fact that 1(1 —1/s) > 1/s for s > 3. (For s < 3,
the claim follows from v’ > v/2°.) By Lemma 3.3, there exists an input pattern ¢o with

Po D¢ qo such that ¢ = A(go) and the [M]-set of ¢o is non-colliding in A @ A under ¢o.
Since ¢ = A(qo), the [M,]-set of ¢ also contains at least —*

st.2r

elements. O

The following lemma can be established by partitioning a hypercubic network of overlap
r and depth ¢ into [{/d] consecutive hypercubic networks of overlap r and depth at most d,
and applying Lemma 3.6 to each of the networks.

Lemma 3.7 Let A be an n-input hypercubic network with depth ¢ and overlap r < d = lgn.
Then A has an incomparable set of size at least

n
/4. 2T[£/d'|)

Lemma 3.7 immediately implies the following lower bound for hypercubic networks with
bounded overlap. Note that for the special case r = 0, we obtain the result in [17]. However,
if the overlap is ©(d), we only get the trivial Q(lgn) lower bound.

Theorem 3.1 Any n-input hypercubic sorting network with overlap r has depth (i%) .

16

(s—r—1)-|A] |Bol
k2 Iz

> |A] -

PTG

To complete our proof, we construct a refinement ¢ of p such that Properties (1), (2),
and (5) hold for ¢ and the sets M;. We do this by Ag-refining ¢o to some ¢j and A;-
refining ¢; to some ¢;. Then pg D4, ¢, and p; D4, ¢, and by Lemma 3.1 the pattern

def

q = ¢4 P qq is an A-refinement of p.
We refine ¢ to ¢} in the following steps:

1. First change all pattern symbols M, and &;; with ¢ > #(s — 1) to M, ;2 and
Xiyr2 j, respectively.

2. Then change the pattern symbols of all wires in C;;_;, with 19 < ¢ < #(s —1) to
Xi jo» where jo is chosen such that before this step only symbols &} ; with j < jo
appear in the pattern.

The steps for the refinement of ¢; to ¢ are:

1". First change all pattern symbols M; and X, ; with ¢ > (s —1) +¢¢ to M, ;2 and
X2 j, respectively.

2. Then change all pattern symbols M; and X, ; with 0 < ¢ < #(s —1) to M,4,, and
Xiti, . respectively.

All refinement steps described above are order-preserving renamings and, thus, valid
refinement steps. Steps 1 and 1’ remove all symbols M; and X ; with #(s—1) <@ < #(s)
from the patterns. Then Steps 2 and 2’ can be executed to perform the matching
between the sets My ; and M, ;. Note that Steps 1 and 1’ are not really necessary since
we can assume that the patterns ¢g and ¢; themselves have been constructed using the
above refinement steps, and hence that no symbols M; and X; ; with t(s—1) <7 < t(s)
exist in the pattern. However, in order to simplify our induction hypothesis, we have
chosen not to make this assumption.

The pattern ¢ = ¢} @ ¢; has been constructed such that the sets M; are the [M;]-sets
of ¢, so Property (1) is satisfied.

To see that Property (2) holds, note that C; ;, the set of input wires of My ; that collide
with an input wire of M ; in A under ¢y @ ¢1, also contains the same colliding wires
with respect to ¢ = ¢, @ ¢1. The sets My, are non-colliding in Ay under ¢/, and, thus,
also non-colliding in A under ¢. Similarly, the sets M ; are non-colliding in A under
q. Hence,

Mj = (Mo \ Cjjio) U My i,
is non-colliding in A under g¢.

Finally, note that no two elements of any [M,]-set of A(q) are in the same output
group of A, due to the construction of the sets M; and the pattern ¢. This establishes
Property (5).

15

each w in My, (resp., My ;) the output group of Ay (resp., A1) containing the output
wire w’ that receives the value 7(w) under all = in ¢o[V] (resp., ¢:[V]). Thus, any
element in a set My ; can collide with at most 2" elements from the sets M ;, and vice
versa.

For 0 <i,j < t(s—1), we define C;; as the set of all wires wq in My, that can collide
with some wy in M; ; in A under ¢o @ ¢;.

For 0 <7< k*-2" and 0 < j < t(s), we define

MOJ 0 S] < iv
M, j) & (Mo \ Cjji) UMy @ < j <t(s = 1), '
’ M ;- tHs—1)<j<t(s—1)+1, and
0 ts—1)41¢<j <t(s).

By their construction, the sets M(z,j) are non-colliding in A under ¢o & ¢1. If we let
L; £ Ui§j<t(s—1) Cj,j—i for 0 <1 < kz, then

U M(t,5) = (Bo \ Li) U By.

0<j<t(s)

Note that the C;;’s are not pairwise disjoint. However, every element of By can occur
at most 2" times in the sets C;;. Thus, every element of By can occur at most 2"
times in the sets L;. Hence, by averaging there exists an 19, 0 < ig < k? - 2", such that

|L;,| < %. We use this ¢y to determine the partial matching between the M ;’s and
the M ;’s.

More precisely, for all j such that 0 < j < #(s), we match the set My ; with the set
M ;—i, to obtain a new set M, = M{(ig,j). (Here we assume My,; and M, to be the
empty set for 1 < 0 and ¢ > #(s — 1).) Thus, the new set M; is obtained by removing
the wires in C;;_;, from My ;, and merging the resulting set with M; ;_;;. We now
show that this choice of M; satisfies Properties (3) and (4). We have

B = U M
0<j<t(s)
= (Bo\ L) U B
C ByU B
C AgU A,
= A

This establishes Property (3). Verifying Property (4) is also straightforward:

|Bl = [Bo| + [Bi| = [Li,]|
s—r—1)-|Ao s—r—1)-|44]
> |A0|_(k2) : ‘|‘|A1|_(kz) = = |L|
s—r—1
= () (1= C=)

14

(3) B C A.
s—r)-|A|
(4) |B| = |A] - C=gl.

(5) No two elements of any [M,]-set of A(q) are located in the same output group of A.

Proof: The proof is by induction on s — r.

Base Case: s —r7r =0

In this case the network A does not contain any comparator elements. We define the
sets M;, 0 < i < t(0), by partitioning A into 2" - k% sets such that no two elements in
any set are located in the same output group. (Each output group has size 2" < 2" k?,
so this is clearly possible.) If we set ¢ = p, then Properties (1) to (5) are satisfied.

Induction Step: s —r > 0

A (d, s,r)-hypercubic network consists of two (d — 1,s — 1,r)-hypercubic networks A
and A, and a network A satisfying the conditions of Definition 3.4. The input wires
W of A can be partitioned into the sets Wy and Wi of input wires of Ag and Aq,
respectively. Let py = Plw, and pi e Plw, - Then Aq = AN W, is the [Mg]-set of po
and 4; £ AN W, is the [M]-set of py.

Applying the induction hypothesis to Ay, po, and Ag, we can infer the existence of an

input pattern ¢o with po D4, o, and of #(s — 1) disjoint sets My,;, 0 < ¢ < t(s — 1),
such that

o every My, is the [M,]-set of qo,

o cvery My, 1s non-colliding in Ay under gq,
o By C Ao,

o |By| > |Ao| — L= ttAel ang

e 10 two elements of any [M,]-set of Ag(qo) are located in the same output group

of Ao,

where Bo = Up<icy(s—1) Mo,i-
Correspondingly, for Ay, p;, and A;, we get an input pattern ¢y, disjoint sets M,
0 <i<t(s—1), and a set By, with the same properties.

We will now construct the sets M;, 0 < ¢ < t(s), by combining the sets My, of Ag
with the sets M ; of Ay, according to some partial matching to be determined in the
following.

Because no [M;]-set of Ag(qo) (resp., Ai(¢q1)) contains any two elements that are
located in the same output group of Ag (resp., A1), no element of any set My, (resp.,
M, ;) can collide with any other element of the same set in A.

Also, due to the topology of a (d, s, r)-hypercubic network, no element of a set My, can
collide in Ag® Ay with any element of a set M; ;. By Lemma 3.2, we can determine for

13

Lemma 3.2 Let A be a comparator network, p be an input pattern for A, and A be the
[M;]-set of p. If A is non-colliding in A under p, then for every input wire w in A there
exists a unique output wire w’ such that 7(w) = A(7)(w’) holds for all 7 in p[V].

Informally, the above lemma states that an input value on a wire w in a non-colliding
[M]-set follows the same “path” through the network under all inputs in p[V]. The proof of
the lemma is by a simple induction on the depth of the network. This one-to-one correspon-
dence between the input and output wires of a non-colliding [M,]-set is also the underlying
idea in the next lemma.

Lemma 3.3 Let A be a comparator network in Ay @ Ay, ¢ be a nonnegative integer, and
p be an input pattern for Ag such that its [M;]-set A is non-colliding in Ay under p. Let
¢ = Ao(p) be an input pattern for A; and B be the [M;]-set of ¢. Then for every ¢’ with
q Dp ¢ there exists a p’ with p D4 p’ such that ¢’ = Ag(p’). Furthermore, if the [M,]-set of
¢’ is non-colliding in A; under ¢’, then the [M,]-set of p’ is non-colliding in A under p'.

To verify the validity of the final lemma, note that the paths taken by the M;-symbols
through a network are not changed if we rename the rest of the symbols in the way described
in the lemma.

Lemma 3.4 Let A be a comparator network, p be an input pattern for A, and A be the
[M]-set of p. Let p;(p) be the input pattern obtained from p by changing all pattern symbols
P with P <p M, to Sy, all pattern symbols P with M,; <p P to Ly, and all pattern symbols
M, to My. If A is non-colliding in A under p, then A is also non-colliding in A under p;(p).

3.4 The Main Lemma

In this subsection, we establish our main lemma on the size of the incomparable set in
a hypercubic network with small overlap. The main technical difficulty is in the proof of
Lemma 3.5, which establishes the existence of a pattern p with a “large” [Mp]-set that is
non-colliding in a single (d, s, r)-hypercubic network under p. By a direct application, we
also obtain a strong lower bound for hypercubic sorting networks with bounded overlap that
generalizes the result in [17].

Lemma 3.5 Let A be a (d, s, r)-hypercubic network with r < s < d, and p be an input
pattern for A such that only the pattern symbols Sy, Lg, and My occur in p. Let A be
the [Mo]-set of p, and k be any positive integer. Then there exists an input pattern ¢ with
pOaqand t(s) =27 k342" (s —r)-k? sets M;, 0 < i < t(s), of input wires such that the

def

following properties hold, where B = U<cy(s) Mi:

(1) Every M, is the [M,]-set of ¢.

(2) Every M, is non-colliding in A under q.

12

The ordering <p on P is defined by

Si <p Siq1,

Si <p Koo,
Xij <p Xijir,
Xi;j <p M,
M, <p Xijio,
M, <p ,C]‘, and

Liyn <p Li,

for all nonnegative integers ¢, j.

Definition 3.8 For a pattern p and a pattern symbol P we define the [P]-set of p as the
set {w € W : p(w) =P}.

Definition 3.9 We say that a comparator network A has an incomparable set of size m if
there exists an input pattern p and an integer ¢ such that the [M;]-set of p is of size m and
is non-colliding in A under p.

We can now formally describe our proof strategy: To prove that a network A is not a
sorting network, we will show that the network has an incomparable set of size at least 2.
The input pattern p associated with the incomparable set can then be refined to an input
such that the wires in the [M;]-set contain adjacent input values; this implies that A does not
sort all inputs in p[V]. The input pattern p will be constructed using stepwise refinement,
starting out with a pattern containing only the symbol M.

3.3 Basic Lemmas

The following lemmas will be used in our lower bound argument. Their proofs are fairly
straightforward and we will only sketch some of the proof ideas.

Lemma 3.1 Let p be an input pattern on W such that only the pattern symbols &g, My,
and Ly appear in p. Let Wy and Wy be disjoint subsets of W with W = W, U W, and let
A be the [Mg]-set of p. Let ¢o and ¢; be input patterns on Wy and Wy, respectively, with
So <p qo(w), ¢1(w) <p Lo for all w in A. Then from Plw, Danw, Qo and Plw, Darwy q1, We
can infer p D4 qo P ¢1.

This lemma ensures that, given an input pattern p for a network A = Ag § Ay, we
obtain a refinement of p if we separately refine the input patterns py, for Ag and py,, for
Ay according to the above rules, where Wy and W; are the sets of input wires of Ay and Ay,
respectively.

11

Given a network A and an input w, we can always determine whether two input values
are compared or not. (Recall that we only consider inputs that are permutations.) This is
not the case for input patterns, since an input pattern can contain several occurences of the
same pattern symbol. This motivates the following definition of collision for input patterns:

Definition 3.7 Let A be a comparator network, let p be an input pattern for A, and let wy
and w; be two input wires of A.

(a) We say that wg and w; collide in A under p if they collide in A under every input in
plV].

(b) We say that wo and wy can collide in A under p if there exists an input in p[V] such
that wg and w; collide in A.

(c) We say that wg and wy cannot collide in A under p if there is no input in p[V] such
that wg and w; collide in A.

(d) A set U C W is called non-colliding in A under p if any two wires in U cannot collide
in A under p.

Example 3.3 Let W = {wq, wy,wq, w3}, P = {S, M, L}, and let the ordering <p on P
be given by § <p M <p L. Let the network A consist of a comparator between w; and
wq, followed by a comparator between w, and w3, followed by a comparator between wg and
ws, where all comparators are directed towards the wire with the larger index. Then the
following holds under the input pattern p that maps wg to S, wy and wy to M, and w3 to L:

ires wy and ws collide in A under p since the very first comparator is between these
1) Wi d llide in A under p si th y first parator is bet th
two wires.

(2) Wires wy and ws can collide in A under p, since we can refine p to an input # that
assigns a larger value to w; than to w,. In that case, the input value assigned to w;
will be compared to that of ws in the second comparator. Similarly, wy can collide
with w3 in A under p.

(3) Wires wy and ws collide in A under p, since no exchange can occur in the second
comparator of the network under any input 7 with p Dw 7. Also, wy and wy (resp.
wy) cannot collide in A under p.

Note that, if two wires collide (cannot collide) in some network A under an input pattern
p, then they also collide (cannot collide) in A under any refinement p’ of p. Similarly, if a
set U is non-colliding in A under p, then it is also non-colliding in A under p’. The property
can collide is not preserved under arbitrary refinement.

In the following we restrict our attention to a fixed pattern alphabet P which is used
throughout the lower bound argument:

PEAS, X, My, Li 20,5 > 0}.

10

span s < d and overlap r. Note that the 2¢ output wires of a (d, s, r)-hypercubic network
are partitioned into 297" output groups of size 27.

Definition 3.4 For r < s < d, a 2%input comparator network A is called a (d,s,r)-
hypercubic network if:

(a) s —r = 0, A is a network containing no comparators at all (i.e., the 2¢ input wires
are directly connected to the 2% output wires), and the output wires of A have been
partitioned into 297" output groups of size 2", or

(b) s —r >0 and A is an element of (Ag & A1) @ A, where

e Agand Aq are (d — 1,s — 1,r)-hypercubic networks, and

e A is the parallel composition of 297"~ disjoint 2"+'-input comparator networks
A, 0 <4 < 24771 of arbitrary size and depth, such that: (i) the 2"+ input wires
of each network A; are connected to one output group of size 2" of Ay and one
output group of size 2" of Ay, and (ii) the 2"t' output wires of each network A,
are partitioned to form two of the 297" output groups of network A.

A comparator network A was identified with a mapping from the set of inputs to the set
of outputs. The following definition extends A to a function from the set of input patterns
to the set of output patterns. (An output pattern is a mapping from the set of output wires
to the set of pattern symbols.)

Definition 3.5 Given a comparator network A, an input pattern pg, and an output pattern

p1 such that pi (W) = po(W), we define

Alpo) = pr & A(polV]) = p;u[V].

Note that this definition characterizes the behavior of a comparator network on an input
pattern in the way we would expect: If two pattern symbols Py and P; arrive on the input
wires of a comparator gate, then the symbol that is larger according to the ordering <p will
appear on the max-output of the gate, and the smaller one will appear on the min-output.
This implies that any set of inputs that can be expressed by an input pattern will produce
a set of outputs that can be expressed by an output pattern.

Definition 3.6 We say that two input wires wy and w; collide in a network A under an
input 7 if the input values 7(wp) and #(w) are compared in A when 7 is given as input.

According to the above definition, two wires whose respective values meet in a noncom-
parator element, that is, a “0” (do nothing) or “1” (exchange) switch, are not regarded as
colliding. In the rest of the paper, we do not have to distinguish between the different circuit
elements any more, since the entire lower bound argument is based on the notion of collision
introduced above and extended to input patterns in the following.

(b) We say that p can be U-refined to ¢ (written p Dy ¢) if p Dw ¢ and p(w) = ¢(w) holds
for all w in W\ U.

Definition 3.3 Let Uy and U; be disjoint subsets of W, pg be an input pattern on Uy, and
p1 be an input pattern on U;. Then ¢ = po & py 1s the input pattern on Uy U Uy such that

Gy, = Po and g, = p1.

If for two patterns py and p; both py Dw pi and p1 Dw po hold, then we say that pg
and p; are equivalent. In this case, we have po[V] = pi[V], and the refinement steps from
po to p1 and vice versa can be achieved by simply renaming the pattern symbols in a way
that preserves the ordering <p. Hence, we call this special case of a refinement step an
order-preserving renaming.

Example 3.2 Let W = {wq,...,w,_1} and P = {P; : 1 > 0} with P; <p Piyq for all i > 0.
Then any input pattern p is equivalent to the input pattern pg, & > 0 obtained from p by
substituting every pattern symbol P; in p by P;ix, for all «.

3.2 Comparator Networks

We now further formalize our notion of a comparator network, and explain how its domain
of operation can be extended from the set of inputs to the set of input patterns.

In the following, a comparator network is interpreted as a mapping from a set of possible
inputs to a set of possible outputs. More precisely, a comparator network A on input wires
W and output wires W' defines a mapping (which we also denote by A) from (W — V) to
(W' — V) such that every input 7 : W — V is mapped to an output 7’ : W’ — V that is
a “permutation” of =. By this we mean that there exists a bijection p : W — W’ such that

7(w) = 7'(p(w)) holds for all w in W.

Let Af, AT be two sets of n-input comparator networks. Then Aj®@ AF, the serial compo-
sition of A and A}, denotes the set of all networks A that can be obtained by connecting the
output wires of a network from Aj to the input wires of a network from Aj. In some cases,
we may want to impose certain special conditions on this connection between the output
wires of the first network and the input wires of the second network. If no conditions are
stated, then the connections can be made according to an arbitrary one-to-one mapping. As
it happens, we often make use of the serial composition operator in the context of singleton
sets Aj and Aj. In such a case, we may write, for example, Ag @ A; (where Ay, Ay are

networks) rather than {Ag} @ {A4}.

Given two comparator networks Ag and A; on disjoint sets of input and output wires,
we obtain the parallel composition of Ag and A; as the union of the two networks, written
Ao @ Ay. The set of input (output) wires of Ao @ Ay is the union of the sets of input (output)
wires of Ay and Aj.

Below we give an inductive definition of a class of comparator networks, called (d, s, r)-
hypercubic networks, which properly contains the class of 2¢-input hypercubic networks with

describes a set of inputs with certain common properties. Input pattern refinement is the
process of imposing additional constraints on such a set of inputs.

Definition 3.1 Let P be a set and <p be a total ordering on P.

(a) An input pattern is a total mapping from W to P.

(b) Let po, p1 be two input patterns. We say that py can be refined to py (written po Dw p1)
if (po(w) <p po(w')) = (p1(w) <p p1(w’)) holds for all w and w’ in W.

(c¢) Let p be an input pattern and # be an input. We say that p can be refined to 7 (written
p Dw) if (p(w) <p p(w')) = (r(w) < w(w')) holds for all w and w’ in W.

The set P will be referred to as the pattern alphabet, and the elements of P are called
pattern symbols. Throughout this paper, pattern symbols are denoted by script letters.

Example 3.1 Let W = {wy,...,w,_1}, P = {S, M, L}, and let the ordering <p on P be
given by § <p M <p L. (Informally, the symbols S, M, and £ may be interpreted as
“Small”, “Medium”, and “Large”, respectively.) Then the input pattern p assigning £ to
wy and wy and M to all other wires can be refined to all inputs that assign the two largest
values to wy and wy. We could also refine p to other input patterns, for example to a pattern
p’ such that £ is assigned to wg and wq, S is assigned to wq, and M is assigned to all other
wires. The new pattern p’ can itself be refined to all inputs that assign the largest values to
wo and wy, and the smallest value to w,.

The relation Dy defined above is a partial ordering on the set of input patterns. Note
that the set V' of input values can be regarded as a special case of a pattern alphabet with
the ordering of the natural numbers. Every pattern can be refined to some input, and we
could assume that the pattern alphabet P is always a subset of V. The pattern-to-pattern
refinement in Part (b) of Definition 3.1 would then become a special case of the pattern-to-
input refinement in Part (c). However, in the following we will not restrict our choice of P
to subsets of V.. We will see that this gives us more power of expression and, thus, simplifies
the presentation of the proof.

We usually think of an input pattern p as a description of the set of inputs to which p
can be refined. This set is denoted p[V] = {7 : 7 is an input such that p Dy 7}. When we
refine a pattern py to py, then we are imposing additional constraints on this set of inputs.
Formally, we have (po Dw p1) < (po[V] 2 m[V]). Alternatively, the reader may also view
an input pattern p as a shorthand for a logical predicate that holds for exactly the inputs in

plV].
Definition 3.2 Let p and ¢ be input patterns on W, and let U be a subset of W.

(a) The input pattern p, on U is the restriction of p to U.

a trade-off between the overlap of the network and the lower bound that can be shown.

Second, we show in Section 4 that any hypercubic network can be partitioned into a
number of consecutive hypercubic networks such that the overlap of each network in the
partition is sufficiently smaller than its depth.

3 Hypercubic Networks with Small Overlap

In this section, we show that a large incomparable set can be effectively maintained over
the levels of any hypercubic network with sufficiently small overlap. The main result of this
section is Lemma 3.6, which bounds the decrease in the size of the incomparable set that
can occur in any 2%input hypercubic network with span s < d and overlap r. This lemma
is used in Section 4 to establish our lower bound for arbitrary hypercubic sorting networks.

The actual argument addressing the size of the incomparable set is contained in the
proof of Lemma 3.5, and is described with respect to a more general class of networks,
called (d, s, r)-hypercubic networks, which properly contains the class of 2¢-input hypercubic
networks with span s and overlap r. The proof of Lemma 3.5 has a very similar structure
to that of Lemma 4.1 in [17], and uses many of the techniques introduced in that paper.
However, in addition to these techniques, we need some new ideas to establish the result.

Most of the notations used in this section are taken from [17]. For the sake of complete-
ness, we define these notations again in the following subsections.

The remainder of this section is organized as follows. In the first subsection, we introduce
the concepts of input patterns and input pattern refinement. Subsection 3.2 defines our
notion of a comparator network and its action on an input pattern, and introduces the
class of (d,s,r)-hypercubic networks. Subsection 3.3 lists a few basic lemmas. Finally,
Subsection 3.4 contains the proof of the main lemma, and a lower bound on the depth of
hypercubic sorting networks with small overlap.

In the following, unless explicitly stated otherwise, the set of input wires of a comparator
network is denoted W. An input to a comparator network is a total mapping from W to a set
V ot possible input values. We will restrict our attention to inputs 7 that are permutations
of {0,...,n—1}, i.e., where |[W| =n, V ={0,...,n — 1}, and 7 is one-to-one. The set of
all one-to-one functions from a set A to a set B will be denoted by (A +— B), and so the set
of all inputs of a given comparator network may be written as (W — V). Furthermore, for
a function f on a set A and a subset B of A, let f|, denote the functional restriction of f to
B. For two functions fy and f; on disjoint sets Ay and Ay, we write fo @ fi for the union of
Jo and fi:

aet | fo(x) for all x in Ag, and
(fo® fi)(z) = { flgx; for all z in A;.

3.1 Input Patterns and Refinement

In the following definitions, we introduce the notions of input patterns and input pattern
refinement, which are fundamental to our proof technique. Informally, an input pattern

have two different collections of ©(lg” n) incomparable sets coming from two disjoint subnet-
works. In [17], it is shown that there exists a partial matching between these two collections
of sets such that, if we combine the sets according to the matching and remove one element
from every pair of elements from the same set that gets compared, we obtain a new collection
of incomparable sets while losing only a very small fraction of our elements. The number of
sets in this new collection is only slightly larger than the number of sets in either of the two
previous collections. The aforementioned “disjointness property” of the two subnetworks is
needed at this point to make sure that the new sets in the collection each contain adjacent
elements.

It we repeat this process over all lg n levels of the butterfly, then we end up with a single
collection of O(Ig® n) incomparable sets. The total number of elements in the sets is only a
constant factor smaller than it was when we entered the butterfly. If we pick the largest of
the O(Ig® n) sets as our new incomparable set, then we only lose a polylogarithmic factor in
the size of the set.

To formalize this proof idea, the notion of an input pattern representing a class of similar
inputs was introduced in [17]. A class of inputs with the desired property (existence of a
large incomparable set) was then constructed by stepwise refinement of a given input pattern
in every level of the network.

2.3 Hypercubic Sorting Networks

The above argument does not work for arbitrary hypercubic networks, as they do not satisfy
the “disjointness property” of the two subnetworks used in the argument. In this paper, we
overcome this obstacle, and derive a super-logarithmic lower bound for arbitrary hypercubic
sorting networks. To do so, we introduce the class of hypercubic networks with “bounded
overlap”.

Assume we are given an arbitrary hypercubic network A with ¢ levels (II;, #;), 0 <@ < (,
as described in the register model of a comparator network. In order to define the “span”
and “overlap” of A, it is convenient to introduce a number of auxiliary variables. Let a; = 1
if I, = 7y, and a; = —1 i II;, = 7T5_h1, 0 < < (. (We remark that the value of a¢ has no
impact on the definitions that follow.) Let b; = 3, c;<;a;, 0 <7 < {. The span of A may
now be defined as [{b; : 0 < ¢ < (}|. The overlap of A is the minimum integer r > 0 such
that either: (i) b; < b;+rforall0 <i<j < { or (ii) b; > b; —rforall 0 <i < j < (. Note
that a network has overlap 0 iff II; = II; for all 1 < : < y < (. Furthermore, the span of
a network is always at least as large as its overlap, with equality occurring only in the case
{ = 0, where the span and overlap are both 0.

The prootf of the lower bound in this paper is based on two main new ideas. First, we
show in Section 3 how the lower bound argument for shuffle-based networks can be modified
to handle hypercubic networks with small overlap. The overall structure of this proof is
very similar to that in [17]. However, a number of subtle changes are required in order to
extend the argument to networks with non-zero overlap. The modified proof is based on
the observation that, informally speaking, a shuffle-based network with small overlap still
satisfies some relaxed version of the “disjointness property”. More precisely, we will exhibit

{m,m 4 1} must appear on the input wires of some comparator element. (We assume the
inputs to be permutations of {0,...,n—1}.) Thus, one might attempt to prove a lower bound
of ¢ for the depth of a class of comparator networks by showing, for all networks in the class,
the existence of an input permutation m, and of a set of adjacent values {m,....,m + i}
in 7, such that no two elements of the set are compared up to level ¢ of the network. In
the following, we will call such a set an incomparable set. If we apply this proof idea to a
hypercubic network, starting out with the set of all values as our incomparable set, and,
whenever two elements of the set get compared, removing one of them from the set, then we
might lose up to half of the elements in any given level. So using this simple approach, we
could only show the trivial lower bound of Q(lgn) for the depth of a sorting network.

2.2 The Proof for Shuffle-Based Sorting Networks

The key idea to overcome this problem is to modify the proof technique in a way that allows
us to exploit the structural properties of the particular class of networks that we are studying.
To explain this idea, we first consider the proof of the lower bound for shuffle-based sorting
networks in [17]; the case of the unshuffle-based networks is symmetric. Note that a shuffle-
based network can be seen as a concatenation of a number of butterfly networks of depth
lg n each. Thus, if we can show that the size of our incomparable set decreases by at most a
polylogarithmic factor in each butterfly, then at least Q(lgn/lglgn) consecutive butterflies
are needed in order to bring the size of the incomparable set down to 1; this directly implies
the Q(lg®n/lglgn) lower bound for shuffle-based sorting networks of [17].

The following recursive definition of a butterfly is crucial for understanding our proof
technique: A butterfly with 2¢ inputs and depth d consists of two parallel 29~ !-input butter-
flies of depth d — 1, followed by a final level of up to 2¢=! comparators. Every comparator in
the final level takes one input from the outputs of each of the two 27~ '-input subnetworks.
Finally, a 1-input butterfly is just a wire. This “tournament-like” structure leads to the
following important property of a butterfly: An observer of a 2%-input butterfly tournament
who sees the outcomes of all comparisons in the two 29 '-input subnetworks, but not the
outcomes of the final level of comparisons, will not be able to say anything about the relative
ordering of any two items taken from different subnetworks. In other words, the observer
will not be able to say anything about the relative strength of the two “subtournaments”
before the final stage. This “disjointness property” of the subnetworks plays a crucial role
in the lower bound argument of [17].

Instead of maintaining only a single incomparable set, we now maintain a collection of
incomparable sets in each recursive subnetwork. More precisely, after entering a new butterfly
of depth lgn, we partition our current incomparable set into nlg®n disjoint incomparable
sets, most of which are empty, with lg” n sets entering on each wire (recall that a single wire
is a l-input butterfly). Thus, every 2-input butterfly has two different collections of 1g° n
incomparable sets arriving on its two input wires. It is now possible to recombine these sets
to get a new collection of roughly lg° n incomparable sets, containing all of the elements of
the two collections.

More generally, due to the recursive structure of a butterfly, in every level we recursively

The study of shuffle-based sorting networks was proposed by Knuth [10, Exercise 5.3.4.47].
The best upper bound for this class is given by Batcher’s bitonic sort [2], with a depth of
O(lg” n). A lower bound of Q(lg” n/lglg n) was recently established by Plaxton and Suel [17].
However, this lower bound does not extend to arbitrary hypercubic networks.

The class of hypercubic sorting networks was defined by Leighton and Plaxton [13, 15],

who show the existence of a family of hypercubic sorting networks with depth 2°(V18187) g
The construction of these networks is based on a “probabilistic” sorting network described
in [12], which sorts all but a super-polynomially small fraction of the possible input permu-
tations. We point out that the depth of the above hypercubic networks is o(lg't* n), for all
e > 0, and that they represent the only known sorting networks of depth o(lg?n) that are
not based on expanders. Naturally, this raises the question of whether a depth of O(lgn)
can be achieved by any hypercubic sorting network.

1.2 Overview of this Paper

In this paper, we resolve this question by showing a lower bound of 2 (%) on the
depth of any hypercubic sorting network. Our lower bound also extends to certain restricted
classes of non-oblivious sorting algorithms on hypercubic machines and multi-dimensional
meshes. However, our lower bound argument does not allow the copying of elements by the
algorithm. Thus, the Sharesort sorting algorithm of Cypher and Plaxton [7], which achieves
a running time of O(lgnlglgn) (with preprocessing) on any of the hypercubic machines, is
not subject to our lower bound. Nonetheless, we believe that our present results are already
interesting in their own right, and that they may constitute an important step towards more

general lower bounds for sorting on hypercubic machines.

The remainder of the paper is organized as follows. Section 2 describes some of the
basic ideas underlying our lower bound argument. Section 3 establishes a lower bound for
a restricted class of hypercubic networks. Section 4 then shows our general lower bound.
Some possible extensions and implications of our results are discussed in Section 5. Finally,
Section 6 lists some open questions for future research.

2 Overview of the Proof

In this section, we give a very informal description of the most important ideas in the proof
of our lower bound. To do so, we will first review the lower bound argument for shuffle-based
networks given in [17], and explain why this relatively simple argument does not extend to
the more general class of hypercubic sorting networks. We will then describe the new proof
ideas that are needed in order to get a lower bound for arbitrary hypercubic sorting networks.

2.1 A Naive Proof Idea

A simple observation concerning comparator networks is that a sorting network must perform
a comparison on every pair of adjacent values in every input, that is, every pair of values

1.1 Hypercubic Sorting Networks

A comparator network is most commonly defined as an acyclic circuit of comparator elements,
each having two input wires and two output wires. One of the output wires is labeled as the
maz-output, which receives the larger of the two input values; the other output is called the
min-output, and receives the smaller value. We will use this model of a comparator network
throughout most of the paper, but will also briefly consider the following alternative model.

In this model, a comparator network on n registers is determined by a sequence of pairs
(IL;, Z;), 0 < ¢ < {, where II; is a permutation of {0,...,n — 1} and #; is a vector of length
|n/2] over {+,—,0,1}. The network receives as input a permutation of {0,...,n — 1} that
is initially stored in the registers, and then operates on the input in ¢ consecutive steps. In
step 7, 0 <z < £, the register contents are permuted according to II;, and then the operation
stored in the kth component of #; is applied to registers 2k and 2k 4+ 1. In a “4” operation,
the values stored in the two registers are compared, and the smaller of the values is stored

“—" operation, the values are stored in the

in register 2k, the larger one in 2k 4+ 1. In a
opposite order. A “0” means that no operation takes place on the corresponding pair of
registers. A “1” operation simply exchanges the values of the two registers. A comparator
network is called a sorting network if it maps every possible input permutation to the same

output permutation.

It is well known that the two models of comparator networks described above are equi-
valent. (That is, given any network in one model, there exists a network in the other model
with the same size and depth that implements the same mapping from inputs to outputs.)
While the first model often appears more intuitive, we can use the second one to define some
interesting special classes of networks by restricting the possible choices for the permutations
I1,.

The shuffle permutation 7y, on n = 2% inputs may be defined as follows. If j5_1 - jo
denotes the binary representation of some integer j, 0 < j < n, then w4 (j) has binary
representation jg_s - - - joji—1. A sorting network is called hypercubic if Il; = wg, or II; = 7T5_h1
holds for all :. A natural subclass of the hypercubic networks can be obtained by requiring
II; = 7wy, for all 2; we say that a network satisfying this condition is shuffle-based. Similarly,
if II; = 7;! for all 7, then the network is unshuffle-based.

The primary motivation for the definition of these two classes of networks is given by
the fact that they can be efficiently implemented on any of the hypercubic interconnection
networks (i.e., the hypercube, butterfly, cube-connected cycles, or shuffle-exchange). More
precisely, the structure of the hypercubic sorting networks corresponds exactly to the class of
normal algorithms on the hypercube, while the structures of the shuffle-based and unshuffie-
based networks correspond to the classes of descend and ascend algorithms, respectively
(see [11] for a definition of these classes). Most of the important algorithms that have been
proposed for the hypercube are normal (e.g., Fast Fourier Transform, parallel prefix, bitonic
merging and sorting). In fact, it can be argued that the primary motivation for the definition
of the bounded-degree variants of the hypercube (i.e., the butterfly, cube-connected cycles,
and shuffle-exchange) has been the capability of these networks to efficiently implement the
class of normal algorithms.

1 Introduction

A variety of different classes of sorting networks have been described in the literature. Of
particular interest here are the so-called AKS network [1] discovered by Ajtai, Komlds, and
Szemerédi, and the sorting networks proposed by Batcher [2]. While the AKS network
is the only known sorting network with O(lgn) depth, it also suffers from two significant
shortcomings. First, the multiplicative constant hidden by the O-notation is impractically
large. Through a series of improvements [3, 14], this constant has been reduced to below
2000, but remains impractical. Second, the structure of the network is highly irregular, and
does not seem to map efficiently to any of the common interconnection schemes. For example,
Cypher [6] has shown that any emulation of the AKS network on the cube-connected cycles
requires Q(lg* n) time. (A sorting algorithm emulates the AKS network if it performs the
same sequence of comparisons on any input.)

In contrast, the networks proposed by Batcher have a relatively simple structure and a
small associated constant, and can be efficiently implemented on many common intercon-
nection schemes, including meshes and hypercubic networks. This makes them the networks
of choice in many practical applications, even though they have depth ©(lg®n) and are
thus asymptotically inferior to AKS. This situation has motivated a number of attempts to
construct O(lgn)-depth sorting networks with simpler, more regular topologies, and/or a
considerably smaller constant. Three classes of networks that have received particular at-
tention are Shellsort networks, periodic sorting networks, and hypercubic sorting networks.

Shellsort networks have a very simple structure that is based on the sequential Shellsort
sorting algorithm. A class of Shellsort networks with depth ©(lg® n) was given by Pratt [18].
For Shellsort networks based on monotonically decreasing increment sequences, Cypher [5]
has established a lower bound of Q(lg”n/lglgn). Recently, a more general lower bound
was shown [16] that holds for arbitrary Shellsort networks and even sequential Shellsort
algorithms, thus answering in the negative the longstanding open problem of whether a
running time of O(nlgn) can be achieved by any Shellsort algorithm.

A comparator network is called a periodic sorting network if every input permutation can
be sorted by repeatedly passing it through the network. The primary motivation for such
periodic networks is the reduction in hardware cost achieved by applying the same network
repeatedly to the input. A periodic sorting network of depth O(lgn) and running time
O(lg* n) was given by Dowd, Perl, Rudolph, and Saks [8]. Very recently, Kik, Kutylowski,
and Stachowiak [9] have shown the existence of a family of periodic networks of depth O(k)
and running time O(k*n'/*) based on expanders. No non-trivial lower bounds for periodic
sorting networks are currently known.

In this paper, we focus on the class of hypercubic sorting networks, a notion that is
formalized below. We establish a lower bound of Q2 (%) for the depth of any sorting
network in this class. In fact, our lower bound argument can be extended to apply to
certain restricted classes of non-oblivious sorting algorithms on hypercubic networks and
multi-dimensional meshes. Before elaborating any further on these results, we will briefly

describe the comparator network model, and define several classes of hypercubic networks.

A Super-Logarithmic Lower Bound
tor Hypercubic Sorting Networks

C. Greg Plaxton® Torsten Suell

Department of Computer Sciences
University of Texas at Austin

Abstract

Hypercubic sorting networks are a class of comparator networks whose structure maps
efficiently to the hypercube and any of its bounded degree variants. Recently, n-input
hypercubic sorting networks with depth 20(V18187) g 5 have been discovered. These
networks are the only known sorting networks of depth o(lg” n) that are not based on
expanders, and their existence raises the question of whether a depth of O(lgn) can
be achieved by any hypercubic sorting network. In this paper, we resolve this question
by establishing an 2 (L‘fﬁlﬁ;‘%) lower bound on the depth of any n-input hypercubic
sorting network. Our lower bound can be extended to certain restricted classes of
non-oblivious sorting algorithms on hypercubic machines.

*Email: plaxton@cs.utexas.edu. Supported by NSF Research Initiation Award CCR-9111591, and the
Texas Advanced Research Program under Grant Nos. 003658-480 and 003658-461.

TEmail: torsten@cs.utexas.edu. Supported by the Texas Advanced Research Program under Grant
Nos. 003658-480 and 003658-461, and by a Schlumberger Graduate Fellowship.

