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gaps. For the two-dimensional mesh with recon�gurable buses, it is yet unclear whetherrouting can be done in less than n steps. For the mesh with �xed buses, there still remainsa gap between the known lower bounds and the upper bounds given by the randomizedalgorithms of Sibeyn, Kaufmann, and Raman [46]. (By applying a new \derandomization"technique for routing and sorting algorithms on meshes proposed in [25], it is possible toobtain deterministic routing algorithms that match the running times of these randomizedalgorithms, within a lower order additive term.)While the algorithms given in Section 2 are based on a fairly simple idea, they arenot practical due to the large lower order terms hidden in the local sorting steps and thecomputation of the matchings. It is an interesting question whether the ideas described inthis paper can be used in the design of more practical algorithms.Another possible research direction is to �nd e�cient algorithms for local routing, or forthe routing of sparse permutations. In this context, the buses might be very helpful in thedesign of algorithms that adapt to the degree of \locality" or \sparsity" of a problem.Finally, we believe that the study of dynamic routing problems on meshes with busesdeserves further attention. For example, one could try to show lower bounds for the casesof meshes with �xed CREW and CRCW buses, or give upper bounds for the expectedcompletion time of a routing request (as opposed to the high-probability bounds given in thispaper). An analysis for other classes of cummunication patterns (e.g., random permutationswith some degree of \locality") would also be of interest.AcknowledgementsI would like to thank Phil MacKenzie, Greg Plaxton, Rajmohan Rajaraman, and Jop Sibeynfor helpful discussions.
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of the interval and apply the protocol to the remaining packets and the packets that arrivedduring the unsuccessful execution of the protocol. The same protocol is executed for eachcolumn bus. It can be shown that in any interval of length T , no packet takes more thanO(lg T + lg n lg lg n) steps, and no queue grows beyond O(1 + lgTlgn ), with high probability.Using similar ideas we can obtain a dynamic algorithm with a delivery time of O(lg n �(lg T+lg lg n)). The maximal possible arrival rate for these algorithms is �(1=n); the preciseterm depends on the performance of the protocol of Ger�eb-Graus and Tsantilas. In the caseof recon�gurable buses, we do not know whether write conict resolution can be used toimprove on the bounds obtained in the previous subsection.3.4 DiscussionWe have observed in this section that the delivery time for a dynamic routing request isconsiderably smaller on meshes with buses than on the standard mesh. Of course, it needsto be pointed out that an improvement in the expected routing time from �(n) to, say,O(lg n) will in general not result in a proportional speed-up of the underlying computationperformed by the network. In particular, a faster delivery timemay in many cases result in anincrease in the arrival rate for new packets, which in turn will slow down the communicationin the network. The maximal speed-up that can be achieved by adding a bus system dependson the properties of the particular application. If on average only a small number of routingrequests are generated in a single step, then a signi�cant speed-up is possible. For largerarrival rates, some constant speed-up can still be obtained in many cases.If we can assume that most of the generated packets only have to travel a short distance,then the performance of a network with �xed buses can be improved by reserving the busesfor the few packets that have to travel over a long distance, and routing the other packetson the mesh edges. Of course, this is already done in many algorithms, such as the O(n1=3)pre�x sums algorithm, but it might be interesting to investigate this idea under the moregeneral framework of dynamic routing. On meshes with recon�gurable buses, the routingscheme described in Subsection 3.2 will naturally take some advantage of locality.4 Summary and Open ProblemsIn this paper, we have given improved deterministic algorithms for routing and sorting onmeshes with buses. The algorithms can be implemented on a variety of di�erent classesof networks, and are based on a new technique that seems especially suitable for networkswith a large diameter that have been augmented with a bus system or a low-bandwidthinterconnection network of small diameter. We have also investigated the performance ofvarious models of meshes with buses on dynamic routing problems.While our algorithms for permutation routing and sorting are optimal for some modelsof meshes with buses, for example the PARBUS or the Polymorphic Torus, there is still agap between the best upper and lower bounds on the mesh with �xed buses and the meshwith recon�gurable buses. It would certainly be an interesting improvement to close these20



by observing that in every step, either at least one element (the rightmost) in each rowreaches its destination column, or no element at all is routed in that row. (A correspondingstatement holds for the columns.) Using a more involved analysis, the result can be extendedto the dynamic case and to all � < 2=n.The above routing algorithmwas also recently studied by Herbordt, Corbett, Weems, andSpalding [18], who give experimental results for several important classes of permutations.While they do not perform a theoretical analysis in a dynamic setting, their results indicatethat the algorithm performs well on sparse random permutations.Note that the algorithm is quite similar to the greedy routing scheme on the standardmesh, in that we greedily move a packet along row-column paths towards its destinationwhenever possible. We can also use the scheme in the case of buses with non-unit delay.Interestingly, as the delay function increases, the number of packets currently in the networkincreases, and the resulting behavior of the algorithm eventually becomes more and moresimilar to the greedy algorithm for the standard mesh.3.3 Meshes with CRCW BusesUp to this point, we have restricted our attention to meshes with CREW buses. The reasonfor this restriction was that there was no apparent bene�t in allowing concurrent write accessto the buses in permutation routing and sorting. This situation appears to be di�erent, how-ever, in the case of dynamic routing problems on meshes with �xed buses. In the following,we assume that no packet is transmitted at all if two or more processors try to write to thesame bus in a single step. Instead, the bus broadcasts a special signal indicating that a writeconict has occurred. We point out that this situation is similar to that encountered in thecontext of Ethernet-like multiple-access channels [13, 14, 26, 36].A naive routing scheme would require every packet to ip a coin before each step, andattempt to write on the bus if and only if the outcome of the coin ip is a \1". If everyrow and every column contains only a constant number of packets, then this scheme routesa packet across each bus in a constant fraction of the steps. However, if a row or columnreceives a larger number of packets, then this routing scheme will very likely result in a writeconict in any given step, and eventually in a large backlog of undelivered packets. To avoidthis problem, a more clever coin-ipping strategy is needed.In our routing scheme, we will use a contention resolution protocol recently analyzed byGer�eb-Graus and Tsantilas [11] in the context of routing h-relations on an optical computermodel. The protocol uses appropriately biased coin-ips to route an h{h relation in time�(h+lg n lg h), with high probability (see [11] for a more detailed description). In the contextof CRCW buses, the protocol can be used to route up to h packets in time �(h+ lg n lg h)across a common bus.To obtain a non-dynamic algorithm, we partition the computation time into intervalsof length O(lg n lg lg n). Then in every such interval �(lg n lg lg n) packets are generatedin each row, and can be routed across the row bus using the above protocol, with highprobability. In the case that not all packets are routed by the protocol, we double the length19



3.1 Meshes with Fixed BusesIn the following, we assume that new packets are generated by the processors with rate� = k=n, for some k < 1. Thus, we expect about kn packets to be generated in any step.However, the generated packets and their destinations are not completely evenly distributedamong the rows and columns of the mesh. In fact, it is likely that some rows and somecolumns receive up to �( lgnlg lgn) packets. This raises the problem of scheduling the buses insuch a way that no two processors simultaneously attempt to write on the same bus.We partition the mesh into blocks of size n1=3 � n1=3. Then in each time interval oflength �(t �n1=3) and in each block, O(t+ lg n) packets are generated, with high probability.On the other hand, during each interval, �(t � n2=3) bus rides are available on the n1=3 rowbuses passing through the block. Thus, we could \multiplex" the n1=3 buses among the n2=3blocks in a row in such a way that each block \receives" one bus ride in any n1=3 consecutivesteps. Every newly generated packet can now walk in time O(n1=3) to a unique \bus stop"located within its block, where it waits for a slot on the bus. The process is then repeatedfor the column buses. It can be shown that in any time interval of length T , no packet takesmore than O(lg T + n1=3 lg n) steps, and no queue grows beyond size O(1 + lgTlgn ), with highprobability.A non-dynamic algorithm with a delivery time of O(lg T+n1=3) can be obtained by usinga pre�x computation to determine the number of packets generated in each block within thelast time interval. We can then assign an appropriate number of bus rides to each block.Since pre�x computations can be performed in O(n1=3) steps on a mesh with �xed CREWbuses, we can choose the intervals to be of length of O(n1=3).3.2 Recon�gurable MeshesWe now consider the dynamic routing problem on meshes with recon�gurable CREW buses.It turns out that the problem of scheduling the buses becomes much simpler under thismodel, since we can avoid write conicts by recon�guring the buses appropriately. Considera row of the mesh with a number of packets that want to move in a common direction, saytowards the right. If any processor that contains such a packet disconnects the row busbetween itself and its left neighbor, then no write conict can occur when the packets arebroadcast towards the right in the following step. This observation leads to the followingsimple routing scheme.As before, every packet is �rst routed along the row to its destination column, and thenalong the column to its �nal destination. We divide the routing into odd and even steps.In an odd step, we route all packets that have to be moved to the right. To do this, wedisconnect the row bus to the left of each packet and broadcast the packet to the right.Similarly, we route all packets that have to move downwards on the column buses. In aneven step, we route the packets that have to move upwards or towards the left.For the resulting algorithm, it can be shown that in any time interval of length T , nopacket takes more than O(lg T + lgn) steps, and no queue grows beyond size O(1 + lgTlgn ),with high probability. For the non-dynamic algorithm and � < 1=n, this can be easily seen18



have to cross the bisection of the network would be !(n). Since only O(n) packets can crossin any step, the expected time needed to deliver a packet would grow without bound as thecomputation proceeds. The exact bound on the capacity depends on the speci�c propertiesof the network. As an example, on the standard mesh the maximal arrival rate is boundedby 4=n, while on meshes with �xed buses, � can be at most 1=n if we want to make use ofthe buses to route packets over long distances.In [30, 31], Leighton investigates the dynamic routing problem on the standard meshunder the greedy routing scheme, in which each packet is �rst routed along the row to thecorrect column, and then along the column to its destination, and priority is given to thepackets with the longest distance to travel. He shows that in any time interval of lengthT and for any arrival rate less than 4=n, no packet is delayed by more than O(lg T + lg n)steps, and no queue grows beyond size O(1 + lgTlgn ), with high probability. (These resultshave recently been generalized and extended by Harchol-Balter and Black [17], Kahale andLeighton [23], and Mitzenmacher [39].) While this shows that greedy algorithms perform wellon dynamic routing problems, it should be noted that the expected time for the completionof a routing request is, of course, still �(n), due to distance arguments.In the following, we show that the maximal delivery time for a dynamic routing requestcan be signi�cantly reduced by adding buses to the network, while the capacity of the networkis only a�ected by at most a constant factor. Note that this is in contrast to the case ofpermutation routing, where adding buses to the network results in a speed-up by at most aconstant factor.In the greedy routing scheme considered by Leighton, a newly generated packet startsmoving towards its destination as soon as it can do so under the given priority scheme. Wecall such a routing scheme dynamic. Another possible way of solving a dynamic routingproblem is to partition the computation time into intervals [ti; ti+1], i � 0, and delay allpackets generated in the interval [ti; ti+1] until a new round of routing is started at time ti+1.(Note that this is related to the problem of routing a sparse random permutation.) We callsuch a routing scheme non-dynamic. It is pointed out in [31, page 173] that such a schemeis not a good choice for networks with large diameter, such as the mesh. Since the deliverytime of a packet in these networks is mainly determined by the distance it has to travel, it isa better idea to move a packet closer to its destination whenever this is possible. However,this situation is quite di�erent on meshes with buses, where the delivery time is not so muchdetermined by the distance between source and destination, but rather by the performanceof the mechanism for resolving possible contention for the buses.In the following, we propose dynamic and non-dynamic algorithms for several di�erentmodels of meshes with buses. In the next subsection we give algorithms for dynamic routingon meshes with �xed row and column buses. In Subsection 3.2 we consider the case ofmeshes with recon�gurable buses. Subsection 3.3 studies meshes with CRCW buses. Finally,Subsection 3.4 contains a brief discussion of our results.17



Lemma 2.1 Let S be the sample set of size n2�� chosen in Phase (ii). Then for any s 2 Swith Rank (s; S) = i we have(i� n2�2�) � n� < Rank (s;X) < i � n�:The proof of the above lemma is omitted. The next lemma establishes that the splitterelements used in our algorithm have the desired properties. It can be proved by a simpleapplication of Lemma 2.1.Lemma 2.2 Let D be the splitter set of size n� selected in Step (iii). Then D is a set of\good" splitters, that is, it satis�es conditions (1) and (2) stated above.Thus, we get the following result for sorting on two-dimensional meshes with buses.Theorem 2.4 There exists a deterministic algorithm for sorting on the two-dimensionalmesh with buses running in time n+ o(n) with queue size 2.As before, the algorithm can be implemented on several di�erent models of meshes withbuses. It can also easily be adapted to networks of higher dimension. By using the routingalgorithm for r-dimensional meshes with buses described in Subsection 2.3, we obtain adeterministic algorithm for sorting on the r-dimensional mesh with buses with a runningtime of (2� 1=r)n + o(n) and a queue size of 2.3 Dynamic Routing ProblemsPrevious work on routing algorithms for meshes with buses was restricted to the case ofstatic routing problems, in which every packet is already present at the beginning of therouting, and the algorithm terminates after all packets have been delivered. However, inmany real applications new packet routing requests are constantly generated by the pro-cessors throughout an ongoing computation. In this section, we study the performance ofdi�erent models of meshes with buses on such dynamic routing problems.Following the framework given by Leighton [30, 31], we assume that in a dynamic routingproblem, each processor generates a new packet at each step with some �xed probability �called the arrival rate. The destination addresses of these newly generated packets are chosenrandomly from the set of all processors. Our goal is to design routing algorithms that deliverevery generated packet to its destination within some number � of steps, with probabilityat least 1 � O(1=n2) (in the following referred to as high probability). We assume that theperformance of an algorithm on a dynamic routing problem is characterized by this timebound � , and by the network capacity �0. The network capacity is the maximal arrival rate� that can be handled by the algorithm.Note that for two-dimensional meshes and related networks, including the classes ofnetworks considered in this paper, there is an upper bound of O(1=n) on the capacity of thenetwork. If � = !(1=n), then the expected number of packets generated in a single step that16



(4) Broadcast the splitter elements to all processors in the mesh. This can be done in timeO(n�).(5) It is shown in Lemma 2.2 that the ith splitter element has a rank of approximatelyi � n2��, up to O(n2��). Hence, every element in the mesh can now determine its rankto within O(n2��) positions. We partition the mesh into blocks of size n� � n�, forsome � close to 1 and larger than 1 � �=2. Every element selects as its destinationblock the block containing the processor corresponding to its approximate rank.(6) Route every element to its destination block using the routing algorithm in Subsec-tion 2.2.(7) Compute the exact ranks of the splitter elements using pre�x computations, and broad-cast these ranks to all processors in the mesh. This can be done in time O(n�).(8) Use local sorting and routing to move all elements to their �nal destinations. Thistakes time O(n�).Apart from Step (5), all steps of the above algorithm take time o(n). Thus, the runningtime of the algorithm is determined by the running time of the routing algorithm used inStep (6), up to a lower order term. To establish the correctness of the algorithm, we have toshow that the splitter elements selected in Step (3) have the properties claimed in Step (5).The computation of the splitter elements in the above algorithm is essentially a simpli�edversion of a more sophisticated sampling technique used in the parallel selection algorithmof Cole and Yap [9]. The goal is to deterministically select a set of \good" splitters from aset of keys X of cardinality n2. More precisely, we are interested in selecting a set of t def= n�splitter elements D = fd0; : : : ; dt�1g with di+1 > di, such that the following properties holdfor all i:(1) Rank (di+1;X)� Rank (di;X) � 2n2t(2) (i�1)n2t + 1 � Rank (di;X) � in2t + 1Ignoring the details of the implementation on the mesh, the sampling technique used inSteps (1) to (3) of the above algorithm proceeds in the following three phases:(i) Partition the set X into n2�2� subsets Xi of size n2�, for some � with 0 < � < 1.(ii) Sort each subset, and select a sample set S by choosing n� equidistant elements fromeach sorted block, starting with the smallest element and going up to the (n�)th largestelement.(iii) Sort the sample set, and select a splitter set of size n� by choosing every s 2 S withRank (s; S) = i � n2�2� + 1, for some non-negative integer i.15



One important detail has been omitted from the description so far. Before running theprotocol in Steps (2) and (4), we have to arrange the packets inside the blocks such that,for all i; j, all bi;j row and column buses can be used in any step, and such that no writeconicts occur. This can be done during Steps (1) and (3) using local sorting and pre�xcomputations, in time O(n2=3). This establishes the following result.Theorem 2.3 There exists a deterministic algorithm for permutation routing on the n� nmesh with buses that runs in time n+O(n2=3) with constant queue size and that uses onlypre�x computations and local sorting as subroutines.The above algorithm achieves a queue size of 4; this can be reduced to 2 by a morecareful (but also more involved) implementation. The algorithm can again be implementedon several di�erent models of meshes with buses. Of course, it needs to be pointed outthat the algorithm is still too complicated to be of immediate practical interest. However,we believe that the result is interesting in that it indicates that even very simple globaloperations such as pre�x computations might be useful in the design of e�cient routingalgorithms on meshes with buses. In contrast, all previously described algorithms for thesenetworks use the buses only for the transmission of the packets, and not for the computationof the routing schedule. While such a restriction to local control is appropriate for networksthat do not provide any fast global communication, it may be that some amount of globalcontrol is useful on networks that support fast (but low bandwidth) global primitives suchas pre�x computations.2.5 Sorting on Meshes with BusesIn this subsection we give algorithms for sorting on meshes with buses that match the runningtime of our routing algorithms, within a lower order additive term. The algorithms are basedon a deterministic sampling technique that computes a set of splitter elements whose ranksare determined to within an additive lower order term. The high level structure of our sortingalgorithm is as follows:Algorithm SORT:(1) Partition the mesh into blocks of size n� � n�, where 1=2 < � < 1, and sort each blockinto row-major order. This takes time O(n�) using, for example, the algorithm bySchnorr and Shamir [45].(2) Route copies of the elements in the �rst column of each block to a block B of sizen1��=2 � n1��=2 in the center of the mesh. This can be done in time o(n) using thebuses.(3) Sort the elements in B and select n� elements of equidistant ranks as splitter elements.This takes time O(n1��=2). 14



Let � = 2=3, let si;j denote the number of packets in the ith column of blocks whosedestination is in the jth row of blocks, and let bi;j = j si;jn k. We now assign bi;j row buses inthe jth row of blocks to the ith column of blocks, and bi;j column buses in the ith columnof blocks to the jth row of blocks. Note thatn1=3�1Xi=0 bi;j � n2=3holds for all j, 0 � j < n1=3, and n1=3�1Xj=0 bi;j � n2=3holds for all i, 0 � i < n1=3. This assures that the total number of buses assigned in eachrow of blocks and each column of blocks does not exceed n2=3. Such an assignment of therow buses to the columns of blocks, and of the column buses to the rows of blocks, can beeasily computed from the bi;j using pre�x computations.After the assignment of the buses has been computed, we run the following protocol forn+1 steps. In each step, bi;j column buses in the ith column of blocks are used to transmitbi;j packets (with destination in the jth row of blocks) to the jth row of blocks. Also, ineach step, bi;j row buses in the jth row of blocks are used to transmit bi;j packets to theirdestination blocks. Thus, all packets routed along the columns in step k are routed alongthe rows to their destination blocks in step k + 1. (We assume that the row buses are idleduring the �rst step of the protocol, and the column buses are idle during the last step.)After n+1 steps of the above protocol, there are at most si;j �n � bi;j < n untransmittedpackets in the ith column of blocks that have a destination in the jth row of blocks. We cannow transmit these remaining packets by setting bi;j = n1=3 for all i; j, and running the aboveprotocol for another n2=3 + 1 steps. Finally, local routing inside each block can be used tobring every element to its �nal destination. Altogether, we obtain the following algorithm.Algorithm ROUTE2:(1) Partition the mesh into blocks of side length n2=3. Use local sorting and pre�x compu-tations to compute the assignment of the buses. This takes time O(n2=3).(2) Run the protocol described above for n+ 1 steps.(3) Compute a new assignment of the buses with bi;j = n1=3 for all i; j. This takes timeO(n2=3).(4) Run the protocol for another n2=3 + 1 steps.(5) Perform local routing inside each block to bring the packets to their �nal destinations.This takes time O(n2=3). 13



We now route every set of packets by �rst routing it within its sub-network to thecorrect destination block, and then within the destination block to its �nal position. Wecan simultaneously perform the routing in each of the sub-networks by running the aboveuni-axial algorithm in each sub-network. Due to their special structure, each of the r disjointsub-networks is connected to all rnr�1 buses, and can use all nr�1 buses associated with aparticular dimension in a single step. Since every sub-network only contains nr=r packets,each of the 2r � 1 phases of the uni-axial algorithm only requires n=r steps. The queue sizeof this algorithm is 4. Using ideas similar to those in the previous subsection, the queue sizecan be reduced to 2. This gives us the following result.Theorem 2.2 There exists a deterministic algorithm for routing on r-dimensional mesheswith buses that runs in time (2� 1=r)n + o(n) with a queue size of 2.The algorithm can again be implemented on several di�erent models of meshes withbuses. For the mesh with �xed buses, we obtain a signi�cant improvement over the bestpreviously known deterministic algorithm [33] with respect to both running time and queuesize. Our algorithm nearly matches the running time of the randomized algorithms of Sibeyn,Kaufmann, and Raman [46], while achieving a slightly better queue size. The algorithm caneasily be adapted to the multi-dimensional variants of the other networks mentioned in theprevious subsection, but we are not aware of any prior results for those models. We can alsoobtain faster algorithms for routing sparse permutations.2.4 Fast Routing without MatchingWhile the routing algorithms described in the previous subsections are fast from a theoreticalpoint of view, they are certainly not e�cient in practice. One source of this ine�ciency arethe fairly large additive lower order terms in the running times of the algorithms. As anexample, choosing � = 9=11 results in a lower order term of O(n9=11) in the case of thetwo-dimensional algorithm. As the constant hidden by the big-Oh notation is su�cientlylarge, this lower order term would dominate the running time of the algorithm on networksof realistic size. Another source of ine�ciency is the complicated control structure of thealgorithm, especially in the computation of the matchings. In particular, this makes thealgorithm unsuitable for any implementation in hardware.In the following, we describe an n+O(n2=3) time algorithm for two-dimensional networksthat does not require any computation of matchings, and that uses only pre�x computationsand local sorting as subroutines. Like the algorithm in Subsection 2.2, it is based on theo�-line algorithm of Leung and Shende, and assumes that the network is partitioned intoblocks of side length n�, for some �. However, instead of computing an optimal schedulefor the usage of the buses, the algorithm computes an assignment of the row buses to thecolumns of blocks (and of the column buses to the rows of blocks) that stays �xed throughoutmost of the algorithm. In this assignment, each column of blocks receives in each row ofblocks a number of row buses that is proportional to the number of its packets that havea destination in this row of blocks. (Alternatively, the algorithm can also be described ascomputing an approximate solution for a special case of the Open Shop Scheduling Problem.)12



By combining a large number of packets into a single super-packet, we are able to decreasethe number of packets in the network (and thus the number and size of the matchings thathave to be computed) in such a way that the intermediate locations can be computed intime o(n).Formally, partition the mesh into r-dimensional blocks of side length n�, for some � closeto 1 (say � = 0:99). Then sort the packets in each block according to their destination blocks,and combine up to nr� packets with a common destination block into a single super-packet,say for � = 0:9. Thus, the packets in a super-packet can be arranged in an r-dimensionalsubmesh of side length n�. In each block, we obtain at most nr(���)+nr(1��) super-packets.Hence, the number of super-packets in the entire mesh is nr(1��)+ o(nr(1��)). We can assignto each super-packet a unique block of side length n� inside the correct destination block, byrunning an appropriate pre�x computation. We can now interpret the remaining problemas a (o(nr(1��))-approximate) permutation routing problem on an r-dimensional mesh withside length n1��, where each communication step takes time n� (since it takes n� steps tomove all packets of a super-packet using n(r�1)� buses). Due to the small number of super-packets in this new routing problem, we can now compute the intermediate locations for theabove routing scheme in time o(n). This directly implies an on-line algorithm for routing onr-dimensional buses with a running time of (2r � 1)n + o(n).An issue we have ignored in the above description is that by combining the packetsinto super-packets, we only get an approximate permutation and not a permutation in thestrict sense. This problem can be easily overcome by, for example, �rst routing a (partial)permutation containing the vast majority of the packets with the above algorithm; the fewremaining packets can then be routed in o(n).In the remainder of this subsection, we show how this algorithm can be modi�ed to runin time (2 � 1=r)n. Note that the above algorithm only uses a small part of the availablebandwidth, since at any point in time all communication is performed across a single dimen-sion. In order to obtain an algorithm whose running time does not grow linearly with thedimension r, we have to make simultaneous use of all the buses in the network. The basicidea to achieve this is to partition the packets of the routing problem into r sets of packets.Each set of packets can then be routed in time (2r�1)n=r+ o(n) using the above algorithm.Since that algorithm uses only a single dimension in each time step, we can route all r setsof packets simultaneously without increasing the running time.Formally, we partition the mesh into r sub-networks by assigning the label j to eachprocessor with coordinates (i0; : : : ; ir�1) and i0 + � � � + ir�1 = j mod r. Next, we partitionthe packets of the routing problem into r sets by �rst sorting the packets in each block ofside length n� by destination blocks, as before, and then assigning each packet with rankj in the block to set j mod r. Note that in this way, for any destination block B, we havean approximately equal number of packets with destination in B in each of the r sets ofpackets. There are nr=r packets in each set, and hence in each set there are approximatelynr�=r packets with destination block B. Next, we move the packets in set i, 0 � j < r, tothe sub-network consisting of the processors with label i, such that each processor receivesexactly one packet. Note that all packets with common source and destination blocks areapproximately evenly distributed among the r sets.11



In the following, a partial permutation with no more than �n2 packets is called an �-permutation. We say that an �-permutation is �-balanced if every m�m block of the meshis the source and destination of at most �m2 + � packets, for all m with 1 � m � n. Thenthe following holds for all � > 0.Corollary 2.1.1 For any � = o(n), there exists a deterministic algorithm that routes every�-balanced �-permutation in time �n+o(n) with a queue size of 2. For general �-permutations,a running time of 2n=p�+ o(n) can be achieved.2.3 Routing on Multi-Dimensional Meshes with BusesIn the following, we apply the techniques from the previous subsection to obtain an im-proved deterministic algorithm for routing on multi-dimensional meshes with buses. Onan r-dimensional network with side length n, our algorithm achieves a running time of(2� 1=r)n+ o(n) and a queue size of 2. This bound even holds if the dimension of the meshis non-constant, provided that the side length n is su�ciently larger than the dimension r.Our algorithm is based on a well-known scheme for o�-line routing on r-dimensionalmeshes described by Annexstein and Baumslag [2]. The routing scheme consists of 2r � 1phases. In phase i, 1 � i � r�1, each packet is routed along dimension i to an appropriatelychosen intermediate location. In phase i, r � i � 2r�1, each packet is greedily routed alongdimension 2r� i. Each phase of the routing scheme involves a collection of routing problemson linear arrays of length n, and thus takes at most n steps on the standard mesh. Hence,the entire routing is completed after (2r� 1)n steps. This bound can be matched on mesheswith buses, even if only buses are used to route the packets. (On the mesh with �xed buses,this running time can easily be reduced by using the 2n=3 time algorithm of Leung andShende [33] to perform the linear array routing.)In order to route a given permutation with the above routing scheme, it is necessary todetermine appropriate choices for the intermediate locations assumed by the packets in the�rst r�1 phases. The existence of such intermediate locations is implied by Hall's MatchingTheorem, and they can be computed by constructing a sequence of perfect matchings in agraph. While the routing is similar in this respect to the scheme studied in the previoussubsection, it is also important to realize the di�erences between the two schemes. In par-ticular, we are not aware of any interpretation of the r-dimensional scheme as an instance ofthe Open Shop Scheduling Problem. On the other hand, it does not appear to be possibleto generalize the two-dimensional scheme to higher dimensions.The details of the computations necessary to obtain the intermediate locations of thepackets can be derived from the description in Section 1.7.5 of [31]. For our purposes, it isenough to understand that the running time of these computations is polynomial in nr, thenumber of packets in the network. More precisely, to obtain the intermediate locations of thepackets after phase i, 1 � i � r�1, it su�ces to compute a sequence of ni perfect matchingsof size nr�i. In order to convert this o�-line routing scheme into an on-line algorithm, weintroduce the notion of a super-packet. Informally speaking, a super-packet consists of acollection of packets that have similar sources and destinations, and that move in lock step.10



of more than 200 to obtain a running time of 1:2n.) On the mesh with recon�gurablebuses, our algorithm improves upon the best previously known randomized algorithm ofRajasekaran and McKendall [43]. On the PARBUSmodel, which does not allow bidirectionalcommunication in subbuses of length one, our algorithm is optimal within an additive lowerorder term.Our algorithm can also be easily adapted to the Polymorphic Torus network describedin [35]. (This network is essentially a mesh with recon�gurable row and column buses andadditional wrap-around connections.) The resulting algorithm routes any permutation intime n=2 + o(n), and thus nearly matches the bisection lower bound of n=2.For another example, consider a model of the bused mesh in which the buses have anon-unit propagation delay �(n). It was observed by Cheung and Lau [7] that, for anynon-constant delay function �, routing takes time 2n� o(n) in this model, assuming that nopipelining is allowed on the buses. However, if we lift this restriction and allow a processorthat sends a packet on the bus to send another packet in the next step, then we can routein time n + o(n), for any � = o(n), using a variant of the above algorithm. As a corollary,this gives an n + o(n) algorithm for permutation routing on the Mesh of Trees [31].(Note: Very recently, Kunde [27] and Kaufmann, Sibeyn, and Suel [25] have describedoptimal deterministic algorithms for k{k sorting on the standard mesh based on ideas similarto Leighton's Columnsort [29]. Using the same approach, it is possible to obtain algorithmsfor 1{1 routing and sorting on the Mesh of Trees that nearly match the lower bound ofn=2 due to bisection width. This approach can also be used to design algorithms for thePARBUS and the Polymorphic Torus that match the running times of our algorithms.)The above result shows that for the problem of permutation routing, even a fairly simplealgorithm on the mesh with buses can achieve a speed-up by a factor of 2 over meshes withoutbuses. Moreover, our algorithm has a queue size of 2, while the only optimal deterministicalgorithms previously known for the standard mesh [32, 44] have a queue size of at least 112.(Optimal deterministic algorithms with substantially smaller queue sizes have very recentlybeen described in [8, 25].) In this context, we point out that the 3n� 3 step o�-line schemefor routing on the standard mesh described by Annexstein and Baumslag [2], as well asthe 3n + o(n) sorting algorithm of Schnorr and Shamir [45], achieve a queue size of 1 onlybecause in the standard mesh model two packets can be exchanged across an edge in a singlestep. Since we do not allow two arbitrary processors that are connected to a common busto exchange two packets in a single step, it seems di�cult to design any algorithm with aqueue size of 1 that uses the buses to transmit packets.An even greater speed-up over the standard mesh can be achieved if we consider certainrestricted classes of permutations. Consider the problem of routing a partial permutationwith only a very small number of packets (say, at most �n2 packets). In the case of thestandard mesh without buses, this problem would still require a running time of 2n � 2 inthe worst case. On the mesh with buses, our only restriction is the bisection bound, andhence we could hope for a speed-up of up to 1=� over full permutation routing. It turns outthat the above algorithm can be used to solve this problem, provided that the sources anddestinations of the packets are approximately evenly distributed over the mesh.9



Algorithm ROUTE:(1) Partition the mesh into blocks of size n� � n�. Sort the packets in each block intorow-major order by destination blocks. This takes O(n�) = o(n) steps.(2) In each block, use sorting and pre�x computations to compute the mi, 0 � i < n2�2�(mi was de�ned as the number of packets with destination block Bi). Send the mi toa small area in the center of the mesh. This takes o(n) steps using the buses.(3) Compute the schedule and broadcast it to all blocks of the mesh. This can be done intime o(n), assuming that the constant � is chosen close enough to 1.(4) Execute the computed schedule of length n+ o(n).(5) Perform local routing inside each block to bring the packets to their �nal destinations.This takes time O(n�) = o(n)It remains to show that the above algorithm can be implemented with a small, constantqueue size. Consider any destination block Bi inside the mesh, and recall that up to n�packets enter Bi across the row buses in a single step. Due to the sorting in Step (1) of thealgorithm, every block in the mesh can have at most two dirty rows that contain elementswith destination block Bi. This implies that Bi only receives packets in at most n�+2n2�2�steps of the schedule. If we require that the packets arriving in the ith such step are storedby the processors in the (i mod n�)th column of Bi, then most processors in Bi only get asingle packet, while up to 2n2�� processors receive two packets. In addition, every processorin Bi can also contain one packet with source in Bi that has not been sent out yet. Finally,some of the processors in Bi, say those on the diagonal of the block, also have to store then� packets that can enter the block across the column buses in each step, and that are thenrouted across the row buses in the following step. This gives a total queue size of 4.We can decrease the queue size to 3 by assuming that the elements in the diagonal of Bido not receive any of the packets entering the block across the row edges. To get a queuesize of 2, we require that every destination block stops accepting new packets from the rowbuses after it has received n� � 1 batches of packets. It can be shown that every block isstill able to deliver the vast majority of its packets to their destination blocks. We can thenrearrange the packets in each block and compute another schedule to deliver the remainingpackets; the details of this construction are omitted. This establishes the following result.Theorem 2.1 There exists a deterministic algorithm for permutation routing on the n� nmesh with buses that runs in time n+ o(n) with a queue size of 2.Note that the above algorithm does not assume any particular model of the mesh withrow and column buses. In fact, the algorithm can be implemented on a variety of di�erentmodels within the same bounds on running time and queue size. For the mesh with �xedbuses, this improves upon the best previously known deterministic algorithm [34] in bothrunning time and queue size. (As an example, the algorithm in [34] requires a queue size8



schedule, we can then bring the packets to their �nal destinations by routing locally insideeach block.To arrange the packets for the routing schedule, we sort the blocks into row-major order,where the packets are sorted by the index of their destination block. We say that a row of ablock Bi is clean if all its packets have the same destination block. Otherwise, we say thatthe row is dirty. All n� packets in a clean row of a block are transmitted across the rowbuses to their common destination block in a single step, after they have been routed to thecorrect row of blocks in the preceding step. If a row of a block is dirty, then the packetsin the row are transmitted across the row buses to their respective destination blocks in dseparate steps, where d is the number of distinct destination blocks that occur among thepackets in the row. In other words, such a row is treated in the same way as d separate rows;this increases the number of steps required to route this row by d � 1. Since there are onlyn2�2� blocks, this increases the number of steps required to route the elements of a singleblock across the row buses by at most n2�2��1. Consequently, the number of steps requiredto route all the elements of a process Pi across the row buses is increased by less than n3�3�.Hence, if Di;j denotes the number of steps that process Pi needs resource Rj , thenn1���1Xj=0 Di;j < n + n3�3� (3)holds for all processes Pi. Correspondingly, it can shown thatn1���1Xi=0 Di;j < n + n3�3� (4)holds for all resources Rj, since for any two blocks Bk; Bl, there can be at most two dirty rowsin Bk that contain packets destined for Bl. Equations (3) and (4) guarantee the existence ofa schedule of length at most n+n3�3� = n+ o(n) that routes every packet to its destinationblock.It remains to show that such a schedule can be computed in time o(n). Since we only haven1�� processes and resources, the graph G that is used in the construction of the schedulehas only 2n1�� vertices. Hence, a maximum matching in this graph can be computed intime O �(n1��)5=2�. For each matching that is computed, at least one edge is removed fromthe graph. This implies that at most n2�2� matchings have to be computed, and the totaltime to compute the schedule sequentially is bounded by O �(n1��)9=2� = o(n). In order toimplement this computation on a bused mesh, all the data needed to construct the graph Gis routed on the buses to a small area, say in the center of the mesh, where the schedule iscomputed and then broadcast to all blocks. It su�ces if each block contributes the numbersmi, 0 � i < n2�2�, where mi is de�ned as the number of elements in the block that aredestined to block Bi. This can clearly be done in time o(n), since only a small amount ofinformation has to be transmitted. We do not elaborate any further on the implementationof the maximum matching algorithm on the mesh. Since we do not need an algorithmthat is faster than the sequential one, this is an easy task. In fact, we could even a�ord astraightforward simulation of a turing machine algorithm on the mesh. All in all, we obtainthe following algorithm: 7



for all i, since every column is the origin of exactly n packets. A simple algorithm for�nding a minimum time schedule computes a sequence of maximum matchings in the bi-partite graph G = (U; V;E) de�ned by U = fP0; : : : ; Pn�1g, V = fR0; : : : ; Rn�1g, andE = f(Pi; Rj) j Di;j > 0g. More precisely, the algorithm �rst computes a maximum match-ing M of G, and schedules each process with its matched resource for Dmin time steps, whereDmin = minfDi;j j (Pi; Rj) 2 Mg. Next, we subtract Dmin from all Di;j with (Pi; Rj) 2 M ,construct a new bipartite graph G0 corresponding to the new values of the Di;j , and computea new maximummatching M 0. This procedure is repeated until all demands Di;j have beenreduced to zero. Using Hall's Matching Theorem, it can be shown that Equations (1) and (2)guarantee that the resulting schedule has a length of at most n. This in turn implies that atmost n matchings have to be computed, since for every matching the length of the scheduleis increased by at least one step.A maximum matching on a bipartite graph with 2n vertices can be computed in timeO(n5=2) using the algorithm of Hopcroft and Karp [19]. Thus, the entire schedule can becomputed in time O(n7=2). Of course, this makes the algorithm inappropriate for use asan on-line algorithm. In the next subsection, we show how this o�-line algorithm can beconverted into an on-line algorithm that runs in time n+ o(n).2.2 Permutation Routing on Two-Dimensional Meshes with BusesIn order to get a running time of n + o(n), we modify the above algorithm in such a waythat the routing schedule can be computed on-line in time o(n). Executing the computedschedule then takes another n+ o(n) steps. The key idea in our construction is a techniqueto reduce the size of the scheduling problem that has to be solved, and thus the size andnumber of the matchings that have to be computed. Informally speaking, this can be doneby partitioning the mesh into a smaller number of processes and resources, and by treatingsets of packets with similar sources and destinations as if they were a single packet. This isdescribed more formally in the following.We partition the bused mesh into blocks Bi, 0 � i < n2�2�, of size n� � n�, where� is some constant that is smaller, but su�ciently close to 1 (for example, � = 0:9). Weassume that the blocks Bi are indexed in row-major order. (Thus, B0 and Bn2�2��1 arethe blocks in the upper left and lower right corner, respectively.) We now interpret each ofthe n1�� columns of blocks as a process, and each of the n1�� rows of blocks as a resource.Each process Pi, 0 � i < n1��, has exclusive ownership of its n� column buses, while eachresource Rj, 0 � j < n1��, consists of n� row buses. At most one process is allowed to accessa single resource at any point in the algorithm. Thus, a process that has exclusive accessto a resource can transmit up to n� packets across the row buses of the resource in a singlestep.We now have to arrange the packets inside the processes in such a way that we can makeoptimal use of this new con�guration. To do this we have to slightly relax the goal of therouting schedule that has to be computed. Rather than requiring each packet to be at its�nal destination after execution of the schedule, we are content with routing each packet tosome position in the n� � n� block that contains its destination. After completion of the6



2 Permutation Routing and SortingIn this section, we introduce a new technique that allows us to convert certain o�-line routingschemes into deterministic routing algorithms. We then use this technique to design new andimproved algorithms for permutation routing and sorting on meshes with buses. We beginby giving an alternative description of a simple n+ 1 step o�-line routing scheme proposedby Leung and Shende [33, 34]. In Subsection 2.2 we show how this o�-line routing schemecan be used to obtain a fast and fairly simple deterministic routing algorithm for the two-dimensional mesh with buses. In Subsection 2.3 we apply our technique to obtain improveddeterministic algorithms for multi-dimensional meshes with buses. In Subsection 2.4, wegive another algorithm for the two-dimensional case. Finally, in Subsection 2.5 we describeour algorithms for 1{1 sorting.2.1 O�-line RoutingIn the o�-line routing scheme of Leung and Shende [33, 34], every packet is routed to itsdestination by �rst routing it on a column bus to its destination row, and then routing iton a row bus to its destination column in the following step. Thus, the algorithm does notmake use of the mesh edges at all. Leung and Shende show that, for any input permutation,a schedule for the above routing scheme can be computed in time O(n7=2) by computinga sequence of n maximum matchings. Once the schedule has been computed, it can beexecuted in n+ 1 steps.Now consider the following interpretation of the above scheduling problem. The columnsof the bused mesh are interpreted as processes P0; : : : ; Pn�1. Every process Pi has exclusiveownership of its column bus, and has to transmit the n packets initially located in its columnto their destinations. To do so, a process needs to send packets on the row buses, which areinterpreted as resources R0; : : : ; Rn�1. Before a packet can be transmitted across a row busto its �nal destination, it has to be routed within its column to the correct row; this can bedone in the preceding step using the column bus. If k packets in column i have a destinationin row j, then process Pi needs to access resource Rj for k time steps. These k steps can bescheduled in any arbitrary order, provided that in any given step, each resource is accessedby at most one process, and each process uses at most one resource. The problem of �ndinga minimum time schedule that satis�es all of these demands is known as the Open ShopScheduling Problem [12].For 0 � i; j < n, let Di;j , the demand of process Pi for resource Rj, be the number ofpackets in column i that have a destination in row j. Note thatn�1Xi=0 Di;j = n (1)holds for all j, since every row is the destination of exactly n packets. Correspondingly, wealso have n�1Xj=0Di;j = n (2)5



time is actually slightly better than this bound.)For the problem of k{k routing on r-dimensional networks, r � 1, there are obvious lowerbounds of kn=3 and kn=2 for the mesh with �xed and recon�gurable buses, respectively, dueto the bisection width of the network. For the mesh with �xed buses, Rajasekaran [42]and Sibeyn, Kaufmann, and Raman [46] describe randomized algorithms that match thislower bound, within a lower order additive term. An optimal randomized algorithm fork{k sorting on the mesh with recon�gurable buses can be obtained by a straightforwardimplementation of the algorithms for the standard mesh given in [24]. Very recent work byKunde [27] and Kaufmann, Sibeyn, and Suel [25] implies that this bound can also be matcheddeterministically. If we drop the assumption of bidirectional communication in subbuses oflength 1, then about kn steps are necessary and su�cient.1.2 Overview of the PaperIn this paper, we study the complexity of permutation routing, sorting, and dynamic routingon meshes with �xed and recon�gurable row and column buses.We give two fairly simple deterministic algorithms for permutation routing on the n� nmesh with buses that achieve a running time of n + o(n) and a queue size of 2. We alsogive an algorithm for r-dimensional meshes, r � 3, with a running time of (2� 1=r)n+ o(n)and a queue size of 2. We then show how to obtain algorithms for 1{1 sorting whoserunning times match those for permutation routing, within a lower order additive term. Aninteresting feature of all our algorithms is that they can be implemented on a variety ofdi�erent classes of networks, within the same bounds on time and queue size. For the meshwith �xed buses, our algorithms o�er a signi�cant improvement over the best previouslyknown deterministic algorithms [33, 34] with respect to both running time and queue size.For the mesh with recon�gurable buses, our algorithms also improve over the best knownrandomized algorithms [42]. Our algorithms are obtained with a new technique that allows usto convert certain o�-line routing schemes into deterministic on-line algorithms. We believethat this technique is of independent interest, and that it may have further applications.In the second part of the paper, we study dynamic routing problems on meshes withbuses. In the case of permutation routing, we cannot hope to get a speed-up of more thana constant factor over the standard mesh, with any system of buses that can be laid out inO(n2) area. However, this situation is completely di�erent in the case of dynamic routing.We describe an algorithm for the mesh with �xed buses that assures that in any time intervalof length T , every packet is routed in time O(lg T + n1=3), with high probability. For themesh with recon�gurable buses, we propose a very simple routing scheme that routes everypacket in O(lg T + lg n) steps. For the mesh with �xed CRCW buses, a delivery time ofO(lg T + lg n lg lg n) can be achieved. In contrast, the expected time for the completion of arouting request on the standard mesh is easily seen to be �(n).The remainder of the paper is organized as follows. Section 2 describes our algorithmsfor permutation routing and sorting. Section 3 contains our results for dynamic routing onvarious models of meshes with buses. Finally, Section 4 lists some open questions for futureresearch. 4



Shende show that every permutation can be routed o�-line in n+1 steps. They also describea deterministic on-line algorithm that routes in time (7=6+ �)n+ o(n) and queue size O(1=�)on the two-dimensional mesh with �xed buses, and in time (7(r � 1)=6 + �)n + o(n) andqueue size O(�1�r) on r-dimensional networks. In a subsequent paper [34], they obtain animproved algorithm for the two-dimensional case, running in time (1 + �)n + o(n) with aqueue size of O(1=�).Rajasekaran and McKendall [43] and Rajasekaran [42] describe randomized algorithmsfor routing and sorting on a mesh in which the mesh edges have been replaced by a recon�g-urable bus system. This model, hereinafter referred to as the mesh with recon�gurable buses,is essentially the same as the PARBUS, but has the additional property that every subbusof length 1 can be used in the same way as a bidirectional edge in a standard mesh. Thismeans that in this case a message can be transmitted in either direction in a single step.There is an obvious lower bound of n=2 steps for permutation routing and sorting on thismodel, due to the bisection width of the network. Rajasekaran and McKendall describe adeterministic algorithm for routing on the one-dimensional mesh with recon�gurable buseswith a running time of 3n=4 and constant queue size, and a randomized algorithm for thetwo-dimensional case that achieves a running time of (1 + �)n and a queue size of O(1=�),with high probability. They also show how to obtain randomized algorithms for sorting withthe same bounds on running time and queue size.Comparing the two di�erent models described above, we observe that in the case ofthe mesh with �xed buses, we cannot remove the standard mesh edges without losing thecapability of e�ciently performing local communication among groups of adjacent proces-sors. On the other hand, on the mesh with recon�gurable buses the standard mesh edgesare not really necessary, since they can be simulated e�ciently by partitioning the busesappropriately. In this context, the assumption of bidirectional communication in subbusesof length 1 assures that any step of the standard mesh can be simulated by a single step ofthe mesh with recon�gurable buses. While this assumption may be technologically feasible,it can also be perceived as somewhat unsatisfactory from a theoretical point of view, sinceit adversely a�ects the simplicity of the model. We point out here that both the algorithmsfor two-dimensional networks in [43] and those presented in this paper do not make use ofthis assumption. Note that in this case, there is a lower bound of n steps for permutationrouting due to the smaller bisection width.Very recently, and independent of this work, Sibeyn, Kaufmann, and Raman [46] haveshown improved lower bounds for routing on the d-dimensional mesh with �xed buses. Inparticular, they obtain lower bounds of 0:69n and 0:72n for the two-dimensional and three-dimensional case, respectively. For large values of r, their lower bounds are approximatelyr�1r n. The lower bound for the two-dimensional case was also independently discoveredby Cheung and Lau [7]. Sibeyn, Kaufmann, and Raman also give randomized algorithmsfor permutation routing on meshes with �xed buses that are signi�cantly faster than thedeterministic algorithms of Leung and Shende. For the two-dimensional case, they obtaina fairly simple algorithm with a running time of 0:87n, and a more complicated algorithmwith a running time of 0:78n. They also give an algorithm for d-dimensional networks thatachieves a running time of (2 � 1=r)n + o(n), for all r. (For small values of r, the running3



other processors connected to the bus in the next step. Another common assumptionis that the result is unde�ned if several processors attempt to write on the same busin a single step of the computation. Using the PRAM terminology, we refer to sucha bus as being Concurrent Read Exclusive Write, or CREW for short. We also usethe term CRCW to refer to buses with broadcast capability and some form of writeconict resolution. Note that there is a close relationship between a shared memorycell in a CREW/CRCW PRAM and a global bus of the same type [37].Additional features that have been studied include buses with non-unit delay [35, 38], andbuses that allow pipelining of messages under certain conditions [15].The model of computation assumed in this paper is a mesh with row and column buses.We consider both �xed and recon�gurable buses. Of course, all algorithms designed for sucha model will also run on more powerful models, such as the Polymorphic Torus [35] or thePARBUS [51], which can be recon�gured into a mesh with row and column buses. Unlessexplicitely stated otherwise, we assume the buses to be CREW. However, we also discussthe impact of other conict resolution schemes on the performance of the network.1.1 Related ResultsIn this paper, we consider the problems of permutation routing, sorting, and dynamic routingon meshes with row and column buses. The routing problem is the problem of rearranging aset of packets in a network, such that every packet ends up at the processor speci�ed in itsdestination address. A routing problem in which each processor is the source and destinationof at most k packets is called a k{k routing problem. The routing problem most extensivelystudied in the literature is the 1{1 routing problem, also referred to as the permutationrouting problem. In the 1{1 sorting problem, we assume that each processor initially holdsa single packet, where each packet contains a key drawn from some totally ordered set. Ourgoal is to rearrange the packets in such a way that the packet with the key of rank i is movedto the processor with index i, for all i. Finally, in a dynamic routing problem, packets arecontinuously generated at each processor according to some random process; the destinationsof the generated packets are randomly chosen among the processors of the network. Whiledynamic routing problems have been studied on several other classes of networks, includingthe mesh [30, 31] and the hypercube [47], we are not aware of any previous analysis of theperformance of meshes with buses on these problems. In the case of permutation routingand sorting, it is easy to see that at least �(n) steps are required on all proposed variants ofmeshes with buses, due to bisection width. However, the exact complexity of these problemshas only recently been investigated.The study of permutation routing on meshes with row and column buses was proposedby Leung and Shende [33]. They assume a model of computation, hereinafter referred to asthe mesh with �xed buses, that consists of a mesh with non-recon�gurable row and columnbuses in addition to the standard mesh edges. For the one-dimensional case, they obtaina permutation routing algorithm running in 2n=3 steps with small constant queue size.They also show a matching lower bound of 2n=3 for this problem; this lower bound canbe extended to networks of higher dimensions. For the two-dimensional mesh, Leung and2



1 IntroductionThe mesh-connected array of processors is one of the most thoroughly investigated intercon-nection schemes for parallel processing. It is of great importance due to its simple structureand its good performance in practice. Consequently, a variety of algorithmic problems havebeen analyzed as to their complexity on theoretical models of the mesh; probably the twomost extensively studied problems are those of routing and sorting. The main drawback ofthe mesh is its large diameter in comparison to many other networks, such as the mesh oftrees or the hypercubic networks [31]. An n� n mesh has a diameter of 2n � 2, and henceeven computations that require only a very limited amount of communication, for examplepre�x computations, still require at least n� 1 communication steps.To remedy this situation, it was proposed by several authors [4, 22, 48] to augment themesh architecture with high-speed buses that allow fast communication between processorslocated in di�erent areas of the mesh. This has resulted in a large body of literature onvarious di�erent models of meshes with bus connections, and a number of important algo-rithmic problems have been studied under these models. Among the most frequently studiedproblems on meshes with buses are Maximum [1, 4, 10, 38], Pre�x Sums [3, 6, 10, 28, 41, 48],Selection [5, 16, 41, 48], as well as various algorithmic problems in image processing andgraph theory [20, 21, 38, 40, 49]. Additional literature can be found in [35] and the abovereferences.Due to the low communication requirements of most of the above problems, signi�cantspeed-ups over the standard mesh can be achieved. The exact time complexities of theproposed algorithms depend heavily on the properties of the bus system. For example, themaximum of n2 elements can be computed in time O(lg lg n) on an n� n mesh with a fullyrecon�gurable bus, while the same problem requires �(n1=3) steps on a mesh with �xed rowand column buses. On the mesh without buses, at least n � 1 steps are needed. In thefollowing, we briey describe some of the main features of the bus system that determinethe power of the model.(1) Architecture of the bus system: A bus is called global if it is connected to all processorsin the network. A bus that is connected to only a subset of the processors is called local.Examples of meshes with one or several global buses are given in [1, 4, 38, 48]. Most ofthe work on local buses has focused on the mesh with row and column buses [10, 41, 49],although other architectures have been proposed [37, 49].(2) Recon�gurability of the buses: A bus is called recon�gurable if it can be partitioned intosubbuses, such that each subbus can be used as a separate, independent bus. A bus thatis not recon�gurable is called �xed. In a system with recon�gurable buses, the possiblepartitions of the buses depend on the layout of the bus system. As an example, consideran n� n mesh with recon�gurable row and column buses laid out in the obvious way.Then each of the n row buses (column buses) can only be partitioned into subbusesconnecting groups of consecutive processors of the respective row (column).(3) Conict resolution for bus access: Most papers assume that the buses have broadcastcapability, that is, a value written on the bus by one processor can be read by all1
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