Real-Time Unity
Al Carruth

Department of Computer Sciences
Taylor Hall 2.124
University of Texas at Austin
Austin TX 78712-1188
USA

e-mail: carruth@cs.utexas.edu

March 29, 1994

Abstract

We propose Real-Time Unity in which the Unity operators co and +—
are generalized to the bounded forms cox and +—, where kis a time value.
This is done in such a way that for ¥ = co the bounded forms specialize
to the unbounded forms. Hence Real-Time Unity includes Unity as a
sub-theory. Real-Time Unity appears to be especially appropriate for
reasoning about the interplay of real-time progress and safety properties.
We argue that this sort of interplay is fundamental to the development of
real-time programs and give a number of examples of the application of
the theory to programs which require such an interplay. We then propose
topics for further research.

Keywords: Real-time, Unity, program refinement, concurrency.

1 Introduction

The problem of specifying and proving properties of real-time programs has
received much attention over the last ten years. This attention is due to the
critical function which many of these programs provide. Since many real-time
programs are so critical, it is important that we gain the ability to reason
effectively about their correctness.

Real-time constraints arise in a variety of ways. Many program specifica-
tions include some hard real-time requirement so that the system may properly
interact with its physical environment. Common examples include control sys-
tems for nuclear power plants, weapons guidance systems or flight control sys-
tems. Other real-time constraints may be introduced during the refinement of
an untimed specification. For example, the top level specification of a communi-
cations protocol might only require the successful transmission of the data while
the sub-specifications might require the sender to go slowly and the receiver to
go quickly. Some example problems we will consider are:

e Simple “ping” with a timeout. One process attempts to determine
whether another is up or not. After waiting for some amount of time the
process can safely assume the other is not up on the grounds that it would
have responded by now.

¢ Bounded buffer with asynchronous communication. Long distance
communication can be expedited if the sender can send packets at regular
intervals rather than waiting after each packet for the receiver to signal
that it is ready to receive the next packet. If the receiver is removing the
packets more quickly than the sender is sending them, then they will not
be over-written by the next packet before they are read.

¢ Fischer’s mutual exclusion protocol. Fischer’s protocol guarantees
mutual exclusive access to a critical section for at least one of the pro-
cesses attempting to enter the critical section. The correctness of this
protocol depends on bounded progress and safety constraints imposed on
the processes.

e Window of opportunity. A process can transit from state a to b only
during a certain window of opportunity which is repeatedly open and
closed. If the window is guaranteed to remain open for time k and the
process is guaranteed to act within time k when the window becomes open,
then the process will eventually transit from a to b.

All of these problems have in common the composition of a real-time safety
property and a real-time progress property.! For the program to be correct, one
process must go quickly and another must go slowly. To formalize these notions,
we propose a quantitative extension of the Unity logic. By this we mean that
the usual operators of Unity are generalized by the addition of a time parameter.
For instance, p — ¢ is generalized to p —} ¢, which means whenever p holds
g will hold within time k. We do this in such a way that instantiating k& with
oo specializes the general form to the old untimed form. Likewise many of the
usual Unity inference rules have general real-time counterparts in our theory.
As a result, proofs in our theory have much the same form and flavor as Unity
proofs. We are encouraged by the fact that many of the example problems we
have investigated have simple efficient proofs in our theory.

The remainder of the paper is organized as follows. In section 2 we provide
the motivation for our approach. In section 3 we give an overview of the untimed
Unity logic as it occurs in [Mis93]. In section 4 we present the Real-Time Unity

1What we call a real-time progress property others would call a safety property. Indeed
many researchers regard all real-time properties as safety properties [AL92], [SBM92]. If one
defines safety properties as those properties whose failure for a computation can be detected in
a finite prefix of that computation, then indeed all real-time properties are safety properties.
Our justification for calling certain real-time properties progress properties lies in the way
they behave logically. Because our rules for p —j ¢ are analogous to the rules for the untimed
p — g, we refer to the former (as well as the latter) as a progress property.

logic. This consists of a syntax for programs and their properties and a number
of axioms and inference rules for proving that properties hold for a program.
In section b we show how the Real-Time Unity logic can be applied to some of
the example problems of section 1. In section 6 we present a refinement rule
for Real-Time Unity programs. We show how this rule can be used to avoid
global state sharing by introducing timing constraints. In section 7 we discuss
related approaches to real-time. Finally, in section 8 we propose a future course
of work.

2 Why Real-Time Unity?

The motivation for the development of Real-Time Unity as a way to reason
about real-time computation is similar to that for Unity with respect to untimed
computation. We intend to demonstrate that Real-Time Unity is to bounded
operator linear temporal logic as Unity is to linear temporal logic. That is,
Real-Time Unity formalizes a subset of bounded operator linear temporal logic
that seems to be especially appropriate for the design and verification of real
time systems, just as Unity formalizes a subset of linear temporal logic that is
especially appropriate for the design and verification of untimed systems.

2.1 Unity vis-a-vis linear temporal logic

Since its application to programming was proposed by Pnueli [Pnu77], tempo-
ral logic has become widely accepted as a way to reason about computation,
especially for parallel and reactive systems. Unity is just a subset of ordinary
linear temporal logic, and hence is not as general. But Unity is a deductive sys-
tem intended for use by people rather than machines. The appropriateness of
the operators and the usefulness of the inference rules are of paramount impor-
tance. The notions of progress (a.k.a. liveness) and safety have been identified
as fundamental in the study of reactive and concurrent computing systems. By
design, these notions are captured directly in Unity by the fundamental oper-
ators — and co (— and wunless in the original Unity theory). Of course these
operators can be expressed in more general temporal logics, and Unity sacrifices
some of the expressibility of these other logics. However, we feel that 1t is more
appropriate to judge a theory such as Unity by its successful application to a
large problem set rather than by some abstract notion of expressibility. The
original Unity text by Chandy and Misra [CM88] provides convincing empirical
evidence that Unity is applicable to a large class of problems.

2.2 Real-time extensions to temporal logic

Many researchers have extended temporal logic to reason about real-time. We
focus here on two approaches: the explicit time variable approach and the

bounded operator approach. In the explicit time variable approach, the logic
itself 1s not extended. Rather, a variable to denote the current time, say now, is
introduced and axiomatized within the theory. This allows considerable expres-
sive power. For instance, bounded response, the property that each occurrence
of p1s followed by an occurrence of ¢ within time k can be formalized as follows:

(0) (Vt:DpAnw=t=3(gAnow<t+k)))

Bounded response is a very important and fundamental concept in real-time
programming. If it is this cumbersome to express bounded response, one can
imagine the difficulty with which more complex properties and inference rules
might be expressed. A more concise (but less general) notation is provided by
using bounded operators. In this approach one may write, for example, O; ,p
to indicate that p is always true in the interval extending from j to %k time
units from now. Similarly one may write & ,p to indicate that p will be true
sometime in the same interval. Hence one can express bounded response as
follows.

(1) O = p,r9)

The formulain (1) is a great improvement over that in (0). Nevertheless, one
may hope for something better. Rather than using the interval [j, k], perhaps
an upper bound would suffice. And if bounded response seems so important,
perhaps we should not require the use of three operators to express it. We
suggest (2), which uses a single ternary operator to express bounded response.
Note that this is just a bounded form of the Unity leads-to operator.

(2) prr g

The story is similar for safety. We take our cue from Unity and suspect
that some bounded form of co may be appropriate. Essentially p cor ¢ means
that whenever p becomes true, p co ¢ holds for at least time k. The reader
may wish to see for themselves how difficult it is to express this in the bounded
operator linear temporal logic. It turns out that the bounded version of co is
indeed an important notion which can be used to express the waiting a process
does before it times out.?

In the following sections we will formalize these concepts, as well as some
others, and present a number of inference rules analogous to those in Unity. The
task then is to see if the resulting logic provides the tools necessary to prove a
large class of example problems in a simple and efficient way.

2Thanks to Jacob Kornerup for first suggesting the connection between co and the notion
of a timeout.

3 The Unity theory

The Unity theory was originally presented by Chandy and Misra in [CM8§].
Recently a revised version has been proposed by Misra [Mis93]. In this section
we present a slightly modified version of that in [Mis93].

3.1 Programs

A Unity program consists of four sections:

e A declare section. In this section the program variables and constants
are declared.

e An always section. In this section certain invariants are asserted. This 1s
useful for auxiliary variables.

e An initially section. This section contains state predicates which are
asserted to be true for the initial state of the program.

e An assign section. This section contains a finite set of statements each of
which 1s deterministic, terminating and has a well defined wp semantics.
Frequently we will write s € F' to indicate that statement s 1s in the
assign section of program F'. The skip statement is implicitly included in
all programs.

An informal operational semantics for Unity programs is as follows. A com-
putation begins in a state satisfying the initially section and loops forever, in
each iteration non-deterministically selecting a statement from the assign sec-
tion and executing it. The computation is required to be fair in the sense that
each statement is selected infinitely often.

3.2 Properties

Ultimately, programs are created in order to produce computations. These com-
putations are required to satisfy some set of properties known as the specification
for the program. We introduce the following notation to indicate the claim, in
theory 7, that all computations satisfying A also satisfy B.

(3) At, B

Usually, we will use this notation with a program F' and a property P, as in
' F;r P, to indicate that all computations of F' satisfy P. Note however that
it makes sense as well to write P F;) for properties P and (). Frequently
we will drop the reference to the particular theory when it 1s known from the
context. In the rest of this section we will only be concerned with the Unity

proof system so we will write F© = P to indicate that there is a proof of property
P for program F in the Unity theory.

Program F' defines a number of variables and constants, and the cross prod-
uct of their ranges defines a state space for F'. Following Dijkstra and Scholten
[DS90], we will write [p]p to indicate (the static property) that predicate p holds
everywhere 1n the state space of program F. The dynamic properties of F' all
arise from its static properties.

Also note that we will abuse notation somewhat by using the usual propo-
sitional connectives both in the object language and in the meta-language. For
instance we state the transitivity of — as

(FEp— gANFFqg=r)=FFp—r)

The above formula states that from a proof that p — ¢ is a property of I
and a proof that ¢ — r is a property of F' we can construct (by applying this
rule) a proof that p — r is a property of F'. With the proper use of parentheses
no confusion should arise. The benefit is that we can obtain formal proofs of
some meta-theorems.

3.2.1 Safety

A safety property essentially states that something bad does not happen. A
fundamental notion of safety in Unity is invariance. An invariant predicate is
one which is always true. Hence any predicate that is true everywhere in the
state space of F' is an invariant of F'. We indicate invariance of p as Op.

4) [plr = (F F Op)

In Unity the fundamental notion of safety is co (short for constrains). A co
property can be introduced by the following rule.

(5) (Vs:seF:F F Op=wps.q)=F F pcoq)

This rule in conjunction with (4) allows us to derive the following rule, which
is frequently used to introduce a co property.

(6) (Vs:seF:[p=wpsqlr)=(F F pco q)

Informally, the meaning of p co ¢ is that whenever p holds, ¢ also holds and
g will hold in the next state. Note that since the skip statement is implicitly
included in all programs, the left side of (5) implies O(p = ¢). This is impor-
tant for stuttering closure, i.e. so that the addition of a stuttering step to a
computation which satisfies a co property does not invalidate the co property.
The old notion of safety from [CM&8], unless, can be stated in terms of co.

(F Fpunlessq) = (FF pA-gco pVy).

Another important notion of safety is that of stability. A stable predicate is
one which, once it becomes true, remains true forever. Stability is just a special
instance of co.

() (FEFpst)y = (FFpecop)

Another way of proving Op is by showing that p is true initially and that p
is stable.

(8) [F.nitially= plp A (F F p st)= (F + Op)

3.2.2 Progress

The empty program, that with skip as its only statement, 1s completely safe.
Hence safety properties are not useful by themselves. We need a way of asserting
that something good does happen. In Unity this is done with — (pronounced
“leads-to”). Intuitively, p — ¢ means that whenever p becomes true, then
either ¢ is also true or ¢ will become true at some time in the future.

The — operator is based on the notion of transience. We write p tr to
indicate that p is transient, i.e. that whenever p becomes true, it will not remain
true forever. A transient property is introduced by (9). Due to the fairness
assumption, the existence of a single statement that will falsify a predicate is
sufficient to guarantee the transience of that predicate.

(9) (Fs:seF:F F Op=wps—p)=(F F pir)

From tr and co we construct —. Rule (10) is essentially the old ensures rule
from [CM88]. The operator — is the transitive (11) and disjunctive (12) closure
of ensures.

(10) (FFpA=qgecopVO AT FpA-qgitry=(FFpw— q
1) Frp—ggAFFrqg—r)=F Fpr—r
(12) (Vp:peS:Frpw— q=(FF (Fp:peS:p) — q)

3.2.3 Derived rules

In large part the power of Unity comes from its derived rules. These rules can
be proved from the fundamental axioms and inference rules already given. We
present just a few of them here. The reader interested in others should consult

[CM88] or [Mis93].
(13) (FEFEDOp=q)=FFp—q

(1) (FEpw—=qg=UFFpPAp+—q)

(15) (FFEp—=g=FFp—qVv{)
(16) FFpw—gqvr)AN(FFr— s)=(F Fpr— qVs)

(17) YmaF FpAM=mr— AM<m)Vy=>FFp— q
for m and state function M ranging over a set with well founded
relation <.

(18) FFpw— ggANF Frceos)=(FFpAr— (gAs)V(arAs))

Theorem (18) is known as the PSP rule. The name PSP stands for progress,
safety, progress and comes from the fact that it enables one to derive a progress
property from a progress property and a safety property. The PSP rule is very
important and useful in the Unity theory.

4 The Real-Time Unity theory

Fundamental to the notion of real-time systems is the assumption that the
programmer has control to some extent over the timing of certain statements.
That is, they can guarantee under certain conditions that the statement will
fire or that it will not fire within a certain time period. Hence the logic of
Real-Time Unity includes two new constructs: new.p and fires.s.k where s is a
statement, p is a predicate, and k is a time value. In this section we introduce
these constructs and, based on them we define the bounded versions of the usual
Unity operators.

4.1 Real-Time Unity Programs

Real-Time Unity programs are Unity programs with two extensions: statements
are labeled, and assertions can be added to control the timing of the statements.
All computations of the program are assumed to meet these timing constraints.

The timing assertions are of the form O(X = fires.s.k) or O(X = —fires.s.k),
where k is a time value, s 1s a statement label, and X is either p or new.p for
some state predicate p. We leave unspecified at this point the type of k. The
intuitive meanings of these new predicates are given below.

(19) new.p holds at those points in a computation where p holds and
p did not hold in the previous step. If p holds initially then
new.p holds initially.

(20) fires.s.k holds at those points in a computation where statement
s fires within k& time units.

We assume that the statements of a Real-Time Unity program are terminat-
ing, deterministic and have a well defined wp semantics. As in standard Unity,
a special statement labeled skip is implicitly included in all programs.

4.2 The Real-Time Unity logic

We now present the axioms and inference rules which comprise the Real-Time
Unity logic. In section 4.3 we axiomatize new and fires. In section 4.4 we
axiomatize the safety properties cor and stg. In section 4.5 we axiomatize
the progress properties tr; and —p .

4.3 Axioms for new and fires

We axiomatize new and fires with the following axioms. We use the notation
F + P toindicate that P is a property of the RTU program F'. In the following,
F is any Real-Time Unity program and s is any statement in F.

F + O(fires.s.c0)

J<k=(F F O(fires.s.j = fires.s.k))

(21)

(22)

(23) F b O(new.q = q)
(24) F F =g co —qV new.q
(25)

(FF=pAqco pV-og)=(F F DO(new.(p A q) = new.p))

4.4 Safety properties

We generalize the Unity operator co by adding a duration k as a subscript.
Whereas the unbounded form p co ¢ applies to an entire computation, the
property p cop g applies only to intervals of duration & which begin when p
becomes true. The meaning of p cop ¢ can be expressed as follows: starting at
a point where p becomes true, if p fails within time k, then ¢ holds as long as p
does and at the point at which p fails. If p holds for time k then ¢ must as well.
After time k there is no requirement on p and gq.

(26) (Vs (F F D(new.p = —fires.s.k))V (F F O(p = wp.s.q)))
= (FF pecop q

27) (FFpsty) = (F F p cop p)

4.5 Progress properties

In this section we develop a notion of quantitative progress by generalizing the
traditional Unity operators. Thus instead of properties of the form p ¢r and
p — ¢ we have properties such as p tr; and p —p ¢. Asin traditional Unity
we begin by defining transience, tr; (28). We then define p —j ¢ inductively
in (29),(30) and (31). Note that these are directly analogous to the rules for
Unity — (9),(10),(11) and (12).

(28) (Is:: F + O(new.p = fires.s.k) AO(p = wp.s.mp)) = p try
(29) (FFpA=qgeor pVONF FpA-gitry) = (FFpr—iq)
30) Fbtp— 9gA(FFq—rr)=>F bt pw—jypr)

31) (Wp:peS:Frprrq = FFE@p:pesS:ip) —rq

4.6 Derived rules

We also have a number of derived rules.

(32) (FFpcow q) = (FF pecogq)

(33) j<kANFFptry) = (FFptr)

(34) (FF qgtrp) A(FFOp=q) = (FFptr)

(35) (FFptre) = (FF ptr)

(36) ('t pr—wq = (I't pryg)

37 Fbtp— g9gANj<k = (Ftp—prq

(38) (FFOp=q) = (FFp—q

39) Fbpw—jgVr)ANF tEr—ps) = (FFpr—jtqVs)
(40) (F + p =y false) = (F £ DO-p)

(41) (Vi:i€eIN:F F pAm=irp; (pAm<i)Vq)

= FFpAm=n —g q)
where K = (3¢ :0 <4< n:k.i).

From theorems (32),(35) and (36) we see that the axioms for co, tr and —
specialize to the usual axioms for Unity. The only additional axioms so far are

(21), (22), (23),(24) and (25).

4.7 Combining safety and progress

In Unity, one of the most powerful derived rules is the PSP rule (18). The need
to put progress and safety together to yield a new progress property occurs
quite often. In Real-Time Unity we can expect this situation to be even more
pronounced. In a fundamental way real-time progress and safety properties
seem to arise in pairs. There is no reason for one process to go quickly unless
another is going slowly. Conversely, there is no reason for one process to go
slowly unless another is going quickly. Hence in the development of a theory
of real-time computation, we should pay considerable attention to the interplay
between bounded safety and progress. Below we present two combination rules
which are very useful.

10

(42) (FFpwr QAN(F F r cop s)
= (F F pAnewr —; (¢As)V(—rAs))

43) (FFpst)NF F qtri)AN(FF pA-q co ~q)
= (FFpAqcop)

Theorem (42) is the real-time PSP theorem. Theorem (43) is called the PSS
theorem (for progress, safety, safety). These theorems will be used in section 5
to prove some of the example problems.

5 Applications
5.1 Send/Acknowledge

As our first example we give a simple application of the cancellation rule (39).
A sender sends a message to a receiver and awaits a response. It is known that
within time j the message is either lost or received. It is also known that if
it is received, it 1s acknowledged within time k. The goal is to show that the
message 1s either lost or acknowledged within time j 4 &.

1. sent +—; lostV recd ; assume
2. recd —y ack ; assume
3. sent 1y lostV ack ; (39)

5.2 Fischer’s Protocol

In this section we present and prove Fischer’s algorithm for mutual exclusion.
The algorithm was first presented in [Lam87] and proofs of its correctness appear
in [AL92] and [SBM92]. In addition to the proof in this section, in section 6 we
show how the protocol can be derived from an untimed Unity program.

The algorithm uses timing constraints to ensure mutually exclusive access
to a critical section. In the program, process index ¢ ranges from 1 to n. Each
process has a local state variable s which ranges over four states: a,b,c,d. We
will sometimes abbreviate s; = a by a;, etc. The processes also share a variable
x, which can be viewed as a token which either takes the value of some process i
in which case it is owned by process i or the value 0 in which case it is owned by
no process. The algorithm may be intuitively appreciated by noting that once
process ¢ goes to state ¢, thereby setting x to ¢, no other process can enter state
b. Process ¢ then waits in state ¢ for time k, thus ensuring that any process in
state b has left state b. The last process to go from b to ¢ will get to continue
to the critical section d.

11

Program Fischer

initially
(Vi:s; =a)

assign
(i

;8= b if si,e=a,0

| Bi:si,x:=c,i if s =
[vi:si:=d if si,x=c,i
[6:si,2:=a,0 if si,x=a,0
)

assert
(Vi
O(new.b; = fires.B;.k)
O(new.c; = —fires.y;.k)

)

end

We now prove Fischer’s algorithm using three traditional Unity operators,
co, st and O, and two of the new operators, st and ¢r;. The crux of the proof
is in step 11 where (43) is applied. The rest of the proof is standard Unity. All
of the steps labeled “from text” have been verified by a Unity model checker
developed by Markus Kaltenbach [Kal93].

(44) O(d; = ;)

Proof:

1. a; co a; Vb ; from text

2. b co bV (e Awy) ; from text

3. ¢ N\—x; co ¢ N\ ; from text

4. di ANz A(3F b)) co (di Az A(Tf b)) Voa; ; from text

5. ¢ ANxg A—by co b ; from text

6. (c; A=mi)V (e; Ay A=by) co —a; V —b; ; 3, thw, 5, disj.

7. ¢i A=(mg Abj) co =(m A by) ; 6 pred. calc.

8. ¢ sty ; (26),(27)

9. b]' irg s (28)

10.2; A by try ; 9, (34)

1l.e; Az Aby co ¢ ; 7,8,10, (43)

12.¢; Az A (3] 2 b5) co ¢ 11 disj.

13.(e; Ay A(Tj 0 b5) co (di Azy A—(T) 2 by)) ; from text

14.a; Vb Ve V(di Azg A—(Tj 0 b;)) st ; 1,2,3,4,12.13 disj.
15. initially a; ; assume

16. O(d; = ;) ; 14,15, pred. cale.

12

5.3 Timeout

In this section we relate the formal notion of quantitative safety in the form of
cop to the waiting that a process does in a timeout protocol. Process « tries to
establish a connection with § which may be up, in which case g will acknowledge
the attempt within time &, or —up, in which case 8 will simply fail to respond.
Process a will timeout after waiting for time k. The state of the system is
represented by the variable @ € {t, a, f}, representing trying, acknowledged and
failed.

Program timeout

assign

a: v=fif e=t

g: z:=a if c=tANup
assert

O(new.(z =1t A up) = —fires.a.k)
O(new.(x =t A up) = fires.p.k)
end.

We show that an attempt by « to establish a connection succeeds if 3 is up
and fails if 3 1s not up. We do this by proving the following two theorems.

(45) tAup — a

Proof:

L.t Aup A —a try ; B, (28)
2.t Aup A-a cop (TAup)Va ;a, (26)
J.tAup —y a ; 1,2, (29)

(46) t/\"Up — f

Proof:

LtA—-upA=f tr ;a, (28)
2.t A-upA=f co EA-up) vV f ; (26)
J.6Anup — f ; 1,2, (29)

Note especially line 2 of the first proof. This is the sense in which coy
captures the notion of a timeout. Once « is trying and is not acknowledged, it
continues to try for time k before giving up.

6 Weakening the Guard

We introduce a refinement rule for real time programs which we call weakening
the guard. This allows us to develop a real time Unity program from an untimed
Unity program, thereby simplifying the derivation process. We then show how

13

the rule may be applied to three algorithms: the timeout algorithm and Fischer’s
mutual exclusion protocol from section 5, and a real-time producer/consumer
single element buffer algorithm.

The idea is to refine a program by replacing one of its statements with
another statement with a weaker guard. The theorem says that under certain
conditions we can do this, impose some appropriate timing constraints and
preserve all the properties of the original program, modulo substitution of the
new statement label for the old one.

(47) Theorem: Let F be a RTU program, « and o' statements,
P a set of predicates, ¢ a predicate and k a time value such that

(47.0) [grd.ac = grd.a]

(47.1) [grd.o/ = (p : p € P : p)]
(472) (Ip:p€P:p) —5 ¢

(47.3) [¢ = (Vr s wp.odr = wp.aur)]
(47.4) (
((

) s[hgVwpsqV (Ip:ip € P:op A wps.p)])
47.5)

Vs
Vp:p € P :O(new.p = ~fires.a’ .k))

then (Fla F X)= (Fla F (a:=d).X)
for any real time Unity property X.

6.1 Timeout Revisited

We now apply theorem (47) to the timeout problem. In the problem as presented
in section b the purpose of having statement « wait is so that g can respond if
it is up. Since [will fire in time & when 1t is up, a can assume that the system
is not up if x = ¢ after waiting time k. A simpler way to model this is with
the untimed program below. In fimeoutll, no timing constraints are imposed.
Instead, statement o has the stronger guard x = ¢t A —up. The proof of the
theorems is straightforward.

Program timeoutl

assign
a: z:=fif z=tAN-up
g: z:=a if c=tANup
end.

Theorem: t A up — a
Theorem: t A —up — f

Now we can apply the refinement rule. We first require that « fires slowly
and S fires quickly.

14

Program timeout!
assign
o x=fifr=t
g: z:=a if c=tANup
assert
O(new.(x = 1) = —fires.a’ k)
O(new.(x =1) = fires.f.k)
end.

Theorem: timeoutl refines temeoutl
Proof sketch: We replace o with o’. Rule (47) can be
applied with the following instantiations:

s any time value.

6.2 TFischer Revisited

The weakening the guard rule can easily be applied to Fischer’s algorithm. In
Fischer the point of the ¥ statements waiting is so that all processes have time to
leave state b. At this point the one which possesses the token x may proceed to
its critical section. We can model this in untimed Unity by adding the additional
conjunct (Vi :: =b;) to the guard of statement . In the resulting untimed Unity
program the invariant O(d; = ;) is easy to show.

Program Fischer0

initially
(Vi:s; =a)
assign
(i
ap: 8= b if si,e=a,0
| Bi: si,e:=ci if s,=0
I v: si:=d if si,x=c, i N (Viaby)

| 6:;: si,e:=a,0 if s;,=d

Theorem: O(d; = z; A (Vi 2 b))

Proof: Straightforward Unity invariance proof.

15

Now we restate the timed version of Fischer and claim that rule (47) can be
applied with the instantiations following the program.

Program Fischerl

initially
(Vi:s; =a)
assign
(i
ap: 8= b if si,e=a,0
| Bi: si,e:=ci if s =
I 7i: s;:=d if si,x=c,i
| 6:;: si,e:=a,0 if s;,=d
)
assert
(Vi

O(new.b; = fires.3; k)
O(new.c; = —fires.yl.k)

)

end.

Theorem: Fischerl refines Fischer0
Proof sketch: We replace v with v/.

siyx = c,t A (Vi b))
si, & = ¢,

{ei}

r=1i= (Vi:-b)

s any time value.

6.3 Single Element Buffer

In this section we present a simplified communications example in which tim-
ing constraints are used to introduce partial synchrony into an otherwise asyn-
chronous program. The approach is to first present a fully synchronous approach
and then relax the synchrony by introducing timing constraints.

In this example, a sender and a receiver communicate via a channel ¢ of
length 1. The sender ¢ writes to the channel ¢ and then waits until the channel
is empty before writing again. In the untimed version this waiting 1s modeled
by the conjunct ¢ = [] in the guard of . The real-time version SEBI is refined
from SEBO using (47).

16

Program SEBO

assign
o c,in:= [hd.in], tlin if in#[]Ae=]]
p: oul,c:= oul;hd.ec, [] if ¢#1]

end.

Program SEBI1
assign
o c,in:= [hd.in], tlin if in#]]
p: oul,c:= oul;hd.ec, [] if ¢#1]
assert
O(new.(in = (x : #s)) = ~fires.c.k)
O(new.(c #[]) = fires.p.k)

end.

Theorem: SEBI1 refines SEBO.
Proof sketch: We replace o with o.

[grd.c = inZ[]Aec=1]]]

[grd.c’ = in#[]]

peEP = (Fr,es:p = in=(x:x9)])
g = c=[]

k 1s any time value.

7 Related Work

Most, if not all real-time theories involve extensions to some untimed model of
computation. Hence we see real-time automata [AD92, LV92], real-time pro-
cess algebras [BB91, Dav93], interval logics [CHR91], real-time temporal logics
[AL92, Eme92, Hen90, HMP92, Koy90], and special formalisms for real-time
[Mok91, SBM92]. The differences between the Real-Time Unity approach and
those approaches which extend a non-temporal logic model of computation are
similar to the differences between their untimed counterparts. We will concen-
trate in this section on the different temporal logic approaches to real-time.

7.1 A taxonomy of real-time temporal logics

In [AH92] Alur and Henzinger classify real-time temporal logics along four se-
mantic axes: state sequences or observation sequences, time intervals or time
points, strictly monotonic or weakly monotonic time and real-numbered time or
integer time. These semantic classifications are valid for all approaches to real-
time. In addition, real-time temporal logics can be characterized by whether
they are propositional or first-order, linear or branching-time, by which tempo-

17

ral operators are used, and by three ways of introducing timing constraints into
the syntax: bounded temporal operators, freeze quantification and explicit clock
variable.

Real-Time Unity, in its current incarnation, is a first-order, linear-time logic
which uses bounded versions of the usual Unity operators to express timing con-
straints. In this paper we have deliberately avoided the decision as to whether
the underlying model is discrete or dense and whether it is strictly or weakly
monotonic. The only model for which Real-Time Unity i1s known to be sound is
a dense time, strictly monotonic model. These choices are the result of certain
design decisions in the development of the logic. We believe that the Real-Time
Unity logic might be easily “ported” to another semantics, e.g. a weakly mono-
tonic, integer time semantics. There is reason to suspect that the propositional
fragment might be useful for a model checking approach but this has not yet
been investigated.

7.2 Timed Transition Systems

Perhaps the closest relative to Real-Time Unity are the Timed Transition Sys-
tems of Henzinger, Manna and Pnueli [HMP91, HMP92]. There are some no-
table differences, however. Firstly, our timing constraints are not tied to the
guard of the statement, whereas theirs are explicitly defined in terms of the
transition being enabled. This allows us flexibility in the manipulation of prop-
erties since we can alter the trigger predicate without changing the guard of the
statement. Secondly, we provide a deductive system at a high level of abstrac-
tion which includes rules for composing real-time progress and safety properties
and a method of program refinement (section 6) which can be used to intro-
duce timing constraints. The deductive system put forth in [HMP91] does not
provide this ability which we feel is an important aspect of the development of
real-time systems.

7.3 Explicit clock variable

In [AL92], Abadi and Lamport take the explicit clock variable approach. Their
real valued clock variable, which they call now, is postulated to increase without
bound and never to decrease. Other than that, now is just an ordinary variable
of the logic. A number of timers are defined: MinTime, MazTime, PTimer
and VTimer. With these constructs they can write what are essentially Unity
programs and more. Despite its lack of generality, we prefer the simplicity of
Real-Time Unity.

It is also interesting to note a basic difference in the way what we call real-
time progress properties are handled in [AL92]. Progress properties are written
as safety properties of the form “now will not advance beyond & unless something
happens”. Of course this only works if now will advance without bound. Unless

18

it is explicitly required to advance we have a problem known as Zeno’s paradoz.
Hence they include a non-Zeno axiom.

In our formulation however, the progress properties stand on their own and
require no such behavior of time. Time advancing in a Zeno manner does not
cause any problem for our progress properties. This is particularly important for
properties of the form p +—, ¢. If real time progress properties are formulated
as safety properties, we lose the connection between p — ¢ and p —., ¢, even
with no Zeno behavior. Since time never reaches oo the latter property (in the
progress as safety formulation) would not require the eventual establishment of
g. This leads us not to use the progress as safety formulation. Having done
this we do not require non Zeno behavior. (Of course a non-Zeno axiom is
consistent with our approach so if 1t is needed for other reasons we should feel
free to postulate it.)

7.4 General bounded operators

In [Koy90] Koymans extends traditional temporal or tense logic using a bounded
operator approach. The semantics is based on the difference between points in
the computation, and the logic includes bounded modal operators which allow
one to express that a predicate will hold at a point exactly distance é in the
future. Universal and existential quantification allow the expression of “at some
point in the future” and “at all points in the future”. Moreover, since the
semantics 1s a partial order or true concurrency semantics, one can express both
that p will hold at ell points distance 6 in the future and that p will hold at some
point distance in the future. Since they generalize the original tense logic, they
also have operators which look to the past rather than the future. Koymans
describes timeout as one of the easiest notions to express and indeed in their
presentation a “timeout” is expressed as = P.se which means that event e has
not occurred in the past 6 time units. With respect to the timeout example in
section b, it should be noted that what Koymans has presented here 1s just a
timeout condition whereas we tried to present the notion of timeout in a larger
context of correctness and actually prove the program. Koymans does not show
how one might use his formulation to prove correctness of a program which uses
a timeout. Indeed, no deduction system is provided at all. However, Metric
Temporal Logic seems to be a fully general real-time logic and appears to this
student as perhaps the best grounded semantically.

7.5 The freeze quantifier

In [Hen90] Henzinger proposes the freeze quantifier. In this approach no explicit
time variable is used but local variables occur in expressions to capture the
notion of time at a given point in the computation. Hence one can write the
bounded response requirement as

19

(48) Dz.(p= Cy.(¢g Ay <ax+k))

In this formulation, the “x.” freezes the value of z to the time at which (this
instance of) p is true. Similarly the value of y is frozen to the time at which ¢
becomes true. Hence (48) is essentially equivalent to the explicit time variable
formula (49). (Of course the variable y is not really necessary here.)

(49) DpAhz=now=(gAy=nowAy <wz+k))

Hence we can see that the freeze quantifier notation allows one to replace
“Ax = now with just “z.”, resulting in considerable syntactic economy while
retaining a good deal of the expressibility with respect to the explicit time
variable approach.

8 Future Work

In this section we propose areas for future research. The section is divided into
four subsections: extensions to the logic, applications of the logic, semantics
and mechanization.

8.1 Extensions to the Real-Time Unity logic

There are at least two ways that Real-Time Unity might be extended. One is
by introducing a notion of composition of programs. The other is by expanding
the role of refinement. We discuss these below.

8.1.1 Composition

The problem of composition of programs is an important one in any program-
ming language or methodology. It has been the object of much study in the
Unity world as well. The original union rules in [CM88] are not consistent with
the substitution axiom. Hence other approaches have been proposed by Misra
[Mis93] and others.

We are currently investigating another possibility for the composition of
Unity programs which is based on the inclusion of a safety section in the pro-
gram syntax. This section contains safety properties which restrict the com-
putation set of this program as well as that of any program with which it is
composed. The methodological upshot is that a programmer is forced to do
some bookkeeping of the safety properties which are used in any progress proof.
A second proof obligation is that all properties in the safety section are true
in the sense that the corresponding Hoare triples hold in the entire (not just
reachable) state space of the program. This approach is largely orthogonal to
the issue of real time and should be equally applicable here.

20

8.1.2 Refinement Methodology

The weakening the guard refinement rule appears to be a powerful way to in-
troduce timing constraints into a program. However, the window of opportunity
example does not appear to be directly solvable in this manner. It is possible to
prove this example with the use of auxiliary variables, however the derivation
is rather unintuitive. We hope to develop other refinement rules that can be
used for this problem and any others that seem important. A central idea in
our work has been that progress and safety properties arise in pairs. If this
is the case, refinement rules which introduce the properties as pairs should be
extremely useful.

8.2 Applications of Real-Time Unity
8.2.1 Communications protocols

In [BGMO1], Brown, Gouda and Miller present a communications protocol which
requires the use of waiting. The formalization of their solution does not model
this idea explicitly. Rather, guards are used to check for the global condition.
However, the efficiency of the solution relies on the fact that a process need not
actually check for the global condition but can instead wait for the required
time and be assured that the condition has become true. We are applying the
weakening-the-guard refinement rule (47) to improve the exposition of these
protocols.

8.2.2 Hybrid Systems

Hybrid systems are systems in which digital computing systems interact with
continuous physical systems. Computing languages and logics for such systems
need some way of expressing integration of real world continuous functions over
time. The canonical example is the gas burner problem [Lam92, CHR91]. Ways
of approaching the problem in Real-Time Unity include:

e Clocks: At regular periods a statement updates a program variable. If
the period is accurate enough the program variable approximates a real
world variable (which is some function of time e.g. the gas in the burner).

e Meters: A statement updates a program variable by ”reading” a real
world variable. The more frequently this 1s done the more accurate the
program variable will be. For example the meter might actually measure
the gas concentration in the burner.

Either way, it comes down to the approximation of a continuous variable by
a discrete variable. Hence an invariant relation asserting the closeness of the
approximation is central to such an approach.

21

8.3 Semantics for Real-Time Unity

We plan to investigate various semantic issues: discrete vs. dense time, inter-
leaved vs. true concurrency and strictly vs. weakly monotonic. We will prove
soundness in at least one variant. We will consider the problem of completeness
but it is not a primary goal of ours. Consistent with the approach in [CM&§]
we plan instead to show that the theory is widely applicable.

8.4 Mechanization of Real-Time Unity

The Unity theory has been automated in HOL [And92] and in the Boyer-Moore
computational logic [Gol92]. In addition, the implementation of a Unity based
model checker is underway [Kal93]. We wish to consider extending one of these
models to include Real-Time Unity. A particularly attractive approach would
be to use the model checker as a decision procedure to be called from a theorem
prover for Real-Time Unity.

22

References

[AD92]

[AH92]

[AL92]

[Alu91]

[And92]

[BBI1]

[BGMO1]

[CHRI1]

[CM8S]

[Dav93]

[AB+92]

[DS90]

[Eme90]

[Eme92]

Rajeev Alur and David Dill. The theory of timed automata. In
de Bakker et al. [dB192].

AFN: 545.

R. Alur and T. A. Henzinger. Logics and models of real time: A

survey. In de Bakker et al. [dBT92].

M. Abadi and L. Lamport. An old fashioned recipe for real-time. In
de Bakker et al. [dB192].

Rajeev Alur. Techniques for Automatic Verification of Real-Time
Systems. PhD thesis, Stanford University, 1991.

Flemming Andersen. A theorem prover for UNITY in Higher Order
Logic. Technical report, TFL, Lyngsg Allé 2, DK-2970 Hgrsholm,
Denmark, March 1992.

J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal
Aspects of Computing, 3(2):142-188, 1991.

Geoffrey M. Brown, Mohamed G. Gouda, and Raymond E. Miller.
Block acknowledgment: Redesigning the window protocol. IEEE
Tansactions on Communications, 39(4):524-532, April 1991.

Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of dura-
tions. Information Processing Letters, 40(5):269-276, 1991.

Mani Chandy and Jayadev Misra. Parallel Programming: A Founda-
tion. Addison-Wesley, 1988.

Jim Davies. Specification and Proof in Real-Tvme CSP. Distinguished
Dissertations in Computer Science. Cambridge University Press, 1993.

J. W. de Bakker et al., editors. Real-Time: Theory in Practice: REX
Workshop, volume 600 of LCNS, New York, NY | July 1992. Springer-
Verlag New York, Incorporated.

Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and
Program Semantics. Springer-Verlag, 1990.

E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 16.
MIT Press, 1990.

E. Allen Emerson. Real-time and the mu-calculus. In de Bakker et al.

[AB+92].

23

[Gol92]

[HC92]

[Hen90]

[Hen91]

[HMP91]

[HMP92]

[Kal93]

[Koy90]

[Koy92]

[Lam87]

[Lam91]

[Lam92]

[LV92]

[Mis93]

[Mok91]

David Goldschlag. Mechanically verifying concurrent programs. Tech-
nical Report 71, Computational Logic Inc., Austin, TX, 1992.

M.R. Hansen and Zhou Chaochen. Semantics and completeness of
duration calculus. In de Bakker et al. [dBT92].

Thomas A. Henzinger. Half-order modal logic: how to prove real-
time properties. In Proceedings of the Ninth Annual symposium on
Principles of Distributed Computing, pages 281-296. ACM, 1990.

Thomas A. Henzinger. The Temporal Specification and Verification
of Real-Time Systems. PhD thesis, Stanford University, 1991.

T.A. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodolo-
gies for real-time systems. In Proceedings of the 18th Annual sympo-
stum on Principles of Programming Languages, pages 353-366. ACM
Press, 1991.

T.A. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems.

In de Bakker et al. [dB192].

Markus Kaltenbach. The UNITY verifier, 1993. Markus is developing
a model checker for Unity here at UT-Austin.

R. Koymans. Specifying real-time properties with metric temporal

logic. Real-Time Systems, 2:255-299, 1990.

R. Koymans. (Real) time: A philosophical perspective. In de Bakker
et al. [dBT92].

Leslie Lamport. A fast mutual exclusion algorithm. ACM Transac-
tions on Computer Systems, 5(1):1-11, Feb 1987.

Leslie Lamport. The temporal logic of actions. Technical Report 79,
Digital Equipment Corporation, Systems Research Center, Dec 1991.

Leslie Lamport. Hybrid systems in TLAT. In Proceedings of a Work-
shop on Theory of Hybrid systems, Lyngby, Denmark, October 1992.

Nancy Lynch and Frits Vaandrager. Forward and backward simula-
tions for timing-based systems. In de Bakker et al. [dB192].

J. Misra. untitled. This is an unpublished manuscript on a new
version of the Unity logic, 1993.

Aloysius K. Mok. Towards mechanization of real-time. In van Tilborg

and Koob [vTK91].

24

[Pnu77] A. Pnueli. The temporal logic of programs. In 18th Annual Sympo-
stum on Foundations of Computer Science, pages 46-57, Providence,

1977.

[SBM92] F.B Schneider, B. Bloom, and K. Marzullo. Putting time into proof
outlines. In de Bakker et al. [dB192].

[VTK91] André M. van Tilborg and Gary M. Koob, editors. Foundations of

Real-Time Computing - Formal Specifications and Methods. Kluwer
Academic Publishers, 1991.

25

