
Real-Time UnityAl CarruthDepartment of Computer SciencesTaylor Hall 2.124University of Texas at AustinAustin TX 78712-1188USAe-mail: carruth@cs.utexas.eduMarch 29, 1994AbstractWe propose Real-Time Unity in which the Unity operators co and 7!are generalized to the bounded forms cok and 7!k , where k is a time value.This is done in such a way that for k = 1 the bounded forms specializeto the unbounded forms. Hence Real-Time Unity includes Unity as asub-theory. Real-Time Unity appears to be especially appropriate forreasoning about the interplay of real-time progress and safety properties.We argue that this sort of interplay is fundamental to the development ofreal-time programs and give a number of examples of the application ofthe theory to programs which require such an interplay. We then proposetopics for further research.Keywords: Real-time, Unity, program re�nement, concurrency.1 IntroductionThe problem of specifying and proving properties of real-time programs hasreceived much attention over the last ten years. This attention is due to thecritical function which many of these programs provide. Since many real-timeprograms are so critical, it is important that we gain the ability to reasone�ectively about their correctness.Real-time constraints arise in a variety of ways. Many program speci�ca-tions include some hard real-time requirement so that the system may properlyinteract with its physical environment. Common examples include control sys-tems for nuclear power plants, weapons guidance systems or ight control sys-tems. Other real-time constraints may be introduced during the re�nement ofan untimed speci�cation. For example, the top level speci�cation of a communi-cations protocol might only require the successful transmission of the data whilethe sub-speci�cations might require the sender to go slowly and the receiver togo quickly. Some example problems we will consider are:1

� Simple \ping" with a timeout. One process attempts to determinewhether another is up or not. After waiting for some amount of time theprocess can safely assume the other is not up on the grounds that it wouldhave responded by now.� Bounded bu�er with asynchronous communication. Long distancecommunication can be expedited if the sender can send packets at regularintervals rather than waiting after each packet for the receiver to signalthat it is ready to receive the next packet. If the receiver is removing thepackets more quickly than the sender is sending them, then they will notbe over-written by the next packet before they are read.� Fischer's mutual exclusion protocol. Fischer's protocol guaranteesmutual exclusive access to a critical section for at least one of the pro-cesses attempting to enter the critical section. The correctness of thisprotocol depends on bounded progress and safety constraints imposed onthe processes.� Window of opportunity. A process can transit from state a to b onlyduring a certain window of opportunity which is repeatedly open andclosed. If the window is guaranteed to remain open for time k and theprocess is guaranteed to act within time k when the window becomes open,then the process will eventually transit from a to b.All of these problems have in common the composition of a real-time safetyproperty and a real-time progress property.1 For the program to be correct, oneprocess must go quickly and another must go slowly. To formalize these notions,we propose a quantitative extension of the Unity logic. By this we mean thatthe usual operators of Unity are generalized by the addition of a time parameter.For instance, p 7! q is generalized to p 7!k q, which means whenever p holdsq will hold within time k. We do this in such a way that instantiating k with1 specializes the general form to the old untimed form. Likewise many of theusual Unity inference rules have general real-time counterparts in our theory.As a result, proofs in our theory have much the same form and avor as Unityproofs. We are encouraged by the fact that many of the example problems wehave investigated have simple e�cient proofs in our theory.The remainder of the paper is organized as follows. In section 2 we providethe motivation for our approach. In section 3 we give an overview of the untimedUnity logic as it occurs in [Mis93]. In section 4 we present the Real-Time Unity1What we call a real-time progress property others would call a safety property. Indeedmany researchers regard all real-time properties as safety properties [AL92], [SBM92]. If onede�nes safety properties as those properties whose failure for a computationcan be detected ina �nite pre�x of that computation, then indeed all real-time properties are safety properties.Our justi�cation for calling certain real-time properties progress properties lies in the waythey behave logically. Because our rules for p 7!k q are analogous to the rules for the untimedp 7! q, we refer to the former (as well as the latter) as a progress property.2

logic. This consists of a syntax for programs and their properties and a numberof axioms and inference rules for proving that properties hold for a program.In section 5 we show how the Real-Time Unity logic can be applied to some ofthe example problems of section 1. In section 6 we present a re�nement rulefor Real-Time Unity programs. We show how this rule can be used to avoidglobal state sharing by introducing timing constraints. In section 7 we discussrelated approaches to real-time. Finally, in section 8 we propose a future courseof work.2 Why Real-Time Unity?The motivation for the development of Real-Time Unity as a way to reasonabout real-time computation is similar to that for Unity with respect to untimedcomputation. We intend to demonstrate that Real-Time Unity is to boundedoperator linear temporal logic as Unity is to linear temporal logic. That is,Real-Time Unity formalizes a subset of bounded operator linear temporal logicthat seems to be especially appropriate for the design and veri�cation of realtime systems, just as Unity formalizes a subset of linear temporal logic that isespecially appropriate for the design and veri�cation of untimed systems.2.1 Unity vis-�a-vis linear temporal logicSince its application to programming was proposed by Pnueli [Pnu77], tempo-ral logic has become widely accepted as a way to reason about computation,especially for parallel and reactive systems. Unity is just a subset of ordinarylinear temporal logic, and hence is not as general. But Unity is a deductive sys-tem intended for use by people rather than machines. The appropriateness ofthe operators and the usefulness of the inference rules are of paramount impor-tance. The notions of progress (a.k.a. liveness) and safety have been identi�edas fundamental in the study of reactive and concurrent computing systems. Bydesign, these notions are captured directly in Unity by the fundamental oper-ators 7! and co (7! and unless in the original Unity theory). Of course theseoperators can be expressed in more general temporal logics, and Unity sacri�cessome of the expressibility of these other logics. However, we feel that it is moreappropriate to judge a theory such as Unity by its successful application to alarge problem set rather than by some abstract notion of expressibility. Theoriginal Unity text by Chandy and Misra [CM88] provides convincing empiricalevidence that Unity is applicable to a large class of problems.2.2 Real-time extensions to temporal logicMany researchers have extended temporal logic to reason about real-time. Wefocus here on two approaches: the explicit time variable approach and the3

bounded operator approach. In the explicit time variable approach, the logicitself is not extended. Rather, a variable to denote the current time, say now, isintroduced and axiomatized within the theory. This allows considerable expres-sive power. For instance, bounded response, the property that each occurrenceof p is followed by an occurrence of q within time k can be formalized as follows:(0) (8t :: 2(p ^ now = t) 3(q ^ now < t + k)))Bounded response is a very important and fundamental concept in real-timeprogramming. If it is this cumbersome to express bounded response, one canimagine the di�culty with which more complex properties and inference rulesmight be expressed. A more concise (but less general) notation is provided byusing bounded operators. In this approach one may write, for example, 2[j;k]pto indicate that p is always true in the interval extending from j to k timeunits from now. Similarly one may write 3[j;k]p to indicate that p will be truesometime in the same interval. Hence one can express bounded response asfollows.(1) 2(p) 3[0;k]q)The formula in (1) is a great improvement over that in (0). Nevertheless, onemay hope for something better. Rather than using the interval [j; k], perhapsan upper bound would su�ce. And if bounded response seems so important,perhaps we should not require the use of three operators to express it. Wesuggest (2), which uses a single ternary operator to express bounded response.Note that this is just a bounded form of the Unity leads-to operator.(2) p 7!k qThe story is similar for safety. We take our cue from Unity and suspectthat some bounded form of co may be appropriate. Essentially p cok q meansthat whenever p becomes true, p co q holds for at least time k. The readermay wish to see for themselves how di�cult it is to express this in the boundedoperator linear temporal logic. It turns out that the bounded version of co isindeed an important notion which can be used to express the waiting a processdoes before it times out.2In the following sections we will formalize these concepts, as well as someothers, and present a number of inference rules analogous to those in Unity. Thetask then is to see if the resulting logic provides the tools necessary to prove alarge class of example problems in a simple and e�cient way.2Thanks to Jacob Kornerup for �rst suggesting the connection between co and the notionof a timeout. 4

3 The Unity theoryThe Unity theory was originally presented by Chandy and Misra in [CM88].Recently a revised version has been proposed by Misra [Mis93]. In this sectionwe present a slightly modi�ed version of that in [Mis93].3.1 ProgramsA Unity program consists of four sections:� A declare section. In this section the program variables and constantsare declared.� An always section. In this section certain invariants are asserted. This isuseful for auxiliary variables.� An initially section. This section contains state predicates which areasserted to be true for the initial state of the program.� An assign section. This section contains a �nite set of statements each ofwhich is deterministic, terminating and has a well de�ned wp semantics.Frequently we will write s 2 F to indicate that statement s is in theassign section of program F . The skip statement is implicitly included inall programs.An informal operational semantics for Unity programs is as follows. A com-putation begins in a state satisfying the initially section and loops forever, ineach iteration non-deterministically selecting a statement from the assign sec-tion and executing it. The computation is required to be fair in the sense thateach statement is selected in�nitely often.3.2 PropertiesUltimately, programs are created in order to produce computations. These com-putations are required to satisfy some set of properties known as the speci�cationfor the program. We introduce the following notation to indicate the claim, intheory T, that all computations satisfying A also satisfy B.(3) A `T BUsually, we will use this notation with a program F and a property P , as inF `T P , to indicate that all computations of F satisfy P . Note however thatit makes sense as well to write P `T Q for properties P and Q. Frequentlywe will drop the reference to the particular theory when it is known from thecontext. In the rest of this section we will only be concerned with the Unity5

proof system so we will write F ` P to indicate that there is a proof of propertyP for program F in the Unity theory.Program F de�nes a number of variables and constants, and the cross prod-uct of their ranges de�nes a state space for F . Following Dijkstra and Scholten[DS90], we will write [p]F to indicate (the static property) that predicate p holdseverywhere in the state space of program F . The dynamic properties of F allarise from its static properties.Also note that we will abuse notation somewhat by using the usual propo-sitional connectives both in the object language and in the meta-language. Forinstance we state the transitivity of 7! as(F ` p 7! q) ^ (F ` q 7! r)) (F ` p 7! r)The above formula states that from a proof that p 7! q is a property of Fand a proof that q 7! r is a property of F we can construct (by applying thisrule) a proof that p 7! r is a property of F . With the proper use of parenthesesno confusion should arise. The bene�t is that we can obtain formal proofs ofsome meta-theorems.3.2.1 SafetyA safety property essentially states that something bad does not happen. Afundamental notion of safety in Unity is invariance. An invariant predicate isone which is always true. Hence any predicate that is true everywhere in thestate space of F is an invariant of F . We indicate invariance of p as 2p.(4) [p]F) (F ` 2p)In Unity the fundamental notion of safety is co (short for constrains). A coproperty can be introduced by the following rule.(5) (8s : s 2 F : F ` 2(p) wp:s:q))) (F ` p co q)This rule in conjunction with (4) allows us to derive the following rule, whichis frequently used to introduce a co property.(6) (8s : s 2 F : [p) wp:s:q]F)) (F ` p co q)Informally, the meaning of p co q is that whenever p holds, q also holds andq will hold in the next state. Note that since the skip statement is implicitlyincluded in all programs, the left side of (5) implies 2(p) q). This is impor-tant for stuttering closure, i.e. so that the addition of a stuttering step to acomputation which satis�es a co property does not invalidate the co property.The old notion of safety from [CM88], unless, can be stated in terms of co.(F ` p unless q) � (F ` p ^ :q co p _ q).6

Another important notion of safety is that of stability. A stable predicate isone which, once it becomes true, remains true forever. Stability is just a specialinstance of co.(7) (F ` p st) � (F ` p co p)Another way of proving 2p is by showing that p is true initially and that pis stable.(8) [F.initially) p]F ^ (F ` p st)) (F ` 2p)3.2.2 ProgressThe empty program, that with skip as its only statement, is completely safe.Hence safety properties are not useful by themselves. We need a way of assertingthat something good does happen. In Unity this is done with 7! (pronounced\leads-to"). Intuitively, p 7! q means that whenever p becomes true, theneither q is also true or q will become true at some time in the future.The 7! operator is based on the notion of transience. We write p tr toindicate that p is transient, i.e. that whenever p becomes true, it will not remaintrue forever. A transient property is introduced by (9). Due to the fairnessassumption, the existence of a single statement that will falsify a predicate issu�cient to guarantee the transience of that predicate.(9) (9s : s 2 F : F ` 2(p) wp:s::p))) (F ` p tr)From tr and co we construct 7!. Rule (10) is essentially the old ensures rulefrom [CM88]. The operator 7! is the transitive (11) and disjunctive (12) closureof ensures.(10) (F ` p ^ :q co p _ q) ^ (F ` p ^ :q tr)) (F ` p 7! q)(11) (F ` p 7! q) ^ (F ` q 7! r)) (F ` p 7! r)(12) (8p : p 2 S : F ` p 7! q)) (F ` (9p : p 2 S : p) 7! q)3.2.3 Derived rulesIn large part the power of Unity comes from its derived rules. These rules canbe proved from the fundamental axioms and inference rules already given. Wepresent just a few of them here. The reader interested in others should consult[CM88] or [Mis93].(13) (F ` 2(p) q))) (F ` p 7! q)(14) (F ` p 7! q)) (F ` p0 ^ p 7! q)7

(15) (F ` p 7! q)) (F ` p 7! q _ q0)(16) (F ` p 7! q _ r) ^ (F ` r 7! s)) (F ` p 7! q _ s)(17) (8m :: F ` p ^M = m 7! (p ^M < m) _ q)) (F ` p 7! q)for m and state function M ranging over a set with well foundedrelation <.(18) (F ` p 7! q) ^ (F ` r co s)) (F ` p ^ r 7! (q ^ s) _ (:r ^ s))Theorem (18) is known as the PSP rule. The name PSP stands for progress,safety, progress and comes from the fact that it enables one to derive a progressproperty from a progress property and a safety property. The PSP rule is veryimportant and useful in the Unity theory.4 The Real-Time Unity theoryFundamental to the notion of real-time systems is the assumption that theprogrammer has control to some extent over the timing of certain statements.That is, they can guarantee under certain conditions that the statement will�re or that it will not �re within a certain time period. Hence the logic ofReal-Time Unity includes two new constructs: new:p and �res:s:k where s is astatement, p is a predicate, and k is a time value. In this section we introducethese constructs and, based on them we de�ne the bounded versions of the usualUnity operators.4.1 Real-Time Unity ProgramsReal-TimeUnity programs are Unity programs with two extensions: statementsare labeled, and assertions can be added to control the timing of the statements.All computations of the program are assumed to meet these timing constraints.The timing assertions are of the form2(X) �res:s:k) or 2(X) :�res:s:k),where k is a time value, s is a statement label, and X is either p or new:p forsome state predicate p. We leave unspeci�ed at this point the type of k. Theintuitive meanings of these new predicates are given below.(19) new:p holds at those points in a computation where p holds andp did not hold in the previous step. If p holds initially thennew:p holds initially.(20) �res:s:k holds at those points in a computation where statements �res within k time units.We assume that the statements of a Real-Time Unity program are terminat-ing, deterministic and have a well de�ned wp semantics. As in standard Unity,a special statement labeled skip is implicitly included in all programs.8

4.2 The Real-Time Unity logicWe now present the axioms and inference rules which comprise the Real-TimeUnity logic. In section 4.3 we axiomatize new and �res. In section 4.4 weaxiomatize the safety properties cok and stk. In section 4.5 we axiomatizethe progress properties trk and 7!k .4.3 Axioms for new and �resWe axiomatize new and �res with the following axioms. We use the notationF ` P to indicate that P is a property of the RTU program F . In the following,F is any Real-Time Unity program and s is any statement in F .(21) F ` 2(�res:s:1)(22) j < k) (F ` 2(�res:s:j) �res:s:k))(23) F ` 2(new:q) q)(24) F ` :q co :q _ new:q(25) (F ` :p ^ q co :p _ :q)) (F ` 2(new:(p ^ q)) new:p))4.4 Safety propertiesWe generalize the Unity operator co by adding a duration k as a subscript.Whereas the unbounded form p co q applies to an entire computation, theproperty p cok q applies only to intervals of duration k which begin when pbecomes true. The meaning of p cok q can be expressed as follows: starting ata point where p becomes true, if p fails within time k, then q holds as long as pdoes and at the point at which p fails. If p holds for time k then q must as well.After time k there is no requirement on p and q.(26) (8s :: (F ` 2(new:p) :�res:s:k)) _ (F ` 2(p) wp:s:q)))) (F ` p cok q)(27) (F ` p stk) � (F ` p cok p)4.5 Progress propertiesIn this section we develop a notion of quantitative progress by generalizing thetraditional Unity operators. Thus instead of properties of the form p tr andp 7! q we have properties such as p trk and p 7!k q. As in traditional Unitywe begin by de�ning transience, trk (28). We then de�ne p 7!k q inductivelyin (29),(30) and (31). Note that these are directly analogous to the rules forUnity 7! (9),(10),(11) and (12). 9

(28) (9s :: F ` 2(new:p) �res:s:k) ^ 2(p) wp:s::p))) p trk(29) (F ` p ^ :q cok p _ q) ^ (F ` p ^ :q trk)) (F ` p 7!k q)(30) (F ` p 7!j q) ^ (F ` q 7!k r)) (F ` p 7!j+k r)(31) (8p : p 2 S : F ` p 7!k q)) (F ` (9p : p 2 S : p) 7!k q)4.6 Derived rulesWe also have a number of derived rules.(32) (F ` p co1 q) � (F ` p co q)(33) j < k ^ (F ` p trj)) (F ` p trk)(34) (F ` q trk) ^ (F ` 2(p) q))) (F ` p trk)(35) (F ` p tr1) � (F ` p tr)(36) (F ` p 7!1 q) � (F ` p 7! q)(37) (F ` p 7!j q) ^ j < k) (F ` p 7!k q)(38) (F ` 2(p) q))) (F ` p 7!k q)(39) (F ` p 7!j q _ r) ^ (F ` r 7!k s)) (F ` p 7!j+k q _ s)(40) (F ` p 7!k false)) (F ` 2:p)(41) (8i : i 2 IN : F ` p ^ m = i 7!k:i (p ^ m < i) _ q)) (F ` p ^ m = n 7!K q)where K = (�i : 0 � i � n : k:i).From theorems (32),(35) and (36) we see that the axioms for co, tr and 7!specialize to the usual axioms for Unity. The only additional axioms so far are(21), (22), (23),(24) and (25).4.7 Combining safety and progressIn Unity, one of the most powerful derived rules is the PSP rule (18). The needto put progress and safety together to yield a new progress property occursquite often. In Real-Time Unity we can expect this situation to be even morepronounced. In a fundamental way real-time progress and safety propertiesseem to arise in pairs. There is no reason for one process to go quickly unlessanother is going slowly. Conversely, there is no reason for one process to goslowly unless another is going quickly. Hence in the development of a theoryof real-time computation, we should pay considerable attention to the interplaybetween bounded safety and progress. Below we present two combination ruleswhich are very useful. 10

(42) (F ` p 7!k q) ^ (F ` r cok s)) (F ` p ^ new:r 7!k (q ^ s) _ (:r ^ s))(43) (F ` p stk) ^ (F ` q trk) ^ (F ` p ^ :q co :q)) (F ` p ^ q co p)Theorem (42) is the real-time PSP theorem. Theorem (43) is called the PSStheorem (for progress, safety, safety). These theorems will be used in section 5to prove some of the example problems.5 Applications5.1 Send/AcknowledgeAs our �rst example we give a simple application of the cancellation rule (39).A sender sends a message to a receiver and awaits a response. It is known thatwithin time j the message is either lost or received. It is also known that ifit is received, it is acknowledged within time k. The goal is to show that themessage is either lost or acknowledged within time j + k.1. sent 7!j lost _ recd ; assume2. recd 7!k ack ; assume3. sent 7!j+k lost _ ack ; (39)5.2 Fischer's ProtocolIn this section we present and prove Fischer's algorithm for mutual exclusion.The algorithmwas �rst presented in [Lam87] and proofs of its correctness appearin [AL92] and [SBM92]. In addition to the proof in this section, in section 6 weshow how the protocol can be derived from an untimed Unity program.The algorithm uses timing constraints to ensure mutually exclusive accessto a critical section. In the program, process index i ranges from 1 to n. Eachprocess has a local state variable s which ranges over four states: a; b; c; d. Wewill sometimes abbreviate si = a by ai, etc. The processes also share a variablex, which can be viewed as a token which either takes the value of some process iin which case it is owned by process i or the value 0 in which case it is owned byno process. The algorithm may be intuitively appreciated by noting that onceprocess i goes to state c, thereby setting x to i, no other process can enter stateb. Process i then waits in state c for time k, thus ensuring that any process instate b has left state b. The last process to go from b to c will get to continueto the critical section d. 11

Program Fischerinitially(8i :: si = a)assign([] i ::�i : si := b if si; x = a; 0[] �i : si; x := c; i if si = b[] i : si := d if si; x = c; i[] �i : si; x := a; 0 if si; x = a; 0)assert(8i ::2(new:bi) �res:�i:k)2(new:ci) :�res:i:k))endWe now prove Fischer's algorithm using three traditional Unity operators,co, st and 2, and two of the new operators, stk and trk. The crux of the proofis in step 11 where (43) is applied. The rest of the proof is standard Unity. Allof the steps labeled \from text" have been veri�ed by a Unity model checkerdeveloped by Markus Kaltenbach [Kal93].(44) 2(di) xi)Proof:1. ai co ai _ bi ; from text2. bi co bi _ (ci ^ xi) ; from text3. ci ^ :xi co ci ^ :xi ; from text4. di ^ xi ^ :(9j :: bj) co (di ^ xi ^ :(9j :: bj)) _ ai ; from text5. ci ^ xi ^ :bj co :bj ; from text6. (ci ^ :xi) _ (ci ^ xi ^ :bj) co :xi _ :bj ; 3, rhw, 5, disj.7. ci ^ :(xi ^ bj) co :(xi ^ bj) ; 6 pred. calc.8. ci stk ; (26),(27)9. bj trk ; (28)10. xi ^ bj trk ; 9, (34)11. ci ^ xi ^ bj co ci ; 7,8,10, (43)12. ci ^ xi ^ (9j :: bj) co ci ; 11 disj.13. (ci ^ xi ^ :(9j :: bj) co (di ^ xi ^ :(9j :: bj)) ; from text14. ai _ bi _ ci _ (di ^ xi ^ :(9j :: bj)) st ; 1,2,3,4,12,13 disj.15. initially ai ; assume16.2(di) xi) ; 14,15, pred. calc.12

5.3 TimeoutIn this section we relate the formal notion of quantitative safety in the form ofcok to the waiting that a process does in a timeout protocol. Process � tries toestablish a connection with � which may be up, in which case � will acknowledgethe attempt within time k, or :up, in which case � will simply fail to respond.Process � will timeout after waiting for time k. The state of the system isrepresented by the variable x 2 ft; a; fg, representing trying, acknowledged andfailed. Program timeoutassign� : x := f if x = t� : x := a if x = t ^ upassert2(new:(x = t ^ up)) :�res:�:k)2(new:(x = t ^ up)) �res:�:k)end.We show that an attempt by � to establish a connection succeeds if � is upand fails if � is not up. We do this by proving the following two theorems.(45) t ^ up 7! aProof:1. t ^ up ^ :a trk ; �, (28)2. t ^ up ^ :a cok (t ^ up) _ a ; �, (26)3. t ^ up 7!k a ; 1,2, (29)(46) t ^ :up 7! fProof:1. t ^ :up ^ :f tr ; �, (28)2. t ^ :up ^ :f co (t ^ :up) _ f ; (26)3. t ^ :up 7! f ; 1,2, (29)Note especially line 2 of the �rst proof. This is the sense in which cokcaptures the notion of a timeout. Once � is trying and is not acknowledged, itcontinues to try for time k before giving up.6 Weakening the GuardWe introduce a re�nement rule for real time programs which we call weakeningthe guard. This allows us to develop a real time Unity program from an untimedUnity program, thereby simplifying the derivation process. We then show how13

the rule may be applied to three algorithms: the timeout algorithmand Fischer'smutual exclusion protocol from section 5, and a real-time producer/consumersingle element bu�er algorithm.The idea is to re�ne a program by replacing one of its statements withanother statement with a weaker guard. The theorem says that under certainconditions we can do this, impose some appropriate timing constraints andpreserve all the properties of the original program, modulo substitution of thenew statement label for the old one.(47) Theorem: Let F be a RTU program, � and �0 statements,P a set of predicates, q a predicate and k a time value such that(47.0) [grd:�) grd:�0](47.1) [grd:�0) (9p : p 2 P : p)](47.2) (9p : p 2 P : p) 7!k q(47.3) [q) (8r :: wp:�0:r � wp:�:r)](47.4) (8s :: [:q _ wp:s:q _ (9p : p 2 P : :p ^ wp:s:p)])(47.5) (8p : p 2 P : 2(new:p) :�res:�0:k))then (F [] � ` X)) (F [] �0 ` (� := �0):X)for any real time Unity property X.6.1 Timeout RevisitedWe now apply theorem (47) to the timeout problem. In the problem as presentedin section 5 the purpose of having statement � wait is so that � can respond ifit is up. Since � will �re in time k when it is up, � can assume that the systemis not up if x = t after waiting time k. A simpler way to model this is withthe untimed program below. In timeout0, no timing constraints are imposed.Instead, statement � has the stronger guard x = t ^ :up. The proof of thetheorems is straightforward.Program timeout0assign� : x := f if x = t ^ :up� : x := a if x = t ^ upend.Theorem: t ^ up 7! aTheorem: t ^ :up 7! fNow we can apply the re�nement rule. We �rst require that � �res slowlyand � �res quickly. 14

Program timeout1assign�0 : x := f if x = t� : x := a if x = t ^ upassert2(new:(x = t)) :�res:�0:k)2(new:(x = t)) �res:�:k)end.Theorem: timeout1 re�nes timeout0Proof sketch: We replace � with �0. Rule (47) can beapplied with the following instantiations:[grd:� � x = t ^ :up][grd:�0 � x = t]P � fx = tgq � x = t) :upk is any time value.6.2 Fischer RevisitedThe weakening the guard rule can easily be applied to Fischer's algorithm. InFischer the point of the statements waiting is so that all processes have time toleave state b. At this point the one which possesses the token x may proceed toits critical section. We can model this in untimed Unity by adding the additionalconjunct (8i :: :bi) to the guard of statement . In the resulting untimed Unityprogram the invariant 2(di) xi) is easy to show.Program Fischer0initially(8i :: si = a)assign([] i ::�i : si := b if si; x = a; 0[] �i : si; x := c; i if si = b[] i : si := d if si; x = c; i ^ (8i :: :bi)[] �i : si; x := a; 0 if si = d)end.Theorem: 2(di) xi ^ (8i :: :bi))Proof: Straightforward Unity invariance proof.15

Now we restate the timed version of Fischer and claim that rule (47) can beapplied with the instantiations following the program.Program Fischer1initially(8i :: si = a)assign([] i ::�i : si := b if si; x = a; 0[] �i : si; x := c; i if si = b[] 0i : si := d if si; x = c; i[] �i : si; x := a; 0 if si = d)assert(8i ::2(new:bi) �res:�i:k)2(new:ci) :�res:0i:k))end.Theorem: Fischer1 re�nes Fischer0Proof sketch: We replace with 0.[grd: � si; x = c; i ^ (8i :: :bi)][grd:0 � si; x = c; i]P � fcigq � x = i) (8i :: :bi)k is any time value.6.3 Single Element Bu�erIn this section we present a simpli�ed communications example in which tim-ing constraints are used to introduce partial synchrony into an otherwise asyn-chronous program. The approach is to �rst present a fully synchronous approachand then relax the synchrony by introducing timing constraints.In this example, a sender and a receiver communicate via a channel c oflength 1. The sender � writes to the channel c and then waits until the channelis empty before writing again. In the untimed version this waiting is modeledby the conjunct c = [] in the guard of �. The real-time version SEB1 is re�nedfrom SEB0 using (47). 16

Program SEB0assign� : c; in := [hd:in]; tl:in if in 6= [] ^ c = []� : out; c := out; hd:c; [] if c 6= []end.Program SEB1assign� : c; in := [hd:in]; tl:in if in 6= []� : out; c := out; hd:c; [] if c 6= []assert2(new:(in = (x : xs))) :�res:�:k)2(new:(c 6= [])) �res:�:k)end.Theorem: SEB1 re�nes SEB0.Proof sketch: We replace � with �0.[grd:� � in 6= [] ^ c = []][grd:�0 � in 6= []]p 2 P � (9x; xs :: [p � in = (x : xs)])q � c = []k is any time value.7 Related WorkMost, if not all real-time theories involve extensions to some untimed model ofcomputation. Hence we see real-time automata [AD92, LV92], real-time pro-cess algebras [BB91, Dav93], interval logics [CHR91], real-time temporal logics[AL92, Eme92, Hen90, HMP92, Koy90], and special formalisms for real-time[Mok91, SBM92]. The di�erences between the Real-Time Unity approach andthose approaches which extend a non-temporal logic model of computation aresimilar to the di�erences between their untimed counterparts. We will concen-trate in this section on the di�erent temporal logic approaches to real-time.7.1 A taxonomy of real-time temporal logicsIn [AH92] Alur and Henzinger classify real-time temporal logics along four se-mantic axes: state sequences or observation sequences, time intervals or timepoints, strictly monotonic or weakly monotonic time and real-numbered time orinteger time. These semantic classi�cations are valid for all approaches to real-time. In addition, real-time temporal logics can be characterized by whetherthey are propositional or �rst-order, linear or branching-time, by which tempo-17

ral operators are used, and by three ways of introducing timing constraints intothe syntax: bounded temporal operators, freeze quanti�cation and explicit clockvariable.Real-Time Unity, in its current incarnation, is a �rst-order, linear-time logicwhich uses bounded versions of the usual Unity operators to express timing con-straints. In this paper we have deliberately avoided the decision as to whetherthe underlying model is discrete or dense and whether it is strictly or weaklymonotonic. The only model for which Real-Time Unity is known to be sound isa dense time, strictly monotonic model. These choices are the result of certaindesign decisions in the development of the logic. We believe that the Real-TimeUnity logic might be easily \ported" to another semantics, e.g. a weakly mono-tonic, integer time semantics. There is reason to suspect that the propositionalfragment might be useful for a model checking approach but this has not yetbeen investigated.7.2 Timed Transition SystemsPerhaps the closest relative to Real-Time Unity are the Timed Transition Sys-tems of Henzinger, Manna and Pnueli [HMP91, HMP92]. There are some no-table di�erences, however. Firstly, our timing constraints are not tied to theguard of the statement, whereas theirs are explicitly de�ned in terms of thetransition being enabled. This allows us exibility in the manipulation of prop-erties since we can alter the trigger predicate without changing the guard of thestatement. Secondly, we provide a deductive system at a high level of abstrac-tion which includes rules for composing real-time progress and safety propertiesand a method of program re�nement (section 6) which can be used to intro-duce timing constraints. The deductive system put forth in [HMP91] does notprovide this ability which we feel is an important aspect of the development ofreal-time systems.7.3 Explicit clock variableIn [AL92], Abadi and Lamport take the explicit clock variable approach. Theirreal valued clock variable, which they call now, is postulated to increase withoutbound and never to decrease. Other than that, now is just an ordinary variableof the logic. A number of timers are de�ned: MinTime, MaxTime, PTimerand VTimer. With these constructs they can write what are essentially Unityprograms and more. Despite its lack of generality, we prefer the simplicity ofReal-Time Unity.It is also interesting to note a basic di�erence in the way what we call real-time progress properties are handled in [AL92]. Progress properties are writtenas safety properties of the form \now will not advance beyond k unless somethinghappens". Of course this only works if now will advance without bound. Unless18

it is explicitly required to advance we have a problem known as Zeno's paradox.Hence they include a non-Zeno axiom.In our formulation however, the progress properties stand on their own andrequire no such behavior of time. Time advancing in a Zeno manner does notcause any problem for our progress properties. This is particularly important forproperties of the form p 7!1 q. If real time progress properties are formulatedas safety properties, we lose the connection between p 7! q and p 7!1 q, evenwith no Zeno behavior. Since time never reaches 1 the latter property (in theprogress as safety formulation) would not require the eventual establishment ofq. This leads us not to use the progress as safety formulation. Having donethis we do not require non Zeno behavior. (Of course a non-Zeno axiom isconsistent with our approach so if it is needed for other reasons we should feelfree to postulate it.)7.4 General bounded operatorsIn [Koy90] Koymans extends traditional temporal or tense logic using a boundedoperator approach. The semantics is based on the di�erence between points inthe computation, and the logic includes bounded modal operators which allowone to express that a predicate will hold at a point exactly distance � in thefuture. Universal and existential quanti�cation allow the expression of \at somepoint in the future" and \at all points in the future". Moreover, since thesemantics is a partial order or true concurrency semantics, one can express boththat p will hold at all points distance � in the future and that p will hold at somepoint distance � in the future. Since they generalize the original tense logic, theyalso have operators which look to the past rather than the future. Koymansdescribes timeout as one of the easiest notions to express and indeed in theirpresentation a \timeout" is expressed as :P<�e which means that event e hasnot occurred in the past � time units. With respect to the timeout example insection 5, it should be noted that what Koymans has presented here is just atimeout condition whereas we tried to present the notion of timeout in a largercontext of correctness and actually prove the program. Koymans does not showhow one might use his formulation to prove correctness of a program which usesa timeout. Indeed, no deduction system is provided at all. However, MetricTemporal Logic seems to be a fully general real-time logic and appears to thisstudent as perhaps the best grounded semantically.7.5 The freeze quanti�erIn [Hen90] Henzinger proposes the freeze quanti�er. In this approach no explicittime variable is used but local variables occur in expressions to capture thenotion of time at a given point in the computation. Hence one can write thebounded response requirement as 19

(48) 2x:(p) 3y:(q ^ y � x+ k))In this formulation, the \x:" freezes the value of x to the time at which (thisinstance of) p is true. Similarly the value of y is frozen to the time at which qbecomes true. Hence (48) is essentially equivalent to the explicit time variableformula (49). (Of course the variable y is not really necessary here.)(49) 2(p ^ x = now) 3(q ^ y = now ^ y � x+ k))Hence we can see that the freeze quanti�er notation allows one to replace\ ^ x = now" with just \x:", resulting in considerable syntactic economy whileretaining a good deal of the expressibility with respect to the explicit timevariable approach.8 Future WorkIn this section we propose areas for future research. The section is divided intofour subsections: extensions to the logic, applications of the logic, semanticsand mechanization.8.1 Extensions to the Real-Time Unity logicThere are at least two ways that Real-Time Unity might be extended. One isby introducing a notion of composition of programs. The other is by expandingthe role of re�nement. We discuss these below.8.1.1 CompositionThe problem of composition of programs is an important one in any program-ming language or methodology. It has been the object of much study in theUnity world as well. The original union rules in [CM88] are not consistent withthe substitution axiom. Hence other approaches have been proposed by Misra[Mis93] and others.We are currently investigating another possibility for the composition ofUnity programs which is based on the inclusion of a safety section in the pro-gram syntax. This section contains safety properties which restrict the com-putation set of this program as well as that of any program with which it iscomposed. The methodological upshot is that a programmer is forced to dosome bookkeeping of the safety properties which are used in any progress proof.A second proof obligation is that all properties in the safety section are truein the sense that the corresponding Hoare triples hold in the entire (not justreachable) state space of the program. This approach is largely orthogonal tothe issue of real time and should be equally applicable here.20

8.1.2 Re�nement MethodologyThe weakening the guard re�nement rule appears to be a powerful way to in-troduce timing constraints into a program. However, the window of opportunityexample does not appear to be directly solvable in this manner. It is possible toprove this example with the use of auxiliary variables, however the derivationis rather unintuitive. We hope to develop other re�nement rules that can beused for this problem and any others that seem important. A central idea inour work has been that progress and safety properties arise in pairs. If thisis the case, re�nement rules which introduce the properties as pairs should beextremely useful.8.2 Applications of Real-Time Unity8.2.1 Communications protocolsIn [BGM91], Brown, Gouda and Miller present a communications protocol whichrequires the use of waiting. The formalization of their solution does not modelthis idea explicitly. Rather, guards are used to check for the global condition.However, the e�ciency of the solution relies on the fact that a process need notactually check for the global condition but can instead wait for the requiredtime and be assured that the condition has become true. We are applying theweakening-the-guard re�nement rule (47) to improve the exposition of theseprotocols.8.2.2 Hybrid SystemsHybrid systems are systems in which digital computing systems interact withcontinuous physical systems. Computing languages and logics for such systemsneed some way of expressing integration of real world continuous functions overtime. The canonical example is the gas burner problem [Lam92, CHR91]. Waysof approaching the problem in Real-Time Unity include:� Clocks: At regular periods a statement updates a program variable. Ifthe period is accurate enough the program variable approximates a realworld variable (which is some function of time e.g. the gas in the burner).� Meters: A statement updates a program variable by "reading" a realworld variable. The more frequently this is done the more accurate theprogram variable will be. For example the meter might actually measurethe gas concentration in the burner.Either way, it comes down to the approximation of a continuous variable bya discrete variable. Hence an invariant relation asserting the closeness of theapproximation is central to such an approach.21

8.3 Semantics for Real-Time UnityWe plan to investigate various semantic issues: discrete vs. dense time, inter-leaved vs. true concurrency and strictly vs. weakly monotonic. We will provesoundness in at least one variant. We will consider the problem of completenessbut it is not a primary goal of ours. Consistent with the approach in [CM88]we plan instead to show that the theory is widely applicable.8.4 Mechanization of Real-Time UnityThe Unity theory has been automated in HOL [And92] and in the Boyer-Moorecomputational logic [Gol92]. In addition, the implementation of a Unity basedmodel checker is underway [Kal93]. We wish to consider extending one of thesemodels to include Real-Time Unity. A particularly attractive approach wouldbe to use the model checker as a decision procedure to be called from a theoremprover for Real-Time Unity.

22

References[AD92] Rajeev Alur and David Dill. The theory of timed automata. Inde Bakker et al. [dB+92].AFN: 545.[AH92] R. Alur and T. A. Henzinger. Logics and models of real time: Asurvey. In de Bakker et al. [dB+92].[AL92] M. Abadi and L. Lamport. An old fashioned recipe for real-time. Inde Bakker et al. [dB+92].[Alu91] Rajeev Alur. Techniques for Automatic Veri�cation of Real-TimeSystems. PhD thesis, Stanford University, 1991.[And92] Flemming Andersen. A theorem prover for UNITY in Higher OrderLogic. Technical report, TFL, Lyngs� All�e 2, DK-2970 H�rsholm,Denmark, March 1992.[BB91] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. FormalAspects of Computing, 3(2):142{188, 1991.[BGM91] Geo�rey M. Brown, Mohamed G. Gouda, and Raymond E. Miller.Block acknowledgment: Redesigning the window protocol. IEEETansactions on Communications, 39(4):524{532, April 1991.[CHR91] Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of dura-tions. Information Processing Letters, 40(5):269{276, 1991.[CM88] Mani Chandy and Jayadev Misra. Parallel Programming: A Founda-tion. Addison-Wesley, 1988.[Dav93] Jim Davies. Speci�cation and Proof in Real-Time CSP. DistinguishedDissertations in Computer Science. CambridgeUniversity Press, 1993.[dB+92] J. W. de Bakker et al., editors. Real-Time: Theory in Practice: REXWorkshop, volume 600 of LCNS, New York, NY, July 1992. Springer-Verlag New York, Incorporated.[DS90] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus andProgram Semantics. Springer-Verlag, 1990.[Eme90] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science, volume B, chapter 16.MIT Press, 1990.[Eme92] E. Allen Emerson. Real-time and the mu-calculus. In de Bakker et al.[dB+92]. 23

[Gol92] David Goldschlag. Mechanically verifying concurrent programs. Tech-nical Report 71, Computational Logic Inc., Austin, TX, 1992.[HC92] M.R. Hansen and Zhou Chaochen. Semantics and completeness ofduration calculus. In de Bakker et al. [dB+92].[Hen90] Thomas A. Henzinger. Half-order modal logic: how to prove real-time properties. In Proceedings of the Ninth Annual symposium onPrinciples of Distributed Computing, pages 281{296. ACM, 1990.[Hen91] Thomas A. Henzinger. The Temporal Speci�cation and Veri�cationof Real-Time Systems. PhD thesis, Stanford University, 1991.[HMP91] T.A. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodolo-gies for real-time systems. In Proceedings of the 18th Annual sympo-sium on Principles of Programming Languages, pages 353{366. ACMPress, 1991.[HMP92] T.A. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems.In de Bakker et al. [dB+92].[Kal93] Markus Kaltenbach. The UNITY veri�er, 1993. Markus is developinga model checker for Unity here at UT-Austin.[Koy90] R. Koymans. Specifying real-time properties with metric temporallogic. Real-Time Systems, 2:255{299, 1990.[Koy92] R. Koymans. (Real) time: A philosophical perspective. In de Bakkeret al. [dB+92].[Lam87] Leslie Lamport. A fast mutual exclusion algorithm. ACM Transac-tions on Computer Systems, 5(1):1{11, Feb 1987.[Lam91] Leslie Lamport. The temporal logic of actions. Technical Report 79,Digital Equipment Corporation, Systems Research Center, Dec 1991.[Lam92] Leslie Lamport. Hybrid systems in TLA+. In Proceedings of a Work-shop on Theory of Hybrid systems, Lyngby, Denmark, October 1992.[LV92] Nancy Lynch and Frits Vaandrager. Forward and backward simula-tions for timing-based systems. In de Bakker et al. [dB+92].[Mis93] J. Misra. untitled. This is an unpublished manuscript on a newversion of the Unity logic, 1993.[Mok91] Aloysius K. Mok. Towards mechanization of real-time. In van Tilborgand Koob [vTK91]. 24

[Pnu77] A. Pnueli. The temporal logic of programs. In 18th Annual Sympo-sium on Foundations of Computer Science, pages 46{57, Providence,1977.[SBM92] F.B Schneider, B. Bloom, and K. Marzullo. Putting time into proofoutlines. In de Bakker et al. [dB+92].[vTK91] Andr�e M. van Tilborg and Gary M. Koob, editors. Foundations ofReal-Time Computing - Formal Speci�cations and Methods. KluwerAcademic Publishers, 1991.

25

