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ABSTRACT

A general hybridization technique, potentially effective in improving algoritificency,
is presentedor deterministicalgorithms. Extensionsof existing hybrid techniquesfor
nondeterministi@lgorithmsto deterministiconesare also described.The new technique
usesoneor moreinput parameterso predictthe behaviorof a group of algorithmsand
then takesadvantageof the fastestmethodfor that instance. We have applied this
techniqueto Dijkstra's and Floyd's algorithmsfor the shortestpath problemto createa
hybrid dependenton the size and density of the input graph. An analysis basedon
complexity of the algorithmsconfirms our empirical results. We have also presenteca
performancegain analysis that quantifies the significant improvementdue the new
algorithm. The hybrid algorithm was able to provide 16% and 26% improvementover

each parent algorithm respectively, for large graphs and a uniform distribution of density.



When multiple algorithms exist for a certain problem, an over all improvementin
algorithmic performancemay be possibleby creatinga mixture of the existingmethods.
A combinationof algorithmsthat exploits the relative strengthsof each method and
undermines its weaknessg#®ouldresultin a morerobusttechniquehatprovidesfasteror
better solutions. We call such an amalgama hybrid algorithm and the component

algorithms its parents.

Until now, this hybrid technigue has been successfully applied to combinatorial
optimization problems[Malek et al., 1989a, Malek et al., 1989b, Kido, Kitano and
Nakanishi, 1993, Hogg and Williams, 1993] that mostly fall into the intractable NP-
completeor NP-hard class. The availableheuristicmethodsfor suchproblemsgenerally
promisea statistically feasibleapproximationto the optimal solution but can exhibit an
unacceptablevorst casebehavior. Hybrid methodscanfilter out the decrepitaspectof
individual methodsby integrating heuristicsthat exhibit varying behavior,to achieve
higher stability and finer quality for a solutionin general. In this paperwe presenta
similar ideato improve algorithmic performanceof deterministicmethodsby harnessing
two or more algorithmsto the sametask. We conjecture that a deterministichybrid
algorithmwould be more efficient thanits parentswhile alwaysguaranteeinghe optimal
solution. As an example we havecreateda hybrid for the shortestpath problem,from
existing algorithmsby Dijkstra [Dijkstra, 1959] and Floyd [Floyd, 1962], that provides

significant improvement over each parent algorithm for a uniform distribution of input.

The next sectiondiscussegurrentapproachesowardsgeneratinga hybrid for both non-
deterministicand deterministictypes of problemsand briefly mentionsa few existing
specimens.Thenwe describeour experimentandpresentesultsthat provethe existence
of a deterministichybrid for the shortespathproblem. The succeedingnalysispasedon

the complexities of the parent algorithms, confirms our empirical findings. Before



concludingwe provide an analysisquantifyingthe performancegainsdueto theimproved

algorithm.

Hybrid Algorithms

A hybrid algorithm techniqueis a method of combining two or more algorithms for
improvedperformanceand/orreliability. The integrationof algorithmsmay be performed
on a singleprocessoor a parallelcomputer. In a parallelsystemmultiple algorithmsare
executedsimultaneouslyand stoppedwhen one of them finds the solution first. This
techniquecan be used for deterministicand nondeterministicproblemsbut entails a
hardware cost that may prove debilitating from an applications point of view, though itis a

good way of determining the ability of a group of algorithms to form a hybrid.

We canuseparallelismwith greaterefficacy with slightly more subtletechniques. Such
techniqueausually involve somesort of inter-processocommunication. An exampleis
the tabu search(TABU) and simulatedannealing(SA) hybrid createdfor the traveling
salesmarproblem(TSP)[Malek et al., 1989a,Malek et al. 1989b]. Thetwo heuristics,
TABU andSA, arerun in paralleland stoppedafter a predeterminednterval. Thenthe
partial solutionsof the two algorithmsareexchange@ndthe algorithmsarestartedagain.
This provesto be a usefultechniquein mixing the two heuristicsand allowing themto
take advantagef eachotherspotential. Searchinghroughthe solutionspace SA finds
local optima quickly but tendsto get stuckin one, while TABU is relatively better at
escaping from a local optimum, thus a combination ofwleholdsa greatemotentialfor
finding the globally optimumsolution. Anotherexperimentnvolving two SA algorithms
with different cooling schedulesdemonstratedup to eleventimes speedupof a two
processolmplementationwith respectto a single processorexecutingone of the two

algorithms. An even more robust hybrid was claimed by combining genetic algoBfhms



with TABU and SA [Kido,Kitano andNakanishi,1993]. In this hybrid GA wasusedasa
globalsearchto mix the resultsfrom TABU andSA, working aslocal searches.Thetwo

hybrids improved the stability and quality of the solution for the TSP.

Anotherexampleof a hybrid techniquethat usesinter-processocommunicatiorexistsfor
the GraphColoring Problemconsistingof the Brelaz heuristicand heuristicrepair[Hogg
and Williams, 1993]. This hybrid method also ugesideaof differentalgorithmssharing
informationwhile runningin parallel. Herea common'black board'is usedto allow the
processorsexecuting different instancesof the heuristics,to exchangehints. Each
processosharesnformationby postinghints suchasits presenttateor a partially found
solution, then a processoreadsa hint with someprobability and tries to incorporateit
into its currentstate. Experimentally,a group of cooperatingalgorithmswere shownto
generallyoutperforma group running independently. It is pertinentto note here that
determiningthe natureof informationto exchanges a non-trivial task, and evenmore

difficult is relating, apriori, the impact of a particular hint to the performance of the hybrid.

The approachowardsgeneratinga hybrid from deterministicalgorithmsbecomeslightly
different than creatingone from heuristics. This resultsfrom the predictability of most
deterministicalgorithmsthat limits our ability to coax thesealgorithmsto improve their
performanceby changinginitial conditionsor location in the solution space. But this
predictability can be broughtto usein creatinga hybrid taking a somewhatdifferent
approach. The key strategyfor thesealgorithmsis to determinetheir behavioras a
function of the input. Depending on the type or application @igorithm,its behavioris
related to some propertf theinput,acommonexample is the sizen, usuallyseenin the
computationacomplexity of the algorithmas O(n), O(n?), etc. The complexity function
candependon parameter®therthanthe size but nevertheles# is a useful indicator of

the ability of a groupof algorithmsto form a hybrid aswe will showin our shortestpath



hybrid example. Using the computationalcomplexity as a stepping stone we can
empirically determinethe exactbehaviorof the candidatgparentalgorithms. Thensimply
by scanningthe input we canuseour resultsto predictthe winning algorithm and thus

obtain a hybrid consisting of the better-performing parts of each parent.

Somedeterministicalgorithmsmay defy the approachbasedon predictability becauseof
difficulty in determiningan easily quantifiableinput parameter.For example,in a sorting
problemonealgorithmmight performbetterif the arrayto be sortedis alreadyorderedor
someof its segmentsre orderedwhile anothemethod'dbehaviormay be independenof
the ordering of the array. Since the level of ordering of an array is not an easily
guantifiableparameterit is difficult to predictalgorithmic behaviorbasedon it. In this
case,usinga parallelcomputer,we could acceleratea solutionfor someinstanceof the
sorting problemin at leasttwo ways. One approachwould executea different sorting
algorithm on eachprocessoifor the samedataset and deliver the first availablesorted
array. Anotherapproachwould essentiallyusea parallel versionof divide-and-conquer:
the problemis brokendowninto multiple subproblemshatare solvedin parallel. Several
techniquesxistfor graphsthatdivide a graphprobleminto otheroneswith algorithmsto
be solvedin parallel[Thurimella,1989]. Anotherapplicationof a paralleltechniquecould
be for a very efficient minimum spanningtree algorithm by Fredmanand Tarjan using
Fibonacci heaps[Fredman and Tarjan, 1987]. This algorithm createsdistinct partial
spanningtreesstarting from different nodesand then condense®achtree into a super
nodeto form anothergraph.The processs repeatedon the newgraphuntil the complete
spanningtree is found, i.e., a single supernode remains. A good descriptionof this
algorithmis providedin [McHugh, 1990]. By growing a partial spanningreeon a single
processor, the entire procesmbe conductedn parallelwith the resultsmixedaftereach
iteration. This would be the equivalentof combining severalinstancesof the same

algorithm to form a hybrid.



The Shortest Path Hybrid Algorithm

The shortest path problem is well established in graph theory with extensive applications in
a wide rangeof fields. We believe that by creating an efficient hybrid for a set of
commonly used algorithms we can uncover the potential applicationsof combining

deterministic algorithms.

The versionof the shortesipathproblemusedin our analysisis statedasfollows: givena
simple directed graph (digraph), assumingnon-negativeedge weights, determinethe
shortestpath from every node to all other nodes. This version of the shortestpath
problemis alsoknown asall sourcedo all destination shortesipathproblemsincewe are

to find the shortest path from each node (source) to all other nodes (destinations).

Two well-known shortestpath algorithms are by Dijkstra [Dijkstra, 1959] and Floyd
[Floyd, 1962]. Both algorithmshavea complexity of O(n3) wheren is the size or the
numberof nodesof the input graph. We can enhanceDijkstra's algorithm by using a
priority queue. If a Fibonacciheapdatastructure[FredmanandTarjan,1987]is usedto
implement the priority queue, we gain an asymptotic improvement over a naive
implementation of Dijkstra's algorithm [Horowitz, Sahni and Freed, 1993]. The
complexityof the modified algorithmis O(n2logn + ne) wheree is the numberof edgesn
a graph. lisimportantto notethatthe complexityof thetwo methodss comparablend
this fact makeshemgoodcandidatesor trial parentalgorithms. Deterministicalgorithms
with significantly different complexitiespresenta muchsmallerprobability of generatinga

successful hybrid.

We definedensity of a simplegraphof sizen astheratio of the numberof edgese to the

maximumnumberof possibleedgesn thatgraph,e,,,. The maximumnumberof edgesa



simplegraphcancontainis n(n -1)/2 anda simpledigraphcanhavetwice asmanyedges.

Hence thalensity of a simple digraph is defined mathematically:

density = e/ n(n-1) ()

This definition forces density to be a number betweenzero and one that is directly

proportional to the number of edgedor a fixed n.

The Experiment

Since the complexities of the two algorithms under analysis wieirecaon of n ande ( or

density, sinceit is directly proportionalto e for a given n), our aim wasto developa
modelfor the algorithms'behavioras a function of thesetwo parameters.We achieved
this by measuringthe executiontimes of the two algorithmsfor a wide rangeof input
graphs. We useda graphgeneratorthat createda randomgraphof a specifiedn with

approximatelythe given number of edges,i.e., the number of edgesspecified were
generatedandomly and then repeatededgeswere deleted,thus the specifiede was an
upperlimit on the actuale. We alsoaddednon-negativeandomweightsto eachedge.
By changingthe parametersn and density of the input graph we could observethe
behaviorof the candidateparentalgorithms. The experimentwas performedon IBM

RISC6000/350 machines.

To observe the behavior tife two algorithmsasa function of the two input parameters
anddensity, we proceededasfollows: For a single executionof the experimentwe held
oneof thevariablesto a constantvalueandvariedthe other. Thenby multiple executions

of the experimentwith a differentvalue of the variablebeingheld constantachtime, we



were able to obtain the behavior of the two algorithms as a function of the two

parameters.

Firstwe chosedensity to be constantfor a singlerun of the experimentandn wasvaried
in therangeof 100to 900 nodes. A samplerun of this experimenis shownin Figurel,
wheredensity was kept constant atvalueof 0.28. We depicta limited inputrangein the
figure to emphasize¢he importantvalue of n, 160 in this case,that forms the cross-over
pointwherethe two algorithmsswitch placesandonebecomedasterthanthe other. We
call this cross-overpoint the hybrid point becauseof its relevancen creatingthe hybrid
algorithm. For an executionof the experimentwith a different density we obtain curves
similar to the onesshownin Figure 1, exceptwith a different hybrid point. Thus from
multiple executionof the experimentwith a differentdensity valuein the rangeof zeroto
onefor eachcase we wereableto obtainthe behaviorof the hybrid point asa function of

density.
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Figure 1: Behavior of Dijkstra's and Floyd's algorithms with increasiog a fixed

density value of 0.28



In anotherversionof our experimentwe timed the two algorithmsfor a single execution
of the experimenby fixing the n to a precisevalueandvarying density of the graphover
a wide range (zero to one) and then obtained hybrid pointsnnaltiple executionf the
experimenteachwith a differentn, in the rangeof 100to 900 nodes.The density curves
resultingfrom this experimentwerein the form of straightlines, shownin Figure 2 for a
sampleexecutionwith n fixed at 700. The straightlines are explainedby the fact that
Floyd's algorithm is independenif density while the modified Dijkstra's algorithm is
linearly dependenon e, henceon density, for agivenn. Theseresultsclearly indicateda
hybrid point at a certaindensity for a givenn, 0.56in the caseof Figure2 for a givenn of

700.
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Figure 2: The behavior of the parent algorithms deéhsity for n fixed at 700

To obtain the hybrid point as the function mive executed multiple runs of the above
experiment with a differenn, ranging from 100 to 900, for each execution and plotted

the resulting hybrid points in Figure 3.
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Figure 3: The solution space map for the hybrid shortest path algorithm, containing the

hybrid curve that divides it into two regions for Floyd's and Dijkstra's algorithms.

Figure3 represents two dimensionalsolution spacemapfor the shortestpath problem
encompassingll possibledensity valuesand n rangingfrom 0 to 900 nodes.The curve
joining the hybrid points divides the solution spacemap into two regions,one where
Floyd's algorithm is dominantand the other where the modified Dijkstra's algorithm
reigns. TheoreticallyDijkstra’s algorithm with Fibonacciheapsis expectedto perform
efficiently for relatively sparse graphs, i.e., wiegis muchsmallerthanO(n?), otherwiseit
is slower than Floyd's method. This resultsfrom the fact that if e is O(n2) then the
complexityof Dijkstra'salgorithmtransformsrom O(n2logn + ne) to O( n4logn + n3) or
simply O(n3) with a muchlargerconstanthanFloyd'salgorithmwhich is alsoO(n3). The
map in Figure 3 is consistentwith theoretical expectations,.e., Dijkstra's algorithm
occupiesthe sparserregion of the map and Floyd's algorithm inhabits the region with

higherdensity values.
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A graph,representety its n anddensity, will fall eitherin Dijkstra or Floyd regionof the
map,andautomaticallyselectthe fasteralgorithm. Thusby interpretinga solutionspace
map as a function of some parameter of the input, we can choose thaltastdrmfor a
particularinstanceof the problem. An approximatemap canbe createdby analyzingthe
computationatomplexityof individual algorithmsandthenrefinedempirically for specific

environments.

Analysis

From analysisof the actualimplementationof the algorithmsit was clear that Floyd's
algorithms behavior could be modeled very effectively by its complexity with
multiplication by a constant. Hence the actual behavior of Floyd's algorithm is

mathematically:

Floyd(n,e) L an3 (ii)

whereq is a machine dependent constant

The complexity of Dijkstra's algorithmwith Fibonacciheapsis basedon the conceptof
costamortizationandthusrepresents fairly good approximationto the actualbehavior
of the algorithm. We foundit sufficientto multiply eachtermin the complexity function

by a constant to model the actual behavior of the algorithm. Mathematically:

Dijkstra(n,e) L pnZlogn + yne (iii)

wheref3 andy are machine dependent constants

From our definition a hybrid point exists where the two algorithms perform similarly,

hence we could obtain a hybrid point by equatingand(iii):
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BnZlogn + yne = an3
since we need the hybrid point as a density value we use (i) to obtain
Bn2logn + yn2(n-1)density = an3
O density = (an - Blogn) /y(n-1)
O hybrid(n) = (an - Blogn) /y(n-1) (iv)
taking the limit as n tends to infinity we obtain

hybrid(n) = o /y )

(v) representshe asymptoticvalue of the hybrid point asa function of n. It is entirelya
function of the constantsthat themselvesare dependenton the implementationand
architecture used. To obtain the constanfd® andy is a matterof readingthemfrom the
graphsof the density curvesasthe one shownin Figure3. a, 3 andy canbe readfrom

the y-intercept of the Floyd curve, y-intercept and the slope of the Dijkstra curve
respectively. We obtainedthe valuesof the constantgor all executionf the experiment
andfound minor differencesn the recordedvalues.The meanof the constantswvith 95 %

confidence intervals are:

o= 080x10F+ 1.39x10
B= 4.96x10+ 1.03x10
y= 112x10°+1.17x10

From thesevaluesthe asymptotefor the hybrid curvein the solution spaceof Figure 3

becomes:

a/y = 080/1.12 = 0.71
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A plot of (iv) is shownin Figure 4, comparedwith the experimentalresults. The
theoretical values for the hybrid point match the empirical results sufficiently wedtiiy
our analysis. Thusto implementthe hybrid on a different computerwe needonly to
determinethe constantsfrom a single executionof the experimentand then use the
equationto determinethe hybrid curve,or the asymptotefor largeinputs. It shouldbe
notedherethatthe performancegain promisedby the hybrid increasesswe movefarther
away from the hybrid curve in the solution spaceon either sides. Thus even an
approximateknowledgeof the hybrid curvein the solutionspacecanenableusto achieve

higher algorithmic performance for uniformly distributed input.
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Figure 4: A comparison of theoretical data points ,obtained frgrwith the mean of the

constants, and empirical results for the hybrid curve in the solution space map.

Performance Gain Analysis

We calculated the percent improvement in performance for the hybrid algoeitinaeto

each parent method using the following equation:

G=(Tp-Th)/ T, x 100
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where

parent algorithm execution time

Tp

Tn = hybrid algorithm execution time

G = percent performance gain

To calculatethe time for eachalgorithmwe assumea uniform distributionof density for
agiven n. Thisallowedusto obtain,for a givenn, the total time from eachalgorithmas
the areaunderits correspondinglensity curve. Sucha curveis shownfor n of 700 in
Figure2. Thedensity curvefor the hybrid is simply the curve of the fasteralgorithmat
anypoint. Hencethe density curvefor the hybrid in Figure2 consistsof Dijkstra'scurve
precedingthe hybrid point and of Floyd'scurvesucceedingt. We plotted the resultsof

this performance gain analysis as a function iof Figure 5.
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algorithm
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As expected,the hybrid provides significant savingsfor small n relative to Dijkstra's
algorithm sincewe can seefrom the solution spacemap in Figure 3 that this algorithm
doesnot occupytheregionfor graphslessthan100nodes. The hybrid for graphswith n
less than 100 consists solely of Floyd's methatith increasingh we seethe performance
gain relative to both algorithms reachesan asymptoticvalue, approximately26% for
Floyd's and 16% for Dijkstra's algorithm. This is a considerableimprovementin

algorithmic performance for the shortest path problem given a large solution space.

Conclusion

We havepresenteda methodof attaininghigheralgorithmic performancey introducing
a deterministichybrid technique. The techniquepresentedn this paperis basedon
predictingthe behaviorof a setof algorithmson a well definedpropertyof the input. We
also showed how two algorithms can occspparateegionsin a solutionspacemapthat
is a function of one or more input parameters. By using this map to selectthe faster
algorithmfor specificinstancef a problem,we can createa new, more robusthybrid.
Empirically, a solutionspacemapwascreatedor Dijkstra'sandFloyd'salgorithmsfor the
shortestpathproblem,asa function of density andn of the input graph. It wasfollowed
by a theoreticalanalysisto supplementhe experimentandto obtainan asymptoticbound
for the empirical results. We were able to achieve,assuminguniform distribution of
density, 16% and 26% improvementover Dijkstra's and Floyd's algorithm respectively,
for large graphs.A point to note is that sinceour resultswere obtainedexperimentally,
theseare machinedependentand will vary slightly dependingon the computersystem

organization.

For somedeterministicproblemsit may be difficult to find a simple solution spacemap

because of an algorithm's dependeocya lesseasilyquantifiableinput parameterin such

15



caseghe parallelapproachesf competingalgorithmsor divide-and-conquemay prove

more effective.
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