
A Hybrid Technique for Deterministic Algorithms with
a Shortest Path Example

by

Miroslaw Malek

and

Ahmed Azfar Moin

Department of Electrical and Computer Engineering

The University of Texas at Austin

April 25, 1994

1

ABSTRACT

A general hybridization technique, potentially effective in improving algorithmic efficiency,

is presented for deterministic algorithms. Extensions of existing hybrid techniques for

nondeterministic algorithms to deterministic ones are also described. The new technique

uses one or more input parameters to predict the behavior of a group of algorithms and

then takes advantage of the fastest method for that instance. We have applied this

technique to Dijkstra's and Floyd's algorithms for the shortest path problem to create a

hybrid dependent on the size and density of the input graph. An analysis based on

complexity of the algorithms confirms our empirical results. We have also presented a

performance gain analysis that quantifies the significant improvement due the new

algorithm. The hybrid algorithm was able to provide 16% and 26% improvement over

each parent algorithm respectively, for large graphs and a uniform distribution of density.

2

When multiple algorithms exist for a certain problem, an over all improvement in

algorithmic performance may be possible by creating a mixture of the existing methods.

A combination of algorithms that exploits the relative strengths of each method and

undermines its weaknesses should result in a more robust technique that provides faster or

better solutions. We call such an amalgam a hybrid algorithm and the component

algorithms its parents.

Until now, this hybrid technique has been successfully applied to combinatorial

optimization problems [Malek et al., 1989a, Malek et al., 1989b, Kido, Kitano and

Nakanishi, 1993, Hogg and Williams, 1993] that mostly fall into the intractable NP-

complete or NP-hard class. The available heuristic methods for such problems generally

promise a statistically feasible approximation to the optimal solution but can exhibit an

unacceptable worst case behavior. Hybrid methods can filter out the decrepit aspects of

individual methods by integrating heuristics that exhibit varying behavior, to achieve

higher stability and finer quality for a solution in general. In this paper we present a

similar idea to improve algorithmic performance of deterministic methods by harnessing

two or more algorithms to the same task. We conjecture that a deterministic hybrid

algorithm would be more efficient than its parents while always guaranteeing the optimal

solution. As an example, we have created a hybrid for the shortest path problem, from

existing algorithms by Dijkstra [Dijkstra, 1959] and Floyd [Floyd, 1962], that provides

significant improvement over each parent algorithm for a uniform distribution of input.

The next section discusses current approaches towards generating a hybrid for both non-

deterministic and deterministic types of problems and briefly mentions a few existing

specimens. Then we describe our experiment and present results that prove the existence

of a deterministic hybrid for the shortest path problem. The succeeding analysis, based on

the complexities of the parent algorithms, confirms our empirical findings. Before

3

concluding we provide an analysis quantifying the performance gains due to the improved

algorithm.

Hybrid Algorithms

A hybrid algorithm technique is a method of combining two or more algorithms for

improved performance and/or reliability. The integration of algorithms may be performed

on a single processor or a parallel computer. In a parallel system multiple algorithms are

executed simultaneously and stopped when one of them finds the solution first. This

technique can be used for deterministic and nondeterministic problems but entails a

hardware cost that may prove debilitating from an applications point of view, though it is a

good way of determining the ability of a group of algorithms to form a hybrid.

We can use parallelism with greater efficacy with slightly more subtle techniques. Such

techniques usually involve some sort of inter-processor communication. An example is

the tabu search (TABU) and simulated annealing (SA) hybrid created for the traveling

salesman problem (TSP) [Malek et al., 1989a, Malek et al. 1989b]. The two heuristics,

TABU and SA, are run in parallel and stopped after a predetermined interval. Then the

partial solutions of the two algorithms are exchanged and the algorithms are started again.

This proves to be a useful technique in mixing the two heuristics and allowing them to

take advantage of each others potential. Searching through the solution space, SA finds

local optima quickly but tends to get stuck in one, while TABU is relatively better at

escaping from a local optimum, thus a combination of the two holds a greater potential for

finding the globally optimum solution. Another experiment involving two SA algorithms

with different cooling schedules demonstrated up to eleven times speedup of a two

processor implementation with respect to a single processor executing one of the two

algorithms. An even more robust hybrid was claimed by combining genetic algorithms GA

4

with TABU and SA [Kido, Kitano and Nakanishi, 1993]. In this hybrid GA was used as a

global search to mix the results from TABU and SA, working as local searches. The two

hybrids improved the stability and quality of the solution for the TSP.

Another example of a hybrid technique that uses inter-processor communication exists for

the Graph Coloring Problem consisting of the Brelaz heuristic and heuristic repair [Hogg

and Williams, 1993]. This hybrid method also uses the idea of different algorithms sharing

information while running in parallel. Here a common 'black board' is used to allow the

processors, executing different instances of the heuristics, to exchange hints. Each

processor shares information by posting hints such as its present state or a partially found

solution, then a processor reads a hint with some probability and tries to incorporate it

into its current state. Experimentally, a group of cooperating algorithms were shown to

generally outperform a group running independently. It is pertinent to note here that

determining the nature of information to exchange is a non-trivial task, and even more

difficult is relating, apriori, the impact of a particular hint to the performance of the hybrid.

The approach towards generating a hybrid from deterministic algorithms becomes slightly

different than creating one from heuristics. This results from the predictability of most

deterministic algorithms that limits our ability to coax these algorithms to improve their

performance by changing initial conditions or location in the solution space. But this

predictability can be brought to use in creating a hybrid taking a somewhat different

approach. The key strategy for these algorithms is to determine their behavior as a

function of the input. Depending on the type or application of an algorithm, its behavior is

related to some property of the input, a common example is the size n, usually seen in the

computational complexity of the algorithm as O(n), O(n2), etc. The complexity function

can depend on parameters other than the size but nevertheless it is a useful indicator of

the ability of a group of algorithms to form a hybrid as we will show in our shortest path

5

hybrid example. Using the computational complexity as a stepping stone we can

empirically determine the exact behavior of the candidate parent algorithms. Then simply

by scanning the input we can use our results to predict the winning algorithm and thus

obtain a hybrid consisting of the better-performing parts of each parent.

Some deterministic algorithms may defy the approach based on predictability because of

difficulty in determining an easily quantifiable input parameter. For example, in a sorting

problem one algorithm might perform better if the array to be sorted is already ordered or

some of its segments are ordered while another method's behavior may be independent of

the ordering of the array. Since the level of ordering of an array is not an easily

quantifiable parameter, it is difficult to predict algorithmic behavior based on it. In this

case, using a parallel computer, we could accelerate a solution for some instances of the

sorting problem in at least two ways. One approach would execute a different sorting

algorithm on each processor for the same data set and deliver the first available sorted

array. Another approach would essentially use a parallel version of divide-and-conquer:

the problem is broken down into multiple subproblems that are solved in parallel. Several

techniques exist for graphs that divide a graph problem into other ones with algorithms to

be solved in parallel [Thurimella, 1989]. Another application of a parallel technique could

be for a very efficient minimum spanning tree algorithm by Fredman and Tarjan using

Fibonacci heaps [Fredman and Tarjan, 1987]. This algorithm creates distinct partial

spanning trees starting from different nodes and then condenses each tree into a super

node to form another graph. The process is repeated on the new graph until the complete

spanning tree is found, i.e., a single super node remains. A good description of this

algorithm is provided in [McHugh, 1990]. By growing a partial spanning tree on a single

processor, the entire process can be conducted in parallel with the results mixed after each

iteration. This would be the equivalent of combining several instances of the same

algorithm to form a hybrid.

6

The Shortest Path Hybrid Algorithm

The shortest path problem is well established in graph theory with extensive applications in

a wide range of fields. We believe that by creating an efficient hybrid for a set of

commonly used algorithms we can uncover the potential applications of combining

deterministic algorithms.

The version of the shortest path problem used in our analysis is stated as follows: given a

simple directed graph (digraph), assuming non-negative edge weights, determine the

shortest path from every node to all other nodes. This version of the shortest path

problem is also known as all sources to all destination shortest path problem since we are

to find the shortest path from each node (source) to all other nodes (destinations).

Two well-known shortest path algorithms are by Dijkstra [Dijkstra, 1959] and Floyd

[Floyd, 1962]. Both algorithms have a complexity of O(n3) where n is the size or the

number of nodes of the input graph. We can enhance Dijkstra's algorithm by using a

priority queue. If a Fibonacci heap data structure [Fredman and Tarjan, 1987] is used to

implement the priority queue, we gain an asymptotic improvement over a naive

implementation of Dijkstra's algorithm [Horowitz, Sahni and Freed, 1993]. The

complexity of the modified algorithm is O(n2logn + ne) where e is the number of edges in

a graph. It is important to note that the complexity of the two methods is comparable and

this fact makes them good candidates for trial parent algorithms. Deterministic algorithms

with significantly different complexities present a much smaller probability of generating a

successful hybrid.

We define density of a simple graph of size n as the ratio of the number of edges e to the

maximum number of possible edges in that graph, emax. The maximum number of edges a

7

simple graph can contain is n(n -1)/2 and a simple digraph can have twice as many edges.

Hence the density of a simple digraph is defined mathematically:

density = e / n(n-1) (i)

This definition forces density to be a number between zero and one that is directly

proportional to the number of edges e for a fixed n.

The Experiment

Since the complexities of the two algorithms under analysis were a function of n and e (or

density, since it is directly proportional to e for a given n), our aim was to develop a

model for the algorithms' behavior as a function of these two parameters. We achieved

this by measuring the execution times of the two algorithms for a wide range of input

graphs. We used a graph generator that created a random graph of a specified n with

approximately the given number of edges, i.e., the number of edges specified were

generated randomly and then repeated edges were deleted, thus the specified e was an

upper limit on the actual e. We also added non-negative random weights to each edge.

By changing the parameters n and density of the input graph we could observe the

behavior of the candidate parent algorithms. The experiment was performed on IBM

RISC6000/350 machines.

To observe the behavior of the two algorithms as a function of the two input parameters n

and density, we proceeded as follows: For a single execution of the experiment we held

one of the variables to a constant value and varied the other. Then by multiple executions

of the experiment, with a different value of the variable being held constant each time, we

8

were able to obtain the behavior of the two algorithms as a function of the two

parameters.

First we chose density to be constant for a single run of the experiment and n was varied

in the range of 100 to 900 nodes. A sample run of this experiment is shown in Figure 1,

where density was kept constant at a value of 0.28. We depict a limited input range in the

figure to emphasize the important value of n, 160 in this case, that forms the cross-over

point where the two algorithms switch places and one becomes faster than the other. We

call this cross-over point the hybrid point because of its relevance in creating the hybrid

algorithm. For an execution of the experiment with a different density we obtain curves

similar to the ones shown in Figure 1, except with a different hybrid point. Thus from

multiple execution of the experiment, with a different density value in the range of zero to

one for each case, we were able to obtain the behavior of the hybrid point as a function of

density.

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300

input size (nodes)

Dijkstra's

Floyd's
hybrid point

Figure 1: Behavior of Dijkstra's and Floyd's algorithms with increasing n for a fixed

density value of 0.28

9

In another version of our experiment we timed the two algorithms for a single execution

of the experiment by fixing the n to a precise value and varying density of the graph over

a wide range (zero to one) and then obtained hybrid points from multiple executions of the

experiment, each with a different n, in the range of 100 to 900 nodes. The density curves

resulting from this experiment were in the form of straight lines, shown in Figure 2 for a

sample execution with n fixed at 700. The straight lines are explained by the fact that

Floyd's algorithm is independent of density while the modified Dijkstra's algorithm is

linearly dependent on e, hence on density, for a given n. These results clearly indicated a

hybrid point at a certain density for a given n, 0.56 in the case of Figure 2 for a given n of

700.

0

50

100

150

200

250

300

350

400

0 0.2 0.4 0.6 0.8 1

density

Floyd's

Dijkstra'shybrid point

Figure 2: The behavior of the parent algorithms with density for n fixed at 700

To obtain the hybrid point as the function of n we executed multiple runs of the above

experiment with a different n, ranging from 100 to 900, for each execution and plotted

the resulting hybrid points in Figure 3.

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900

input size (nodes)

Floyd's

Dijkstra's

Figure 3: The solution space map for the hybrid shortest path algorithm, containing the

hybrid curve that divides it into two regions for Floyd's and Dijkstra's algorithms.

Figure 3 represents a two dimensional solution space map for the shortest path problem

encompassing all possible density values and n ranging from 0 to 900 nodes. The curve

joining the hybrid points divides the solution space map into two regions, one where

Floyd's algorithm is dominant and the other where the modified Dijkstra's algorithm

reigns. Theoretically Dijkstra’s algorithm with Fibonacci heaps is expected to perform

efficiently for relatively sparse graphs, i.e., when e is much smaller than O(n2), otherwise it

is slower than Floyd's method. This results from the fact that if e is O(n2) then the

complexity of Dijkstra's algorithm transforms from O(n2logn + ne) to O(n2logn + n3) or

simply O(n3) with a much larger constant than Floyd's algorithm which is also O(n3). The

map in Figure 3 is consistent with theoretical expectations, i.e., Dijkstra's algorithm

occupies the sparser region of the map and Floyd's algorithm inhabits the region with

higher density values.

11

A graph, represented by its n and density, will fall either in Dijkstra or Floyd region of the

map, and automatically select the faster algorithm. Thus by interpreting a solution space

map as a function of some parameter of the input, we can choose the faster algorithm for a

particular instance of the problem. An approximate map can be created by analyzing the

computational complexity of individual algorithms and then refined empirically for specific

environments.

Analysis

From analysis of the actual implementation of the algorithms it was clear that Floyd's

algorithms behavior could be modeled very effectively by its complexity with

multiplication by a constant. Hence the actual behavior of Floyd's algorithm is

mathematically:

Floyd(n,e) ≅ αn3 (ii)

where α is a machine dependent constant

The complexity of Dijkstra's algorithm with Fibonacci heaps is based on the concept of

cost amortization and thus represents a fairly good approximation to the actual behavior

of the algorithm. We found it sufficient to multiply each term in the complexity function

by a constant to model the actual behavior of the algorithm. Mathematically:

Dijkstra(n,e) ≅ βn2logn + γne (iii)

where β and γ are machine dependent constants

From our definition a hybrid point exists where the two algorithms perform similarly,

hence we could obtain a hybrid point by equating (ii) and (iii):

12

βn2logn + γne = αn3

since we need the hybrid point as a density value we use (i) to obtain

βn2logn + γn2(n-1)density = αn3

⇒ density = (αn - βlogn) /γ(n-1)

⇒ hybrid(n) = (αn - βlogn) /γ(n-1) (iv)

taking the limit as n tends to infinity we obtain

hybrid(n) = α /γ (v)

(v) represents the asymptotic value of the hybrid point as a function of n. It is entirely a

function of the constants that themselves are dependent on the implementation and

architecture used. To obtain the constants α, β and γ is a matter of reading them from the

graphs of the density curves as the one shown in Figure 3. α, β and γ can be read from

the y-intercept of the Floyd curve, y-intercept and the slope of the Dijkstra curve

respectively. We obtained the values of the constants for all executions of the experiment

and found minor differences in the recorded values. The mean of the constants with 95 %

confidence intervals are:

 α = 0.80 x 10-6 ± 1.39 x 10-9

 β = 4.96 x 10-6 ± 1.03 x 10-7

 γ = 1.12 x 10-6 ± 1.17 x 10-8

From these values the asymptote for the hybrid curve in the solution space of Figure 3

becomes:

α / γ = 0.80 / 1.12 = 0.71

13

A plot of (iv) is shown in Figure 4, compared with the experimental results. The

theoretical values for the hybrid point match the empirical results sufficiently well to justify

our analysis. Thus to implement the hybrid on a different computer we need only to

determine the constants from a single execution of the experiment and then use the

equation to determine the hybrid curve, or the asymptote for large inputs. It should be

noted here that the performance gain promised by the hybrid increases as we move farther

away from the hybrid curve in the solution space on either sides. Thus even an

approximate knowledge of the hybrid curve in the solution space can enable us to achieve

higher algorithmic performance for uniformly distributed input.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400 500 600 700 800 900

input size (nodes)

d
en

si
ty empirical

theoretical

Figure 4: A comparison of theoretical data points ,obtained from (iv) with the mean of the

constants, and empirical results for the hybrid curve in the solution space map.

Performance Gain Analysis

We calculated the percent improvement in performance for the hybrid algorithm relative to

each parent method using the following equation:

G = (Tp - Th)/ Tp x 100

14

where

Tp = parent algorithm execution time

Th = hybrid algorithm execution time

G = percent performance gain

To calculate the time for each algorithm we assumed a uniform distribution of density for

a given n. This allowed us to obtain, for a given n, the total time from each algorithm as

the area under its corresponding density curve. Such a curve is shown for n of 700 in

Figure 2. The density curve for the hybrid is simply the curve of the faster algorithm at

any point. Hence the density curve for the hybrid in Figure 2 consists of Dijkstra's curve

preceding the hybrid point and of Floyd's curve succeeding it. We plotted the results of

this performance gain analysis as a function of n in Figure 5.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900

input size (node s)

Floyd's

Dijkstra's

Figure 5: The percent increase in performance of the hybrid relative to each parent

algorithm

15

As expected, the hybrid provides significant savings for small n relative to Dijkstra's

algorithm since we can see from the solution space map in Figure 3 that this algorithm

does not occupy the region for graphs less than 100 nodes. The hybrid for graphs with n

less than 100 consists solely of Floyd's method. With increasing n we see the performance

gain relative to both algorithms reaches an asymptotic value, approximately 26% for

Floyd's and 16% for Dijkstra's algorithm. This is a considerable improvement in

algorithmic performance for the shortest path problem given a large solution space.

Conclusion

We have presented a method of attaining higher algorithmic performance by introducing

a deterministic hybrid technique. The technique presented in this paper is based on

predicting the behavior of a set of algorithms on a well defined property of the input. We

also showed how two algorithms can occupy separate regions in a solution space map that

is a function of one or more input parameters. By using this map to select the faster

algorithm for specific instances of a problem, we can create a new, more robust hybrid.

Empirically, a solution space map was created for Dijkstra's and Floyd's algorithms for the

shortest path problem, as a function of density and n of the input graph. It was followed

by a theoretical analysis to supplement the experiment and to obtain an asymptotic bound

for the empirical results. We were able to achieve, assuming uniform distribution of

density, 16% and 26% improvement over Dijkstra's and Floyd's algorithm respectively,

for large graphs. A point to note is that since our results were obtained experimentally,

these are machine dependent and will vary slightly depending on the computer system

organization.

For some deterministic problems it may be difficult to find a simple solution space map

because of an algorithm's dependency on a less easily quantifiable input parameter. In such

16

cases the parallel approaches of competing algorithms or divide-and-conquer, may prove

more effective.

References

Malek, M., Guruswamy, M., Owens, H. and Pandya, M. 1989. Serial and parallel

simulated annealing and tabu search algorithms for the traveling salesman problem. Annals

of Operations Research. 21, 59-84.

Malek, M., Guruswamy, M., Owens, H. and Pandya, M. 1989. A hybrid algorithm

technique. Dept. of Computer Sciences Tech. Rep. 89-6, The University of Texas at

Austin, Texas; translated and reprinted in Japanese book entitled H. Kitano ed. 1993.

Genetic Algorithm and its Applications. Sangyo Tosho publishing Co., Ltd.

Kido, T., Kitano, H. and Nakanishi, M. 1993. A hybrid search for genetic algorithms:

Combining genetic algorithms, tabu search, and simulated annealing. In Proc. of 5th Intl.

Conf. on Genetic Algorithms. 641.

Hogg, T. and Williams, C. P. 1993. Solving the really hard problems with cooperative

search. In Proc. of 11th Natl. Conf. on Artificial Intelligence. 231-236.

Dijkstra, E. W. 1959. A note on two problems in connection with graphs. Numerische

Math. 1, 269-271.

Floyd, R. W. 1962. Algorithm 97: Shortest paths. Communications of ACM. 5, 345.

Thurimella, R. 1989. Techniques for the design of parallel graph algorithms. Ph.D.Thesis.

Dept. of Computer Sciences, The University of Texas at Austin, Texas.

Fredman, M. L. and Tarjan, R. E. 1987. Fibonacci heaps and their use in improved

network optimization algorithms. Journal of ACM. 34, 596-615.

Horowitz, E., Sahni, S. and Freed, S. 1993. Fundamentals of Data structures in C.

Computer Science Press, New York.

McHugh, J. A. 1990. Algorithmic Graph Theory. Prentice Hall, New Jersey.

