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Abstract

From our experience, current rule-based query optimizers do not provide a very intuitive
and well-defined framework to define rules and actions. To remedy this situation, we propose
an extensible and structured algebraic framework called Prairie for specifying rules. Prairie
facilitates rule-writing by enabling a user to write rules and actions more quickly, correctly and
in an easy-to-understand and easy-to-debug manner.

Query optimizers consist of three major parts: a search space, a cost model and a search
strategy. The approach we take is only to develop the algebra which defines the search space
and the cost model; we do not propose a search engine (i.e., search strategy) to drive the rules.
We have chosen the Volcano optimizer generator as our search engine, because it is publicly
available, and also because it has an efficient branch-and-bound search strategy. Using Prairie as
a front-end, we translate Prairie rules to Volcano to validate our claim that Prairie makes it easier
to write rules.

We describe our algebra and present experimental results which show that using a high-level
framework like Prairie to design large-scale optimizers does not sacrifice efficiency.

1 Introduction

Query optimization [9, 12, 20] is a fundamental part of database systems. It is the process of
generating an efficient access plan for a database query. Informally, an access plan is an execution
strategy for a query; it is the sequence of low-level database retrieval operations that, when executed,
produce the database records that satisfy the query. There are three basic aspects that define and
influence query optimization: the search space, the cost model, and the search strategy.

The search space is the set of logically equivalent access plans that can be used to evaluate a
query. All plans in a query’s search space return the same result; however, some plans are more
efficient than others. The cost model assigns a cost to each plan in the search space. The cost of a
plan is an estimate of the resources used when the plan is executed; the lower the cost, the better the�This research was supported in part by grants from The University of Texas Applied Research Laboratories, Schlum-
berger, and Digital Equipment Corporation.
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plan. The search strategy is a specification of which plans in the search space are to be examined.
If the search space is small, a viable strategy is to enumerate and evaluate every plan. However,
most search spaces, even for simple queries, are enormous, and thus query optimizers often need
heuristics to control the number of plans to be examined.

Traditionally, query optimizers have been built as monolithic subsystems of a DBMS. This
simply reflects the fact that traditional database systems are themselves monolithic: the algorithms
used for storing and retrieving data are hard-wired and are rather difficult to change. The need
to have extensible database systems, and in turn extensible optimizers, has long been recognized
in systems like Genesis [1], EXODUS [3], Starburst [15] and Postgres [18]. Rule-based query
optimizers are among the major conceptual advances that have been proposed to deal with query
optimizer extensibility [6–8, 10, 11, 13]. The extensibility translates into the ability to incorporate
new operators, algorithms, cost models, or search strategies without changing the optimization
algorithm.

In this paper, we describe an algebraic framework called Prairie for specifying rules in a query
optimizer. Prairie is similar to other rule specification languages like Starburst [13] and Volcano [8],
and indeed, we have based our work on Volcano to capture most of the advantages of rule-based
optimizers. However, Prairie attempts to provide some key features that, we have found, simplify
the effort in writing rules:

1. A framework in which users can define a query optimizer concisely in terms of a well-defined
set of operators and algorithms. All operators and algorithms are considered first-class objects,
i.e., any of them can occur in any rule, and only these operators and algorithms can appear in
rules. This scheme eliminates the need for special classes of operators and algorithms, such
as enforcers in Volcano and glue in Starburst, that significantly complicate rule specification.

2. A framework in which users can define a list of properties to characterize the expressions
generated in the optimization process. Again, the goal here is to allow the user to treat all
properties as having equal status. This is different from Volcano where the user must classify
properties as logical, physical, or operator/algorithm arguments.

3. A framework in which users can specify mapping functions between properties concomitantly
with the corresponding rules. This contrasts with existing approaches in which mappings
between properties are fragmented into multiple functions and at logically different places
than the corresponding rules. Research into rule-based optimizers has revealed that property-
mapping functions are a major source of user effort, so this is an important goal.

4. The format (Prairie) in which users can cleanly specify rules is not necessarily the same format
needed for generating efficient optimizers. Thus, there is a need for a pre-processor (written
by us) that translates between these competing representations.

Prairie strives for uniformity in dealing with issues that have been a source of most user effort
and potential user errors. In the following sections, we present the Prairie framework. We explain
how our P2V pre-processor maps Prairie rule specifications into Volcano rule specifications that can
be processed efficiently. Experimental results to support this claim are given in Section 4, where we
compare implementations of the Texas Instruments Open OODB query optimizer using both Prairie
and Volcano. We conclude with a summary and related research.
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2 Prairie: A language for rule specification

The basic concepts and definitions that underly the Prairie model are presented in this section. The
goal is to lay a foundation for reasoning about query optimizers algebraically; this is necessary for
our subsequent discussion about translating Prairie specifications to those of Volcano.

2.1 Notation and assumptions

Stored Files and Streams. A file is stored if its tuples reside on disk. In the case of relational
databases, stored files are sometimes called base relations; we will denote them by R or Ri. In
object-oriented schemas, stored files are classes; we will denote them by C or Ci. Henceforth,
whenever we refer to a stored file, we mean a relation or a class; when the distinction is unimportant,
we will use F or Fi. A stream is a sequence of tuples and is the result of a computation on one
or more streams or stored files; tuples of streams are returned one at a time, typically on demand.
Streams can be named, denoted by Si, or unnamed.

Database Operations. An operation is a computation on one or more streams or stored files.
There are two types of database operations in Prairie: abstract (or implementation-unspecified)
operators and concrete algorithms. Each is detailed below.

Operators. Abstract (or conceptual) operators specify computations on streams or stored files;
they are denoted by all capital letters (e.g., JOIN). Operators have two types of parameters:
essential and additional. Essential parameters are the stream or file inputs to an operator;
these are the primary inputs to be processed by an operator. Additional parameters are
“fine-grain” qualifications of an operator; their purpose is to describe an operator in
more detail than essential parameters. As examples, some operators are described below;
for each we explicitly indicate their essential parameters and parenthetically note their
additional parameters.� SORT(S1) sorts stream S1. The sorting attribute is an additional parameter of SORT.� RET(F ) retrieves tuples of stored file F . Additional parameters to RET include the

selection predicate, the projected attributes list, and the output tuple order.� JOIN(S1, S2) joins streams S1 and S2. (S1 denotes the outer stream and S2 denotes
the inner stream). Additional parameters to JOIN include the join predicate and
output stream tuple order.

Other operators are defined as they are needed.

Algorithms. Algorithms are concrete implementations of conceptual operators; they will be
represented in lower case with the first letter capitalized. Algorithms have at least the
same essential and additional parameters as the conceptual operators that they implement.1
Furthermore, there can be, and usually are, several algorithms for a particular operator.
For example, File scan, Btree scan and Index scan are all valid algorithms that implement
the operator RET, and Merge join and Nested loops are algorithms that implement the
JOIN operator. Different algorithms offer different execution efficiencies.1Algorithms may have tuning parameters which are not parameters in the operators they implement.

3



Operator Description Additional Parameters Algorithm

JOIN(S1 , S2) Join streams S1 , S2 tuple order Nested loops(S1 , S2)
join predicate Merge join(S1 , S2)

RET(F ) Retrieve file F tuple order File scan(F )
selection predicate
projected attributes Index scan(F )

SORT(S1) Sort stream S1 tuple order
Merge sort(S1 )
Null(S1 )

Table 1: Operators and algorithms in a centralized query optimizer and their additional parameters

SORT (JOIN (RET (R1), RET (R2)))

SORT

JOIN

RET RETR1 R2
(a) An expression and its corresponding operator
tree

Merge sort

Nested loops

File scan File scanR1 R2
(b) Possible access plan for operator tree in (a)

Figure 1: Example of an operator tree and access plan

Table 1 lists some operators and algorithms implementing them together with their additional
parameters.

Operator Trees. An operator tree is a rooted tree whose non-leaf, or interior, nodes are database
operations (operators or algorithms) and whose leaf nodes are stored files. The children of an
interior node in an operator tree are the essential parameters (i.e., the stream or file parameters) of
the node. Additional parameters are implicitly attached to each node. Algebraically, operator trees
are compositions of database operations; thus, we will also call operator trees expressions; both
terms will be used interchangeably.

EXAMPLE 1. A simple expression and its operator tree representation are shown in Figure 1(a).
RelationsR1 andR2 are first RETrieved, and then JOINed, and finally SORTed resulting in a stream
sorted on a specific attribute. The figure shows only the essential parameters of the various operators,
not the additional parameters. �
Descriptors. A property of a node is a (user-defined) variable that contains information used by
an optimizer. An annotation is a hproperty, valuei pair that is assigned to a node. A descriptor is a
list of annotations that describes a node of an operator tree; every node has its own descriptor. As
an example, Table 2 lists some typical properties that might be used in a descriptor. It must be noted
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Property Description

join predicate join predicate for JOIN operator
selection predicate selection predicate for RET operator
tuple order tuple order of resulting stream, DONT CARE if none
num records number of tuples of resulting stream
tuple size size of individual tuple in stream
projected attributes list of projected attributes for RET operator
attributes list of attributes
cost estimated cost of algorithm

Table 2: Properties of nodes in an operator tree

here that streams and stored files may have different descriptor structures. The following notations
will be useful in our subsequent discussions. If Si is a stream, thenDi is its descriptor. Annotations
of Si are accessed by a structure member relationship, e.g., Di:num records. Also, let E be an
expression and let D be its descriptor. We will write this as E :D.

EXAMPLE 2. The expression,

SORT(JOIN(RET(R1) : D3;RET(R2) : D4) : D5) : D6
corresponds to the operator tree in Figure 1(a), and represents the join of two relations R1 andR2. The two relations are first RETrieved, then JOINed and finally SORTed. D3 and D4 are the
descriptors of the two RETs respectively,D5 is the descriptor of the JOIN, andD6 is the descriptor
of the SORT. Assuming that the descriptor fields for this expression are those given in Table 2, the
selection predicate for the first RET isD3:selection predicate, and that for the second RET is given
by D4:selection predicate. The join predicate of the JOIN node is given by D5:join predicate, and
the attributes that are output are given byD5:attributes. The order in which SORT returns the output
stream is given by D6:tuple order. �

A notational simplification can be made here. Additional parameters of operators can be treated
the same way as other properties of a node; essential parameters, however, are expressions. Thus,
the term descriptor in the remainder of this paper will refer to a set of properties, including additional
parameters, as shown in Table 2.

Currently, descriptor properties are defined entirely by the user; however, we envision providing
a hierarchy of pre-defined descriptor types to aid this process.

Access Plans. An access plan is an operator tree in which all interior nodes are algorithms.

EXAMPLE 3. An access plan for the operator tree in Figure 1(a) is shown in Figure 1(b). RelationsR1 and R2 are each retrieved using the File scan algorithm, joined using Nested loops, and finally
sorted using Merge sort. �
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E(x1; : : : ; xn) :D1 =) E0(x1; : : : ; xn) :D2 (1)ff
pre-test statementsgg

testff
post-test statementsgg

Figure 2: General form of a T-rule

2.2 Prairie optimization paradigm

Query optimizers map operator trees to access plans.2 Prairie admits two rather different means
of optimization: top-down and bottom-up. A top-down query optimizer optimizes the parents of a
node prior to optimizing the node itself. A bottom-up optimizer optimizes the children of a node
prior to optimizing the node. The earliest optimizers (System R [17] and R� [16]) employed the
bottom-up approach.

Our research concentrates on a top-down optimization of operator trees. We have chosen this
approach because we intend to translate Prairie rules into the format required by the Volcano query
optimizer generator [8]. Volcano is based on a top-down strategy. Given an appropriate search
engine, Prairie can potentially also be used with a bottom-up optimization strategy; however, we
will not discuss this approach in this paper.

In query optimization, there are certain annotations (such as additional parameters) that are
known before any optimization is begun. These annotations can be computed at the time that the
operator tree is initialized, and will not change with application of rules. Our following discussions
assume operator trees are initialized.

2.3 Transformation rules

Transformation rules, or T-rules for short, define equivalences among pairs of expressions; they
define mappings from one operator tree to another. Let E and E0 be expressions that involve only
abstract operators. Equation (1) (shown in Figure 2) shows the general form of a T-rule. The actions
of a T-rule define the equivalences between the descriptors of nodes of the original operator tree E
with the nodes of the output tree E 0; these actions consist of a series of (C or C++) assignment3
statements. The left-hand sides of these statements refer to descriptors of expressions on the right-
hand side of the T-rule; the right-hand sides of the statements can refer to any descriptor in the
T-rule. Function (called helper functions) calls can also appear on the right side of the assignment
statements. Thus, descriptors on the left-hand side of a T-rule are never changed in the rule’s actions.2Actually, query optimizers operate on the output of a query compiler which translates a high-level query, e.g., one
expressed in SQL, into an intermediate structure called a query graph and then into an operator tree. The query compilation
process is well-known and we assume it is carried out before query optimization begins.3The actions can be non-assignment statements (like function calls), but in this case, the P2V pre-processor (described
in Section 3) needs some hints about the properties that are changed by the statement in order to correctly categorize each
property. For simplicity, in this paper, we assume all actions consist of assignment statements.
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A test is needed to determine if the transformations of the T-rule are in fact applicable.
Purely as an optimization, it is usually the case that not all statements in a T-rule’s actions need

to be executed prior to a T-rule’s test. For this reason, the actions of a T-rule are split into two
groups; those that need to be executed prior to the T-rule’s test, and those that can be executed
after a successful test. These groups of statements comprise, respectively, the pre-test and post-test
statements of the T-rule.4

We now define the actions and tests of a T-rule more precisely. Let Oi be an abstract operator
of E 0, and let Oi be its descriptor. Similarly, let Ii be an abstract operator of E and let Ii be its
descriptor. (Ii is an operator that is input to the rule and Oi is an operator that is output by the
rule). Let Mi denote the ith descriptor property. Thus, Oi:Mj is the value of the jth property of
descriptorOi. The left-hand side of an assignment refers to an output descriptor (Oi) or a member
of an output descriptor (Oi:Mj). The right-hand side is an expression or a helper function call that
only references input descriptors and/or their members. Here are a few examples:Oi = Ik ; == copy descriptor Ik toOiOi:Mj = Ik:Mj + 4 ; == expression definingOi:MjO3:M5 = helper (I1:M5; I2:M5) ; == helper function that computesO3:M5== from inputs I1:M5 and I2:M5.

The test for a T-rule’s applicability is a boolean expression and normally involves checks on the
values of output descriptors (e.g., O3:M5 > 6); occasionally, helper functions may be needed.

Again, it is important to remember that the pre-test actions are carried out prior to the test; the
post-test actions are performed only if a T-rule’s test evaluates to TRUE, and all post-test actions are
performed immediately, with no intermediate optimization of any descendant nodes of the root ofE.

Note that there are no actions that are carried out after the essential parameters of the root ofE are optimized. This is because a T-rule only logically transforms a conceptual tree into another
conceptual tree.

EXAMPLE 4. The associativity of JOINs is expressed by T-rule (2) in Figure 3(a). It rewrites a
two-way join into an equivalent operator tree. The (single) pre-test statement computes the list of
attributes of the new JOIN node on the right side. The test of the T-rule consists of a call to the
helper function “is associative”, which returns TRUE or FALSE depending on whether the T-rule
is applicable. If it is not, then the rule is rejected (e.g., because it generates a cross-product),
otherwise the post-test statements are executed. The post-test statements compute various other
annotations of the new nodes that are generated by applying the T-rule. Note the use of helper
functions “cardinality” and “union” to compute descriptor properties.

Consider three relationsR1, R2 and R3, and let ai, bi and ci be their respective sets of attributes.
Figures 3(b) and 3(c) show, respectively, examples of the applicability and non-applicability of the
join associativity T-rule. �4We suspect it is possible to use data-flow analysis to partition the assignment statements automatically, but for now,
we let the rule-writer do the partitioning.
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JOIN(JOIN(S1; S2) :D4; S3) :D5 =) JOIN(S1; JOIN(S2; S3) : D6) :D7 (2)ff D6:attributes = union (D2:attributes;D3:attributes) ;gg
is associative (D6:join predicate;D6:attributes;D5:join predicate)ff D7 = D5 ;D7:join predicate = D4:join predicate ;D6:tuple size = D2:tuple size +D3:tuple size ;D6:num records = cardinality (D2;D3) ;gg

(a) Join Associativity T-rule

JOINb2 = c1
JOINa1 = b1

RET RET

RETR1 R2 R3 =) JOIN a1 = b1
JOIN b2 = c1RET

RET RETR1 R2 R3
(b) Example of the associativity rule applied to an
operator tree

JOINa2 = c1
JOINa1 = b1

RET RET

RETR1 R2 R3 =)= JOIN

JOINRET

RET RETR1 R2 R3
(c) Example of an operator tree where the associa-
tivity rule does not apply

Figure 3: Join associativityE(x1; : : : ; xn) :D1 =) A(x1; : : : ; xn) : D2 (3)
testff

pre-opt statementsggff
post-opt statementsgg

Figure 4: General form of an I-rule

2.4 Implementation rules

Implementation rules, or I-rules for short, define equivalences between expressions and their imple-
menting algorithms. Let E be an expression and A be an algorithm that implementsE. The general
form of an I-rule is given by Equation (3) (shown in Figure 4).

The actions associated with an I-rule are defined in three parts. The first part, or test, is a boolean
expression whose value determines whether or not the rule can be applied.

The second part, or pre-opt statements, is a set of descriptor assignment statements that are
executed only if the test is true and before any of the inputs xi of E are optimized. Additional
parameters of nodes are usually assigned in the pre-opt section. This is necessary before any of the

8



SORT(S1) :D2 =) Merge sort(S1) : D3 (4)(D2:tuple order != DONT CARE)ff D3 = D2 ;ggff D3:cost = D1:cost+ (D3:num records) � log(D3:num records) ;gg
Figure 5: Merge-sort sort algorithm

nodes on the right side can be optimized.
The third part, or post-opt statements, is a set of descriptor assignment statements that are

executed after all xi are optimized. Normally, the post-opt statements compute cost properties
that can only be determined once the inputs to the algorithm are completely optimized and their
costs known. This does not, however, imply a bottom-up optimization strategy. It simply means
that although I-rules are applied to parents before their children are optimized, the cost (and other
properties in the post-opt section) of the parent cannot be computed until the children have been
optimized.

EXAMPLE 5. Equation (4) (in Figure 5) shows the I-rule that implements the SORT operator by
Merge sort. I-rule (4) rewrites a stream such that it is sorted using the Merge sort algorithm. The
test for this I-rule is that the tuple order of the sorted stream must not be a DONT CARE order.
The pre-opt section consists of the default statement that copies the descriptor from the left side
to the expression on the right. The post-opt section consists of a cost-assigning statement to the
Merge sort node. �
EXAMPLE 6. Equation (5) (shown in Figure 6) is the I-rule that selects the Nested loops algorithm
to implement the JOIN operator. The test for this rule is TRUE since Nested loops can be applied
regardless of any property values. The pre-opt section consists of three assignment statements.
The first statement sets the descriptor of Nested loops to that of the JOIN. The next two statements
express the fact that the tuple order of Nested loops is the same as the tuple order of its left (outer)
input; all other properties remain the same. The third statement in the pre-opt section ensures that
this requirement is met by setting the tuple order of S1 on the right side.55Actually, it is not enough to simply set the desired tuple order of S1; it is also necessary to ensure that after
optimization, S1 does indeed have the required property. One way to satisfy this is to insert a SORT node in front ofS1 that can meet the sortedness requirement of S1 . Thus, in this case, we would need a T-rule (which introduces a new
operator JOPR),

JOIN(S1; S2) :D3 =) JOPR(SORT(S1) : D4;SORT(S2) :D5) :D6;
and an I-rule,

JOPR(S1; S2) : D3 =) Nested loops(S1 :D4; S2) :D5:
In our discussions, this additional level of detail will be ignored for the sake of simplicity.
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JOIN(S1; S2) :D3 =) Nested loops(S1 :D4; S2) :D5 (5)
TRUEff D5 = D3 ;D4 = D1 ;D4:tuple order = D3:tuple order ;ggff D5:cost = D4:cost+ (D4:num records) �D2:cost ;gg

Figure 6: Nested loops join algorithm

The post-opt section is executed after S1 and S2 are optimized; it consists of a single statement
that assigns the cost of the Nested loops node. The cost is indicative of the fact that in this algorithm,
each tuple of the stream S1 involves scanning the entire stream S2; S1 is scanned only once. �
2.5 Null algorithm

Recall that, in Section 1, we mentioned that Prairie allows users to treat all operators and algorithms
as first-class objects, i.e., all operators and algorithms are explicit, in contrast to enforcers in Volcano
or glue in Starburst. This requires that Prairie provide a mechanism where users can also “delete”
one or more of the explicit operators from expressions. This is done by having a special class of
I-rules that have the form given by Equation (6) in Figure 7(a). The left side of the rule is a single
abstract operator O with one stream input S1. The right side of the rule is an algorithm called
“Null” with the same stream input but with a different descriptor. As the name suggests, the Null
algorithm is supposed to pass its input unchanged to algorithms above it in an operator tree. This is
accomplished in the I-rule as follows.

The test for this I-rule is always TRUE, i.e., any node in an operator tree with O as its operator
can be implemented by the Null algorithm. The actions associated with this rule have a specific
pattern. The pre-opt section consists of three statements. The first statement copies the descriptor
of the operator O to the algorithm Null. The second statement sets the descriptor of the stream S1
on the right side to the descriptor of the stream S1 on the left side. Why is it necessary to do this?
The key lies in the third statement. This statement copies the property “property” of the operator O
node on the left side to the “property” of the input stream S1 on the right side. Since left-hand side
descriptors cannot be changed in an I-rule, a new descriptor D3 is necessary for S1 to convey the
property propagation information.

The post-opt section in the I-rule has only a cost-assignment statement; this simply sets the cost
of the Null node to the cost of its optimized input stream.

The Null algorithm, therefore, serves to effectively transform a single operator to a no-op.

EXAMPLE 7. Equation (7) (in Figure 7(b)) shows the I-rule that rewrites the SORT operator to
use a Null algorithm. The third pre-opt statement sets the tuple order of S1 on the right side to be
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O(S1) :D2 =) Null(S1 :D3) :D4 (6)
TRUEff D4 = D2 ;D3 = D1 ;D3:property =D2:property ;ggff D4:cost = D3:cost ;gg

(a) General form of a “Null” I-rule

SORT(S1) : D2 =) Null(S1 :D3) :D4 (7)

TRUEff D4 =D2 ;D3 =D1 ;D3:tuple order = D2:tuple order ;ggff D4:cost = D3:cost ;gg
(b) Null sort algorithm

Figure 7: The “Null” algorithm concept

the tuple order of the SORT node, thus ensuring that when S1 is optimized on the right side, it will
have the same tuple order as the SORT node. �
3 The P2V pre-processor

In Section 1, we enumerated the four primary goals of Prairie, viz., uniformity in operator and
algorithms; uniformity in properties;uniformity in property-transformations;and efficient generation
of Prairie optimizers. The first three goals are driven by the need for conceptual simplicity; however,
they alone do not necessarily generate efficient optimizers. The P2V pre-processor ensures that
efficient optimizers can be realized from Prairie specifications, by translating them to the Volcano
framework and then generating an optimizer by compiling with the Volcano search engine. This
Prairie optimizer-generator paradigm is shown schematically in Figure 8. The pre-processor itself
is 4500 lines of flex and bison code. In this section, we describe the pre-processor steps and
explain why the Prairie-to-Volcano transformation is non-trivial.

3.1 Correspondence of elements in Prairie and Volcano

Table 3 shows the relationship between the basic elements of a Prairie and Volcano specification;
these correspondences are preserved by the P2V pre-processor. Operators and algorithms in Prairie
correspond directly to operators and algorithms, respectively, in Volcano.

The concept of enforcer-operators and enforcer-algorithms needs some explanation. In a Prairie
specification, one can have a set of I-rules of the form:O(S1) :D2 =) A1(S1) :D3� � �O(S1) :D2 =) An(S1) :D3O(S1) :D2 =) Null(S1 :D3) : D4
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Prairie Rule Set

P2V Pre-processor

Volcano Rule Set

Volcano Optimizer Generator

Query OptimizerOperator Tree Access Plan

Figure 8: The Prairie optimizer-generator paradigm. Double-boxed modules represent software
generators, shaded boxes represent generated programs. The outermost double-boxed portion
denotes the Prairie optimizer generator.

Prairie Volcano

Operator Operator
Algorithm Algorithm

Enforcer-operator —
Enforcer-algorithm Enforcer
“Null” Algorithm —

Operator Tree Logical Expression
Access Plan Physical Expression

Descriptor
Operator/Algorithm Argument

Physical property
Cost

— Logical Property
— System Property

Table 3: Correspondence of elements in Prairie and Volcano

i.e., an operator O has algorithmsA1 throughAn, and Null, as implementations. The pre-processor
classifies O as an enforcer-operator, and algorithms A1 through An as enforcer-algorithms. An
example of an enforcer-operator is the SORT operator, and an enforcer-algorithm is the Merge sort
algorithm (shown in Table 1). Enforcer-algorithms in the Prairie model are translated into enforcers
in the Volcano model; enforcer-operators disappear in Volcano when the P2V pre-processor combines
several I-rules to generate a Volcano rule (this is described in Section 3.3).
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Another major responsibility of the P2V pre-processor is classifying different properties in the
descriptor. Volcano forces users to classify properties (as logical, physical, or operator/algorithm
arguments) according to their use. The classification of properties helps optimize the performance of
Volcano. Unfortunately, property classification is actually rule-dependent. That is, adding another
rule to a Volcano rule set may cause a property that was previously considered “logical” to become
“physical”, or vice versa. Migrating properties between classifications entails a considerable amount
of reprogramming on the user’s part, and consequently makes Volcano rule sets rather brittle. Prairie,
in contrast, does not ask users to make these distinctions; the P2V pre-processor determines the
classification of properties automatically and thus significantly facilitates the extensibility of rule
sets. This is done by transforming a single descriptor structure into three parts (see Table 3):
an operator/algorithm argument, physical properties and cost. Briefly, physical properties are
properties that are requested by the user, cost represents an estimate of an algorithm’s cost, and
operator/algorithm arguments are all remaining properties (including additional properties). The
pre-processor achieves the classification of properties by examining the actions of all rules: a property
with a type “COST” is classified as a cost property, properties changed in pre-opt sections of I-rules
(e.g., tuple order in I-rule (5)) are physical properties, and all other properties are operator/algorithm
arguments.

Operator trees and access plans in Prairie correspond to logical and physical expressions, respec-
tively, in Volcano; the notations are very similar.

3.2 Correspondence of rules

3.2.1 T-rules

T-rules in Prairie are translated to trans rules (transformation rules) in Volcano;expressions occurring
on either side of a T-rule are transformed into Volcano logical expressions. Table 4(a) shows the
correspondence between Prairie T-rules and Volcano trans rules. The join associativity trans rule
(corresponding to the T-rule in Figure 3) in Volcano is as follows6:(JOIN ?op arg5 ((JOIN ?op arg4 (?1 ?2)) ?3)) �> (JOIN ?op arg7 (?1 (JOIN ?op arg6 (?2 ?3))))
The pre-test and test portions of a T-rule are mapped to the cond code (condition code) of a Volcano
trans rule, and the post-test portion is mapped to the appl code (application code). However,
expressions in Prairie T-rules can contain enforcer-operators. According to Table 3, enforcer-
operators are deleted by the P2V pre-processor, so T-rules containing enforcer-operators are modified
before being translated into Volcano. Sometimes, this can result in rules that can be further combined
into one as an optimization measure; this is discussed in Section 3.3.

3.2.2 I-rules

I-rules in Prairie correspond to impl rules (implementation rules) in Volcano; the complete relation-
ship is shown in Table 4(b). However, the transformation is complicated by several factors. First,
Prairie adopts a per-rule approach of specifying property transformations, i.e., properties of algo-
rithms are specified in an I-rule, whereas Volcano adopts a per-algorithm approach where properties6There are conditions and actions associated with Volcano rules that are not shown here.
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Prairie Volcano

T-rule trans rule
Operator Operator

Enforcer-operator —
Descriptor Operator Argument

Pre-test code Cond code
Test Cond code

Post-test code Appl code

(a) Translation of T-rules

Prairie Volcano

I-rule impl rule
Operator Operator

Algorithm Algorithm
Operator Descriptor Operator Argument

Algorithm Descriptor Algorithm Argument
Test Cond code

Pre-opt code “do any good”
Post-opt code “derive phy prop”

— “cost”
— “get input pv”

(b) Translation of I-rules. Quoted strings denote
helper functions.

Table 4: Correspondence of rules in Prairie and Volcano

of an algorithm are specified in a helper function for that algorithm. We believe that the per-rule
approach is more general and intuitive. The generality arises from the fact that the property trans-
formations can be different in different I-rules for the same algorithm; thus, the per-rule approach
is a superset of the per-algorithm approach. The per-rule approach is intuitive because property
mappings are made together with the rule invocation, instead of a logically disjoint helper function.

The second complicating factor in Volcano involves the reliance on several helper functions to
achieve property transformations. For instance, using Prairie terminology, a Volcano implementa-
tion rule requires an additional four functions (called “do any good”, “cost”, “get input pv”, and
“derive phy prop”). Although the purpose of these functions is purportedly to enhance Volcano
performance, they add considerable complexity to the design of rule sets. Prairie, in contrast, elim-
inates the need for users to specify these functions, by adopting the per-rule approach of property
transformations; as shown in Table 4(b), the P2V pre-processor generates two of these functions
(“do any good” and “derive phy prop”) automatically from I-rule specifications. The other two
helper functions are short-circuited, suggesting that the Volcano model and implementation is actu-
ally more complicated than it needs to be.

3.3 Rule merging

In the process of translating Prairie specifications to Volcano, several opportunitiesarise for obtaining
a compact set of rules. These opportunities arise either because the user specifies a non-compact
set of rules, or because of the translation process itself. An example of the latter case arises when
enforcer-operators are deleted by the P2V pre-processor. Consider, for example, the following set
of rules in Prairie:

JOIN(S1; S2) : D3 =) JOPR(SORT(S1) : D4; SORT(S2) :D5) : D6
SORT(S1) : D2 =) Null(S1 :D3) :D4

JOPR(S1; S2) : D3 =) Nested loops(S1 : D4; S2) : D5
14



The first rule is a T-rule, and the next two are I-rules. Note that SORT is an enforcer-operator
(because it has a Null implementation), so it is deleted in the transformation process. The first
rule then becomes a mapping from one operator JOIN to another JOPR which can be viewed as an
idempotence mapping; the resulting rule set can be optimized by deleting this idempotent rule and
replacing all occurrences of JOPR with JOIN. Thus, the above set of Prairie rules can be combined
into a single I-rule,

JOIN(S1; S2) :D3 =) Nested loops(S1 :D4; S2) :D5
which can then be translated into a Volcano impl rule. In general, the number of T-rules in a Prairie
rule set is equal to the number of trans rules in a Volcano rule set plus an additional T-rule for each
operator.7 Also, the number of I-rules is the same as the number of impl rules plus an additional
I-rule for each enforcer-operator (for Null implementations, as described in Section 2.5) and an
additional I-rule for each enforcer (since enforcers appear as I-rules in Prairie, instead of being
implicit, as in Volcano). The larger number of rules represents a conceptual simplification in rule
writing. However, the P2V pre-processor ensures that the transformation from Prairie to Volcano
always produces a compact set of rules.

4 Experimental results

This section presents experimental results which demonstrate the value of Prairie in specifying rule
sets of rule-based optimizers. Our experiments consist of specifying rule-based optimizers using
Prairie and generating optimizers using the P2V pre-processor and the optimizer-generator paradigm
of Figure 8.

In [5], we presented an implementation of a centralized relational query optimizer using Prairie.
Using the P2V translator, we translated this to Volcano format and optimized several queries using
the resultant optimizer. For comparison, we hand-coded the same optimizer directly in Volcano.
The results presented there showed that, using Prairie (compared to directly using Volcano) resulted
in approximately 50% savings in lines of code with negligible (less than 5%) increase in query
optimization time. However, the optimizer was quite small in terms of the number of operators,
algorithms and rules.

For a more realistic evaluation of Prairie, we needed answers to the following questions:

1. Is Prairie adequate for large-scale rule sets?

2. How is programmer productivity enhanced by the high-level abstractions of Prairie?

3. Can Prairie rule sets be translated automatically into efficient implementations?

We addressed the first question by using the Texas Instruments Open OODB query optimizer
rule set, which has the largest publicly available rule set. We describe this optimizer in the next
section, and then give our assessments to the last two questions in subsequent sections.7This is to introduce enforcer-operators in expressions, as mentioned in footnote 5.

15



4.1 The Texas Instruments Open OODB query optimizer

The Texas Instruments Open Object-Oriented Database Management System [19] is an open, ex-
tensible, object-oriented database system which provides users an architectural framework that is
configurable in an incremental manner. It consists of three sets of modules: a core set providing
low-level primitives for creating new environments, a set of functional modules that facilitates ex-
tensibility using functional requirements, and a meta-architecture module housing the extensibility
concepts of Open OODB. Examples of the core set are communication and address space manage-
ment, while examples of functional modules are persistence, distribution and query processing. The
meta-architecture module consists of events, sentries, and policy manager interfaces.

The query processing module provides users with a query language (OQL[C++]) based on SQL
and C++. A query expressed in this high-level format is parsed and transformed into an operator tree
suitable for optimization. The query optimizer generates an optimal access plan from this operator
tree which is then transformed into a C++ program ready for execution.

The query optimizer in the Open OODB [2] is generated using Volcano. It is written as a set of
trans rules and impl rules that define the algebra of an object-oriented database system. Currently,
there are 17 transformation rules and 9 implementation rules together with about 13000 lines of code
for support functions; this, of course, can be changed by an Open OODB user for specific needs.
There are also catalogs which contain information about base classes that are used by the optimizer.

4.2 Programmer productivity

Programmer productivity can be measured in different ways. An admittedly simplistic metric is the
number of lines of code that must be written. But there are also less tangible measures, such as the
amount of conceptual effort needed to understand a particular programming task. Our experience
with the Open OODB query optimizer suggests that Prairie excels on the latter, while offering
modest reductions in the volume of code that needs to be written.

We converted by hand the Open OODB query optimizer’s Volcano specifications to Prairie. This
was a non-trivial task because of the relatively large size of the rule set and the complexity of the
support functions. This was where we found Prairie helped in conceptually simplifying the rules and
actions. We then used our P2V pre-processor to reconstitute these Prairie specifications as Volcano
specifications. As described in Section 3, this process involved a considerable level of complexity,
partly because the Prairie specification had 22 T-rules and 11 I-rules compared to 17 trans rules
and 9 impl rules in the Volcano specification; the reconstituted Volcano specification had the same
number of trans rules and impl rules as the original hand-coded specification.

Converting the Open OODB optimizer rule set into Prairie format actually simplified its spec-
ification as the complexities of the Volcano model were removed. The reduction in lines of code
was modest — there was about a 10% savings.8 However, as mentioned above, savings in lines of
code do not adequately reflect increases in programmer productivity. We found the encapsulated
specifications of Prairie — namely, the use of a single descriptor and fewer explicit support functions
— made rule programming much easier.8The original Volcano specification had 13400 lines, the Prairie specification had 12100 lines, and the P2V-generated
Volcano specification had 15800 lines.
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4.3 Performance results using the Open OODB optimizer

The acid test of Prairie was whether Prairie specifications could be translated into efficient optimizer
implementations. Our experiments using the Open OODB consistedof optimizing8 different queries
using the two query optimizers generated, respectively, using Prairie and using Volcano directly (in
the remainder of this section, we will use “Prairie” and “Volcano” to denote these two approaches).
There were 4 distinct expressions that were used to generate the queries used in the experiments;
these are shown in Figure 9. Each expression represents an N -way join query for varying N .

The first expression E1 is a simple retrieval and join of base classes. The second, E2, is also
a join of base classes; however, after each class retrieval, an attribute has to be materialized (i.e.,
brought into view) before the join. The third and fourth expressions (E3 and E4) are the same as
the first and second (E1 and E2) respectively, except that there is a selection of attributes (the select
operator is the root of the expressions).9

The algebra that was used in the Prairie and Volcano optimizers for our experiments consisted
of 5 relational operators SELECT, PROJECT, JOIN, RET and UNNEST (for set-valued attributes)
and an object-oriented operator called MAT (for MATerialize; it is fundamentally a pointer-chasing
operator for attributes of a class). There were 8 algorithms.

There are many parameters that can be varied when benchmarking a query optimizer. Since
our objective was to verify that the Prairie approach did not sacrifice efficiency, our criteria for the
queries was that they test a majority of the rules, with varying properties of the base classes. To this
end, we tested our optimizer (and the Volcano optimizer) with 8 different queries (shown in Table 5).
The eight queries Q1 through Q8 are derived from the 4 expressions in Figure 9. Each expression
E1 through E4 is used to obtain two queries for a fixed number N of JOINs in the expression. The
only difference between the two queries obtained from an expression is that the first one does not
contain any indices on any classes, whereas the second one contains a single index on each base class
occurring in the expression. In expressions where a SELECT is present (E3 and E4), the selection
predicate is a conjunction of equality predicates bci == consti, where bci is an attribute of class Ci,
and consti is a constant (we arbitrarily set this to i, because its value doesn’t affect the correctness
or performance of the optimizer). In addition, for queries with a SELECT and whose base classes
have indices (Q6 and Q8 in Table 5), the (single) index of each base class was chosen to be the
attribute referenced in the selection predicate. For example, class Ci was chosen to have an index on
attribute bci. The join predicates for each JOIN were chosen at random, and were always equality
predicates. The choice of JOIN predicates was such that the queries corresponded to linear query
graphs. In the future, we will experiment with non-linear (e.g., star) query graphs.

Table 5 also shows the number of trans rules and impl rules that are matched by each expression.
These are the rules whose left hand sides match a sub-expression. However, not all the rules were
necessarily applicable. For instance, an impl rule with an index scan would not apply to Q3, although
it might apply to Q4.

Queries Q1 through Q8 were optimized for increasing number N of JOINs. For a fixed number9The most complex expression E4 consists of all operators in the algebra, except PROJECT and UNNEST. PROJECT
was not considered because it appeared in only one impl rule and no trans rules, and thus, would not affect the size of the
search space of abstract expressions. UNNEST was not considered because it appeared in exactly one trans rule and one
impl rule; including it in our queries would have increased the number of parameters that could affect our run-times. We
preferred to concentrate on simple JOIN expressions.
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Figure 9: Expressions used in generating queries for experiments

Query Indices? Expression
Rules matched

trans rules impl rules

Q1 No
E1 3 3

Q2 Yes
Q3 No

E2 8 4
Q4 Yes
Q5 No

E3 9 5
Q6 Yes
Q7 No

E4 16 7
Q8 Yes

Table 5: Queries used in experiments

of JOINs in a query, we varied the cardinalities of the base classes 5 times, each time generating
a query with different class properties, and averaged the run-times over the 5 query instances to
generate the per-query optimization time. Thus, each point in our graphs represents the average of
5 queries. The run-times were measured10 using the GNU time command. All experiments were
performed on a lightly loaded DECstation 5000/200 running Ultrix 4.2.

The optimization times for each query for both approaches (Prairie and Volcano) are shown in
Figures 10 through 13. The number of joins in each set of graphs was varied to a maximum of 8, or
until virtual memory was exhausted.

The first set of graphs, in Figure 10 shows the performance of a simple relational-type query. The
optimization times are almost identical between Prairie and Volcano, and the notable point is that
the presence of an index does not change the optimizer’s behavior, i.e., the two graphs are identical.
This arises because the optimizer algebra had only two join algorithms (pointer join and hash join),
neither of which makes use of any indices.

The second set of graphs (Figure 11) shows the results of optimizing Q3 and Q4. Here, as in10Since the run-times were too small to be measured accurately with time, each query instance was optimized 3000
times (in a loop) and the total time was divided by 3000 to get the per-query optimization time.
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Figure 10: Query optimization times for Q1 and Q2

Figure 10, the presence (or absence) of indices makes no difference. Both the Prairie and Volcano
approaches have comparable run-times. The sharp jump in the graphs from 7-way to 8-way joins
is due to the fact that since all optimization is done in main memory, dynamic memory allocation
(caused by malloc calls) results in a lot of thrashing at this point. We speculate that in systems
with more virtual memory, the graphs will be smoother.

The third and fourth sets of graphs in Figures 12 and 13 are optimizations of queries with a
selection predicate. In these cases, the presence of an index makes a difference if the index is
referenced in the selection predicate (as we designed). Also, in these two figures, the performance
of both Prairie and Volcano was almost identical, except that Prairie does slightly worse due to the
larger number of malloc calls that the P2V translator introduces. Also, note that we could only
go up to 3-way joins before virtual memory was exhausted. As the available memory decreases,
there is increased thrashing (as shown by the sharp changes in slope in the plots) resulting in a much
slower optimization process.

In all four sets of plots, we can see that Prairie performs with almost (less than 5% variation)
the same efficiency as Volcano. In extreme cases, when memory is scarce, Prairie runs more slowly
(about 15%) (e.g., Figure 12(b)), but we believe that this situation already represents a serious
bottleneck for both Volcano and Prairie.

Figure 14 shows the variation of the number of equivalence classes (they are the same in Prairie
and Volcano) as a function of the number of joins in the query. The growth rate of the number of
equivalence classes increases with the increase in the complexity of the expressions. In particular,
for E3 and E4, the introduction of the SELECT operator results in a dramatic increase in the search
space, since this operator has many interactions with the other operators of the algebra; this is also
reflected in Table 5 where E3 matches three times as many trans rules as E1 and E4 matches twice as
many trans rules as E2. The lesson to be learnt here is that extending an existing query optimizer by
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Figure 11: Query optimization times for Q3 and Q4

0 1 2 3
Number of joins

0

2000

4000

6000

8000

C
PU

 ti
m

e 
(m

ic
ro

se
co

nd
s)

N-way Join Queries
Average CPU Time for Query 5

Prairie
Volcano

(a) Query 5

0 1 2 3
Number of joins

0

2000

4000

6000

8000

10000

C
PU

 ti
m

e 
(m

ic
ro

se
co

nd
s)

N-way Join Queries
Average CPU Time for Query 6

Prairie
Volcano

(b) Query 6

Figure 12: Query optimization times for Q5 and Q6

adding operators, algorithms or rules can result in an enormous increase in optimization complexity,
especially if the additions impact a significant fraction of the equivalence classes. Extensibility,
thus, must be judiciously coupled with user heuristics to avoid unpleasant surprises.

The results presented in this section show that Prairie optimizers need not sacrifice efficiency for
clarity, even for large rule sets. More research and validation is necessary to verify that Prairie is an
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Figure 13: Query optimization times for Q7 and Q8
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Figure 14: Number of equivalence classes vs. number of joins

efficient tool for optimizer specification.
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5 Related research

The System R optimizer [17] was the most important development in query optimization research. It
was a cost-based centralized relational query optimizer and introduced a variety of key concepts like
“interesting” expressions, cardinality estimation using selectivity factors and dynamic programming
with pruning of search space. These concepts continue to be important in query optimizer research.

The query optimizer in R� [4, 14, 16] works in essentially the same way as that of System R,
except that R� is a distributed database system which introduces some subtle complications in its
query optimizer.

The Starburst query optimizer [11, 13, 15] uses rules for all decisions that need to be taken by the
query optimizer. The rules are functional in nature and transform a given operator tree into another.
The rules are commonly those that reflect relational calculus facts. In Starburst, the query rewriting
phase is different from the optimization phase. The rewriting phase transforms the query itself into
equivalent operator trees based on relational calculus rules. The plan optimization phase selects
algorithms for each operator in the operator tree that is obtained after rewriting. The disadvantage
of separating the query rewrite and the optimization phases is that pruning of the search space is not
possible during query rewrite, since the rewrite phase is non-cost-based.

Freytag [6] describes a rule-based query optimizer similar to Starburst. The rules are based on
LISP-like representations of access plans. The rules themselves are recursively defined on smaller
expressions (operator trees). Although several expressions can contain a common sub-expression,
Freytag doesn’t consider the possibility of sharing. Expressions are evaluated each time they are
encountered. This is obviously inefficient. In addition, as in Starburst, he doesn’t consider the cost
transformations inherent in any query optimizer; rules are syntactic transformation rules.

EXODUS [7, 10] provides an optimizer generator which accepts a rule-based specification of
the data model as input. The optimizer generator compiles these rules, together with pre-defined
rules, to generate an optimizer for the particular data model and set of operators. Unlike Freytag,
the optimizer generator for EXODUS allows for C code along with definitions of new rules. This
allows the database implementor the freedom to associate any action with a particular rule. Operator
trees in EXODUS are constructed bottom-up from previously constructed trees.

The Volcano optimizer generator project [8] evolved from the EXODUS project. It is different
from all the above optimizers in one significant way: it is a top-down optimizer compared with
the bottom-up strategy of the others. Operator trees are optimized starting from the root while
sub-trees are not yet optimized. This leads to a constraint-driven generation of the search space.
While this method results in a tight control of the search space, it is unconventional and requires
careful attention on the part of the optimizer implementor to ensure that legal operator trees are not
accidently left out of the search space. We have used Volcano as our back-end search engine.

6 Conclusion and future work

Current rule-based query optimizers do not provide a very intuitive and conceptually streamlined
framework to define rules and actions. Our experiences with the Volcano optimizer generator suggest
that its model of rules and the expression of these rules is much more complicated and too low-level
than it needs to be. As a consequence, rule sets in Volcano are fragile, hard to write, and debug.
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Similar problems may exist in other contemporary rule-based query optimizers.
We believe that rule-based query optimizers will be standard tools of future database systems.

The pragmatic difficulties of using existing rule-based optimizers led us to develop Prairie, an
extensible and structured algebraic framework for specifying rules. Prairie is similar to existing
optimizers in that it supports both transformation rules and implementation rules. However, Prairie
makes several improvements:

1. it offers a conceptually more streamlined model for rule specification;

2. rules are encapsulated, there are no “hidden” operators or “hidden” algorithms;

3. implementation hints (e.g., enforcers) are deduced automatically;

4. and it has efficient implementations.

We have explained how the first three points are important for simplifying rule specifications
and making rule sets less brittle for extensibility. A consequence is that Prairie rules are simpler
and more robust than rules of existing optimizers (e.g., Volcano). We addressed the fourth point by
building a P2V pre-processor which uses sophisticated algorithms to compose and compact a Prairie
rule set into a Volcano rule set. To demonstrate the scalability of our approach, we rewrote the TI
Open OODB rule set as a Prairie rule set, generated its Volcano counterpart, and showed that the
performance of the synthesized Volcano rule set closely matches that of the hand-designed Volcano
rule set.

Our future work will concentrate on developing higher-level abstractions using Prairie, including
automatically generating Prairie rule sets, and combining multiple Prairie rule sets to automatically
generate efficient optimizers.
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