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Abstract: One technique for combating the state explosion problem is to exploit symmetry [12, 5, 9]
when performing temporal logic model checking [3, 4]. The works of Clarke, Filkorn, & Jha [5] and
Emerson & Sistla [9] show how, using some basic notions of group theory, symmetry may be exploited
for the full range of correctness properties expressible in the very expressive temporal logic CTL*.
Surprisingly, while fairness properties are readily expressible in CTL*, the methods of [5] and [9] are
not powerful enough to admit any amelioration of state explosion, when standard fairness assumptions
are involved. In [5, 9] model checking over a large structure M is reduced to model checking over a
small quotient structure M derived from M by identifying “G-symmetric” states, where G is a subgroup
of permutations on process indices respecting the symmetry of M and leaving invariant the “maximal”
propositonal subformulas of the specification f. The latter requirement is crucial but is also the source
of the problem. In this paper we will explain why. We will then show how to handle fairness efficiently
in spite of this problem.

Let @ be a fairness constraint. Our alternative, automata-theoretic method depends on showing
how to detect the existence of fair paths in the large global state graph M, i.e., testing M, s, = E®,
using an annotated quotient structure M defined with respect to a group G that respects the symmetry
of M but does not depend on ®. In the annotated M arcs are labelled by permutations indicating how
the meaning of coordinates shift as M is uncompressed to obtain M. These permutations are what
make it possible for M to succinctly encode M and yet provide enough information to model check
over M (even though M does not appropriately respect the symmetry of the specification f or ®).
But they also scramble the meaning of the propositional labelling of states in M making it difficult
to check for the existence of fair paths. Nonetheless, we show how to efficiently search M for any
possible “fair” strongly connected subgraphs C' of M that can be unwound into strongly connected
subgraphs C' of M that contain a path satisfying ®. To facilitate this search process, we resolve M into
a threaded structure M* which in essense physically reflects the coordinate shifts in M caused by the
permutations on arcs. When we find the appropriate “fair” strongly connected subgraphs of M* then
we can conclude that M, sy = F®. We can now check whether M, sy = E(® A f) where f is a linear
time formula using the automata-theoretic approach of [9]. This in turn makes it possible to efficiently
model check M, s |= g where ¢ is a Fair Indexed CTL* formula.
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1 Introduction

Recently there has been much interest in using various techniques to combat the state explosion problem
in the automatic verification of finite state concurrent systems. One of the techniques that has been
proposed [12, 5, 9] is to exploit the symmetry inherent in systems with many similar subcomponents
when performing temporal logic model checking [3, 4]. In [12] the focus is on reasoning about a
simple but basic type of correctness, viz., safety properties expressible in the temporal logic CTL by
an assertion of the form AG—error. The works of Clarke, Filkorn, & Jha [5] and Emerson & Sistla
[9] show how, using some basic notions of group theory, symmetry may be exploited for the full range
of correctness properties expressible in the very expressive temporal logic CTL*. Surprisingly, while
fairness properties are readily expressible in CTL*, the methods of [5] and [9] are not powerful enough
to admit any amelioration of state explosion, when standard fairness assumptions are involved.

In this paper, we will explain why fairness is unexpectedly problematic. We will then suggest two
potential solutions. The first is a partial solution in which we use a new type of fairness, called group
fairness, directly in conjunction with the group-theoretic techniques of [5, 9]. Although group fairness
is appropriate for some situations, it is not in general adequate. The second solution allows us to
handle the full range of conventional fairness properties ® (cf. [8]). These include strong fairness
where ® = A;—; _,,(GFen; = GFex;) is the formula' asserting that a path is infinite and strongly fair;
here the propositions en; indicate that process i is enabled, while ex; indicate that process 7 was just
executed. Thus, each process that is enabled infinitely often is executed infinitely often. Similarly
¢ = N2y o (FGen; = GFex;) captures weak fairness, to the effect that any process continuously
enabled is executed infinitely often. Note that weak fairness is equivalent, by propositional reasoning,
to Ai=1 oG F(ex; V—en;). Unconditional fairness is expressed by ® = A;—; G Fex;. Interestingly, this
solution depends on trading group theory for automata theory [21].

To understand why fairness in problematic, we must review the “group-theoretic” approaches of
[5, 9].7 We will use the terminology of [9] but the same remarks apply to the the approach of [5].
We focus on systems composed of many homogeneous subcomponents or processes. The global state
graph M of such a system may therefore exhibit a great deal of symmetry. The main idea is to reduce,
using some basic notions of group theory, model checking over the original, large structure M to model
checking over a smaller quotient structure M where symmetric states have been identified. In many
cases this can yield significant, even exponential savings in the complexity of model checking?.

The symmetry of M is characterized by the group, Aut M, of permutations of process (or subcom-
ponent) indices that define graph automorphisms of M. Let G be a subgroup of Aut M. We define M
= M/G to be the quotient structure obtained by identifying any two states s,¢ of M that are in the
same orbit (or equivalence class) of the state space of M, i.e. there exists a permutation 7 in G such
that 7 (s) = t. For example, s = (Ny, 15, Cs, T4) might be equivalent to ¢ = (C, Ny, T5,T4) in a solution
to the critical section problem with C; indicating process ¢ is in its critical section, etc. This permits
us to establish the following desired result of [5, 9]:

Mskf iff M5k f

where f is any formula of CTL*, and s represents the equivalence class of s — provided also that
G appropriately respects the symmetry of the specification f as well as that of M. The technical

'We will assume for ease of exposition that structures are total. So GF means “infinitely often” while F'G means
“almost always”.

%In [9] we gave a “group-theoretic” and an “automata-theoretic” approach. Neither is adequate to efficiently handle
fairness. Our new approach here generalizes the automata-theoretic approach of [9].

3The task of constructing M in an efficient manner is addressed in [12, 5, 9] (cf. Section 5).



stipulation is that G must be a subgroup of Aut M N Auto f where Auto f is the set of permutations
that leave invariant all the maximal propositional subformulae of f.

Now suppose ® = A;—; ,GFex; is the unconditional fairness condition. Then f = F® as-
serts the existence of a fair path. Awuto f consists of the permutations that leave invariant each of
€xy,€xy, ..., ex,. For each 7, the set of permutations leaving ez; invariant, call it Stab ¢, are those that
fix or stabilize ¢+ and allow the other indices to permute freely. However, the set of permutations that
leaves all of the ex; invariant is Stab 1 N...N Stab n = {Id} with just the identity permutation.
Thus, to model check f = E® the only possible group G C Aut M N Auto fis G = {Id}, and this
results in no compression whatsoever as M = M in this case. In general, when we try to check a CTL*
formula involving such a fairness assumption (strong, weak, unconditional fairness are all problematic)
we run into this difficulty. The problem is the need to respect the symmetry of the specification in an
appropriate way.*

To overcome this difficulty, we take an automata-theoretic approach [21] where the original, large
Kripke structure M is succinctly represented by an annotated quotient structure M [9] defined with
respect to a group of permutation G C Awut M that does not depend on the fairness assumption ®
or specification f. M has one representative state for each G-equivalence class of M, and its edges
are labeled with permutations denoting how coordinates need to be permuted as one traverses that
edge. We present efficient algorithms that work on the annotated quotient structure M and check for
correctness with respect to M of specifications given by Indexed CTL* formulas, under (unconditional,
weak or strong) fairness assumptions. It turns out to be necessary and sufficient to solve the fair state
problem, i.e. whether M, s, = E®, using the annotated quotient M.

If the algorithm were to operate directly on M, it would look for fair strongly connected subgraphs
(i.e., those containing a fair path) reachable from s,. These can be found efficiently by first computing
the maximal strongly connected components C' of M. If some C'is “obviously fair” — meaning that,
for each process index 1, if en; appears in C then ez; also appears in C' — it must be that C is fair,
i.e., it contains a fair path. In this case, it is enough to check if there is a path from sy to such a C.
However, if C' is not obviously fair but contains a fair path p, then set of nodes that p visits infinitely
often defines an obviously fair strongly connected subgraph D of C'. To determine if such a D exists,
the algorithm prunes (all such not obviously fair) C' by deleting all “bad” nodes in C' that are labelled
with any en; for which a node labeled with ex; does not appear anywhere in C'. We let M’ be the
resulting structure after this pruning and repeat the above process with M’ instead of M. After at
most n iterations, we will have eliminated all bad en; nodes and discovered an obviously fair D if it
exists.

Of course, we can not work directly with M. Fortunately, we can process M in an analogous
manner. An essential point is that each strongly connected subgraph C' of M collapses to a strongly
connected subgraph C' of M; conversely, each strongly connected subgraph C' of M can be unwound
into a (family of) corresponding strongly connected subgraph(s) C' of M. The problem is complicated
by the fact that, as C' in M is unwound to obtain C' in M, the meaning of propositions is shifted
depending on the history of the state on account of the permutation labels on the arcs. For example,
assume 5— 7 — £ is an edge in C, 7 is the permutation that swaps 1 with 2, 5 is labelled with en; and
exy, and (¢ is labelled with en, and ex;. Then we can unwind C starting at 5 along that edge to get
the edge 3 — m(f) in C. Because of the transposition 7, en, at 7 in C then represents en; at state

7(t) of C.

These coordinate shifts are what make it possible to for M to succinctly encode M and yet pro-

1t is not adequate that G be a subgroup of just Aut f, the permutations respecting top level formula f.



vide enough information to model check over M, even though M does not appropriately respect the
symmmetry of of the specification or ®. But they also scramble the “meaning” of propositions as
suggested above. To efficiently keep track of such coordinate shifts, we unravel M into its constituent
threads. That is, we form a “threaded” structure M* whose nodes are essentially the individual coor-
dinates of the nodes in M and whose edges “physically” reflect the permutations on coordinates. For
instance, the edge s — 7 — ¢ above is broken down into two thread edges (5, en;) — (, ens) and
(3, exy) — (I, exy). For each strongly subgraph C' this induces a subgraph C* of threads, permitting
us to test whether C' represents a fair C' by checking the fair components of C*.

It is worth noting that the basic automata-theoretic approach over annotated structures (cf. [9]),
which itself makes no special provisions for fairness, can be directly applied in an effort to handle
fairness efficiently. The idea is that, to check M, s, = Ff, we form the product® graph (automaton)
B of M with B¢, where B; is an automaton on strings obtained by modifying A;, the automaton for
linear time formula f derived by the usual tableau construction, to account for the shifting meaning of
coordinates using the permutations on arcs of M as guides. We can then give an algorithm to answer
whether M, s, = Ef by testing B for nonemptiness in time polynomial in [M| and |B;| (cf. [16, 21]).
For a formula f with a single index 7, B is essentially the same automaton as .A; but its states are a
pair of the form (¢, j) where ¢ is a state of A; and j is an index giving the current meaning (“location”)
of index i. If we think of B; reading a path through M it applies the transition function of A; to update
¢ using coordinate j for the source input symbol and then updates j based on the next permutation 7
it traverses. However, if f involves k indices, then B; must store a tuple (j ... jx) of permuted indices.
Thus, |B;| = O(]A;] -n*). This is of polynomial size for fixed, bounded k. However, when f = & there
are n indices involved, which causes its state space to be of size exponential in n. Since M itself is
typically of size exponential in n, this defeats our purpose.

Using our new efficient method to handle the fairness constraint ® over M together with our
automata theoretic approach above to handle a linear time specification f over M, we show how to
check M, sy = E(® A f) in time linear in the size [M| of the annotated quotient and polynomial in |®|
and |B;|. By recursive descent [8], this yields efficient model checking algorithms for Fair Indexed CTL*,
which permits indexed CTL* assertions with “process modalities” ranging over (a bounded number
of) indices and path quantifiers (Ag, Fp) ranging over fair paths.® We can say A; As(G(T; = FC;)) —
along all fair paths each process is free from individual starvation. Also allowed are such formulas as
Niz; EeG(C; A C;) for potential “collision” among any pair of processes.

This paper is organized as follows. Section 2 contains the definitions and notation used in the
paper. Section 3 discusses the problem with the previous approaches and shows how the previous
methods can be used for checking correctness under group fairness. Section 4 describes the algorithms
for standard (strong, weak, unconditional) fairnesses using annotated quotient structures. Section 5
contains concluding remarks.

2 Preliminaries

We assume that we have a system of n processes communicating through shared variables. We let
I ={1,2,...,n} be the set of process indices. We let V' denote the set of variables in the system. We
represent a variable X that is shared among a set I’ of processes by X .. For example if X is shared

®We find it convenient inside to define B as the product of M and A using a slightly different “multiplication” yielding
the same result. In fact, we can construct a threaded B* directly without building B.
®Our formulation of Indexed CTL* is slight variant of that in [7].



between processes 1 and 2, it is represented by Xy . (actually, we write this as X ,); if another
variable with the same name X is shared between processes 3 and 4, then it is represented by X5 .. All
variables of the form Y; are local variables of processes 1. We let V denote the set of variables in the
system. A global state s is a function that assigns values to all the variables in V.

The operational behavior of such a system can be modeled by a Kripke structure M = (S, R, L, S)
where S is the set of global states, R is a (total) binary relation giving the one step transitions of the
system, L is a labelling function that denotes the atomic propositions that are satisfied in each global
state, and 5; is the set of initial states.

We are interested in defining symmetries on such a system of processes. We let Sym I be the set of
all permutations 7 on the set I of indices. Sym I forms a group with functional composition being the
group operation. We let Id denote the identity permutation and #=! the inverse of 7. For any variable
Xpin V, we let (X /) denote the variable X,y where 7(I’) is obtained by replacing each element ¢
in I’ by 7(¢). Note that 7(X;/) need not be a variable in V. However, we say that = respects V' if for
every variable Y € V| m(Y) is also in V. It is not difficult to see that 7 respects V' iff 7 is a one-one
and on-to function , i.e. is an automorphism on V.

We say that a permutation 7 on [ is an automorphism on M if the following conditions are satisfied:

e 7 respects V.
e For every pair of states s and ¢ in 9, (s,t) € R iff (7(s),7(t)) € R.

e For every s, s € 9 iff 7(s) € 5.

We denote the set of automorphisms of M by Awut M. It is not difficult to see that Aut M is
a subgroup of Sym I. Let G be any subgroup of Aut M. We say that two states s and ¢ in S are
equivalent with respect to G, written s =g ¢ if there exists a 7 € G such that ¢ = 7(s). Since G is a
group, =¢ is an equivalence relation.

Our specification logics use a set of atomic propositions. We assume that we have two types of
atomic proposition symbols— local symbols and global symbols. If P is a local proposition symbol
then P, for each ¢ = 1, ...n, is going to be a local atomic proposition. A global symbol @) is simply a
global atomic proposition. Thus, all local atomic propositions are indexed with process indices while
global atomic propositions are not.

The labelling function L in M assigns atomic propositions for each state in .S. We require that L
should satisfy the following conditions:

e Lor every global atomic proposition @, for every s and for every # € Aut M, s satisfies @ (i.e.

Q € L(s)) iff n(s) satisfies Q.

e Lor every local atomic proposition P, for every s and for every 7 € Aut M, s satisfies P; iff 7 (s)
satisfies Pr).

We are interested in checking properties specified in various logics. PLTL is the standard propo-
sitional linear temporal logic built up from atomic propositions, boolean connectives, and the usual
linear time operators G (always), F' (sometime), X (next time), and U (until). CTL* is the logic that
extends PLTL by also allowing the path quantifiers A (for all fullpaths) and F (for some fullpath)
to also be used. The basic modalities of CTL* are formulae of the form Ff where f is a pure PLTL



formula. All CTL* formulae can be obtained by taking boolean combinations and nestings of the basic
modalities. CTL is a restricted version of CTL*. Indexed CTL* is built up from basic modalities of the
form V, E f;, NiE fi, Vizj Eg; j, and N Eg; ;, where f; and respectively g; ; are PLTL formulas that use
only global atomic propositions and /or local atomic propositions of index ¢ or respectively ¢ and j; V;,
Ai act as existential and universal process quantifiers ranging over single process indices, while V,;4;,
Niz; range over pairs of distinct indices. Formulas of Indexed CTL* are inductively built up from the
basic modalities using boolean connectives and nesting (an Indexed CTL* formula may be substituted
for a global proposition in another Indexed CTL* formula). Fair Indexed CTL* is just like Indexed
CTL* but uses the path quantifiers g and Ag where path quantification ranges only over fair paths
[8]. The semantics of these logics is defined in the usual way [10] and we write, e.g., M, s = h to mean
that in structure M at state s formula h holds true.

Let f be any formula f of the above logics. We let 7(f) denote the formula obtained by changing
the indices of local atomic propositions in f according to the permutation . In [9], we defined to
groups of permutations Aut f and Auto f that capture symmetries in the formula f. Awut f is the
set of permutations 7 such that f is equivalent to w(f). Auto f is a subgroup of Aut f, and is the
set of permutations that leave invariant all maximal (under the subformula relation) propositional
subformulas of f.

We assume that we have two special local propositional symbols en and ex. For any ¢, the local
atomic proposition en; is satisfied in a state s iff process ¢ is enabled in s; the atomic proposition ex;
is satisfied in a state s iff all transitions leading to s, i.e. all transitions of the form (¢',s) in R, are due
to the execution of a single step of process i. This would require that, for each state s, there is exactly
one value of ¢, such that ex; is satisfied in s. It should be obvious to see that for any # € Aut M,
ex; is satisfied in s iff ex,(;) is satisfied in 7(s) and similarly for en;. We say that an infinite path
p of M is strongly fair if it satisfies & = A;_; (G Fen; = G Fex;), meaning that each process that
is enabled infinitely often is executed infinitely often. Similarly a path p is weakly fair if it satisfies
¢ = Aoy o (FGen; = GFex;) meaning that any process that is continusly enabled. continuously
enabled is executed infinitely often. Note that weak fairness is equivalent, by propositional reasoning,
to Aiz1 oG F(ex; V —en;). A path is unconditionally fair if it satisfies ® = A;—; ,GFex;, meaning
simply that each process is executed infinitely often.

3 Checking correctness under group fairness

In earlier papers [5, 9], it was shown how model checking for CTL* formulas over the structure M
can be reduced to modelchecking over a quotient structure M. We state the result as given in [9].
Let f be a CTL* formula and G be a subgroup of Aut M N Auto f. The quotient structure M of
M = (S,R,L,Sy) with respect to G, has a single state representing each equivalence class in S. For

a state s € S, we let 5§ denote the representative of the equivalence class of s,i.e. 5 =g s.

Formally, M = (S, R,L,S,), where for each equivalence class of =g, there a single state repre-
senting that equivalence class in S. If 5 and 7 are states in S, then (5,7) € R iff for some states s, ¢ in
S, such that s =¢ §and t =¢ I, (s,t) € R. The function L is a restriction of L to the states in S, and
Sy = {5:forsome s € 5,5 =g s}.

It was shown in [9] that for any state s, the CTL* formula f is satisfied at state s in M iff it
is satisfied at the state 5 in M. However, this result is not useful for checking correctness properties

under fairness assumptions, particularly liveness properties. Let f be a “Fair CTL*” formula of the form
Agg where ¢ is a PLTL formula and @ is, say, unconditional fairness A;—; ,GFex;. f is equivalent



to the CTL* formula f* = A(® = ¢). We are interested in checking if M,s | Asg, i.e., if along
all fair paths in m starting at s does g hold true. In order to reduce model checking of f’ in the
original structure M to modelchecking over a quotient structure, we need to use a group G which
is a subgroup of Aut M N Auto f'. Unfortunately, from the definition of Auto, we calculate that
Auto f' = Auto ® = {Id} where Id is the identity permutation. Thus, G = {Id} and the quotient
structure with respect to G will be identical to the original structure. As a consequence, we do not get
any reduction in the state space. The same problem occurs even if we use the approach as given in [5].

However, we show that using the above approach we still can check for correctness under a notion
called group fairness. As given in the previous paragraph, let f = A(g) where G is a PLTL formula,
and let G be any subgroup of Aut M N Auto f. Let M be the quotient structure of M with respect to
G. Now, we define an equivalence relation ~ among the process indices I as follows. For any 2,5 € I,
i ~ j iff there exists a permutation 7 € G such that j = =(i). It can easily be seen that ~ is an
equivalence relation. Let Iy, I, ..., I, be all the equivalence classes of ~. For each ¢ = 1, ...k, let C;
denote the propositional formula (Vjerex; V Ajer,men;). Essentially, C; states that some process in
the set I; is executed or all processes in the set I; are disabled. We say that a path p in M is weakly
Sair with respect to the group G iff for each ¢ = 1, ..., k, C} is satisfied infinitely often on p. This fairness
condition is equivalent to the following condition: if for each ¢ = 1, ...k, if all processes in the set I; are
disbaled infinitely often, or some process in I; is executed infinitely often.

Now, let ®,, denote the formula A,_; , GFC;, and f' = A(®,;= g). Now, it should be obvious
to see that all paths in M that start from s and that are weakly fair with respect to the group G satisfy
the PLTL formula G iff the formula f is satisfied at s in M. It can also be shown that Auto f' = G
and hence G is a subgroup contained in Aut M N Auto f'. Now using the the results of [9], it is easy
to see that f' is satisfied at s in M iff f’ is satisfied at 5 in M. This result shows that we can exploit
symmetry for checking correctness under fairness as long as the fairness is with respect to a group §G.
This is a form of fairness which could be useful in some applications. We also note that we can define
an analogous notion of strong fairness with respect to group G that can be handled efficiently in the
same way.

4 Checking correctness under standard fairnesses

In this section we give efficient algorithms for model checking formulas of Fair Indexed CTL*. In
our earlier paper [9], we gave efficient algorithms for checking Indexed CTL* formulas where the path
quantifiers (A, F') range over all paths. The algorithms in the automata-theoretic portion of that work
use annotated quotient structures as we will here. As explained in the introduction, because a fairness
constraint ® is expressible in CTL*, the previous automata-theoretic approach could be applied directly
to reason under fairness assumptions but it would not be efficient. Here in this section, we show how
to efficiently handle fairness over annotated quotient structures. This then permits us to model check
Fair Indexed CTL* where the path quantifiers (Ag, Fp) range over fair paths. We assume that the
fairness constraint @ is strong fairness. This also permits us to handle unconditional and weak fairness
since they are special cases of strong fairness [8].

LEMMA 4.1: Two (G-)equivalent states in M satisfy the same set of Fair Indexed CTL* formulas.

Proof: We can argue by induction on formula structure that for any formula f of Fair Indexed
CTL*, Aut f = Sym I. Assume s =g t so that t = 7w (s) for some 7 € G. We have M,s | f iff
M,7(s) E=(f) (since m € G C Aut M) iff M,t = f (since t = w(s) and Aut f = Sym I). o

The crucial step in the model checking problem is to handle the basic modalities [8]. We will describe



in detail how to handle V;Es f; and A;Egf;. Treatment of V,x; Esg; ; and Aix; Fsg; ; is analogous but
the algorithm must keep track of two coordinates rather than one. By Lemma 4.1, it is therefore
enough to check satisfaction of such basic modalities at representative states.

As indicated in the introduction, we will use annotated quotient structures for model checking.
First, we define the annotated quotiented structure. The annotated quotient structure is similar to
the quotient structure except that the edges of the structure are labeled with permutations indicating
how the coordinates need to be permuted. As before, let M = (S, R, L,S;) be the Kripke structure
modeling the behavior of the system of processes. Let G be a subgroup of Aut M. We keep G fixed
through out this section. The annotated quotient structure M with respect to G, is the quadruple
(S, AR, L,S;) where S, L and S, are as defined in the previous section; AR is a set of triples of the
form (3, 7,t) such that there is an edge from 3 to #(¢) in M, i.e. (5,7(f)) € R. An annotated path
in M is a finite or an infinite alternating sequence 3, 71, 57, s, ..., T, 57, ... of states and permutations
such that for each ¢ > 0 (5;_1,7;,5;) € AR; if the sequence is finite then it should end in a state. For
each annotated path p, we define a sequence f(p) of states in S such that f(p) = to,t1, ..., ¢, ... where
to = Spand t; = m - my -+ m(5;). The following lemma, proved in [9], relates annotated paths in M
to paths in M.

LEMMA 4.2: For every annotated path p in M, f(p) is a path in M. In the other direction, for
every path ¢ starting at a representative state in M, there exists an annotated path p in M such that
f) =q.

We will be using automata for model checking temporal properties. A Buchi automaton A on
infinite strings is a quintuple (Q, X, 9, init, I') where ) is a finite set of automaton states, 3 is the
input alphabet, § : (@ x 3) — 29 is the transition function, init € Q is the initial state and F C @Q is
the set of final states. A run of the automaton on an input t = (to, ...t;,...) € ¥¢ is an infinite sequence
(Goy -+ iy --.) of automaton states such that ¢ is the initial state init, and for all # > 0, ¢;41 € 3(qs, t;).
We say that a run is accepting iff some final state occurs infinitely often in the run. We say that an
input t € X¢ is accepted by A iff there is an accepting run of A on .

We first construct a Buchi automaton A corresponding to the PLTL formula f; and check that
there is no strong fair path in M that is accepted by it. The input alphabet of A is the set of subsets
of local propositions and global propositions.

We define a directed graph B which is a cross product of M and A as follows. Our algorithm does
not construct the graph B. We only use it in our proofs. The nodes/states of B are triples of the form
(s,q,t) where s € S, g € Q and ¢ € I. Formally, B = (V, F) where V=5 x @ x I is the set of nodes
and F'is the set of transitions/edges of B. There is an edge from node (s, ¢,7) to the node (s, ¢, ') iff
i =1, (s,5) € R and in addition, there is a transition of the automaton from state ¢ to the state ¢’
on the input which is the set of global propositions satisfied in state s and the set of local propositions
that are satisfied by process i’s component of s. A node (s, q,7) in B is called a final node iff ¢ is a final
state of the automaton A. Intuitively, B denotes the simulation of the automaton A on the execution
of different processes indicated by the process index ¢ in each node. It is to be noted that all edges
in B are between nodes with the same process index. Let 7 be any permutation on I and (s, ¢, ) be
any node of B. We also define a labeling function Lp that labels each node of B with local atomic
propositions en;, ex; for each ¢ = 1,..,n. For any node (s, q,7), Lg((s,q,7)) contains en; (resp., ex;)
iff en; € L(s) (resp. ex; € L(s)). We say that an infinite path p in B is strongly fair iff the following
condition is satisfied: for each 7 = ¢,...,n if p contains infinitely many nodes that satisfy en; then it
also contains infinitely many nodes that satisfy ex;.

LEMMA 4.3: The following properties hold for all s € S.



o V;Fgf; holds at state s of the structure M iff for some i, 1 < ¢ < n, there exists a path in B
starting at node (s, init, ¢) satisfying ® and containing infinitely many final nodes.

o N Fgf; holds at state s of the structure M iff for all i, 1 < ¢ < n, there exists a path in B starting
at node (s, init, 1) satisfying ® and containing infinitely many final nodes.

A strongly connected component (SCC) C'in a directed graph is a total subgraph such that there is
a path from every node in C' to every other node which only passes through the nodes in C'. A maximal
strongly connected component (MSCC) is a strongly connected component such that no strict super
set of it is an SCC.

Let C' be a SCC in B. We say that C' is strongly fair iff the following condition is satisfied for each
i =1,...,n: If C contains a node of the form (s, ¢, j) such that en; € L(s), i.e. process i is enabled in
s, then C' also contains a node of the form (¢, ¢/, j) such that ex; € L(t). We say that C is a final SCC
if it contains a node of the form (s, ¢, %) where ¢ is a final state of the automaton.

LEMMA 4.4: There exists a path in M starting at state s that satisfies the PLTL formula f; and
the strong fairness constraint & iff there exists a path in B from (s,init,7) to a final SCC that is
strongly fair.

For any permutation = on I, we define 7((s, ¢, %)) to be the node (7 (s), ¢, 7(7)), i.e. the permutation
7 applied to the node (s,¢q,7) changes s and ¢ according to 7, while keeping the automaton state
unchanged. It is easy to see that for every 7 € Aut M, there is an edge from (s, ¢, 1) to (¢, ¢,7') iff
there is an edge from 7 ((s,q,1)) to 7((s,¢',7’)). Hence every 7 € Aut M is also an automorphism of

B.

We next construct another structure B = (V, E) which is a product of the annotated structure
and the automaton A. Here V. = S x @Q x [ is the set of states/nodes. The set of transitions £ which
consists of triples of the form (z,7,y) ,where 2,y € V, is defined as follows. For every transition of the
form (5, 7,t) € AR and for every automaton state ¢ and process index j, there is a transition (z,7,y)
in £ where 2 = (5,¢,5),y = (f,r,77(j)), and r is any state to which there is a transition of A
from state ¢ on the input which is the set of global propositions satisfied in § and local propositions
satisfied in the process j’s component of 3. It is to be noted that the transitions in B can be between
nodes with different process indices, while this is not the case in B. We say that a state (3, ¢, j) of B is
a final state iff ¢ is a final state of A. Recall that init is the initial state of A. We define an annotated
path in B exactly similar to the annotated paths in M.

An annotated path in B is a finite or an infinite alternating sequence zg, 7y, 2y, Ts, ..., T, i, ... of
states in V' and permutations such that for each ¢ > 0 (z;_1,7;,2;) € E; if the sequence is finite then
it should end in a state. For each annotated path p, we define a sequence f(p) of nodes in V' such
that f(p) = to,t1,..stsy... where tg = zg and t; = 7 -7y ---m(z;). For a finite annotated path
P = o, T, &1, ..., Tk, Tk, let w(p) denote the permutation 7y - 75 - ... - 7.

The following lemma, relates the annotated paths in B to paths in B.

LEMMA 4.5: For every annotated path p in B, f(p) is a path in B. In the other direction, for
every path ¢ in B, there exists an annotated path p in B such that f(p) = ¢.

A strongly connected component C' of B is a set of nodes such that for every pair of nodes z,y in
C' there exists a finite annotated path from z to y that passes only through the nodes in C'. Recall
that for any state s € 5, 5 denotes the unique representative of the equivalence class containing s; the
equivalence classes that we consider are those induced by the equivalence relation =g. For any node
r = (s,q,1) € V, let T denote the node (s, ¢, 7 *(¢)) where 7 is the permutation that maps 5 to s,



i.e. 7(3) = s. For any set of nodes C C V,let C = {7 :2 € C}. Also, for any strongly connected
component D in B and any x € D, define g(x, D) to be the set of all nodes of the form 7 (p)(z) where
p is a finite annotated path in B starting from z and containing only nodes in D. The following lemma
shows that there is a correspondence bewteen the SCCs in B and the SCCs in B.

LEMMA 4.6: For every SCC C'in B, C'is an SCC in B. Similarly, for every SCC D in B and node
z €D, g(x,D)is an SCC in B.

Now, we define the “threaded” directed graph B* = (V*, E*) and a labeling function L* as follows.
The nodes in V* are pairs of the form (z,7) where 2 € V and ¢ € I. There is an edge from (z,7) to
(y,7) in E* iff there exists a permutation 7 € G such that j = #~'(i) and (x,7,y) € F. The
labeling function L* labels each node in V* with the local propositional symbols ez and en as follows.
Let (z,¢) be a node in V* where & = (5,q,7) for some ¢ € @ and j € I. Then, ex € L*((z,7)) iff
ex; € L(5), and en € L*((5,7)) iff en, € L(5). The node (z,17) as given above is called a final node
iff the automaton state ¢ is a final state.

Now, we state a simple lemma that shows correspondence between path in B* and annotated

paths in B. We say that an annotated p = g, 7, 21,..., T 2, in B corresponds to the path
(%9, 10), (x1,01), ..., (¥g, 1) in B* iff for every j such that 0 < j <k, i; = (7179 - ... - 75) " (ig).

LEMMA 4.7: If p is an annotated path in B starting from the node x,, then for every i = 1,...,n
there is a path in B* starting from (zg,¢) that corresponds to p. In the other direction, for every
path in B* starting from a node of the form (¢, ¢) there exists a corresponding augmented path in B*
starting from z,.

Let C' be a SCC in B*. (' is said to be strongly fair if the following condition is satisfied: if C'
contains a node labeled (i.e. labeled by L*) with en then it also contains a node labeled with exz. We
say that C is a final SCC if it contains a final node.”

For any D C V, we let B*/D denote the restriction of B* to all nodes in V* of the form () where
x € D,i.e. B*/D is obtained by deleting from B* all nodes of the form (y,7) where y ¢ D.

LEMMA 4.8: Let D be an SCC in B. Then, all the maximal SCCs in B*/D are disconnected (i.e.
B* /D has no edges that connect nodes in different MSCCs). Furthermore, for each 2 € D and for each
MSCC F of B*/D, there exists an i such that (z,i) € F.

Proof: Let D be a SCC in B. It is enough if we prove the following: For every edge (2/,4) in
B*/D both 2z’ and y’ belong to the same SCC. Let (2’,y') be any edge in B*/D and let 2’ = (x,1)
and y' = (y, 7). By definition, there exists a transition of the form (z,m,y) in F such that j = 7' (3).
Since z and y belong to the SCC D, it follows that there exists a cycle in B starting with the above
transition, i.e. there exists an augmenetd path p = zq, 7y, 21, T, ..., Ty, T, in B such that 2y = 2, = z,
z, = y and all the nodes on p are in D. Now consider 7(p), i.e. #(p) = 7y - ... 7. Clearly there exists
an integer r > 0 such that (w(p))” = Id where Id is the identity permutation. Using lemma 4.7, we
see that the annotated path p” gives us a cycle in B*/D that passes through 2’ and y'.

To prove the second part of the lemma, we use the following observation: if there is an annotated
path from 2 to y in B passing through the nodes in D then, for every j = 1, ..., n there exists an 7 such
that there is a path from (z,¢) to (y,Jj) in B* passing through nodes of the form (z, k) where z € D.
Now consider any MSCC Fin B*/D. Let (y,j) be any node in F. From our previous observation it
follows that, for some 7, (z,¢) has a path to (y,7) in B*. From the first part of the lemma it follows
that (z,¢) € F. O

TA final SCC is not to be confused with a terminal maximal strongly connected component.



LEMMA 4.9: Let D be any SCC in B. Then, for any 7 € D the SCC ¢(z, D) in B is a final SCC
and is strongly fair, iff, all the maximal SCCs in B*/D are also final SCCs and are strongly fair.

Proof: Let D be any SCC in B. For each i = 1,...,n, we will show that there exists a node in
g(T, D) that satisfies en; (respectively, ex;) iff there exists a node u labeled with en (respectively, ex)
in the MSCC of B*/D that contains (Z,7). Now fix an 7 such that 1 < i < n. Now consider any node
yin B and let # € G be the permutation such that 7(y) = y. jFrom lemma 4.5, we see that y is in
the SCC ¢(7, D) iff there exists an annotated path p in D from T to 7, such that 7(p)(7) = y; Recall
that 7(p) is the product of permutations that appear on the augmenetd path. From lemma 4.7, we see
that there exists a path in B*/D from (7,1) to (7, j) iff there exists an augmeneted p in D from T to
7 where j = (7(p))~!(¢). Putting both of these together we see that there is a path in g(z, D) from
T to y iff there exists a path in B*/D from node (1) to (7, j) where j = #~!(). Since y = 7 (7), it
follows that the node y satisfies the atomic proposition en; (respectively, ez; ) iff the node 7 satisfies
en; (respectively, ex;). jFrom the way we defined L*, it follows that the node (7, j) is labeled with en
(resp., ex) iff y satisfies en; (resp., ex;). Using lemma 4.8, we see that there is a path from (7, ¢) to (7, j)
in B*/D iff both of them are in the same MSCC in B*/D. Putting all the above observations together,
it is easy to see that, for each ¢ = 1, ...,n, ¢(7, D) contains a node that satisfies en; (respectively, ex;)
iff the MSCC in B*/D containing (7, ¢) also contains a node labeled with en (resp., ex). In addition,
it should be easy to see that, for every 7 € D, every MSCC in B*/D contains a node of the form (%, k)
for some k. Hence ¢(7, D) is a final SCC iff every MSCC in B*/D is also a final SCC. Now, the lemma
follows from the previous arguments. a

Now, we present the algorithm that determines all representative states that satisfy the Fair Indexed
CTL* formula V; E'g f; under strong fair semantics. We assume that an earlier algorithm has constructed
the annotated quotient structure M. In this algorithm, we mark the nodes in B whenever we determine
that there exists an infinite strong fair path starting from that node and containing infinitely many
final nodes. The steps of the algorithm are given below.

1. Construct the automaton A corresponding to the formula f;. Construct B and B* from M and
A. Save B as the graph H.

2. Repeat the following procedure exactly n times where n is the number of processes.

Compute the MSCCs of B and B*. Determine the final MSCCs in B. For each final MSCC D
of B do the following.

Find all the MSCCs in B*/D. These will also be MSCCs in B*. Let (', ..., C} be these MSCCs.
If all these MSCCs in B*/D are strongly fair then mark all the nodes in D. Otherwise do the
following. For each j such that ' is not strongly fair, find all the nodes in €} that are labeled

with en. For each such node (7, j), delete T from B, and also delete all nodes of the form (7, k)
from B*.

3. Using the graph H, extend the marking to all nodes that can reach a marked node, i.e. marked
in the previous step, by means of an augmeneted path.

4. For each state S, for some ¢, if the node (S, init, ) is marked then include 5 in the list of nodes
that satisfy V; Fs f;.

THEOREM 4.10: The above algorithm correctly determines all the representative states that satisfy
the formula V; Fg f;.

Proof: To prove the theorem, it is enough if we show that in the second step of the algorithm, the
node 7 is marked iff it belongs to a fair and strongly fair SCC in B. From all our previous lemmas,
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it is easy to see that if a node Z is marked then it must belong to a final and strongly fair SCC in
B. To see the other direction, consider the a final and strongly fair SCC, say C', in B that contains
Z. Then, there exists a SCC D in B such that C' = ¢(, D). It is not difficult to see that in step 2 of
the algorithm none of the nodes in D are ever going to be deleted. Now, we show that with in the n
iterations in step 2, all nodes in D are going to be marked. Let T be a node in D. In any iteration,
if the MSCC in B* containing (7, ¢) is unfair and hence causes the deletion of some nodes, then from
the next iteration onwards the MSCC containing (7,¢) will always be fair, since it will not have any
nodes labeled with en. Hence, with in at most n iterations there will be a situation in which, for every
i = 1,...,n, the MSCC containing (7,¢) will be fair. It should be clear that in this iteration all the
nodes in the MSCC of B that contains Z (and hence contains all the nodes in D) get marked. O

In order to determine the nodes that satisfy the Fair Indexed CTL* formula A; s f;, we need to
modify step 4 of the above algorithm so that we check that, for each i = 1, ..., n, (5,init, i) is marked.

Assume that the sizes of the annotated structure and that of the automaton A are m and p,
respectively. Here the size of the structure (and also that of the automaton) is the sum of the number
states and the number of transitions. Since the number of processes is n, it is easy to see that the
size of the structure B is mpn, the size of the graph B* is mpn®. It is not difficult to see that steps
1,3 and 4 each can be implemented in time O(mpn). Each iteration of step 2 can be implemented in
time O(mpn?) and the n iterations take time O(mpn®). Thus, the complexity of the above algorithm is
O(mpn?). By recursive descent, we get an algorithm of complexity O(mp'n?) for the entire Fair Indexed
CTL*, where p’ is the size of the largest automaton for any basic modality in the input formula.

By the “Litchtenstein-Pnueli Thesis” [16] it is the polynomial (linear) complexity in |[M| = m that
is probably most important for applications. The potential exponential size p of the automaton for
fi (or g;; or any formula with a bounded number of indices) is likely to be less problematic since
specifications are likely to be short while structures may be immense and their quotients still large.
If f; corresponds to a basic modality of Fair Indexed CTL, the automaton is of constant size. Most
importantly, we have reduced the complexity in n, the number of processes, to a polynomial factor.
(Were it exponential, we would be back to the state explosion problem again.)

To check for correctness under weak (or unconditional) fairness, we can consider it to be a special
case of strong fairness and use the above algorithm. However, we can simplify the above algorithm as
follows. Call a MSCC in B* to be weakly fair iff it contains a node that is labeled with ez or that is
not labeled with en. Similarly, define a SCC in B to be weakly fair, if for each i = 1, ..., n it contains
a node that satisfies the propositional formula ex; V —en;. We can reprove all the previous results
using these definitions. We modify the above algorithm as follows. In step 2, we simply check if each
C4,...Cy is weakly fair and if so mark all the nodes in D. We do not need the mutiple iterations in this
step. It is easy to see that this modification gives us an algorithm for checking correctness under weak
(or unconditional) fairness. Clearly, the complexity of this modified algorithm is O(mpn?). We also
remark that the fair state problem (Given M and ®, does M,s = E® ? ) is NLOG-space-complete
for weak fairness since we can (carefully) guess a “fair” path through M; it is P-complete for strong
fairness.

5 Conclusions

We have shown how to exploit symmetry efficiently under fairness assumptions. It is interesting to note
that this could not be done using the essentially group-theoretic approaches of [5, 9], yet works out
nicely in the automata-theoretic framework. This seems to testify to the power of automata [20, 21].
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One point we have not addressed is the construction M incrementally from the program text. This
is discussed in [9, 5, 12]. It turns out to reduce to testing if two states are equivalent modulo the group
G C Aut M. This equivalence check is, in general, a difficult problem [5]; but when M exhibits many
common patterns of symmetry such as full symmetry or rotational symmetry the test for equivalence
is particularly easy.

Another point is the relation of our approach of collapsing M according to its symmetry to that
of computing M, the quotient of M modulo its coarsest bisimulation. In principle, this approach
should provide the greatest compression, yielding a quotient structure that is possibly smaller than
M?®. However, there are several unsettled points regarding this latter approach. First, the precise
definition of “the” coarsest bisimulation in this context must be given. An additional point is that the
coarsest bisimulation must be computed incrementally and it appears problematic to come up with
a general, scheme for symbolically representing equivalence classes. In [2] an approach is given that
works well on the given examples, but there is no indication of how well it works in general. In [15] a
provably fast method of computing coarsest bisimulations is given, with the complexity being measured
as a function of the output size — and assuming the existence of certain “oracles” for manipulating
equivalence classes. Given that it is not known how to implement such oracles, we really do not know
how to efficiently construct quotients modulo the coarsest bisimulation, and we apparently do not know
how well such procedures work in practice. Thus we believe that it is an open question as to whether
coarsest bisimulation quotients or symmetry quotients are preferable. Certainly, in many practical
cases the symmetry quotients can be computed very fast, and it may prove advantageous that any
representative state can serve to symbolically represent the entire G-equivalence class.

Finally, it should be noted that our technique for handling fairness could be used in conjunction
with the BDD-based implementation framework of [5].
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