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1 IntroductionRecently there has been much interest in using various techniques to combat the state explosion problemin the automatic veri�cation of �nite state concurrent systems. One of the techniques that has beenproposed [12, 5, 9] is to exploit the symmetry inherent in systems with many similar subcomponentswhen performing temporal logic model checking [3, 4]. In [12] the focus is on reasoning about asimple but basic type of correctness, viz., safety properties expressible in the temporal logic CTL byan assertion of the form AG:error . The works of Clarke, Filkorn, & Jha [5] and Emerson & Sistla[9] show how, using some basic notions of group theory, symmetry may be exploited for the full rangeof correctness properties expressible in the very expressive temporal logic CTL*. Surprisingly, whilefairness properties are readily expressible in CTL*, the methods of [5] and [9] are not powerful enoughto admit any amelioration of state explosion, when standard fairness assumptions are involved.In this paper, we will explain why fairness is unexpectedly problematic. We will then suggest twopotential solutions. The �rst is a partial solution in which we use a new type of fairness, called groupfairness, directly in conjunction with the group-theoretic techniques of [5, 9]. Although group fairnessis appropriate for some situations, it is not in general adequate. The second solution allows us tohandle the full range of conventional fairness properties � (cf. [8]). These include strong fairnesswhere � = ^i=1:::n(GFeni ) GFexi) is the formula1 asserting that a path is in�nite and strongly fair;here the propositions eni indicate that process i is enabled, while exi indicate that process i was justexecuted. Thus, each process that is enabled in�nitely often is executed in�nitely often. Similarly� = ^i=1:::n(FGeni ) GFexi) captures weak fairness, to the e�ect that any process continuouslyenabled is executed in�nitely often. Note that weak fairness is equivalent, by propositional reasoning,to ^i=1:::nGF (exi_:eni). Unconditional fairness is expressed by � = ^i=1:::nGFexi. Interestingly, thissolution depends on trading group theory for automata theory [21].To understand why fairness in problematic, we must review the \group-theoretic" approaches of[5, 9].2 We will use the terminology of [9] but the same remarks apply to the the approach of [5].We focus on systems composed of many homogeneous subcomponents or processes. The global stategraphM of such a system may therefore exhibit a great deal of symmetry. The main idea is to reduce,using some basic notions of group theory, model checking over the original, large structureM to modelchecking over a smaller quotient structure M where symmetric states have been identi�ed. In manycases this can yield signi�cant, even exponential savings in the complexity of model checking3.The symmetry of M is characterized by the group, Aut M , of permutations of process (or subcom-ponent) indices that de�ne graph automorphisms of M . Let G be a subgroup of Aut M . We de�ne M= M=G to be the quotient structure obtained by identifying any two states s; t of M that are in thesame orbit (or equivalence class) of the state space of M , i.e. there exists a permutation � in G suchthat �(s) = t. For example, s = (N1; T2; C3; T4) might be equivalent to t = (C1; N2; T3; T4) in a solutionto the critical section problem with Ci indicating process i is in its critical section, etc. This permitsus to establish the following desired result of [5, 9]:M; s j= f i� M; s j= fwhere f is any formula of CTL*, and s represents the equivalence class of s { provided also thatG appropriately respects the symmetry of the speci�cation f as well as that of M . The technical1We will assume for ease of exposition that structures are total. So GF means \in�nitely often" while FG means\almost always".2In [9] we gave a \group-theoretic" and an \automata-theoretic" approach. Neither is adequate to e�ciently handlefairness. Our new approach here generalizes the automata-theoretic approach of [9].3The task of constructing M in an e�cient manner is addressed in [12, 5, 9] (cf. Section 5).1



stipulation is that G must be a subgroup of Aut M \ Auto f where Auto f is the set of permutationsthat leave invariant all the maximal propositional subformulae of f .Now suppose � = ^i=1:::nGFexi is the unconditional fairness condition. Then f = E� as-serts the existence of a fair path. Auto f consists of the permutations that leave invariant each ofex1; ex2; : : : ; exn. For each i, the set of permutations leaving exi invariant, call it Stab i, are those that�x or stabilize i and allow the other indices to permute freely. However, the set of permutations thatleaves all of the exi invariant is Stab 1 \ : : : \ Stab n = fIdg with just the identity permutation.Thus, to model check f = E� the only possible group G � Aut M \ Auto f is G = fIdg, and thisresults in no compression whatsoever asM =M in this case. In general, when we try to check a CTL*formula involving such a fairness assumption (strong, weak, unconditional fairness are all problematic)we run into this di�culty. The problem is the need to respect the symmetry of the speci�cation in anappropriate way.4To overcome this di�culty, we take an automata-theoretic approach [21] where the original, largeKripke structure M is succinctly represented by an annotated quotient structure M [9] de�ned withrespect to a group of permutation G � Aut M that does not depend on the fairness assumption �or speci�cation f . M has one representative state for each G-equivalence class of M , and its edgesare labeled with permutations denoting how coordinates need to be permuted as one traverses thatedge. We present e�cient algorithms that work on the annotated quotient structure M and check forcorrectness with respect toM of speci�cations given by Indexed CTL* formulas, under (unconditional,weak or strong) fairness assumptions. It turns out to be necessary and su�cient to solve the fair stateproblem, i.e. whether M; s0 j= E�, using the annotated quotient M .If the algorithm were to operate directly on M , it would look for fair strongly connected subgraphs(i.e., those containing a fair path) reachable from s0. These can be found e�ciently by �rst computingthe maximal strongly connected components C of M . If some C is \obviously fair" { meaning that,for each process index i, if eni appears in C then exi also appears in C { it must be that C is fair,i.e., it contains a fair path. In this case, it is enough to check if there is a path from s0 to such a C.However, if C is not obviously fair but contains a fair path p, then set of nodes that p visits in�nitelyoften de�nes an obviously fair strongly connected subgraph D of C. To determine if such a D exists,the algorithm prunes (all such not obviously fair) C by deleting all \bad" nodes in C that are labelledwith any eni for which a node labeled with exi does not appear anywhere in C. We let M 0 be theresulting structure after this pruning and repeat the above process with M 0 instead of M . After atmost n iterations, we will have eliminated all bad eni nodes and discovered an obviously fair D if itexists.Of course, we can not work directly with M . Fortunately, we can process M in an analogousmanner. An essential point is that each strongly connected subgraph C of M collapses to a stronglyconnected subgraph C of M ; conversely, each strongly connected subgraph C of M can be unwoundinto a (family of) corresponding strongly connected subgraph(s) C of M . The problem is complicatedby the fact that, as C in M is unwound to obtain C in M , the meaning of propositions is shifteddepending on the history of the state on account of the permutation labels on the arcs. For example,assume s� � ! t is an edge in C, � is the permutation that swaps 1 with 2, s is labelled with en1 andex2, and t is labelled with en2 and ex1. Then we can unwind C starting at s along that edge to getthe edge s �! �(t) in C. Because of the transposition �, en2 at t in C then represents en1 at state�(t) of C.These coordinate shifts are what make it possible to for M to succinctly encode M and yet pro-4It is not adequate that G be a subgroup of just Aut f , the permutations respecting top level formula f .2



vide enough information to model check over M , even though M does not appropriately respect thesymmmetry of of the speci�cation or �. But they also scramble the \meaning" of propositions assuggested above. To e�ciently keep track of such coordinate shifts, we unravel M into its constituentthreads. That is, we form a \threaded" structure M� whose nodes are essentially the individual coor-dinates of the nodes in M and whose edges \physically" reect the permutations on coordinates. Forinstance, the edge s � � �! t above is broken down into two thread edges (s; en1) �! (t; en2) and(s; ex2) �! (t; ex1). For each strongly subgraph C this induces a subgraph C� of threads, permittingus to test whether C represents a fair C by checking the fair components of C�.It is worth noting that the basic automata-theoretic approach over annotated structures (cf. [9]),which itself makes no special provisions for fairness, can be directly applied in an e�ort to handlefairness e�ciently. The idea is that, to check M; s0 j= Ef , we form the product5 graph (automaton)B of M with Bf , where Bf is an automaton on strings obtained by modifying Af , the automaton forlinear time formula f derived by the usual tableau construction, to account for the shifting meaning ofcoordinates using the permutations on arcs of M as guides. We can then give an algorithm to answerwhether M; s0 j= Ef by testing B for nonemptiness in time polynomial in jM j and jBf j (cf. [16, 21]).For a formula f with a single index i, Bf is essentially the same automaton as Af but its states are apair of the form (q; j) where q is a state of Af and j is an index giving the current meaning (\location")of index i. If we think of Bf reading a path throughM it applies the transition function of Af to updateq using coordinate j for the source input symbol and then updates j based on the next permutation �it traverses. However, if f involves k indices, then Bf must store a tuple (j1 : : : jk) of permuted indices.Thus, jBf j = O(jAf j �nk). This is of polynomial size for �xed, bounded k. However, when f = � thereare n indices involved, which causes its state space to be of size exponential in n. Since M itself istypically of size exponential in n, this defeats our purpose.Using our new e�cient method to handle the fairness constraint � over M together with ourautomata theoretic approach above to handle a linear time speci�cation f over M , we show how tocheck M; s0 j= E(�^ f) in time linear in the size jM j of the annotated quotient and polynomial in j�jand jBf j. By recursive descent [8], this yields e�cient model checking algorithms for Fair Indexed CTL*,which permits indexed CTL* assertions with \process modalities" ranging over (a bounded numberof) indices and path quanti�ers (A�; E�) ranging over fair paths.6 We can say ^iA�(G(Ti ) FCi)) {along all fair paths each process is free from individual starvation. Also allowed are such formulas as^i 6=jE�G(Ci ^ Cj) for potential \collision" among any pair of processes.This paper is organized as follows. Section 2 contains the de�nitions and notation used in thepaper. Section 3 discusses the problem with the previous approaches and shows how the previousmethods can be used for checking correctness under group fairness. Section 4 describes the algorithmsfor standard (strong, weak, unconditional) fairnesses using annotated quotient structures. Section 5contains concluding remarks.2 PreliminariesWe assume that we have a system of n processes communicating through shared variables. We letI = f1; 2; :::; ng be the set of process indices. We let V denote the set of variables in the system. Werepresent a variable X that is shared among a set I 0 of processes by XI0 . For example if X is shared5We �nd it convenient inside to de�ne B as the product ofM and Af using a slightly di�erent \multiplication" yieldingthe same result. In fact, we can construct a threaded B� directly without building B.6Our formulation of Indexed CTL* is slight variant of that in [7].3



between processes 1 and 2, it is represented by Xf1;2g (actually, we write this as X1;2); if anothervariable with the same name X is shared between processes 3 and 4, then it is represented by X3;4. Allvariables of the form Yi are local variables of processes i. We let V denote the set of variables in thesystem. A global state s is a function that assigns values to all the variables in V .The operational behavior of such a system can be modeled by a Kripke structureM = (S;R; L; S0)where S is the set of global states, R is a (total) binary relation giving the one step transitions of thesystem, L is a labelling function that denotes the atomic propositions that are satis�ed in each globalstate, and S0 is the set of initial states.We are interested in de�ning symmetries on such a system of processes. We let Sym I be the set ofall permutations � on the set I of indices. Sym I forms a group with functional composition being thegroup operation. We let Id denote the identity permutation and ��1 the inverse of �. For any variableXI0 in V , we let �(XI0) denote the variable X�(I0) where �(I 0) is obtained by replacing each element iin I 0 by �(i). Note that �(XI0) need not be a variable in V . However, we say that � respects V if forevery variable Y 2 V , �(Y ) is also in V . It is not di�cult to see that � respects V i� � is a one-oneand on-to function , i.e. is an automorphism on V .We say that a permutation � on I is an automorphism onM if the following conditions are satis�ed:� � respects V .� For every pair of states s and t in S, (s; t) 2 R i� (�(s); �(t))2 R.� For every s, s 2 S0 i� �(s) 2 S0.We denote the set of automorphisms of M by Aut M . It is not di�cult to see that Aut M isa subgroup of Sym I . Let G be any subgroup of Aut M . We say that two states s and t in S areequivalent with respect to G, written s �G t if there exists a � 2 G such that t = �(s). Since G is agroup, �G is an equivalence relation.Our speci�cation logics use a set of atomic propositions. We assume that we have two types ofatomic proposition symbols| local symbols and global symbols. If P is a local proposition symbolthen Pi, for each i = 1; :::n, is going to be a local atomic proposition. A global symbol Q is simply aglobal atomic proposition. Thus, all local atomic propositions are indexed with process indices whileglobal atomic propositions are not.The labelling function L in M assigns atomic propositions for each state in S. We require that Lshould satisfy the following conditions:� For every global atomic proposition Q, for every s and for every � 2 Aut M , s satis�es Q (i.e.Q 2 L(s)) i� �(s) satis�es Q.� For every local atomic proposition Pi, for every s and for every � 2 Aut M , s satis�es Pi i� �(s)satis�es P�(i).We are interested in checking properties speci�ed in various logics. PLTL is the standard propo-sitional linear temporal logic built up from atomic propositions, boolean connectives, and the usuallinear time operators G (always), F (sometime), X (next time), and U (until). CTL* is the logic thatextends PLTL by also allowing the path quanti�ers A (for all fullpaths) and E (for some fullpath)to also be used. The basic modalities of CTL* are formulae of the form Ef where f is a pure PLTL4



formula. All CTL* formulae can be obtained by taking boolean combinations and nestings of the basicmodalities. CTL is a restricted version of CTL*. Indexed CTL* is built up from basic modalities of theform _iEfi, ^iEfi, _i 6=jEgi;j, and ^i 6=jEgi;j, where fi and respectively gi;j are PLTL formulas that useonly global atomic propositions and/or local atomic propositions of index i or respectively i and j; _i,^i act as existential and universal process quanti�ers ranging over single process indices, while _i 6=j ,^i 6=j range over pairs of distinct indices. Formulas of Indexed CTL* are inductively built up from thebasic modalities using boolean connectives and nesting (an Indexed CTL* formula may be substitutedfor a global proposition in another Indexed CTL* formula). Fair Indexed CTL* is just like IndexedCTL* but uses the path quanti�ers E� and A� where path quanti�cation ranges only over fair paths[8]. The semantics of these logics is de�ned in the usual way [10] and we write, e.g.,M; s j= h to meanthat in structure M at state s formula h holds true.Let f be any formula f of the above logics. We let �(f) denote the formula obtained by changingthe indices of local atomic propositions in f according to the permutation �. In [9], we de�ned togroups of permutations Aut f and Auto f that capture symmetries in the formula f . Aut f is theset of permutations � such that f is equivalent to �(f). Auto f is a subgroup of Aut f , and is theset of permutations that leave invariant all maximal (under the subformula relation) propositionalsubformulas of f .We assume that we have two special local propositional symbols en and ex. For any i, the localatomic proposition eni is satis�ed in a state s i� process i is enabled in s; the atomic proposition exiis satis�ed in a state s i� all transitions leading to s, i.e. all transitions of the form (s0; s) in R, are dueto the execution of a single step of process i. This would require that, for each state s, there is exactlyone value of i, such that exi is satis�ed in s. It should be obvious to see that for any � 2 Aut M ,exi is satis�ed in s i� ex�(i) is satis�ed in �(s) and similarly for eni. We say that an in�nite pathp of M is strongly fair if it satis�es � = ^i=1:::n(GFeni ) GFexi), meaning that each process thatis enabled in�nitely often is executed in�nitely often. Similarly a path p is weakly fair if it satis�es� = ^i=1:::n(FGeni ) GFexi) meaning that any process that is continusly enabled. continuouslyenabled is executed in�nitely often. Note that weak fairness is equivalent, by propositional reasoning,to ^i=1:::nGF (exi _ :eni). A path is unconditionally fair if it satis�es � = ^i=1:::nGFexi, meaningsimply that each process is executed in�nitely often.3 Checking correctness under group fairnessIn earlier papers [5, 9], it was shown how model checking for CTL* formulas over the structure Mcan be reduced to modelchecking over a quotient structure M . We state the result as given in [9].Let f be a CTL* formula and G be a subgroup of Aut M \ Auto f . The quotient structure M ofM = (S;R; L; S0) with respect to G, has a single state representing each equivalence class in S. Fora state s 2 S, we let s denote the representative of the equivalence class of s, i.e. s �G s.Formally, M = (S;R; L; S0), where for each equivalence class of �G , there a single state repre-senting that equivalence class in S. If s and t are states in S, then (s; t) 2 R i� for some states s; t inS, such that s �G s and t �G t, (s; t) 2 R. The function L is a restriction of L to the states in S, andS0 = fs : for some s 2 S0 s �G sg.It was shown in [9] that for any state s, the CTL* formula f is satis�ed at state s in M i� itis satis�ed at the state s in M . However, this result is not useful for checking correctness propertiesunder fairness assumptions, particularly liveness properties. Let f be a \Fair CTL*" formula of the formA�g where g is a PLTL formula and � is, say, unconditional fairness ^i=1:::nGFexi. f is equivalent5



to the CTL* formula f 0 = A(� ) g). We are interested in checking if M; s j= A�g, i.e., if alongall fair paths in m starting at s does g hold true. In order to reduce model checking of f 0 in theoriginal structure M to modelchecking over a quotient structure, we need to use a group G whichis a subgroup of Aut M \ Auto f 0. Unfortunately, from the de�nition of Auto, we calculate thatAuto f 0 = Auto � = fIdg where Id is the identity permutation. Thus, G = fIdg and the quotientstructure with respect to G will be identical to the original structure. As a consequence, we do not getany reduction in the state space. The same problem occurs even if we use the approach as given in [5].However, we show that using the above approach we still can check for correctness under a notioncalled group fairness. As given in the previous paragraph, let f = A(g) where G is a PLTL formula,and let G be any subgroup of Aut M \ Auto f . Let M be the quotient structure of M with respect toG. Now, we de�ne an equivalence relation � among the process indices I as follows. For any i; j 2 I ,i � j i� there exists a permutation � 2 G such that j = �(i). It can easily be seen that � is anequivalence relation. Let I1; I2; :::; Ik be all the equivalence classes of �. For each i = 1; :::k, let Cidenote the propositional formula (_j2Iiexj _ ^j2Ii:enj). Essentially, Ci states that some process inthe set Ii is executed or all processes in the set Ii are disabled. We say that a path p in M is weaklyfair with respect to the group G i� for each i = 1; :::; k, Ci is satis�ed in�nitely often on p. This fairnesscondition is equivalent to the following condition: if for each i = 1; :::k, if all processes in the set Ii aredisbaled in�nitely often, or some process in Ii is executed in�nitely often.Now, let �gp denote the formula Vi=1:::k GFCi, and f 0 = A(�gp;) g). Now, it should be obviousto see that all paths in M that start from s and that are weakly fair with respect to the group G satisfythe PLTL formula G i� the formula f 0 is satis�ed at s in M . It can also be shown that Auto f 0 = Gand hence G is a subgroup contained in Aut M \ Auto f 0. Now using the the results of [9], it is easyto see that f 0 is satis�ed at s in M i� f 0 is satis�ed at s in M . This result shows that we can exploitsymmetry for checking correctness under fairness as long as the fairness is with respect to a group G.This is a form of fairness which could be useful in some applications. We also note that we can de�nean analogous notion of strong fairness with respect to group G that can be handled e�ciently in thesame way.4 Checking correctness under standard fairnessesIn this section we give e�cient algorithms for model checking formulas of Fair Indexed CTL*. Inour earlier paper [9], we gave e�cient algorithms for checking Indexed CTL* formulas where the pathquanti�ers (A;E) range over all paths. The algorithms in the automata-theoretic portion of that workuse annotated quotient structures as we will here. As explained in the introduction, because a fairnessconstraint � is expressible in CTL*, the previous automata-theoretic approach could be applied directlyto reason under fairness assumptions but it would not be e�cient. Here in this section, we show howto e�ciently handle fairness over annotated quotient structures. This then permits us to model checkFair Indexed CTL* where the path quanti�ers (A�; E�) range over fair paths. We assume that thefairness constraint � is strong fairness. This also permits us to handle unconditional and weak fairnesssince they are special cases of strong fairness [8].LEMMA 4.1: Two (G-)equivalent states in M satisfy the same set of Fair Indexed CTL* formulas.Proof: We can argue by induction on formula structure that for any formula f of Fair IndexedCTL*, Aut f = Sym I . Assume s �G t so that t = �(s) for some � 2 G. We have M; s j= f i�M;�(s) j= �(f) (since � 2 G � Aut M) i� M; t j= f (since t = �(s) and Aut f = Sym I). 2The crucial step in the model checking problem is to handle the basic modalities [8]. We will describe6



in detail how to handle _iE�fi and ^iE�fi. Treatment of _i 6=jE�gi;j and ^i 6=jE�gi;j is analogous butthe algorithm must keep track of two coordinates rather than one. By Lemma 4.1, it is thereforeenough to check satisfaction of such basic modalities at representative states.As indicated in the introduction, we will use annotated quotient structures for model checking.First, we de�ne the annotated quotiented structure. The annotated quotient structure is similar tothe quotient structure except that the edges of the structure are labeled with permutations indicatinghow the coordinates need to be permuted. As before, let M = (S;R; L; S0) be the Kripke structuremodeling the behavior of the system of processes. Let G be a subgroup of Aut M . We keep G �xedthrough out this section. The annotated quotient structure M with respect to G, is the quadruple(S;AR; L; S0) where S; L and S0 are as de�ned in the previous section; AR is a set of triples of theform (s; �; t) such that there is an edge from s to �(t) in M , i.e. (s; �(t)) 2 R. An annotated pathin M is a �nite or an in�nite alternating sequence s0; �1; s1; �2; :::; �i; si; ::: of states and permutationssuch that for each i > 0 (si�1; �i; si) 2 AR; if the sequence is �nite then it should end in a state. Foreach annotated path p, we de�ne a sequence f(p) of states in S such that f(p) = t0; t1; :::; ti; ::: wheret0 = s0 and ti = �1 � �2 � � � �i(si). The following lemma, proved in [9], relates annotated paths in Mto paths in M .LEMMA 4.2: For every annotated path p in M , f(p) is a path in M . In the other direction, forevery path q starting at a representative state in M , there exists an annotated path p in M such thatf(p) = q.We will be using automata for model checking temporal properties. A Buchi automaton A onin�nite strings is a quintuple (Q;�; �; init; F ) where Q is a �nite set of automaton states, � is theinput alphabet, � : (Q� �)! 2Q is the transition function, init 2 Q is the initial state and F � Q isthe set of �nal states. A run of the automaton on an input t = (t0; :::ti; :::) 2 �! is an in�nite sequence(q0; :::; qi; :::) of automaton states such that q0 is the initial state init, and for all i � 0, qi+1 2 �(qi; ti).We say that a run is accepting i� some �nal state occurs in�nitely often in the run. We say that aninput t 2 �! is accepted by A i� there is an accepting run of A on t.We �rst construct a Buchi automaton A corresponding to the PLTL formula fi and check thatthere is no strong fair path in M that is accepted by it. The input alphabet of A is the set of subsetsof local propositions and global propositions.We de�ne a directed graph B which is a cross product of M and A as follows. Our algorithm doesnot construct the graph B. We only use it in our proofs. The nodes/states of B are triples of the form(s; q; i) where s 2 S, q 2 Q and i 2 I . Formally, B = (V;E) where V = S �Q� I is the set of nodesand E is the set of transitions/edges of B. There is an edge from node (s; q; i) to the node (s0; q0; i0) i�i = i0, (s; s0) 2 R and in addition, there is a transition of the automaton from state q to the state q0on the input which is the set of global propositions satis�ed in state s and the set of local propositionsthat are satis�ed by process i's component of s. A node (s; q; i) in B is called a �nal node i� q is a �nalstate of the automaton A. Intuitively, B denotes the simulation of the automaton A on the executionof di�erent processes indicated by the process index i in each node. It is to be noted that all edgesin B are between nodes with the same process index. Let � be any permutation on I and (s; q; i) beany node of B. We also de�ne a labeling function LB that labels each node of B with local atomicpropositions eni; exi for each i = 1; ::; n. For any node (s; q; i), LB((s; q; i)) contains eni (resp., exi)i� eni 2 L(s) (resp. exi 2 L(s)). We say that an in�nite path p in B is strongly fair i� the followingcondition is satis�ed: for each i = i; :::; n if p contains in�nitely many nodes that satisfy eni then italso contains in�nitely many nodes that satisfy exi.LEMMA 4.3: The following properties hold for all s 2 S.7



� _iE�fi holds at state s of the structure M i� for some i, 1 � i � n, there exists a path in Bstarting at node (s; init; i) satisfying � and containing in�nitely many �nal nodes.� ^iE�fi holds at state s of the structureM i� for all i, 1 � i � n, there exists a path in B startingat node (s; init; i) satisfying � and containing in�nitely many �nal nodes.A strongly connected component (SCC) C in a directed graph is a total subgraph such that there isa path from every node in C to every other node which only passes through the nodes in C. A maximalstrongly connected component (MSCC) is a strongly connected component such that no strict superset of it is an SCC.Let C be a SCC in B. We say that C is strongly fair i� the following condition is satis�ed for eachi = 1; :::; n: If C contains a node of the form (s; q; j) such that eni 2 L(s), i.e. process i is enabled ins, then C also contains a node of the form (t; q0; j) such that exi 2 L(t). We say that C is a �nal SCCif it contains a node of the form (s; q; i) where q is a �nal state of the automaton.LEMMA 4.4: There exists a path in M starting at state s that satis�es the PLTL formula fi andthe strong fairness constraint � i� there exists a path in B from (s; init; i) to a �nal SCC that isstrongly fair.For any permutation � on I , we de�ne �((s; q; i)) to be the node (�(s); q; �(i)), i.e. the permutation� applied to the node (s; q; i) changes s and i according to �, while keeping the automaton stateunchanged. It is easy to see that for every � 2 Aut M , there is an edge from (s; q; i) to (s0; q0; i0) i�there is an edge from �((s; q; i)) to �((s0; q0; i0)). Hence every � 2 Aut M is also an automorphism ofB. We next construct another structure B = (V ;E) which is a product of the annotated structureand the automaton A. Here V = S �Q� I is the set of states/nodes. The set of transitions E whichconsists of triples of the form (x; �; y) ,where x; y 2 V , is de�ned as follows. For every transition of theform (s; �; t) 2 AR and for every automaton state q and process index j, there is a transition (x; �; y)in E where x = (s; q; j), y = (t; r; ��1(j)), and r is any state to which there is a transition of Afrom state q on the input which is the set of global propositions satis�ed in s and local propositionssatis�ed in the process j's component of s. It is to be noted that the transitions in B can be betweennodes with di�erent process indices, while this is not the case in B. We say that a state (s; q; j) of B isa �nal state i� q is a �nal state of A. Recall that init is the initial state of A. We de�ne an annotatedpath in B exactly similar to the annotated paths in M .An annotated path in B is a �nite or an in�nite alternating sequence x0; �1; x1; �2; :::; �i; xi; ::: ofstates in V and permutations such that for each i > 0 (xi�1; �i; xi) 2 E; if the sequence is �nite thenit should end in a state. For each annotated path p, we de�ne a sequence f(p) of nodes in V suchthat f(p) = t0; t1; :::; ti; ::: where t0 = x0 and ti = �1 � �2 � � � �i(xi). For a �nite annotated pathp = x0; �1; x1; :::; �k; xk, let �(p) denote the permutation �1 � �2 � ::: � �k.The following lemma relates the annotated paths in B to paths in B.LEMMA 4.5: For every annotated path p in B, f(p) is a path in B. In the other direction, forevery path q in B, there exists an annotated path p in B such that f(p) = q.A strongly connected component C of B is a set of nodes such that for every pair of nodes x; y inC there exists a �nite annotated path from x to y that passes only through the nodes in C. Recallthat for any state s 2 S, s denotes the unique representative of the equivalence class containing s; theequivalence classes that we consider are those induced by the equivalence relation �G . For any nodex = (s; q; i) 2 V , let x denote the node (s; q; ��1(i)) where � is the permutation that maps s to s,8



i.e. �(s) = s. For any set of nodes C � V , let C = fx : x 2 Cg. Also, for any strongly connectedcomponent D in B and any x 2 D, de�ne g(x;D) to be the set of all nodes of the form �(p)(x) wherep is a �nite annotated path in B starting from x and containing only nodes in D. The following lemmashows that there is a correspondence bewteen the SCCs in B and the SCCs in B.LEMMA 4.6: For every SCC C in B, C is an SCC in B. Similarly, for every SCC D in B and nodex 2 D, g(x;D) is an SCC in B.Now, we de�ne the \threaded" directed graph B� = (V �; E�) and a labeling function L� as follows.The nodes in V � are pairs of the form (x; i) where x 2 V and i 2 I . There is an edge from (x; i) to(y; j) in E� i� there exists a permutation � 2 G such that j = ��1(i) and (x; �; y) 2 E. Thelabeling function L� labels each node in V � with the local propositional symbols ex and en as follows.Let (x; i) be a node in V � where x = (s; q; j) for some q 2 Q and j 2 I . Then, ex 2 L�((x; i)) i�exi 2 L(s), and en 2 L�((s; i)) i� eni 2 L(s). The node (x; i) as given above is called a �nal nodei� the automaton state q is a �nal state.Now, we state a simple lemma that shows correspondence between path in B� and annotatedpaths in B. We say that an annotated p = x0; �1; x1; :::; �k; xk in B corresponds to the path(x0; i0); (x1; i1); :::; (xk; ik) in B� i� for every j such that 0 < j � k, ij = (�1 � �2 � ::: � �k)�1(i0).LEMMA 4.7: If p is an annotated path in B starting from the node x0, then for every i = 1; :::; nthere is a path in B� starting from (x0; i) that corresponds to p. In the other direction, for everypath in B� starting from a node of the form (x0; i) there exists a corresponding augmented path in B�starting from x0.Let C be a SCC in B�. C is said to be strongly fair if the following condition is satis�ed: if Ccontains a node labeled (i.e. labeled by L�) with en then it also contains a node labeled with ex. Wesay that C is a �nal SCC if it contains a �nal node.7For any D � V , we let B�=D denote the restriction of B� to all nodes in V � of the form (x; i) wherex 2 D, i.e. B�=D is obtained by deleting from B� all nodes of the form (y; i) where y =2 D.LEMMA 4.8: Let D be an SCC in B. Then, all the maximal SCCs in B�=D are disconnected (i.e.B�=D has no edges that connect nodes in di�erent MSCCs). Furthermore, for each x 2 D and for eachMSCC F of B�=D, there exists an i such that (x; i) 2 F .Proof: Let D be a SCC in B. It is enough if we prove the following: For every edge (x0; y0) inB�=D both x0 and y0 belong to the same SCC. Let (x0; y0) be any edge in B�=D and let x0 = (x; i)and y0 = (y; j). By de�nition, there exists a transition of the form (x; �1; y) in E such that j = ��11 (i).Since x and y belong to the SCC D, it follows that there exists a cycle in B starting with the abovetransition, i.e. there exists an augmenetd path p = x0; �1; x1; �2; :::; �k; xk in B such that x0 = xk = x,x1 = y and all the nodes on p are in D. Now consider �(p), i.e. �(p) = �1 � ::: � �k. Clearly there existsan integer r > 0 such that (�(p))r = Id where Id is the identity permutation. Using lemma 4.7, wesee that the annotated path pr gives us a cycle in B�=D that passes through x0 and y0.To prove the second part of the lemma, we use the following observation: if there is an annotatedpath from x to y in B passing through the nodes in D then, for every j = 1; :::; n there exists an i suchthat there is a path from (x; i) to (y; j) in B� passing through nodes of the form (z; k) where z 2 D.Now consider any MSCC F in B�=D. Let (y; j) be any node in F . From our previous observation itfollows that, for some i, (x; i) has a path to (y; j) in B�. From the �rst part of the lemma it followsthat (x; i) 2 F . 27A �nal SCC is not to be confused with a terminal maximal strongly connected component.9



LEMMA 4.9: Let D be any SCC in B. Then, for any x 2 D the SCC g(x;D) in B is a �nal SCCand is strongly fair, i�, all the maximal SCCs in B�=D are also �nal SCCs and are strongly fair.Proof: Let D be any SCC in B. For each i = 1; :::; n, we will show that there exists a node ing(x;D) that satis�es eni (respectively, exi) i� there exists a node u labeled with en (respectively, ex)in the MSCC of B�=D that contains (x; i). Now �x an i such that 1 � i � n. Now consider any nodey in B and let � 2 G be the permutation such that �(y) = y. >From lemma 4.5, we see that y is inthe SCC g(x;D) i� there exists an annotated path p in D from x to y, such that �(p)(y) = y; Recallthat �(p) is the product of permutations that appear on the augmenetd path. From lemma 4.7, we seethat there exists a path in B�=D from (x; i) to (y; j) i� there exists an augmeneted p in D from x toy where j = (�(p))�1(i). Putting both of these together we see that there is a path in g(x;D) fromx to y i� there exists a path in B�=D from node (x; i) to (y; j) where j = ��1(i). Since y = �(y), itfollows that the node y satis�es the atomic proposition eni (respectively, exi ) i� the node y satis�esenj (respectively, exj). >From the way we de�ned L�, it follows that the node (y; j) is labeled with en(resp., ex) i� y satis�es eni (resp., exi). Using lemma 4.8, we see that there is a path from (x; i) to (y; j)in B�=D i� both of them are in the same MSCC in B�=D. Putting all the above observations together,it is easy to see that, for each i = 1; :::; n, g(x;D) contains a node that satis�es eni (respectively, exi)i� the MSCC in B�=D containing (x; i) also contains a node labeled with en (resp., ex). In addition,it should be easy to see that, for every z 2 D, every MSCC in B�=D contains a node of the form (z; k)for some k. Hence g(x;D) is a �nal SCC i� every MSCC in B�=D is also a �nal SCC. Now, the lemmafollows from the previous arguments. 2Now, we present the algorithm that determines all representative states that satisfy the Fair IndexedCTL* formula _iE�fi under strong fair semantics. We assume that an earlier algorithm has constructedthe annotated quotient structureM . In this algorithm, we mark the nodes in B whenever we determinethat there exists an in�nite strong fair path starting from that node and containing in�nitely many�nal nodes. The steps of the algorithm are given below.1. Construct the automaton A corresponding to the formula fi. Construct B and B� from M andA. Save B as the graph H .2. Repeat the following procedure exactly n times where n is the number of processes.Compute the MSCCs of B and B�. Determine the �nal MSCCs in B. For each �nal MSCC Dof B do the following.Find all the MSCCs in B�=D. These will also be MSCCs in B�. Let C1; :::; Ck be these MSCCs.If all these MSCCs in B�=D are strongly fair then mark all the nodes in D. Otherwise do thefollowing. For each j such that Cj is not strongly fair, �nd all the nodes in Cj that are labeledwith en. For each such node (x; j), delete x from B, and also delete all nodes of the form (x; k)from B�.3. Using the graph H, extend the marking to all nodes that can reach a marked node, i.e. markedin the previous step, by means of an augmeneted path.4. For each state s, for some i, if the node (s; init; i) is marked then include s in the list of nodesthat satisfy _iE�fi.THEOREM 4.10: The above algorithm correctly determines all the representative states that satisfythe formula _iE�fi.Proof: To prove the theorem, it is enough if we show that in the second step of the algorithm, thenode x is marked i� it belongs to a fair and strongly fair SCC in B. From all our previous lemmas,10



it is easy to see that if a node x is marked then it must belong to a �nal and strongly fair SCC inB. To see the other direction, consider the a �nal and strongly fair SCC, say C, in B that containsx. Then, there exists a SCC D in B such that C = g(x;D). It is not di�cult to see that in step 2 ofthe algorithm none of the nodes in D are ever going to be deleted. Now, we show that with in the niterations in step 2, all nodes in D are going to be marked. Let x be a node in D. In any iteration,if the MSCC in B� containing (x; i) is unfair and hence causes the deletion of some nodes, then fromthe next iteration onwards the MSCC containing (x; i) will always be fair, since it will not have anynodes labeled with en. Hence, with in at most n iterations there will be a situation in which, for everyi = 1; :::; n, the MSCC containing (x; i) will be fair. It should be clear that in this iteration all thenodes in the MSCC of B that contains x (and hence contains all the nodes in D) get marked. 2In order to determine the nodes that satisfy the Fair Indexed CTL* formula ^iE�fi, we need tomodify step 4 of the above algorithm so that we check that, for each i = 1; :::; n, (s; init; i) is marked.Assume that the sizes of the annotated structure and that of the automaton A are m and p,respectively. Here the size of the structure (and also that of the automaton) is the sum of the numberstates and the number of transitions. Since the number of processes is n, it is easy to see that thesize of the structure B is mpn, the size of the graph B� is mpn2. It is not di�cult to see that steps1,3 and 4 each can be implemented in time O(mpn). Each iteration of step 2 can be implemented intime O(mpn2) and the n iterations take time O(mpn3). Thus, the complexity of the above algorithm isO(mpn3). By recursive descent, we get an algorithm of complexity O(mp0n3) for the entire Fair IndexedCTL*, where p0 is the size of the largest automaton for any basic modality in the input formula.By the \Litchtenstein-Pnueli Thesis" [16] it is the polynomial (linear) complexity in jM j = m thatis probably most important for applications. The potential exponential size p of the automaton forfi (or gi;j or any formula with a bounded number of indices) is likely to be less problematic sincespeci�cations are likely to be short while structures may be immense and their quotients still large.If fi corresponds to a basic modality of Fair Indexed CTL, the automaton is of constant size. Mostimportantly, we have reduced the complexity in n, the number of processes, to a polynomial factor.(Were it exponential, we would be back to the state explosion problem again.)To check for correctness under weak (or unconditional) fairness, we can consider it to be a specialcase of strong fairness and use the above algorithm. However, we can simplify the above algorithm asfollows. Call a MSCC in B� to be weakly fair i� it contains a node that is labeled with ex or that isnot labeled with en. Similarly, de�ne a SCC in B to be weakly fair, if for each i = 1; :::; n it containsa node that satis�es the propositional formula exi _ :eni. We can reprove all the previous resultsusing these de�nitions. We modify the above algorithm as follows. In step 2, we simply check if eachC1; :::Ck is weakly fair and if so mark all the nodes in D. We do not need the mutiple iterations in thisstep. It is easy to see that this modi�cation gives us an algorithm for checking correctness under weak(or unconditional) fairness. Clearly, the complexity of this modi�ed algorithm is O(mpn2). We alsoremark that the fair state problem (Given M and �, does M; s j= E� ? ) is NLOG-space-completefor weak fairness since we can (carefully) guess a \fair" path through M ; it is P-complete for strongfairness.5 ConclusionsWe have shown how to exploit symmetry e�ciently under fairness assumptions. It is interesting to notethat this could not be done using the essentially group-theoretic approaches of [5, 9], yet works outnicely in the automata-theoretic framework. This seems to testify to the power of automata [20, 21].11



One point we have not addressed is the construction M incrementally from the program text. Thisis discussed in [9, 5, 12]. It turns out to reduce to testing if two states are equivalent modulo the groupG � Aut M . This equivalence check is, in general, a di�cult problem [5]; but when M exhibits manycommon patterns of symmetry such as full symmetry or rotational symmetry the test for equivalenceis particularly easy.Another point is the relation of our approach of collapsing M according to its symmetry to thatof computing M̂ , the quotient of M modulo its coarsest bisimulation. In principle, this approachshould provide the greatest compression, yielding a quotient structure that is possibly smaller thanM8. However, there are several unsettled points regarding this latter approach. First, the precisede�nition of \the" coarsest bisimulation in this context must be given. An additional point is that thecoarsest bisimulation must be computed incrementally and it appears problematic to come up witha general, scheme for symbolically representing equivalence classes. In [2] an approach is given thatworks well on the given examples, but there is no indication of how well it works in general. In [15] aprovably fast method of computing coarsest bisimulations is given, with the complexity being measuredas a function of the output size { and assuming the existence of certain \oracles" for manipulatingequivalence classes. Given that it is not known how to implement such oracles, we really do not knowhow to e�ciently construct quotients modulo the coarsest bisimulation, and we apparently do not knowhow well such procedures work in practice. Thus we believe that it is an open question as to whethercoarsest bisimulation quotients or symmetry quotients are preferable. Certainly, in many practicalcases the symmetry quotients can be computed very fast, and it may prove advantageous that anyrepresentative state can serve to symbolically represent the entire G-equivalence class.Finally, it should be noted that our technique for handling fairness could be used in conjunctionwith the BDD-based implementation framework of [5].References[1] Aggarwal S., Kurshan R. P., Sabnani K. K., "A Calculus for Protocol Speci�cation andValidation", in Protocol Speci�cation, Testing and Veri�cation III, H. Ruden, C. West(ed's), North-Holland 1983, 19-34.[2] Bouajjani, A., Fernandez, J, Halbwichs, N., Raymond, P., and Ratel, C., Minimal StateGraph Generation, Science of Computer Programming, 1992.[3] Clarke, E. M., and Emerson, E. A., Design and Veri�cation of Synchronization Skeletonsusing Branching Time Temporal Logic, Logics of ProgramsWorkshop 1981, Springer LNCSno. 131.[4] Clarke, E. M., Emerson, E. A., and Sistla, A. P., Automatic Veri�cation of Finite StateConcurrent Programs using Temporal Logic: A Practical Approach, ACM TOPLAS, April1986[5] Clarke, E. M., Filkorn, T., Jha, S. Exploiting Symmetry in Temporal Logic Model Checking,5th International Conference on Computer Aided Veri�cation, Crete, Greece, June 1993.[6] Clarke, E.M., Grumberg, O., and Brown, M., Characterizing Kripke Structures in TemporalLogic, Theor. Comp. Sci., 19888If M̂ is similar to M , i.e. all transitions are labeled with permutations so that M can be obtained by unwinding M̂according to these permutations, then the algorithms given in this paper can be used for modelchecking using M̂ also12
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