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Abstract

This paper provides an analysis of a natural d-round tournament over n = 2¢
players, and demonstrates that the tournament possesses a surprisingly strong ranking
property. The ranking property of this tournament is used to design efficient sorting
algorithms for a variety of different models of parallel computation:

(i) a comparator network of depth c-lgn, ¢ = 7.44, that sorts the vast majority of
the n! possible input permutations,

(i) an O(lgn)-depth hypercubic comparator network that sorts the vast majority of
permutations,

(iii) a hypercubic sorting network with nearly logarithmic depth,

(iv) an O(lgn)-time randomized sorting algorithm for any hypercubic machine (other
such algorithms have been previously discovered, but this algorithm has a signif-
icantly smaller failure probability than any previously known algorithm), and

(v) arandomized algorithm for sorting n O(m)-bit records on an (nlgn)-node omega
network in O(m + lgn) bit steps.
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1 Introduction

A comparator network is an n-input, n-output acyclic circuit made up of wires and 2-input,
2-output comparator gates. The input wires of the network are numbered from 0 to n — 1,
as are the output wires. The input to the network is an integer vector of length n, where
the ith component of the vector is received on input wire ¢, 0 < ¢ < n. The two outputs of
each comparator gate are labeled “min” and “max”, respectively, while the two inputs are
not labeled. On input  and y, a comparator gate routes min{z,y} to its “min” output and
routes max{xz,y} to its “max” output. It is straightforward to prove (by induction on the
depth of the network) that any comparator network induces some permutation of the input
vector on the n output wires. We say that a given comparator network sorts a particular
vector if and only if the value routed to output ¢ is less than or equal to the value routed to
output 1 +1, 0 <1< n—1.

An n-input comparator network is a sorting network if and only if it sorts every possible
input vector. It is straightforward to prove that any n-input comparator network that sorts
the n! permutations of {0,...,n — 1} is a sorting network. In fact, any n-input comparator
network that sorts the 2" possible 0-1 vectors of length n is a sorting network. The latter
result is known as the 0-1 principle for sorting networks [10, Section 5.3.4].

It is natural to consider the problem of constructing sorting networks of optimal depth.
Note that at most [n/2] comparisons can be performed at any given level of a compara-
tor network. Hence the well-known Q(nlgn) sequential lower bound for comparison-based
sorting implies an Q(lgn) lower bound on the depth of any n-input sorting network. An
elegant O(lg® n)-depth upper bound is given by Batcher’s bitonic sorting network [3]. For
small values of n, the depth of bitonic sort either matches or is very close to matching that of
the best constructions known (a very limited number of which are known to be optimal) [10,
Section 5.3.4]. Thus, one might suspect the depth of Batcher’s bitonic sorting network to be
optimal to within a constant factor, or perhaps even to within a lower-order additive term.
Consider Knuth’s Exercise 5.3.4.51 (posed as an open problem): “Prove that the asymptotic
value of g(n) is not O(n-lgn),” where S(n) denotes the minimal size (number of comparator
gates) of an n-input sorting network of any depth. The source of the difficulty of this partic-
ular exercise was subsequently revealed by Ajtai, Komlds, and Szemerédi [2], who provided
an optimal O(lgn)-depth construction known as the AKS sorting network.

While the AKS sorting network represents a major theoretical breakthrough, it suffers
from two significant shortcomings. First, the multiplicative constant hidden within the O-
notation is sufficiently large that the result remains impractical. Second, the structure of
the network is sufficiently “irregular” that it does not seem to map efficiently to common
interconnection schemes. In fact, Cypher has proven that any emulation of the AKS network
on the cube-connected cycles requires (lg”n) time [6]. The latter issue is of significant
interest, since a primary motivation for considering the problem of constructing small-depth
sorting networks is to obtain a fast parallel sorting algorithm for a general-purpose parallel
computer. In other words, it would be highly desirable to identify a small-depth sorting
network that could be implemented efficiently on a topology that is also useful for performing
operations other than sorting.

In this paper we pursue a new approach to the problem of designing small-depth sorting



networks with “regular” structure. Our notion of regularity is enforced by restricting the set
of permutations that can be used to connect successive levels of gates in a comparator net-
work. In particular, we say that a comparator network is hypercubic if and only if successive
levels are connected either by a shuffle or an unshuffle (inverse shuffle) permutation. (These
terms are defined more precisely in Section 3.) Knuth’s Exercise 5.3.4.47, posed as an open
problem, may be viewed as asking for the depth complexity of shuffle-only sorting networks,
in which every pair of adjacent levels is connected by a shuffle permutation. Batcher’s bitonic
sort provides an O(lg® n) upper bound for this problem, and recently, Plaxton and Suel [16]
have established an Q(lg®n/lglgn) lower bound. (The same lower bound holds for the class
of unshuffle-only sorting networks.)

From a practical point of view, Knuth’s shuffle-only requirement would seem to be overly-
restrictive. It is motivated by a certain correspondence between hypercubic comparator net-
works and the class of hypercubic machines (e.g., the hypercube, butterfly, cube-connected
cycles, omega, and shuffle-exchange). This correspondence allows any shuffle-only compara-
tor network to be efficiently emulated (i.e., with constant slowdown) on any hypercubic
machine. (We remark that “hypercubic machines” are more commonly referred to as “hy-
percubic networks” [11, Chapter 3]. We prefer the term “hypercubic machines” in the present
context only because we use the term “networks” to refer to comparator networks.) How-
ever, the class of hypercubic machines is most often defined in terms of efficient emulation
of so-called “normal” algorithms [11, Chapter 3], which effectively allow the data to either
be shuffled or unshuffled at each step. Thus, hypercubic comparator networks, as defined
above, would seem to represent the most natural class of comparator networks corresponding
to hypercubic machines.

Our approach to the design of efficient hypercubic sorting networks is based on the
following d-round no-elimination tournament defined over n = 2% players, d > 0. For d = 0,
the tournament has 0 rounds; no matches are played. For d > 0, n/2 matches are played in
the first round according to an arbitrary pairing of the n players. The next d — 1 rounds are
defined by recursively running a no-elimination tournament amongst the n/2 winners, and
(in parallel) a disjoint no-elimination tournament amongst the n/2 losers. (We have chosen
to call this a “no-elimination” tournament in order to contrast it with the more usual “single-
elimination” or “double-elimination” formats in which a player drops out of the tournament
after suffering one or two losses.)

After a no-elimination tournament has been completed, each player has achieved a unique
sequence of match outcomes (wins and losses, 1’s and 0’s) of length d. Let player ¢ be the
player that achieves a win-loss sequence corresponding to the d-bit number i; for example, in
a 4-round tournament the sequence WLLW would correspond to : = 10013 = 9. Assume that
the outcomes of all matches are determined by an underlying total order. Further assume
that there are n distinct amounts of prize money available to be assigned to the n possible
outcome sequences. How should these amounts be assigned? Clearly the largest amount of
money should be assigned to player n — 1 = W?, who is guaranteed to be the best player.
Similarly, the smallest prize should be awarded to player 0 = LY. On the other hand, it is
not clear how to rank the remaining n — 2 win-loss sequences. For instance, in an 8-round
tournament, should the sequence WLWLLWLL be rated above or below the sequence LLLWWWWW?
Intuition and standard practice say that the player with the 5-3 record should be ranked



above the player with the 3-5 record. As we will show in Section 5, however, this is not true
for the sequences WLWLLWLL and LLLWWWWW. In fact, we will see that the standard practice of
matching and ranking players based on numbers of wins and losses is not very good. Rather,
we will see that it is better to match and rank players based on their precise sequences of
previous wins and losses.

The analysis of Section 5 not only implies that WLWLLWLL is a better record than LLLWWWWW,
but also provides an efficient algorithm for computing a fixed permutation 7 of {0,...,n—1}
such that with probability at least 1 — 27", for some constant ¢ > 0, the actual rank of
all but a small, fixed subset of the players is well-approximated by 7(i), 0 < ¢ < n. (See
Corollary 1.2 for a more precise formulation of this result.)

Why does the no-elimination tournament admit such a strong ranking property? Intu-
itively, a comparison will yield the most information if it is made between players expected
to be of approximately equal strength; the outcome of a match between a player whose pre-
vious record is very good and one whose previous record is very bad is essentially known in
advance, and hence will normally provide very little information. The no-elimination tour-
nament has the property that when two players meet in the ith round, they have achieved
the same sequence of outcomes in two independent no-elimination tournaments 7y and T} of
order 7 — 1. By symmetry, exactly half of the n! possible input permutations will lead to a
win by the player representing 7y, and half will lead to a win by the player representing 7.

The remainder of the paper is organized as follows. Section 2 discusses our applications
of the no-elimination tournament. Section 3 contains definitions. Section 4 presents several
basic lemmas. Section 5 analyzes the sorting properties of the no-elimination tournament.
Note that Section 5.3 contains a number of important technical definitions related to the no-
elimination tournament. Sections 6 through 11 present the applications of the no-elimination
tournament discussed Section 2. Section 12 offers some concluding remarks.

The results of this paper first appeared in preliminary form in [13] and [15].

2 Overview of Applications

In Sections 6 through 11 of the paper, we use the strong ranking property of the no-
elimination tournament to design efficient sorting algorithms for a variety of different models
of parallel computation. Most of our results are probabilistic in nature; for such results, the
success probability is expressed in the form

_9f(d)
| — 92

for some function f(d). (The parameter d is equal to lgn, where n is the input size.) For
the purposes of this introduction, it will be convenient to define a number of substantially
different levels of “high probability” in terms of the function f(d). Let us say that an
event occurs with very high probability if f(d) = lgd + O(1), with very® high probability if
f(d) = ©(\/d), with very® high probability if



with very* high probability if f(d) = © (m), and with very® high probability if f(d)
can be set to any function that is o(d). Note that an event occurs with very high probability
if and only if the corresponding failure probability is polynomially small in terms of n. As
it happens, all of the main probabilistic claims made in this paper hold with very? high
probability or better. We have defined the very high probability threshold only for the
purpose of contrasting the results of Section 10 with those of previous authors.

We now survey the applications of Sections 6 through 11. In Section 6, we define a
comparator network of depth ¢-lgn, ¢ & 7.44, that sorts a randomly chosen input permu-
tation with very® high probability (see Corollary 2.1). (We remark that this comparator
network is not hypercubic. A hypercubic version of the construction is discussed in the next
paragraph.) At the expense of allowing the network to fail on a small fraction of the n!
possible input permutations, this construction improves upon the asymptotic depth of the
best previously known sorting networks by several orders of magnitude [2, 14]. We make use
of the AKS construction as part of our network. However, the use of the AKS construction
can be avoided at the expense of decreasing the success probability from very® to very® high.
(The depth bound remains unchanged.) The topology of our very® high probability network
is quite simple and does not make use of expanders.

Section 7 presents a hypercubic version of the construction of Section 6. In particular,
we define an O(lg n)-depth hypercubic comparator network that sorts a randomly chosen
input permutation with very® high probability (see Corollary 3.1). We have not calculated
the constant factor within the O(lgn)-depth bound, which is moderately larger than the
constant of approximately 7.44 associated with our non-hypercubic construction.

Sections 8 and 9 provide a general method for constructing a sorting network from a
comparator network that sorts most permutations. More specifically, Section 8 describes
how to construct a (hypercubic) high-order merging network from a (hypercubic) comparator
network that sorts most input permutations. Section 9 makes use of a hypercubic high-order
merging network to develop a recurrence for the depth complexity of hypercubic sorting
networks. The analysis of this recurrence, presented in Appendix A, yields the main non-
probabilistic claim of our paper, namely, that there exist hypercubic sorting networks of

depth
)

Note that this bound is o(lg'™*n) for any constant & > 0. (See Theorem 4 for a more
precise form of the upper bound.) Given the aforementioned Q(lg®n/lglgn) lower bound of
Plaxton and Suel [16], our upper bound establishes a surprisingly strong separation between

lgn.

the power of shuffle-only comparator networks and that of hypercubic comparator networks.

In Section 10, an optimal O(lgn)-time randomized sorting algorithm is given for any
hypercubic machine. The algorithm runs in O(lgn) time on every input permutation with
very® high probability, and uses only O(1) storage at each processor. Furthermore, a very?
high probability version of the algorithm never has more than 2 records at the same processor
(where the “2” is only necessary for implementing compare-interchange operations), and
requires essentially no auxiliary variables. (A global OR operation involving a single bit at
each processor is used to check whether the sort has been completed.) A number of optimal-
time randomized sorting algorithms were previously known for certain hypercubic machines.



For example, the Flashsort algorithm of Reif and Valiant [18] is in this category. However,
none of these algorithms has a success probability better than “very high”. Probability of
failure aside, Flashsort requires more storage than our algorithm, since it makes use of a
O(lgn)-sized priority queue at each processor. On the other hand, a very high probability
sorting algorithm with constant size queues has previously been given by Leighton, Maggs,
Ranade, and Rao [12]. Like Batcher’s O(lg®n) bitonic sorting algorithm, the very? high
probability version of our sorting algorithm is non-adaptive in the sense that it can be
described solely in terms of oblivious routing and compare-interchange operations; there is
no queueing. (The very? high probability version is adaptive because it makes use of the
Sharesort algorithm of Cypher and Plaxton as a subroutine [8].)

Note that the permutation routing problem, in which each processor has a packet of
information to send to another processor, and no two packets are destined to the same
processor, is trivially reducible to the sorting problem. (The idea is to sort the packets based
on their destination addresses.) Hence, our sorting bounds also apply to that fundamental
routing problem. In fact, standard reductions [11, Section 3.4.3] allow us to apply our
sorting algorithm to efficiently solve a variety of other routing problems as well (e.g., many-
to-one routing with combining). Interestingly, all previously known optimal-time algorithms
for permutation routing on hypercubic machines [12, 17, 19] are randomized, and do not
achieve a success probability better than “very high”. Thus, the results of Section 10 provide
a permutation routing algorithm for hypercubic machines with a much smaller probability
of failure than any previously known O(lgn)-time algorithm.

Our final application is described in Section 11, where we give a randomized algorithm
for sorting n O(m)-bit records on an (n -lgn)-node omega network in O(m + lgn) bit steps
with very? high probability. This is a remarkable result in the sense that the time required
for sorting is shown to be no more than a constant factor larger than the time required
to examine a record (assuming, as is typical, that m = Q(lgn)). The only previous result
of this kind that does not rely on the AKS sorting network is the recent work of Aiello,
Leighton, Maggs, and Newman [1], which provides a randomized bit-serial routing algorithm
that runs in optimal time with very high probability on the hypercube. That paper does
not address either the combining or sorting problems, however, and does not apply to any of
the bounded-degree hypercubic machines (e.g., the butterfly, cube-connected cycles, omega,
and shuffle-exchange). All previously known algorithms for routing and sorting on bounded-
degree hypercubic machines, and for sorting on the hypercube, require Q(Ig” n) bit steps.

3 Definitions

In the sections that follow, we present basic definitions related to notational conventions,
vectors, permutations, 0-1 vectors, (hypercubic) comparator networks, randomness, network
composition, and network families. A number of definitions related to our analysis of the
0-1 no-elimination tournament are postponed to Section 5.

3.1 Notational Conventions

Our type conventions and defined constants are summarized in Tables 1 and 2, respec-



‘ Symbol ‘ Type H Symbol ‘ Type

a,b,d,i,5,k,m,n | integer a, 3 binary string
c real constant € empty string
f.9,h function T permutation
P, q real number in [0, 1] II set of permutations
U, U, W, Z real number o 0-1 vector
x,y various ¢ set of 0-1 vectors
A B, C set 0,w, 0,0 asymptotic symbol
E probabilistic event X summation symbol
XY random variable Vey fhey Ve defined constant
D probability distribution || other Greek letters | real number /function
M parallel machine Z {...,—1,0,1,...}
N comparator network

Table 1: Type conventions.

tively. (We remark that primed and/or subscripted variables have the same type as their
unprimed and unsubscripted counterparts.)

The functions lg z and pow(x) denote log, @ and 2%, respectively.
For all d and ¢ such that 0 <7 < pow(d), let bin(i,d) = 41 - - - 1o denote the d-bit binary
representation of 1.

3.2 Vectors

A d-vector, d > 0, is an integer vector of length pow(d). For any d-vector x, we index the
components of # from 0 through pow(d) — 1, and denote the ith component x(z).

Let Z(d) denote the set of all d-vectors.

A d-vector x is sorted if and only if x(:) < x(v+1), 0 <i < pow(d) — 1.

For any d-vector x, the ith a-cube of d-vector x, 0 < a < d, 0 < i < pow(d — a), is the
a-vector y such that y(j) = x(i + pow(d — a) - j), 0 < j < pow(a).

3.3 Permutations

A permutation m of length k, & > 0, is a vector of length k satisfying the following condition:
For each 7, 0 <1i < k, there is a j, 0 < j < k, such that 7(j) = ¢. If length-k permutation 7
is applied to length-k vector x, the resulting length-k vector #’ is such that /(7w (7)) = (1),
0<i<k

For all length-£ permutations 7 and 7/, the length-£ permutation obtained by applying
7 to 7’ is denoted 7 o 7',

A d-permutation, d > 0, is a permutation of length pow(d).

Let 1I(d) denote the set of all pow(d)! d-permutations.



For 0 < a < d, let 1I(d, a) denote the pow(a)! d-permutations 7 in II(d) that satisfy
j=7(i) = i=7 (mod pow(d —a))

and

il = [rwima) = |l = [

for all i and j, 0 < < pow(d), 0 < 7 < pow(d). (Informally, d-permutation = is in II(d, ) if
and only if: (i) 7 permutes within a-cubes, and (ii) 7 applies the same a-permutation within
each a-cube.)

The shuffle d-permutation, denoted <=4, has ith component 14_5---1giq_1, 0 < 1 <
pow(d). The k-shuffle d-permutation, denoted <% is the d-permutation obtained by com-
posing k shuffle d-permutations.

The unshuffle d-permutation, denoted <4, has ith component 2gt14_1---27, 0 < 7 <
pow(d). The k-unshuffle d-permutation, denoted —%, is the d-permutation obtained by
composing k unshuffle d-permutations. Note that «=k=<>* for all k.

3.4 0-1 Vectors

A 0-1 d-vector, d > 0, is a d-vector over {0,1}. Let ®(d) denote the set of all pow(pow(d))
0-1 d-vectors.

For 0 < k < pow(d), let ®(d, k) denote the set of all

(pozﬂﬁ)

0-1 d-vectors with £ 0’s and (pow(d) — k) 1’s, d > 0.

A 0-1 d-vector is trivial if and only if it belongs to ®(d,0) U ®(d, pow(d)). (Otherwise, it
is non-trivial.)

For any d-permutation 7, and all k£ such that 0 < k < pow(d), we define the kth 0-1 d-
vector corresponding to d-permutation 7, denoted ¢F. as follows:

. 0 if0<7(i) <k,
Pr(1) = { 1 if k <m(i) < pow(d).

Note that ¢* belongs to ®(d, k).

For any d-permutation m, let &, = Uogkgpow(d)ﬁbfr-

Let ¢ be a 0-1 d-vector, ¢ be the maximum index for which ¢(:) = 0 (or —1 if ¢ belongs
to ®(d,0)), and j be the minimum index for which ¢(j) = 1 (or pow(d) if ¢ belongs to
O(d,pow(d))). We say that ¢ has a dirty region of size i — j + 1 corresponding to the
sequence of components (¢(7),...,¢(¢)). Observe that ¢ is sorted if and only if 1 = j — 1.
(Thus, the dirty region of a sorted 0-1 vector is defined to be empty, and has size 0.)

A 0-1 d-vector is a-sorted, 0 < a < d, if and only if it has a dirty region of size at most

pow(a).



‘ Symbol‘ Constant ‘
e 2.7182818...

Yo see Equation (7)
e see Equation (8)
U, see Equation (9)

Table 2: Constants.

For nonnegative integers a and b, let ®(a,b) denote the set of all 0-1 (a + b)-vectors ¢
such that every a-cube of ¢ is sorted.

We remark that if 0-1 d-vector ¢ is a-sorted, then the 0-1 d-vector ¢’ obtained by applying
—% to ¢ belongs to ®pr(d — a,a). Furthermore, each a-cube of ¢’ has the same number of
0’s to within 1.

For 0-1 d-vectors ¢ and ¢, define ¢ C ¢’ if and only if ¢(¢) < ¢'(i), 0 < i < n.

3.5 (Hypercubic) Comparator Networks

This paper studies the depth complexity of certain classes of comparator networks. For the
sake of brevity, we will use the term “network” to mean “comparator network” throughout
the remainder of the paper.

For nonnegative integers a and d, a depth-a d-network consists of a disjoint levels, num-
bered from 0 to a — 1, each of which has pow(d) associated input and output wires. (Note
that every depth-0 d-network is the empty network.) The input and output wires of each
level are numbered from 0 to pow(d) — 1. Output wire 5 on level i and input wire j on level
i + 1 represent the same wire, 0 <7 < a—1,0 <j < pow(d). The level 0 input wires (resp.,
level a — 1 output wires) of a given network A" are also referred to as the input wires (resp.,
output wires) of V.

In order to complete our definition of a network, it remains only to define the structure
and behavior of a single level. If d = 0, each level consists of a single wire, and the lone input
is passed directly to the output. For d > 0, each level consists of two phases: a permutation
phase followed by an operation phase.

In the permutation phase, some d-permutation 7 is applied to the pow(d) input wires of
the level. We refer to the resulting ordered set of pow(d) wires as the intermediate wires of
the level. In an execution of the permutation phase, the values received by the input wires
are passed to the intermediate wires according to d-permutation 7: Intermediate wire 7(7)
receives its value from input wire 7, 0 < j < pow(d).

In the operation phase, the values carried by the pow(d) intermediate wires are passed
through a set of pow(d — 1) 2-input, 2-output gates, numbered from 0 to pow(d — 1) — 1.
Intermediate wires (resp., output wires) 2- 5 and 2- (5 + 1) are input to (resp., output from)
the jth gate of the level. There are five kinds of gates in our d-networks: “07, “17, “+7,

“—7_and “7”. The action of each of these gates is described below.

“0”: On input (z,y), a “0” gate produces output (z,y).



“17: On input (z,y “1” gate produces output (y,x).

(z,y), a

“+7: On input (z,y), a “+” gate produces output (min{z, y}, max{z,y}).

: On input (x,y), a “=” gate produces output (max{x,y}, min{x,y}).

“?77: On input (x,y), a “7” gate produces output (x,y) with probability 1/2, and output
(y,x) with probability 1/2. This gate is only used in Sections 10 and 11 of the paper.

A d-network is hypercubic if and only if the d-permutation applied in each level of the
d-network 1s either <=, or —,.

3.6 Randomness

A d-network N is deterministic if and only if A satisfies the following conditions: (i) the
d-permutation applied in the permutation phase of each level is fixed, (ii) the type of each
gate is fixed, and (iii) no gate is of type “77.

In general, we allow our d-networks to be random. A depth-a d-network N is random if
and only if A is given by some fixed probability distribution over the set of all deterministic
depth-a d-networks. (Each time an input vector is passed to a random network A, the
network behaves as a randomly chosen deterministic network drawn from the distribution
defining NV.)

We have introduced the notion of a random network primarily as a technical convenience,
since the random aspects of any construction can be eliminated using Lemma 4.8. Unfortu-
nately, reliance on Lemma 4.8 leads to network constructions that are not polynomial-time
uniform.

In Sections 10 and 11, we make use of the “?” gate. A d-network A is coin-tossing if and
only if AV satisfies the following conditions: (i) the d-permutation applied in the permutation
phase of each level is fixed, and (ii) the type of each gate is fixed. Note that: (i) “?” gates are
allowed in a coin-tossing d-network, and (ii) every deterministic d-network is a coin-tossing
d-network. (We do not consider random coin-tossing networks in any of our applications.
Rather, we view the “?7” gate as an alternative to the form of randomness introduced above.)

A d-vector is a-random, 0 < a < d, if and only if it is chosen from a probability distribu-
tion that assigns the same probability to any pair of d-vectors related by some d-permutation
in l(d,a).

Let Hg(d) and Hg(d, a) denote the uniform distributions over Il(d) and II(d, a), respec-
tively.

For all p in [0, 1], let ®r(d, p) denote the distribution that assigns probability

(1 = e
to each 0-1 d-vector in ®(d, k).

Let ®’4(d, k) denote the uniform distribution over ®(d, k).

If D (resp., D') is the probability distribution over ®(d) that assigns probability p; (resp.,
pi) to the d-vector bin(i,d), 0 < i < pow(d) = n, then define D < D' if and only if there
exist real numbers x;; in [0,1],0 <7 <n, 0 < j < n, such that:



(i) Xocicn®ij =1,0< 5 <n,
(ii) p; = 2o<j<n Tij " Py 0 <1 <, and
(iii) @;; > 0 only if bin(j,d) C bin(z, d).

Note that Conditions (i) and (ii) ensure that Y g<icn Pi = Yo<icn Pi = 1. Informally, D < D’
if and only if it is possible to sample from D by first sampling from 7’ and then changing
(according to a probability distribution that may depend on the particular sample chosen
from D’) a randomly chosen subset of the 1’s to 0’s.

3.7 Network Composition

The main goal of this paper is to provide efficient (i.e., small-depth) constructions of d-
networks having certain sorting-related properties. In simple cases, we present our construc-
tions by explicitly specifying the permutation phase and operation phase of each level of
the d-network. However, this approach would be too cumbersome for some of our more
complicated constructions.

In general, we present a given d-network as the “composition” of a sequence of: (i)
explicitly specified d-networks, (ii) explicitly specified d-permutations, and (iii) recursively
specified d-networks. The following mechanical procedure can be used to convert such a
sequence into a d-network.

1. “Unwind” the recurrence to obtain a sequence of explicitly specified d-networks and
d-permutations.

2. Repeatedly apply the composition rules specified below to adjacent pairs in the se-
quence until the sequence has been reduced to either: (i) a single d-network AN, or (ii)
a d-network A followed by a d-permutation 7. (The composition rules are easily seen
to be associative; hence, the order of application is immaterial.) In Case (i), A is the
desired d-network. In Case (ii), the desired d-network N is obtained by appending a
single level to A/, where: (i) the permutation 7 is applied in the permutation phase,
and (ii) the operation phase consists of pow(d — 1) “0” gates.

We now specify the three composition rules (network-network, permutation-network, and
permutation-permutation) that can be applied in Step 2 above.

1. Let N and N’ denote d-networks of depth @ and b, respectively. Then the composition
of the pair (N, N”) is the depth-(a + b) d-network A such that: (i) the first a levels
of N are given by N, and (ii) the last b levels of N/ are given by N.

2. For any depth-a d-network A and d-permutation 7, the composition of the pair (7, N)
is the depth-a d-network N obtained from N by replacing the permutation 7’ applied
in the permutation phase of level 0 with the permutation 7 o 7',

3. For all d-permutations m and 7', the composition of the pair (7, 7’) is 7o 7.
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Our recursive d-network constructions always employ recursion over a-cubes, for some «
such that 0 < a < d. To achieve efficient performance, it is desirable for the the depth of a
recursive construction over a-cubes be a function of a, and not d. The following definitions
are extremely helpful for establishing results of this kind.

A d-network N is a-partitionable, 0 < a < d, if and only if A/ can be partitioned into
pow(d — a) disjoint a-networks A;, 0 < ¢ < pow(d — a), where the input (resp., output) wires
of N; correspond to the ith input (resp., output) a-cube of N.

Let A denote an a-partitionable d-network, and define N; as in the preceding paragraph,
0 <i < pow(d — a). Then N is a (d,a)-network, 0 < a < d, if and only if the N;’s are all
identical.

We remark that: (i) every d-network is a (d, d)-network, (ii) the set of (d, a)-networks is
closed under composition, (iii) for all (d, a)-networks N and d-permutations 7 in I1(d, ), the
composition of the pair (7, ') is a (d, a)-network, and (iv) Lemma 4.10 provides a useful
alternative characterization of the class of a-partitionable hypercubic d-networks.

3.8 Network Families

It is straightforward to prove by induction on the leveled structure of any d-network that
the output d-vector is related to the input d-vector by some d-permutation. We say that a
d-network is a sorting network if and only if, in addition, every possible input d-vector leads
to a sorted output d-vector. (In the case of a random d-network, a given input d-vector may
not always produce the same output d-vector. We say that a given input vector is sorted by
a random network A if and only if it is always sorted by A.) As indicated in Section 1, a
d-network A is a sorting network if and only if: (i) A" sorts all d-permutations in II(d), or
(ii) NV sorts all 0-1 d-vectors in ®(d). Because of these facts, we will often find it useful to
restrict our attention to inputs drawn from II(d) or ®(d).

For any d-network A, let Sort(N') denote the set of all integer d-vectors sorted by V.

The depth-a shuffle- “+7 d-network is the depth-a hypercubic d-network in which every
level consists of the d-permutation <—, followed by a set of pow(d — 1) “+” gates. We
define other networks similarly; for example, each level of a depth-a unshuffle-“0” d-network
consists of the d-permutation <, followed by a set of pow(d — 1) “0” gates.

A d-network N is in Sorty(d,¢) if and only if the output of A is sorted with probability
at least 1 — ¢ on any d-random 0-1 input d-vector.

A (d,a)-network N is in Sorty(d,a,e) if and only if each output a-cube of N is sorted
with probability at least 1 — & on any a-random 0-1 input d-vector.

A (d, a)-network N is in Sorty(d,a,b,e), 0 < b < a, if and only if each output a-cube of
N is b-sorted with probability at least 1 — & on any a-random 0-1 input d-vector.

A 0-1 d-vector ¢ is a-mostly-sorted with respect to permutation 7, 0 < a < d, if and
only if after applying d-permutation 7, the length-(pow(d) — pow(a)) prefix of the resulting
0-1 d-vector is a-sorted.

A (d,a)network N is in Mosty(d,a,b,e), 0 < b < a, if and only if there exists a d-
permutation 7 in II(d, @) such that each output a-cube of A is b-mostly-sorted with respect
to m with probability at least 1 — ¢ on any a-random 0-1 input d-vector.

For nonnegative integers a and b, an (a,b)-merge operation takes as input pow(b) sorted
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lists of length pow(a) and produces a single sorted list of length pow(a + b).

A (d,a + b)-network N is in Mergey(d,a,b), if and only if N performs an (a,b)-merge
operation on each (a+b)-cube. We assume the following input convention within each (a+b)-
cube: The ith sorted input list is provided in ascending order on input wires ¢-pow(a) through
(1 4+ 1)-pow(a) — 1 of the (a + b)-cube, 0 <1 < pow(b).

A d-insertion operation, d > 0, takes as input a sorted list of length pow(d) — 1 and one
additional input, and produces a sorted list of length pow(d).

A (d, a)-network N is in Insert y(d,a), 0 < a < d, if and only if V" performs an a-insertion
operation on each a-cube. We assume the following input convention within each a-cube:
The sorted list is provided in ascending order on input wires 0 through pow(a) — 2 of the
a-cube, and the additional input is provided on input wire pow(a) — 1 of the a-cube.

In the preceding paragraphs, we have defined a number of network families. In each
case, the name of the family is subscripted by the letter “N” (for “network”). For any
particular family Fy, we define Fp as the minimum depth of any network in Fy. (For
example, Sortp(d,a,b,e) denotes the minimum depth of any network in Sorty(d,a,b,¢).)
Furthermore, we let F% denote the set of all hypercubic networks in Fy, and F2 denote the
minimum depth of any network in F%.

4 Basic Lemmas
In this section, we present a number of basic lemmas.
Lemma 4.1 For any d-network A, we have
Z(d) C Sort(N) <= &(d) C Sort(N).

Proof: This lemma is known as the 0-1 principle for sorting networks, and is proven in [10,
Section 5.3.4]. (The proof is given in the context of deterministic networks. The extension
to random networks is immediate, however, since a random network A is a sorting network
if and only if every deterministic network that is assigned a non-zero probability by the
distribution associated with A is a sorting network.) il

Lemma 4.2 For any d-network A" and d-permutation m, we have
T € Sort(N) < &, C Sort(N).

Proof: This result follows from a slight modification to the proof of the 0-1 principle cited
above. [

Lemma 4.3 For all @ and d such that 0 < a < d, we have

Mergep(d,a—1,1) < a,
Mergel (d,a —1,1)

Il
o
—~

<
~—
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Proof:  These bounds are established by Batcher’s bitonic merge network [3]. For a
hypercubic construction, additional depth is required in order to conform with the input
and output conventions adopted in Section 3. (Our input and output conventions have
been chosen in order to simplify the presentation, and not to minimize the constant factors
associated with our hypercubic constructions.) This is accomplished by preceding Batcher’s
bitonic merge network with an appropriate fixed permutation 7. (Note that such a fixed
permutation does not contribute to the depth of a non-hypercubic construction.)

The role of the fixed permutation 7 is twofold: (i) to reverse one of the two sorted input
lists within each a-cube, as required by Batcher’s bitonic merge, and (ii) to “compensate”
for the series of a shuffle permutations accompanying the merge (as described below). It is
straightforward to implement an appropriate permutation m with an O(a)-depth hypercubic
d-network. (We could use Lemma 4.7 for this purpose, although the permutation 7 is
simple enough to implement directly.) A depth-a shuffle-“4+” d-network can then be used to
implement Batcher’s bitonic merge network within each a-cube. 0

Lemma 4.4 For all a and d such that 0 < a < d, we have

Insertp(d,a) < a,
Inserth(d,a) = O(a).

Proof: This bound is also established by Batcher’s bitonic merge network [3]. In contrast
with the construction of Lemma 4.3, no list reversal is required since the input is already
in bitonic form. (We remark that in the classic sorting network model, where a given level
may contain fewer than pow(d — 1) gates, it is possible to match this depth bound while
achieving size pow(d) — 1 instead of d - pow(d) [13] (see also [11, Section 3.5.4]). The basic
idea is to use a tree-like network.) [

Lemma 4.5 For all @ and d such that 0 < a < d, we have
Sorth (d,a,0) = O(a?).

Proof: This bound is due to Batcher [3], and follows from repeated application of
Lemma 4.3. [

Lemma 4.6 For all @ and d such that 0 < a < d, we have
Sortp(d,a,0) = O(a).

Proof:  This bound is due to Ajtai, Komlés and Szemerédi [2]. The constant factor
associated with the AKS sorting network is impractically large. il

Lemma 4.7 For each d-permutation 7 in II(d, a), there is a hypercubic (d, a)-network A
with the following properties: (i) A implements the permutation , (ii) M has depth exactly
2 - a, (iii) the d-permutation <, is applied in the permutation phase of each of the first a
levels of NV, (iv) the d-permutation <=, is applied in the permutaiton phase of each of the
last a levels of A, and (v) every gate of A is either “0” or “1”. Furthermore, the gate
assignments of A can be computed in time polynomial in pow(a).
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Proof: This is a straightforward consequence of the work of Benes [4]. In particular, for
a = d, the Benes permutation network corresponds to a hypercubic d-network satisfying
properties (i), (iii), and (v). Furthermore, properties (ii) and (iv) are very nearly satisfied
by the same construction; the d-network has depth 2 -d — 1 and applies the d-permutation
<4 1n the last d — 1 levels. It follows trivially that the claim of the lemma holds for a = d.
(We can simply append a dummy shuffle level to the depth-(2 - d — 1) Benes permutation
network corresponding to an unshuffled version of =.)

For implementing a permutation in II(d, a), we apply our modified Benes construction
to each a-cube via the corresponding (d, a)-network of depth 2 -a. (The original Benes
construction could not be used in this manner; for 0 < a < d, it would not map input
a-cubes to output a-cubes.) il

Lemma 4.8 Let D denote an arbitrary probability distribution over Z(d), and N denote a
random coin-tossing depth-a d-network. If A sorts a random d-vector drawn from D with
probability at least p, then there exists some deterministic depth-a d-network A’ with the
same property.

Proof: A simple averaging argument. (Note that A is drawn from some fixed probability
distribution over the set of all deterministic depth-a d-networks.) il

Lemma 4.9 Let random 0-1 d-vector ¢ be drawn from an arbitrary probability distribution
over ®(d), and 7 be a random d-permutation drawn from Ilg(d, ). Then the 0-1 d-vector
¢’ obtained by applying 7 to ¢ is a-random.

Proof: Straightforward. 0

Lemma 4.10 Let A/ denote a depth-b hypercubic d-network, and for each 7, 0 <7 < b, let
(@) (resp., f~(7)) denote the number of levels j of A", 0 < j < ¢, such that <=4 (resp., =>4)
is applied in the permutation phase. Let f(i) = f* (i) — f~(¢), 0 < ¢ < b. For all a such that
0 < a<d, N is a-partitionable if and only if: (i) 0 < f(:i) < a, 0 < i < b, and (ii) f(b) = 0.

Proof: Let ¢%(i) = maxo<j<; f(i) and ¢~ (1) = ming<j<; f(i), 0 < i < b. Note that
g"’(i)ZOandg‘(i)ﬁ0,0ggib. o

Let A, ; denote the set of level i output wires y of A" such that there is a path to y from
some input wire x in the jth input a-cube, 0 <i < b, 0 < j < pow(d — a).

It is straightforward to prove by induction (on ¢) that

A= (0l = S =0 () SRS d b () —maxfag (). ()
Thus,
| A = pow(max{a, g" (i)} — g7 (7). (2)
Note that if |A; ;| > pow(a) for some ¢ and j, 0 <i < b, 0 < j < pow(d — a), then N is not
a-partitionable. It follows from Equation (2) that A is not a-partitionable if g*(b) > @ or
g (b) <0.

It remains to prove that if ¢g=(b) = 0 and ¢g*(b) < a, then N is a-partitionable if and
only if f(b) = 0. Accordingly, assume that ¢=(b) = 0 and ¢*(b) < a. By Equation (1),
Ap,j corresponds to the jth output subcube if and only of f(b) =0, 0 < j < pow(d — a),
completing the proof. il
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Lemma 4.11 Let N be a random coin-tossing depth-a d-network, and p (resp., p’) denote
the probability that a particular output wire x receives a 0 when the input to A is a d-vector
drawn from the probability distribution D (resp., D). If D < D’ then p > p'.

Proof: If A is deterministic, the claim follows easily from consideration of the following
“monotone” property of deterministic networks: When the value passed to a single input
wire is changed from 0 to 1 (resp., from 1 to 0), no output changes from 1 to 0 (resp., 0 to
1).

If A is not deterministic, then it is given by some fixed probability distribution D" over
the set of all deterministic depth-a d-networks. Since the claim holds for every deterministic
network, we can prove that the claim holds for A" by averaging over D" 0

5 Analysis of the No-Elimination Tournament

Let us define a 0-1 no-elimination (d, p)-tournament, d > 0, as an execution of the depth-d
shuffle-“4+” d-network on a random 0-1 input d-vector drawn from the distribution ®g(d, p).
In this section, we analyze the behavior of the 0-1 no-elimination tournament. Our analysis
culminates with Theorem 1, which establishes that the 0-1 no-elimination tournament has
a surprisingly strong ranking property. This ranking property is used to carry out the
applications of subsequent sections. (It is noteworthy that the depth-d shuffle-“4” d-network
is equivalent to Batcher’s bitonic merge network. We have chosen not to adopt Batcher’s
terminology because we plan to expose a property of the network that is largely unrelated
to merging.)

The proof of Theorem 1 is rather lengthy, and has been organized into a number of sec-
tions. Section 5.1 defines and analyzes certain output probability polynomials. Section 5.2
considers the inverse functions associated with these output probability polynomials. Sec-
tion 5.3 contains a number of auxiliary definitions. Section 5.4 provides several technical
lemmas. Section 5.5 completes the proof of Theorem 1.

5.1 The Output Polynomials

In this section, we analyze the probability that each wire in a 0-1 no-elimination (d, p)-
tournament carries a 0. We define the output probability polynomials o,(p) and prove two
basic lemmas concerning these polynomials.

Lemma 5.1 Let 2y and x; denote the two intermediate wires associated with some gate
in a 0-1 no-elimination (d,p)-tournament. Then the events Ey = “xg receivesa 07 and
E1 = “x; receives a 07 are independent.

Proof: Assume without loss of generality that: (i) x¢ is intermediate wire 2 - j on level ¢,
and (ii) x; is intermediate wire 2 - j + 1 on level 7, 0 < i < d, 0 < 5 < pow(d — 1). Note
that the index of every level 0 input wire with a path to z¢ has a 0 in bit position d —1 — 1.
Similarly, the index of every level 0 input wire with a path to z; has a 1 in bit position
d —1— 1. Thus, wires xg and z; depend on disjoint subsets of the level 0 input wires, and
the claim of the lemma follows. []
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With each binary string o, we associate the function o,(p), defined inductively as follows:

(i) a(p) = p,
(i) a0(p) =2 - 0u(p) — 0a(p)?, and
(iii) oa1(p) = ou(p)*.
One may easily verify that for each binary string «, the following conditions hold: (i) 0,(0) =
0, (ii) o,(1) = 1, (iii) o4(p) is a monotonically increasing for p in [0, 1], (iv) o,(p) is a degree-
pow(|a|) polynomial in p. Conditions (i), (ii), and (iii) imply that o,(p) is in [0, 1] for all p
in [0, 1].

Lemma 5.2 Output wire j of a 0-1 no-elimination (d, p)-tournament receives a 0 with prob-
ability o.(p), where o = bin(y, d).

Proof: We prove instead the following stronger claim, for all : and j such that 0 < < d,
0 <j < pow(d):

(i) Input wire j at level ¢ receives a 0 with probability o, (p), where o = ji_1 -+ jo.
(ii) Intermediate wire j at level 7 receives a 0 with probability o,(p), where a = 7, -+ j1.
111) Output wire 7 at level ¢ receives a 0 with probability o, where o = 7; - - - 75.

p J p y pP) J J

For ¢ = 0, Part (i) of the claim is immediate since o.(p) = p. Now let us assume that Part (i)
of the claim holds for some ¢, 0 <7 < d. Then Part (ii) of the claim holds for ¢ since the
value received by input wire j is passed to intermediate wire jy_o - joja—1. It is similarly
easy to show that if Part (iii) of the claim holds for some ¢, 0 < i < d — 1, then Part (i)
holds for 7z + 1, since output wire j at level ¢ is the same as input wire j at level ¢ + 1.

It remains only to prove that if Part (ii) of the claim holds for some i, 0 < i < d,
then Part (iii) holds for i. Accordingly, let xy and x; denote the pair of intermediate wires
associated with some gate y at level ¢, assume that Part (ii) of the claim holds for these
wires, and that the associated d-bit indices of xg and z; are Sal and [al, respectively,
where |a| = i. Then

Pr{xq receives a 0} = Pr{x; receives a 0} = o,(p),
and these probabilities are independent by Lemma 5.1. Hence, the “min” output of gate y
(i.e., the output wire with index Sa0 at level i) receives a 0 with probability
2-04(p) = 0alp)’ = Gao(p).
and the “max” output of gate y (i.e., the output wire with index Sal at level ¢) receives a
0 with probability
7a(p)* = oar(p),

as required. i

Let o and 3 denote the binary sequences corresponding to the win-loss sequences WLWLLWLL
and LLLWWWWW mentioned in Section 1. We can easily calculate that o,(1/2) ~ 0.796 and

o5(1/2) ~ 0.882, suggesting that the player with record « should be rated above the player
with record (3.

16



Lemma 5.3 For all binary strings o and 3, and all p in [0, 1],

05a(p) = oal0s(p)).

Proof: For o = ¢, the result is immediate since o.(p) = p. For |a| > 0, we prove the result
by induction on |a|. For the base case, assume that o = x, where z is either 0 or 1. Since
oo(p) =2-p—p* and a(p) = p*, we find that

052(p) = 0u(03(p)),

as required. Our induction hypothesis is that the claim holds for all @ and 3 with |a| < 1,
for some ¢ > 1. For the induction step, we will prove that the claim holds for all «, 3 with
a = d'z, r equal to 0 or 1, and |a/| = . The proof follows from three applications of the
induction hypothesis, since

05a(p) = Opara(p)
= 0.(052(p))
= ou(ow(os(p)))
= ows(0s(p))
= oa(os(p)).

5.2 The Inverses of the Output Polynomials

In order to better understand the behavior of the output polynomial o, it will be useful to
study its inverse function. In particular, for any binary string «, we define I',(z) to be the
function such that

Fa(oalp)) =p
for all p in [0, 1]. Unlike o,, I', is not a polynomial for || > 1. However, like o,,, there is a

simple inductive scheme for computing I',. This is demonstrated by the following lemma.

Lemma 5.4 For all binary strings «, and all z in [0, 1],

FE(Z) = %
Loa(z) = 1—4/1=T4(2), and
[a(2) = [s(2).

Proof: Since o.(p) = p for all p in [0, 1], o, is the identity function, and thus I, is also the
identity function. Hence I'.(z) = z for all z in [0, 1].
By Lemma 5.3, we have

ooa(p) = 0oaloo(p))
= 0.(2-p—p*).
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for all p in [0,1]. Setting p = L'on(2), we find that

00(2-Toa(2) = Toa(2)?) = 00a(Toa(z))

= 0a(la(2)).
Since g, is a monotonically increasing function, we have
2 Tou(2) = Toa(2)? = Tu(2).

Solving for I'g,(z), we obtain
Loa(z) =1 —1/1 =T,(2),

as desired.
The proof that I'1,(2z) = 1/I'a(z) proceeds in a similar fashion. By Lemma 5.3, we have

c1a(p) = ouloi(p))
= Ua(pz).
for all p in [0,1]. Setting p = I'1,(2), we find that
0a(T1a(2)?) = 01a(T1a(2))

= z
= ou(la(2),
Since g, is a monotonically increasing function, we have
[1.(2)* = Th(2)
and thus
['1a(2) = y/Tal(2),
as desired. []

Let o and 3 denote the binary sequences corresponding to the win-loss sequences WLWLLWLL
and LLLWWWWW mentioned in Section 1. We can easily calculate that I',(1/2) ~ 0.437 and
['5(1/2) ~ 0.381, suggesting that the player with record « should be rated above the player
with record (3.

Note that I',(0) = 0 and I',(1) = 1 for all binary strings o. The following lemma is
analogous to Lemma 5.3.

Lemma 5.5 For all binary strings a and 3, and all z in [0, 1],

Ppalz) = Tp(la(2)).
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Proof: Since I, is the identity function, the result is immedate for 5 = ¢. For |3]| > 0, we
prove the result by induction on |3]. For the base case, assume that 3 = x, where z is either

0 or 1. By Lemma 5.4, we have I'g(z) =1 — /1 — z and I';(2) = /2. Hence,
Poa(z) = Io(Ta(2)),

as required. Our induction hypothesis is that the claim holds for all @ and 8 with |3| < 1,
for some ¢ > 1. For the induction step, we will prove that the claim holds for all «, 3 with
B = af, v equal to 0 or 1, and |3'| = ¢. The proof follows from three applications of the
induction hypothesis, since

Loa(z) = Topalz)
= [o(Tpa(2))
= [o(Tp(Ta(2)))
= Dop(Ta(2))
= [p(la(2)).

5.3 Auxiliary Definitions

In this section, we state a number of definitions related to the analysis of the no-elimination
tournament. These definitions are used primarily in Sections 5.4 and 5.5, but also appear in
subsequent sections.

For all z < yin [0,1], A > 1, and d > 0, let

y-(1—2)
A =1
o) = = g
A(FOZ x)? Fa(y))
holz,y) = ) 4
o) @.9) W
H,\(x,y,d) = ha(xvy)Av (5)
azlal=d
n(A) = sup {ho(z,y)" + hi(w,y)'}, (6)
O<or<y<1
o dgn(N) 4+ A
1 —lgn(A
e = sup 1=len(d) =1lg(4 —2-V2) ~ 0.228, and (8)
A>1 A
ve = —2-lgp. =—2-1glg(4 —2-v2) ~ 4.260. (9)

Informally, we think of A(z,y) as a measure of the “distance” between x and y for x < y in
[0,1]. The function h,(x,y) may then be viewed as the fractional decrease in the distance
between x and y that results from applying I',, to both x and y. Section 5.4 uses an inductive
potential argument, with potential function H(x,y, d), to show that h,(x,y) is very small for
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most a. The function n() arises in the process of bounding the size of the potential function.

The constants v. and p. are related to the notion of an admissible triple, which we define

below. (Note that the constant 4. and . appear in the statements of Lemmas 5.6 and 5.7,

respectively.) The constant v. appears in the exponent of the depth bound of Section 9.
Setting A = 3, we can use Lemma 5.11 and elementary calculus to show that

10472

n(3) T

which is attainable for = y = 1/2. This implies 7. < [lg(10 4+ 7 - v/2) — 1]/4 ~ 0.829 and
e >[5 —1g(10 +7-4/2)]/3 = lg(4 — 2-/2) ~ 0.228. Using numerical calculations, it can be
shown that 4. &~ 0.822, which is attained for A ~ 3.609 and n(A) &~ 1.133. On the other hand,
the supremum of (1 —1gn(X))/A, A > 1, is actually achieved for A = 3, so . = lg(4 —2-1/2)

Definition 5.1 A triple (v,e,d), where 0 <y < 1,0 <¢e < 1/2, and d > 0, is defined to be
admissible if and only if

yod-(A+1)>d-lgnA) +X-[d+1glg(l/e) +2 —1g(l —2-¢)].

for some A > 1.

Definition 5.1 is somewhat messy to apply directly. The following pair of technical lemmas
characterize two classes of admissible triples that arise in our applications.

Lemma 5.6 For each function ¢(d) = pow(— pow(O(d))), there is a function

f(d) = O(lglg(1/e(d)))/d

such that (v,e(d),d) is an admissible triple for all d > 0 and 7. + f(d) <~y < 1.
Proof: This follows from routine calculations involving Definition 5.1 and Equation (7). []

Lemma 5.7 For each function ¢(d) = pow(—pow(y - d)), where p(d) = p. — ﬁ with
f(d) =w(1l) and f(d) = o(d), there is a function g(d) = o(1) such that

3 —g(d) )
11— ————>.¢2(d),d
(-
is an admissible triple for all d > 0.

Proof: This follows from routine calculations involving Definition 5.1 and Equation (8). []
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5.4 Several Technical Lemmas

In this section, we prove a number of technical lemmas that are only used in Section 5.5
of the paper. Lemma 5.8 shows that the notion of “distance” associated with the function
A(xz,y) is always at least twice the difference y — z. Lemma 5.9 provides a useful method for
re-writing expressions of the form hg,(x,y). Lemma 5.10 gives a maximization result that is
used within Lemma 5.11 to obtain a simplified definition of n(A). Lemma 5.12 proves that
the potential function H(x,y,d) is bounded from above by n(\)?. Lemma 5.13 shows that
for certain small values of ¢, the difference I',(1 —¢) — I', () is small for most binary strings
a.

Lemma 5.8 For all z < y in [0, 1],
y—x S A(l’,y)/Q
Proof: Define

for z in [0, 1]. Since

d,o(z):l-eJr ! )_120

dz 4 1—=z
for z in [0, 1], we know that p(z) is a non-decreasing function of z. Hence,
((1-x)
Az, y) le G-
4'1g€—(y—:1:) - 4-lge Cyt
= ply) —plx)
> 0,
and thus Aley)
Y
—x < <A 2.
T (z,y)/

[
Lemma 5.9 For all < y in [0, 1], we have: (i) h.(x,y) = 1, and (ii) for all binary strings
a and [3,
hpa(z,y) = hs(Lal2), Taly)) - ha(z,y).

Proof: Since I', is the identity function, h.(z,y) =1 for all < y in [0, 1]. We prove the
second part of the lemma by observing that

hﬁa(l',y) _ A(FﬁOZA(‘Z;);g)ﬁa(y))

A(lga(2), I'saly)) Alla(@), I'a(y))

A(Ta(z), Taly)) Az, y)

Als(La(2)), 's(Ta(y))) .
Aoy ety

= hg(la(z), Taly)) - halz, y),

where the second last equation follows from Lemma 5.5. [
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Lemma 5.10 Let fy, fi, and f denote strictly increasing and continuously differentiable
functions on (0,1), and set

for0 <o <y<land A>1. Then for all x <y in (0,1),

glz,y,A) < sup g(z,2,A).
z€(0,1)

Proof: Note that because fy, fi, and g are strictly increasing and differentiable, I’'Hopital’s
rule implies that g(x,y, A) is well-defined even if 2 = y.

Given any @ < y in (0,1), we prove below that there exists a p such that @ < p <y and

max{g(:zi,p, )\),g(p,y, )‘)} > g(l‘,y, )‘)'

This is sufficient to prove that the maximum of ¢g(z,y, A) occurs for x ~ y.
Choose p so that

f(p) = flz) = fly) — f(p)

We can always find such a p between = and y since ¢ is a continuous function. Then set

uwo = folp) — fo(2),
ur = foly) — fo(p),
vo = filp) = filx),
vi = fily) = fi(p), and
w = f(p)— flz)
= fly)— f(p)

Note that ug, uy, vg, v1, and w are all strictly positive since ¢ is strictly increasing.

By definition,
w)’ v\’
g(z,p,A) = (—0) +(—0) ,
q q

A A
a(p,y, A) = (ﬂ) +(U—1) . and
q q
A A
g, y, ) = <u0+u1) +<UOTU1) .

2w

For A > 1, the function z* is convex, and thus

23 —|—z:1A > (ZO—I-Zl)/\
2 - 2
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for all zg and z;. Hence

(5)+(3)
5+ ()

Summing the preceding pair of inequalities, we find that

>

2. (uo—l—ul)A and

2w

2‘<U0+U1)A'
2w

g(xvpv )‘) —I_g(pvyv)‘) Z 2- g(xvyv)‘)v

and hence max{g(x,p,A), g(p,y, \)} > g(x,y,A), as desired.

Lemma 5.11 For all A > 1,

A(T

Foy

lgl

) +
IFO
1 IFO )

2

(A

f

where

lgll’

x)(

folz) =

filz) =

() (247

>)A
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It is easily verified that fo(z), fi(z), and f(z) are strictly increasing and continuously
differentiable in (0, 1). By Lemma 5.10, this means that the supremum of ho(z, y)*+hi(z, y)*
occurs for x ~ y. Using I’Hopital’s rule and elementary calculus, we can show that

: dfO( )/ dy
limho((1 —¢) - =
EIE)% 0(( 5) yvy) ( )/dy
B 14++1—y
= —5
Reasoning in a similar fashion, we can also show that
: df1( )/ dy
limhA((1 —¢)- =
615}% 1(( 5) yvy) ( )/dy
_ 1t
= 5
The proof of the lemma now follows from the definition of n(\). il

Lemma 5.12 For all < y in [0,1], A > 1, and d > 0, we have
Hi(z,y.d) < n(A)".

Proof: For d = 0, the result is immediate since Hy(x,y,0) = 1. For d > 0, Lemma 5.9
implies that

Hy(x,y,d) = ||Z (hoal@,y)* + hrale, y))
e (RoTa(@), Taly)) + Ba(Tala), Taly))*) - hala,y)’
<Y ) haley)
= ;zéc;'):ilh(%y,d—l)-

Hence, Hy(z,y,d) < n())?, as required. i

Lemma 5.13 For any admissible triple (v, ¢, d), there are at most pow(+y-d) length-d binary
strings « such that

[o(l—e)=Ta(e) > (1 =2-2) -pow((y—1)-d)/4.
Proof: By Lemma 5.8, the definition of h,, and the definition of A, we have

Io(l—e)=Ta(e) < A(lu(e),[a(l —¢))
= ho(e,1—¢)-Ae,1 —¢)/2
< ha(e, 1 —e)-lg(1/e).
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Hence, it is sufficient to prove that at most pow(y - d) length-d binary strings o satisfy

(1—2-¢)-pow((y—1)-d)
4-1g(1/¢) '

ho(e, 1 —e) >

Suppose the latter claim were false. Then

(1=2-¢)-pow((y - 1)-d)]"
Hy(e,1—¢.d - d) -
/\(57 g, ) > pOW(’y ) 41g(1/€)
= pow(y-d-(A+1)—A-[d+1glg(l/e) +2—1g(l —2-¢)])
> (A,
which contradicts Lemma 5.12. [

5.5 The No-Elimination Tournament Theorem

In this section, we complete the proof of Theorem 1.

Lemma 5.14 For any admissible triple (v, e, d), there exists a set A of at least pow(d) —
pow(y - d) output wires of the depth-d shuffle-“4" d-network, and a fixed permutation 7 of
A, such that for each p the set A can be partitioned into three sets B, A~, and A" where:

(i) the set of output wires B is mapped to a contiguous interval by the permutation m,
(i) [B| < pow(y - d),

(iii) A~ (resp., AT) is the set of all output wires in A\ B mapped to positions lower (resp.,
higher) than B by 7, and

(iv) after execution of a 0-1 no-elimination (d, p)-tournament, each output wire in A~ (resp.,
AT) receives a 1 (resp., 0) with probability less than e.

Proof: Let (v,e,d) denote a given admissible triple, and choose A to be the set (guaranteed
to exist by Lemma 5.13) of at least pow(d) — pow(y - d) output wires indexed by length-d

binary strings « such that
Lo(l—e)—Ta(e) <6

where § = (1 —2-¢)-pow((y —1)-d)/4. (Note that 0 < § < 1/4 since (y,e,d) is an
admissible triple.) We remark that, using Lemma 5.4, I',(z) can be computed in O(|a|)
arithmetic operations (counting square root as a single operation) for any z in [0, 1]. Hence,
the set A can be computed in O(d - pow(d)) operations. (This may be viewed as a relatively
efficient time bound since, for example, it is linear in the size of the depth-d shuffle-“+4”
d-network.)

In fact, we can compute an appropriate permutation 7 within the same asymptotic time
bound: We set 7 to the permutation of set A that sorts the I',(¢) values in ascending order.
Ties may be broken arbitrarily. It remains to prove that our choice of A and 7 satisfies the
requirements of the lemma.
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Let p~ = max{0,p — 6} and p™ = min{1,p+ J}. (Recall that p is the 0-1 no-elimination
tournament input parameter.) Let B denote the set of binary strings « in A for which I',(¢)
is contained in [p~, p]. Because the o,’s are monotonically increasing, and using linearity of
expectation, we have

S o) —oalp)l = > (oulp®) —oulp))

azlal=d azlal=d

= ( .|Z|:_d0a(p+)) - ( .|Z|:_d0a(p‘))

= (p* —p7) - pow(d)
< 2-§-pow(d).

For each o in B we have o,(p”) < ¢ and o,(p™) > 1 — . Hence,
loo(pT) —oa(p7)| > 1—-2-¢.
The preceding inequalities imply that

|Bl < 2-§-pow(d)/(1—2-¢)
< pow(y - d).

Note that the set of binary strings B satisfies Conditions (i) and (ii) of the lemma. For
the given choice of B, define sets A~ and A% to satisfy Condition (iii). It remains only to
address Condition (iv).

Let o denote the binary string associated with an arbitrary output in A~. Thus, I',(¢) <
p~ which implies I',(1 — ¢) < p. Hence o,(p) > 1 — . (The probability that output «
receives a 1 is less than ¢.)

Similarly, let o denote the binary string associated with some output in A*. Thus,
['s(g) > p and hence o,(p) < e. (The probability that output « receives a 0 is less than e.)

O

Lemma 5.15 Let d, k, n, and p be such that d > 0, n = pow(d), 0 < k < n, and p = k/n.
Let A denote an arbitrary d-network, and assume that output wire z of N receives a 0
(resp., 1) with probability ¢ < ¢ when the input to N is drawn from ®g(d,p). Further

assume that output wire @ receives a 0 (resp., 1) with probability ¢; when the input is drawn
from ®%4(d,i), 0 < i < n. Then g, > 2-¢.

Proof: Note that

IV IV
Ui
M
<. 3 ~3
— P
-4 —
— |
| o
~3 3
Y
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Eod
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where the second inequality follows from Lemma 4.11 and the third inequality follows from

Theorem 9. [

Theorem 1 For any admissible triple (v, e, d), we have
Mostly(d. d. |- ], O(pow(d) - )) < d.

Proof: It follows from Lemmas 5.14 and 5.15 that the depth-d shuffle-“+” d-network
belongs to Mosth(d,d, |y - d|, O(pow(d) - €)). 0

Corollary 1.1 For any admissible triple (y,¢,a) and all d, 0 < a < d, we have

Mostp(d,a,|y-a],O(pow(a)-¢)) < a,
Mosth(d,a,|v - a],O(pow(a)-¢)) = O(a).

Proof: It follows easily from Theorem 1 that the (d,a)-network consisting of the d-
permutation —§ followed by the depth-a shuffle-“+” d-network has the desired properties.
The additional depth required to implement the d-permutation <% is min{a,d —a} < a for
a hypercubic construction, and 0 for a non-hypercubic construction. [l

Theorem 1 formalizes a central claim of the paper, namely, that the 0-1 no-elimination
tournament has a surprisingly strong ranking property. Though stated in the 0-1 domain,
Theorem 1 can easily be interpreted in the permutation domain. Such an interpretation is
provided by the following corollary, which is stated without proof. (We remark that the extra
factor of pow(d) in the error bound arises because |®,| = pow(d) 4 1 for any d-permutation
7. Also, Corollary 1.1, and not Corollary 1.2, is used to derive the results of subsequent
sections.)

Corollary 1.2 Let (v,¢,d) be an admissible triple, and define set A and permutation 7 as
in the proof of Lemma 5.14. Let a random d-permutation drawn from Ilz(d) be input to
a depth-d shuffle-“+” d-network, and let 7’ denote the permutation induced on the output
wires of A. Then the permutation obtained by applying 7 to 7’ is sorted to within pow(y-d)
positions with probability at least 1 — O(pow(2 - d) - ¢). 0

Finally, we remark that the factors of pow(d), pow(a), and pow(2 - d) appearing in the
error bounds associated with Theorem 1, Corollary 1.1, and Corollary 1.2 are not best
possible. Lowering these factors would require a much more careful analysis, however, and
from a theoretical point of view, would yield essentially no improvement to the results of
subsequent sections. (Our applications make use of Corollary 1.1 with ¢ set far smaller than
pow(—c - d) for any constant ¢ > 0.) Of course, from a practical standpoint, it would be
interesting to pin down the error bounds more accurately. For sufficiently small values of d,
we remark that a computer program can be used to obtain very accurate error estimates.
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6 A Small-Constant-Factor Network that Sorts Most Inputs

In this section, we establish the following theorem.

Theorem 2 For all ¢ and d such that 0 < ¢ < d, and each function e(d) = pow(— pow(o(d))),
there is a function f(d) = o(1) such that

c2-wt /e

Sortp(d,a,e(a)) < ;
— .

Furthermore, there is a deterministic d-network that achieves this bound. il

Note that (2 —~2)/(1 —v.) &~ 7.44. The following corollary provides an interpretation of
Theorem 2 in the permutation domain.

Corollary 2.1 For each function e(d) = pow(— pow(o(d))), there is a function f(d) = o(1)
and a deterministic d-network of depth
2 — ¢+ f(d)
R

-d

that sorts a random d-permutation drawn from Ilg(d) with probability at least 1 — (d).

Proof: Let n = pow(d). If 7 is a random d-permutation drawn from Ilz(d), then ¢*
is drawn at random from ®%(d,k), 0 < k < n. By Theorem 2 (with ¢ = d), there
is a deterministic d-network N of the desired depth that sorts a random 0-1 d-vector
drawn from ®%(d, k), 0 < k < n, with probability at least 1 — &(d) for each function
e(d) = pow(—pow(g(d)))/(n + 1) with g(d) = o(d). By Lemma 4.2, d-network N sorts
d-permutation 7 if and only if it sorts the n + 1 0-1 d-vectors in ®,. This occurs with
probability at least 1 — (n 4 1) - £(d) =1 — pow(— pow(g(d))), as required. 0

Lemma 6.1 For all «, b, and d such that 0 < b < a < d, and all ¢ and &" in [0, 1], we have
Sortp(d,a,e 4+ 2-¢")y < Sortp(d,a,b,e) + Sortp(d,b,e") + 2 - Merge,(d, b, 1).

Proof: We may assume that a > b, since the claim is trivial otherwise. We argue that
a (d,a)-network in Sorty(d,a,e +2-¢’') can be constructed by composing: (a) any (d,a)-
network in Sorty(d,a,b,e), (b) a random d-permutation 7 drawn from Ilg(d,b), (c) any
(d,a)-network in Sorty(d,b,e"), (d) any (d,b 4 1)-network in Merge y(d,b,1), (e) the d-
permutation 7 in II(d, a) that maps wire ¢ to wire (i + pow(d)) mod pow(a), 0 < i < pow(a),
within each a-cube, (f) any (d,b+ 1)-network in Merge y(d,b,1), and (g) the d-permutation
7=, (Note that this construction does indeed give a (d, a)-network.)

We may assume that the input is an a-random 0-1 d-vector. Consider an arbitrary a-
cube A. After stage (a) of the construction, A is b-sorted with probability at least 1 — e.
The output of stage (b) is b-random by Lemma 4.9. Hence, each b-cube of A is sorted with
probability at least 1 — &’ after stage (c). Furthermore, with probability at least 1 — ¢, no
two non-consecutive b-cubes of A receive non-trivial input.
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In what follows, we complete the proof by showing that A is sorted after stage (g)
whenever: (i) A is b-sorted after stage (a), and (ii) every b-cube of A is sorted after stage (c).
(Note that these conditions are satisfied with probability at least 1 —e —2-¢'.)

Accordingly, assume that conditions (i) and (ii) hold. Then A is sorted after stage (c)
with the exception of at most two non-trivial b-cubes of A. If A contains 0 or 1 non-trivial
b-cubes after stage (c), then A is easily seen to be sorted after stages (c), (d), and (g). If
there are 2 non-trivial b-cubes in A after stage (c) then they are adjacent. If b-cubes 2 - j
and 2 - j + 1 are non-trivial for some integer j, 0 < j < pow(a — b — 1), then A is sorted
after stages (d) and (g). If b-cubes 2 -7 4+ 1 and 2 - j + 2 are non-trivial for some integer j,
0 <j<pow(a—b—1)—1, then stage (d) has no effect and the output of stage (g) is sorted.

0
Lemmas 4.3, 4.6, and 6.1 together imply that

Sortp(d,a,e) < Sortp(d,a,b,e) + O(b). (10)
for all @, b, and d such that 0 < b < a < d, and all ¢ in [0, 1].

Lemma 6.2 For all «, b, and d such that 0 < b < a < d, and all ¢ in [0, 1], we have
Sortp(d,a,b+1,e) < Mostp(d,a,b,e)+ Insertp(d,a —b).

Proof: We argue that a (d, a)-network in Sorty(d,a,b+ 1,¢) can be constructed by com-
posing: (a) any (d,a)-network in Mosty(d,a,b,e), (b) an appropriate d-permutation 7 in
I1(d, a), (c) any (d, a—b)-network in Insert y(d,a — b), and (d) the d-permutation <%. (Note
that this construction does indeed give a (d, a)-network.)

We may assume that the input is an a-random 0-1 d-vector. By the definition of
Mosty(d,a,b,e), there is some d-permutation 7’ in II(d, a) such that each a-cube is b-mostly-
sorted with respect to 7’ with probability at least 1 — ¢ after stage (a). The desired stage (b)
d-permutation 7 is <% on’. Consider an arbitrary a-cube A. In what follows, we complete
the proof by showing that if A is b-mostly-sorted with respect to 7" after stage (a), then A
is (b + 1)-sorted after stage (d).

Accordingly, let us assume that A is b-mostly sorted with respect to 7’ after stage (a).
Then each (a — b)-cube of A contains an insertion instance after stage (b). Thus, each
(a — b)-cube of A is sorted after stage (c). Furthermore, note that each (a — b)-cube of A
contains the same number of 0’s to within 2. Hence A has a dirty region of size at most

2 - pow(b) = pow(b+ 1) after stage (d), as desired. [

Lemma 6.3 For all a, b, and d such that 0 < b < a < d, and all 7, ¢, and &' in [0, 1], we
have

Sortp(d,a,bt' + 3,6 +2-&") < Sortp(d,a,b,e)+Sortp(d, b+ 2,6+ 1,&")\+Merge,(d,b— V', 1),

where ' = |y - (b+2)].
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Proof: We may assume that b > ' + 3 and a > b+ 2, since the claim is trivial otherwise.

Let m = pow(a — b — 2). We argue that a (d,a)-network in Sorty(d,a,b'+ 3,64 2-¢)

can be constructed by composing: (a) any (d,a)-network in Sorty(d,a,b, ), (b) a random
d-permutation drawn from Ilg(d, b42), (¢) any (d, b+2)-network in Sorty(d,b + 2, + 1,&'),

(d) an appropriate d-permutation 7 in I1(d, a), (e) any (d, b—b'+1)-network in Merge y(d,b — ', 1),
and (f) an appropriate d-permutation 7’ in II(d, a). (Note that this construction does indeed
give a (d, a)-network.)

We may assume that the input is an a-random 0-1 d-vector. By the definition of
Sorty(d,a,b,e), each a-cube is b-sorted with probability at least 1 — ¢ after stage (a). The
output of stage (b) is (b+2)-random by Lemma4.9. Hence, each (b+2)-cube is (b'+1)-sorted
with probability at least 1 — &" after stage (¢). Consider an arbitrary a-cube A, and let B;
denote the ith (b+ 2)-cube of A, 0 <7 < m.

After stage (c), note that the following claims hold with probability at least 1 —e —2-¢&":
(i) the dirty region of A has size at most pow(b) +2-pow(d'+ 1) < pow(b+1), and (ii) every
B; is (V' + 1)-sorted. Let B; (resp., Bi") denote (b + 1)-cube 0 (resp., 1) of B;. If condition
(i) holds, then the dirty region of A is either confined to some B;, or to some (B |, B]) pair,
0 < i< m. Let us say that Case 1 holds if, after stage (c), the dirty region of A is confined to
some B; and conditions (i) and (ii) hold. Similarly, Case 2 holds if, after stage (c), the dirty
region of A is confined to some (B, B]) pair and conditions (i) and (ii) hold. Otherwise,
Case 3 holds. Note that Case 3 holds with probability at most e 4 2¢’.

We now define the d-permutation 7 to be applied in stage (d). Break each (b + 1)-
cube Bjf (resp., B;) into pow(d' + 1) equal-sized sets Bj; (vesp., B;;) by applying the
(b 4+ 1)-permutation (_>Z’_|:I—11 and then partitioning into (b — &')-cubes. (In other words, the
set B{':j consists of those wires in Bj" with indices congruent to j; modulo pow(d' + 1),

0 < j <pow(V +1).) In the arguments that follow, let C; denote Bi" ;U B;, and C? denote
the jth (b — b + 1)-cube of C;, 0 < i < m, 0 < j < pow(b 4+ 1). The d-permutation 7 is
defined in such a way that: (i) the wires in By and B _, are left alone, and (ii) for each
(B, B7) pair, 0 < i < m, the wires of Bi—l_—l,j and B;; are brought into opposite halves of
(b—10 4 1)-cube C? in preparation for the merge step of stage (e), 0 <7 < pow(d +1).

If either Case 1 or Case 2 held after stage (c), note that the following claims hold after
stage (d), 0 <4 < m: (ii) all of the B, ’s and B7’s are sorted, and (ii) all of the B;f |
(resp., B;;’s) have the same number of 0’s to within 2.

If either Case 1 or Case 2 held after stage (c), note that the following claims hold after
stage (e), 0 < < m: (i) every C? is sorted, and (ii) all of the C?’s have the same number of
0’s to within 4.

We now define the d-permutation 7’ of stage (f) so that: (i) the wires in By and Bjf_,
are left alone, and (ii) for each ¢, 0 < ¢ < m — 1, the (/’s are interleaved (in place) by
applying the (b + 1)-permutation Hgl_:'ll.

Let Co = By, C,, = B} _,, and assume that either Case 1 or Case 2 held after stage (c).
Then the following conditions hold after stage (f): (i) C; has a dirty region of size at most
4-pow (b +1) = pow(t/+3), 0 <i < m,and (ii) no two non-consecutive C;’s are non-trivial.
If 0 or 1 of the C}’s are non-trivial then A is (0’ 4+ 3)-sorted, and we are done. Otherwise,
we can assume that C; and (11 are non-trivial for some particular 7, 0 <7 < m. It follows

’s
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easily that Case 2 held after stage (c), and that the output of A after stage (f) is the same
as after stage (c); hence, the dirty region of A has size at most pow(t' + 1) after stage (f). []

Corollary 1.1, Lemma 4.4, and Lemma 6.2 together imply that
Sortp(d,a,|y-a|l +1,0(pow(a)-¢)) <2-a—|v-al.

for any admissible triple (v,e,a) and all d such that 0 < a < d. Lemma 5.6 implies
that for any function e(a) = pow(— pow(o(a))), there is a function f(a) = o(1) such that
(ve + f(a),e,a) is an admissible triple for all « > 0. Hence,

Sortp(d,a,|v(a)-a] +1,pow(—pow(o(a)))) <2-a— [y(a) - a], (11)

with y(a) = v, + o(1). Substituting the bounds of Equation (11) (with ¢ = b + 2) and
Lemma 4.3 (with (a,d) = (b—|v-(b+2)] 4+ 1,d)) into the inequality of Lemma 6.3, we find
that

Sortp(d,a, | (7. + o(1)) - (b+2)| + 3, pow(— pow(o(b))) + &)
< Sortp(d,a,b,e'y+ (3 —2-~.+o(1)) - b,

for all ¢"in [0, 1]. By starting with Equation (11), and then iteratively applying the preceding
inequality (with b &~ v-a,v*-a,~"-a,...), until Equation (10) can be “inexpensively” applied
(e.g., with b = o(a)) we find that

Sortp(d, a, pow(—pow(o(a)))) <

for all @ and d such that 0 < ¢ < d. Using Lemma 4.8 to eliminate the random aspects
of the preceding construction, the proof of Theorem 2 is now complete. (We remark that
randomization has not been used in the operation phase of any level in our construction.
Furthermore, the only non-trivial probability distributions used in the permutation phase of
any level are the Ilg(d, a) distributions, 0 < ¢ < d.)

Note that we have used the AKS sorting network as part of our construction. It should
be emphasized, however, that the AKS sorting network is only used to allow the function
e(d) of Theorem 2 to be set as small as possible. For example, one could prove Theorem 2
with e(d) = pow(— pow(o(v/d))) by cutting off the preceding recurrence at b = o(v/d) and
applying bitonic sort, instead of cutting it off at b = o(d) and applying the AKS sorting
network.

7 An Optimal-Depth Hypercubic Network that Sorts Most Inputs

In this section, we establish the existence of a depth-O(d), hypercubic d-network that sorts
most inputs. In contrast with the preceding section, we do not concern ourselves with
constant factor issues. This leads to a much simpler construction. In particular, we do not
require a hypercubic analogue of Lemma 6.3.
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Theorem 3 Let /(a) be any function such that Sort)(d,(a),0) = O(d), 0 < a < d. For
each function ¢(d) = pow(— pow(¢(d))), we have

Sorth (d,a,z(a)) = O(a).
Furthermore, there is a deterministic d-network that achieves this bound. il

By Lemma 4.5, the function ¥ appearing in the statement of Theorem 3 is Q(\/E) In
fact, by Theorem 4, we have

d
vid) =1 (powwvc-lgd)-lgd)' (12

The following corollary provides an interpretation of Theorem 3 in the permutation domain.

Corollary 3.1 Let the function ¢ be as defined in Theorem 3. For each function e(d) =
pow(—pow(¢)(d))), there is a deterministic hypercubic d-network of depth O(d) that sorts a
random d-permutation drawn from Ilg(d) with probability at least 1 — &(d).

Proof: Similar to the proof of Corollary 2.1. il

Lemma 7.1 For all ¢, b and d such that 0 < b <a <d, and all € and £’ in [0, 1], we have
Sorth (d,a,e +2-&") < Sorth(d,a,b,e) + Sort’s(d,b,e") + 2 - Merge®,(d, b,1) + O(a).

Proof: Similar to the proof of Lemma 6.1. The only difference is that we use an O(a)-
depth hypercubic (d, a)-network (guaranteed to exist by Lemma 4.7) to implement each of
the d-permutations of stages (b), (e), and (g). This accounts for the additive O(a) term on
the RHS of the inequality. il

Lemma 7.2 For all «, b and d such that 0 < b < a < d, and all € in [0, 1], we have
Sorth (d,a,b+ 1,¢) < Most"y(d, a,b, ) + Insert’(d,a — b) + O(a).

Proof: Similar to the proof of Lemma 6.2. The only difference is that we use an O(a)-
depth hypercubic (d, a)-network (guaranteed to exist by Lemma 4.7) to implement each of
the d-permutations of stages (b) and (d). This accounts for the additive O(a) term on the
RHS of the inequality. i

Corollary 1.1, Lemma 4.4, and Lemma 7.2 together imply that
Sortly(d,a, |4 - a] + 1, 0(pow(a) -£)) = O(a) (13)

for all d and any admissible triple (v, ¢, a) such that 0 < @ < d. Let § be any constant, 0 < § <
1 —~.. By Lemma 5.6, there is a function g(d) = O(d) such that (v.+d, pow(—pow(g(a))), )
is an admissible triple for all @ > 0. Hence,

Sortp(d,a, |y a] + 1,pow(—pow(0(a)))) = O(a),
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with v = 7. + 6, and 0 < ¢ < d. Lemmas 4.3 and 7.1 (with b= |y -a| + 1) now give
Sorth (d,a, pow(—pow(0(a))) +2-&') < Sorth(d,|y-a| +1,") + O(a).
for all &' in [0,1]. Tteratively applying the preceding inequality, we find that
Sorth (d,a, pow(—pow(0(a)))) < Sort’(a,0,+)O(a).

Substituting ¢ (a) for a, where the function 1 is as defined in the statement of Theorem 3,
we obtain

Sortp(d. a, pow(—pow(i(a)))) = O(a),
for all @ and d such that 0 < ¢ < d. Using Lemma 4.8 to eliminate the random aspects
of the preceding construction, the proof of Theorem 3 is now complete. (We remark that
randomization has not been used in the permutation phase of any level in our construction.
Furthermore, the only use of randomization in the operation phase arises from applying
Lemma 4.7 to implement random d-permutations drawn from lg(d,a), 0 < a < d.)

8 Deterministic Merging

Many sorting algorithms, both sequential as well as parallel, are based on merging. For
instance, sequential merge sort and Batcher’s bitonic sorting network are both based on
2-way merging. Since merging two sorted lists of length pow(d) requires Q(d) depth, one
cannot hope to obtain a o(d?)-depth sorting network (hypercubic or otherwise) by repeated
2-way merging. This section describes how to use a network A’ that sorts most inputs to
construct a high-order merging network A/, that is, a k-way merging network for some k > 2.
A similar technique has recently been used by Ajtai, Komlds, and Szemerédi as part of an
improved version of their original sorting network construction. The multiplicative constant
associated with the new construction is significantly lower than the constant established by
Paterson [14], though it remains impractical.

Lemma 8.1 Let AV denote a (hypercubic) (d, a)-network that sorts each a-cube with prob-
ability at least 1 —¢ on any a-random 0-1 input d-vector, m = pow(d —a), ® denote a subset
of ®(d), ) C ®(a) denote the projection of the ith a-cube of ® onto ®(a), 0 <4 < m, and
P’ = Up<icn®). If |®] < 1/c, then there exists a d-permutation 7 in II(d, ) such that the
(hypercubic) (d, a)-network AN obtained by composing m with N satisfies

® C Sort(N).

Proof: By definition, (hypercubic) (d, a)-network A can be partitioned along input a-cubes
into m disjoint, identical a-networks N,. Thus, it is sufficient to construct an a-permutation
7’ such that the (hypercubic) a-network N obtained by composing 7" with N, satisfies

o' C Sort(N)).

To determine a suitable a-permutation 7/, we construct the undirected bipartite graph
with vertex sets U = @ and V' = Il(«a), and an edge from vertex ¢ in U to vertex 7 in V if and

33



only if the 0-1 a-vector ¢ is sorted by the a-network obtained by composing a-permutation
7 with V,. The degree of every vertex in U is at least (1 —¢) - (pow(a))!, and so the sum of
the degrees of the vertices in U is at least (1 —¢) - |U| - (pow(a))!. This sum is identical to
that attained over V, so some vertex 7’ in V has degree at least (1 —¢)-|U| > |U|— 1. Since
the degree of 7’ is an integer, vertex 7’ must be connected to every vertex in U. Thus, the
a-network obtained by composing a-permutation 7’ with network A, sorts every element of

P [

Lemma 8.2 For nonnegative integers a’ and ¥, let A" be defined as in 8.1 with a = o' + ¥’
and

(pow(a') + 1)PV) < 1/e.

Let @ denote the set of all 0-1 d-vectors ¢ such that each a-cube of ¢ belongs to ®ps(a’, ).
Then there exists a d-permutation 7 in II(d, @) such that the (hypercubic) (d, a)-network N’
obtained by composing 7 with N satisfies

® C Sort(N).
Proof: We can apply Lemma 8.1 (with ® = ®y(a,V'))) since

[@u(a', )] = (pow(a’) + 1)rert)
< 1/e.

O

Note that in Lemmas 8.1 and 8.2, the depth of N only exceeds that of A” by the depth
required to implement a d-permutation in II(d, a). By Lemma 4.7, this additional depth is at
most 2 - a for a hypercubic construction. (For a non-hypercubic construction, no additional
depth is required to implement a fixed permutation.)

9 A Near-Optimal Hypercubic Sorting Network

In this section, we construct a hypercubic sorting network with nearly logarithmic depth.
At a high level, the construction is simply based on recursive high-order merging: The input
is partitioned into some number of equal-sized lists, each of these lists is sorted recursively,
and the resulting set of sorted lists are merged together. The recursion is cut off by applying
bitonic sort on subproblems that are sufficiently small. The primary question that remains
to be addressed is how to perform the merge step efficiently. Lemmas 9.1 and 9.2 prove that
the merge step can itself be reduced to sorting.

Lemma 9.1 Let v(d) be any function such that v(d) = w(1) and v(d) = o(d), and let e(d) =
pow(— pow(u(d) - d)) where p(d) = p. — ﬁ. For all a, b, and d such that 0 < b < a < d,
we have

Sorth (d,a,O(pow(3-b/2) - £(b))) < Sort’(d,b,0) + O(a - v(a)).
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Proof: By Lemma 5.7, there exists a function v(d) = 1 — ?Zy((dl)) such that (v(a),e(a),a) is

an admissible triple for all @ > 0. For such an admissible triple, Equation (13) then implies
Sortly(d,a, [y(a) - a] +1,0(pow(3 - a/2) - c(a))) = O(a).
Lemmas 4.3 and 7.1 now give
Sorth (d,a,O(pow(3 - a/2)-c(a)) +2-&') < Sorth (d, |y(a) - a] + 1,&") + O(a),

for all ¢’ in [0, 1]. Tteratively applying the preceding inequality, we find that
Sort’y (d, a, O(pow(3 - b/2) - £(b))) < Sort’(d,b,0) 4+ O(a - v(a))

for all a, b, and d such that 0 <b < a < d. i

Lemma 9.2 Let the function v be as defined in Lemma 9.1, and let yu(d) = pic — ;& Then
Merge'y(d,a — [pu(b) - b, (D) - b]) < Sort'(d,b,0) + O(a - v(a))

for all @, b and d such that (3 +1ga)-v(b) <b<a < d.

Proof: Let ¢(d) = pow(—pow(y/(d) - d)) where p/(d) = p. — ﬁ. By Lemma 9.1,

Sortp(d, a, O(pow(3 - [ (b) - b]/2) - ([ (b) - b)) < Sortip(d, |1 (b) - b],0) + O(a - v(a))

for all a, b, and d such that 0 < b < a < d. Hence, for b sufficiently large, there exists
a hypercubic (d, a)-network A of depth Sorth (d, |p/(b) - b],0) + O(a - v(a)) that sorts each

a-cube with probability at least 1 — ¢’ on any a-random 0-1 input d-vector, where

e = pow(2- () - b]) - (4 (b) - b])
pow (pow(1 +1gb) — pow(p'(b) - b — 1))
pow (— pow(y'(b) - b — 2)).

The result now follows from Lemma 8.2 since

<
<

(pow(a — [1(8) - b)) + 1P PO < pow(2-a- pow(u(b) - b))
= pow

= pow(pow(i/(b) - b+ 1 +lga — b/u(b)))
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As a consequence of the preceding lemma, we can develop a recurrence for Sort’,(d, a,0).
Note that
Sort"(d,a,0) < min Sort’(d,a — b,0) + Merge?(d,a — b, b)

0<b<a
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for all a, b, and d such that 0 < b < a < d. (This inequality is immediate, since we can
always sort a-cubes by: (i) sorting b-cubes, and (ii) merging the sorted b-cubes within each
a-cube.) Let the functions v and p be as defined in Lemma 9.2. Applying Lemma 9.2 to the
preceding inequality, we obtain

Sorth (d,a,0) < min Sort" (d,a — |u(b) - b],0) + Sort™(d, b,0) + O(a - v(a))

(3+lga)-v(b)<b<a

for all @, b, and d such that 0 < b < a < d. Letting S(d,a) = Sort}(d,a,0), we can write
this recurrence more simply as

S(d,a) < min S(d,a — [p(b)-b])+ 5(d,b) + O(a - v(a)) (14)

(3+lga)-v(b)<b<a

For each d > 0, let S’(a) denote S(d,a), 0 < a < d. In Appendix A it is proven that

S'(a) = O(a - pow(y/v. - lga) - 1g a).

(The constant v, is defined in Equation (9).) The preceding bound is proven with v(d) =
O(v/lIgd), and seems to be the best upper bound obtainable using this recurrence. Setting
a = d, we obtain a proof of the following theorem.

Theorem 4 For all d > 0, we have

Sort?(d,0) = O(d - pow(y/v. - 1gd) - 1g d).

10 An Optimal Randomized Hypercubic Sorting Algorithm

In Section 7, we constructed a depth-O(d) hypercubic sorting network that sorts most d-
permutations. In the present section, we modify that result to obtain a polynomial-time
uniform O(d)-depth coin-tossing hypercubic network that sorts every d-permutation (and
hence, every d-vector) with high probability. We then use this coin-tossing network to
develop a polynomial-time uniform hypercubic “algorithm” that sorts every d-vector in O(d)
time with high probability.

We define a hypercubic algorithm as any normal hypercube algorithm. (See [11, Sec-
tion 3.1.3], for example, for a definition of the class of normal hypercube algorithms). Every
depth-a hypercubic sorting d-network corresponds to a (possibly non-uniform) hypercubic
sorting algorithm that runs in O(a) time on any pow(d)-processors hypercubuc machine. Of
course, the converse is not true in general; most of the basic operations allowed within a nor-
mal hypercube algorithm (e.g., the usual set of arithmetic operations) cannot be performed
by a hypercubic sorting network.

A sorting network is hard-wired, and has a fixed depth or “running time”, that is inde-
pendent of the input. On the other hand, a sorting algorithm can have an arbitrarily large
gap between its worst-case and average-case running times. For example, consider a sorting
algorithm with the following structure:
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1. Apply a random d-permutation drawn from Ilg(d) to the input d-vector.

2. Attempt to sort the resulting d-vector using a time-7'(d) method that correctly sorts
most d-permutations.

3. Check whether Step 2 was successful. If so, halt. If not, return to Step 1.

The worst-case running time of such an algorithm is infinite, while the average-case running
time could be as low as O(T'(d)). One might attempt to develop a hypercubic sorting
algorithm with this structure by using the d-network of Corollary 3.1 to implement Step 2
with T'(d) = O(d). Step 3 is trivial to implement in O(d) time. However, two difficulties
remain to be addressed.

The first difficulty is that Step 1 is not easily implemented by a hypercubic algorithm. We
will overcome this difficulty by making use of a depth-d shuffle-“?” d-network to randomly
permute the input data. Although the d-permutation 7 applied by such a d-network is not
d-random, we prove in Lemma 10.2 below that 7 is sufficiently random for our purposes.

The second difficulty is that the hypercubic algorithm corresponding to Corollary 3.1
is not polynomial-time uniform. This undesirable characteristic stems from our use of
Lemma 4.8 to remove the random aspects of our hypercubic network construction. As
discussed at the end of Section 7, there is only one source of randomness in our construc-
tion: Whenever we apply the shuffle-“4" (d, a)-network of Corollary 1.1, we first apply an
a-random d-permutation. We overcome the second difficulty by replacing such a-random
d-permutations with a depth-a unshuffle-“0” d-network followed by a depth-a shuffle-“7”
d-network.

Lemma 10.2 and Corollary 10.2.1 below prove that we can approximately sort every d-
permutation with high probability by applying a depth-d shuffle-“?” d-network followed by
a depth-[d/2] shuffle-“+” d-network. Lemma 10.1 widens the range of input distributions
for which the analysis of Section 5 can be applied. (Recall that the o, functions were defined
in Section 5.1.)

Lemma 10.1 Let A" denote a coin-tossing d-network, and assume that for each length-d
binary string «, input wire « is set to 0 with probability p,, and to 1 otherwise. Further
assume that the set of events F, & “input wire o receives a 07 are mutually independent.
Then the output wire with index o will receive a 0 with probability at least o,(p~) and at
most o,(p*), where p~ = min, p, and p™ = max, p,.

Proof: Immediate from Lemma 4.11. [

Lemma 10.2 Let a, b, and d denote nonnegative integers such that d = a + b, (v,¢,a) be
an admissible triple,

5 = (1—2-2)-pow((y —1)-a)/4

r —2.8%-pow(b
e = 2-e (),

and N denote the depth-(a + d) d-network obtained by composing: (i) a depth-d shuffle-“?”
d-network, and (ii) a depth-a shuffle-“+” d-network. Then there exists a set A of at least
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pow(d) — pow(y - a 4+ b) output wires of NV, and a fixed permutation 7 of A, such that the
following condition holds with probability at least 1 — pow(d) - e — pow(a) -’ after execution
of NV on any 0-1 input d-vector ¢: If permutation 7 is applied to A, then the resulting
length-| A| 0-1 output vector is (v - @ + b)-sorted.

Proof:  Let 0-1 vector ¢ in ®(d,k) be input to d-network N, and set p = k/pow(d).
Throughout this proof, the symbols « and 3 will be used to denote binary strings of length a
and b, respectively. A random execution will refer to an execution of d-network AN on input
o.

For each 3, define Cy(3) (resp., C2(3), Cs(3)) as the set of pow(a) level-0 input wires
(resp., level-d input wires, level-(a+ d — 1) output wires) with indices of the form of (resp.,
af, Ba) for some a. For each «, define C(«) as the set of pow(b) level-(a — 1) output wires
with indices of the form (a for some (3.

For each (3, define ps to be the fraction of 0’s induced by input ¢ on Co(3) (i.e., the
number of 0’s assigned to Cy(3) divided by pow(a)). Note that p = (3"5ps)/ pow(b). For
each «, let X, denote the random variable corresponding to the number of 0’s received by
the wires of Cj(«a) in a random execution, and let ¢, = X,/ pow(b). Note that, unlike the
pg’s, each g, is a random variable. Furthermore, the random variable X, is easily seen to
be the sum of pow(bd) independent Bernoulli trials, where trial § has success probability pg.
Thus, a standard Chernoff-type argument [5] implies

Pr{|X, — p- pow(b)| = ¥ - pow(b)} < 2. =27 Pow(t) (15)
for all ¥ > 0. Define a random execution to be d-balanced if
P — 5 S Ga S p ‘|‘ 5

for all a. By Equation (15), a random execution is §-balanced with probability at least
1 —pow(a)- &' (set ¥ =4.)

Note that the last a levels of d-network A form a (d, a)-network. Hence, these levels can
be partitioned into pow(b) disjoint depth-a shuffle-“4” a-networks N, where the input and
output wires of Ny correspond to Cy(3) and C3(/3), respectively. Let E,s denote the event
that input a of Mg (i.e., level-d input wire a3 of A') receives a 0 in a random execution.
Let f.p(p) denote the probability that E,s occurs in a random §-balanced execution. Let
9sa(p) denote the probability that output o of Mg (i.e., output Sa of N') receives a 0 in
a random d-balanced execution. Note that f,z(p) = ¢a, since wire o of Cy(f3) receives the
value of a wire chosen uniformly at random from Ci(«a). Furthermore, since the sets C(«)
are mutually disjoint, we find that for each 3 and for each fixed setting of the ¢, values, the
pow(a) events F,z are mutually independent. Lemma 10.1 can therefore be applied to each
a-network Nz, and yields

Ua(p - 5) < gﬁa(p) < Uoz(p + 5)7
for all a and S.

Define A to be the set (guaranteed to exist by Lemma 5.13) of at least pow(d) — pow(~y -
a + b) output wires of A indexed by length-d binary strings Sa such that

Fo(l—¢)—=Ta(e) <6
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We set 7 to the permutation of set A that sorts the I, (¢) values in ascending order. Ties may
be broken arbitrarily. (As discussed in the proof of Lemma 5.14, the set A and permutation
7 can be computed efficiently.) It remains to prove that our choice of A and 7 satisfies the
requirements of the lemma.

Let p~ = max{0,p — 2 -5}, pt = min{l,p + 2 - ¢}, and B denote the set of binary
strings o in A for which 'y (¢) is contained in [p~, p+ ¢]. Because the o,’s are monotonically
increasing, and using linearity of expectation, we have

Sloulpt) = oalp?)l = 3 (0alp) — 0ulp?))

| N

= (p" —p7) pow(a)
< 4-§-pow(a).

For each o in B we have o,(p™) < ¢, 0,(pt) > 1 — ¢, and hence
loo(pt) —oa(p7)| > 1 -2
The preceding inequalities imply that

|IB] < 4-6-pow(a+0b)/(1—-2-¢)

= pow(y-a+b).

Note that the set of binary strings B is mapped to a contiguous interval by permutation .
Let A~ (resp., A1) denote the set of all binary strings in A\ B mapped to positions lower
(resp., higher) than B by .

Let fa denote the binary string associated with an arbitrary output in A=. Thus I',(¢) <
p~ (so p” >0 and p—3§ > 0), which implies I',(1 —¢) < p— 4 and hence o,(p —3d) > 1 —e.
Combining this inequality with the lower bound of Equation (10), we find that gs.(p) > 1 —e.
(The probability that output Sa receives a 1 is less than ¢.)

Similarly, let a denote the binary string associated with some output in A%t. Thus
Ia(e) >p+ 6 (so p+ 6 < 1), which implies o,(p + d) < . Combining this inequality with
the upper bound of Equation (10), we find that gs.(p) < €. (The probability that output
fa receives a 0 is less than e.)

We conclude that if permutation 7 is applied to A, the resulting length-|A| 0-1 vector
will have a dirty region of size at most |B| = pow(y - @ + b) with probability at least
1 — pow(d) - & — pow(a) - &' 0

Corollary 10.2.1 Let A, A, and 7 be defined as in Lemma 10.2, with « = [d/2] and
b = |d/2]. Then there exist constants v and ¢ in (0,1) such that the following condition
holds with probability at least 1 —O(pow(— pow(z-d))) after execution of A" on any 0-1 input
vector ¢: If permutation 7 is applied to A, then the resulting length-|A| 0-1 output vector
is (v - d)-sorted.
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Proof: This is a straightforward consequence of Lemmas 5.6 and 10.2. i

Given Corollary 10.2.1, we can easily prove an analogue of Lemma 7.2 that uses “7” gates
instead of random permutations. (It is important to note that the (d, a)-network associated
with the construction of Corollary 10.2.1 is composed of the following four stages: (a) a
depth-a shuffle-“?” d network, (b) a depth-a unshuffle-“0” d-network, (c) a depth-[a/2]
shuffle-“+” d-network, and (d) a depth-[a/2] unshuffle-“0” d-network.) We can then use the

scheme of Section 7 to prove Theorem 5 below with
£(d) = pow(—pow(©(Vd))).

Unfortunately, we cannot take advantage of the improvement associated with Equation 12
because the construction of Section 9 is not polynomial-time uniform.

Theorem 5 For each function £(d) = pow(— pow(O(v/d))), there is a polynomial-time uni-
form O(d)-depth coin-tossing hypercubic d-network that sorts any input d-vector probability
at least 1 — e(d). [

The scheme of Section 7 can also be used to prove Theorem 5 below with the function ¢
as defined in Theorem 6. In this case, we can dramatically decrease the failure probability
probability by making use of the Sharesort algorithm of Cypher and Plaxton [8]. Sharesort
is a polynomial-time uniform hypercubic sorting algorithm with worst-case running time
O(d -1g* d) [8]. Note that Sharesort runs in O(d) time on O(d/lg* d)-cubes. Hence, we can
modify the scheme of Section 7 by cutting off the sorting recurrence at ©(d/lg® d)-cubes
instead of ©(v/d)-cubes (as allowed by bitonic sort). Unfortunately, Sharesort does not
correspond to a hypercubic sorting network since, for example: (i) Sharesort makes copies
of keys, and (ii) Sharesort performs a variety of arithmetic operations on auxiliary integer
variables. For these reasons, we have not been able to make use of Sharesort in previous
sections of the paper.

A small improvement to the Sharesort bound is known when polynomial-time “pre-
processing” (to compute certain look-up tables) is allowed. In particular, the running time of
Sharesort can be improved to O(d - (Ig d) -1g™ d) in that case [7]. This improvement has been
incorporated into the (d) bound of Theorem 6. If exponential pre-processing is allowed, the
running time of Sharesort can be improved further to O(d -1g d) [7]. However, it is not clear
whether the latter result could be used to improve the £(d) bound of Theorem 6. (The lack
of uniformity can be eliminated through randomization. However, the failure probability of
the resulting algorithm seems to be strictly higher than that given by Theorem 6.)

Theorem 6 Let f(d) =0 (#d). For each function ¢(d) = pow(— pow(f(d))), there is

(g d)lg*
a polynomial-time uniform randomized hypercubic sorting algorithm that runs in O(d) time
(on any input d-vector) with probability at least 1 — e. 0

11 An Optimal Bit-Serial Randomized Hypercubic Sorting Algo-
rithm

An order-d omega machine is a ((d 4 1) - pow(d))-processor machine, d > 0. Each processor
has an associated ID of the form (7,7), 0 < ¢ < d, 0 < j < pow(d). We define the ith level
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of a given order-d omega machine as the set of pow(d) processors with IDs of the form (¢, j),
0 < j < pow(d). The processors of an order-d omega machine are interconnected according
to the following rules:

1. There is no wire between any pair of processors in non-consecutive levels.

2. For all 7 such that 0 < ¢ < d, there is a wire connecting processor (i,7) to processor
(¢4 1,7) ifand only if jp = ji 4, 0 <k <d—1.

Omega machines belong to the class of butterfly-like machines discussed in [11, Section 3.8.1].

Observe that there is a close correspondence between an order-d omega machine M and
a depth-d shuffle d-network A. In particular, consider the 1-1 function f(7,7) that maps
processor (i,7) of M to: (i) level-i input wire j of A, 0 < ¢ < d, and (ii) level-( — 1) output
wire j of N, 0 < 7 < d. (Recall that level-i input wire j and level-(i — 1) output wire j
represent the same wire, 0 < ¢ < d. Hence, f is indeed a function.) Then there is a wire
between processors (i,7) and (¢ 4+ 1,5') in M if and only if wires f(7,j) and f(i + 1,7') in
N are connected to a common gate x, with f(7,7) as an input wire and f(: + 1,5') as an
output wire.

In the bit model, it is assumed that a processor can only perform one bit operation per
time step. Thus, b bit steps are required to send a b-bit message to an adjacent processor.
Similarly, b bit steps are required to compare two b-bit operands located at the same proces-
sor. In this section, we provide a bit-serial polynomial-time uniform randomized algorithm
for sorting pow(d) O(b)-bit records on an order-d omega machine in O(b+ d) bit steps. This
time bound is easily seen to be optimal. For b = Q(d), the processor bound is also opti-
mal. Our algorithm can be adapted to achieve the same asymptotic performance on any
butterfly-like machine.

Definition 11.1 A bit-serial omega emulation scheme for a depth-a word-size-b d-network
N is a bit-serial algorithm that: (i) runs on an order-d omega machine, (ii) emulates the
execution of N on any d-vector of b-bit integers, and (iii) receives (resp., produces) the jth
component of the input (resp., output) d-vector at processor (0,7), 0 < j < pow(d).

Definition 11.2 A depth-(2 - b) hypercubic d-network A is a-pass, 0 < b < a < d, if and
only if the d-permutation <=4 (resp., <) is applied in the permutation phase of the first
(resp., last) b levels of NV.

Lemma 11.1 There is an O(a+ b)-bit-step bit-serial omega emulation scheme for any coin-
tossing a-pass word-size-b d-network.

Proof: Straightforward. (Note that each of our five gate types can be implemented in a
bit-serial fashion. For the “+” and “—7 gates, such a bit-serial implementation requires that
the inputs be provided most-significant bit first.) il

Definition 11.3 A depth-O(a) hypercubic d-network N is a-multipass, 0 < a < d, if and
only if A can be decomposed into an O(1)-length sequence of a-pass networks.
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Lemma 11.2 There is an O(a + b)-bit-step bit-serial omega emulation scheme for any coin-
tossing a-multipass word-size-b d-network.

Proof: This follows from a constant number of applications of Lemma 11.1. Note that
only levels 0 through a of the order-d omega machine are used by the emulation scheme. []

Definition 11.4 A hypercubic d-network N is (v, a, k)-geometric, v > 0,0 < a < d, k> 0,
if and only if V' can be decomposed into a length-k sequence of d-networks (N;) such that: (i)
0 <~y <landAjis [y"*-a|-multipass,0 < 7 < k, or (ii) v > 1 and N is [y % a|-multipass,
0<i<k.

Definition 11.5 A (v, a, k)-geometric d-network is compact if and only if

> (W al+1) <d.

0<i<k

Lemma 11.3 There is an O(b+ d)-bit-step bit-serial omega emulation scheme for any coin-
tossing compact (7, a, k)-geometric word-size-b d-network N,

Proof:  We give the proof for the case 0 < v < 1. The case v > 1 is similar. (Note
that if we “reverse” a (v, d, f(d))-geometric d-network, we obtain a (1/v,d, f(d))-geometric
d-network.)

Decompose the given d-network A into a sequence of networks (N;) as in Definition 11.4.
Thus, network A; is f(a,7)-multipass where

fla,i)=[y*"-af,

0 <1< k. Let M denote an order-d omega machine, and

g(i)= > (fla,5) + 1),

0<<i

0 <i < k. To obtain an efficient bit-serial omega emulation scheme for network N, we use
Lemma 11.2 to emulate A; on the contiguous set of levels A; = {g(i),...,g(: + 1) — 1} of
M, 0 <i < k. (The input to N; will be provided at level g(i). Hence, Lemma 11.2 implies
that the output to network A; will be produced at level g(i).) Note that: (i) the A,’s are
well-defined (i.e., each is set of level numbers in the range 0 to d — 1) since A is compact,
and (ii) the A;’s are mutually disjoint. Property (ii) ensures that the emulation schemes
associated with distinet NV;’s do not interfere with one another.

It remains to prove that we can efficiently communicate the output of network A;, which
is produced at level g(i), to level g(i + 1), 0 < ¢ < k — 1. (Once the output of N; reaches
level g(i + 1), the emulation of Ny, over the set of levels A;;; can begin.) For example, it
would suffice to efficiently map the value on wire j of level g(i) to wire j of level g(i 4 1),
0 < j < pow(d). Unfortunately, it is very expensive to implement such an identity d-
permutation on the machine M.

The key observation, however, is that we do not need to implement the identity d-
permutation between levels ¢g(i) and g(i + 1). Because the f(a,¢)’s form a non-increasing
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sequence, 0 < i < k, there is no interaction between distinct f(a,7 + 1)-cubes in any d-
network A such that i +1 < j < k. Hence, it is sufficient to implement a d-permutation 7
such that: (i) level-g(¢) f(a,i+ 1)-cubes are mapped to level-g(i + 1) f(a,i+ 1)-cubes, and
(ii) the identity f(a,7 4+ 1)-permutation is applied within each f(a,i+ 1)-cube.

We now prove that a d-permutation 7m of the desired form can be implemented in
O(f(a,i) 4+ f(a,i+ 1)) bit steps while using only levels A; U A;;; of M. (The reader may
wonder why the preceding O-bound does not depend on b. This bound refers only to the
“additional” number of bit steps required to implement the d-permutation 7. Because our
entire emulation scheme is pipelined bit-serially, we can account for the word-size by adding
O(b) at the end of our analysis.) In particular, the d-permutation = that we apply between
levels g(¢) and g(i 4 1) satisfies

T(J) = Jd=1 """ Jd=f(ai+1)Jd=f(ai)=f(ari+1)=1 " * * JoJd= f(asit1)=1 " * * Jd=f(asi)=f(asit1)s

0 < j < pow(d). The d-permutation m can easily be implemented in O(f(a,¢)+ f(a,i+ 1))
additional bit steps as follows. First, within level g(¢), we apply the d-permutation 7’ defined
by

T(J) = Jaflait1)—1 " Jde flani)— fanit1)Jd—1 " Jaf(ai41)Jdf(asi)— f(asit1)—1 * * * JO,

0 < j < pow(d). Note that 7’ belongs to lI(d, f(a,?)+ f(a,2+1)). By Lemma 4.7, 7’ can be

implemented in O(f(a,t) + f(a,i+ 1)) bit steps using only levels A; U A, 41 of M. We now

complete the implementation of d-permutation 7 by simply shuffling the data forward from

level g(¢) to level g(i 4+ 1). (This takes f(a,) bit steps and uses only the set of levels A;.)
The total running time of our emulation scheme is easily seen to be

0] (b+ > f(a,i)) =0(b+g(k—1))

0<i<k

bit steps. However, one final detail remains to be addressed, since our emulation scheme
leaves the output at level g(k — 1) instead of level 0. We can move the output to level 0
by applying an appropriate fixed permutation 7’ from level g(k — 1) to level 0. The entire
machine M can be used for this purpose. Thus, the Benes routing technique of Lemma 4.7
yields an immediate O(b+d) bound. In fact, an O(b+g(k—1)) bound can easily be achieved
by: (i) unshuffling the data from level g(k — 1) to level 0, and (ii) applying an appropriate
permutation 7 in II(d, g(k — 1)).

Thus, the total running time of our revised emulation scheme is O(b + g(k — 1)), which

is O(b + d) since N is compact. [

Theorem 7 There is a polynomial-time uniform O(b+d)-bit-step bit-serial omega emulation
of the family {N;} of coin-tossing d-networks of Theorem 5.

Proof: Examining the construction of Theorem 5, we find that A; can be decomposed

into: (a) a (1,d,1)-geometric coin-tossing d-network, (b) a (1/3,d,O(lg d))-geometric coin-
tossing d-network, (c) a (1,0(/Igd), O(y/lgd))-geometric deterministic d-network, (d) a
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(3,d,O(lg d))-geometric coin-tossing d-network, and (e) a (1, d, 1)-geometric coin-tossing d-
network. (Note that the constants 1/3 and 3 appearing above are somewhat arbitrarily
chosen. The “slack” in our definitions creates a range of acceptable values.)

The coin-tossing d-networks of stages (a), (b), (d), and (e) are easily seen to be compact.
Stage (c) corresponds to the use of bitonic sort to cut off the sorting recurrence at O(y/lg d)-
cubes. Note that we are free to choose the constant within the O(y/lgd) bound arbitrarily
small. Hence, we can ensure that the deterministic d-network of stage (c) is also compact.
The theorem then follows by Lemma 11.3. (Our claim that the emulation is polynomial-
time uniform since: (i) the family of coin-tossing networks of Theorem 5 is polynomial-time
uniform, and (ii) the emulation scheme underlying Lemma 11.3 is polynomial-time uniform.)

O

Corollary 7.1 For each function £(d) = pow(—pow(O(v/d))), there is a polynomial-time
uniform O(b+ d)-bit-step randomized bit-serial algorithm for an order-d omega machine that
sorts any input d-vector of b-bit integers with probability at least 1 — (d).

Proof: This is an immediate consequence of Theorems 5 and 7. [l

12 Concluding Remarks

We have defined the class of “hypercubic” sorting networks, and established a nearly log-
arithmic upper bound on the depth complexity of such networks. Of course, it would be
very interesting to close the remaining gap. Given the techniques developed in this paper,
the problem of constructing an optimal O(lg n)-depth hypercubic sorting network has been
reduced to the problem of constructing an O(lgn)-depth comparator network that sorts a
randomly chosen input permutation with probability at least 1 — 27" for some constant
e > 0.

One unfortunate characteristic of our hypercubic sorting network construction is its lack
of uniformity. In particular, no deterministic polynomial-time algorithm is known for gen-
erating the family of networks for which existence has been established. On the positive
side, existence of a randomized polynomial-time generation algorithm is a straightforward
consequence of our results.

While the multiplicative constant of approximately 7.44 established for the sorting net-
work construction of Section 6 appears to be quite reasonable, the construction remains
impractical. This is due to the fact that there is a trade-off between the value of the
multiplicative constant and the success probability (the probability that a random input
permutation is sorted by the network); for practical values of n, a significant increase in the
constant is required in order to prove any reasonable success probability.
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A Analysis of the Sorting Recurrence

Let ¢; denote the positive constant implicit in the O(a - v(a)) term of Equation (14), let
ag and ¢y denote sufficiently large positive constants (to be determined), and consider the
function T'(a), a > 0, defined by the following recurrence. Let T'(a) = O(1) for a < ag, and

T(a)= min T(a— [pd)-b])+T(b)+c1-a-via) (16)

(3+lga)-v(b)<b<a
for a > ag, where

v(d) = e¢-4/lgd, and

2
p(d) = e = Sy

Note that our choice of the function v(d) satisfies the requirements of Lemma 9.2, since
v(d) = w(l) and v(d) = o(d). Furthermore, the function u(d) is defined as in Lemma 9.2.
Hence, any upper bound for T'(a) is also an upper bound for the function S’(a) = S(d, a)
defined in Section 9. In this section, we prove that

T(a) = O(a-pow(y/v.-lga)-lga).

(The constant v, is defined in Equation (9).) We prove two technical lemmas before analyzing
of the recurrence of Equation (16).

Lemma A.1 For every pair of real numbers x and y such that 0 <z <y, we have
NOE —\/x-y—x-w/x-ny/Z.
Proof: Examining the Taylor series expansion of /1 — ¢, we find that

Vi—e<1—-¢/2
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for all € in [0, 1]. Hence,

\/r_\/x.y_x.m = ST Y- VT U 1_\/%

< v (1= 7)
e

Lemma A.2 For any a > aqg, let

d = a—|u(v)-b].

where

V= LOW(\/ZC-W)J '

For a sufficiently large choice of the constant ag, the following bounds hold:

(i) 1<a’§a—M—l—2<a,

pow(+/velga)

(i) p(¥) > . — —2

co- lga7

(i) 2 pow (v Tga) = ola/IER).
(iv) 1< (34Iga)-vt) <V < a,and
(V) \/m_\/vc'lga_vc'\/m> UC/Q'

Proof: Part (v) follows from Lemma A.1. The remaining inequalities follow from straight-
forward asymptotic estimates. il

Theorem 8 There is a positive constant ¢y such that
T(a) <co-a-pow(y/vu.-lga)-lga.
for all @ > 1.

Proof: We prove the claim of the lemma by induction on . The claim is trivial for
1 < a < agp, since we are free to choose the constant ¢ arbitrarily large. Now fix @ > a¢ and
assume the claim holds for all smaller values of . Define ¢’ and & as in Lemma A.2.

By Part (i) of Lemma A.2, we can apply the induction hypothesis to bound T'(a’) since
1 < @' < a. Using Parts (i), (ii), and (iii) of Lemma A.2, we find that

T(a) < c¢o-d -pow(y/v. -lga')-lgd
pb') - a
< a— 2] - Voo lga) -1
< ¢ (a pow(\/m)—l_ pow(y/v. -lga)-lga
4
co-a-pow(\/vc-lga)-lga—co-/,ec-a-lga—l—co-(——I—o(l))-a- lga.
C2
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By Part (iv) of Lemma A.2, we can apply the induction hypothesis to bound T'(d") since
1 < b < a. Using Part (v) of Lemma A.2 and Equation (9), we find that

T < ¢ b -pow(y/u.lgl) 1gd’
< ¢ a-pow (¢vc-lga—vc-\/vc-lga—\/vc-lga) . <lga—\/vc-lga)
< coflera-lga—co-pe-a-y/u.-lga.

By Part (iv) of Lemma A.2, we can set b = V' in the recurrence of Equation (16) since

(34 1ga)-v(b) <V < a. Thus,
T(a) < T(d)+T®)+ci-a-via)
< co-a-pow(\/vc-lga)-lga—l—[co-(j—z—l—o(l)—/,ec-\/v_c)—l—cl-cz]-a- lga.

For ag sufficiently large, we can choose the constants ¢y and ¢y so that the coefficient of

a+/1g a 1s negative, yielding

T(a) <co-a-pow(y/vu.-lga)-lga,

as required. 0

B Locating the “Median” of the Binomial Distribution

The purpose of this appendix is to establish Theorem 9, which is used in the proof of
Lemma 5.15.

Lemma B.1 Let & and n be integers such that 0 < k < n, p be a real number in [0, 1]
such that np = k, and X be a random variable drawn from B(n,p) (i.e., the binomial
distribution with parameters n and p). Let Y be a random variable corresponding to the
number of successes in n independent Bernoulli trials with associated success probabilities
pi, 0 <1 < n, such that > g<;., pi = k. Then

Pr(X < k)
Pr(X > k)

> Pr(Y < k) and
>

Proof: These inequalities are established (in a more general form) by Hoeffding in [9,
Theorem 4]. 0

Lemma B.2 Let k;, n, p, and X be as defined in Lemma B.1. If 0 < p < 1/2, then let Y’ and
Y"” be random variables drawn from B(2k,1/2) and B(n—2k,0), respectively. Otherwise, let
Y’ and Y be random variables drawn from B(2(n — k), 1/2) and B(2k —n, 1), respectively.
Let Y =Y' +Y" If

Pr(X =k)>Pr(Y =k)/2

then
min{Pr(X < k),Pr(X > k)} > 1/2.
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Proof: By symmetry, Pr(Y < k) = Pr(Y > k) = [1 + Pr(Y = k)]/2. The claimed

inequality then follows easily using Lemma B.1. il

Lemma B.3 For each pair of integers & and n such that 0 < & < n, let

w002

(If n = k, then ug,, = 1.) Then ug, > K

ekt

Proof: Fix £ >0, and let v, = uy, for n > k. It is sufficient to prove that the sequence
(v,,) is nonincreasing for n > k, and that

kk
Iim v, = —.
n—00 n ekk"

(17)

To see that the sequence (v,) is nonincreasing for n > k, note that

Vk+1 B k F
Vk N k—%l

IA
—

and for n > k& we have

n—k n
S
Un, n—=k n

< 1.

(The preceding inequality follows from the fact that the function f : R — R defined by
f(2) = (14 1)" is strictly increasing for all > 1.)
To verify Equation (17), note that

n! k_k (n— k)”_k
El(n — k)l nk nn—k
kF n! (n— k)”_k

Uy =

E'(n—k)!' nn
Ry

k! n

kk
~

Lemma B.4 For each nonnegative integer k, let

kk+122kk!
(k + 1)ek(2k)!

WE =
Then the sequence (wy) is nondecreasing for k > 1.
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Proof: Note that
w21+ Dk + 1)
wp  ek(k4+2)(2k +1)

and

. W41
lim —*L — 1,

k— 00 W

Thus, it is sufficient to prove that the function f: R — R defined by

A4+
N = e+ 1)

is nonincreasing for > 1. One may easily verify that

df(x) _ (e+1*(1+3)"
de 2%z +2)2(2z +1)2 9(x)

where

g(x) = —2?—6x—2+ (x4 1)(x 4+ 2)(2x + 1)[In(1 + %) — L]

Hence, for > 0, % < 0ifand only if g(x) < 0. Forx > 1, we have In(1+1) < 1L 41
and hence

g(x) < —:1;2—6:1;—2—|—:1;(:1;—|—1)(:1;—|—2)(2:1;—|—1)(ﬁ—%—I—%)
T

< 0.

Lemma B.5 For all nonnegative integers k, we have

Kk 2k
v 2—2]6—1‘
Rl (k)
Proof: It is easy to verify that the claim holds for 0 < k& < 2. For & > 3, consider the

sequence (wg) defined in Lemma B.4. By Lemma B.4, w; > w3 &~ 0.538 > 1/2 for k& > 3.
Hence

% kL (2K
R (k)2

2k
2—2]6—1‘
- (3)

Lemma B.6 Let k, n, p, X, and Y be as defined in Lemma B.2. Then

Pr(X =k)> Pr(Y =k)/2.
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Proof: If 0 <p < 1/2, then

- ()0 (-4

kk
ek !
2k
2—2k—1
- (1)
— Pr(Y = k)/2,

where the two inequalities follow from Lemmas B.3 and B.5, respectively.
Similarly, if 1/2 < p <1, we have

v = () (-0)
- () ’f) (e k)”‘(”—k)

(n — k)r="*

= PrY = k)/2.

Lemma B.7 Let &k, n, p, and X be as defined in Lemma B.1. Then
min{Pr(X < k),Pr(X > k)} > 1/2.
Proof: Immediate from Lemmas B.2 and B.6. [
Theorem 9 Let n, p, and X be as defined in Lemma B.1. Then
min{Pr(X > [np]), Pr(X < [np])} 2 1/2

Proof: Define real numbers p~ and p* so that np~ = |np| and np™ = [np]. Let X~
(resp., X*) denote a random variable drawn from B(n,p~) (resp., B(n,p")). Note that for
all real numbers x, we have
Pr(X > )
Pr(X <)

> Pr(X™ > ) and
> Pr(XTt <ua).

Combining these inequalities with the bound of Lemma B.7, we obtain

Pr(X > [np]) > Pr(X™ > |np|) > 1/2 and
Pr(X < [np]) > Pr(X* < [np]) > 1/2.
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