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1 IntroductionA comparator network is an n-input, n-output acyclic circuit made up of wires and 2-input,2-output comparator gates. The input wires of the network are numbered from 0 to n � 1,as are the output wires. The input to the network is an integer vector of length n, wherethe ith component of the vector is received on input wire i, 0 � i < n. The two outputs ofeach comparator gate are labeled \min" and \max", respectively, while the two inputs arenot labeled. On input x and y, a comparator gate routes minfx; yg to its \min" output androutes maxfx; yg to its \max" output. It is straightforward to prove (by induction on thedepth of the network) that any comparator network induces some permutation of the inputvector on the n output wires. We say that a given comparator network sorts a particularvector if and only if the value routed to output i is less than or equal to the value routed tooutput i+ 1, 0 � i < n� 1.An n-input comparator network is a sorting network if and only if it sorts every possibleinput vector. It is straightforward to prove that any n-input comparator network that sortsthe n! permutations of f0; : : : ; n� 1g is a sorting network. In fact, any n-input comparatornetwork that sorts the 2n possible 0-1 vectors of length n is a sorting network. The latterresult is known as the 0-1 principle for sorting networks [10, Section 5.3.4].It is natural to consider the problem of constructing sorting networks of optimal depth.Note that at most bn=2c comparisons can be performed at any given level of a compara-tor network. Hence the well-known 
(n lg n) sequential lower bound for comparison-basedsorting implies an 
(lg n) lower bound on the depth of any n-input sorting network. Anelegant O(lg2 n)-depth upper bound is given by Batcher's bitonic sorting network [3]. Forsmall values of n, the depth of bitonic sort either matches or is very close to matching that ofthe best constructions known (a very limited number of which are known to be optimal) [10,Section 5.3.4]. Thus, one might suspect the depth of Batcher's bitonic sorting network to beoptimal to within a constant factor, or perhaps even to within a lower-order additive term.Consider Knuth's Exercise 5.3.4.51 (posed as an open problem): \Prove that the asymptoticvalue of Ŝ(n) is not O(n � lg n)," where Ŝ(n) denotes the minimal size (number of comparatorgates) of an n-input sorting network of any depth. The source of the di�culty of this partic-ular exercise was subsequently revealed by Ajtai, Koml�os, and Szemer�edi [2], who providedan optimal O(lg n)-depth construction known as the AKS sorting network.While the AKS sorting network represents a major theoretical breakthrough, it su�ersfrom two signi�cant shortcomings. First, the multiplicative constant hidden within the O-notation is su�ciently large that the result remains impractical. Second, the structure ofthe network is su�ciently \irregular" that it does not seem to map e�ciently to commoninterconnection schemes. In fact, Cypher has proven that any emulation of the AKS networkon the cube-connected cycles requires 
(lg2 n) time [6]. The latter issue is of signi�cantinterest, since a primary motivation for considering the problem of constructing small-depthsorting networks is to obtain a fast parallel sorting algorithm for a general-purpose parallelcomputer. In other words, it would be highly desirable to identify a small-depth sortingnetwork that could be implemented e�ciently on a topology that is also useful for performingoperations other than sorting.In this paper we pursue a new approach to the problem of designing small-depth sorting1



networks with \regular" structure. Our notion of regularity is enforced by restricting the setof permutations that can be used to connect successive levels of gates in a comparator net-work. In particular, we say that a comparator network is hypercubic if and only if successivelevels are connected either by a shu�e or an unshu�e (inverse shu�e) permutation. (Theseterms are de�ned more precisely in Section 3.) Knuth's Exercise 5.3.4.47, posed as an openproblem, may be viewed as asking for the depth complexity of shu�e-only sorting networks,in which every pair of adjacent levels is connected by a shu�e permutation. Batcher's bitonicsort provides an O(lg2 n) upper bound for this problem, and recently, Plaxton and Suel [16]have established an 
(lg2 n= lg lg n) lower bound. (The same lower bound holds for the classof unshu�e-only sorting networks.)From a practical point of view, Knuth's shu�e-only requirement would seem to be overly-restrictive. It is motivated by a certain correspondence between hypercubic comparator net-works and the class of hypercubic machines (e.g., the hypercube, buttery, cube-connectedcycles, omega, and shu�e-exchange). This correspondence allows any shu�e-only compara-tor network to be e�ciently emulated (i.e., with constant slowdown) on any hypercubicmachine. (We remark that \hypercubic machines" are more commonly referred to as \hy-percubic networks" [11, Chapter 3]. We prefer the term \hypercubic machines" in the presentcontext only because we use the term \networks" to refer to comparator networks.) How-ever, the class of hypercubic machines is most often de�ned in terms of e�cient emulationof so-called \normal" algorithms [11, Chapter 3], which e�ectively allow the data to eitherbe shu�ed or unshu�ed at each step. Thus, hypercubic comparator networks, as de�nedabove, would seem to represent the most natural class of comparator networks correspondingto hypercubic machines.Our approach to the design of e�cient hypercubic sorting networks is based on thefollowing d-round no-elimination tournament de�ned over n = 2d players, d � 0. For d = 0,the tournament has 0 rounds; no matches are played. For d > 0, n=2 matches are played inthe �rst round according to an arbitrary pairing of the n players. The next d� 1 rounds arede�ned by recursively running a no-elimination tournament amongst the n=2 winners, and(in parallel) a disjoint no-elimination tournament amongst the n=2 losers. (We have chosento call this a \no-elimination" tournament in order to contrast it with the more usual \single-elimination" or \double-elimination" formats in which a player drops out of the tournamentafter su�ering one or two losses.)After a no-elimination tournament has been completed, each player has achieved a uniquesequence of match outcomes (wins and losses, 1's and 0's) of length d. Let player i be theplayer that achieves a win-loss sequence corresponding to the d-bit number i; for example, ina 4-round tournament the sequence WLLW would correspond to i = 10012 = 9. Assume thatthe outcomes of all matches are determined by an underlying total order. Further assumethat there are n distinct amounts of prize money available to be assigned to the n possibleoutcome sequences. How should these amounts be assigned? Clearly the largest amount ofmoney should be assigned to player n � 1 = Wd, who is guaranteed to be the best player.Similarly, the smallest prize should be awarded to player 0 = Ld. On the other hand, it isnot clear how to rank the remaining n � 2 win-loss sequences. For instance, in an 8-roundtournament, should the sequence WLWLLWLL be rated above or below the sequence LLLWWWWW?Intuition and standard practice say that the player with the 5{3 record should be ranked2



above the player with the 3{5 record. As we will show in Section 5, however, this is not truefor the sequences WLWLLWLL and LLLWWWWW. In fact, we will see that the standard practice ofmatching and ranking players based on numbers of wins and losses is not very good. Rather,we will see that it is better to match and rank players based on their precise sequences ofprevious wins and losses.The analysis of Section 5 not only implies that WLWLLWLL is a better record than LLLWWWWW,but also provides an e�cient algorithm for computing a �xed permutation � of f0; : : : ; n�1gsuch that with probability at least 1 � 2�n" , for some constant " > 0, the actual rank ofall but a small, �xed subset of the players is well-approximated by �(i), 0 � i < n. (SeeCorollary 1.2 for a more precise formulation of this result.)Why does the no-elimination tournament admit such a strong ranking property? Intu-itively, a comparison will yield the most information if it is made between players expectedto be of approximately equal strength; the outcome of a match between a player whose pre-vious record is very good and one whose previous record is very bad is essentially known inadvance, and hence will normally provide very little information. The no-elimination tour-nament has the property that when two players meet in the ith round, they have achievedthe same sequence of outcomes in two independent no-elimination tournaments T0 and T1 oforder i � 1. By symmetry, exactly half of the n! possible input permutations will lead to awin by the player representing T0, and half will lead to a win by the player representing T1.The remainder of the paper is organized as follows. Section 2 discusses our applicationsof the no-elimination tournament. Section 3 contains de�nitions. Section 4 presents severalbasic lemmas. Section 5 analyzes the sorting properties of the no-elimination tournament.Note that Section 5.3 contains a number of important technical de�nitions related to the no-elimination tournament. Sections 6 through 11 present the applications of the no-eliminationtournament discussed Section 2. Section 12 o�ers some concluding remarks.The results of this paper �rst appeared in preliminary form in [13] and [15].2 Overview of ApplicationsIn Sections 6 through 11 of the paper, we use the strong ranking property of the no-elimination tournament to design e�cient sorting algorithms for a variety of di�erent modelsof parallel computation. Most of our results are probabilistic in nature; for such results, thesuccess probability is expressed in the form1� 2�2f(d) ;for some function f(d). (The parameter d is equal to lg n, where n is the input size.) Forthe purposes of this introduction, it will be convenient to de�ne a number of substantiallydi�erent levels of \high probability" in terms of the function f(d). Let us say that anevent occurs with very high probability if f(d) = lg d + O(1), with very 2 high probability iff(d) = �(pd), with very 3 high probability iff(d) = d2�(plg d)3



with very 4 high probability if f(d) = � � d(lg d)�lg� d�, and with very 5 high probability if f(d)can be set to any function that is o(d). Note that an event occurs with very high probabilityif and only if the corresponding failure probability is polynomially small in terms of n. Asit happens, all of the main probabilistic claims made in this paper hold with very2 highprobability or better. We have de�ned the very high probability threshold only for thepurpose of contrasting the results of Section 10 with those of previous authors.We now survey the applications of Sections 6 through 11. In Section 6, we de�ne acomparator network of depth c � lg n, c � 7:44, that sorts a randomly chosen input permu-tation with very5 high probability (see Corollary 2.1). (We remark that this comparatornetwork is not hypercubic. A hypercubic version of the construction is discussed in the nextparagraph.) At the expense of allowing the network to fail on a small fraction of the n!possible input permutations, this construction improves upon the asymptotic depth of thebest previously known sorting networks by several orders of magnitude [2, 14]. We make useof the AKS construction as part of our network. However, the use of the AKS constructioncan be avoided at the expense of decreasing the success probability from very5 to very3 high.(The depth bound remains unchanged.) The topology of our very3 high probability networkis quite simple and does not make use of expanders.Section 7 presents a hypercubic version of the construction of Section 6. In particular,we de�ne an O(lg n)-depth hypercubic comparator network that sorts a randomly choseninput permutation with very3 high probability (see Corollary 3.1). We have not calculatedthe constant factor within the O(lg n)-depth bound, which is moderately larger than theconstant of approximately 7:44 associated with our non-hypercubic construction.Sections 8 and 9 provide a general method for constructing a sorting network from acomparator network that sorts most permutations. More speci�cally, Section 8 describeshow to construct a (hypercubic) high-order merging network from a (hypercubic) comparatornetwork that sorts most input permutations. Section 9 makes use of a hypercubic high-ordermerging network to develop a recurrence for the depth complexity of hypercubic sortingnetworks. The analysis of this recurrence, presented in Appendix A, yields the main non-probabilistic claim of our paper, namely, that there exist hypercubic sorting networks ofdepth 2O�plg lgn� � lg n:Note that this bound is o(lg1+" n) for any constant " > 0. (See Theorem 4 for a moreprecise form of the upper bound.) Given the aforementioned 
(lg2 n= lg lg n) lower bound ofPlaxton and Suel [16], our upper bound establishes a surprisingly strong separation betweenthe power of shu�e-only comparator networks and that of hypercubic comparator networks.In Section 10, an optimal O(lg n)-time randomized sorting algorithm is given for anyhypercubic machine. The algorithm runs in O(lg n) time on every input permutation withvery4 high probability, and uses only O(1) storage at each processor. Furthermore, a very2high probability version of the algorithm never has more than 2 records at the same processor(where the \2" is only necessary for implementing compare-interchange operations), andrequires essentially no auxiliary variables. (A global OR operation involving a single bit ateach processor is used to check whether the sort has been completed.) A number of optimal-time randomized sorting algorithms were previously known for certain hypercubic machines.4



For example, the Flashsort algorithm of Reif and Valiant [18] is in this category. However,none of these algorithms has a success probability better than \very high". Probability offailure aside, Flashsort requires more storage than our algorithm, since it makes use of a�(lg n)-sized priority queue at each processor. On the other hand, a very high probabilitysorting algorithm with constant size queues has previously been given by Leighton, Maggs,Ranade, and Rao [12]. Like Batcher's O(lg2 n) bitonic sorting algorithm, the very2 highprobability version of our sorting algorithm is non-adaptive in the sense that it can bedescribed solely in terms of oblivious routing and compare-interchange operations; there isno queueing. (The very4 high probability version is adaptive because it makes use of theSharesort algorithm of Cypher and Plaxton as a subroutine [8].)Note that the permutation routing problem, in which each processor has a packet ofinformation to send to another processor, and no two packets are destined to the sameprocessor, is trivially reducible to the sorting problem. (The idea is to sort the packets basedon their destination addresses.) Hence, our sorting bounds also apply to that fundamentalrouting problem. In fact, standard reductions [11, Section 3.4.3] allow us to apply oursorting algorithm to e�ciently solve a variety of other routing problems as well (e.g., many-to-one routing with combining). Interestingly, all previously known optimal-time algorithmsfor permutation routing on hypercubic machines [12, 17, 19] are randomized, and do notachieve a success probability better than \very high". Thus, the results of Section 10 providea permutation routing algorithm for hypercubic machines with a much smaller probabilityof failure than any previously known O(lg n)-time algorithm.Our �nal application is described in Section 11, where we give a randomized algorithmfor sorting n O(m)-bit records on an (n � lg n)-node omega network in O(m+ lgn) bit stepswith very2 high probability. This is a remarkable result in the sense that the time requiredfor sorting is shown to be no more than a constant factor larger than the time requiredto examine a record (assuming, as is typical, that m = 
(lg n)). The only previous resultof this kind that does not rely on the AKS sorting network is the recent work of Aiello,Leighton, Maggs, and Newman [1], which provides a randomized bit-serial routing algorithmthat runs in optimal time with very high probability on the hypercube. That paper doesnot address either the combining or sorting problems, however, and does not apply to any ofthe bounded-degree hypercubic machines (e.g., the buttery, cube-connected cycles, omega,and shu�e-exchange). All previously known algorithms for routing and sorting on bounded-degree hypercubic machines, and for sorting on the hypercube, require 
(lg2 n) bit steps.3 De�nitionsIn the sections that follow, we present basic de�nitions related to notational conventions,vectors, permutations, 0-1 vectors, (hypercubic) comparator networks, randomness, networkcomposition, and network families. A number of de�nitions related to our analysis of the0-1 no-elimination tournament are postponed to Section 5.3.1 Notational ConventionsOur type conventions and de�ned constants are summarized in Tables 1 and 2, respec-5



Symbol Type Symbol Typea; b; d; i; j; k;m; n integer �; � binary stringc real constant � empty stringf; g; h function � permutationp; q real number in [0; 1] � set of permutationsu; v; w; z real number � 0-1 vectorx; y various � set of 0-1 vectorsA;B;C set o; !;�;
 asymptotic symbolE probabilistic event � summation symbolX;Y random variable c; �c; �c de�ned constantD probability distribution other Greek letters real number/functionM parallel machine Z f: : : ;�1; 0; 1; : : :gN comparator networkTable 1: Type conventions.tively. (We remark that primed and/or subscripted variables have the same type as theirunprimed and unsubscripted counterparts.)The functions lg x and pow(x) denote log2 x and 2x, respectively.For all d and i such that 0 � i < pow(d), let bin(i; d) = id�1 � � � i0 denote the d-bit binaryrepresentation of i.3.2 VectorsA d-vector, d � 0, is an integer vector of length pow(d). For any d-vector x, we index thecomponents of x from 0 through pow(d)� 1, and denote the ith component x(i).Let Z(d) denote the set of all d-vectors.A d-vector x is sorted if and only if x(i) � x(i+ 1), 0 � i < pow(d)� 1.For any d-vector x, the ith a-cube of d-vector x, 0 � a � d, 0 � i < pow(d � a), is thea-vector y such that y(j) = x(i+ pow(d� a) � j), 0 � j < pow(a).3.3 PermutationsA permutation � of length k, k � 0, is a vector of length k satisfying the following condition:For each i, 0 � i < k, there is a j, 0 � j < k, such that �(j) = i. If length-k permutation �is applied to length-k vector x, the resulting length-k vector x0 is such that x0(�(i)) = x(i),0 � i < kFor all length-k permutations � and �0, the length-k permutation obtained by applying� to �0 is denoted � � �0,A d-permutation, d � 0, is a permutation of length pow(d).Let �(d) denote the set of all pow(d)! d-permutations.6



For 0 � a � d, let �(d; a) denote the pow(a)! d-permutations � in �(d) that satisfyj = �(i) =) i � j (mod pow(d � a))and $ ipow(d � a)% = $ jpow(d� a)% () $ �(i)pow(d � a)% = $ �(j)pow(d � a)%for all i and j, 0 � i < pow(d), 0 � j < pow(d). (Informally, d-permutation � is in �(d; a) ifand only if: (i) � permutes within a-cubes, and (ii) � applies the same a-permutation withineach a-cube.)The shu�e d-permutation, denoted  -d, has ith component id�2 � � � i0id�1, 0 � i <pow(d). The k-shu�e d-permutation, denoted  -kd is the d-permutation obtained by com-posing k shu�e d-permutations.The unshu�e d-permutation, denoted ,!d, has ith component i0id�1 � � � i1, 0 � i <pow(d). The k-unshu�e d-permutation, denoted ,!kd, is the d-permutation obtained bycomposing k unshu�e d-permutations. Note that  -kd=,!�kd for all k.3.4 0-1 VectorsA 0-1 d-vector, d � 0, is a d-vector over f0; 1g. Let �(d) denote the set of all pow(pow(d))0-1 d-vectors.For 0 � k � pow(d), let �(d; k) denote the set of all pow(d)k !0-1 d-vectors with k 0's and (pow(d)� k) 1's, d � 0.A 0-1 d-vector is trivial if and only if it belongs to �(d; 0) [�(d;pow(d)). (Otherwise, itis non-trivial.)For any d-permutation �, and all k such that 0 � k � pow(d), we de�ne the kth 0-1 d-vector corresponding to d-permutation �, denoted �k�, as follows:�k�(i) = ( 0 if 0 � �(i) < k,1 if k � �(i) < pow(d).Note that �k� belongs to �(d; k).For any d-permutation �, let �� = [0�k�pow(d)�k�.Let � be a 0-1 d-vector, i be the maximum index for which �(i) = 0 (or �1 if � belongsto �(d; 0)), and j be the minimum index for which �(j) = 1 (or pow(d) if � belongs to�(d;pow(d))). We say that � has a dirty region of size i � j + 1 corresponding to thesequence of components h�(j); : : : ; �(i)i. Observe that � is sorted if and only if i = j � 1.(Thus, the dirty region of a sorted 0-1 vector is de�ned to be empty, and has size 0.)A 0-1 d-vector is a-sorted, 0 � a � d, if and only if it has a dirty region of size at mostpow(a). 7



Symbol Constante 2:7182818 : : :c see Equation (7)�c see Equation (8)�c see Equation (9)Table 2: Constants.For nonnegative integers a and b, let �M (a; b) denote the set of all 0-1 (a+ b)-vectors �such that every a-cube of � is sorted.We remark that if 0-1 d-vector � is a-sorted, then the 0-1 d-vector �0 obtained by applying,!ad to � belongs to �M(d � a; a). Furthermore, each a-cube of �0 has the same number of0's to within 1.For 0-1 d-vectors � and �0, de�ne � � �0 if and only if �(i) � �0(i), 0 � i < n.3.5 (Hypercubic) Comparator NetworksThis paper studies the depth complexity of certain classes of comparator networks. For thesake of brevity, we will use the term \network" to mean \comparator network" throughoutthe remainder of the paper.For nonnegative integers a and d, a depth-a d-network consists of a disjoint levels, num-bered from 0 to a� 1, each of which has pow(d) associated input and output wires. (Notethat every depth-0 d-network is the empty network.) The input and output wires of eachlevel are numbered from 0 to pow(d)� 1. Output wire j on level i and input wire j on leveli+1 represent the same wire, 0 � i < a� 1, 0 � j < pow(d). The level 0 input wires (resp.,level a� 1 output wires) of a given network N are also referred to as the input wires (resp.,output wires) of N .In order to complete our de�nition of a network, it remains only to de�ne the structureand behavior of a single level. If d = 0, each level consists of a single wire, and the lone inputis passed directly to the output. For d > 0, each level consists of two phases: a permutationphase followed by an operation phase.In the permutation phase, some d-permutation � is applied to the pow(d) input wires ofthe level. We refer to the resulting ordered set of pow(d) wires as the intermediate wires ofthe level. In an execution of the permutation phase, the values received by the input wiresare passed to the intermediate wires according to d-permutation �: Intermediate wire �(j)receives its value from input wire j, 0 � j < pow(d).In the operation phase, the values carried by the pow(d) intermediate wires are passedthrough a set of pow(d � 1) 2-input, 2-output gates, numbered from 0 to pow(d � 1) � 1.Intermediate wires (resp., output wires) 2 � j and 2 � (j +1) are input to (resp., output from)the jth gate of the level. There are �ve kinds of gates in our d-networks: \0", \1", \+",\�", and \?". The action of each of these gates is described below.\0": On input (x; y), a \0" gate produces output (x; y).8



\1": On input (x; y), a \1" gate produces output (y; x).\+": On input (x; y), a \+" gate produces output (minfx; yg;maxfx; yg).\�": On input (x; y), a \�" gate produces output (maxfx; yg;minfx; yg).\?": On input (x; y), a \?" gate produces output (x; y) with probability 1=2, and output(y; x) with probability 1=2. This gate is only used in Sections 10 and 11 of the paper.A d-network is hypercubic if and only if the d-permutation applied in each level of thed-network is either -d or ,!d.3.6 RandomnessA d-network N is deterministic if and only if N satis�es the following conditions: (i) thed-permutation applied in the permutation phase of each level is �xed, (ii) the type of eachgate is �xed, and (iii) no gate is of type \?".In general, we allow our d-networks to be random. A depth-a d-network N is random ifand only if N is given by some �xed probability distribution over the set of all deterministicdepth-a d-networks. (Each time an input vector is passed to a random network N , thenetwork behaves as a randomly chosen deterministic network drawn from the distributionde�ning N .)We have introduced the notion of a random network primarily as a technical convenience,since the random aspects of any construction can be eliminated using Lemma 4.8. Unfortu-nately, reliance on Lemma 4.8 leads to network constructions that are not polynomial-timeuniform.In Sections 10 and 11, we make use of the \?" gate. A d-network N is coin-tossing if andonly if N satis�es the following conditions: (i) the d-permutation applied in the permutationphase of each level is �xed, and (ii) the type of each gate is �xed. Note that: (i) \?" gates areallowed in a coin-tossing d-network, and (ii) every deterministic d-network is a coin-tossingd-network. (We do not consider random coin-tossing networks in any of our applications.Rather, we view the \?" gate as an alternative to the form of randomness introduced above.)A d-vector is a-random, 0 � a � d, if and only if it is chosen from a probability distribu-tion that assigns the same probability to any pair of d-vectors related by some d-permutationin �(d; a).Let �R(d) and �R(d; a) denote the uniform distributions over �(d) and �(d; a), respec-tively.For all p in [0; 1], let �R(d; p) denote the distribution that assigns probabilitypk � (1 � p)pow(d)�kto each 0-1 d-vector in �(d; k).Let �0R(d; k) denote the uniform distribution over �(d; k).If D (resp., D0) is the probability distribution over �(d) that assigns probability pi (resp.,p0i) to the d-vector bin(i; d), 0 � i < pow(d) = n, then de�ne D � D0 if and only if thereexist real numbers xij in [0; 1], 0 � i < n, 0 � j < n, such that:9



(i) P0�i<n xij = 1, 0 � j < n,(ii) p0i = P0�j<n xij � pj , 0 � i < n, and(iii) xij > 0 only if bin(j; d) � bin(i; d).Note that Conditions (i) and (ii) ensure that P0�i<n pi = P0�i<n p0i = 1. Informally, D � D0if and only if it is possible to sample from D by �rst sampling from D0 and then changing(according to a probability distribution that may depend on the particular sample chosenfrom D0) a randomly chosen subset of the 1's to 0's.3.7 Network CompositionThe main goal of this paper is to provide e�cient (i.e., small-depth) constructions of d-networks having certain sorting-related properties. In simple cases, we present our construc-tions by explicitly specifying the permutation phase and operation phase of each level ofthe d-network. However, this approach would be too cumbersome for some of our morecomplicated constructions.In general, we present a given d-network as the \composition" of a sequence of: (i)explicitly speci�ed d-networks, (ii) explicitly speci�ed d-permutations, and (iii) recursivelyspeci�ed d-networks. The following mechanical procedure can be used to convert such asequence into a d-network.1. \Unwind" the recurrence to obtain a sequence of explicitly speci�ed d-networks andd-permutations.2. Repeatedly apply the composition rules speci�ed below to adjacent pairs in the se-quence until the sequence has been reduced to either: (i) a single d-network N , or (ii)a d-network N followed by a d-permutation �. (The composition rules are easily seento be associative; hence, the order of application is immaterial.) In Case (i), N is thedesired d-network. In Case (ii), the desired d-network N 0 is obtained by appending asingle level to N , where: (i) the permutation � is applied in the permutation phase,and (ii) the operation phase consists of pow(d� 1) \0" gates.We now specify the three composition rules (network-network, permutation-network, andpermutation-permutation) that can be applied in Step 2 above.1. Let N and N 0 denote d-networks of depth a and b, respectively. Then the compositionof the pair (N ;N 0) is the depth-(a+ b) d-network N 00 such that: (i) the �rst a levelsof N 00 are given by N , and (ii) the last b levels of N 00 are given by N 0.2. For any depth-a d-network N and d-permutation �, the composition of the pair (�;N )is the depth-a d-network N 0 obtained from N by replacing the permutation �0 appliedin the permutation phase of level 0 with the permutation � � �0.3. For all d-permutations � and �0, the composition of the pair (�; �0) is � � �0.10



Our recursive d-network constructions always employ recursion over a-cubes, for some asuch that 0 � a � d. To achieve e�cient performance, it is desirable for the the depth of arecursive construction over a-cubes be a function of a, and not d. The following de�nitionsare extremely helpful for establishing results of this kind.A d-network N is a-partitionable, 0 � a � d, if and only if N can be partitioned intopow(d�a) disjoint a-networks Ni, 0 � i < pow(d�a), where the input (resp., output) wiresof Ni correspond to the ith input (resp., output) a-cube of N .Let N denote an a-partitionable d-network, and de�ne Ni as in the preceding paragraph,0 � i < pow(d � a). Then N is a (d; a)-network, 0 � a � d, if and only if the Ni's are allidentical.We remark that: (i) every d-network is a (d; d)-network, (ii) the set of (d; a)-networks isclosed under composition, (iii) for all (d; a)-networks N and d-permutations � in �(d; a), thecomposition of the pair (�;N ) is a (d; a)-network, and (iv) Lemma 4.10 provides a usefulalternative characterization of the class of a-partitionable hypercubic d-networks.3.8 Network FamiliesIt is straightforward to prove by induction on the leveled structure of any d-network thatthe output d-vector is related to the input d-vector by some d-permutation. We say that ad-network is a sorting network if and only if, in addition, every possible input d-vector leadsto a sorted output d-vector. (In the case of a random d-network, a given input d-vector maynot always produce the same output d-vector. We say that a given input vector is sorted bya random network N if and only if it is always sorted by N .) As indicated in Section 1, ad-network N is a sorting network if and only if: (i) N sorts all d-permutations in �(d), or(ii) N sorts all 0-1 d-vectors in �(d). Because of these facts, we will often �nd it useful torestrict our attention to inputs drawn from �(d) or �(d).For any d-network N , let Sort(N ) denote the set of all integer d-vectors sorted by N .The depth-a shu�e-\+" d-network is the depth-a hypercubic d-network in which everylevel consists of the d-permutation  -d followed by a set of pow(d � 1) \+" gates. Wede�ne other networks similarly; for example, each level of a depth-a unshu�e-\0" d-networkconsists of the d-permutation ,!d followed by a set of pow(d� 1) \0" gates.A d-network N is in SortN (d; ") if and only if the output of N is sorted with probabilityat least 1� " on any d-random 0-1 input d-vector.A (d; a)-network N is in SortN (d; a; ") if and only if each output a-cube of N is sortedwith probability at least 1 � " on any a-random 0-1 input d-vector.A (d; a)-network N is in SortN (d; a; b; "), 0 � b � a, if and only if each output a-cube ofN is b-sorted with probability at least 1 � " on any a-random 0-1 input d-vector.A 0-1 d-vector � is a-mostly-sorted with respect to permutation �, 0 � a � d, if andonly if after applying d-permutation �, the length-(pow(d)� pow(a)) pre�x of the resulting0-1 d-vector is a-sorted.A (d; a)-network N is in MostN (d; a; b; "), 0 � b � a, if and only if there exists a d-permutation � in �(d; a) such that each output a-cube of N is b-mostly-sorted with respectto � with probability at least 1 � " on any a-random 0-1 input d-vector.For nonnegative integers a and b, an (a; b)-merge operation takes as input pow(b) sorted11



lists of length pow(a) and produces a single sorted list of length pow(a+ b).A (d; a + b)-network N is in MergeN (d; a; b), if and only if N performs an (a; b)-mergeoperation on each (a+b)-cube. We assume the following input convention within each (a+b)-cube: The ith sorted input list is provided in ascending order on input wires i�pow(a) through(i+ 1) � pow(a)� 1 of the (a+ b)-cube, 0 � i < pow(b).A d-insertion operation, d � 0, takes as input a sorted list of length pow(d)� 1 and oneadditional input, and produces a sorted list of length pow(d).A (d; a)-networkN is in InsertN (d; a), 0 � a � d, if and only ifN performs an a-insertionoperation on each a-cube. We assume the following input convention within each a-cube:The sorted list is provided in ascending order on input wires 0 through pow(a) � 2 of thea-cube, and the additional input is provided on input wire pow(a)� 1 of the a-cube.In the preceding paragraphs, we have de�ned a number of network families. In eachcase, the name of the family is subscripted by the letter \N" (for \network"). For anyparticular family FN , we de�ne FD as the minimum depth of any network in FN . (Forexample, SortD(d; a; b; ") denotes the minimum depth of any network in SortN (d; a; b; ").)Furthermore, we let FhN denote the set of all hypercubic networks in FN , and FhD denote theminimum depth of any network in FhN .4 Basic LemmasIn this section, we present a number of basic lemmas.Lemma 4.1 For any d-network N , we haveZ(d) � Sort(N ) () �(d) � Sort(N ):Proof: This lemma is known as the 0-1 principle for sorting networks, and is proven in [10,Section 5.3.4]. (The proof is given in the context of deterministic networks. The extensionto random networks is immediate, however, since a random network N is a sorting networkif and only if every deterministic network that is assigned a non-zero probability by thedistribution associated with N is a sorting network.)Lemma 4.2 For any d-network N and d-permutation �, we have� 2 Sort(N ) () �� � Sort(N ):Proof: This result follows from a slight modi�cation to the proof of the 0-1 principle citedabove.Lemma 4.3 For all a and d such that 0 < a � d, we haveMergeD (d; a� 1; 1) � a;MergehD (d; a� 1; 1) = O(a):12



Proof: These bounds are established by Batcher's bitonic merge network [3]. For ahypercubic construction, additional depth is required in order to conform with the inputand output conventions adopted in Section 3. (Our input and output conventions havebeen chosen in order to simplify the presentation, and not to minimize the constant factorsassociated with our hypercubic constructions.) This is accomplished by preceding Batcher'sbitonic merge network with an appropriate �xed permutation �. (Note that such a �xedpermutation does not contribute to the depth of a non-hypercubic construction.)The role of the �xed permutation � is twofold: (i) to reverse one of the two sorted inputlists within each a-cube, as required by Batcher's bitonic merge, and (ii) to \compensate"for the series of a shu�e permutations accompanying the merge (as described below). It isstraightforward to implement an appropriate permutation � with an O(a)-depth hypercubicd-network. (We could use Lemma 4.7 for this purpose, although the permutation � issimple enough to implement directly.) A depth-a shu�e-\+" d-network can then be used toimplement Batcher's bitonic merge network within each a-cube.Lemma 4.4 For all a and d such that 0 � a � d, we haveInsertD(d; a) � a;InserthD(d; a) = O(a):Proof: This bound is also established by Batcher's bitonic merge network [3]. In contrastwith the construction of Lemma 4.3, no list reversal is required since the input is alreadyin bitonic form. (We remark that in the classic sorting network model, where a given levelmay contain fewer than pow(d � 1) gates, it is possible to match this depth bound whileachieving size pow(d) � 1 instead of d � pow(d) [13] (see also [11, Section 3.5.4]). The basicidea is to use a tree-like network.)Lemma 4.5 For all a and d such that 0 � a � d, we haveSorthD(d; a; 0) = O(a2):Proof: This bound is due to Batcher [3], and follows from repeated application ofLemma 4.3.Lemma 4.6 For all a and d such that 0 � a � d, we haveSortD(d; a; 0) = O(a):Proof: This bound is due to Ajtai, Koml�os and Szemer�edi [2]. The constant factorassociated with the AKS sorting network is impractically large.Lemma 4.7 For each d-permutation � in �(d; a), there is a hypercubic (d; a)-network Nwith the following properties: (i) N implements the permutation �, (ii) N has depth exactly2 � a, (iii) the d-permutation ,!d is applied in the permutation phase of each of the �rst alevels of N , (iv) the d-permutation  -d is applied in the permutaiton phase of each of thelast a levels of N , and (v) every gate of N is either \0" or \1". Furthermore, the gateassignments of N can be computed in time polynomial in pow(a).13



Proof: This is a straightforward consequence of the work of Bene�s [4]. In particular, fora = d, the Bene�s permutation network corresponds to a hypercubic d-network satisfyingproperties (i), (iii), and (v). Furthermore, properties (ii) and (iv) are very nearly satis�edby the same construction; the d-network has depth 2 � d � 1 and applies the d-permutation -d in the last d � 1 levels. It follows trivially that the claim of the lemma holds for a = d.(We can simply append a dummy shu�e level to the depth-(2 � d � 1) Bene�s permutationnetwork corresponding to an unshu�ed version of �.)For implementing a permutation in �(d; a), we apply our modi�ed Bene�s constructionto each a-cube via the corresponding (d; a)-network of depth 2 � a. (The original Bene�sconstruction could not be used in this manner; for 0 < a < d, it would not map inputa-cubes to output a-cubes.)Lemma 4.8 Let D denote an arbitrary probability distribution over Z(d), and N denote arandom coin-tossing depth-a d-network. If N sorts a random d-vector drawn from D withprobability at least p, then there exists some deterministic depth-a d-network N 0 with thesame property.Proof: A simple averaging argument. (Note that N is drawn from some �xed probabilitydistribution over the set of all deterministic depth-a d-networks.)Lemma 4.9 Let random 0-1 d-vector � be drawn from an arbitrary probability distributionover �(d), and � be a random d-permutation drawn from �R(d; a). Then the 0-1 d-vector�0 obtained by applying � to � is a-random.Proof: Straightforward.Lemma 4.10 Let N denote a depth-b hypercubic d-network, and for each i, 0 � i � b, letf+(i) (resp., f�(i)) denote the number of levels j of N , 0 � j < i, such that  -d (resp., ,!d)is applied in the permutation phase. Let f(i) = f+(i)� f�(i), 0 � i � b. For all a such that0 � a < d, N is a-partitionable if and only if: (i) 0 � f(i) � a, 0 � i < b, and (ii) f(b) = 0.Proof: Let g+(i) = max0�j�i f(i) and g�(i) = min0�j�i f(i), 0 � i � b. Note thatg+(i) � 0 and g�(i) � 0, 0 � i � b.Let Ai;j denote the set of level i output wires y of N such that there is a path to y fromsome input wire x in the jth input a-cube, 0 � i < b, 0 � j < pow(d � a).It is straightforward to prove by induction (on i) thatAi;j = fy j jk = yk; f(i)� g�(i) � k � d+ f(i)�maxfa; g+(i)gg: (1)Thus, jAi;jj = pow(maxfa; g+(i)g � g�(i)): (2)Note that if jAi;jj > pow(a) for some i and j, 0 � i < b, 0 � j < pow(d� a), then N is nota-partitionable. It follows from Equation (2) that N is not a-partitionable if g+(b) > a org�(b) < 0.It remains to prove that if g�(b) = 0 and g+(b) � a, then N is a-partitionable if andonly if f(b) = 0. Accordingly, assume that g�(b) = 0 and g+(b) � a. By Equation (1),Ab;j corresponds to the jth output subcube if and only of f(b) = 0, 0 � j < pow(d � a),completing the proof. 14



Lemma 4.11 Let N be a random coin-tossing depth-a d-network, and p (resp., p0) denotethe probability that a particular output wire x receives a 0 when the input to N is a d-vectordrawn from the probability distribution D (resp., D0). If D � D0 then p � p0.Proof: If N is deterministic, the claim follows easily from consideration of the following\monotone" property of deterministic networks: When the value passed to a single inputwire is changed from 0 to 1 (resp., from 1 to 0), no output changes from 1 to 0 (resp., 0 to1). If N is not deterministic, then it is given by some �xed probability distribution D00 overthe set of all deterministic depth-a d-networks. Since the claim holds for every deterministicnetwork, we can prove that the claim holds for N by averaging over D00.5 Analysis of the No-Elimination TournamentLet us de�ne a 0-1 no-elimination (d; p)-tournament, d � 0, as an execution of the depth-dshu�e-\+" d-network on a random 0-1 input d-vector drawn from the distribution �R(d; p).In this section, we analyze the behavior of the 0-1 no-elimination tournament. Our analysisculminates with Theorem 1, which establishes that the 0-1 no-elimination tournament hasa surprisingly strong ranking property. This ranking property is used to carry out theapplications of subsequent sections. (It is noteworthy that the depth-d shu�e-\+" d-networkis equivalent to Batcher's bitonic merge network. We have chosen not to adopt Batcher'sterminology because we plan to expose a property of the network that is largely unrelatedto merging.)The proof of Theorem 1 is rather lengthy, and has been organized into a number of sec-tions. Section 5.1 de�nes and analyzes certain output probability polynomials. Section 5.2considers the inverse functions associated with these output probability polynomials. Sec-tion 5.3 contains a number of auxiliary de�nitions. Section 5.4 provides several technicallemmas. Section 5.5 completes the proof of Theorem 1.5.1 The Output PolynomialsIn this section, we analyze the probability that each wire in a 0-1 no-elimination (d; p)-tournament carries a 0. We de�ne the output probability polynomials ��(p) and prove twobasic lemmas concerning these polynomials.Lemma 5.1 Let x0 and x1 denote the two intermediate wires associated with some gatein a 0-1 no-elimination (d; p)-tournament. Then the events E0 = \x0 receives a 0" andE1 = \x1 receives a 0" are independent.Proof: Assume without loss of generality that: (i) x0 is intermediate wire 2 � j on level i,and (ii) x1 is intermediate wire 2 � j + 1 on level i, 0 � i < d, 0 � j < pow(d � 1). Notethat the index of every level 0 input wire with a path to x0 has a 0 in bit position d� i� 1.Similarly, the index of every level 0 input wire with a path to x1 has a 1 in bit positiond � i� 1. Thus, wires x0 and x1 depend on disjoint subsets of the level 0 input wires, andthe claim of the lemma follows. 15



With each binary string �, we associate the function ��(p), de�ned inductively as follows:(i) ��(p) = p,(ii) ��0(p) = 2 � ��(p)� ��(p)2, and(iii) ��1(p) = ��(p)2.One may easily verify that for each binary string �, the following conditions hold: (i) ��(0) =0, (ii) ��(1) = 1, (iii) ��(p) is a monotonically increasing for p in [0; 1], (iv) ��(p) is a degree-pow(j�j) polynomial in p. Conditions (i), (ii), and (iii) imply that ��(p) is in [0; 1] for all pin [0; 1].Lemma 5.2 Output wire j of a 0-1 no-elimination (d; p)-tournament receives a 0 with prob-ability ��(p), where � = bin(j; d).Proof: We prove instead the following stronger claim, for all i and j such that 0 � i < d,0 � j < pow(d):(i) Input wire j at level i receives a 0 with probability ��(p), where � = ji�1 � � � j0.(ii) Intermediate wire j at level i receives a 0 with probability ��(p), where � = ji � � � j1.(iii) Output wire j at level i receives a 0 with probability ��(p), where � = ji � � � j0.For i = 0, Part (i) of the claim is immediate since ��(p) = p. Now let us assume that Part (i)of the claim holds for some i, 0 � i < d. Then Part (ii) of the claim holds for i since thevalue received by input wire j is passed to intermediate wire jd�2 � � � j0jd�1. It is similarlyeasy to show that if Part (iii) of the claim holds for some i, 0 � i < d � 1, then Part (i)holds for i+ 1, since output wire j at level i is the same as input wire j at level i+ 1.It remains only to prove that if Part (ii) of the claim holds for some i, 0 � i < d,then Part (iii) holds for i. Accordingly, let x0 and x1 denote the pair of intermediate wiresassociated with some gate y at level i, assume that Part (ii) of the claim holds for thesewires, and that the associated d-bit indices of x0 and x1 are ��0 and ��1, respectively,where j�j = i. ThenPrfx0 receives a 0g = Prfx1 receives a 0g = ��(p);and these probabilities are independent by Lemma 5.1. Hence, the \min" output of gate y(i.e., the output wire with index ��0 at level i) receives a 0 with probability2 � ��(p)� ��(p)2 = ��0(p);and the \max" output of gate y (i.e., the output wire with index ��1 at level i) receives a0 with probability ��(p)2 = ��1(p);as required.Let � and � denote the binary sequences corresponding to the win-loss sequences WLWLLWLLand LLLWWWWW mentioned in Section 1. We can easily calculate that ��(1=2) � 0:796 and��(1=2) � 0:882, suggesting that the player with record � should be rated above the playerwith record �. 16



Lemma 5.3 For all binary strings � and �, and all p in [0; 1],���(p) = ��(��(p)):Proof: For � = �, the result is immediate since ��(p) = p. For j�j > 0, we prove the resultby induction on j�j. For the base case, assume that � = x, where x is either 0 or 1. Since�0(p) = 2 � p� p2 and �1(p) = p2, we �nd that��x(p) = �x(��(p));as required. Our induction hypothesis is that the claim holds for all � and � with j�j � i,for some i � 1. For the induction step, we will prove that the claim holds for all �, � with� = �0x, x equal to 0 or 1, and j�0j = i. The proof follows from three applications of theinduction hypothesis, since ���(p) = ���0x(p)= �x(���0(p))= �x(��0(��(p)))= ��0x(��(p))= ��(��(p)):5.2 The Inverses of the Output PolynomialsIn order to better understand the behavior of the output polynomial ��, it will be useful tostudy its inverse function. In particular, for any binary string �, we de�ne ��(z) to be thefunction such that ��(��(p)) = pfor all p in [0; 1]. Unlike ��, �� is not a polynomial for j�j � 1. However, like ��, there is asimple inductive scheme for computing ��. This is demonstrated by the following lemma.Lemma 5.4 For all binary strings �, and all z in [0; 1],��(z) = z;�0�(z) = 1�q1� ��(z); and�1�(z) = q��(z):Proof: Since ��(p) = p for all p in [0; 1], �� is the identity function, and thus �� is also theidentity function. Hence ��(z) = z for all z in [0; 1].By Lemma 5.3, we have �0�(p) = ��(�0(p))= ��(2 � p� p2):17



for all p in [0; 1]. Setting p = �0�(z), we �nd that��(2 � �0�(z)� �0�(z)2) = �0�(�0�(z))= z= ��(��(z)):Since �� is a monotonically increasing function, we have2 � �0�(z)� �0�(z)2 = ��(z):Solving for �0�(z), we obtain �0�(z) = 1�q1� ��(z);as desired.The proof that �1�(z) = q��(z) proceeds in a similar fashion. By Lemma 5.3, we have�1�(p) = ��(�1(p))= ��(p2):for all p in [0; 1]. Setting p = �1�(z), we �nd that��(�1�(z)2) = �1�(�1�(z))= z= ��(��(z)):Since �� is a monotonically increasing function, we have�1�(z)2 = ��(z)and thus �1�(z) = q��(z);as desired.Let � and � denote the binary sequences corresponding to the win-loss sequences WLWLLWLLand LLLWWWWW mentioned in Section 1. We can easily calculate that ��(1=2) � 0:437 and��(1=2) � 0:381, suggesting that the player with record � should be rated above the playerwith record �.Note that ��(0) = 0 and ��(1) = 1 for all binary strings �. The following lemma isanalogous to Lemma 5.3.Lemma 5.5 For all binary strings � and �, and all z in [0; 1],���(z) = ��(��(z)):18



Proof: Since �� is the identity function, the result is immedate for � = �. For j�j > 0, weprove the result by induction on j�j. For the base case, assume that � = x, where x is either0 or 1. By Lemma 5.4, we have �0(z) = 1�p1 � z and �1(z) = pz. Hence,�x�(z) = �x(��(z));as required. Our induction hypothesis is that the claim holds for all � and � with j�j � i,for some i � 1. For the induction step, we will prove that the claim holds for all �, � with� = x� 0, x equal to 0 or 1, and j�0j = i. The proof follows from three applications of theinduction hypothesis, since ���(z) = �x�0�(z)= �x(��0�(z))= �x(��0(��(z)))= �x�0(��(z))= ��(��(z)):5.3 Auxiliary De�nitionsIn this section, we state a number of de�nitions related to the analysis of the no-eliminationtournament. These de�nitions are used primarily in Sections 5.4 and 5.5, but also appear insubsequent sections.For all x < y in [0; 1], � � 1, and d � 0, let�(x; y) = lg y � (1� x)(1� y) � x; (3)h�(x; y) = �(��(x);��(y))�(x; y) ; (4)H�(x; y; d) = X�:j�j=dh�(x; y)�; (5)�(�) = sup0<x<y<1 nh0(x; y)� + h1(x; y)�o ; (6)c = inf��1 lg �(�) + �� + 1 � 0:822; (7)�c = sup��1 1� lg �(�)� = lg(4 � 2 � p2) � 0:228; and (8)�c = �2 � lg �c = �2 � lg lg(4 � 2 � p2) � 4:260: (9)Informally, we think of �(x; y) as a measure of the \distance" between x and y for x < y in[0; 1]. The function h�(x; y) may then be viewed as the fractional decrease in the distancebetween x and y that results from applying �� to both x and y. Section 5.4 uses an inductivepotential argument, with potential functionH(x; y; d), to show that h�(x; y) is very small for19



most �. The function �(�) arises in the process of bounding the size of the potential function.The constants c and �c are related to the notion of an admissible triple, which we de�nebelow. (Note that the constant c and �c appear in the statements of Lemmas 5.6 and 5.7,respectively.) The constant �c appears in the exponent of the depth bound of Section 9.Setting � = 3, we can use Lemma 5.11 and elementary calculus to show that�(3) = 10 + 7 � p216 ;which is attainable for x = y = 1=2. This implies c � [lg(10 + 7 � p2) � 1]=4 � 0:829 and�c � [5� lg(10+ 7 �p2)]=3 = lg(4� 2 �p2) � 0:228. Using numerical calculations, it can beshown that c � 0:822, which is attained for � � 3:609 and �(�) � 1:133. On the other hand,the supremum of (1� lg �(�))=�, � � 1, is actually achieved for � = 3, so �c = lg(4� 2 �p2)De�nition 5.1 A triple (; "; d), where 0 <  < 1, 0 � " < 1=2, and d � 0, is de�ned to beadmissible if and only if � d � (�+ 1) � d � lg �(�) + � � [d+ lg lg(1=") + 2 � lg(1� 2 � ")]:for some � � 1.De�nition 5.1 is somewhat messy to apply directly. The following pair of technical lemmascharacterize two classes of admissible triples that arise in our applications.Lemma 5.6 For each function "(d) = pow(�pow(O(d))), there is a functionf(d) = O(lg lg(1="(d)))=dsuch that (; "(d); d) is an admissible triple for all d � 0 and c + f(d) �  < 1.Proof: This follows from routine calculations involving De�nition 5.1 and Equation (7).Lemma 5.7 For each function "(d) = pow(�pow(� � d)), where �(d) = �c � 1f(d) withf(d) = !(1) and f(d) = o(d), there is a function g(d) = o(1) such that 1� 3 � g(d)4 � f(d) ; "(d); d!is an admissible triple for all d � 0.Proof: This follows from routine calculations involving De�nition 5.1 and Equation (8).20



5.4 Several Technical LemmasIn this section, we prove a number of technical lemmas that are only used in Section 5.5of the paper. Lemma 5.8 shows that the notion of \distance" associated with the function�(x; y) is always at least twice the di�erence y�x. Lemma 5.9 provides a useful method forre-writing expressions of the form h��(x; y). Lemma 5.10 gives a maximization result that isused within Lemma 5.11 to obtain a simpli�ed de�nition of �(�). Lemma 5.12 proves thatthe potential function H(x; y; d) is bounded from above by �(�)d. Lemma 5.13 shows thatfor certain small values of ", the di�erence ��(1� ")���(") is small for most binary strings�.Lemma 5.8 For all x < y in [0; 1], y � x � �(x; y)=2:Proof: De�ne �(z) = 14 � ln z1 � z � zfor z in [0; 1]. Since d�(z)dz = 14 � �1z + 11� z�� 1 � 0for z in [0; 1], we know that �(z) is a non-decreasing function of z. Hence,�(x; y)4 � lg e � (y � x) = lg y�(1�x)(1�y)�x4 � lg e � y + x= �(y)� �(x)� 0;and thus y � x � �(x; y)4 lg e � �(x; y)=2:Lemma 5.9 For all x < y in [0; 1], we have: (i) h�(x; y) = 1, and (ii) for all binary strings� and �, h��(x; y) = h�(��(x);��(y)) � h�(x; y):Proof: Since �� is the identity function, h�(x; y) = 1 for all x < y in [0; 1]. We prove thesecond part of the lemma by observing thath��(x; y) = �(���(x);���(y))�(x; y)= �(���(x);���(y))�(��(x);��(y)) � �(��(x);��(y))�(x; y)= �(��(��(x));��(��(y)))�(��(x)��(y)) � h�(x; y)= h�(��(x);��(y)) � h�(x; y);where the second last equation follows from Lemma 5.5.21



Lemma 5.10 Let f0, f1, and f denote strictly increasing and continuously di�erentiablefunctions on (0; 1), and setg(x; y; �) =  f0(y)� f0(x)f(y)� f(x) !� +  f1(y)� f1(x)f(y)� f(x) !�for 0 < x � y < 1 and � � 1. Then for all x � y in (0; 1),g(x; y; �) � supz2(0;1) g(z; z; �):Proof: Note that because f0, f1, and g are strictly increasing and di�erentiable, l'Hôpital'srule implies that g(x; y; �) is well-de�ned even if x = y.Given any x < y in (0; 1), we prove below that there exists a p such that x < p < y andmaxfg(x; p; �); g(p; y; �)g � g(x; y; �):This is su�cient to prove that the maximum of g(x; y; �) occurs for x � y.Choose p so that f(p) � f(x) = f(y)� f(p):We can always �nd such a p between x and y since g is a continuous function. Then setu0 = f0(p) � f0(x);u1 = f0(y)� f0(p);v0 = f1(p) � f1(x);v1 = f1(y)� f1(p); andw = f(p) � f(x)= f(y)� f(p):Note that u0, u1, v0, v1, and w are all strictly positive since g is strictly increasing.By de�nition, g(x; p; �) =  u0q !� +  v0q !� ;g(p; y; �) =  u1q !� +  v1q !� ; andg(x; y; �) = �u0 + u12 � w �� + �v0 + v12 � w �� :For � � 1, the function z� is convex, and thusz�0 + z�12 � �z0 + z12 ��22



for all z0 and z1. Hence  u0q !� +  u1q !� � 2 � �u0 + u12 � w �� and v0q !� +  v1q !� � 2 � �v0 + v12 � w �� :Summing the preceding pair of inequalities, we �nd thatg(x; p; �) + g(p; y; �) � 2 � g(x; y; �);and hence maxfg(x; p; �); g(p; y; �)g � g(x; y; �), as desired.Lemma 5.11 For all � � 1,�(�) = sup0�z�1 24 1 +pz2 !� +  1 +p1 � z2 !�35 :Proof: We haveh0(x; y)� + h1(x; y)�=  �(�0(x);�0(y))�(x; y) !� +  �(�1(x);�1(y))�(x; y) !�= 0@ lg �0(y)�(1��0(x))(1��0(y))��0(x)lg y�(1�x)(1�y)�x 1A� + 0@ lg �1(y)�(1��1(x))(1��1(y))��1(x)lg y�(1�x)(1�y)�x 1A�= 0@ lg �0(y)1��0(y) � lg �0(x)1��0(x)lg y1�y � lg x1�x 1A� + 0@ lg �1(y)1��1(y) � lg �1(x)1��1(x)lg y1�y � lg x1�x 1A�=  f0(y)� f0(x)f(y)� f(x) !� +  f1(y)� f1(x)f(y)� f(x) !� ;where f0(z) = lg �0(z)1 � �0(z)= lg 1 �p1� zp1 � z ;f1(z) = lg �1(z)1 � �1(z)= lg pz1 �pz ; andf(z) = lg z1 � z :23



It is easily veri�ed that f0(z), f1(z), and f(z) are strictly increasing and continuouslydi�erentiable in (0; 1). By Lemma 5.10, this means that the supremum of h0(x; y)�+h1(x; y)�occurs for x � y. Using l'Hôpital's rule and elementary calculus, we can show thatlim"!0 h0((1� ") � y; y) = df0(y)=dydf(y)=dy= 1 +p1 � y2 :Reasoning in a similar fashion, we can also show thatlim"!0h1((1� ") � y; y) = df1(y)=dydf(y)=dy= 1 +py2 :The proof of the lemma now follows from the de�nition of �(�).Lemma 5.12 For all x < y in [0; 1], � � 1, and d � 0, we haveH�(x; y; d) � �(�)d:Proof: For d = 0, the result is immediate since H�(x; y; 0) = 1. For d > 0, Lemma 5.9implies thatH�(x; y; d) = X�:j�j=d�1�h0�(x; y)� + h1�(x; y)��= X�:j�j=d�1�h0(��(x);��(y))� + h1(��(x);��(y))�� � h�(x; y)�� X�:j�j=d�1�(�) � h�(x; y)�= �(�) �H�(x; y; d� 1):Hence, H�(x; y; d) � �(�)d, as required.Lemma 5.13 For any admissible triple (; "; d), there are at most pow( �d) length-d binarystrings � such that ��(1 � ")� ��(") > (1� 2 � ") � pow(( � 1) � d)=4:Proof: By Lemma 5.8, the de�nition of h�, and the de�nition of �, we have��(1 � ")� ��(") � �(��(");��(1� "))= h�("; 1� ") ��("; 1� ")=2� h�("; 1� ") � lg(1="):24



Hence, it is su�cient to prove that at most pow( � d) length-d binary strings � satisfyh�("; 1� ") > (1� 2 � ") � pow(( � 1) � d)4 � lg(1=") :Suppose the latter claim were false. ThenH�("; 1� "; d) > pow( � d) � "(1 � 2 � ") � pow(( � 1) � d)4 � lg(1=") #�= pow( � d � (�+ 1) � � � [d+ lg lg(1=") + 2 � lg(1 � 2 � ")])> �(�)d;which contradicts Lemma 5.12.5.5 The No-Elimination Tournament TheoremIn this section, we complete the proof of Theorem 1.Lemma 5.14 For any admissible triple (; "; d), there exists a set A of at least pow(d) �pow( � d) output wires of the depth-d shu�e-\+" d-network, and a �xed permutation � ofA, such that for each p the set A can be partitioned into three sets B, A�, and A+ where:(i) the set of output wires B is mapped to a contiguous interval by the permutation �,(ii) jBj < pow( � d),(iii) A� (resp., A+) is the set of all output wires in A nB mapped to positions lower (resp.,higher) than B by �, and(iv) after execution of a 0-1 no-elimination (d; p)-tournament, each output wire inA� (resp.,A+) receives a 1 (resp., 0) with probability less than ".Proof: Let (; "; d) denote a given admissible triple, and choose A to be the set (guaranteedto exist by Lemma 5.13) of at least pow(d) � pow( � d) output wires indexed by length-dbinary strings � such that ��(1 � ")� ��(") � �where � = (1 � 2 � ") � pow(( � 1) � d)=4. (Note that 0 < � < 1=4 since (; "; d) is anadmissible triple.) We remark that, using Lemma 5.4, ��(z) can be computed in O(j�j)arithmetic operations (counting square root as a single operation) for any z in [0; 1]. Hence,the set A can be computed in O(d �pow(d)) operations. (This may be viewed as a relativelye�cient time bound since, for example, it is linear in the size of the depth-d shu�e-\+"d-network.)In fact, we can compute an appropriate permutation � within the same asymptotic timebound: We set � to the permutation of set A that sorts the ��(") values in ascending order.Ties may be broken arbitrarily. It remains to prove that our choice of A and � satis�es therequirements of the lemma. 25



Let p� = maxf0; p� �g and p+ = minf1; p+ �g. (Recall that p is the 0-1 no-eliminationtournament input parameter.) Let B denote the set of binary strings � in A for which ��(")is contained in [p�; p]. Because the ��'s are monotonically increasing, and using linearity ofexpectation, we haveX�:j�j=d j��(p+)� ��(p�)j = X�:j�j=d���(p+)� ��(p�)�= 0@ X�:j�j=d��(p+)1A� 0@ X�:j�j=d��(p�)1A= (p+ � p�) � pow(d)� 2 � � � pow(d):For each � in B we have ��(p�) � " and ��(p+) � 1 � ". Hence,j��(p+)� ��(p�)j � 1� 2 � ":The preceding inequalities imply thatjBj � 2 � � � pow(d)=(1 � 2 � ")< pow( � d):Note that the set of binary strings B satis�es Conditions (i) and (ii) of the lemma. Forthe given choice of B, de�ne sets A� and A+ to satisfy Condition (iii). It remains only toaddress Condition (iv).Let � denote the binary string associated with an arbitrary output in A�. Thus, ��(") <p� which implies ��(1 � ") < p. Hence ��(p) > 1 � ". (The probability that output �receives a 1 is less than ".)Similarly, let � denote the binary string associated with some output in A+. Thus,��(") > p and hence ��(p) < ". (The probability that output � receives a 0 is less than ".)Lemma 5.15 Let d, k, n, and p be such that d � 0, n = pow(d), 0 � k < n, and p = k=n.Let N denote an arbitrary d-network, and assume that output wire x of N receives a 0(resp., 1) with probability q � " when the input to N is drawn from �R(d; p). Furtherassume that output wire x receives a 0 (resp., 1) with probability qi when the input is drawnfrom �0R(d; i), 0 � i < n. Then qk � 2 � ".Proof: Note that q = X0�i<n ni!pi(1� p)n�iqi� Xk�i<n  ni!pi(1 � p)n�iqi� qk Xk�i<n  ni!pi(1� p)n�iqi� qk=2; 26



where the second inequality follows from Lemma 4.11 and the third inequality follows fromTheorem 9.Theorem 1 For any admissible triple (; "; d), we haveMosthD (d; d; b � dc; O(pow(d) � ")) � d:Proof: It follows from Lemmas 5.14 and 5.15 that the depth-d shu�e-\+" d-networkbelongs to MosthN (d; d; b � dc; O(pow(d) � ")).Corollary 1.1 For any admissible triple (; "; a) and all d, 0 � a � d, we haveMostD(d; a; b � ac; O(pow(a) � ")) � a;MosthD(d; a; b � ac; O(pow(a) � ")) = O(a):Proof: It follows easily from Theorem 1 that the (d; a)-network consisting of the d-permutation ,!ad followed by the depth-a shu�e-\+" d-network has the desired properties.The additional depth required to implement the d-permutation ,!ad is minfa; d� ag � a fora hypercubic construction, and 0 for a non-hypercubic construction.Theorem 1 formalizes a central claim of the paper, namely, that the 0-1 no-eliminationtournament has a surprisingly strong ranking property. Though stated in the 0-1 domain,Theorem 1 can easily be interpreted in the permutation domain. Such an interpretation isprovided by the following corollary, which is stated without proof. (We remark that the extrafactor of pow(d) in the error bound arises because j��j = pow(d) + 1 for any d-permutation�. Also, Corollary 1.1, and not Corollary 1.2, is used to derive the results of subsequentsections.)Corollary 1.2 Let (; "; d) be an admissible triple, and de�ne set A and permutation � asin the proof of Lemma 5.14. Let a random d-permutation drawn from �R(d) be input toa depth-d shu�e-\+" d-network, and let �0 denote the permutation induced on the outputwires of A. Then the permutation obtained by applying � to �0 is sorted to within pow( �d)positions with probability at least 1 �O(pow(2 � d) � ").Finally, we remark that the factors of pow(d), pow(a), and pow(2 � d) appearing in theerror bounds associated with Theorem 1, Corollary 1.1, and Corollary 1.2 are not bestpossible. Lowering these factors would require a much more careful analysis, however, andfrom a theoretical point of view, would yield essentially no improvement to the results ofsubsequent sections. (Our applications make use of Corollary 1.1 with " set far smaller thanpow(�c � d) for any constant c > 0.) Of course, from a practical standpoint, it would beinteresting to pin down the error bounds more accurately. For su�ciently small values of d,we remark that a computer program can be used to obtain very accurate error estimates.27



6 A Small-Constant-Factor Network that Sorts Most InputsIn this section, we establish the following theorem.Theorem 2 For all a and d such that 0 � a � d, and each function "(d) = pow(�pow(o(d))),there is a function f(d) = o(1) such thatSortD(d; a; "(a)) � 2� 2c + f(a)1 � c � a:Furthermore, there is a deterministic d-network that achieves this bound.Note that (2� 2c )=(1� c) � 7:44. The following corollary provides an interpretation ofTheorem 2 in the permutation domain.Corollary 2.1 For each function "(d) = pow(�pow(o(d))), there is a function f(d) = o(1)and a deterministic d-network of depth2 � 2c + f(d)1 � c � dthat sorts a random d-permutation drawn from �R(d) with probability at least 1� "(d).Proof: Let n = pow(d). If � is a random d-permutation drawn from �R(d), then �k�is drawn at random from �0R(d; k), 0 � k � n. By Theorem 2 (with a = d), thereis a deterministic d-network N of the desired depth that sorts a random 0-1 d-vectordrawn from �0R(d; k), 0 � k � n, with probability at least 1 � "(d) for each function"(d) = pow(�pow(g(d)))=(n + 1) with g(d) = o(d). By Lemma 4.2, d-network N sortsd-permutation � if and only if it sorts the n + 1 0-1 d-vectors in ��. This occurs withprobability at least 1� (n+ 1) � "(d) = 1 � pow(�pow(g(d))), as required.Lemma 6.1 For all a, b, and d such that 0 � b � a � d, and all " and "0 in [0; 1], we haveSortD(d; a; "+ 2 � "0) � SortD(d; a; b; ") + SortD(d; b; "0) + 2 �MergeD(d; b; 1):Proof: We may assume that a > b, since the claim is trivial otherwise. We argue thata (d; a)-network in SortN (d; a; "+ 2 � "0) can be constructed by composing: (a) any (d; a)-network in SortN (d; a; b; "), (b) a random d-permutation � drawn from �R(d; b), (c) any(d; a)-network in SortN (d; b; "0), (d) any (d; b + 1)-network in MergeN (d; b; 1), (e) the d-permutation � in �(d; a) that maps wire i to wire (i+pow(b)) mod pow(a), 0 � i < pow(a),within each a-cube, (f) any (d; b+ 1)-network in MergeN (d; b; 1), and (g) the d-permutation��1. (Note that this construction does indeed give a (d; a)-network.)We may assume that the input is an a-random 0-1 d-vector. Consider an arbitrary a-cube A. After stage (a) of the construction, A is b-sorted with probability at least 1 � ".The output of stage (b) is b-random by Lemma 4.9. Hence, each b-cube of A is sorted withprobability at least 1 � "0 after stage (c). Furthermore, with probability at least 1 � ", notwo non-consecutive b-cubes of A receive non-trivial input.28



In what follows, we complete the proof by showing that A is sorted after stage (g)whenever: (i) A is b-sorted after stage (a), and (ii) every b-cube of A is sorted after stage (c).(Note that these conditions are satis�ed with probability at least 1� "� 2 � "0.)Accordingly, assume that conditions (i) and (ii) hold. Then A is sorted after stage (c)with the exception of at most two non-trivial b-cubes of A. If A contains 0 or 1 non-trivialb-cubes after stage (c), then A is easily seen to be sorted after stages (c), (d), and (g). Ifthere are 2 non-trivial b-cubes in A after stage (c) then they are adjacent. If b-cubes 2 � jand 2 � j + 1 are non-trivial for some integer j, 0 � j < pow(a � b � 1), then A is sortedafter stages (d) and (g). If b-cubes 2 � j + 1 and 2 � j + 2 are non-trivial for some integer j,0 � j < pow(a� b�1)�1, then stage (d) has no e�ect and the output of stage (g) is sorted.Lemmas 4.3, 4.6, and 6.1 together imply thatSortD(d; a; ") � SortD(d; a; b; ") +O(b): (10)for all a, b, and d such that 0 � b � a � d, and all " in [0; 1].Lemma 6.2 For all a, b, and d such that 0 � b � a � d, and all " in [0; 1], we haveSortD(d; a; b+ 1; ") � MostD(d; a; b; ") + InsertD(d; a� b):Proof: We argue that a (d; a)-network in SortN (d; a; b+ 1; ") can be constructed by com-posing: (a) any (d; a)-network in MostN (d; a; b; "), (b) an appropriate d-permutation � in�(d; a), (c) any (d; a�b)-network in InsertN (d; a� b), and (d) the d-permutation -bd. (Notethat this construction does indeed give a (d; a)-network.)We may assume that the input is an a-random 0-1 d-vector. By the de�nition ofMostN (d; a; b; "), there is some d-permutation �0 in �(d; a) such that each a-cube is b-mostly-sorted with respect to �0 with probability at least 1� " after stage (a). The desired stage (b)d-permutation � is ,!bd ��0. Consider an arbitrary a-cube A. In what follows, we completethe proof by showing that if A is b-mostly-sorted with respect to �0 after stage (a), then Ais (b+ 1)-sorted after stage (d).Accordingly, let us assume that A is b-mostly sorted with respect to �0 after stage (a).Then each (a � b)-cube of A contains an insertion instance after stage (b). Thus, each(a � b)-cube of A is sorted after stage (c). Furthermore, note that each (a � b)-cube of Acontains the same number of 0's to within 2. Hence A has a dirty region of size at most2 � pow(b) = pow(b+ 1) after stage (d), as desired.Lemma 6.3 For all a, b, and d such that 0 � b � a � d, and all , ", and "0 in [0; 1], wehaveSortD(d; a; b0 + 3; "+ 2 � "0) � SortD(d; a; b; ")+SortD(d; b+ 2; b0 + 1; "0)+MergeD(d; b� b0; 1);where b0 = b � (b+ 2)c. 29



Proof: We may assume that b > b0 + 3 and a > b+ 2, since the claim is trivial otherwise.Let m = pow(a � b � 2). We argue that a (d; a)-network in SortN (d; a; b0 + 3; "+ 2 � "0)can be constructed by composing: (a) any (d; a)-network in SortN (d; a; b; "), (b) a randomd-permutation drawn from �R(d; b+2), (c) any (d; b+2)-network in SortN (d; b+ 2; b0 + 1; "0),(d) an appropriate d-permutation � in �(d; a), (e) any (d; b�b0+1)-network inMergeN (d; b� b0; 1),and (f) an appropriate d-permutation �0 in �(d; a). (Note that this construction does indeedgive a (d; a)-network.)We may assume that the input is an a-random 0-1 d-vector. By the de�nition ofSortN (d; a; b; "), each a-cube is b-sorted with probability at least 1 � " after stage (a). Theoutput of stage (b) is (b+2)-random by Lemma 4.9. Hence, each (b+2)-cube is (b0+1)-sortedwith probability at least 1 � "0 after stage (c). Consider an arbitrary a-cube A, and let Bidenote the ith (b+ 2)-cube of A, 0 � i < m.After stage (c), note that the following claims hold with probability at least 1� "� 2 � "0:(i) the dirty region of A has size at most pow(b)+2 �pow(b0+1) � pow(b+1), and (ii) everyBi is (b0 + 1)-sorted. Let B�i (resp., B+i ) denote (b+ 1)-cube 0 (resp., 1) of Bi. If condition(i) holds, then the dirty region of A is either con�ned to some Bi, or to some (B+i�1; B�i ) pair,0 < i < m. Let us say that Case 1 holds if, after stage (c), the dirty region of A is con�ned tosome Bi and conditions (i) and (ii) hold. Similarly, Case 2 holds if, after stage (c), the dirtyregion of A is con�ned to some (B+i�1; B�i ) pair and conditions (i) and (ii) hold. Otherwise,Case 3 holds. Note that Case 3 holds with probability at most "+ 2"0.We now de�ne the d-permutation � to be applied in stage (d). Break each (b + 1)-cube B+i (resp., B�i ) into pow(b0 + 1) equal-sized sets B+i;j (resp., B�i;j) by applying the(b + 1)-permutation ,!b0+1b+1 and then partitioning into (b � b0)-cubes. (In other words, theset B+i;j consists of those wires in B+i with indices congruent to j modulo pow(b0 + 1),0 � j < pow(b0+1).) In the arguments that follow, let Ci denote B+i�1 [B�i , and Cji denotethe jth (b � b0 + 1)-cube of Ci, 0 < i < m, 0 � j < pow(b0 + 1). The d-permutation � isde�ned in such a way that: (i) the wires in B�0 and B+m�1 are left alone, and (ii) for each(B+i�1; B�i ) pair, 0 < i < m, the wires of B+i�1;j and B�i;j are brought into opposite halves of(b� b0 + 1)-cube Cji in preparation for the merge step of stage (e), 0 � j < pow(b0 + 1).If either Case 1 or Case 2 held after stage (c), note that the following claims hold afterstage (d), 0 < i < m: (ii) all of the B+i�1;j's and B�i;j's are sorted, and (ii) all of the B+i�1;j's(resp., B�i;j's) have the same number of 0's to within 2.If either Case 1 or Case 2 held after stage (c), note that the following claims hold afterstage (e), 0 < i < m: (i) every Cji is sorted, and (ii) all of the Cji 's have the same number of0's to within 4.We now de�ne the d-permutation �0 of stage (f) so that: (i) the wires in B�0 and B+m�1are left alone, and (ii) for each i, 0 � i < m � 1, the Cji 's are interleaved (in place) byapplying the (b+ 1)-permutation  -b0+1b+1 .Let C0 = B�0 , Cm = B+m�1, and assume that either Case 1 or Case 2 held after stage (c).Then the following conditions hold after stage (f): (i) Ci has a dirty region of size at most4 �pow(b0+1) = pow(b0+3), 0 � i � m, and (ii) no two non-consecutive Ci's are non-trivial.If 0 or 1 of the Ci's are non-trivial then A is (b0 + 3)-sorted, and we are done. Otherwise,we can assume that Ci and Ci+1 are non-trivial for some particular i, 0 � i < m. It follows30



easily that Case 2 held after stage (c), and that the output of A after stage (f) is the sameas after stage (c); hence, the dirty region of A has size at most pow(b0+1) after stage (f).Corollary 1.1, Lemma 4.4, and Lemma 6.2 together imply thatSortD(d; a; b � ac+ 1; O(pow(a) � ")) � 2 � a� b � ac:for any admissible triple (; "; a) and all d such that 0 � a � d. Lemma 5.6 impliesthat for any function "(a) = pow(�pow(o(a))), there is a function f(a) = o(1) such that(c + f(a); "; a) is an admissible triple for all a � 0. Hence,SortD(d; a; b(a) � ac+ 1;pow(�pow(o(a)))) � 2 � a� b(a) � ac; (11)with (a) = c + o(1). Substituting the bounds of Equation (11) (with a = b + 2) andLemma 4.3 (with (a; d) = (b�b � (b+2)c+1; d)) into the inequality of Lemma 6.3, we �ndthat SortD(d; a; b(c + o(1)) � (b+ 2)c + 3;pow(�pow(o(b))) + "0)� SortD(d; a; b; "0) + (3 � 2 � c + o(1)) � b;for all "0 in [0; 1]. By starting with Equation (11), and then iteratively applying the precedinginequality (with b �  �a; 2 �a; 3 �a; : : :), until Equation (10) can be \inexpensively" applied(e.g., with b = o(a)) we �nd thatSortD(d; a;pow(�pow(o(a)))) � 2 � 2c + o(1)1� c � a;for all a and d such that 0 � a � d. Using Lemma 4.8 to eliminate the random aspectsof the preceding construction, the proof of Theorem 2 is now complete. (We remark thatrandomization has not been used in the operation phase of any level in our construction.Furthermore, the only non-trivial probability distributions used in the permutation phase ofany level are the �R(d; a) distributions, 0 < a � d.)Note that we have used the AKS sorting network as part of our construction. It shouldbe emphasized, however, that the AKS sorting network is only used to allow the function"(d) of Theorem 2 to be set as small as possible. For example, one could prove Theorem 2with "(d) = pow(�pow(o(pd))) by cutting o� the preceding recurrence at b = o(pd) andapplying bitonic sort, instead of cutting it o� at b = o(d) and applying the AKS sortingnetwork.7 An Optimal-Depth Hypercubic Network that Sorts Most InputsIn this section, we establish the existence of a depth-O(d), hypercubic d-network that sortsmost inputs. In contrast with the preceding section, we do not concern ourselves withconstant factor issues. This leads to a much simpler construction. In particular, we do notrequire a hypercubic analogue of Lemma 6.3.31



Theorem 3 Let  (a) be any function such that SorthD(d;  (a); 0) = O(d), 0 � a � d. Foreach function "(d) = pow(�pow( (d))), we haveSorthD(d; a; "(a)) = O(a):Furthermore, there is a deterministic d-network that achieves this bound.By Lemma 4.5, the function  appearing in the statement of Theorem 3 is 
(pd). Infact, by Theorem 4, we have (d) = 
 dpow(p�c � lg d) � lg d! : (12)The following corollary provides an interpretation of Theorem 3 in the permutation domain.Corollary 3.1 Let the function  be as de�ned in Theorem 3. For each function "(d) =pow(�pow( (d))), there is a deterministic hypercubic d-network of depth O(d) that sorts arandom d-permutation drawn from �R(d) with probability at least 1 � "(d).Proof: Similar to the proof of Corollary 2.1.Lemma 7.1 For all a, b and d such that 0 � b � a � d, and all " and "0 in [0; 1], we haveSorthD(d; a; "+ 2 � "0) � SorthD(d; a; b; ") + SorthD(d; b; "0) + 2 �MergehD(d; b; 1) +O(a):Proof: Similar to the proof of Lemma 6.1. The only di�erence is that we use an O(a)-depth hypercubic (d; a)-network (guaranteed to exist by Lemma 4.7) to implement each ofthe d-permutations of stages (b), (e), and (g). This accounts for the additive O(a) term onthe RHS of the inequality.Lemma 7.2 For all a, b and d such that 0 � b � a � d, and all " in [0; 1], we haveSorthD(d; a; b+ 1; ") �MosthD(d; a; b; ") + InserthD(d; a� b) +O(a):Proof: Similar to the proof of Lemma 6.2. The only di�erence is that we use an O(a)-depth hypercubic (d; a)-network (guaranteed to exist by Lemma 4.7) to implement each ofthe d-permutations of stages (b) and (d). This accounts for the additive O(a) term on theRHS of the inequality.Corollary 1.1, Lemma 4.4, and Lemma 7.2 together imply thatSorthD(d; a; b � ac+ 1; O(pow(a) � ")) = O(a) (13)for all d and any admissible triple (; "; a) such that 0 � a � d. Let � be any constant, 0 < � <1�c. By Lemma 5.6, there is a function g(d) = �(d) such that (c+�;pow(�pow(g(a))); a)is an admissible triple for all a � 0. Hence,SorthD(d; a; b � ac+ 1;pow(�pow(�(a)))) = O(a);32



with  = c + �, and 0 � a � d. Lemmas 4.3 and 7.1 (with b = b � ac+ 1) now giveSorthD(d; a;pow(�pow(�(a))) + 2 � "0) � SorthD(d; b � ac+ 1; "0) +O(a):for all "0 in [0; 1]. Iteratively applying the preceding inequality, we �nd thatSorthD(d; a;pow(�pow(�(a)))) � SorthD(a; 0;+)O(a):Substituting  (a) for a, where the function  is as de�ned in the statement of Theorem 3,we obtain SorthD(d; a;pow(�pow( (a)))) = O(a);for all a and d such that 0 � a � d. Using Lemma 4.8 to eliminate the random aspectsof the preceding construction, the proof of Theorem 3 is now complete. (We remark thatrandomization has not been used in the permutation phase of any level in our construction.Furthermore, the only use of randomization in the operation phase arises from applyingLemma 4.7 to implement random d-permutations drawn from �R(d; a), 0 < a � d.)8 Deterministic MergingMany sorting algorithms, both sequential as well as parallel, are based on merging. Forinstance, sequential merge sort and Batcher's bitonic sorting network are both based on2-way merging. Since merging two sorted lists of length pow(d) requires 
(d) depth, onecannot hope to obtain a o(d2)-depth sorting network (hypercubic or otherwise) by repeated2-way merging. This section describes how to use a network N that sorts most inputs toconstruct a high-order merging networkN 0, that is, a k-way merging network for some k� 2.A similar technique has recently been used by Ajtai, Koml�os, and Szemer�edi as part of animproved version of their original sorting network construction. The multiplicative constantassociated with the new construction is signi�cantly lower than the constant established byPaterson [14], though it remains impractical.Lemma 8.1 Let N denote a (hypercubic) (d; a)-network that sorts each a-cube with prob-ability at least 1�" on any a-random 0-1 input d-vector, m = pow(d�a), � denote a subsetof �(d), �(i) � �(a) denote the projection of the ith a-cube of � onto �(a), 0 � i < m, and�0 = [0�i<m�(i). If j�0j < 1=", then there exists a d-permutation � in �(d; a) such that the(hypercubic) (d; a)-network N 0 obtained by composing � with N satis�es� � Sort(N 0):Proof: By de�nition, (hypercubic) (d; a)-networkN can be partitioned along input a-cubesinto m disjoint, identical a-networks Na. Thus, it is su�cient to construct an a-permutation�0 such that the (hypercubic) a-network N 0a obtained by composing �0 with Na satis�es�0 � Sort(N 0a):To determine a suitable a-permutation �0, we construct the undirected bipartite graphwith vertex sets U = �0 and V = �(a), and an edge from vertex � in U to vertex � in V if and33



only if the 0-1 a-vector � is sorted by the a-network obtained by composing a-permutation� with Na. The degree of every vertex in U is at least (1� ") � (pow(a))!, and so the sum ofthe degrees of the vertices in U is at least (1 � ") � jU j � (pow(a))!. This sum is identical tothat attained over V , so some vertex �0 in V has degree at least (1� ") � jU j > jU j � 1. Sincethe degree of �0 is an integer, vertex �0 must be connected to every vertex in U . Thus, thea-network obtained by composing a-permutation �0 with network Na sorts every element of�0.Lemma 8.2 For nonnegative integers a0 and b0, let N be de�ned as in 8.1 with a = a0 + b0and (pow(a0) + 1)pow(b0) < 1=":Let � denote the set of all 0-1 d-vectors � such that each a-cube of � belongs to �M (a0; b0).Then there exists a d-permutation � in �(d; a) such that the (hypercubic) (d; a)-network N 0obtained by composing � with N satis�es� � Sort(N 0):Proof: We can apply Lemma 8.1 (with �0 = �M (a0; b0))) sincej�M (a0; b0)j = (pow(a0) + 1)pow(b0)< 1=":Note that in Lemmas 8.1 and 8.2, the depth of N 0 only exceeds that of N by the depthrequired to implement a d-permutation in �(d; a). By Lemma 4.7, this additional depth is atmost 2 � a for a hypercubic construction. (For a non-hypercubic construction, no additionaldepth is required to implement a �xed permutation.)9 A Near-Optimal Hypercubic Sorting NetworkIn this section, we construct a hypercubic sorting network with nearly logarithmic depth.At a high level, the construction is simply based on recursive high-order merging: The inputis partitioned into some number of equal-sized lists, each of these lists is sorted recursively,and the resulting set of sorted lists are merged together. The recursion is cut o� by applyingbitonic sort on subproblems that are su�ciently small. The primary question that remainsto be addressed is how to perform the merge step e�ciently. Lemmas 9.1 and 9.2 prove thatthe merge step can itself be reduced to sorting.Lemma 9.1 Let �(d) be any function such that �(d) = !(1) and �(d) = o(d), and let "(d) =pow(�pow(�(d) � d)) where �(d) = �c � 1�(d) . For all a, b, and d such that 0 � b � a � d,we have SorthD(d; a;O(pow(3 � b=2) � "(b))) � SorthD(d; b; 0) +O(a � �(a)):34



Proof: By Lemma 5.7, there exists a function (d) = 1� 3�o(1)4��(d) such that ((a); "(a); a) isan admissible triple for all a � 0. For such an admissible triple, Equation (13) then impliesSorthD(d; a; b(a) � ac+ 1; O(pow(3 � a=2) � "(a))) = O(a):Lemmas 4.3 and 7.1 now giveSorthD(d; a;O(pow(3 � a=2) � "(a)) + 2 � "0) � SorthD(d; b(a) � ac+ 1; "0) +O(a);for all "0 in [0; 1]. Iteratively applying the preceding inequality, we �nd thatSorthD(d; a;O(pow(3 � b=2) � "(b))) � SorthD(d; b; 0) +O(a � �(a))for all a, b, and d such that 0 � b � a � d.Lemma 9.2 Let the function � be as de�ned in Lemma 9.1, and let �(d) = �c� 2�(d) . ThenMergehD(d; a� b�(b) � bc; b�(b) � bc) � SorthD(d; b; 0) +O(a � �(a))for all a, b and d such that (3 + lg a) � �(b) � b � a � d.Proof: Let "(d) = pow(�pow(�0(d) � d)) where �0(d) = �c � 1�(d) . By Lemma 9.1,SorthD(d; a;O(pow(3 � b�0(b) � bc=2) � "(b�0(b) � bc))) � SorthD(d; b�0(b) � bc; 0) +O(a � �(a))for all a, b, and d such that 0 � b � a � d. Hence, for b su�ciently large, there existsa hypercubic (d; a)-network N of depth SorthD(d; b�0(b) � bc; 0) +O(a � �(a)) that sorts eacha-cube with probability at least 1 � "0 on any a-random 0-1 input d-vector, where"0 = pow(2 � b�0(b) � bc) � "(b�0(b) � bc)< pow(pow(1 + lg b)� pow(�0(b) � b� 1))< pow(�pow(�0(b) � b� 2)):The result now follows from Lemma 8.2 since(pow(a� b�(b) � bc) + 1)pow(b�(b)�bc) < pow(2 � a � pow(�(b) � b))= pow(pow(�(b) � b+ 1 + lg a))= pow(pow(�0(b) � b+ 1 + lg a� b=�(b)))� pow(pow(�0(b) � b� 2))< 1="0:As a consequence of the preceding lemma, we can develop a recurrence for SorthD(d; a; 0).Note that SorthD(d; a; 0) � min0�b�a SorthD(d; a� b; 0) +MergehD(d; a� b; b)35



for all a, b, and d such that 0 � b � a � d. (This inequality is immediate, since we canalways sort a-cubes by: (i) sorting b-cubes, and (ii) merging the sorted b-cubes within eacha-cube.) Let the functions � and � be as de�ned in Lemma 9.2. Applying Lemma 9.2 to thepreceding inequality, we obtainSorthD(d; a; 0) � min(3+lga)��(b)�b�a SorthD(d; a� b�(b) � bc; 0) + SorthD(d; b; 0) +O(a � �(a))for all a, b, and d such that 0 � b � a � d. Letting S(d; a) = SorthD(d; a; 0), we can writethis recurrence more simply asS(d; a) � min(3+lg a)��(b)�b�aS(d; a� b�(b) � bc) + S(d; b) +O(a � �(a)) (14)For each d � 0, let S0(a) denote S(d; a), 0 � a � d. In Appendix A it is proven thatS0(a) = O(a � pow(q�c � lg a) � lg a):(The constant �c is de�ned in Equation (9).) The preceding bound is proven with �(d) =�(plg d), and seems to be the best upper bound obtainable using this recurrence. Settinga = d, we obtain a proof of the following theorem.Theorem 4 For all d � 0, we haveSorthD(d; 0) = O(d � pow(q�c � lg d) � lg d):10 An Optimal Randomized Hypercubic Sorting AlgorithmIn Section 7, we constructed a depth-O(d) hypercubic sorting network that sorts most d-permutations. In the present section, we modify that result to obtain a polynomial-timeuniform O(d)-depth coin-tossing hypercubic network that sorts every d-permutation (andhence, every d-vector) with high probability. We then use this coin-tossing network todevelop a polynomial-time uniform hypercubic \algorithm" that sorts every d-vector in O(d)time with high probability.We de�ne a hypercubic algorithm as any normal hypercube algorithm. (See [11, Sec-tion 3.1.3], for example, for a de�nition of the class of normal hypercube algorithms). Everydepth-a hypercubic sorting d-network corresponds to a (possibly non-uniform) hypercubicsorting algorithm that runs in O(a) time on any pow(d)-processors hypercubuc machine. Ofcourse, the converse is not true in general; most of the basic operations allowed within a nor-mal hypercube algorithm (e.g., the usual set of arithmetic operations) cannot be performedby a hypercubic sorting network.A sorting network is hard-wired, and has a �xed depth or \running time", that is inde-pendent of the input. On the other hand, a sorting algorithm can have an arbitrarily largegap between its worst-case and average-case running times. For example, consider a sortingalgorithm with the following structure: 36



1. Apply a random d-permutation drawn from �R(d) to the input d-vector.2. Attempt to sort the resulting d-vector using a time-T (d) method that correctly sortsmost d-permutations.3. Check whether Step 2 was successful. If so, halt. If not, return to Step 1.The worst-case running time of such an algorithm is in�nite, while the average-case runningtime could be as low as O(T (d)). One might attempt to develop a hypercubic sortingalgorithm with this structure by using the d-network of Corollary 3.1 to implement Step 2with T (d) = O(d). Step 3 is trivial to implement in O(d) time. However, two di�cultiesremain to be addressed.The �rst di�culty is that Step 1 is not easily implemented by a hypercubic algorithm. Wewill overcome this di�culty by making use of a depth-d shu�e-\?" d-network to randomlypermute the input data. Although the d-permutation � applied by such a d-network is notd-random, we prove in Lemma 10.2 below that � is su�ciently random for our purposes.The second di�culty is that the hypercubic algorithm corresponding to Corollary 3.1is not polynomial-time uniform. This undesirable characteristic stems from our use ofLemma 4.8 to remove the random aspects of our hypercubic network construction. Asdiscussed at the end of Section 7, there is only one source of randomness in our construc-tion: Whenever we apply the shu�e-\+" (d; a)-network of Corollary 1.1, we �rst apply ana-random d-permutation. We overcome the second di�culty by replacing such a-randomd-permutations with a depth-a unshu�e-\0" d-network followed by a depth-a shu�e-\?"d-network.Lemma 10.2 and Corollary 10.2.1 below prove that we can approximately sort every d-permutation with high probability by applying a depth-d shu�e-\?" d-network followed bya depth-dd=2e shu�e-\+" d-network. Lemma 10.1 widens the range of input distributionsfor which the analysis of Section 5 can be applied. (Recall that the �� functions were de�nedin Section 5.1.)Lemma 10.1 Let N denote a coin-tossing d-network, and assume that for each length-dbinary string �, input wire � is set to 0 with probability p�, and to 1 otherwise. Furtherassume that the set of events E� def= \input wire � receives a 0" are mutually independent.Then the output wire with index � will receive a 0 with probability at least ��(p�) and atmost ��(p+), where p� = min� p� and p+ = max� p�.Proof: Immediate from Lemma 4.11.Lemma 10.2 Let a, b, and d denote nonnegative integers such that d = a+ b, (; "; a) bean admissible triple, � = (1 � 2 � ") � pow(( � 1) � a)=4;"0 = 2 � e�2��2�pow(b);and N denote the depth-(a+ d) d-network obtained by composing: (i) a depth-d shu�e-\?"d-network, and (ii) a depth-a shu�e-\+" d-network. Then there exists a set A of at least37



pow(d) � pow( � a + b) output wires of N , and a �xed permutation � of A, such that thefollowing condition holds with probability at least 1�pow(d) � "�pow(a) � "0 after executionof N on any 0-1 input d-vector �: If permutation � is applied to A, then the resultinglength-jAj 0-1 output vector is ( � a+ b)-sorted.Proof: Let 0-1 vector � in �(d; k) be input to d-network N , and set p = k=pow(d).Throughout this proof, the symbols � and � will be used to denote binary strings of length aand b, respectively. A random execution will refer to an execution of d-network N on input�. For each �, de�ne C0(�) (resp., C2(�), C3(�)) as the set of pow(a) level-0 input wires(resp., level-d input wires, level-(a+ d� 1) output wires) with indices of the form �� (resp.,��, ��) for some �. For each �, de�ne C1(�) as the set of pow(b) level-(a� 1) output wireswith indices of the form �� for some �.For each �, de�ne p� to be the fraction of 0's induced by input � on C0(�) (i.e., thenumber of 0's assigned to C0(�) divided by pow(a)). Note that p = (P� p�)=pow(b). Foreach �, let X� denote the random variable corresponding to the number of 0's received bythe wires of C1(�) in a random execution, and let q� = X�=pow(b). Note that, unlike thep�'s, each q� is a random variable. Furthermore, the random variable X� is easily seen tobe the sum of pow(b) independent Bernoulli trials, where trial � has success probability p�.Thus, a standard Cherno�-type argument [5] impliesPrfjX� � p � pow(b)j � # � pow(b)g � 2 � e�2�#2�pow(b) (15)for all # � 0. De�ne a random execution to be �-balanced ifp � � � q� � p + �for all �. By Equation (15), a random execution is �-balanced with probability at least1� pow(a) � "0 (set # = �.)Note that the last a levels of d-network N form a (d; a)-network. Hence, these levels canbe partitioned into pow(b) disjoint depth-a shu�e-\+" a-networks N�, where the input andoutput wires of N� correspond to C2(�) and C3(�), respectively. Let E�� denote the eventthat input � of N� (i.e., level-d input wire �� of N ) receives a 0 in a random execution.Let f��(p) denote the probability that E�� occurs in a random �-balanced execution. Letg��(p) denote the probability that output � of N� (i.e., output �� of N ) receives a 0 ina random �-balanced execution. Note that f��(p) = q�, since wire � of C2(�) receives thevalue of a wire chosen uniformly at random from C1(�). Furthermore, since the sets C1(�)are mutually disjoint, we �nd that for each � and for each �xed setting of the q� values, thepow(a) events E�� are mutually independent. Lemma 10.1 can therefore be applied to eacha-network N�, and yields ��(p � �) � g��(p) � ��(p+ �);for all � and �.De�ne A to be the set (guaranteed to exist by Lemma 5.13) of at least pow(d)�pow( �a+ b) output wires of N indexed by length-d binary strings �� such that��(1� ")� ��(") � �:38



We set � to the permutation of set A that sorts the ��(") values in ascending order. Ties maybe broken arbitrarily. (As discussed in the proof of Lemma 5.14, the set A and permutation� can be computed e�ciently.) It remains to prove that our choice of A and � satis�es therequirements of the lemma.Let p� = maxf0; p � 2 � �g, p+ = minf1; p + 2 � �g, and B denote the set of binarystrings � in A for which ��(") is contained in [p�; p+ �]. Because the ��'s are monotonicallyincreasing, and using linearity of expectation, we haveX� j��(p+)� ��(p�)j = X� ���(p+)� ��(p�)�=  X� ��(p+)!�  X� ��(p�)!= (p+ � p�) � pow(a)� 4 � � � pow(a):For each � in B we have ��(p�) � ", ��(p+) � 1� ", and hencej��(p+)� ��(p�)j � 1� 2 � ":The preceding inequalities imply thatjBj � 4 � � � pow(a+ b)=(1� 2 � ")= pow( � a+ b):Note that the set of binary strings B is mapped to a contiguous interval by permutation �.Let A� (resp., A+) denote the set of all binary strings in A n B mapped to positions lower(resp., higher) than B by �.Let �� denote the binary string associated with an arbitrary output in A�. Thus ��(") <p� (so p� > 0 and p� � > 0), which implies ��(1� ") < p� � and hence ��(p� �) > 1� ".Combining this inequality with the lower bound of Equation (10), we �nd that g��(p) > 1�".(The probability that output �� receives a 1 is less than ".)Similarly, let � denote the binary string associated with some output in A+. Thus��(") > p + � (so p + � < 1), which implies ��(p + �) < ". Combining this inequality withthe upper bound of Equation (10), we �nd that g��(p) < ". (The probability that output�� receives a 0 is less than ".)We conclude that if permutation � is applied to A, the resulting length-jAj 0-1 vectorwill have a dirty region of size at most jBj = pow( � a + b) with probability at least1� pow(d) � "� pow(a) � "0.Corollary 10.2.1 Let N , A, and � be de�ned as in Lemma 10.2, with a = dd=2e andb = bd=2c. Then there exist constants  and " in (0; 1) such that the following conditionholds with probability at least 1�O(pow(�pow("�d))) after execution ofN on any 0-1 inputvector �: If permutation � is applied to A, then the resulting length-jAj 0-1 output vectoris ( � d)-sorted. 39



Proof: This is a straightforward consequence of Lemmas 5.6 and 10.2.Given Corollary 10.2.1, we can easily prove an analogue of Lemma 7.2 that uses \?" gatesinstead of random permutations. (It is important to note that the (d; a)-network associatedwith the construction of Corollary 10.2.1 is composed of the following four stages: (a) adepth-a shu�e-\?" d network, (b) a depth-a unshu�e-\0" d-network, (c) a depth-da=2eshu�e-\+" d-network, and (d) a depth-da=2e unshu�e-\0" d-network.) We can then use thescheme of Section 7 to prove Theorem 5 below with"(d) = pow(�pow(�(pd))):Unfortunately, we cannot take advantage of the improvement associated with Equation 12because the construction of Section 9 is not polynomial-time uniform.Theorem 5 For each function "(d) = pow(�pow(O(pd))), there is a polynomial-time uni-form O(d)-depth coin-tossing hypercubic d-network that sorts any input d-vector probabilityat least 1� "(d).The scheme of Section 7 can also be used to prove Theorem 5 below with the function "as de�ned in Theorem 6. In this case, we can dramatically decrease the failure probabilityprobability by making use of the Sharesort algorithm of Cypher and Plaxton [8]. Sharesortis a polynomial-time uniform hypercubic sorting algorithm with worst-case running timeO(d � lg2 d) [8]. Note that Sharesort runs in O(d) time on O(d= lg2 d)-cubes. Hence, we canmodify the scheme of Section 7 by cutting o� the sorting recurrence at �(d= lg2 d)-cubesinstead of �(pd)-cubes (as allowed by bitonic sort). Unfortunately, Sharesort does notcorrespond to a hypercubic sorting network since, for example: (i) Sharesort makes copiesof keys, and (ii) Sharesort performs a variety of arithmetic operations on auxiliary integervariables. For these reasons, we have not been able to make use of Sharesort in previoussections of the paper.A small improvement to the Sharesort bound is known when polynomial-time \pre-processing" (to compute certain look-up tables) is allowed. In particular, the running time ofSharesort can be improved to O(d � (lg d) � lg� d) in that case [7]. This improvement has beenincorporated into the "(d) bound of Theorem 6. If exponential pre-processing is allowed, therunning time of Sharesort can be improved further to O(d � lg d) [7]. However, it is not clearwhether the latter result could be used to improve the "(d) bound of Theorem 6. (The lackof uniformity can be eliminated through randomization. However, the failure probability ofthe resulting algorithm seems to be strictly higher than that given by Theorem 6.)Theorem 6 Let f(d) = � � d(lg d)�lg� d�. For each function "(d) = pow(�pow(f(d))), there isa polynomial-time uniform randomized hypercubic sorting algorithm that runs in O(d) time(on any input d-vector) with probability at least 1� ".11 An Optimal Bit-Serial Randomized Hypercubic Sorting Algo-rithmAn order-d omega machine is a ((d+1) � pow(d))-processor machine, d � 0. Each processorhas an associated ID of the form (i; j), 0 � i � d, 0 � j < pow(d). We de�ne the ith level40



of a given order-d omega machine as the set of pow(d) processors with IDs of the form (i; j),0 � j < pow(d). The processors of an order-d omega machine are interconnected accordingto the following rules:1. There is no wire between any pair of processors in non-consecutive levels.2. For all i such that 0 � i < d, there is a wire connecting processor (i; j) to processor(i+ 1; j0) if and only if jk = j0k+1, 0 � k < d� 1.Omega machines belong to the class of buttery-like machines discussed in [11, Section 3.8.1].Observe that there is a close correspondence between an order-d omega machineM anda depth-d shu�e d-network N . In particular, consider the 1-1 function f(i; j) that mapsprocessor (i; j) ofM to: (i) level-i input wire j of N , 0 � i < d, and (ii) level-(i� 1) outputwire j of N , 0 < i � d. (Recall that level-i input wire j and level-(i� 1) output wire jrepresent the same wire, 0 < i < d. Hence, f is indeed a function.) Then there is a wirebetween processors (i; j) and (i + 1; j0) in M if and only if wires f(i; j) and f(i + 1; j0) inN are connected to a common gate x, with f(i; j) as an input wire and f(i + 1; j0) as anoutput wire.In the bit model, it is assumed that a processor can only perform one bit operation pertime step. Thus, b bit steps are required to send a b-bit message to an adjacent processor.Similarly, b bit steps are required to compare two b-bit operands located at the same proces-sor. In this section, we provide a bit-serial polynomial-time uniform randomized algorithmfor sorting pow(d) O(b)-bit records on an order-d omega machine in O(b+ d) bit steps. Thistime bound is easily seen to be optimal. For b = 
(d), the processor bound is also opti-mal. Our algorithm can be adapted to achieve the same asymptotic performance on anybuttery-like machine.De�nition 11.1 A bit-serial omega emulation scheme for a depth-a word-size-b d-networkN is a bit-serial algorithm that: (i) runs on an order-d omega machine, (ii) emulates theexecution of N on any d-vector of b-bit integers, and (iii) receives (resp., produces) the jthcomponent of the input (resp., output) d-vector at processor (0; j), 0 � j < pow(d).De�nition 11.2 A depth-(2 � b) hypercubic d-network N is a-pass, 0 � b � a � d, if andonly if the d-permutation  -d (resp., ,!d) is applied in the permutation phase of the �rst(resp., last) b levels of N .Lemma 11.1 There is an O(a+ b)-bit-step bit-serial omega emulation scheme for any coin-tossing a-pass word-size-b d-network.Proof: Straightforward. (Note that each of our �ve gate types can be implemented in abit-serial fashion. For the \+" and \�" gates, such a bit-serial implementation requires thatthe inputs be provided most-signi�cant bit �rst.)De�nition 11.3 A depth-O(a) hypercubic d-network N is a-multipass, 0 � a � d, if andonly if N can be decomposed into an O(1)-length sequence of a-pass networks.41



Lemma 11.2 There is an O(a+ b)-bit-step bit-serial omega emulation scheme for any coin-tossing a-multipass word-size-b d-network.Proof: This follows from a constant number of applications of Lemma 11.1. Note thatonly levels 0 through a of the order-d omega machine are used by the emulation scheme.De�nition 11.4 A hypercubic d-network N is (; a; k)-geometric,  � 0, 0 � a � d, k � 0,if and only ifN can be decomposed into a length-k sequence of d-networks hNii such that: (i)0 �  � 1 and Ni is bi+1 �ac-multipass, 0 � i < k, or (ii)  > 1 andNi is bi�k �ac-multipass,0 � i < k.De�nition 11.5 A (; a; k)-geometric d-network is compact if and only ifX0�i<k �bi+1 � ac+ 1� � d:Lemma 11.3 There is an O(b+d)-bit-step bit-serial omega emulation scheme for any coin-tossing compact (; a; k)-geometric word-size-b d-network N .Proof: We give the proof for the case 0 �  � 1. The case  > 1 is similar. (Notethat if we \reverse" a (; d; f(d))-geometric d-network, we obtain a (1=; d; f(d))-geometricd-network.)Decompose the given d-network N into a sequence of networks hNii as in De�nition 11.4.Thus, network Ni is f(a; i)-multipass wheref(a; i) = ji+1 � ak ;0 � i < k. LetM denote an order-d omega machine, andg(i) = X0�<i (f(a; j) + 1) ;0 � i < k. To obtain an e�cient bit-serial omega emulation scheme for network N , we useLemma 11.2 to emulate Ni on the contiguous set of levels Ai = fg(i); : : : ; g(i + 1) � 1g ofM, 0 � i < k. (The input to Ni will be provided at level g(i). Hence, Lemma 11.2 impliesthat the output to network Ni will be produced at level g(i).) Note that: (i) the Ai's arewell-de�ned (i.e., each is set of level numbers in the range 0 to d � 1) since N is compact,and (ii) the Ai's are mutually disjoint. Property (ii) ensures that the emulation schemesassociated with distinct Ni's do not interfere with one another.It remains to prove that we can e�ciently communicate the output of network Ni, whichis produced at level g(i), to level g(i + 1), 0 � i < k � 1. (Once the output of Ni reacheslevel g(i+ 1), the emulation of Ni+1 over the set of levels Ai+1 can begin.) For example, itwould su�ce to e�ciently map the value on wire j of level g(i) to wire j of level g(i + 1),0 � j < pow(d). Unfortunately, it is very expensive to implement such an identity d-permutation on the machineM.The key observation, however, is that we do not need to implement the identity d-permutation between levels g(i) and g(i + 1). Because the f(a; i)'s form a non-increasing42



sequence, 0 � i < k, there is no interaction between distinct f(a; i + 1)-cubes in any d-network Nj such that i+ 1 � j < k. Hence, it is su�cient to implement a d-permutation �such that: (i) level-g(i) f(a; i+ 1)-cubes are mapped to level-g(i+ 1) f(a; i+ 1)-cubes, and(ii) the identity f(a; i+ 1)-permutation is applied within each f(a; i+ 1)-cube.We now prove that a d-permutation � of the desired form can be implemented inO(f(a; i) + f(a; i+ 1)) bit steps while using only levels Ai [ Ai+1 of M. (The reader maywonder why the preceding O-bound does not depend on b. This bound refers only to the\additional" number of bit steps required to implement the d-permutation �. Because ourentire emulation scheme is pipelined bit-serially, we can account for the word-size by addingO(b) at the end of our analysis.) In particular, the d-permutation � that we apply betweenlevels g(i) and g(i+ 1) satis�es�(j) = jd�1 � � � jd�f(a;i+1)jd�f(a;i)�f(a;i+1)�1 � � � j0jd�f(a;i+1)�1 � � � jd�f(a;i)�f(a;i+1);0 � j < pow(d). The d-permutation � can easily be implemented in O(f(a; i) + f(a; i+ 1))additional bit steps as follows. First, within level g(i), we apply the d-permutation �0 de�nedby �0(j) = jd�f(a;i+1)�1 � � � jd�f(a;i)�f(a;i+1)jd�1 � � � jd�f(a;i+1)jd�f(a;i)�f(a;i+1)�1 � � � j0;0 � j < pow(d). Note that �0 belongs to �(d; f(a; i)+f(a; i+1)). By Lemma 4.7, �0 can beimplemented in O(f(a; i) + f(a; i+ 1)) bit steps using only levels Ai [Ai+1 ofM. We nowcomplete the implementation of d-permutation � by simply shu�ing the data forward fromlevel g(i) to level g(i+ 1). (This takes f(a; i) bit steps and uses only the set of levels Ai.)The total running time of our emulation scheme is easily seen to beO0@b+ X0�i<k f(a; i)1A = O(b + g(k � 1))bit steps. However, one �nal detail remains to be addressed, since our emulation schemeleaves the output at level g(k � 1) instead of level 0. We can move the output to level 0by applying an appropriate �xed permutation �0 from level g(k � 1) to level 0. The entiremachineM can be used for this purpose. Thus, the Bene�s routing technique of Lemma 4.7yields an immediateO(b+d) bound. In fact, an O(b+g(k�1)) bound can easily be achievedby: (i) unshu�ing the data from level g(k � 1) to level 0, and (ii) applying an appropriatepermutation �00 in �(d; g(k � 1)).Thus, the total running time of our revised emulation scheme is O(b + g(k � 1)), whichis O(b+ d) since N is compact.Theorem 7 There is a polynomial-time uniformO(b+d)-bit-step bit-serial omega emulationof the family fNdg of coin-tossing d-networks of Theorem 5.Proof: Examining the construction of Theorem 5, we �nd that Nd can be decomposedinto: (a) a (1; d; 1)-geometric coin-tossing d-network, (b) a (1=3; d;O(lg d))-geometric coin-tossing d-network, (c) a (1; O(plg d); O(plg d))-geometric deterministic d-network, (d) a43



(3; d;O(lg d))-geometric coin-tossing d-network, and (e) a (1; d; 1)-geometric coin-tossing d-network. (Note that the constants 1=3 and 3 appearing above are somewhat arbitrarilychosen. The \slack" in our de�nitions creates a range of acceptable values.)The coin-tossing d-networks of stages (a), (b), (d), and (e) are easily seen to be compact.Stage (c) corresponds to the use of bitonic sort to cut o� the sorting recurrence at O(plg d)-cubes. Note that we are free to choose the constant within the O(plg d) bound arbitrarilysmall. Hence, we can ensure that the deterministic d-network of stage (c) is also compact.The theorem then follows by Lemma 11.3. (Our claim that the emulation is polynomial-time uniform since: (i) the family of coin-tossing networks of Theorem 5 is polynomial-timeuniform, and (ii) the emulation scheme underlying Lemma 11.3 is polynomial-time uniform.)Corollary 7.1 For each function "(d) = pow(�pow(O(pd))), there is a polynomial-timeuniform O(b+d)-bit-step randomized bit-serial algorithm for an order-d omega machine thatsorts any input d-vector of b-bit integers with probability at least 1 � "(d).Proof: This is an immediate consequence of Theorems 5 and 7.12 Concluding RemarksWe have de�ned the class of \hypercubic" sorting networks, and established a nearly log-arithmic upper bound on the depth complexity of such networks. Of course, it would bevery interesting to close the remaining gap. Given the techniques developed in this paper,the problem of constructing an optimal O(lg n)-depth hypercubic sorting network has beenreduced to the problem of constructing an O(lg n)-depth comparator network that sorts arandomly chosen input permutation with probability at least 1 � 2�n" for some constant" > 0.One unfortunate characteristic of our hypercubic sorting network construction is its lackof uniformity. In particular, no deterministic polynomial-time algorithm is known for gen-erating the family of networks for which existence has been established. On the positiveside, existence of a randomized polynomial-time generation algorithm is a straightforwardconsequence of our results.While the multiplicative constant of approximately 7.44 established for the sorting net-work construction of Section 6 appears to be quite reasonable, the construction remainsimpractical. This is due to the fact that there is a trade-o� between the value of themultiplicative constant and the success probability (the probability that a random inputpermutation is sorted by the network); for practical values of n, a signi�cant increase in theconstant is required in order to prove any reasonable success probability.13 AcknowledgmentsThanks to Don Coppersmith, Ming Kao, Sheralyn Listgarten, Yuan Ma, Bruce Maggs, andTorsten Suel for valuable discussions. 44
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[16] C. G. Plaxton and T. Suel. A lower bound for sorting networks based on the shu�epermutation. In Proceedings of the 4th Annual ACM Symposium on Parallel Algorithmsand Architectures, pages 70{79, June 1992. To appear in Mathematical Systems Theory.[17] A. G. Ranade. How to emulate shared memory. JCSS, 42:307{326, 1991.[18] J. H. Reif and L. G. Valiant. A logarithmic time sort for linear size networks. JACM,34:60{76, 1987.[19] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. InProceedings of the 13th Annual ACM Symposium on Theory of Computing, pages 263{277, May 1981.A Analysis of the Sorting RecurrenceLet c1 denote the positive constant implicit in the O(a � �(a)) term of Equation (14), leta0 and c2 denote su�ciently large positive constants (to be determined), and consider thefunction T (a), a � 0, de�ned by the following recurrence. Let T (a) = O(1) for a � a0, andT (a) = min(3+lg a)��(b)�b�aT (a� b�(b) � bc) + T (b) + c1 � a � �(a) (16)for a > a0, where �(d) = c2 �qlg d; and�(d) = �c � 2�(d) :Note that our choice of the function �(d) satis�es the requirements of Lemma 9.2, since�(d) = !(1) and �(d) = o(d). Furthermore, the function �(d) is de�ned as in Lemma 9.2.Hence, any upper bound for T (a) is also an upper bound for the function S0(a) = S(d; a)de�ned in Section 9. In this section, we prove thatT (a) = O(a � pow(q�c � lg a) � lg a):(The constant �c is de�ned in Equation (9).) We prove two technical lemmas before analyzingof the recurrence of Equation (16).Lemma A.1 For every pair of real numbers x and y such that 0 � x � y, we havepx � y �qx � y � x � px � y � x=2:Proof: Examining the Taylor series expansion of p1 � ", we �nd thatp1 � " � 1� "=246



for all " in [0; 1]. Hence,px � y �qx � y � x � px � y = px � y �px � y �r1 �qx=y� px � y �px � y �  1 � px2 � py!= x=2:Lemma A.2 For any a > a0, let a0 = a� b�(b0) � b0c ;where b0 = $ apow(p�c � lg a)% :For a su�ciently large choice of the constant a0, the following bounds hold:(i) 1 < a0 � a� �(b0)�apow(p�c�lg a) + 2 < a,(ii) �(b0) � �c � 4c2�plg a ,(iii) 2 � pow(p�c � lg a) = o(a=plg a),(iv) 1 < (3 + lg a) � �(b0) � b0 < a, and(v) p�c � lg a�q�c � lg a� �c � p�c � lg a > �c=2.Proof: Part (v) follows from Lemma A.1. The remaining inequalities follow from straight-forward asymptotic estimates.Theorem 8 There is a positive constant c0 such thatT (a) � c0 � a � pow(q�c � lg a) � lg a:for all a > 1.Proof: We prove the claim of the lemma by induction on a. The claim is trivial for1 < a � a0, since we are free to choose the constant c0 arbitrarily large. Now �x a > a0 andassume the claim holds for all smaller values of a. De�ne a0 and b0 as in Lemma A.2.By Part (i) of Lemma A.2, we can apply the induction hypothesis to bound T (a0) since1 < a0 < a. Using Parts (i), (ii), and (iii) of Lemma A.2, we �nd thatT (a0) � c0 � a0 � pow(q�c � lg a0) � lg a0� c0 �  a� �(b0) � apow(p�c � lg a) + 2! � pow(q�c � lg a) � lg a� c0 � a � pow(q�c � lg a) � lg a� c0 � �c � a � lg a+ c0 � � 4c2 + o(1)� � a �qlg a:47



By Part (iv) of Lemma A.2, we can apply the induction hypothesis to bound T (b0) since1 < b0 < a. Using Part (v) of Lemma A.2 and Equation (9), we �nd thatT (b0) � c0 � b0 � pow(q�c lg b0) � lg b0� c0 � a � pow r�c � lg a� �c �q�c � lg a�q�c � lg a! � �lg a�q�c � lg a�� c0 � �c � a � lg a� c0 � �c � a �q�c � lg a:By Part (iv) of Lemma A.2, we can set b = b0 in the recurrence of Equation (16) since(3 + lg a) � �(b0) � b0 < a. Thus,T (a) � T (a0) + T (b0) + c1 � a � �(a)� c0 � a � pow(q�c � lg a) � lg a+ �c0 � � 4c2 + o(1) � �c � p�c�+ c1 � c2� � a �qlg a:For a0 su�ciently large, we can choose the constants c0 and c2 so that the coe�cient ofaplg a is negative, yielding T (a) � c0 � a � pow(q�c � lg a) � lg a;as required.B Locating the \Median" of the Binomial DistributionThe purpose of this appendix is to establish Theorem 9, which is used in the proof ofLemma 5.15.Lemma B.1 Let k and n be integers such that 0 � k � n, p be a real number in [0; 1]such that np = k, and X be a random variable drawn from B(n; p) (i.e., the binomialdistribution with parameters n and p). Let Y be a random variable corresponding to thenumber of successes in n independent Bernoulli trials with associated success probabilitiespi, 0 � i < n, such that P0�i<n pi = k. ThenPr(X < k) � Pr(Y < k) andPr(X > k) � Pr(Y > k):Proof: These inequalities are established (in a more general form) by Hoe�ding in [9,Theorem 4].Lemma B.2 Let k, n, p, and X be as de�ned in Lemma B.1. If 0 � p � 1=2, then let Y 0 andY 00 be random variables drawn from B(2k; 1=2) and B(n�2k; 0), respectively. Otherwise, letY 0 and Y 00 be random variables drawn from B(2(n� k); 1=2) and B(2k� n; 1), respectively.Let Y = Y 0 + Y 00. If Pr(X = k) � Pr(Y = k)=2then minfPr(X � k);Pr(X � k)g � 1=2:48



Proof: By symmetry, Pr(Y � k) = Pr(Y � k) = [1 + Pr(Y = k)]=2. The claimedinequality then follows easily using Lemma B.1.Lemma B.3 For each pair of integers k and n such that 0 � k � n, letuk;n =  nk! kn!k  1� kn!n�k :(If n = k, then uk;n = 1.) Then uk;n � kkekk! .Proof: Fix k � 0, and let vn = uk;n for n � k. It is su�cient to prove that the sequencehvni is nonincreasing for n � k, and thatlimn!1 vn = kkekk!: (17)To see that the sequence hvni is nonincreasing for n � k, note thatvk+1vk =  kk + 1!k� 1;and for n > k we have vn+1vn = �1 + 1n� k�n�k��1 + 1n�n� 1:(The preceding inequality follows from the fact that the function f : R ! R de�ned byf(x) = (1 + 1x)x is strictly increasing for all x � 1.)To verify Equation (17), note thatvn = n!k!(n� k)! � kknk � (n� k)n�knn�k= kkk! � n!(n � k)! � (n� k)n�knn� kkk!  1� kn!n� kkekk! :Lemma B.4 For each nonnegative integer k, letwk = kk+122kk!(k + 1)ek(2k)! :Then the sequence hwki is nondecreasing for k � 1.49



Proof: Note that wk+1wk = 2(1 + 1k )k(k + 1)3ek(k + 2)(2k + 1)and limk!1 wk+1wk = 1:Thus, it is su�cient to prove that the function f : R! R de�ned byf(x) = (1 + 1x)x(x+ 1)3x(x+ 2)(2x+ 1)is nonincreasing for x � 1. One may easily verify thatdf(x)dx = (x+ 1)2(1 + 1x)xx2(x+ 2)2(2x+ 1)2 � g(x)where g(x) = �x2 � 6x� 2 + x(x+ 1)(x+ 2)(2x + 1)[ln(1 + 1x) � 1x+1 ]:Hence, for x > 0, df(x)dx � 0 if and only if g(x) � 0. For x � 1, we have ln(1+ 1x) � 1x� 12x2+ 13x3 ,and hence g(x) � �x2 � 6x� 2 + x(x+ 1)(x + 2)(2x+ 1)( 1x(x+1) � 12x2 + 13x3 )= �23x6 � 76 + 43x + 23x2< 0:Lemma B.5 For all nonnegative integers k, we havekkekk! >  2kk !2�2k�1:Proof: It is easy to verify that the claim holds for 0 � k � 2. For k � 3, consider thesequence hwki de�ned in Lemma B.4. By Lemma B.4, wk � w3 � 0:538 > 1=2 for k � 3.Hence kkekk! > k + 1k  2kk !2�2k�1>  2kk !2�2k�1:Lemma B.6 Let k, n, p, X, and Y be as de�ned in Lemma B.2. ThenPr(X = k) > Pr(Y = k)=2:50



Proof: If 0 � p � 1=2, thenPr(X = k) =  nk! kn!k  1� kn!n�k� kkekk!>  2kk !2�2k�1= Pr(Y = k)=2;where the two inequalities follow from Lemmas B.3 and B.5, respectively.Similarly, if 1=2 < p � 1, we havePr(X = k) =  nk! kn!k  1 � kn!n�k=  nn� k! n� kn !n�k  1 � n� kn !n�(n�k)� (n� k)n�ken�k(n� k)!>  2(n� k)n� k !2�2(n�k)�1= Pr(Y = k)=2:Lemma B.7 Let k, n, p, and X be as de�ned in Lemma B.1. ThenminfPr(X � k);Pr(X � k)g � 1=2:Proof: Immediate from Lemmas B.2 and B.6.Theorem 9 Let n, p, and X be as de�ned in Lemma B.1. ThenminfPr(X � bnpc);Pr(X � dnpe)g � 1=2:Proof: De�ne real numbers p� and p+ so that np� = bnpc and np+ = dnpe. Let X�(resp., X+) denote a random variable drawn from B(n; p�) (resp., B(n; p+)). Note that forall real numbers x, we have Pr(X � x) � Pr(X� � x) andPr(X � x) � Pr(X+ � x):Combining these inequalities with the bound of Lemma B.7, we obtainPr(X � bnpc) � Pr(X� � bnpc) � 1=2 andPr(X � dnpe) � Pr(X+ � dnpe) � 1=2:51


