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Abstract

This work presents a methodology for constructing efficient collective communication libraries for
mesh-based multicomputers with wormhole routing.   Such libraries can be built from a small set of
simple primitives.  Specifically, two classes of routines are presented: short vector routines that
minimize message startups and long vector routines that minimize data transmission.  Routines
from these two classes can then be hybridized, resulting in algorithms which are effi cient over a
wide range of machine performance and vector size parameters.  Implementations of these basic
routines are given, and the derivation of other routines from them is demonstrated.  Furthermore,
these methods are applicable to meshes in their full generality: There are no restrictions on the rel-
ative dimensions of the mesh or the number of nodes contained therein (e.g., they do not require
power-of-two partit ion sizes).   Also, the schemes presented here inherently support group commu-
nications as well as full-partit ion operations.   Performance data from the Intel Paragon are



hostile programming environment.  Even those libraries currently offered by vendors are not yet

standardized and often offer questionable performance [4].  Library interface standards have been

proposed, but they do not specify the underlying methods used to achieve an efficient implemen-

tation [16].  To that end, this paper addresses the problem of actually building a high-performance

communications library on mesh-based architectures with wormhole routing.  Just as other stan-

dardized libraries such as the Basic Linear Algebra Subroutines (BLAS) must be based on archi-

tecture-dependent implementations for maximum performance, so must implementations of

collective communications libraries take into account the vagaries of the target machines.  Thus, it

is the purpose of this thesis to provide the algorithmic underpinnings that will provide the same

level of performance that a user would expect from hand-coded mathematical libraries.

This thesis targets eight collective communication operations which are found in many appli-

cations and which have been incorporated into library standards such as the Message Passing

Interface (MPI) [16].  They are the all-to-all scatter, the broadcast, the collect, the distributed

reduction, the gather, the reduction-to-all, the reduction-to-one and the scatter.  These routines are

defined as collective communications because all nodes either participate as contributors, receiv-

ers or both.  Unlike previous work on such routines, however, this thesis considers the entire



order pipelines.  The same techniques used for one operation can be applied to routines with sim-

ilar (possibly inverted) data flow patterns.  In one such case, the same methods used for the broad-

cast are simply reversed to provide an efficient implementation of the reduction-to-one operation.

Beyond this, at the level of the full routines themselves, there is also considerable re-use.  For

example, the long vector reduction-to-all  operation is implemented using versions of the distrib-

uted reduction and collect operations.  In this manner, the actual difficulty of library construction

is greatly reduced by minimizing the amount of code that must be written and tested.  These inter-

dependencies have an additional impact:  The benefits of a more efficient implementation of a

particular operation extend beyond the operation itself to all of the other operations that are built

on top of it.

Another primary distinction of this work is its intrinsic support for group-based communica-

tions.  Specifically, the methods presented herein are obviously quite applicable to structured

groups of nodes (e.g., groups that comprise rows, columns or blocks in the physical mesh).  They

also offer excellent support and performance for unstructured groups, with arbitrary physical lay-

outs.  In doing so, these techniques fully provide for the group-based collective communications

strategy proposed by MPI.



total number of nodes, p, is equal to m0 × m1 × ... × md-1.  A node is identified by a

unique label, P0,...,Pp-1.

2) The links between nodes are bidirectional.  I.e., they can simultaneously transport

a message in each direction.  However, if more than one message traverses a link

in either direction, they share the one-way bandwidth of that connection.  Note,

however, that the bandwidth of the network is usually greater than the bandwidth

out of a node.  As a result of this excess bandwidth, the actual performance penalty

for contention may be less than expected.  (See below.)

3) The interconnect uses wormhole routing.  In such a network, communication is

considered to be distance-independent.1 Given this assumption, sending a message

n data units long from one node to another under contention-free conditions

requires time α + nβ, where α and β represent the message start-up time and per

data item transmission time, respectively.  Furthermore, wormhole routing implies

that a message simultaneously occupies all of the channels on the path between the

source and destination node, as determined by the routing method.  In reference to



direction in each dimension.  For example, on a two-dimensional mesh, if one

were to restrict all communication to proceed “south” or “east,” all logical wrap-

arounds from the last to first node within each column or row would go “north” or

“west,” respectively, and would not conflict.

4) Messages are routed using dimensional-order or e-cube routing.  In other words, a

message is routed entirely through each dimension, starting with the lowest dimen-

sion and ending with the highest dimension.  For example, on a three-dimensional

mesh, a message would be routed through the x-dimension first, then the y-dimen-

sion, and finally the z-dimension.

5) The nodes are single-ported.  Therefore, a node can simultaneously send a single

message to and receive a single message from the same or different nodes with no

time penalty.  (If more than one message is being received at any given time, then

Assumption 2 applies.)

6) The vendor-supplied communication library supports point-to-point message-pass-



pi,j is the jth factor of mi, the length of the ith dimension.

3 Target Architectures

The algorithms and techniques presented in this paper are designed for machines with multidi-

mensional mesh interconnects using wormhole routing.  Commercial examples of such machines

include the Intel Paragon and the Cray T3D, which utilize two-dimensional non-torus and three-

dimensional torus meshes, respectively [7,12].  They are also appropriate for research machines

such as the Intel Touchstone Delta (two-dimensional non-torus) and the J- and M-Machines

(three-dimensional non-torus) [9,13,14,15,17].  Many of these algorithms and techniques also

apply to hypercubes (which can be viewed as multidimensional meshes with two nodes in each

dimension), although that architecture is not specifically addressed.

4 Target Collective Communications

The following collective communications routines are targeted by this paper::

Table 1: Summary of Target Collective Communications

Operation Before After

) )



5 Short Vector Primitives

When an operation is performed using short vectors, startup latencies are the primary time com-

ponent.  In these situations, the best approach is one that minimizes the number of message star-

tups.  On meshes, such algorithms are usually based on a minimum spanning tree or prime factors

rings approach.  In particular, the broadcast, scatter and gather operations are implemented using

minimum spanning trees, and the collect, all-to-all scatter and reduction operations use prime fac-

tors rings as well as minimum spanning trees.

5.1 Minimum Spanning Trees

a. Sometimes referred to as a transpose or complete exchange.
b. Sometimes distinguished as a one-to-all broadcast.
c. Sometimes referred to as an all-to-all broadcast.
d. Sometimes referred to as a fan-in.
e. Also (confusingly) referred to as a fan-in.
f. Sometimes referred to as a fan-out, multicast or one-to-all personalized broadcast.

Reduction-to-all y(j) at Pj ⊕  at all Pj, ⊕  given

Reduction-to-onee y(j) at Pj ⊕  at Pk, k and ⊕  

given

Scatterf x at Pk, k given xj at Pj

p 1–

i 0= y
i( )

p 1–

i 0= y
i( )



approach requires that the mesh be of power-of-two size [3].  Second, it can generate tremendous

message conflicts due to the fact that message paths that are disjoint on hypercubes may overlap

on meshes [2].  As a first cut at a more general approach, one might try to partition the mesh in

half at each stage, sending to or receiving from the first node in the other half.  On a non-power-

of-two size mesh, this approach can create network conflicts.  (See Figure 1.)  With a few modifi-

cations, one can avoid these problems.

The resulting recursive-splitting algorithm, which was first presented in [3], is as follows:

Split the current partition into two approximately equal subpartitions.  When the new subpartition

is to the right (left) of the root node, its new root is the rightmost (leftmost) node in that subparti-

tion.  In the root node’s subpartition, the algorithm repeats as specified above.  If the new subpar-

tition is to the right (left) of the root node, it also recursively divides its subpartition, but the new

root is always the leftmost (rightmost) node in the new subpartition. (See Figure 2.)

MST-based operations incur  startups and are thus quite useful for distributing and

Figure 1:  An example of how the routing algorithm used in a mesh can create a contention.  In both (a)
the li near array and (b) the two-dimensional mesh, two messages are being sent/received by nodes in
separate partit ions.  In the (a) this causes no problems, but in (b) the x-axis first routing strategy results
in a conflict on one of the li nks.

(a) (b)

log2 p( )
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5.2 Prime Factors Rings

Binary exchanges are a fundamental component of many hypercube algorithms, in which nodes

trade data with their nearest neighbors in each dimension.  Like the bit-toggling MST implemen-

tation, they are restricted to power-of-two size meshes.  Prime factors rings (PFR) are a generali-

zation of the binary exchange for arbitrary mesh sizes.

In using PFR, one must first calculate all of the prime factors (with repetitions) of the mesh

size.  For example, for p = 60, the prime factors would be 2, 2, 3 and 5.  The nodes are then orga-

nized into rings, each of which contains a number of nodes equal to one of the prime factors.  The

nodes then circulate data within each ring of which they are a member.  Notice that in the case of

power-of-two size meshes, the prime factors are all two, and so the prime factors rings are simply

binary exchanges between pairs of nodes.  Therefore, this approach will require at least log2(p)

message operations.  In the worst case, where mi is a prime number for each dimension i, the PFR

method will involve m0 + m1 + ... + md-1 - d startups.

Just as with the MST technique, one must be careful in constructing PFR on a mesh.  The best

Figure 3:  The PFR for a dimension containing six nodes.



considerably by utilizing rings that lie in different dimensions in the mesh.  By doing so, one

effectively reduces contention by a factor of 1/d for large d-dimensional meshes.  (See Figure 4.)

In such cases, let ci,j be the number of active rings in the ith dimension that are interleaved with

the jth ring of that dimension.  Thus, there will  be at most ci,j messages contending for a given link

during a step of the PFR method.  The alternation modification may complicate the algorithm

somewhat since non-contiguous portions may be sent or received, requiring that the data be rear-

ranged at the sending and receiving ends.  One should also take care to structure the rings so that

nodes are grouped most closely in the phases where the most data is transferred.

6 Long Vector Primitives

For long vectors, minimization of data transmission is essential.  In these cases, extra message

operations may be incurred if the volume of data can be significantly reduced.  Primitives in this

arena typically use a bucket approach, in which all of the nodes in single dimension form a ring

and circulate pieces among themselves.  Otherwise, they use a pipelined approach in which the

data vectors are broken into pieces and their transmission times are overlapped by pipelining them

throughout the mesh along edge-disjoint spanning trees.  The former approach is applicable to the
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6.1 Dimensional Rings

Since the PFR approach can generate considerable contention in a mesh where the dimensions’

lengths are factorizable, it will perform very poorly for long vectors.  In the dimensional rings

(DR) scheme, the nodes are organized into rings comprising all of nodes in each dimension.  For

example, on a two-dimensional mesh, the nodes would be grouped into row rings and column

rings.  The nodes then circulate pieces within each ring.  (See Figure 5.)  While this approach has

the same number of message operations as the worst case for the PFR method (i.e., m  + m  + ...

Figure 5:  Dimensional rings.  (a) shows the use of a dimensional ring to perform a collect.  The dark-
ened boxes indicate the portions that have been received thus far.  In (b), the ring is used to perform a
distributed reduction.  In this case, the shade of a box represents a subvector’s combination with other
subvectors via the provided reduction operator.

(a) (b)



edge-disjoint spanning trees rooted at the nearest neighbors of the source node.  The source node

alternates between these trees, sending a packet along one then moving to the next one.  The inter-

actions of the packets as they move down the pipelines are such that a series of contention-free

bidirectional exchanges occur in each dimension.  There are severe problems, however, in gener-

alizing the EDST approach to arbitrary meshes.  This problem was addressed extensively in [24].

In short, the spanning trees of a mesh must be considerably deeper.  While the trees of the EDST

algorithm are only of log2(p) + 1 depth, edge-disjoint spanning trees for meshes governed by the

assumptions of Section 2 are of depth m0 + m1 + ... + md-1 - d.  Furthermore, the nature of these

spanning trees is such that they often produce traffic collisions as multiple messages arrive at par-

ticular nodes simultaneously.  The resulting delays create “bubbles” in the message pipelines, and

soon other nodes begin to receive multiple messages or none at all .  Before long, the entire struc-

ture collapses, and the algorithm attains only a fraction of its expected performance.

The dimensional-order pipelined (DOPL) is quite simple:  Instead of continuously alternating

between dimensions, each part of the vector is completely pipelined along all the nodes in a

dimension before proceeding to the next dimension.  Doing so ensures that all of the nodes in a

dimension are in the same phase.  This, coupled with explicit synchronization, prevents a node

2



of consecutive dimension positions that the “head” node of that row shares with the source node,

starting with the (i mod d)th dimension.  At the same time, the “tail” node in the row sends the

(i - d)th piece directly to the “head” node in its row (unless the “head” node is the source node).  If

either i + j - d or i - d is less than zero, then the nodes involved do nothing during step i.  If

i + j - d is greater than kalt - 1, then the nodes involved re-transmit the (kalt - 1)th piece.  (See Fig-

ures 6a and 6b.) Note that this pipeline originates at the root node and extends to the leaves.  To

create a pipeline that originates at the leaves and culminates at the root node, simply vary i from

kalt - d - 2 down to 0 and reverse the direction of the message sends.

7 The Gather/Scatter Operations

The gather and scatter operations are fundamental routines that are used either alone or in the

implementation of other, more complex routines [3,4].  In the gather operation, all of the nodes

contribute variable-length portions which are gathered into a single vector on the specif ied node.

In the scatter operation, the specified node divides a vector into variable-length portions and dis-

tributes them among the other nodes.  Since these operations are inverses of one another, an effi-
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Figure 6b.  The DOPL pipelines for a broadcast on a three-dimensional mesh with k  = 4 and the ori-

Figure 6a.  The DOPL pipelines for a broadcast on a two-dimensional mesh with kalt = 2 and the origin
at the upper left.  The arrows labeled 1 and 2 indicate, respectively, the channels over which the fi rst and
second half of the message are being pipeli ned.  The only exceptions are the wraparound “1”  sends on
the far right; these are direct sends and are not pipelined.



to use a MST, with the parent node forwarding all of the data destined for the nodes in a subtree to

the root of that subtree.  The subtree’s root would then proceed independently, sending to its sub-

trees and so forth.

In cases where the data is to be evenly distributed among the nodes, this technique performs

very well, with a total time of:

However, when the data distribution is uneven or skewed, this method can perform quite

poorly.  For example, consider the pathological case where one node is to receive the entire vector

supplied by the root node.  In this case, the running time would be:

Thus, a better algorithm would partition the mesh by data distribution rather than partition it geo-

metrically.  In developing such an algorithm it is useful to state a necessary precondition for data

flow optimali ty:

“In a data distribution-optimal scatter operation, the root node is the last to finish sending.”

TMST-SCATTER TMST-GATHER log2 p( ) α
p 1–

p
------------nβ+= =

log2 p( ) α nβ+ T≤
MST-SCATTER

TMST-GATHER, log2 p( ) α nβ+( )≤



partition never exceeds the remaining transmission time for the root’s partition, the root node will

certainly finish last.  By selecting the partitioning that minimally guarantees this, one also mini-

mizes the number of message operations.

The resulting algorithm is exactly the same as the recursive-splitting algorithm presented in

Section 5.1, except for the partitioning function.  Instead of cutting the mesh in half, partition it so

that the total data required by the nodes in the root’s partition (not counting the root’s own por-

tion) is at least as much as the total data required by the nodes in the other partition (not counting

the new root’s portion).

It must be noted, however, that the above implementation is still not completely optimal.  If

the data distribution is skewed but the total data volume is small , the data distribution partitioning

strategy may incur additional startups that are not offset by savings in data transmission time.

Therefore, at each stage, if the imbalance in data distribution for the geometric partitioning drops

below α/β bytes, it should be used instead of the data distribution partitioning, since any time sav-

ings in data transmission will be exceeded by the cost of an additional startup.

8 The Collect Operation



done with the last ring, they have the whole data contribution.  Of course, there will  be contention

in all phases in which the nodes of a ring are not physically contiguous.  Therefore, the early

phases should use rings in which the nodes are most widely spaced, and the later stages rings

where the nodes are closest.  (See Figure 7.)  The total running time is thus:

where j represents the rings in the ith dimension and  represents those rings that have not yet

been collected over in the other d dimensions, .  Note that all of the timing formulae in this sec-

tion assume that the nodes’ contributions are of uniform length.

If the number of nodes does not factor well, a better approach would be to MST-gather the

data to a single processor then MST-broadcast it to all  of the nodes in the mesh.  In this case, the

time complexity is:

For longer vectors, however, both of these approaches are clearly suboptimal since the total

data transmission time is greater than the optimal ((p - 1)/p)nβ.  In such cases, the DR method is

TPFR-COLLECT pi j, 1–( ) α
n

pi ′ j′,
i′ j ′,
∏ 

 
------------------------- max βnode ci j, βnet,( ) δ+( )+

 
 
 
 

j
∑

 
 
 
 

i 0=

d 1–

∑=

j ′

i ′

TMST-COLLECT TMST-GATHER TMST-BROADCAST+=
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enough to merit all of the startups required by the long vector method.  A hybrid technique can be

used to resolve this problem.

In the PFR-DR hybrid, one partially factorizes the dimensions.  For example, on a three-

dimensional mesh, one might choose to completely factor the first dimension, partially factor the

second dimension and make a single ring of the third dimension.  In this way, message startups

are minimized in the initial stages of the collect when the vectors transmitted are small, and con-

tention is minimized or eliminated in the later stages of the collect when the vectors are large.

Note that the dimensional-alternation strategy for the PFR should only be used in the dimensions

that are factorized;  it should not be used in the dimensions containing pure DR.  The time formula

for this hybrid is:

TPFR-DR-COLLECT mi 1–( ) α
n

mi′
i ′ i=

d 1–

∏

-----------------β+

 
 
 
 
 
 

i d ′=

d 1–

∑

pi j, 1–( ) α
n

mi ′
i ′ d ′=

d 1–

∏
 
 
 

pi″ j ′,
i″ j′,
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----------------------------------------------------- max βnode ci j, βnet,( ) δ+( )+

 
 
 
 
 
 

j
∑

 
 
 
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The MST implementation of a broadcast is quite simple; the entire vector is propagated along

the MST given by the recursive-splitting algorithm.  This approach yields optimal message star-

tup times:

While the MST-broadcast requires very few steps, it does involve a high data transmission

cost since the entire vector in retransmitted  times.  The SC approach avoids this at the

cost of additional message operations.

In the SC-broadcast, the vector is scattered though each dimension, starting with the highest

dimension.  It is then collected in each dimension, starting with the lowest dimension.  All nodes

then have the entire vector.  For example, on a two-dimensional mesh, the vector is first MST-

scattered equally among all the nodes in the source node’s column.  Each of these nodes then

MST-scatters its portion to all of the nodes in its row.  Then, the nodes then perform a DR-collect

in rows and another in columns.  The time for the entire operation is:

TMST-BROADCAST log2 p( ) α nβ+( )=

log2 p( )

TSC-BROADCAST log2 mi( ) m+
i

1–( )
i 0=

d 1–

∑
 
 
 

α 2
p 1–( )

p
------------------nβ+=



scattered through the real dimensions, MST-broadcasted within the virtual and remaining real

dimensions, and then collected over the dimensions that it was initially scattered over.  The nodes

within the virtual dimension can either be physically contiguous or interleaved.  If  contiguous, the

MST-broadcast phase is contention-free, but the collect phases create contention since groups of

nodes are collecting across single links in the mesh.  If interleaved, however, the collect phase,

when the vectors are longer, is contention-free, and the short-vector MST-broadcast phase incurs

the link contention.  Thus, it is the later strategy that should be used in practice.  (See Figure 7.)

Using the interleaved MST-broadcast, the MST-SC hybrid has the following running time:

TMST-SC-BROADCAST log2 mi( ) m+
i

1–( ) α 2
n
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no contention in the MST phase.

For very long vectors, the pure SC broadcast is still  less than optimal, so another approach

must be used.  The DOPL-broadcast, presented in [24], yields the best known time under the con-

straints specified in Section 2.  The basic algorithm is to partition the vector into pieces, then pipe-

line it through each dimension, one dimension at a time.  The total running time for the algorithm

is:

where the first term represents the time required for the wraparound messages (if any), and the

second term is the time required for the first d stages plus the pipeline fill s throughout.  ki is the

optimal partitioning in the ith dimension:
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n
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d
--------------------------------- mi 1–( ) ki 1–+ 
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tor sum of all the nodes’ contributions.  Note that this is logically the opposite of the collect,

which begins with smaller contributions and ends with equal-length vectors on every node.  Many

of the same techniques used in Section 8 apply here as well .

On hypercubes, the standard procedure is to use recursive-halving, a variation of the binary

exchange in which nodes trade and reduce half of their vector in the highest dimension, a quarter

in the next lower dimension, and finally 1/p of their vector in the lowest dimension (assuming of

course, that the distribution is even).  Thus each node ends up with a complete reduction of 1/p of

the contributed vectors.  Uneven distributions or the use of the generalized PFR approach requires

some additional complexity:  In each ring, the nodes trade and reduce a portion equal in length to

all the portions destined for the nodes in the remaining rings to which they belong.  Finally, in the

last ring, the nodes simply circulate and reduce their own portions.  The execution time for the

PFR method is:

where, as with the PFR-collect, j represents the rings in the ith dimension and  represents those

TPFR-DISTRIBUTED REDUCTION pi j, 1–( ) α
n

pi ′ j ′,
i ′ j′,
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------------------------- max βnode ci j, βnet,( ) δ γ+ +( )+
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 

j
∑

 
 
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i 0=
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Neither of these methods work well for long vectors, however, since the first technique incurs

considerable contention and the latter unnecessarily replicates data transmission and reduction

operations.  Once again, the solution is to use the DR technique.  Just as in the PFR approach, the

nodes start with the highest dimension and, at each stage, circulate and reduce all the portions of

nodes in the lower dimensions.  The time for this is:

Just as in the collect operation, the PFR and DR algorithms for the distributed reduction can

be hybridized by partially factoring the dimensions to better balance the relative latency and

transmission costs of the two methods.  In this case, the operation’s running time is:

where  is the lowest unfactored dimension,  j represents the rings in the ith dimension and 
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mind, the techniques used for the broadcast can be logically reversed and applied to the reduction-

to-one.

The simplest way to perform a reduction-to-one is to use a MST.  The operation proceeds

much like a gather, with the nodes at the leaves sending their data vectors to the their parents, who

combine the data with their own, using the user-supplied operation, and then pass the resulting

vector to their own parents.  This process continues until the root node has the reduction of all of

the nodes’ data.  The time complexity is the same as that of a MST-broadcast, plus the time

required to perform the user operation:

The reduction-to-one analogue to the SC technique for long-vector broadcasts is to perform a

DR-distributed reduction followed by a MST-gather within each dimension until the entire result

resides on the root node.  (Note that this is the exact reverse of performing a scatter followed by a

collect.)  The time for this operation is a simple extension of the time for the SC-broadcast:

As for medium vector hybrid techniques, a good strategy would be to perform a partial dis-
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where  is the dimension in which the DG phase ends and the MST phase begins.  As with the

MST-SC hybrid, if  this phase division occurs on a dimensional boundary, then  is the lowest

dimension in which the DG technique is used.  Once again,  and .  Simi-

larly, there is no contention is this case.
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Here, ki is:

12 The Reduction-to-All Operation

The reduction-to-all operation applies the user-supplied operator to all the nodes’ vectors, leaving

the complete result on every node.  A crucial routine in many parallel applications, efficient

implementations of this algorithm have been studied in depth in [1,23].

For short vectors, there are two approaches that one could use.  The first is a “fan-in/fan-out”

method that in this thesis’  terminology is a MST-reduction-to-one followed by a MST-broadcast.

On machines such as the Intel Touchstone Delta, this technique has been shown to work well.

However, the nodes on the Delta cannot simultaneously send and receive without penalty (a viola-

tion of Assumption 5 in Section 2).  On more recent architectures such as the Intel Paragon or

Cray T3D, the nodes can and receive simultaneously, so this technique is outperformed by a PFR

k i
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physically contiguous.  As with other PFR approaches, this is minimized by using rings in alter-

nating dimensions.  In this case, however, there is no need to rearrange data since the entire vector

is being used.   The operation’s time is thus:

where j represents ith dimension’s rings.

For longer vectors, a recursive-halving strategy proves the best.  The standard PFR strategy

involves considerable communication and computational redundancy since nodes transmit and

operate on the same vectors.  By cutting the vector in half at each stage, this redundancy is elimi-

nated, since nodes transmit and operate on separate portions.  Thus, the nodes essentially perform

a distributed reduction followed by a collect.  The time for this variation is:

Once again, however, an important range of medium length vectors requires a hybrid

approach for the best performance.  The strategy which was given in [1] hybridizes the PFR-DC

and PFR approaches.  The distributed reduction is performed over a subset of the rings, leaving
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where j represents the rings over which the distributed reduction and collect phases are per-

formed,  represents the rings over which the PFR-reduction-to-all phase is performed and 

represents the rings over which the distributed reduction (collect) has already been (has not yet

been) performed in the d dimensions, .

For very long vectors, a DR-oriented approach yields optimal data flow and operation counts.

Introduced as the “buckets” approach in [1], this approach utilizes a DR-distributed reduction fol-

lowed by a DR-collect of the result.  The running time is simply the sum of the times for these two

operations:
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Last but certainly not least is the all-to-all scatter.  The all-to-all scatter is the data flow algo-

rithm;  every node sends an individual subvector to every other node in the mesh.  On hypercubes,

the all-to-all scatter can be performed quite easily, requiring only log2(p) steps plus some addi-

tional data rearrangement time.  Mesh-based implementations must contend with the much more

restricted bisection bandwidth of the mesh architecture.  As a result, a myriad of methods have

been proposed, each of which have certain relative message latency, data transmission time and

data rearrangement cost advantages [6,10,20].  Many of these techniques require power-of-two

meshes or make poor use of excess network bandwidth (a fatal flaw as will be shown below).

Thus, this thesis presents a generalization of the best of these techniques using the primitives pre-

viously outlined in Sections 5 and 6.

The interleaved binary exchange presented in [10] provides excellent performance for short-

to medium-length vectors.  Generalized to arbitrary mesh sizes by using the PFR primitive, the

algorithm is as follows:  At each stage, approximately 1/d of the nodes operate in rings that lie

within each dimension.  Inside these rings, the nodes circulate all the subvectors destined for

nodes that are in the remaining rings of the other nodes of the current ring.  In the final stage, the



where n is the length of all of the vectors on all of the nodes (thus, 1/p of the vector resides on any

given node) and j represents the rings in the ith dimension.

As an approach for long vectors, one might think to use the DR method.  For example, on a

two dimensional mesh, column rings would circulate subvectors until each node has all of its

row’s subvectors.  The data on each node would then be rearranged so that each node’s portion is

contiguous.  Finally, row rings would circulate subvectors until every node has all of its data.

This method has a running time of:

Current trends in mesh architectures, expose weaknesses in the DR method, however.  First,

nearly every modern mesh architecture has considerable excess bandwidth, often a factor of two

or more [4,14,18].  This allows one to get data to its destination much more directly at no penalty.

Second, this technique underutilizes the network links.  Although every node is sending and

receiving, only the links within a single dimension are being used.  Finally, message latencies are

declining rapidly, and vendors are beginning to provide low-level “get” and “put” operations with

incredibly low latencies.  At the same time, bandwidth into the node is beginning to approach the
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requires a factor of  more on two-dimensional meshes) and instantly floods the network to

capacity.  On wormhole routed machines, this can be disastrous.  When a packet is blocked in the

network of such a machine, all of the channels it occupies are held locked, causing other packets

to block, until the entire network becomes completely congested.  Innovations in router design

proposed in recent years could alleviate such a problem, however.  In particular, the virtual flow

control scheme introduced in [8] allows the channels occupied by a blocked packet to be used by

other packets.   This improvement decouples channel and flit buffer resources by providing multi-

ple buffers for each channel.  Virtual channel flow control is already used in architectures such as

the Cray T3D as well as the J- and M-Machines [7,9,17].  When this modification becomes

widely adopted, the direct-send method should perform quite well, with a running time of:

For very long vectors, the direct send method is at least a factor of two better than the DR-all-to-

all-scatter.

14 Group Communication
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they can also be used to provide collective communications for user-defined groups by simply

allowing the user to supply the input array of node ID’s.  Also, rather than writing separate rou-

tines for whole-mesh and group-based operations, one can instead write only the group-based rou-

tines.  The whole-mesh operations simply call the group-based routines with a pre-defined group

containing all of the nodes, a technique that has been adopted in MPI [16].

15 Implementation Details

When implementing the algorithms discussed in this thesis, there are a few considerations that

should not be overlooked.  In particular, the intricacies of hybrid selection, DOPL alternations,

and group structure maintenance are worthy of further attention.

15.1 Hybrid Selection

Obviously, hybrids are useless unless there is an effective way to determine which strategy should

be used for a particular mesh.  One way to determine the optimal hybrid would be to find the min-

imum running time for all hybrids as well as the pure short and long vector approaches.  While an

exhaustive technique such as this will  certainly produce the best strategy, the search may be



it may prove useful to cache recent hybrid strategies used by a given operation.  In many applica-

tions, the same operations are performed repeatedly on the equal size data structures.  Under such

circumstances, one could associate vector lengths with their strategies, re-using the strategies

when the operation is performed again on a vector of the same (or nearly the same) length.

15.2 DOPL Alternations

On typical machines, kalt will never exceed ten or fifteen, even for very long vectors.  Given that

the DOPL primitive should only be used for very long messages, the small search time for the

optimal kalt should be insignificant.  The validity of this procedure can be ascertained from the

derivative of timing function with respect to kalt, which is monotonically increasing and equal to

zero for some value of kalt.  While one cannot solve for this value of kalt, one can tell that the time

function is thus convex.  Once the value of kalt is calculated for a particular message length, it can

then be retained for later re-use.

15.3 Group Structure Maintenance

When groups are created, it is essential to extract information about the physical layout of a group



equal and that the product of those array lengths equals the number of nodes in the new group.  If

so, one can consider the group to be a  mesh, where  is the length of

the array for the ith dimension.  Often, if a group is particularly small or its layout cannot be ascer-

tained, one can simply consider it to be a linear array.

16 Performance Data

Many of the techniques described in this thesis have already been put to use in the Interprocessor

Collective Communications Library (InterCom) for the Intel Touchstone Delta and Paragon sys-

tems [4].  One notable exception is that InterCom does not include an all-to-all scatter operation

(although one will be included in a future release). Also, it does not use the DOPL primitive for

the broadcast and reduction-to-all operations. (In practice, the high message latencies found in the

current operating systems of the target systems push the break-even point for the DOPL algorithm

to such high vector lengths that its inclusion is not merited.  However, low-latency architectures

such as the Cray T3D as well as the J- and M-Machines could certainly benefit from such a tech-

nique.)  Figures 8 through 12 show comparisons of the hybrid, long vector and short vector

approaches for the broadcast, collect, distributed reduction, reduction-to-all and reduction-to-one

m ′0 m× ′1 ... m ′d 1–×× m ′ i



17 Conclusion

This paper proposes an effective methodology for building a high-performance collective com-

munications library on a mesh-based parallel computer.  The routines presented are built on a sim-

ple set of short and long vector primitives.  Similarity between the routines is exploited by

reapplying techniques used in other operations.  Furthermore, many of the operations themselves

are built using versions of other, simpler operations.  In this manner code reuse is maximized and

redundancy eliminated.  Finally, the strategies used can be easily extended to support more

advanced features of message-passing standards such as group operations.

Thus, this thesis does not merely present algorithms;  it also proposes an overarching philoso-

phy that defines the mechanics and interactions of those algorithms as they are combined in the

implementation of an efficient collective communication library.  Moreover, the applicability of

this methodology extends beyond today’s prevail ing architectures;  its inherently broad and adap-

tive nature make it appropriate for the mesh-based parallel machines of tomorrow as well as those

of today.
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