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1 IntroductionBuilding a tera
op supercomputer is ongoing challenge [1]. With technological advances pushedto physical limits, architecture and parallelism receive the most promising alternatives topursue. Large part of most programs consists of subprocesses which either do the same work overdi�erent data or are mutually independent, so that concurrent execution of these subprocessesby multiple processors can greatly reduce the overall completion time of the programs. Employ-ing parallelism in general problems, however, remains to be a challenge, though SIMD (singleinstruction-stream multiple data-stream) type architecture has succeeded in solving special typeof problems.Message passing and distributed shared memory (DSM) are twomajor paradigms in buildinggeneral purpose parallel computers. Message-passing system is easily scalable because nointer-dependent element exists in its model. In the message-passing programming model,cooperating processes exchange their information by messages through appropriate inter-processcommunication protocols. But the absence of global data object in this model is inconsistentwith the existing programming styles. Shared-memory programming model provides transpar-ent data communication which meets with the conventional programming style and which isfamiliar to users. Although shared-memory multiprocessor system is suitable to this model,it is not scalable due to the access contentions of the shared memory. DSM systems releasethis problem of shared-memory systems by distributing the main memory to local processorsand logically sharing these local memories. They use shared memory programming model ontop of message passing system to achieve both programmability and scalability. Since the speedof internode communication is the key for maintaining the memory consistency and reducing theremote memory access delay, most of DSM systems use system-speci�c interconnection networksuch as hypercube, mesh or torus to increase the performance of the systems.Recently, some DSM systems have been built through the general purpose network such asEthernet. [9, 10, 11] The network-based parallel computer (NPC) has many merits in comparisonto the traditional DSM systems. By using the general network, it can scale up easily, supportthe heterogeneous architecture, exploit directly the development of the network technology andof the commercial computer technology, and so on [9]. Other works on parallel computing inheterogeneous environments [12, 13] show the promise of such an architecture.If we re
ect on the evolution of computer networking technology of sequential computers,we can easily imagine the future of parallel computing. Like today's computer network, allcomputers in the future would be connected by high speed interconnection networks withultrafast interface and we could use our PC or workstation as a processing node to executeour programs in parallel with other processing nodes in remote locations via the networks. Sucha large scale, networked multicomputer system would consist of commercial sequential comput-1



ers and would work as a general purpose parallel computer. Supporting a single address spacefor such a large system is one of the di�cult problems to be solved.Most DSM systems [4, 5, 6, 7, 10] use a global address space which is shared by all pro-cessing nodes to support the single address space for programs. But according to our research,such a global address space is inadequate for the scalable, general purpose parallel comput-ers, especially for NPC. In this paper, we suggest a virtual memory management scheme thateliminates the disadvantages of global address space. Our method extends the virtual mem-ory technique of conventional computers to shared virtual memory [3] of parallel computers sothat each computing node can run both sequential and parallel programs with the same virtualmemory technique. Each single address space for a program is created and destroyed at runtimeand shared only by the processors cooperating for the same job. Two algorithms, the static andthe dynamic algorithm, are also presented for the distributed management of the shared virtualaddress space.Based on the object-oriented approach, Forin and his colleagues proposed a user-level sharedmemory server [13] working under Mach operating system. In their approach, the user can createshared memory objects and can map the objects to certain ranges of task's address space. Theseobjects are managed by user-de�ned processes, called external pagers, and can be accessed bythe processes via an asynchronous message interface between the pager and the kernel. [13]Our approach is similar to theirs in that the shared memory spaces are dynamically createdat runtime but is di�erent in that all address spaces of tasks (jobs) in our method are sharedmemory spaces and the creation and the management of the shared spaces, of which many partsof the functions can be implemented by hardware, are totally transparent to the users.In the next section, we point out the disadvantages of a global address space. The newshared virtual memory scheme is presented in Section 3, and two algorithms for shared addressspace assignment are proposed in Section 4. In Section 5 we show the merit of our method inreducing the message tra�c in the system.2 Drawbacks of the Global Address SpaceMost DSM systems use a global address space of which the management is distributed to allprocessing nodes. Application programs running at the same time in such systems use disjointsubspaces of the global address space so that every program runs in a single address space withoutinterfering with each other. With regard to the systems with small number of processing nodes,the global address space might be convenient for the implementation and the management of thedistributed memories, but it imposes many disadvantages on the system with a large number ofprocessing nodes.In this section, we describe the possible drawbacks of global address space in building2
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SFigure 1: Detour of remote memory access in a DSM system. An application program is runningon 16 nodes out of 64 nodes. A page fault of S is forwarded to the owner (O) via respective defaultmanagers: (a) default manager in global address space (M); (b) default manager in con�gurableshared virtual space (M').a scalable parallel computer. Hereafter, we use the term global address space as a prede�nedsingle address space shared by all PE's in the system, and single address space as a single addressspace given to a program which is shared by all or some PE's in the system. In addition, in therest of this paper, NPC is used to refer to the large scale network-based multicomputer systemwhich is the connection of a huge number of (heterogeneous) computers through the generalpurpose networks.2.1 Increment of Message Tra�c and Remote Memory Access DelayThe management of global address space could be centralized or distributed to several nodesand the manager(s) might be �xed or changed dynamically. Among the schemes proposed byK. Li [3], the \distributed �xed manager algorithm" is a widely used method for the managementof global address space due to its simplicity and low runtime overhead. In this algorithm everynode takes charge of �xed parts of the global address space. To access a page in remote locations,a node �rst gets the information about the owner of that page from the node (default manager)which is responsible for the management of the page.This widely used algorithm has the redundancy of memory-sharing if it is used in globaladdress space. General purpose parallel computer has to deal with a variety of applications.Due to the diversity of application programs, some programs use most of processing nodes ofthe system while others use only small parts of them. For example, let us consider a DSM systemcomposed of 64 (8�8) PE's which are connected by a high speed interconnection network (Fig. 1).Each box in the Fig. 1 represents a processing node. In the DSM system with a global addressspace (GDSM), each PE in the system is in charge of a part of the global address (real or virtual)3



space whether or not it is involved in the parallel execution of a program. Note that not allprograms use all the PE's for their execution because of the limit of their parallelism. Lotsof application programs use smaller number of PE's than those supported by the system. If aprogram requires 16 PE's for its execution, it runs only on some parts of the system(for example,only the shaded processors in the Fig. 1), but its address space is shared by all the 64 PE's ratherthan these 16 PE's. Owing to this redundancy, memory references are not always directed toone of the cooperating PE's, which, on the average, takes longer path.Fig. 1 shows the possible scenario of a detoured remote memory access. If a page fault isgenerated by a PE, S, S sends a message to the default manager of the page (M) to request acopy of that page. If M is the owner of the page, it sends a copy of the page to S. If the pageis owned by another PE, M forwards the message to the owner (O) and O sends the copy toS. If the address space of the program is shared only by the PE group which consists of thecooperating PE's only, all memory references generated during the execution are con�ned to thegroup. In this case, there is other default manager (M') in the group and the resulting memoryaccess path may be shorter than that of GDSM. These longer message paths in GDSM result inhigher message tra�c density and higher delays in remote memory access.This e�ect is more serious if the number of cooperating PE's is much fewer than the totalnumber of PE's of the system. The analysis on this e�ect on the several network models ispresented in Section 5.2.2 Scalability IssueAs we mentioned before, the general purpose parallel computer has to run e�ciently for boththe highly parallelized program and the nearly sequential program. The highly parallelizedprograms favor the system having large number of PE's with distributed memories, whereas theprograms with low parallelism prefer small number of high performance processors with largelocal memory. The ideal system, therefore, would be one that can support su�cient number ofprocessors to maximize the parallelism and that has plenty of fast local memories to maximizethe performance of each processor. But the global address space is an obstacle in achieving thisgoal.To illustrate this point, let us try to scale up the DSM system from Fig. 1. If we de�neN as the number of PE's of the system, and mi, Vi as the main memory size and the size ofaddress space of i-th PE, respectively. The size of global address space, Vg, is determined byVg = min1�i�NfVig (1)since any location in global address space has to be addressable by every node of the system.4



The total memory size of the system is restricted such thatVg � NXi=1mi (2)or if the system is homogeneous, Vg � Nm (3)In scaling up the system, we encounter the point where the total memory size is biggerthan the size of global address space (Nm > Vg). The system is easily scalable only up toNc (= bVg=mc) PE's. If we want to scale up the system over Nc PE's, we have to makea decision whether to use other processors with larger address space or to decrease the sizeof local memory of each node. Changing processors requires the total redesigning of the sys-tem which takes a lot of time and results in large overhead in scaling up. Cutting the localmemory size results in performance degradation of each processor. It has been well knownthat the more powerful a processor is, the more memory it requires to maximize its capability.The performance degradation is more serious when each processor works in multiprogrammingenvironment. Consequently, GDSM has the limited scalability up to Nc without much overhead.It may be argued that using the recently developed 64 bit processors solves the problem,since the address space size of 264 is virtually unlimited, which may be true if it is a homogeneoussystem. On the contrary, if it is a heterogeneous system the situation is not so simple and muchmore complex in NPC. The next section describes the rising problems when the global addressspace is used in NPC.2.3 Application Problems for Network-based Parallel ComputersThe ultimate goal of parallel computer system might be the networked multicomputer systemwhere computers are distributed over wide areas and of which the high speed networks takethe role of today's system-speci�c interconnection network. Because such a system consistsof the mixture of heterogeneous computers, applying global address to it may cause severalproblems. Considering the situations that could take place in such a large heterogeneous system,we conclude that the global address space is inadequate to NPC for several reasons.First, the maximum size of the global address space is determined by the processor of thesmallest number of address bits (Eq. 1). If it is greater than virtual address size of a processor,the processor is excluded in memory-sharing or can access the limited parts of shared memory,which means that the address space is no more global. As the system size grows, it runs biggerprograms or more programs simultaneously. But the global address space size of NPC does notincrease as large as the system size by this reason. Thus, the global address space is saturatedeasily due to the demand of huge number of programs to be run simultaneously in NPC.5



Second, the total memory size of the system may easily exceed the size of global addressspace due to the huge number of PE's and their local memories. Furthermore, the local memorysizes are widely di�erent, so that neither the distribution of address space nor the translation ofvirtual addresses is simple.Third, the system parameters, such as the number of processing nodes and the size of localmemories, vary often. As we experience in today's computer network, the total number ofcomputers connected to the network keeps changing, and so do the local memories. Even worseis that the e�ect of turning on/o� of a computer is equivalent to attaching/detaching it to thenetwork. A special mechanism has to be devised to handle such situations.Fourth, the system with global address space is very susceptible to faults. This is trueof both specially-designed DSM and NPC. As the system size grows, the chance of faults alsoincreases. In the global address space, any fault of a node may cause the malfunction of thesystem. For example, if the PE, M , in Fig. 1 is faulty, the program could not be run properlyeven though all cooperating PE's are working correctly. Besides real faults, a lot of pseudo-faults (transient faults) are possible in NPC such as turning o�, rebooting, etc.Finally, the number of cooperating processors for the execution of a program is usually muchsmaller than the total number of processors in NPC. The detoured memory accesses increasethe message tra�c density of NPC more signi�cantly than the small GDSM.All the drawbacks discussed so far come from the globality of address space. To build thescalable general purpose parallel computer, we need to propose a solution which eliminates thisglobality.3 Con�gurable Shared Virtual Memory (CSVM)The single address space for a program is essential for the ease of programming. By the reasonspresented in the previous section, application of global address space is e�ective to relativelysmall number of processing nodes. We propose a new method for the management of sharedvirtual addresses which can be applied to any kind of distributed memory system includingNPC.For the convenience' sake, we de�ne some terminology used in this paper �rst. We use thetask as the basic unit of parallel processing, therefore, a parallel program is divided into a set oftasks. We de�ne a job as the execution of a program and the requester as the processor (node)which initiates a job and distributes the tasks of the job over the system. The processor scheduledto run at least one of the tasks of a program is de�ned as amember of the program. All membersform the group of the program.Our method provides a single address space to a program which is shared only by themembers of the program. No prede�ned shared memory is required. Each shared virtual memory6
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Figure 2: Example of CSVM. At the instant, two programs are running in parallel on the systemand two con�gurable shared virtual address spaces (CSVS) distributed only to the member nodesare created to support the single address space for each program.is created for a program at runtime and destroyed at its completion. All these operations and themanagement of the shared space are transparent to users. This makes it possible for each nodeto be designed and used as an independent system just like a PC or a workstation connectedto a network. Each node serves as a processing node for parallel execution only when it is amember of the group of a given program. Of course, a node can be a member of several groups ifit is working in multiprogramming environment. Fig. 2 shows an example of the system. UnlikeGDSM systems, each di�erently colored (shaded) shared virtual memory is shared only by themember nodes.3.1 The Model and OperationThe support system for our model consists of three components, processing nodes, network andsystem manager, and I/O devices (Fig. 3-(a)). Each processing node is virtually a conventionalgeneral purpose computer which is composed of a processor, main memory, disk storage, OS andmemory management unit (MMU), and communication unit (CU) (Fig. 3-(b)). A processor anda main memory are essential for a node, but other facilities could be shared with other nodes.Each node of a DSM system can be a node in this system. In this case, the interconnectionnetwork of the DSM system forms a substructure of the network in the system. The whole DSMsystem can be a node as well, since it satis�es the requirement for a node. The memory hierarchyof each node is the same as that of the sequential computer except that the remote memoriesare at the same level of hierarchy with its local disk storage as in Fig. 4. All page faults, ofwhich the virtual page addresses lie in its subspace, are handled between the main memory andits disk storage, while those in other subspaces are resolved between the main memory and thememories of the other members. 7
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MemoriesStorageFigure 4: Memory hierarchy of each node in a CSVM system.The network supports the point-to-point communication for any pair of nodes usingmessage passing protocol, and the system manager is responsible for reliable and deadlock-free communication, system diagnosis, and system administration. I/O devices are distributedover the system and some of them may belong to a speci�c node or be shared by several nodes,in which cases other nodes can access the devices through the intermediation of the owner node.In addition to this model, we assume the following for the operation of CSVM system.� Each processing node has the full capability of a conventional computer. In the rest of thispaper, we assume, without the loss of generality, that it is a general purpose uniprocessorsystem(Fig. 3-(b)).� Each processor (processing node) has an identi�cation number which is unique in the8



network.� There is a communication protocol which is agreed by all the nodes, so that any pair ofnode can exchange messages correctly.� There is a mechanism which distributes the tasks to all or parts of the processing nodes.This could be centralized to the system manager or distributed to each node dependingon the system size and operating system.� A program can be divided by a set of tasks at compile time.� As an implicit assumption, the speed of network is tolerable for executing programs inparallel.In the absence of the execution of parallel program, CSVM system is just like the today'scomputer network or multicomputer system. Each node of the system does its own jobs with itsown facilities, and its OS or MMU manages its memory and disk storage in its own way. Thereis no preassigned shared memory. The shared memory space is created in need of a program,rather than prede�ned. This space exists only during the execution and is destroyed with theend of the program. All of the operation is transparent to the user.The preparation for the creation of a con�gurable shared virtual address space (CSVS)begins when the requester receives a job. As soon as the requester receives the job, it generates ajob-identi�cation number (job id) for the program which has to be unique over the entire system.Next, the requester prepares the information table in its memory under the job id (Fig. 5).JOB INFORMATION fstatus;number of tasks ;number of scheduled tasks ;number of completed tasks ;*member list ; /* pointer to the �rst member */number of members ;IO server ;g Figure 5: Structure of JOB INFORMATION table.The status has one of three values, after, proceeding, and before, which indicates thatthe CSVS has already been created, is being created, or has not been created, respectively.9



The entries, number of scheduled tasks, number of completed tasks and number of members areinitialized by 0, and the number of tasks by the value given at compile time. The entriesnumber of members and member list will be completed through the task distribution (seeSection 4). The IO server is initialized by the requester's processor identi�cationnumber (requester id) since it is the only processor which knows and must know all the I/Oinformation. Some of the entries may not be used depending on the address space assignmentalgorithm (Section 4).After the preparation of the table, all the tasks of the program are tagged by the job idand the requester id and then distributed over the system. According to the distribution, themembers are determined and so is the CSVS. The requester may or may not be a member of theprogram depending on the distribution. Even if the distribution is completed, the correspondingCSVS is not created until the execution of the �rst task of the job. Under our model, everynode runs two auxiliary procedures before and after each task, the Head() procedure and theTail() procedure. The major role of the Head() procedure is checking the existence of the virtualaddress space under the job id. If it has been already created, it executes the task immediately;otherwise, it creates the new CSVS under the job id according to an algorithm (see Section 4).The role of the Tail() procedure is checking whether the task is the last of the program. If it isthe last task, the node informs other members of the termination of the CSVS.The creation of the CSVS is initiated by the member who runs the �rst task of the program.Before the execution of the �rst task, the member requests the creation of new CSVS to all othermembers (or via the requester). As soon as a member receives the request, it creates the assignedsubspace under the job id. The creation and management of the subspace are entirely up toeach member so that it is possible to use the conventional virtual memory technique with alittle modi�cation. In addition to conventional virtual memory method, OS or MMU of theeach member keeps a copy of JOB INFORMATION table of the CSVS. This is used in �ndingthe default manager of a page when page faults occur. We use the \distributed �xed manageralgorithm" [3] for the management of CSVS such that each member undertakes the managementof �xed parts of the CSVS.If a page fault occurs, MMU locates the default manager of this page. If the page is in itssubspace, MMU handles the fault with the conventional technique { a victim is selected frommain memory and swapped with the page in its local disk storage. Only the pages in its subspacecan be stored in its disk storage. If the selected page belongs to others, it is discarded or returnedto its manager depending on its status. On the other hand, if the virtual page address of thefault is out of its subspace, the virtual address, job id, and the default manager id are sent toCU to generate the message requesting a copy of that page. All remote memory accesses inCSVM are carried on by sending the messages including both the job id and the virtual address.The job id acts as the password to access the memory locations, so that no other processor can10



access the remote memory locations without the job id. With the job id, the virtual address istranslated into physical address at the �nal destination node.3.2 Advantages of the CSVMThough DSM system intends to combine the scalability of message-passing system and theprogrammability of shared memory system, GDSM partially succeeds in exploiting thescalability of message-passing system. CSVM is the system that can fully use the merits ofboth systems. It has the following advantages compared with the GDSM.Node Independence Each node in CSVM could be designed and used independently. Thisproperty makes it easy to build and maintain the system. A node can be removed, added andupgraded easily. The improvement of network technology and sequential computer technologywill be directly employed in the system.Fault Tolerance It is a fault tolerant architecture for large DSM systems. As we explained inSection 2.3, one fault in GDSM systems a�ects the operation of the entire system. The chanceof faults increases in proportion to the system size. To build a scalable parallel computer, wemust take the fault tolerance of the system into consideration for the reliable operation. CSVMneeds a diagnosis mechanism for this goal, while GDSM needs not only a diagnosis mechanismbut also a recon�guration algorithm. If CSVM detects a faulty node, it excludes the node intask distribution until the fault is �xed. This action is su�cient for the proper operation ofthe system, because the faulty node is automatically excluded in the share of any CSVS in thesystem. Any number of faulty nodes can be masked by this method as long as the faults do notbreak the communication network.Reduction of Message Tra�c Our model provides a degree of freedom in reducing themessage tra�c and remote memory access delay of the system. All messages for the programexecutions are con�ned in the group in CSVM, so that scheduling (distributing) the tasks torelatively closed nodes reduces the overall message tra�c in the system (Section 5). But thesituation is not so simple in GDSM, since the messages can be sent to any node in the system,we cannot be assured that such distribution of tasks will reduce the message tra�c of GDSM.Size Scalability The size of CSVM system is virtually unlimited. CSVM can support anynumber of nodes as well as heterogeneous nodes. The scale up of CSVM is very easy and coste�ective. Unless the problem size does not exceed the addressability of the system, we need notchange individual nodes to scale up the system.11



Problem Scalability The largest problem size which CSVM can process is determined bythe maximum of addressabilities of its nodes. If the system is homogeneous, the addressabilityof a node determines the maximum problem size. If it is a heterogeneous system, a node inCSVM can receive jobs of which the size is larger than its addressability, since the requesternode need not be a member. If there are nodes whose addressability is bigger than the job size,the requester distributes the job to these nodes only. This option meets the goal of parallel com-puting in the future { a PC can ask the execution of large program to NPC built on WAN(widearea network). The PC supports the I/O �les for the tasks and receives the �nal result. Thespeed of interconnection network is the determinant factor for its e�ciency.Uni�ed Model The membership strategy in sharing the virtual address space covers fromthe virtual memory of sequential computer to that of DSM. If a sequential program is executedin CSVM or all the tasks of a program are assigned to a node, the node never shares the CSVSwith any other node and, its virtual memory management is, therefore, the same as the virtualmemory technique of sequential computers. If CSVM runs highly parallelized program so thatthe tasks are distributed to all nodes, its virtual memory management is that of GDSM. Thus,this system is a uni�ed model for the virtual memory management of the sequential computerand the parallel computer.In addition, the memory hierarchy and the virtual memory management are the extensionof those of sequential computer for parallel computing. Without parallel computing, they aremerely working the same as the conventional computer. Combining all of the merits, CSVM isa generalization of conventional virtual memory technique for both the sequential computer andthe scalable parallel computer.4 Address Space AssignmentCSVS is divided into a number of subspaces, which are distributed to the members. Thepartitioning method and the distribution method are very important because they a�ectthe communication pattern during the execution of the job. In this section, we present twoassignment (partitioning and distribution) algorithms. Their applicability depends on theavailability of the complete member list before the execution of the job. Designing of the optimalalgorithm for reducing the message tra�c or for reducing the overhead of the system requiresknowledge of runtime behavior of all application programs which is not possible in general. Ouralgorithms, therefore, are not optimal but are designed with a focus on the simplicity of hashingmechanism, the balanced distribution of the address space, and overhead minimization.12



4.1 Static Assignment AlgorithmThis algorithm can be used only if the complete information of two entries of theJOB INFORMATION table, the number of members and the member list, are availablebefore the beginning of the �rst task, that is, before the creation of the CSVS. In this algorithm,all members create and destroy their subspaces at the same time. Since we know all the infor-mation by the creation of the CSVS, we can partition the CSVS and distribute the subspaces toM members in an arbitrary manner. The simplest method may be to assign the space equallyto all members. The hashing of a page address into a subspace is done by simple functionH = (p=c) modM (4)where p is a virtual page address and c is a natural number [3]. The processor id of the defaultmanager is obtained from member list[H]. The order of members in the member list, therefore,determines the assignment of the subspaces. It can be rearranged for optimization before thecreation of corresponding CSVS.Fig. 6 is the 
owchart of the static assignment algorithm. The Head() procedure searchesCSVS TABLE in MMU to match the job id before the execution of each task. If the CSVS withthe job id exists, it checks the status of the CSVS. The task starts immediately if the statusis after ; otherwise the task is held until the status will be set to after. If the Head() procedurefails to match the job id in CSVS TABLE, it sends the message, request new CSVS, to therequester. Upon receiving the message, the requester sets the status of JOB INFORMATIONto proceeding, and sends the copy of JOB INFORMATION table with the message requestingthe creation of the assigned subspace (make subspace) to all nodes in member list (If the statusis proceeding already, the requester discards the received message). The processors receiving therequest message from the requester save copy of the JOB INFORMATION in CSVS TABLEand create their subspace in the same way as the usual virtual address technique. After �nishingthe creation of subspace, each member informs the requester of its completion (subspace created).When the requester has received the subspace created messages from all the members, it sendsmessage, creation completed to all members to set their copy of status to after.After the completion of each task, each member sends the task completed message to therequester. Whenever requester receives the message, it decreases the value of number of tasksand then checks the resulting value. If it is 0, the requester informs all members of thetermination of the CSVS (terminate CSVS) and removes the JOB INFORMATION table,while the members destroy their subspaces.The simplicity and ease of implementation is the advantage of this algorithm. It addsa little overhead to the virtual memory management of sequential computer at the creation ofCSVS. After the creation, the overhead for checking the existence of the CSVS is negligible. The13
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it is created with the partially �lled member list. If only K out of M members are known atthat time, this algorithm creates the CSVS with these K members by the same way in the staticassignment algorithm. On the contrary, if the CSVS exists (status=proceeding), the requesteradds the new member's processor id in member list, increases the number of members, andsends the value of index r with a copy of JOB INFORMATION table to the new member.Then, the new member selects one existing member from the member list (member list[s]) andtakes half of its subspace. The index, s is calculated by the following equation.s = r �K 2blog2 r�1K c (5)The selected member divides its subspace into two sub-subspaces of equal size and transfersall the required information about one of them to the new member. After �nishing the rear-rangement, the new member informs all other members of its a�liation to make them modifytheir copy of JOB INFORMATION table and the hashing function. The hashing function forlocating the default manager of a virtual page address is given asH = ( (p=c) mod L if (p=c) mod L � T(p=c) mod L� S if (p=c) mod L > T (6)with L = K 2dlog2 rK e (7)S = K 2blog2 rK c (8)T = r mod L (9)The values L, S and T are calculated and stored in MMU whenever the new member joins. Themember chosen for the rearrangement is responsible for the forwarding of transient messages tothe transferred space which have been sent to it before the noti�cation but which arrive afterthe noti�cation.Fig. 7-(c), (d) shows an example of the address space assignment of two algorithms. Whileit is �xed in static assignment algorithms, there is a transient period in dynamic algorithmtill all members join the group. Note that, if all members are known at the beginning of theprogram(K =M), this algorithm would be the same as the static assignment algorithm in theprevious section. The dynamic algorithm is general and has advantages of dynamic scheduling,and task migration, but the increased runtime overhead is a major disadvantage of this algorithm.5 Message Tra�c AnalysisIn this section, we analyze the possible savings in message tra�c density of traditional DSMsystem by using CSVM instead of global address space. The message tra�c density (�) generated17



during the execution of a job (program) is de�ned as� � mXk=1skdkl (10)where m is the number of messages, s the message size, d the traveling distance of the messagein terms of the number of communication links, and l the number of communication links in thesystem.To compare the e�ect of CSVM on message tra�c density, let us run a program on aCSVM system and a GDSM system. Except the distribution of address space, every conditioncomprising the distribution of task, architecture, network structure etc. is the same in bothsystems.We clarify the messages into two categories, the direct and indirect message. The directmessage is the one that its path does not depend on the address space distribution, whilethat of indirect message does. For example, like a control message or a message for cachecoherence in the directory-based cache coherence architecture [7, 6], the direct message goes to ade�nite processor so that its path is the same both in CSVM and in GDSM. On the other hand,the indirect message such as message for remote memory reference, goes to di�erent processoraccording to address space management scheme. Although the �nal destination of the messagemight be the same, two systems route the message through di�erent paths by message detouringas discussed in Section 2.1.By separating the message types, the Eq. (10) becomes� = mdXk=1 skdk + miXk=1 skdkl (11)= �sd mdXk=1 dk + �si miXk=1dkl (12)= md�sd �dd +mi�si �dil (13)where the subscript d and i stand for the direct message and indirect message, respectively, andthe �s and �d represent the average size and the average distance of messages. In the derivation ofEq. (12) from Eq. (11) we replace the individual message size by the average size of all messages.The ratio of the message tra�c density of CSVM to that of GDSM isR� = �C�G = (md�sd �dd +mi�si �di)C(md�sd �dd +mi�si �di)G (14)18



Since the program is executed in the same environment in both systems except the addressspace distribution, the messages generated by the systems and their size are almost the same (Themessages generated for the creation of CSVS are not included and are treated as overhead). Inaddition, the average distances of direct messages of the two systems are the same since thosemessages are independent of the distribution of address space. Considering this fact, we get theformula R� = 1 +RmRs� �diC�ddG�1 +RmRs� �diG�ddG� (15)where Rm, Rs are the ratio of the number of messages and the ratio of the average message sizeof two types which are de�ned as Rm = mi=md and Rs = �si=�sd.Calculation of the average distance is di�cult because it depends not only on the programbehavior but also on the task distribution on the system. To remedy the di�culties, we makethe following assumptions.1. The network structure is symmetric for all nodes.2. Memory accesses are uniformly distributed across the address space, and direct messagesare uniformly sent to all members as well.3. The tasks of the program are distributed on the PE's which are as close as possible to oneanother.Most interconnection network architectures used today such as bus, mesh, torus, hypercube etc.satisfy the Assumption 1 very well, even though some of them introduce \edge e�ect" whichviolates the symmetry for edge nodes. We ignore the edge e�ect in this paper.The uniform access assumption (Assumption 2) simpli�es the analysis greatly. Under thisassumption, the probability p(d) that a node sends a message to a node at the distance d isproportional to the number of nodes at the distance d from the node. Hence, the averagedistance will be �d = 1m mXi=0 di (16)= dmaxXd=0 d p(d) (17)= 1N dmaxXd=0 d n(d) (18)19



so that we get �diG = 1Ni dmaxXd=0 d ni(d) = 1N dmaxXd=0 d n(d) (19)�ddG = 1Nd dmaxXd=0 d nd(d) = 1M dmaxXd=0 d nd(d) (20)where N and M are the number of nodes in the system and the number of member. n(d) isthe number of nodes at the distance d in the system, and nd(d) is the number of nodes at thedistance d in the subsystem which consists of only member PE's and all communication links ofthe system. The distribution function n(d) and nd(d) satisfy the relation.dmaxXd=0 n(d) = N (21)dmaxXd=0 nd(d) = M (22)Note that under the Assumption 1, �diC = �ddG. By substituting Eq. (19), Eq. (20) toEq. (15), we get the �nal expression for R�.R� = 1 +RmRs1 +RmRsRd (23)with Rd = MN dmaxXd=0 d n(d)dmaxXd=0 d nd(d) (24)The Eq. (23) shows that the merit of CSVM vs. GDSM with respect to message tra�cdensity is the function of the ratios of the number of messages, average message size andaverage distance. Rd is the major factor which determines the merit or demerit of CSVMon message tra�c. Rd can have the values greater than, equal to, or less than 1, dependingon the distribution of tasks. Actually, if the tasks are distributed to the processors that areseparated far apart, the message tra�c of CSVM increases compared with that of GSDM. Inmost cases, however, the system scheduler distributes the tasks to relatively close processors fore�cient inter-processor communication, so that CSVM can reduce the message tra�c.While n(d) is a �xed value determined by network structure, nd(d) is the function not onlyof the network structure, but also of the distribution of tasks. Under the Assumption 3, we20



derive R� as the explicit function of the ratio M=N . Assumption 3 eases the dependency ofnd(d) on task distribution, so it is used only for the convenience of calculations.Under the Assumption 3, Eq. (24) becomesRd ' MN dmaxXd=0 d n(d)lXd=0 d n(d) (25)where l is the smallest integer satisfying lXd=0n(d) �M (26)Straightforward calculations using the Eq. (21), (23), (25) and (26), and approximating thesummations of the equations by integrations, give the explicit form of the value R�. We derivedthe explicit form of R�, for three distribution functions.1. Uniform distribution : n(d) = Ndmax , 0 � d � dmax:R� = 1 +RmRs1 +RmRs �MN ��1 (27)2. Triangular distribution as Fig. 9.R� = 8>>><>>>: 1+RmRs1+RmRs( 89 MN )� 12 if 0 � MN � 121+RmRs1+RmRsMN h2p23 (1�MN ) 32+2MN �1i�1 if 12 < MN � 1 (28)3. Polynomial distribution : n(d) = a dn, 0 � d � dmax, a is a constant.R� = 1 +RmRs1 +RmRs �MN �� 1n+1 (29)Most of DSM systems use system-speci�c network architecture like mesh, torus, hypercube,ring and so on. Many of these architectures roughly follow the triangular distribution. As shownin Fig. 9, the triangular distribution of n(d) is a good approximation for �nite size k-dimensionalmesh or torus architecture, and roughly for low-dimensional (k � 10) hypercubes. One level ring21
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M=N is getting smaller. For the large DSM systems, we expect to reduce the message tra�cby more than 50% because the number of members will be much smaller than the number ofnodes (M=N < 110).The Fig. 10-(b) shows the e�ect on R� of the size and ratios of direct and indirect mes-sages (RsRm). As we can expect from the Eq. (28), R� becomes a function of M=N alone, ifRsRm � 1. If RsRm � 1, the advantage of CSVM is apparent only when M=N < 110 .6 Concluding RemarksA new con�gurable shared virtual memory scheme, which facilitates scalability, is proposed.CSVM supports shared memory spaces for the collection of independent computers so that itcan be applied to any size of distributed memory system and network-based parallel comput-ers. According to the analytical result, CSVM is very e�ective in reducing the message tra�ccompared to the conventional DSM system.
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