Configurable Shared Virtual Memory for Parallel
Computing

Myungchul Yoon Miroslaw Malek

Department of Electrical and Computer Engineering
The University of Texas at Austin

yoon@pine.ece.utexas.edu

July 15 1994

Abstract

Most distributed-shared memory (DSM) systems use a global address space which is
shared by all processing nodes. Although the global address space is convenient in pro-
viding a single address space for programming models, it is applicable to DSM systems with
relatively small number of processing nodes. As the system size grows, there is a problem
with scalability. To avoid this drawback, a new shared virtual memory management scheme,
“CSVM (Configurable Shared Virtual Memory),” is proposed. CSVM creates a new single
address space for a given program which is shared only by the nodes cooperating for the
parallel execution of the program. The new scheme, therefore, can be applied to any size of
DSM system and even to heterogeneous DSM systems. We have developed two algorithms
for the distribution and the management of a shared address space. These algorithms cover
both the virtual memory of sequential computer and the shared virtual memory of the tra-
ditional DSM system, which means CSVM is reduced to the virtual memory management of
sequential computer in executing a sequential program and to the traditional shared virtual
memory in executing a parallel program. According to the analytical result, CSVM reduces

the message traffic of DSM system with global address very effectively.

Keywords : Shared virtual memory, Distributed shared memory, Memory management,

Parallel computer architecture.

1 Introduction

Building a teraflop supercomputer is ongoing challenge [1]. With technological advances pushed
to physical limits, architecture and parallelism receive the most promising alternatives to
pursue. Large part of most programs consists of subprocesses which either do the same work over
different data or are mutually independent, so that concurrent execution of these subprocesses
by multiple processors can greatly reduce the overall completion time of the programs. Employ-
ing parallelism in general problems, however, remains to be a challenge, though SIMD (single
instruction-stream multiple data-stream) type architecture has succeeded in solving special type
of problems.

Message passing and distributed shared memory (DSM) are two major paradigms in building
general purpose parallel computers. Message-passing system is easily scalable because no
inter-dependent element exists in its model. In the message-passing programming model,
cooperating processes exchange their information by messages through appropriate inter-process
communication protocols. But the absence of global data object in this model is inconsistent
with the existing programming styles. Shared-memory programming model provides transpar-
ent data communication which meets with the conventional programming style and which is
familiar to users. Although shared-memory multiprocessor system is suitable to this model,
it is not scalable due to the access contentions of the shared memory. DSM systems release
this problem of shared-memory systems by distributing the main memory to local processors
and logically sharing these local memories. They use shared memory programming model on
top of message passing system to achieve both programmability and scalability. Since the speed
of internode communication is the key for maintaining the memory consistency and reducing the
remote memory access delay, most of DSM systems use system-specific interconnection network
such as hypercube, mesh or torus to increase the performance of the systems.

Recently, some DSM systems have been built through the general purpose network such as
Ethernet.[9, 10, 11] The network-based parallel computer (NPC) has many merits in comparison
to the traditional DSM systems. By using the general network, it can scale up easily, support
the heterogeneous architecture, exploit directly the development of the network technology and
of the commercial computer technology, and so on[9]. Other works on parallel computing in
heterogeneous environments [12, 13] show the promise of such an architecture.

If we reflect on the evolution of computer networking technology of sequential computers,
we can easily imagine the future of parallel computing. Like today’s computer network, all
computers in the future would be connected by high speed interconnection networks with
ultrafast interface and we could use our PC or workstation as a processing node to execute
our programs in parallel with other processing nodes in remote locations via the networks. Such

a large scale, networked multicomputer system would consist of commercial sequential comput-

ers and would work as a general purpose parallel computer. Supporting a single address space
for such a large system is one of the difficult problems to be solved.

Most DSM systems[4, 5, 6, 7, 10] use a global address space which is shared by all pro-
cessing nodes to support the single address space for programs. But according to our research,
such a global address space is inadequate for the scalable, general purpose parallel comput-
ers, especially for NPC. In this paper, we suggest a virtual memory management scheme that
eliminates the disadvantages of global address space. Our method extends the virtual mem-
ory technique of conventional computers to shared virtual memory [3] of parallel computers so
that each computing node can run both sequential and parallel programs with the same virtual
memory technique. Each single address space for a program is created and destroyed at runtime
and shared only by the processors cooperating for the same job. Two algorithms, the static and
the dynamic algorithm, are also presented for the distributed management of the shared virtual
address space.

Based on the object-oriented approach, Forin and his colleagues proposed a user-level shared
memory server [13] working under Mach operating system. In their approach, the user can create
shared memory objects and can map the objects to certain ranges of task’s address space. These
objects are managed by user-defined processes, called external pagers, and can be accessed by
the processes via an asynchronous message interface between the pager and the kernel.[13]
Our approach is similar to theirs in that the shared memory spaces are dynamically created
at runtime but is different in that all address spaces of tasks(jobs) in our method are shared
memory spaces and the creation and the management of the shared spaces, of which many parts
of the functions can be implemented by hardware, are totally transparent to the users.

In the next section, we point out the disadvantages of a global address space. The new
shared virtual memory scheme is presented in Section 3, and two algorithms for shared address
space assignment are proposed in Section 4. In Section 5 we show the merit of our method in

reducing the message traffic in the system.

2 Drawbacks of the Global Address Space

Most DSM systems use a global address space of which the management is distributed to all
processing nodes. Application programs running at the same time in such systems use disjoint
subspaces of the global address space so that every program runs in a single address space without
interfering with each other. With regard to the systems with small number of processing nodes,
the global address space might be convenient for the implementation and the management of the
distributed memories, but it imposes many disadvantages on the system with a large number of
processing nodes.

In this section, we describe the possible drawbacks of global address space in building

NN

'‘BEE®ROO00
DEEEO0O00

Figure 1: Detour of remote memory access in a DSM system. An application program is running
on 16 nodes out of 64 nodes. A page fault of Sis forwarded to the owner (O) via respective default
managers: (a) default manager in global address space (M); (b) default manager in configurable

shared virtual space (M").

a scalable parallel computer. Hereafter, we use the term global address space as a predefined
single address space shared by all PE’s in the system, and single address space as a single address
space given to a program which is shared by all or some PE’s in the system. In addition, in the
rest of this paper, NPC is used to refer to the large scale network-based multicomputer system
which is the connection of a huge number of (heterogeneous) computers through the general

purpose networks.

2.1 Increment of Message Traffic and Remote Memory Access Delay

The management of global address space could be centralized or distributed to several nodes
and the manager(s) might be fixed or changed dynamically. Among the schemes proposed by
K. Li[3], the “distributed fixed manager algorithm” is a widely used method for the management
of global address space due to its simplicity and low runtime overhead. In this algorithm every
node takes charge of fixed parts of the global address space. To access a page in remote locations,
a node first gets the information about the owner of that page from the node (default manager)
which is responsible for the management of the page.

This widely used algorithm has the redundancy of memory-sharing if it is used in global
address space. General purpose parallel computer has to deal with a variety of applications.
Due to the diversity of application programs, some programs use most of processing nodes of
the system while others use only small parts of them. For example, let us consider a DSM system
composed of 64 (8x8) PE’s which are connected by a high speed interconnection network (Fig. 1).
Each box in the Fig. 1 represents a processing node. In the DSM system with a global address
space (GDSM), each PE in the system is in charge of a part of the global address (real or virtual)

space whether or not it is involved in the parallel execution of a program. Note that not all
programs use all the PE’s for their execution because of the limit of their parallelism. Lots
of application programs use smaller number of PE’s than those supported by the system. If a
program requires 16 PE’s for its execution, it runs only on some parts of the system (for example,
only the shaded processors in the Fig. 1), but its address space is shared by all the 64 PE’s rather
than these 16 PE’s. Owing to this redundancy, memory references are not always directed to
one of the cooperating PE’s, which, on the average, takes longer path.

Fig. 1 shows the possible scenario of a detoured remote memory access. If a page fault is
generated by a PE, S5, S sends a message to the default manager of the page (M) to request a
copy of that page. If M is the owner of the page, it sends a copy of the page to S. If the page
is owned by another PE, M forwards the message to the owner(0) and O sends the copy to
S. If the address space of the program is shared only by the PE group which consists of the
cooperating PE’s only, all memory references generated during the execution are confined to the
group. In this case, there is other default manager (M’) in the group and the resulting memory
access path may be shorter than that of GDSM. These longer message paths in GDSM result in
higher message traffic density and higher delays in remote memory access.

This effect is more serious if the number of cooperating PE’s is much fewer than the total
number of PE’s of the system. The analysis on this effect on the several network models is

presented in Section 5.

2.2 Scalability Issue

As we mentioned before, the general purpose parallel computer has to run efficiently for both
the highly parallelized program and the nearly sequential program. The highly parallelized
programs favor the system having large number of PE’s with distributed memories, whereas the
programs with low parallelism prefer small number of high performance processors with large
local memory. The ideal system, therefore, would be one that can support sufficient number of
processors to maximize the parallelism and that has plenty of fast local memories to maximize
the performance of each processor. But the global address space is an obstacle in achieving this
goal.

To illustrate this point, let us try to scale up the DSM system from Fig. 1. If we define
N as the number of PE’s of the system, and m;, V; as the main memory size and the size of

address space of i-th PE, respectively. The size of global address space, V,, is determined by

Vo= min {Vi} (1)

since any location in global address space has to be addressable by every node of the system.

The total memory size of the system is restricted such that

N
Vy > m (2)
=1
or if the system is homogeneous,
V, > Nm (3)

In scaling up the system, we encounter the point where the total memory size is bigger
than the size of global address space (Nm > V). The system is easily scalable only up to
N.(= |Vy;/m]) PE’s. If we want to scale up the system over N. PE’s, we have to make
a decision whether to use other processors with larger address space or to decrease the size
of local memory of each node. Changing processors requires the total redesigning of the sys-
tem which takes a lot of time and results in large overhead in scaling up. Cutting the local
memory size results in performance degradation of each processor. It has been well known
that the more powerful a processor is, the more memory it requires to maximize its capability.
The performance degradation is more serious when each processor works in multiprogramming
environment. Consequently, GDSM has the limited scalability up to N, without much overhead.

It may be argued that using the recently developed 64 bit processors solves the problem,
since the address space size of 264 is virtually unlimited, which may be true if it is a homogeneous
system. On the contrary, if it is a heterogeneous system the situation is not so simple and much
more complex in NPC. The next section describes the rising problems when the global address

space is used in NPC.

2.3 Application Problems for Network-based Parallel Computers

The ultimate goal of parallel computer system might be the networked multicomputer system
where computers are distributed over wide areas and of which the high speed networks take
the role of today’s system-specific interconnection network. Because such a system consists
of the mixture of heterogeneous computers, applying global address to it may cause several
problems. Considering the situations that could take place in such a large heterogeneous system,
we conclude that the global address space is inadequate to NPC for several reasons.

First, the maximum size of the global address space is determined by the processor of the
smallest number of address bits (Eq. 1). If it is greater than virtual address size of a processor,
the processor is excluded in memory-sharing or can access the limited parts of shared memory,
which means that the address space is no more global. As the system size grows, it runs bigger
programs or more programs simultaneously. But the global address space size of NPC does not
increase as large as the system size by this reason. Thus, the global address space is saturated

easily due to the demand of huge number of programs to be run simultaneously in NPC.

Second, the total memory size of the system may easily exceed the size of global address
space due to the huge number of PE’s and their local memories. Furthermore, the local memory
sizes are widely different, so that neither the distribution of address space nor the translation of
virtual addresses is simple.

Third, the system parameters, such as the number of processing nodes and the size of local
memories, vary often. As we experience in today’s computer network, the total number of
computers connected to the network keeps changing, and so do the local memories. Even worse
is that the effect of turning on/off of a computer is equivalent to attaching/detaching it to the
network. A special mechanism has to be devised to handle such situations.

Fourth, the system with global address space is very susceptible to faults. This is true
of both specially-designed DSM and NPC. As the system size grows, the chance of faults also
increases. In the global address space, any fault of a node may cause the malfunction of the
system. For example, if the PE, M, in Fig. 1 is faulty, the program could not be run properly
even though all cooperating PE’s are working correctly. Besides real faults, a lot of pseudo-
faults (transient faults) are possible in NPC such as turning off, rebooting, etc.

Finally, the number of cooperating processors for the execution of a program is usually much
smaller than the total number of processors in NPC. The detoured memory accesses increase
the message traffic density of NPC more significantly than the small GDSM.

All the drawbacks discussed so far come from the globality of address space. To build the
scalable general purpose parallel computer, we need to propose a solution which eliminates this

globality.

3 Configurable Shared Virtual Memory (CSVM)

The single address space for a program is essential for the ease of programming. By the reasons
presented in the previous section, application of global address space is effective to relatively
small number of processing nodes. We propose a new method for the management of shared
virtual addresses which can be applied to any kind of distributed memory system including
NPC.

For the convenience’ sake, we define some terminology used in this paper first. We use the
task as the basic unit of parallel processing, therefore, a parallel program is divided into a set of
tasks. We define a job as the execution of a program and the requester as the processor (node)
which initiates a job and distributes the tasks of the job over the system. The processor scheduled
to run at least one of the tasks of a program is defined as a member of the program. All members
form the group of the program.

Our method provides a single address space to a program which is shared only by the

members of the program. No predefined shared memory is required. Each shared virtual memory

o)
2
4

L]

T
11

Y1111 mm
> 11111 H@m
‘1111) mn

N

Figure 2: Example of CSVM. At the instant, two programs are running in parallel on the system
and two configurable shared virtual address spaces (CSVS) distributed only to the member nodes

are created to support the single address space for each program.

is created for a program at runtime and destroyed at its completion. All these operations and the
management of the shared space are transparent to users. This makes it possible for each node
to be designed and used as an independent system just like a PC or a workstation connected
to a network. Fach node serves as a processing node for parallel execution only when it is a
member of the group of a given program. Of course, a node can be a member of several groups if
it is working in multiprogramming environment. Fig. 2 shows an example of the system. Unlike
GDSM systems, each differently colored (shaded) shared virtual memory is shared only by the

member nodes.

3.1 The Model and Operation

The support system for our model consists of three components, processing nodes, network and
system manager, and 1/0 devices(Fig. 3-(a)). Each processing node is virtually a conventional
general purpose computer which is composed of a processor, main memory, disk storage, OS and
memory management unit (MMU), and communication unit (CU) (Fig. 3-(b)). A processor and
a main memory are essential for a node, but other facilities could be shared with other nodes.
Each node of a DSM system can be a node in this system. In this case, the interconnection
network of the DSM system forms a substructure of the network in the system. The whole DSM
system can be a node as well, since it satisfies the requirement for a node. The memory hierarchy
of each node is the same as that of the sequential computer except that the remote memories
are at the same level of hierarchy with its local disk storage as in Fig. 4. All page faults, of
which the virtual page addresses lie in its subspace, are handled between the main memory and
its disk storage, while those in other subspaces are resolved between the main memory and the

memories of the other members.

System Manager
Interconnection Network

| | | | i CPU COMM.
" Cache unIT
PE PE| ... | PE PE
J |] . PE |
I/O Connection ' '
R [] [[' DISK MAIN MMU
STORAGE MEMORY (08)
I/O Devices
(a) (b)
Figure 3: A support system for CSVM. (a) System architecture (b) Basic components of each
node.
CPU
Cache

Main Memory

Local Disk Remote
Storage Memories

Figure 4: Memory hierarchy of each node in a CSVM system.

The network supports the point-to-point communication for any pair of nodes using
message passing protocol, and the system manager is responsible for reliable and deadlock-
free communication, system diagnosis, and system administration. 1/O devices are distributed
over the system and some of them may belong to a specific node or be shared by several nodes,

in which cases other nodes can access the devices through the intermediation of the owner node.

In addition to this model, we assume the following for the operation of CSVM system.

¢ Each processing node has the full capability of a conventional computer. In the rest of this
paper, we assume, without the loss of generality, that it is a general purpose uniprocessor
system (Fig. 3-(b)).

e Fach processor (processing node) has an identification number which is unique in the

network.

e There is a communication protocol which is agreed by all the nodes, so that any pair of

node can exchange messages correctly.

e There is a mechanism which distributes the tasks to all or parts of the processing nodes.
This could be centralized to the system manager or distributed to each node depending

on the system size and operating system.
e A program can be divided by a set of tasks at compile time.

e As an implicit assumption, the speed of network is tolerable for executing programs in

parallel.

In the absence of the execution of parallel program, CSVM system is just like the today’s
computer network or multicomputer system. Each node of the system does its own jobs with its
own facilities, and its OS or MMU manages its memory and disk storage in its own way. There
is no preassigned shared memory. The shared memory space is created in need of a program,
rather than predefined. This space exists only during the execution and is destroyed with the
end of the program. All of the operation is transparent to the user.

The preparation for the creation of a configurable shared virtual address space (CSVS)
begins when the requester receives a job. As soon as the requester receives the job, it generates a
job-identification number (job_id) for the program which has to be unique over the entire system.

Next, the requester prepares the information table in its memory under the job_id (Fig. 5).

JOB_INFORMATION {
status;
number_of_tasks ;
number_of_scheduled_tasks ;
number_of_completed_tasks ;
member_list ; / pointer to the first member */
number_of_members ;

10 _server ;

Figure 5: Structure of JOB_INFORMATION table.

The status has one of three values, after, proceeding, and before, which indicates that

the CSVS has already been created, is being created, or has not been created, respectively.

The entries, number_of_scheduled_tasks, number_of_completed_tasks and number_of_members are
initialized by 0, and the number_of_tasks by the value given at compile time. The entries
number_of-members and member_list will be completed through the task distribution (see
Section 4). The [IO_server is initialized by the requester’s processor identification
number (requester_id) since it is the only processor which knows and must know all the I/O
information. Some of the entries may not be used depending on the address space assignment
algorithm (Section 4).

After the preparation of the table, all the tasks of the program are tagged by the job_id
and the requester_id and then distributed over the system. According to the distribution, the
members are determined and so is the CSVS. The requester may or may not be a member of the
program depending on the distribution. Even if the distribution is completed, the corresponding
CSVS is not created until the execution of the first task of the job. Under our model, every
node runs two auxiliary procedures before and after each task, the Head() procedure and the
Tail() procedure. The major role of the Head() procedure is checking the existence of the virtual
address space under the job_id. If it has been already created, it executes the task immediately;
otherwise, it creates the new CSVS under the job_id according to an algorithm (see Section 4).
The role of the Tail() procedure is checking whether the task is the last of the program. If it is
the last task, the node informs other members of the termination of the CSVS.

The creation of the CSVS is initiated by the member who runs the first task of the program.
Before the execution of the first task, the member requests the creation of new CSVS to all other
members (or via the requester). As soon as a member receives the request, it creates the assigned
subspace under the job_id. The creation and management of the subspace are entirely up to
each member so that it is possible to use the conventional virtual memory technique with a
little modification. In addition to conventional virtual memory method, OS or MMU of the
each member keeps a copy of JOB_INFORMATION table of the CSVS. This is used in finding
the default manager of a page when page faults occur. We use the “distributed fixed manager
algorithm” [3] for the management of CSVS such that each member undertakes the management
of fixed parts of the CSVS.

If a page fault occurs, MMU locates the default manager of this page. If the page is in its
subspace, MMU handles the fault with the conventional technique — a victim is selected from
main memory and swapped with the page in its local disk storage. Only the pages in its subspace
can be stored in its disk storage. If the selected page belongs to others, it is discarded or returned
to its manager depending on its status. On the other hand, if the virtual page address of the
fault is out of its subspace, the virtual address, job_.d, and the default manager_id are sent to
CU to generate the message requesting a copy of that page. All remote memory accesses in
CSVM are carried on by sending the messages including both the job_id and the virtual address.

The job_id acts as the password to access the memory locations, so that no other processor can

10

access the remote memory locations without the jobid. With the job_d, the virtual address is

translated into physical address at the final destination node.

3.2 Advantages of the CSVM

Though DSM system intends to combine the scalability of message-passing system and the
programmability of shared memory system, GDSM partially succeeds in exploiting the
scalability of message-passing system. CSVM is the system that can fully use the merits of
both systems. It has the following advantages compared with the GDSM.

Node Independence Each node in CSVM could be designed and used independently. This
property makes it easy to build and maintain the system. A node can be removed, added and
upgraded easily. The improvement of network technology and sequential computer technology

will be directly employed in the system.

Fault Tolerance It is a fault tolerant architecture for large DSM systems. As we explained in
Section 2.3, one fault in GDSM systems affects the operation of the entire system. The chance
of faults increases in proportion to the system size. To build a scalable parallel computer, we
must take the fault tolerance of the system into consideration for the reliable operation. CSVM
needs a diagnosis mechanism for this goal, while GDSM needs not only a diagnosis mechanism
but also a reconfiguration algorithm. If CSVM detects a faulty node, it excludes the node in
task distribution until the fault is fixed. This action is sufficient for the proper operation of
the system, because the faulty node is automatically excluded in the share of any CSVS in the
system. Any number of faulty nodes can be masked by this method as long as the faults do not

break the communication network.

Reduction of Message Traffic Our model provides a degree of freedom in reducing the
message traffic and remote memory access delay of the system. All messages for the program
executions are confined in the group in CSVM, so that scheduling (distributing) the tasks to
relatively closed nodes reduces the overall message traffic in the system (Section 5). But the
situation is not so simple in GDSM, since the messages can be sent to any node in the system,

we cannot be assured that such distribution of tasks will reduce the message traffic of GDSM.

Size Scalability The size of CSVM system is virtually unlimited. CSVM can support any
number of nodes as well as heterogeneous nodes. The scale up of CSVM is very easy and cost
effective. Unless the problem size does not exceed the addressability of the system, we need not

change individual nodes to scale up the system.

11

Problem Scalability The largest problem size which CSVM can process is determined by
the maximum of addressabilities of its nodes. If the system is homogeneous, the addressability
of a node determines the maximum problem size. If it is a heterogeneous system, a node in
CSVM can receive jobs of which the size is larger than its addressability, since the requester
node need not be a member. If there are nodes whose addressability is bigger than the job size,
the requester distributes the job to these nodes only. This option meets the goal of parallel com-
puting in the future — a PC can ask the execution of large program to NPC built on WAN (wide
area network). The PC supports the I/O files for the tasks and receives the final result. The

speed of interconnection network is the determinant factor for its efficiency.

Unified Model The membership strategy in sharing the virtual address space covers from
the virtual memory of sequential computer to that of DSM. If a sequential program is executed
in CSVM or all the tasks of a program are assigned to a node, the node never shares the CSVS
with any other node and, its virtual memory management is, therefore, the same as the virtual
memory technique of sequential computers. If CSVM runs highly parallelized program so that
the tasks are distributed to all nodes, its virtual memory management is that of GDSM. Thus,
this system is a unified model for the virtual memory management of the sequential computer

and the parallel computer.

In addition, the memory hierarchy and the virtual memory management are the extension
of those of sequential computer for parallel computing. Without parallel computing, they are
merely working the same as the conventional computer. Combining all of the merits, CSVM is
a generalization of conventional virtual memory technique for both the sequential computer and

the scalable parallel computer.

4 Address Space Assignment

CSVS is divided into a number of subspaces, which are distributed to the members. The
partitioning method and the distribution method are very important because they affect
the communication pattern during the execution of the job. In this section, we present two
assignment (partitioning and distribution) algorithms. Their applicability depends on the
availability of the complete member list before the execution of the job. Designing of the optimal
algorithm for reducing the message traffic or for reducing the overhead of the system requires
knowledge of runtime behavior of all application programs which is not possible in general. Qur
algorithms, therefore, are not optimal but are designed with a focus on the simplicity of hashing

mechanism, the balanced distribution of the address space, and overhead minimization.

12

4.1 Static Assignment Algorithm

This algorithm can be used only if the complete information of two entries of the
JOB_INFORMATION table, the number_of-members and the member_list, are available
before the beginning of the first task, that is, before the creation of the CSVS. In this algorithm,
all members create and destroy their subspaces at the same time. Since we know all the infor-
mation by the creation of the CSVS, we can partition the CSVS and distribute the subspaces to
M members in an arbitrary manner. The simplest method may be to assign the space equally

to all members. The hashing of a page address into a subspace is done by simple function

H = (p/c)mod M (4)

where p is a virtual page address and ¢ is a natural number [3]. The processor_id of the default
manager is obtained from member_list[H]. The order of members in the member_list, therefore,
determines the assignment of the subspaces. It can be rearranged for optimization before the
creation of corresponding CSVS.

Fig. 6 is the flowchart of the static assignment algorithm. The Head() procedure searches
CSVS TABLE in MMU to match the job_id before the execution of each task. If the CSVS with
the job_id exists, it checks the status of the CSVS. The task starts immediately if the status
is after; otherwise the task is held until the status will be set to after. If the Head() procedure
fails to match the job_id in CSVS TABLE, it sends the message, request_new_CSVS, to the
requester. Upon receiving the message, the requester sets the status of JOB_INFORMATION
to proceeding, and sends the copy of JOB_INFORMATION table with the message requesting
the creation of the assigned subspace (make_subspace) to all nodes in member_list(If the status
is proceeding already, the requester discards the received message). The processors receiving the
request message from the requester save copy of the JOB_INFORMATION in CSVS TABLE
and create their subspace in the same way as the usual virtual address technique. After finishing
the creation of subspace, each member informs the requester of its completion (subspace_created).
When the requester has received the subspace_created messages from all the members, it sends
message, creation_completed to all members to set their copy of status to after.

After the completion of each task, each member sends the task_completed message to the
requester. Whenever requester receives the message, it decreases the value of number_of_tasks
and then checks the resulting value. If it is 0, the requester informs all members of the
termination of the CSVS (terminate_CSVS) and removes the JOB_LINFORMATION table,
while the members destroy their subspaces.

The simplicity and ease of implementation is the advantage of this algorithm. It adds
a little overhead to the virtual memory management of sequential computer at the creation of
CSVS. After the creation, the overhead for checking the existence of the CSVS is negligible. The

13

MEMBER REQUESTER

_job queve |
task selection

job_id isin
CSVS table~

YES

request_new_CSVS

l status = proceeding ‘ l drop th messag%

status = after 7 make_subspace distribute message with
rrrrrrrrrrrrrrrrrr -=to0 other members

I:ij JOB_INFORMATION
te sub oo
YES create subspac from other members

subspace_created:

all message
; are collected 2— " 7
task_main() NO
creation_completed o
= P { distributed message [--------eeee = to other members
status = after | ¢ .
Tail() A v g - from other members
task_completed

number_of_tasks =
number_of_tasks - 1

terminate_CSVS

| i
l destroy CSVS ‘

Figure 6: Flowchart of the static assignment algorithm. Solid arrows stand for the immediate

= to other members

flows and the dotted arrows represent the messages.

system with the centralized scheduler may be suitable for this algorithm, since the information on
member_list can be easily provided by the scheduler. The major disadvantage of this algorithm
is the requirement of prior-knowledge of all the members which may prevent it from using in

some applications.

4.2 Dynamic Assignment Algorithm

The application of the static assignment algorithm is restricted by the availability of the member
list at the beginning of a given program. The dynamic assignment algorithm presented here gets
rid of this requirement at the expense of runtime overhead.

Note that, even though all members execute at least one task of the program, they do not
start their execution at the same time. For example, let us consider a program composed of

eight tasks of which the dependence graph is presented in Fig. 7-(a). At the beginning of T1,

14

PL P2 P3 P4
0o x = 2 P4
. b
2| T2
31|13 |
4
5 Iy
6| T4 T5
7
8 T6| | T7
o — -
10 1
1 T8
22— = = =
(b)
Vg)
P1 P1
P1
P2 P4
Pl
P3 p2
P2
P4 P3
0 2 to 1 3 5 12 t
© (d)

Figure 7: Comparison of two address assignment algorithm. (a) Dependency graph of a program.
(b) Scheduling of the tasks. (c¢) Address space assignment of static assignment algorithm. (d)
Address space assignment of dynamic assignment algorithm. A subspace is bipartitioned and

one of them is assigned to new member.

only P1 is the known member and the other tasks may not have been scheduled yet. This
situation could occur to enhance the dynamic scheduling, load balancing, the task migration,
etc. Assuming that no other task is scheduled at the beginning of T1, P1 has to take charge
of the whole CSVS, because it is the only known member at that instant without knowing the
prospective members. P2 joins the group at the beginning of T3 (Fig. 7-(b)), and manages parts
of the CSVS (T3 may be scheduled earlier than the end of T1, but it need not share the CSVS
before T3 starts. Actually T1 may run more efficiently when P1 manages all the space than
when it shares the CSVS with P2). Similarly, P3 and P4 join the group at the beginnings of T7
and T5.

In the dynamic algorithm, each member shares the CSVS from the beginning of its first
task. Whenever a new member joins the group, the CSVS is rearranged and the information of
the result has to be distributed to all members. This algorithm has the cons and pros—the large
runtime overhead and the efficiency in transient time. Pages have to be moved from the disk of
old default manager to that of new default manager whenever a new member joins the group,

which introduces large overhead. On the other hand, some tasks may run more efficiently with

15

MEMBER

task selection

REQUESTER

job_id isin >~ i request_new_CSVS,
CSVstable>” o
JVES YES NO
! creation bipartitioning
Tailg) process process
i -~ From other members
task_completed ¥ \

number_of_completed_tasks =
number_of_completed_tasks

.

fumber_of_completed_ta:
= number_of_tasks 2

NO
terminate_CSVS: y YES

R S distribute message

V I
distroy subspace destroy CSVS

= To other members

r=r+1l;
member_list[i] = new_member_id ;

r=K;

status = proceeding

make_subspaceg ' - to the other number_of_members =
P e distribute message wit KA e BW» number_of_members+ 1
! JOB_INFORMATION | " MEMoers 7
: ; from the other

subspace_created

all messages

4 K-1 members

send the value of i and the copy
of JOB_INFORMATION

are collected 2"
NO

X | { YES create subspace H
creation_compl ete to the other 7 H
,,,,,,,,,,,,,,,,,,,,,,, istri share_space i
% distributed message K1 members& member_list[s] i
¢ I B :
® e e
CSVStable -

to the other members

creation process bipartitioning process

Figure 8: Flowchart of dynamic assignment algorithm. Solid arrows stand for the immediate

flows and the dotted arrows represent the messages.

this strategy, that is the T1, T2, and T3 run in the CSVS which is shared by smaller number of
members.

Reducing the runtime overhead is the key for the efficient algorithm. Intuitively, equi-
assignment algorithm with the hashing function like Eq. (4) is not feasible due to the large
overhead for rearrangement. We designed the “address space bipartition algorithm” to reduce
the overhead. In our algorithm, only two members, one existing member and the new member,
are involved in the rearrangement process.

Fig. 8 is the flowchart of our algorithm. As in the static assignment algorithm, Head()
procedure looks at the CSVS TABLE, and sends request_new_CSVS message to the requester

if desired job_id is not found. If the corresponding CSVS has not been created (status=before),

16

it is created with the partially filled member_list. If only K out of M members are known at
that time, this algorithm creates the CSVS with these K members by the same way in the static
assignment algorithm. On the contrary, if the CSVS exists (status=proceeding), the requester
adds the new member’s processor_id in member_list, increases the number_of_-members, and
sends the value of index r with a copy of JOB_INFORMATION table to the new member.
Then, the new member selects one existing member from the member_list (member_list[s]) and

takes half of its subspace. The index, s is calculated by the following equation.
s=r— K 2oz T (5)

The selected member divides its subspace into two sub-subspaces of equal size and transfers
all the required information about one of them to the new member. After finishing the rear-
rangement, the new member informs all other members of its affiliation to make them modify
their copy of JOB_INFORMATION table and the hashing function. The hashing function for

locating the default manager of a virtual page address is given as

o { (p/c) mod L it (p/e)mod L<T
" (pf)mod L—S if (p/c)mod L>T

with
L = K 2Moezxl (7)
5 = K 2lez (8)
T = rmodl (9)

The values L, S and T are calculated and stored in MMU whenever the new member joins. The
member chosen for the rearrangement is responsible for the forwarding of transient messages to
the transferred space which have been sent to it before the notification but which arrive after
the notification.

Fig. 7-(¢), (d) shows an example of the address space assignment of two algorithms. While
it is fixed in static assignment algorithms, there is a transient period in dynamic algorithm
till all members join the group. Note that, if all members are known at the beginning of the
program (K = M), this algorithm would be the same as the static assignment algorithm in the
previous section. The dynamic algorithm is general and has advantages of dynamic scheduling,

and task migration, but the increased runtime overhead is a major disadvantage of this algorithm.

5 Message Traffic Analysis

In this section, we analyze the possible savings in message traffic density of traditional DSM

system by using CSVM instead of global address space. The message traffic density (p) generated

17

during the execution of a job (program) is defined as

> spdy
p kﬂf (10)

where m is the number of messages, s the message size, d the traveling distance of the message

in terms of the number of communication links, and [the number of communication links in the
system.

To compare the effect of CSVM on message traffic density, let us run a program on a
CSVM system and a GDSM system. Except the distribution of address space, every condition
comprising the distribution of task, architecture, network structure etc. is the same in both
systems.

We clarify the messages into two categories, the direct and indirect message. The direct
message is the one that its path does not depend on the address space distribution, while
that of indirect message does. For example, like a control message or a message for cache
coherence in the directory-based cache coherence architecture [7, 6], the direct message goes to a
definite processor so that its path is the same both in CSVM and in GDSM. On the other hand,
the indirect message such as message for remote memory reference, goes to different processor
according to address space management scheme. Although the final destination of the message
might be the same, two systems route the message through different paths by message detouring
as discussed in Section 2.1.

By separating the message types, the Eq. (10) becomes

mgq m;
Z spdy, + Z sy,
p = k=1 l k=1 (11)
mgq m;
Sq) di+35 > di
k=1 k=1

e (12)

mdgd(jd + ngz(jz
= 1
l (13)

where the subscript d and 7 stand for the direct message and indirect message, respectively, and

the 5 and d represent the average size and the average distance of messages. In the derivation of
Eq. (12) from Eq. (11) we replace the individual message size by the average size of all messages.
The ratio of the message traffic density of CSVM to that of GDSM is

(mgdqdy + msd;)c
) -

R, =22 = - -
pa (mgSqdg + m;5d;)a

(14)

18

Since the program is executed in the same environment in both systems except the address
space distribution, the messages generated by the systems and their size are almost the same (The
messages generated for the creation of CSVS are not included and are treated as overhead). In
addition, the average distances of direct messages of the two systems are the same since those
messages are independent of the distribution of address space. Considering this fact, we get the

formula

L+ Ry Ry (;‘dc)
e (15)
e ()

G

R, =

where R,,, R, are the ratio of the number of messages and the ratio of the average message size

of two types which are defined as R,, = m;/mg and R; = 8;/34.

Calculation of the average distance is difficult because it depends not only on the program
behavior but also on the task distribution on the system. To remedy the difficulties, we make

the following assumptions.

1. The network structure is symmetric for all nodes.

2. Memory accesses are uniformly distributed across the address space, and direct messages

are uniformly sent to all members as well.

3. The tasks of the program are distributed on the PE’s which are as close as possible to one

another.

Most interconnection network architectures used today such as bus, mesh, torus, hypercube etc.
satisfy the Assumption 1 very well, even though some of them introduce “edge effect” which

violates the symmetry for edge nodes. We ignore the edge effect in this paper.

The uniform access assumption (Assumption 2) simplifies the analysis greatly. Under this
assumption, the probability p(d) that a node sends a message to a node at the distance d is
proportional to the number of nodes at the distance d from the node. Hence, the average

distance will be

d = %Zdi (16)
dmas
= > dp(d) (17)
d=0
| dmas
= = dn(d) (18)
d=0

so that we get

dmaz dmaz
di, = —de = Zdn (19)
Ni d=0
dmaz dmaz

dg, = Z dng(d) = — Z dng(d (20)
d=0

where N and M are the number of nodes in the system and the number of member. n(d) is
the number of nodes at the distance d in the system, and ng4(d) is the number of nodes at the
distance d in the subsystem which consists of only member PE’s and all communication links of

the system. The distribution function n(d) and ng4(d) satisfy the relation.

dma.’r
d nd) = N (21)
d=0
dma.’r
> ng(d) = M (22)
d=0
Note that under the Assumption 1, d;. = dg.. By substituting Eq. (19), Eq. (20) to

Eq. (15), we get the final expression for R,.
1+ R, Rs

. 7ms 2
By 1+ R, R;Ry (3)
with
dma.r
Z dn(d)
Ri= 7di‘0 (24)

Z dng(d)
d=0

The Eq. (23) shows that the merit of CSVM vs. GDSM with respect to message traffic
density is the function of the ratios of the number of messages, average message size and
average distance. R4 is the major factor which determines the merit or demerit of CSVM
on message traffic. Ry can have the values greater than, equal to, or less than 1, depending
on the distribution of tasks. Actually, if the tasks are distributed to the processors that are
separated far apart, the message traffic of CSVM increases compared with that of GSDM. In
most cases, however, the system scheduler distributes the tasks to relatively close processors for
efficient inter-processor communication, so that CSVM can reduce the message traffic.

While n(d) is a fixed value determined by network structure, nq4(d) is the function not only

of the network structure, but also of the distribution of tasks. Under the Assumption 3, we

20

derive R, as the explicit function of the ratio M/N. Assumption 3 eases the dependency of

n4(d) on task distribution, so it is used only for the convenience of calculations.

Under the Assumption 3, Eq. (24) becomes

dmaa:

Z dn(d)

M iz
P - (25)

> n(d)y>M (26)

Straightforward calculations using the Eq. (21), (23), (25) and (26), and approximating the
summations of the equations by integrations, give the explicit form of the value R,. We derived

the explicit form of R,, for three distribution functions.

1. Uniform distribution : n(d) = ﬁ, 0<d<dnue-
1+ R, R,
R, = e (27)
2. Triangular distribution as Fig. 9.
— AtRpRs ifo<M <1
1R (34) 7 R
R, = 28
P 1+RmRe . — lf % < % S 1 ()
v R A B (-4 44
3. Polynomial distribution : n(d) = a d", 0<d<dnse, alis a constant.
1+ R, R,
Ry= —— (20)

1+ Ry R, (%)_%

Most of DSM systems use system-specific network architecture like mesh, torus, hypercube,
ring and so on. Many of these architectures roughly follow the triangular distribution. As shown
in Fig. 9, the triangular distribution of n(d) is a good approximation for finite size k-dimensional

mesh or torus architecture, and roughly for low-dimensional (k < 10) hypercubes. One level ring

21

y 2N
P
, \ . - Meshor Torus
/// A\ — — Hypercube
a \\
7/ \\\“-
/ \
- \\
0 dmax dimex d

Figure 9: Triangular distribution of n(d). Mesh, torus and hypercube approximately follow this

distribution.
1
Rp o=
0.9} =
0.8} PP
0.7+ -7
0.6} 7
ost] S
—— RgRp =01
04r 7 7 0.4 f 57 RZR: =02
L/ —— Uniform | oats 7 RsRm =1
03 H — — Triangular i RsRm =5
0.2}, Linear] 0,2,,',/ — — RsRp =10
0.1} | 0.1/
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
M M
N N

(a) (b)
Figure 10: CSVM to GSDM ratio of message traffic density. (a) Comparison of the three

distribution functions with R;R,, = 1. (b) The effect of the value R R, on the message traffic
reduction of CSVM for the triangular distribution.

architecture is an example of the uniform distribution, but we hardly find a system with this type
of distribution in a real system. It is, however, helpful in comparing the effectiveness of CSVM
in reducing the message traffic. The polynomial distribution is used for the approximation of
the network in NPC. If NPC is built in WAN and the density of computer (node/unit area) is
uniform in the area, the number of computers at the distance d from a computer is proportional
to the distance. If we assume that the number of links between two nodes is proportional to the
physical distance, the distribution n(d) is approximately a linear function of the distance.

The Fig. 10-(a) shows the effectiveness of CSVM in reducing the total message traffic of the
system. It shows that CSVM is equally effective for both specially designed DSM systems and
NPC with linear distribution. If a program is running on the half of the nodes of the system,

CSVM saves about 20% of message traffic of GDSM. It reduces more message traffic as the ratio

22

M/N is getting smaller. For the large DSM systems, we expect to reduce the message traffic
by more than 50% because the number of members will be much smaller than the number of
nodes (M/N < 15).

The Fig. 10-(b) shows the effect on R, of the size and ratios of direct and indirect mes-
sages (R R.,). As we can expect from the Eq. (28), R, becomes a function of M/N alone, if
RsR,, > 1. If RsR,, < 1, the advantage of CSVM is apparent only when M/N < 11—0.

6 Concluding Remarks

A new configurable shared virtual memory scheme, which facilitates scalability, is proposed.
CSVM supports shared memory spaces for the collection of independent computers so that it
can be applied to any size of distributed memory system and network-based parallel comput-
ers. According to the analytical result, CSVM is very effective in reducing the message traffic

compared to the conventional DSM system.

23

References

[1]

G. Bell, “Ultracomputer: A Teraflop Before Its Time,” Commun. ACM, 35(8) pp. 27-47,
1992.

B. Nitzberg and V. Lo, “Distributed Shared Memory: A Survey of Issues and Algorithms,”
IFEE Computer, 24(8), pp. 52-60, 1991.

K. Li and P. Hudak, “Memory Coherence in Shared Virtual Memory Systems,” ACM Trans.
Computer Systems, Vol. 7, No. 4 pp. 321-359, Nov. 1989.

K. Li, “IVY: A Shared Virtual Memory System for Parallel Computing,” Proc. Int’l Conf.
Parallel Processing, pp. 94-101, 1988.

R. Bisiani and M. Ravishankar, “Plus: A Distributed Shared-Memory System,” Proc. 17th
Int’l Symp. Computer Architecture pp. 115-124, 1990.

D. Chaiken, J. Kubiatowicz, and A. Agarwal, “LimitLESS Directories: A Scalable Cache
Coherence Scheme,”, Proc. Fourth Int’l Conf. Architectural Support for Programming Lan-
guages and Operating Systems, ACM, pp. 224-234, 1991.

D. Lenoski, et al, “The Stanford Dash Multiprocessor,” IFEE Computer, pp. 63-79, Mar.
1992.

A. J. Smith, “Cache Memories”, ACM Computing Surveys 14(3), pp. 473-530, Sep. 1982.

H. T. Kung, et al, “Network-based Multicomputers : An Emerging parallel architecture,”
Proceedings Supercomputing “91i, pp. 664-673, 1991.

R. G. Minnich and D. V. Pryor, “Mether: Supporting the Shared Memory Model on Com-
puting Clusters,” IEEE COMPCON Spring °93, pp. 558-567 1993.

Akira Jinsaki, “A Fast Distributed Shared Virtual Memory System: NET-VMS.” Fujitsu
Scientific and Technical Jounal, 29, 3, pp. 286-295 Sep., 1993.

S. Zhou, M. Stumm, K. Li, and D. Wortman, “Heterogeneous Distributed Shared Memory,”
IEFEFE Trans. Parallel and Distributed Systems, vol. 3 pp. 540-554, 1992.

A. Forin, J. Barrera and R. Sanzi, “The Shared Memory Server,” USENIX winter pp.
229-243, 1989.

24

