Toward Semantic-Based Exploration of Parallelism in Production
Systems *

Shiow-yang Wu, Daniel P. Miranker, and James C. Browne

Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-1188

TR-94-23 October 1994

Abstract

We propose a new approach for the parallel execution of production system programs. This approach embodies
methods of decomposition abstraction using declarative mechanisms. Application semantics can then be
exploited to achieve a much higher degree of concurrency. In this paper we present the underlying object-based
framework of production systems and discuss the ensuing semantic-based dependency analysis technique. In
particular, we define a new notion of functional dependency to characterize associative relationships among
data objects, which can be used to determine concurrently erecutable rules.

A byproduct of this research is a new technique for rapid system development and evaluation. The
technique eliminates the possible inaccuracy of simulation as well as the high cost of full-fledged system
implementation.

1 Introduction

A production system is composed of a working memory, a set of rules, and an inference engine. Working
memory is a global database composed of data objects called working memory elements (WMEs) representing
the system state. A rule is a condition-action pair. The inference engine provides a three-phase cyclic
execution model of condition evaluation (matching), conflict-resolution and action firing. A rule with a set
of WMEs satisfying the conditions is called an instantiation. The set of all instantiations constitutes the
conflict set. In a sequential environment, conflict-resolution selects one instantiation from the conflict set
for firing. In a parallel environment, multiple rule instantiations can be selected for firing simultaneously
subject to proper correctness constraints. Firing an instantiation executes the selected actions that may add,
delete, or modify WMEs in the working memory. The cycle then starts over again.

Initial implementation of production systems suffered from poor performance which prohibited their use
in large scale applications [7]. On the other hand, production systems have been assumed to encompass a high
degree of parallelism [9], opening the opportunity of performance improvement through parallel processing.
However, after over a decade of extensive research effort [19, 30], the speedup achieved by systems with real
implementation is quite limited, only about 10-fold, no matter how many processors are used.

In a recent paper [33], we analyzed several commonly used benchmark programs and pointed out that the
rather limited success in the past was primarily due to the failure to properly exploit parallelism embedded
in the application domains and program structures. Contrary to the conclusion drawn by previous work
that the true performance gain from parallelism is quite limited [10], we showed that massive and scalable
speedup was indeed achievable with a set of explicit parallel structuring mechanisms.

*This work is partially supported by DARPA under grant DABT63-92-C-0042.

In this paper, we propose a semantic-based approach for the analysis of rule interference based on asso-
ciative relationships among data objects. First, a general object-based framework of production systems is
proposed both for a formal basis and for the expression of parallelism in a language independent way. Then,
a notion of functional dependency is introduced to derive information about whether a rule is self-interfering
and about the interference between different rules. We show how the combination of explicit parallel struc-
turing mechanisms and semantic-based analysis technique achieve much higher level of concurrency than
traditional techniques.

For early evaluation of the effectiveness of our approach without the high cost of implementing a full-
fledged system, we built a parallel rule execution engine and the associated work load generator. The
execution engine actually fires multiple rules simultaneously on a shared memory multiprocessors. All syn-
chronization and communication operations necessary for the correctness of multiple rule firing are actually
performed. The load generator generates work load from sequential execution trace files. With this new
technique we can experiment with alternative implementation strategies in early stage of the system devel-
opment and have accurate pictures of the run-time system behavior with much less initial implementation
and evaluation cost. Replacing the load generator with a parallel match engine gives us a full-fledged system.

On the parallel execution engine, we conducted several sets of experiments on three commonly used bench-
mark programs. We show how granularity and scheduling strategies can significantly affect the performance
of a parallel rule system.

2 Related Work

Early research on parallel production systems focused almost exclusively on parallel matching [8, 32, 9, 22,
10, 14]. These systems parallelized only the match phase. The speedup is therefore limited by the sequential
execution of rules. Multiple rule firing systems parallelize not only the match phase, but also the act phase
by firing multiple rules in parallel [13, 12, 17, 18, 28]. Some systems even fire rules asynchronously [29, 16].
Compile-time syntactic analysis of data dependency graph [13] is used to detect possible interference between
rules. Instantiations of compatible rules [18] can be fired in parallel. For dependencies that can not be resolved
at compile-time, run-time analysis is applied to increase the parallelism. The copy-and-constraint (C&C)
technique proposed by Pasik [27] proved to be quite effective in reducing the variance in rule processing time
and improving the parallelism as well. However, the rules and data attributes for applying C&C are selected
manually.

All techniques above are domain insensitive since parallelism specific to the application domains is not
exploited. The benefit of firing multiple rules can easily be overwhelmed by the cost of synchronization and
run-time interference analysis [25]. As a result, only limited speedup was achieved.

On the other hand, the SPAM/PSM system [11] exploits task-level parallelism which is essentially func-
tional decomposition of the original problem into a hierarchy of tasks and subtasks. The PARULEL language
[31] employs a meta-level rule system to select compatible rule instantiations for parallel execution. These
systems achieved better results by exploiting application specific parallelism. However, the techniques em-
ployed tend to be ad hoc or incur excessive overhead.

Our main contribution is to provide domain independent abstraction mechanisms and semantic-based
analysis techniques which effectively exploit application parallelism without the high cost of run-time inter-
ference detection or instantiation selection.

3 A General Object-Based Framework of Production Systems

The concepts and techniques presented in this paper are language independent. We propose a general object-
based framework to abstract away minor details and to capture just the essential features of production
systems. Thus the results presented in this paper are generally applicable to any rule language.

3.1 Object Model

We have built our framework on top of a unified object model which can be used to characterize all entities in
a rule system. The basic object model is inspired by [1, 4] and is comprised of the following sets of symbols:

A : attribute names,
C : class names,

7 : identifiers,
M : method names,
R : rule names,

VY : variable names.

Definition 1 (Method) A method definition is a triple (M, P, B) where M is a method name, P is a
set of parameter specifications, and B is the definition of operations performed by the method. A method
wmvocation 1s a method name with necessary parameters fully supplied. O

We have deliberately left out the details of how a parameter or body of a method 1s actually specified. Nor
do we restrict the way actual arguments are passed in a method invocation. These issues are not essential
to our discussion.

Definition 2 (Class) A class defines a set of objects with similar structure and behavior.

e INT, FLOAT, and STRING are primitive classes representing the set of integers, floats, and char-
acter strings, respectively.

o An attribute definition is a pair (a,C') where a is an attribute name and C'is a class name.
e A set-valued attribute is defined by adding a * at the end of an attribute name.

e A class is a triple (C, A, M) where C is a class name, A is a set of attribute definitions, and M is a set
of method definitions. 0O

Definition 3 (Object and WME) Objects are defined to model WMEs. They are the basic units of
information and behavior encapsulation.

e Integers, floats, and character strings are primitive objects.

o If ay,as, ... a, are the attribute names of a class C' and O1, O3, ..., O, are objects, then:
O=(a1:01, az:04, ..., a,:0p)

is a structural object or simply a tuple. The object is an instance of the class C'.

e Tuples are the generalization of WMEs. Each tuple has a unique identifier associated with it. Working
memory 1s a set of tuples.

o If O1,0,,...,0, are objects of a class C, then
{01,04,...,0, }

is a set object. O;’s are elements of the set object. Note that elements of a set object must be instances
of the same class. O

Definition 4 (Rule) A rule is a condition-action pair. Conditions can be positive or negative.

e An expression is a quantifier-free first order formula.

e If v is a variable name, C is a class name and F is an expression, then (v : C' :: E) is a positive condition
and —(v : C' :: E) is a negative condition.

e If P is a condition, then v(P), C'(P), and E(P) denote the variable, class, and expression components,
respectively, of the condition.

o A ruleis a triple (P, N, M) where P is a non-empty set of positive conditions, N is a set (possibly
empty) of negative conditions, and M is a set of method invocations.

e A positive or negative condition is termed a condition element. The set of all condition elements is
called the antecedent. The set of method invocations is called the consequent. O

Definition 5 (Program and System) A program is a pair (C, R) where C is a set of class definitions
and R is a set of rule definitions. A rule system is a pair (O, P) where O is a set of tuples and P is a rule
program. O

3.2 Execution Model and Semantics

We characterize the semantics by considering rule antecedents as queries to the working memory for selecting
a consistent set of objects. The execution of a rule system is defined in terms of state transitions between
working memory states.

Definition 6 (State) The stale of a rule system is the set of tuples in working memory. O

Definition 7 (Instantiation) Pattern matching is modeled by object selection. The following definitions
are defined assuming a given state S

e A positive condition element (v : C' :: E) is satisfied in S if there exists an object of class C' such that
F is evaluated to true. The object (which can be referenced by the variable v) is said to be selected by
the condition element.

e A negative condition —(v : C' :: E) is satisfied in S if there does not exists any object of class C' such
that E is evaluated to true.

e A rule 1s satisfied in S if there exists at least one set of objects in S such that all condition elements
in the antecedent are satisfied. The set of objects selected by the positive condition elements is called
an instantiation of the rule. The set of all instantiations of a rule r is denoted by Inst(r). O

Operationally, a rule can be considered as a query to the working memory. The result of the query is a
class whose instances are instantiations of the rule.

Definition 8 (Rule Firing) If S is a state, 7 is a rule which is satisfied in the state, the result of firing the
rule is a new state S’ obtained from S by invoking the methods in the consequent of r on the set of objects
i which is an instantiation of . We denote such a rule firing by S = S(¢). O

Definition 9 (Execution) An execution of a rule system is a sequence of rule firings that transforms the
system from a state to another state. A state is a terminal state if no rule is satisfied under that state. An
execution is a terminal execution if the last state in the sequence of rule firings is a terminal state. O

It is important to note that in the definitions of rule firing and execution, no restriction is placed on how
objects are selected or on which rule instantiation to pick. In other words, no matching technique or conflict
resolution strategy are assumed. An execution is not required to be a terminal execution. Thus allowing
nonterminating systems.

The framework and execution model above characterize the core concepts and essential features of a
sequential production system. We now extend the model to allow simultaneous firing of multiple rule
instantiations.

Definition 10 (Interference) If ¢, and iy are instantiations of two (possibly the same) rules that are
satisfied in a state S, then ¢ interferes with iy if any one of the following conditions is true:

1. The execution of ¢; prevents is from being an instantiation in the new state resulting from ¢;’s execution,
or vice versa.

2. There exists methods invoked by ¢; and i3 that modify the same object.

Since a newly created object is always assigned a unique identifier, object creations do not contribute to
any interference except when Condition 1 is true. Identical objects with different identifiers are allowed to
coexist in our model, which is consistent with most rule languages.

We note that it is possible to weaken Condition 2 above since we need only to avoid conflicting methods
to be invoked on the same object. However, such fine-grained parallelism can be easily overwhelmed by the
potential complexity. We reserve this issue for future research.

Definition 11 (Compatibility) Two instantiations are said to be compatible if they do not interfere with
each other. A set of instantiations is compatible if the instantiations are pair-wise compatible. O

Since compatible instantiations do not interfere with each others, they can be executed in parallel. Our
definitions of interference and compatibility are similar to the corresponding definitions in [13, 16, 18, 28]
which are all essentially originated from database concurrency control theory [2]. However, we extend it to
a general object-based context which allows any type of method instead of just the add, delete, and modify
operations as in most previous work on parallel production systems.

Definition 12 (Parallel Rule Firing) The result of parallel firing of two compatible instantiations in a
state is a new state obtained by invoking all methods on corresponding objects of the two instantiations.
Likewise, the parallel firing of a set of compatible instantiations I in a state S is to invoke all methods on
corresponding objects of all instantiations. The parallel firing is denoted by S/ = S(I). DO

Because of the non-interference requirement between parallel executable instantiations, the resulting state
of the parallel firing 1s the same as the result of execution of the set of instantiations in sequence following
any order. To state it more precisely, if I = {iy,...,1,} is a set of parallel executable instantiations in a
state S, then

S() = S0)(5.) - (4,

where ji,Ja, ..., jn 18 any permutation of n.

4 Class Relationships and Rule Compatibility

Under the general framework presented in last section, we now describe our semantic-based interference
analysis technique. Our approach is motivated by the observation that, more often than not, class relation-
ships provide valuable hints on data decomposition patterns that actually happen at run time but are not
necessarily clear at design or compile time. We show that this information can often be used in determining
the semantic compatibility (i.e. parallel executability) of instantiations of the same rule or between different
rules.

As an intuitive example, consider the following rule from the corporation application domain.

rule Team_ Fairness {
(t:Team),

[e : Employee :: eteam == t.name A e.salary < t.min_wage |

e.salary = t.min_wage

As we presented in [33], a positive condition enclosed in square brackets is a set selection condition which
is to select all objects satisfying the condition. The rule is to raise the salary of all under-paid employees
in a team. In general, different instantiations of this rule can not be executed in parallel because the same
employee may be a member of different teams. On the other hand, if each team is associated with a unique
and disjoint set of employees, then different instantiations will select different teams with disjoint set of
employees. Apparently, all such instantiations can be fired in parallel. The key point is on the relationship
between instances of the Team and the Employee class. We call such relationship functional dependency
which is formally characterized in the following definitions.

Definition 13 (Class Relation and Scheme) A class relation scheme (or simply scheme) is an ordered
set of class names. A class relation on a class relation scheme with n class names is an n-ary relation among
instances of the corresponding classes. 0O

For a class relation A, we denote the scheme on which A is defined by Sch(A). A class relation can be
considered as a collection of classes with certain relationship. Note that an element of an n-ary class relation
is an ordered set of n objects, one from each corresponding class in the scheme. An object here can be either
a structural object or a set object. For an element @ € A and a scheme X C Sch(A), the notation a(X)
denotes the ordered collection of objects in @ which are from classes in X. We note that from the definition
above, a(X) C a and a(Sch(A4)) = a.

Since an instantiation can also be considered as an ordered set of objects (one for each positive or
set selection condition), a rule r actually defines a class relation whose elements are exactly the set of
instantiations of the rule, i.e. Inst(r). The scheme of Inst(r), denoted by Scheme(r), is the ordered set of
class name components of positive and set selection conditions of 7.

Definition 14 (Functional Dependency) Let X and Y be the schemes of two class relations R, and R,.
The functional dependency

X =Y
holds on R, and R, if
1. Each element in R, is associated with a unique element in R,,.

2. For all a1, az in R, and the associated b, b2 in R,
a1¢a2:>blﬂb2:®. O

As an example, in the corporation application domain discussed earlier, the functional dependency
{Team} — {Employee} holds because each team is associated with a unique and disjoint set of em-
ployees.

Definition 15 (Rule Specific Functional Dependency) Let X and Y be two class relation schemes,
and 7 be a rule. The rule specific functional dependency

X—=>Yinr
holds if both X C Scheme(r) and Y C Scheme(r) and for all ¢, j in Inst(r),
i(X)Z2j(X)=i(Y)njY)=0. O

It 1s rule specific because the dependency only needs to hold on all instantiations of ». It may or may
not hold on collections of objects that are not instantiations of r.

Definition 16 Let R be a set of rules, X and Y be two class relation schemes, then
X—>YinR
holds if X — Y in r holds for each rule » in R. O

Except for borrowing the terminology, functional dependency as defined here is quite different than in
databases [21]. In database systems, the notion of functional dependency is defined at the attribute level
and 1s used primarily in the normalization process. We generalize the concept to the class level and use
it to identify the parallelism in rule systems. Functional dependencies are considered as specifications of
data decomposition across class boundaries, which are shown below to play a crucial role in determining the
compatibility between instantiations of the same or different rules.

Definition 17 Let r be a rule. The access set of r, denoted by Access(r), is the set of all class names
referenced in the antecedent of r. The write set of r, denoted by Write(r), is the set of class names with
objects that are modified (including creation and deletion) in the rule. O

Definition 18 (Dominant Set) Let r be a rule and C be a class relation scheme. C' is a dominant set of
r if:

1. €' C Scheme(r),
2. for all i, j € Inst(r) (i £ j = i(C) # j(C)). O

A dominant set of a rule is simply a set of class names sufficient to discriminate between different
instantiations of the rule.

Theorem 1 (Self Compatibility) Let r be a rule and A, B, C be three class relation schemes that are
subsets of Scheme(r) satisfying the following conditions:

1. C' is a dominant set of r and C C A
2. A->BorA—=>Buunr
3. Ye € Write(r)(c € BV ¢ & Access(r))

then all instantiations of v are compatible (i.e. parallel executable).

Proof sketch: In any given state, let ¢ and j be instantiations of r such that ¢ # j.

= 1(C) # j(C) (* C is a dominant set *)

= i(A) #3(4) (+C'C A

= {(B)NjB) =0 (* Condition 2 *)

= i(Write(r)) N j(Write(r)) =0 (* Condition 3 *)

= ¢ and j do not interfere with each other (* Condition 3 and Definition 10 *)

= ¢ and j are parallel executable (* Condition 3 and Definition 10 *). O

The central idea of this theorem is that functional dependency implies disjoint decomposition of objects
selected by the instantiations of a rule. As long as the objects modified in the consequent belong either
to the decomposition or to classes which do not affect the satisfiability of the rule, no instantiations will
interfere with each others. We will have examples later in this section. We first generalize this idea to the
analysis of interference between multiple rules.

Definition 19 (Partially Mutual Exclusion) Let p, ¢ be rules and C be a class relation scheme. We
say that p and ¢ are partially mutual exclusive on C', denoted by p><cq, if

1. €' C Scheme(p) and C' C Scheme(q)

2. For any two instantiations ¢, j of p and ¢ respectively, {(C) # j(C). O

Partially mutual exclusion simply means that p and ¢ can not have instantiations containing the same set
of objects of classes in C'. The simplest and most common case is when C' contains a single class referenced
in both p and ¢ but tested on disjoint values of the same set of attributes. Since the values are disjoint, p
and ¢ can not select the same object in C'.

Note that no requirement is placed on selected objects that are not of the classes in C'. Therefore, partially
mutual exclusive rules may still interfere with each other. However, in many cases, partially mutual exclusive
rules can be determined to be parallel executable with the help of functional dependencies as indicated by
the following theorem.

Theorem 2 (Pair-Wise Compatibility) If p, ¢ are two distinct rules, and A, B, C are class relation
schemes that are subsets of both Scheme(p) and Scheme(q) such that the following conditions are satisfied:

1. p><cqand C C A
2. A=~ BorA— Bin{p,q}
3. Ve € Write(p)(c € BV ¢ & Access(q))
4. Ve € Write(q)(c € BV ¢ & Access(p))
then p and q are compatible and therefore parallel executable.

Proof sketch: In any given state, let ¢ be an instantiation of p and j be an instantiation of ¢.

pP><cq
= 1(C) # j(C) (* Definition 19 *)
= i(4) £ j(4) (* CC Ax)
= {(B)NjB) =0 (* Condition 2 *)
= i(Write(p)) N j(Write(q)) = 0 (* Condition 3 and 4 *)
= pand ¢ are parallel executable (* Definition 10 *). O

Again, the central idea of this theorem is that as long as objects modified in p and ¢ can be determined
as non-overlapping with the help of functional dependency, instantiations of p and ¢ do not interfere with
each others.

Even with their general applicability to many cases, the two theorems above are less complicated than
they appear. Continuing with our examples in the corporation application domain, if a team 1is associated
with a set of disjoint employees as team members, then the functional dependency {Team} — { Employee}
holds. We note that this semantic information can be easily supplied by the programmer (similar to the
identification of key attributes in database systems). With functional dependency and the fact that a
team can be uniquely identified by its name, we can immediately determine that all instantiations of the
Team_ Fairness rule can be fired in parallel using Theorem 1.

As another example, the following two rules can be determined to be parallel executable by Theorem 2.

rule Facilities_ Research {
(t:Team ::t.dept == “research”)

[e : Employee :: e.team == t.name |

e.equipment = “AX P500X (Alpha)”’
}

rule Facilities_Sales {

(t:Team ::t.dept == “sales”)

[e : Employee :: e.team == t.name |
N

e.equipment = “Power Book”

In this case, the two rules are partially mutual exclusive on Team. With the help of functional dependency,
they can be statically determined to be parallel executable.

As simple and natural as it may seem to be, without the knowledge of functional dependency between
the Team and the Employee classes, it is very difficult, if not impossible, for a parallelizing compiler or any
other static transformation technique to identify the parallelism underlying these rules.

In general, any type of class relationship which implies certain pattern of association or partitioning in
the application domain is of great help in the determination of proper decomposition for parallel process-
ing. Mechanisms for expressing these relationships are therefore of great value for capturing application
parallelism in program development.

5 Effective Implementation Strategies

The new approach we propose can be summarized as follows.

e The central idea is to exploit application semantics and program structures. We found these to be the
most valuable sources of parallelism in production systems.

e For the specification of application semantics, we proposed in [33] a set of parallel structuring mecha-
nisms.

e In this paper, we introduce a semantic-based technique to identify parallel structure from functional
dependency specification among data objects.

e All the mechanisms and techniques above are essentially to identify decomposition patterns and to
raise the level of abstraction to the application domain instead of the implementation domain.

With this approach, we introduce a new stage into program development which we called “decomposition
abstraction” [34]. We also showed in the paper that, with our mechanisms, programmers are completely
alleviated from the need to worry about synchronization or communication details that are critical to most
explicit parallel programming languages.

However, just like any explicit parallel languages, the actual performance gain depends heavily on the
implementation strategy adopted to realize the parallelism expressed by the programmers. This is especially
the case in production systems because rules tend to have large variation in processing requirements [10].
Systems that fire multiple instantiations in parallel tend to incur large run-time overhead [26]. Granularity
control and proper scheduling strategy is therefore of crucial importance to a multiple rule firing production
system with decomposition abstraction mechanisms. In this section, we discuss several alternative imple-
mentation strategies and their performance on a parallel rule execution engine we built to provide a test bed
and a guide to our actual implementation of the proposed decomposition mechanisms.

5.1 A Parallel Rule Execution Engine

To be as close as possible to the real execution environment, we develop a parallel rule execution engine that
actually executes multiple rule instantiations in parallel on our target machine, the Sequent Symmetry shared
memory multiprocessor. A work load generator generates work from sequential execution trace files. This
approach is unique in that, WMEs are actually added, removed and modified. All rule actions are executed
as they would be in a real parallel environment. All communication and synchronization operations needed
to maintain the correct parallel execution are actually performed. With the same set of data, the parallel
rule execution engine will terminate with exactly the same result as in a sequential execution (to make sure
that the execution is correct) except, of course, the execution time. The only important factor which is not
accounted for is the time spent on matching. To include matching would make it a real parallel inference
machine which will take much longer to develop before any experiment can be done on it. With the already
existing good results on both sequential and parallel algorithms for matching [22, 23, 20], this exclusion
1s considered justifiable. Actually, the performance of the real system may be even better with parallel
matching since the effect is at least additive, if not multiplicative.

Program No. Rules Description

LIFE 16 A simulation program implements Conrad’s
LIFE.

WALTZ 33 A constraint satisfaction problem using Waltz’s
algorithm for scene labeling.

MANNERS 8 A combinatorial search problem for seat
assignment.

Table 1: Benchmark programs used in the experiments.

No. Tterations | Time (ms)
0 0.00

1000 2.57

3000 7.64

5000 12.71

7000 17.78

10000 25.38

20000 50.75

Table 2: Actual time delay introduced by the dummy loop.

The parallel rule execution engine is a set of programs built on top of a C4++ based object-oriented light
weight thread package called PRESTO [3]. A sequential rule program?! and its execution trace are translated
into a PRESTO program which is the parallel version of the program integrated with the PRESTO run-time
libraries. To experiment with the effect of granularity of rules on system performance, a controllable dummy
loop is added to the action part of each parallel rule in the PRESTO program. The time to execute the
action part of a rule can then be controlled by varying the number of iteration for the dummy loop. Also
by varying the number of threads created for processing parallel instantiations, and the granularity of work
(number of instantiations) assigned to each thread, we have measured the performance of four alternative
scheduling strategies.

e Strategy 1: Maximal Parallelism Create a new thread for each parallel instantiation.

e Strategy 2: Fixed Granularity Same as Strategy 1 except that each thread is assigned a fixed
number of instantiations to execute sequentially. This is to increase the granularity of work assigned
to each thread so as to reduce the total number of threads.

e Strategy 3: Master-Slave Create a fixed number of worker threads and a scheduler thread. The
scheduler thread keeps dispatching instantiations, one instantiation for each worker, as long as there
are idle workers. If no idle worker exists, the scheduler executes the instantiation itself.

e Strategy 4: Master-Slave with Chunking Same as Strategy 3 except that each time an idle
worker is given a fixed number of instantiations to work on sequentially. The number is called the
chunk size whose purpose is to increase the granularity of work assigned to a worker thereby reducing
thread management and scheduling overhead.

To evaluate the effectiveness of different scheduling strategies, we collect the performance results from
the execution of three benchmark programs drawn from the Texas OPS5 Benchmark Suite [5] and listed in
Table 1. All three programs are executed with increasing number of processors on different problem sizes
and different chunk sizes. We then compare their relative performance, scalability, as well as sensitivity to
granularity change. The actual time delay introduced by the dummy loops are also measured and listed in

Table 2.

L At this moment, the parallel rule execution engine takes only OPS5 programs. However, the same approach can be applied
on any sequential rule language.

10

16

14 O |

12 + . 1

I nstantiations

Nunber of Parall el

0 L L L L L L L
0 10 20 30 40 50 60 70 80

Paral l el Cycles
Figure 1: MANNERS16 Concurrency Profile.

5.2 Characteristics of the Benchmark Programs

In our approach, identifying the characteristics of an application is of crucial importance. In this section,
we analyze the concurrent behavior of each benchmark program and point out key issues to the successful
application of proposed mechanisms.

MANNERS

MANNERS was derived from an example program in [15] which employed a combinatorial search for solving
a seat assignment problem among a number of guests. The seats must be assigned such that neighbors are
of opposite sex and share at least one common hobby. This simple program, containing just 8 rules, is a
very good test program for evaluating how effective a parallel production system is. It consists of a hot spot
rule that fires repeatedly and consumes over 90% of sequential execution time for problem size of 64 guests
or more. The larger the problem size, proportionally more time is consumed by this rule which is used to
maintain partial solution. Although all instantiations of this rule can be fired in parallel, it is very difficult,
if not impossible, to recognize this fact by pure syntactic technique at compile time without the information
provided by our mechanisms. The concurrency exhibited is also very interesting. It is regular but not evenly
distributed. The execution starts with a very low degree of parallelism which then gradually increases toward
the end. More specifically, the program starts with only 2 instantiations that can be executed in parallel,
then 3 instantiations, then 4, 5, ... etc. Figure 1 is the concurrency profile of MANNERS with 16 guests.
This is highly challenging since a parallel production system must not only detect the hot spot rule, but also
exploit effectively a rather peculiar pattern of parallelism.

LIFE

LIFE is a simulation program that simulates the existence of bacteria in a rectangular grid of cells for a
specified number of generations. Whether a cell stays alive across a generation is determined by the number
of neighbors it has. A living cell is born in an empty cell if it has exactly 3 neighbors. Since all decisions can
be made locally, LIFE exhibits a high degree of data level parallelism. However, the available concurrency has
not been effectively exploited in previous research. The difficulty of detecting it by syntactic analysis alone
is again the key reason. Another probably even more important reason is that a parallel production system
must have the ability to perform set-oriented and aggregate operations to exploit the available concurrency.
Figure 2 is the concurrency profile of a 10x10 LIFE execution trace without showing the sequential printing

11

500

" _
c
o
= 400 F g
@
1<
©
@ 300 | g
] _ _
B 200 1
&
©
& 100 | i
£
il

0 1 1 1 1

0 5 10 15 20 25 30 35

Paral l el Cycles

Figure 2: LIFE10 Concurrency Profile (without Showing Sequential Printing at the End of Execution).

at the end of execution. Because of the rather evenly distributed pattern of parallelism, keeping processors
busy doing useful work at all time 1s the primary issue.

WALTZ

The frequently studied WALTZ program is also selected here to serve both as a test program to evaluate the
effectiveness of our mechanisms and as a benchmark program to compare our results with others. This is a
constraint satisfaction problem that implements Waltz’s algorithm for labeling of line drawing scene. The
algorithm propagates labels based on local decision and therefore exhibits both SPMD- and MIMD-style of
parallelism (i.e. parallel instantiations of the same or different rules working on different part of the scene).
The available parallelism is again quite high as depicted in Figure 3 which is the concurrency profile of a 10
regions execution trace with sequential printing of results at the end excluded.

Because, syntactically, a number of similar constraints each appears in many rules, the rules are highly
interfering with themselves. Most of existing parallel production systems end up handling this at run-time
resulting in excessive overhead. However, the constraints are disjoint, most of the run-time overhead is
actually superfluous. The functional dependency declaration and our Disjoint combinators [33] express this
to reveal a compile time parallel structure. A system capable of forming disjoint partition of consistent data
objects can then effectively exploit this available concurrency without the overhead of run-time interference
detection.

5.3 Performance Results

In this section, we demonstrate and analyze the performance results of three OPS5 benchmark programs on
our parallel rule execution engine. Extensive experiments are conducted on various dimensions affecting the
selection of implementation strategies. The speedup is measured against the execution time of the execution
engine with single processor instead of an optimized uniprocessor OPS5 compiler such as OPSbc [24] because
the former is two to three orders of magnitude faster than the later. The difference is primary due to the
additional matching performed by the uniprocessor compiler. As a remedy to this lack of match phase, we
artificially increase the per rule processing time using dummy loop as described earlier.

12

900

800 h

700 h

600 R

500 h

I nstantiations

400 h

300 h

of Parall el

200 k

No.

SLUUL I a0

0 5 10 15 20 25

Paral l el Cycles

Figure 3: WALTZ10 Concurrency Profile (without Showing Sequential Printing at the End of Execution).

The Effect of Rule Granularity

To understand the effect of rule granularity (i.e. the time to process a rule) on the system performance, we
select the master-slave with chunking scheduling strategy while varying the granularity of rule by changing
the number of iterations in the dummy loop. Figure 4 shows the results on MANNERS512 (i.e. 512 guests).
The performance improves significantly with larger granularity. Nearly ideal speedup is achieved when the
granularity per rule is increased to 20000 (i.e. 50.75ms). As a comparison, the average cycle time of the
same program and data set running under OPS5c on a much faster CPU (SUN4 workstation vs. the Intel
80386 on Sequent Symmetry) is about 210ms.? This implies that the overhead of scheduling and thread
management i1s very low, and as long as we can keep it low in a real implementation it is very likely to get
even better results since the granularity per rule is expected to be much higher than 50ms when matching
is included.

Figure 5 and Figure 6 are the results of similar experiments on LIFE (40x40) and WALTZ (30 regions),
respectively. In both cases, performance improvement is observed with increasing granularity.

Among all three test cases, LIFE achieves the highest speedup with granularity 20000. This is plausible
because the run-time behavior of LIFE exhibits the highest and the most regular pattern of concurrency as
depicted earlier in Figure 2. On the other hand, WALTZ requires larger granularity to achieve the same
level of performance. We were puzzled by this unexpected result at first since from the characteristics of
the Waltz’s algorithm, there should not be that much difference. Later on we found that the available
parallelism of a WALTZ program execution depends heavily on the data set (i.e. the scene to be label). The
data generator we use (and used by other researcher as well) introduces a sequential factor that severely
restricts the available parallelism. The generated scene consists of two arrays of rectangular blocks growing
linearly according to the given problem size parameter. This linear factor contributes to the performance
difference between WALTZ and the other two programs. We plan to develop a new data generator that
generates scenes without this linear factor.

Scalability: The Effect of Problem Size

An important criterion when evaluating the effectiveness of a parallel system is its scalability. When the
available parallelism increases, a parallel processing system must be able to effectively exploit it and achieve
better performance. For the three benchmark programs, a common characteristic is that available parallelism

?For interesting readers, a LISP based implementation of OPS5 takes forever to run the program on the same data set.

13

12

10
8,
Q.
>
® 6r
[}
o
®
4+
2,
0
0
Figure 4:
12
10
8
Q.
>
® 6r
[}
joR
®
4
2
0

Nunber of Processors

12

MANNERS512 Speedup with Varying Granularities.

Nunber of Processors

12

Figure 5: LIFE40 Speedup with Varying Granularities.

14

12
0 ——
1000 ——
10} 3000 &—)
8,
Q.
=]
% el
(0]
o
n
4,
2,
0 1 1 1 1 1
0 2 4 6 8 10 12

Nunber of Processors
Figure 6: WALTZ30 Speedup with Varying Granularities.

increases with the problem size. Therefore, we tested our mechanisms and system on three programs with
increasing problem sizes where the problem size to MANNERS, LIFE and WALTZ are the number of guests
to be assigned, the grid size, and the number of regions®, respectively. All programs were tested under the
master-slave with chunking scheduling strategy. The chunk size was set to 5 with rule granularity fixed at
20000 (i.e. 50.75ms).

Figure 7 illustrates the performance results of MANNERS on different problem sizes and vividly displays
scalable speedup of our scheme. Figure 8 and Figure 9 are the results of similar experiments on LIFE and
WALTZ. The speedup achieved on smaller problems is lower because the available parallelism is not enough
to keep all processors busy. When problem size becomes larger, processor utilization increases and so is the
speedup achieved.

Controlled vs. Unrestricted Parallelism

Too much water drowned the miller. If the available parallelism is not exploited appropriately, the benefit
of parallel processing can easily be overwhelmed by the scheduling and synchronization overhead. In our
case, since the embedded parallelism in the application is fully expressed, the key issue comes down to
efficiently process the collection of parallel instantiations on available computation resources. For a thread-
based implementation like ours, this issue manifests itself in a trade-off between parallel processing of as
many instantiations as possible and controlling the number of concurrent threads. If a new thread is created
for each parallel instantiation (i.e. Strategy 1), we get maximal parallelism on the one hand but highest
thread management overhead on the other hand. Using the master-salves scheduling strategy, the number
of threads is fixed but the communication and synchronization cost increase because of the need to partition
and dispatch parallel instantiations to the worker threads.

To understand the effect of thread management overhead on system performance, we compare the results
between applying Strategy 1 (maximal parallelism) and Strategy 4 (master-slave with chunking). Figure 10 is
a 3-D display of two sets of experiments on WALTZ10. The timing curves on the base plane are the execution
time while the B-spline surfaces are to demonstrate the performance differences. It is quite evident that
master-salves with chunking outperforms maximal parallelism by a substantial margin. Figure 11 presents
the results of similar experiments on LIFE30. The difference is smaller but still perceptible. This suggests
that throttled parallelism is much better than unrestricted parallelism.

3In the scene generated by the data generator for WALTZ, a region consists of 72 line segments.

15

12

Speedup
o

0 L L L
0 2 4 6 8 10 12

Nunber of Processors

Figure 7. MANNERS Speedup on Different Problem Sizes.

12

10

Speedup
o

Nunber of Processors

Figure 8: LIFE Speedup on Different Problem Sizes.

16

12
10 —-—
20 —+—
10F 30 5 i
8,
Q.
=]
% e6f
(0]
o
n
4+
2,
0 1 1 1 1 1
0 2 4 6 8 10 12

Nunber of Processors

Figure 9: WALTZ Speedup on Different Problem Sizes.

Granul arity (Iterations) e Master-Slave with Chunking —

20000

15000

10000

5000

Mast er- Sl ave with Chunking ----
Maxi mal Parallelism-----
Maxi mal Paral lelism

0

100

13 0 Execution Time (Seconds)

Figure 10: 3-D Display of Controlled vs. Maximal Parallelism on WALTZ10.

17

Granul arity (Iterations)

20000

Mast er - Sl ave wi th Chunking —
Mast er-Slave with Chunking -———
Maxi mal Parallelism-----
Maxi mal Parallelism

15000

10000

5000

400
300

Execution Tinme (Seconds)

Figure 11: 3-D Display of Controlled vs. Maximal Parallelism on LIFE30.

Just when we expect to observe similar type of performance difference on MANNERS program, it does
not happen to be the case. Figure 12 is the 3-D graph of the similar experiments as above. The performance
of maximal parallelism is not only comparable to that of master-slave with chunking, it actually performs
better when the granularity of the rules and the number of processors increase. A closer look at the problem
reveals a pattern of concurrent behavior peculiar to the MANNERS program. As depicted in Figure 1,
the number of parallel executable instantiations is quite small in the early stage of the execution. When
chunking is applied, the available parallelism 1s left unexploited while under maximal parallelism strategy
these instantiations are always processed in parallel.

As a summary, the master-slave strategy which creates only a limited number of threads is, in general,
better than the maximal parallelism strategy which creates as many threads as the number of parallel
instantiations. However, the actual performance gain still depends on the characteristics of the underlying
program. When the degree of concurrency in an application is low, the maximal parallelism strategy is likely
to be better.

The Effect of Chunking

In last section, master-salve with chunking appeared to be the winner in overall performance. The question
of determining appropriate chunk size follows. It is unlikely to have a single chunk size that is optimal for
every program. We need, at minimum, to determine if performance as a function of chunk size is behaved
well enough to offer a system default. We test the benchmark programs with different chunk size of 1 (i.e.
no chunking), 5, 10, and 20. Each one of them is tested with a fixed level of rule granularity. To understand
the correlation of chunking with respect to rule processing time, the same set of experiments is carried out
with different levels of rule granularity.

Figure 13 is the results on MANNERS512 with rule granularity set to 1000. We can observe quite clearly
that chunking is always better than no chunking at this level of granularity. A chunk size of 5 provides the
best performance. On the other hand, with the granularity of rule raised to 20000, the best performance is
obtained when chunking is not applied as shown in Figure 14. Similar results can be observed on both LIFE
and WALTZ except that chunk size of 5 is not necessary a clear winner over other chunk sizes. Because of
the space limit, the results are not presented in here. See [34] for complete experiment results.

As a summary, reducing the granularity of rules improves the results we get from chunking. This is

18

Mast er-Slave with Chunking —
Mast er - Sl ave wi th Chunki ng ---—

Maxi mal Parallelism-----
Maxi mal Parallelism -

Granul arity (Iterations)

20000

15000

10000

5000

0

1600

1200

400

Execution Tinme (Seconds)

Figure 12: 3-D Display of Controlled vs. Maximal Parallelism on MANNERS256.

400

350

300 -

250

200

150 |

Execution Time (Seconds)

100 |

50

Nurber of Processors
Figure 13: MANNERS512 Execution Time on Different Chunk Sizes with Rule Granularity Fixed at 1000.

19

7000

6000

5000

4000

3000

2000

Execution Ti me (Seconds)

1000

Nurber of Processors
Figure 14: MANNERS512 Execution Time on Different Chunk Sizes with Rule Granularity Fixed at 20000.

primarily because of the reduction in thread management, communication, and synchronization overhead.
However, when the average granularity of the rules or the chunk size become larger, the loss of parallelism
offsets the benefit of chunking. In general, chunking with chunk size 5 provides the best performance when
the rule granularity is smaller than 5000. When the granularity is larger than 5000, it is better to do without
chunking. In other words, chunking is good for cases where the per rule scheduling overhead is comparable
or larger than that of the granularity of rule. This result suggests a dynamic scheduling strategy with either
user-specified granularity assignment to each rule or an automatic estimation done by the system. We are
investigating this issue in our real implementation of an object-based parallel rule language equipped with
decomposition abstraction mechanisms.

6 Conclusions and Future Work

We have shown in this paper that, contrary to the conclusion drawn by previous research, production systems
and rule-based programs do encompass high degree of concurrency and it is possible to effectively exploit
such level of parallelism. These results are obtained when a programmer is provided with decomposition
abstraction mechanisms to specify the natural parallelism inherited in the application domain. The novel
approach of using data relationships (functional dependency in particular) in the derivation of information
for parallelism is a promising direction that has never been recognized before. Based on a new technique
of rapid system development for early evaluation and experimentation, we show that the proposed set of
mechanisms can be efficiently implemented on shared-memory multiprocessors.

Even with effective implementation, the granularity of rule is still critical to the actual performance gain.
If this information is available to the run-time scheduler, then a strategy of master-slave with dynamic chunk
size 1s very likely to perform better than the strategy with fixed chunk size or no chunking at all. Obviously,
a user-specified granularity level assigned to each rule (similar to a priority assignment or certainty factor) is
an immediate solution. We plan to provide this feature in our actual implementation. However, unlike other
proposed mechanisms in our approach, proper granularity assignment is in general not readily available from
the application semantics since it involves an estimation of processing time for each rule. An alternative way
is to have the system estimate the right granularity for a rule either from its syntactic structure or from an
execution profile.

We are embodying our decomposition abstraction mechanisms on the Venus/C++-based modular rule
language [6] targeting Sequent Symmetry shared-memory multiprocessors. We choose Venus because it is

20

probably the first sequential rule-based programming language to provide both a declarative syntactic and
semantic mechanism to support top-down modular design of rule-based programs. The embodiment of our

mechanisms instantly converts the language into a parallel rule language, which is called Venus/DA. The

language system is not only intended to serve as a test-bed for semantic-based exploration of parallelism in

production systems, but also to be used for the planned extension of rule-based technology into database
applications.

References

(1]

[2]

[3]

[4]

[5]

[12]

[13]

[14]

[15]

[16]

Francois Bancihon and Setrag Khoshafian. A calculus for complex objects. In Proc. 15th ACM Symp.
on Principles of Database Systems, pages 53-59, 1986.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and Recovery in

Database Systems. Addison-Wesley, Reading, MA, 1987.

Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. PRESTO: A system for object-oriented
parallel programming. Software - Practice and Experience, 18(8):713-732, August 1988.

Elisa Bertino, Mauro Negri, Giuseppe Pelagatti, and Licia Sbattella. Object-oriented query languages:
The notion and the issues. IEEE Trans. on Knowledge and Data Engineering, 4(3):223-237, June 1992.

David A. Brant, Timothy Grose, Bernie Lofaso, and Daniel P. Miranker. Effects of database size on
rule system performance: Five case studies. In Proc. 17th Intl. Conf. on Very Large Data Bases, pages

287-295, 1991.

James C. Browne and et. al. A new approach to modularity in rule-based programming. In ICTAI’9:
IEEFE Intl. Conf. on Tools for Artificial Intelligence, 1994.

C.L. Forgy, Anoop Gupta, A. Newell, and R. Wedig. Initial assessment of architectures for production
systems. In Proc. Jth National Conference on Artificial Intelligence (AAAI-84), pages 116-120, Austin,
TX, August 1984.

Anoop Gupta. Implementing OPS5 production systems on DADO. Technical Report CMU-CS-84-115,
Department of Computer Science, Carnegie Mellon University, Pittsburgh, December 1983.

Anoop Gupta. Parallelism in Production Systems. PhD thesis, Department of Computer Science,
Carnegie Mellon University, Pittsburgh, March 1986.

Anoop Gupta, Charles Forgy, and Allen Newell. High-speed implementation of rule-based systems.
ACM Trans on Computer Systems, 7(2):119-146, May 1989.

Wilson Harvey, Dirk Kalp, Milind Tambe, David McKeown, and Aleen Newell. The effectiveness of task-
level parallelism for production systems. Journal of Parallel and Distributed Computing, 13(4):395-411,
December 1991.

T. Ishida. Methods and effectiveness of parallel rule firing. In Proc. IEEE 6th Conference on Artificial
Intelligence Applications, pages 116-122, 1990.

T. Ishida and S. Stolfo. Toward the parallel execution of rules in production system programs. In Proc.
IEEFE Intl. Conf. on Parallel Processing, pages b68-574, 1985.

M.A. Kelly and R.E. Seviora. An evaluation of DRete on CUPID for OPS5 matching. In Proc. 11th
International Joint Conference on Artificial Intelligence (IJCAI-89), Detroit, MI, August 1989.

G. Kiernan, C. de Maindreville, and E. Simon. Making deductive database a practical technology: A
step forward. In ACM SIGMOD Intl. Conf. on Management of Data, pages 237-246, 1990.

Chin-Ming Kuo, Daniel P. Miranker, and James C. Browne. On the performance of the CREL system.
Journal of Parallel and Distributed Computing, 13(4):424-441, December 1991.

21

[17] S. Kuo, D. Moldovan, and S. Cha. Control in production systems with multiple rule firings. In Proc.
IEEFE Intl. Conf. on Parallel Processing, 1990, Vol. II, pages 243-246, 1990.

[18] Steve Kuo and Dan Moldovan. Implementation of multiple rule firing production systems on hypercube.
Journal of Parallel and Distributed Computing, 13(4):383-394, December 1991.

[19] Steve Kuo and Dan Moldovan. The state of the art in parallel production systems. Journal of Parallel
and Distributed Computing, 15(1):1-26, May 1992.

[20] Ho Soo Lee and Marshall 1. Schor. Match algorithms for generalized Rete networks. Artificial Intelli-
gence, 54(3):249-274, April 1992.

[21] David Maier. The Theory of Relational Databases. Computer Science Press, Rockville, Maryland, 1983.

[22] Daniel P. Miranker. TREAT: A New and Efficient Match Algorithm for AI Production Systems. PhD
thesis, Department of Computer Science, Columbia University, 1987. Also published by Morgan-
Kaufmann, 1990.

[23] Daniel P. Miranker, David A. Brant, B.J. Lofaso, and David Gadbois. On the performance of lazy
matching in production systems. In National Conference on Artificial Intelligence, pages 685-692, July
1990.

[24] Daniel P. Miranker and B.J. Lofaso. The organization and performance of a TREAT based production
system compiler. IEEE Trans. on Knowledge and Data Fngineering, 3(1):3-10, March 1991.

[25] Daniel E. Neiman. Design and Control of Parallel Rule-Firing Production Systems. PhD thesis, Uni-
versity of Massachusetts at Ambherst, September 1992.

[26] Daniel E. Neiman. Issues in the design and control of parallel rule-firing production systems. Journal
of Parallel and Distributed Computing, 1994. To appear.

[27] Alexander J. Pasik. A Methodology for Programming Production Systems and Its Implications on Par-
allelism. PhD thesis, Columbia University, 1989.

[28] James G. Schmolze. Guaranteeing serializable results in synchronous parallel production systems. Jour-
nal of Parallel and Distributed Computing, 13(4):348-365, December 1991.

[29] J.G. Schmolze and S. Goel. A parallel asynchronous distributed production system. In Proc. AAAI-90,
pages 65-71, 1990.

[30] A. Sohn and J-L Gaudiot. A survey on the parallel distributed processing of production systems.
International Journal on Artificial Intelligence Tools, 1(2):279-331, June 1992.

[31] Salvatore J. Stolfo, Ouri Wolfson, Philip K. Chan, Hasanat M. Dewan, Leland Woodbury, Jason S.
Glazier, and David A. Ohsie. PARULEL: Parallel rule processing using meta-rules for redaction. Journal
of Parallel and Distributed Computing, 13(4):366-382, December 1991.

[32] S.J. Stolfo. Five parallel algorithms for production system execution on the DADO machine. In National
Conference on Artificial Intelligence, pages 300-307, 1984.

[33] Shiow-yang Wu and James C. Browne. Explicit parallel structuring for rule based programming. In
Proc. 7th International Parallel Processing Symposium, pages 479-488, 1993.

[34] Shiow-yang Wu, Daniel P. Miranker, and James C. Browne. Decomposition abstraction in parallel rule
languages. Submitted for publication, 1994.

22

