
Toward Semantic-Based Exploration of Parallelism in ProductionSystems �Shiow-yang Wu, Daniel P. Miranker, and James C. BrowneDepartment of Computer SciencesThe University of Texas at AustinAustin,TX 78712-1188TR-94-23 October 1994AbstractWe propose a new approach for the parallel execution of production system programs. This approach embodiesmethods of decomposition abstraction using declarative mechanisms. Application semantics can then beexploited to achieve a much higher degree of concurrency. In this paper we present the underlying object-basedframework of production systems and discuss the ensuing semantic-based dependency analysis technique. Inparticular, we de�ne a new notion of functional dependency to characterize associative relationships amongdata objects, which can be used to determine concurrently executable rules.A byproduct of this research is a new technique for rapid system development and evaluation. Thetechnique eliminates the possible inaccuracy of simulation as well as the high cost of full-edged systemimplementation.1 IntroductionA production system is composed of a working memory, a set of rules, and an inference engine. Workingmemory is a global database composed of data objects called working memory elements (WMEs) representingthe system state. A rule is a condition-action pair. The inference engine provides a three-phase cyclicexecution model of condition evaluation (matching), conict-resolution and action �ring. A rule with a setof WMEs satisfying the conditions is called an instantiation. The set of all instantiations constitutes theconict set. In a sequential environment, conict-resolution selects one instantiation from the conict setfor �ring. In a parallel environment, multiple rule instantiations can be selected for �ring simultaneouslysubject to proper correctness constraints. Firing an instantiation executes the selected actions that may add,delete, or modify WMEs in the working memory. The cycle then starts over again.Initial implementation of production systems su�ered from poor performance which prohibited their usein large scale applications [7]. On the other hand, production systems have been assumed to encompass a highdegree of parallelism [9], opening the opportunity of performance improvement through parallel processing.However, after over a decade of extensive research e�ort [19, 30], the speedup achieved by systems with realimplementation is quite limited, only about 10-fold, no matter how many processors are used.In a recent paper [33], we analyzed several commonly used benchmark programs and pointed out that therather limited success in the past was primarily due to the failure to properly exploit parallelism embeddedin the application domains and program structures. Contrary to the conclusion drawn by previous workthat the true performance gain from parallelism is quite limited [10], we showed that massive and scalablespeedup was indeed achievable with a set of explicit parallel structuring mechanisms.�This work is partially supported by DARPA under grant DABT63-92-C-0042.1

In this paper, we propose a semantic-based approach for the analysis of rule interference based on asso-ciative relationships among data objects. First, a general object-based framework of production systems isproposed both for a formal basis and for the expression of parallelism in a language independent way. Then,a notion of functional dependency is introduced to derive information about whether a rule is self-interferingand about the interference between di�erent rules. We show how the combination of explicit parallel struc-turing mechanisms and semantic-based analysis technique achieve much higher level of concurrency thantraditional techniques.For early evaluation of the e�ectiveness of our approach without the high cost of implementing a full-edged system, we built a parallel rule execution engine and the associated work load generator. Theexecution engine actually �res multiple rules simultaneously on a shared memory multiprocessors. All syn-chronization and communication operations necessary for the correctness of multiple rule �ring are actuallyperformed. The load generator generates work load from sequential execution trace �les. With this newtechnique we can experiment with alternative implementation strategies in early stage of the system devel-opment and have accurate pictures of the run-time system behavior with much less initial implementationand evaluation cost. Replacing the load generator with a parallel match engine gives us a full-edged system.On the parallel execution engine, we conducted several sets of experiments on three commonlyused bench-mark programs. We show how granularity and scheduling strategies can signi�cantly a�ect the performanceof a parallel rule system.2 Related WorkEarly research on parallel production systems focused almost exclusively on parallel matching [8, 32, 9, 22,10, 14]. These systems parallelized only the match phase. The speedup is therefore limited by the sequentialexecution of rules. Multiple rule �ring systems parallelize not only the match phase, but also the act phaseby �ring multiple rules in parallel [13, 12, 17, 18, 28]. Some systems even �re rules asynchronously [29, 16].Compile-time syntactic analysis of data dependency graph [13] is used to detect possible interference betweenrules. Instantiations of compatible rules [18] can be �red in parallel. For dependencies that can not be resolvedat compile-time, run-time analysis is applied to increase the parallelism. The copy-and-constraint (C&C)technique proposed by Pasik [27] proved to be quite e�ective in reducing the variance in rule processing timeand improving the parallelism as well. However, the rules and data attributes for applying C&C are selectedmanually.All techniques above are domain insensitive since parallelism speci�c to the application domains is notexploited. The bene�t of �ring multiple rules can easily be overwhelmed by the cost of synchronization andrun-time interference analysis [25]. As a result, only limited speedup was achieved.On the other hand, the SPAM/PSM system [11] exploits task-level parallelism which is essentially func-tional decomposition of the original problem into a hierarchy of tasks and subtasks. The PARULEL language[31] employs a meta-level rule system to select compatible rule instantiations for parallel execution. Thesesystems achieved better results by exploiting application speci�c parallelism. However, the techniques em-ployed tend to be ad hoc or incur excessive overhead.Our main contribution is to provide domain independent abstraction mechanisms and semantic-basedanalysis techniques which e�ectively exploit application parallelism without the high cost of run-time inter-ference detection or instantiation selection.3 A General Object-Based Framework of Production SystemsThe concepts and techniques presented in this paper are language independent. We propose a general object-based framework to abstract away minor details and to capture just the essential features of productionsystems. Thus the results presented in this paper are generally applicable to any rule language.2

3.1 Object ModelWe have built our framework on top of a uni�ed object model which can be used to characterize all entities ina rule system. The basic object model is inspired by [1, 4] and is comprised of the following sets of symbols:A : attribute names,C : class names,I : identi�ers,M : method names,R : rule names,V : variable names.De�nition 1 (Method) A method de�nition is a triple (M;P;B) where M is a method name, P is aset of parameter speci�cations, and B is the de�nition of operations performed by the method. A methodinvocation is a method name with necessary parameters fully supplied. 2We have deliberately left out the details of how a parameter or body of a method is actually speci�ed. Nordo we restrict the way actual arguments are passed in a method invocation. These issues are not essentialto our discussion.De�nition 2 (Class) A class de�nes a set of objects with similar structure and behavior.� INT, FLOAT, and STRING are primitive classes representing the set of integers, oats, and char-acter strings, respectively.� An attribute de�nition is a pair (a;C) where a is an attribute name and C is a class name.� A set-valued attribute is de�ned by adding a � at the end of an attribute name.� A class is a triple (C;A;M) where C is a class name, A is a set of attribute de�nitions, and M is a setof method de�nitions. 2De�nition 3 (Object and WME) Objects are de�ned to model WMEs. They are the basic units ofinformation and behavior encapsulation.� Integers, oats, and character strings are primitive objects.� If a1; a2; : : : ; an are the attribute names of a class C and O1; O2; : : : ; On are objects, then:O = (a1 : O1; a2 : O2; : : : ; an : On)is a structural object or simply a tuple. The object is an instance of the class C.� Tuples are the generalization of WMEs. Each tuple has a unique identi�er associated with it. Workingmemory is a set of tuples.� If O1; O2; : : : ; On are objects of a class C, thenf O1; O2; : : : ; On gis a set object. Oi's are elements of the set object. Note that elements of a set object must be instancesof the same class. 2De�nition 4 (Rule) A rule is a condition-action pair. Conditions can be positive or negative.� An expression is a quanti�er-free �rst order formula.3

� If v is a variable name, C is a class name and E is an expression, then (v : C :: E) is a positive conditionand �(v : C :: E) is a negative condition.� If P is a condition, then v(P), C(P), and E(P) denote the variable, class, and expression components,respectively, of the condition.� A rule is a triple (P;N;M) where P is a non-empty set of positive conditions, N is a set (possiblyempty) of negative conditions, and M is a set of method invocations.� A positive or negative condition is termed a condition element. The set of all condition elements iscalled the antecedent. The set of method invocations is called the consequent. 2De�nition 5 (Program and System) A program is a pair (C, R) where C is a set of class de�nitionsand R is a set of rule de�nitions. A rule system is a pair (O, P) where O is a set of tuples and P is a ruleprogram. 23.2 Execution Model and SemanticsWe characterize the semantics by considering rule antecedents as queries to the working memory for selectinga consistent set of objects. The execution of a rule system is de�ned in terms of state transitions betweenworking memory states.De�nition 6 (State) The state of a rule system is the set of tuples in working memory. 2De�nition 7 (Instantiation) Pattern matching is modeled by object selection. The following de�nitionsare de�ned assuming a given state S.� A positive condition element (v : C :: E) is satis�ed in S if there exists an object of class C such thatE is evaluated to true. The object (which can be referenced by the variable v) is said to be selected bythe condition element.� A negative condition �(v : C :: E) is satis�ed in S if there does not exists any object of class C suchthat E is evaluated to true.� A rule is satis�ed in S if there exists at least one set of objects in S such that all condition elementsin the antecedent are satis�ed. The set of objects selected by the positive condition elements is calledan instantiation of the rule. The set of all instantiations of a rule r is denoted by Inst(r). 2Operationally, a rule can be considered as a query to the working memory. The result of the query is aclass whose instances are instantiations of the rule.De�nition 8 (Rule Firing) If S is a state, r is a rule which is satis�ed in the state, the result of �ring therule is a new state S0 obtained from S by invoking the methods in the consequent of r on the set of objectsi which is an instantiation of r. We denote such a rule �ring by S0 = S(i). 2De�nition 9 (Execution) An execution of a rule system is a sequence of rule �rings that transforms thesystem from a state to another state. A state is a terminal state if no rule is satis�ed under that state. Anexecution is a terminal execution if the last state in the sequence of rule �rings is a terminal state. 2It is important to note that in the de�nitions of rule �ring and execution, no restriction is placed on howobjects are selected or on which rule instantiation to pick. In other words, no matching technique or conictresolution strategy are assumed. An execution is not required to be a terminal execution. Thus allowingnonterminating systems.The framework and execution model above characterize the core concepts and essential features of asequential production system. We now extend the model to allow simultaneous �ring of multiple ruleinstantiations. 4

De�nition 10 (Interference) If i1 and i2 are instantiations of two (possibly the same) rules that aresatis�ed in a state S, then i1 interferes with i2 if any one of the following conditions is true:1. The execution of i1 prevents i2 from being an instantiation in the new state resulting from i1's execution,or vice versa.2. There exists methods invoked by i1 and i2 that modify the same object.Since a newly created object is always assigned a unique identi�er, object creations do not contribute toany interference except when Condition 1 is true. Identical objects with di�erent identi�ers are allowed tocoexist in our model, which is consistent with most rule languages.We note that it is possible to weaken Condition 2 above since we need only to avoid conicting methodsto be invoked on the same object. However, such �ne-grained parallelism can be easily overwhelmed by thepotential complexity. We reserve this issue for future research.De�nition 11 (Compatibility) Two instantiations are said to be compatible if they do not interfere witheach other. A set of instantiations is compatible if the instantiations are pair-wise compatible. 2Since compatible instantiations do not interfere with each others, they can be executed in parallel. Ourde�nitions of interference and compatibility are similar to the corresponding de�nitions in [13, 16, 18, 28]which are all essentially originated from database concurrency control theory [2]. However, we extend it toa general object-based context which allows any type of method instead of just the add, delete, and modifyoperations as in most previous work on parallel production systems.De�nition 12 (Parallel Rule Firing) The result of parallel �ring of two compatible instantiations in astate is a new state obtained by invoking all methods on corresponding objects of the two instantiations.Likewise, the parallel �ring of a set of compatible instantiations I in a state S is to invoke all methods oncorresponding objects of all instantiations. The parallel �ring is denoted by S0 = S(I). 2Because of the non-interference requirement between parallel executable instantiations, the resulting stateof the parallel �ring is the same as the result of execution of the set of instantiations in sequence followingany order. To state it more precisely, if I = fi1; : : : ; ing is a set of parallel executable instantiations in astate S, thenS(I) = S(ij1)(ij2) : : : (ijn)where j1; j2; : : : ; jn is any permutation of n.4 Class Relationships and Rule CompatibilityUnder the general framework presented in last section, we now describe our semantic-based interferenceanalysis technique. Our approach is motivated by the observation that, more often than not, class relation-ships provide valuable hints on data decomposition patterns that actually happen at run time but are notnecessarily clear at design or compile time. We show that this information can often be used in determiningthe semantic compatibility (i.e. parallel executability) of instantiations of the same rule or between di�erentrules.As an intuitive example, consider the following rule from the corporation application domain.rule Team Fairness f(t : Team);[e : Employee :: e:team == t:name ^ e:salary < t:min wage]! e:salary = t:min wageg 5

As we presented in [33], a positive condition enclosed in square brackets is a set selection condition whichis to select all objects satisfying the condition. The rule is to raise the salary of all under-paid employeesin a team. In general, di�erent instantiations of this rule can not be executed in parallel because the sameemployee may be a member of di�erent teams. On the other hand, if each team is associated with a uniqueand disjoint set of employees, then di�erent instantiations will select di�erent teams with disjoint set ofemployees. Apparently, all such instantiations can be �red in parallel. The key point is on the relationshipbetween instances of the Team and the Employee class. We call such relationship functional dependencywhich is formally characterized in the following de�nitions.De�nition 13 (Class Relation and Scheme) A class relation scheme (or simply scheme) is an orderedset of class names. A class relation on a class relation scheme with n class names is an n-ary relation amonginstances of the corresponding classes. 2For a class relation A, we denote the scheme on which A is de�ned by Sch(A). A class relation can beconsidered as a collection of classes with certain relationship. Note that an element of an n-ary class relationis an ordered set of n objects, one from each corresponding class in the scheme. An object here can be eithera structural object or a set object. For an element a 2 A and a scheme X � Sch(A), the notation a(X)denotes the ordered collection of objects in a which are from classes in X. We note that from the de�nitionabove, a(X) � a and a(Sch(A)) = a.Since an instantiation can also be considered as an ordered set of objects (one for each positive orset selection condition), a rule r actually de�nes a class relation whose elements are exactly the set ofinstantiations of the rule, i.e. Inst(r). The scheme of Inst(r), denoted by Scheme(r), is the ordered set ofclass name components of positive and set selection conditions of r.De�nition 14 (Functional Dependency) Let X and Y be the schemes of two class relations Rx and Ry.The functional dependencyX ! Yholds on Rx and Ry if1. Each element in Rx is associated with a unique element in Ry.2. For all a1, a2 in Rx and the associated b1, b2 in Ry,a1 6= a2) b1 \ b2 = ;: 2As an example, in the corporation application domain discussed earlier, the functional dependencyfTeamg ! fEmployeeg holds because each team is associated with a unique and disjoint set of em-ployees.De�nition 15 (Rule Speci�c Functional Dependency) Let X and Y be two class relation schemes,and r be a rule. The rule speci�c functional dependencyX ! Y in rholds if both X � Scheme(r) and Y � Scheme(r) and for all i; j in Inst(r),i(X) 6= j(X)) i(Y) \ j(Y) = ;: 2It is rule speci�c because the dependency only needs to hold on all instantiations of r. It may or maynot hold on collections of objects that are not instantiations of r.De�nition 16 Let R be a set of rules, X and Y be two class relation schemes, thenX ! Y in Rholds if X ! Y in r holds for each rule r in R. 2 6

Except for borrowing the terminology, functional dependency as de�ned here is quite di�erent than indatabases [21]. In database systems, the notion of functional dependency is de�ned at the attribute leveland is used primarily in the normalization process. We generalize the concept to the class level and useit to identify the parallelism in rule systems. Functional dependencies are considered as speci�cations ofdata decomposition across class boundaries, which are shown below to play a crucial role in determining thecompatibility between instantiations of the same or di�erent rules.De�nition 17 Let r be a rule. The access set of r, denoted by Access(r), is the set of all class namesreferenced in the antecedent of r. The write set of r, denoted by Write(r), is the set of class names withobjects that are modi�ed (including creation and deletion) in the rule. 2De�nition 18 (Dominant Set) Let r be a rule and C be a class relation scheme. C is a dominant set ofr if:1. C � Scheme(r),2. for all i; j 2 Inst(r) (i 6= j) i(C) 6= j(C)). 2A dominant set of a rule is simply a set of class names su�cient to discriminate between di�erentinstantiations of the rule.Theorem 1 (Self Compatibility) Let r be a rule and A, B, C be three class relation schemes that aresubsets of Scheme(r) satisfying the following conditions:1. C is a dominant set of r and C � A2. A! B or A! B in r3. 8c 2Write(r)(c 2 B _ c 62 Access(r))then all instantiations of r are compatible (i.e. parallel executable).Proof sketch: In any given state, let i and j be instantiations of r such that i 6= j.i 6= j) i(C) 6= j(C) (* C is a dominant set *)) i(A) 6= j(A) (� C � A �)) i(B) \ j(B) = ; (* Condition 2 *)) i(Write(r)) \ j(Write(r)) = ; (* Condition 3 *)) i and j do not interfere with each other (* Condition 3 and De�nition 10 *)) i and j are parallel executable (* Condition 3 and De�nition 10 *): 2The central idea of this theorem is that functional dependency implies disjoint decomposition of objectsselected by the instantiations of a rule. As long as the objects modi�ed in the consequent belong eitherto the decomposition or to classes which do not a�ect the satis�ability of the rule, no instantiations willinterfere with each others. We will have examples later in this section. We �rst generalize this idea to theanalysis of interference between multiple rules.De�nition 19 (Partially Mutual Exclusion) Let p, q be rules and C be a class relation scheme. Wesay that p and q are partially mutual exclusive on C, denoted by p><C q, if1. C � Scheme(p) and C � Scheme(q)2. For any two instantiations i, j of p and q respectively, i(C) 6= j(C). 27

Partially mutual exclusion simply means that p and q can not have instantiations containing the same setof objects of classes in C. The simplest and most common case is when C contains a single class referencedin both p and q but tested on disjoint values of the same set of attributes. Since the values are disjoint, pand q can not select the same object in C.Note that no requirement is placed on selected objects that are not of the classes inC. Therefore, partiallymutual exclusive rules may still interfere with each other. However, in many cases, partially mutual exclusiverules can be determined to be parallel executable with the help of functional dependencies as indicated bythe following theorem.Theorem 2 (Pair-Wise Compatibility) If p, q are two distinct rules, and A, B, C are class relationschemes that are subsets of both Scheme(p) and Scheme(q) such that the following conditions are satis�ed:1. p><C q and C � A2. A! B or A! B in fp; qg3. 8c 2Write(p)(c 2 B _ c 62 Access(q))4. 8c 2Write(q)(c 2 B _ c 62 Access(p))then p and q are compatible and therefore parallel executable.Proof sketch: In any given state, let i be an instantiation of p and j be an instantiation of q.p><C q) i(C) 6= j(C) (* De�nition 19 *)) i(A) 6= j(A) (� C � A �)) i(B) \ j(B) = ; (* Condition 2 *)) i(Write(p)) \ j(Write(q)) = ; (* Condition 3 and 4 *)) p and q are parallel executable (* De�nition 10 *): 2Again, the central idea of this theorem is that as long as objects modi�ed in p and q can be determinedas non-overlapping with the help of functional dependency, instantiations of p and q do not interfere witheach others.Even with their general applicability to many cases, the two theorems above are less complicated thanthey appear. Continuing with our examples in the corporation application domain, if a team is associatedwith a set of disjoint employees as team members, then the functional dependency fTeamg ! fEmployeegholds. We note that this semantic information can be easily supplied by the programmer (similar to theidenti�cation of key attributes in database systems). With functional dependency and the fact that ateam can be uniquely identi�ed by its name, we can immediately determine that all instantiations of theTeam Fairness rule can be �red in parallel using Theorem 1.As another example, the following two rules can be determined to be parallel executable by Theorem 2.rule Facilities Research f(t : Team :: t:dept == \research00)[e : Employee :: e:team == t:name]! e:equipment = \AXP500X(Alpha)00grule Facilities Sales f(t : Team :: t:dept == \sales00)[e : Employee :: e:team == t:name]! e:equipment = \PowerBook00g 8

In this case, the two rules are partially mutual exclusive on Team. With the help of functional dependency,they can be statically determined to be parallel executable.As simple and natural as it may seem to be, without the knowledge of functional dependency betweenthe Team and the Employee classes, it is very di�cult, if not impossible, for a parallelizing compiler or anyother static transformation technique to identify the parallelism underlying these rules.In general, any type of class relationship which implies certain pattern of association or partitioning inthe application domain is of great help in the determination of proper decomposition for parallel process-ing. Mechanisms for expressing these relationships are therefore of great value for capturing applicationparallelism in program development.5 E�ective Implementation StrategiesThe new approach we propose can be summarized as follows.� The central idea is to exploit application semantics and program structures. We found these to be themost valuable sources of parallelism in production systems.� For the speci�cation of application semantics, we proposed in [33] a set of parallel structuring mecha-nisms.� In this paper, we introduce a semantic-based technique to identify parallel structure from functionaldependency speci�cation among data objects.� All the mechanisms and techniques above are essentially to identify decomposition patterns and toraise the level of abstraction to the application domain instead of the implementation domain.With this approach, we introduce a new stage into program development which we called \decompositionabstraction" [34]. We also showed in the paper that, with our mechanisms, programmers are completelyalleviated from the need to worry about synchronization or communication details that are critical to mostexplicit parallel programming languages.However, just like any explicit parallel languages, the actual performance gain depends heavily on theimplementation strategy adopted to realize the parallelism expressed by the programmers. This is especiallythe case in production systems because rules tend to have large variation in processing requirements [10].Systems that �re multiple instantiations in parallel tend to incur large run-time overhead [26]. Granularitycontrol and proper scheduling strategy is therefore of crucial importance to a multiple rule �ring productionsystem with decomposition abstraction mechanisms. In this section, we discuss several alternative imple-mentation strategies and their performance on a parallel rule execution engine we built to provide a test bedand a guide to our actual implementation of the proposed decomposition mechanisms.5.1 A Parallel Rule Execution EngineTo be as close as possible to the real execution environment, we develop a parallel rule execution engine thatactually executes multiple rule instantiations in parallel on our target machine, the Sequent Symmetry sharedmemory multiprocessor. A work load generator generates work from sequential execution trace �les. Thisapproach is unique in that, WMEs are actually added, removed and modi�ed. All rule actions are executedas they would be in a real parallel environment. All communication and synchronization operations neededto maintain the correct parallel execution are actually performed. With the same set of data, the parallelrule execution engine will terminate with exactly the same result as in a sequential execution (to make surethat the execution is correct) except, of course, the execution time. The only important factor which is notaccounted for is the time spent on matching. To include matching would make it a real parallel inferencemachine which will take much longer to develop before any experiment can be done on it. With the alreadyexisting good results on both sequential and parallel algorithms for matching [22, 23, 20], this exclusionis considered justi�able. Actually, the performance of the real system may be even better with parallelmatching since the e�ect is at least additive, if not multiplicative.9

Program No. Rules DescriptionLIFE 16 A simulation program implements Conrad'sLIFE.WALTZ 33 A constraint satisfaction problem using Waltz'salgorithm for scene labeling.MANNERS 8 A combinatorial search problem for seatassignment.Table 1: Benchmark programs used in the experiments.No. Iterations Time (ms)0 0.001000 2.573000 7.645000 12.717000 17.7810000 25.3820000 50.75Table 2: Actual time delay introduced by the dummy loop.The parallel rule execution engine is a set of programs built on top of a C++ based object-oriented lightweight thread package called PRESTO [3]. A sequential rule program1 and its execution trace are translatedinto a PRESTO program which is the parallel version of the program integrated with the PRESTO run-timelibraries. To experiment with the e�ect of granularity of rules on system performance, a controllable dummyloop is added to the action part of each parallel rule in the PRESTO program. The time to execute theaction part of a rule can then be controlled by varying the number of iteration for the dummy loop. Alsoby varying the number of threads created for processing parallel instantiations, and the granularity of work(number of instantiations) assigned to each thread, we have measured the performance of four alternativescheduling strategies.� Strategy 1: Maximal Parallelism Create a new thread for each parallel instantiation.� Strategy 2: Fixed Granularity Same as Strategy 1 except that each thread is assigned a �xednumber of instantiations to execute sequentially. This is to increase the granularity of work assignedto each thread so as to reduce the total number of threads.� Strategy 3: Master-Slave Create a �xed number of worker threads and a scheduler thread. Thescheduler thread keeps dispatching instantiations, one instantiation for each worker, as long as thereare idle workers. If no idle worker exists, the scheduler executes the instantiation itself.� Strategy 4: Master-Slave with Chunking Same as Strategy 3 except that each time an idleworker is given a �xed number of instantiations to work on sequentially. The number is called thechunk size whose purpose is to increase the granularity of work assigned to a worker thereby reducingthread management and scheduling overhead.To evaluate the e�ectiveness of di�erent scheduling strategies, we collect the performance results fromthe execution of three benchmark programs drawn from the Texas OPS5 Benchmark Suite [5] and listed inTable 1. All three programs are executed with increasing number of processors on di�erent problem sizesand di�erent chunk sizes. We then compare their relative performance, scalability, as well as sensitivity togranularity change. The actual time delay introduced by the dummy loops are also measured and listed inTable 2.1At this moment, the parallel rule execution engine takes only OPS5 programs. However, the same approach can be appliedon any sequential rule language. 10

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80

N
u
n
b
e
r

o
f

P
a
r
a
l
l
e
l

I
n
s
t
a
n
t
i
a
t
i
o
n
s

Parallel CyclesFigure 1: MANNERS16 Concurrency Pro�le.5.2 Characteristics of the Benchmark ProgramsIn our approach, identifying the characteristics of an application is of crucial importance. In this section,we analyze the concurrent behavior of each benchmark program and point out key issues to the successfulapplication of proposed mechanisms.MANNERSMANNERS was derived from an example program in [15] which employed a combinatorial search for solvinga seat assignment problem among a number of guests. The seats must be assigned such that neighbors areof opposite sex and share at least one common hobby. This simple program, containing just 8 rules, is avery good test program for evaluating how e�ective a parallel production system is. It consists of a hot spotrule that �res repeatedly and consumes over 90% of sequential execution time for problem size of 64 guestsor more. The larger the problem size, proportionally more time is consumed by this rule which is used tomaintain partial solution. Although all instantiations of this rule can be �red in parallel, it is very di�cult,if not impossible, to recognize this fact by pure syntactic technique at compile time without the informationprovided by our mechanisms. The concurrency exhibited is also very interesting. It is regular but not evenlydistributed. The execution starts with a very low degree of parallelismwhich then gradually increases towardthe end. More speci�cally, the program starts with only 2 instantiations that can be executed in parallel,then 3 instantiations, then 4, 5, : : : etc. Figure 1 is the concurrency pro�le of MANNERS with 16 guests.This is highly challenging since a parallel production system must not only detect the hot spot rule, but alsoexploit e�ectively a rather peculiar pattern of parallelism.LIFELIFE is a simulation program that simulates the existence of bacteria in a rectangular grid of cells for aspeci�ed number of generations. Whether a cell stays alive across a generation is determined by the numberof neighbors it has. A living cell is born in an empty cell if it has exactly 3 neighbors. Since all decisions canbe made locally, LIFE exhibits a high degree of data level parallelism. However, the available concurrency hasnot been e�ectively exploited in previous research. The di�culty of detecting it by syntactic analysis aloneis again the key reason. Another probably even more important reason is that a parallel production systemmust have the ability to perform set-oriented and aggregate operations to exploit the available concurrency.Figure 2 is the concurrency pro�le of a 10x10 LIFE execution trace without showing the sequential printing11

0

100

200

300

400

500

0 5 10 15 20 25 30 35

N
u
m
b
e
r

o
f

P
a
r
a
l
l
e
l

I
n
s
t
a
n
t
i
a
t
i
o
n
s

Parallel CyclesFigure 2: LIFE10 Concurrency Pro�le (without Showing Sequential Printing at the End of Execution).at the end of execution. Because of the rather evenly distributed pattern of parallelism, keeping processorsbusy doing useful work at all time is the primary issue.WALTZThe frequently studied WALTZ program is also selected here to serve both as a test program to evaluate thee�ectiveness of our mechanisms and as a benchmark program to compare our results with others. This is aconstraint satisfaction problem that implements Waltz's algorithm for labeling of line drawing scene. Thealgorithm propagates labels based on local decision and therefore exhibits both SPMD- and MIMD-style ofparallelism (i.e. parallel instantiations of the same or di�erent rules working on di�erent part of the scene).The available parallelism is again quite high as depicted in Figure 3 which is the concurrency pro�le of a 10regions execution trace with sequential printing of results at the end excluded.Because, syntactically, a number of similar constraints each appears in many rules, the rules are highlyinterfering with themselves. Most of existing parallel production systems end up handling this at run-timeresulting in excessive overhead. However, the constraints are disjoint, most of the run-time overhead isactually superuous. The functional dependency declaration and our Disjoint combinators [33] express thisto reveal a compile time parallel structure. A system capable of forming disjoint partition of consistent dataobjects can then e�ectively exploit this available concurrency without the overhead of run-time interferencedetection.5.3 Performance ResultsIn this section, we demonstrate and analyze the performance results of three OPS5 benchmark programs onour parallel rule execution engine. Extensive experiments are conducted on various dimensions a�ecting theselection of implementation strategies. The speedup is measured against the execution time of the executionengine with single processor instead of an optimized uniprocessor OPS5 compiler such as OPS5c [24] becausethe former is two to three orders of magnitude faster than the later. The di�erence is primary due to theadditional matching performed by the uniprocessor compiler. As a remedy to this lack of match phase, wearti�cially increase the per rule processing time using dummy loop as described earlier.12

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25

N
o
.

o
f

P
a
r
a
l
l
e
l

I
n
s
t
a
n
t
i
a
t
i
o
n
s

Parallel CyclesFigure 3: WALTZ10 Concurrency Pro�le (without Showing Sequential Printing at the End of Execution).The E�ect of Rule GranularityTo understand the e�ect of rule granularity (i.e. the time to process a rule) on the system performance, weselect the master-slave with chunking scheduling strategy while varying the granularity of rule by changingthe number of iterations in the dummy loop. Figure 4 shows the results on MANNERS512 (i.e. 512 guests).The performance improves signi�cantly with larger granularity. Nearly ideal speedup is achieved when thegranularity per rule is increased to 20000 (i.e. 50.75ms). As a comparison, the average cycle time of thesame program and data set running under OPS5c on a much faster CPU (SUN4 workstation vs. the Intel80386 on Sequent Symmetry) is about 210ms.2 This implies that the overhead of scheduling and threadmanagement is very low, and as long as we can keep it low in a real implementation it is very likely to geteven better results since the granularity per rule is expected to be much higher than 50ms when matchingis included.Figure 5 and Figure 6 are the results of similar experiments on LIFE (40x40) and WALTZ (30 regions),respectively. In both cases, performance improvement is observed with increasing granularity.Among all three test cases, LIFE achieves the highest speedup with granularity 20000. This is plausiblebecause the run-time behavior of LIFE exhibits the highest and the most regular pattern of concurrency asdepicted earlier in Figure 2. On the other hand, WALTZ requires larger granularity to achieve the samelevel of performance. We were puzzled by this unexpected result at �rst since from the characteristics ofthe Waltz's algorithm, there should not be that much di�erence. Later on we found that the availableparallelism of a WALTZ program execution depends heavily on the data set (i.e. the scene to be label). Thedata generator we use (and used by other researcher as well) introduces a sequential factor that severelyrestricts the available parallelism. The generated scene consists of two arrays of rectangular blocks growinglinearly according to the given problem size parameter. This linear factor contributes to the performancedi�erence between WALTZ and the other two programs. We plan to develop a new data generator thatgenerates scenes without this linear factor.Scalability: The E�ect of Problem SizeAn important criterion when evaluating the e�ectiveness of a parallel system is its scalability. When theavailable parallelism increases, a parallel processing system must be able to e�ectively exploit it and achievebetter performance. For the three benchmark programs, a common characteristic is that available parallelism2For interesting readers, a LISP based implementation of OPS5 takes forever to run the program on the same data set.13

0

2

4

6

8

10

12

0 2 4 6 8 10 12

S
p
e
e
d
u
p

Number of Processors

 0
 1000
 3000
 5000
 7000
10000
20000

Figure 4: MANNERS512 Speedup with Varying Granularities.
0

2

4

6

8

10

12

0 2 4 6 8 10 12

S
p
e
e
d
u
p

Number of Processors

 0
 1000
 3000
 5000
 7000
10000
20000

Figure 5: LIFE40 Speedup with Varying Granularities.14

0

2

4

6

8

10

12

0 2 4 6 8 10 12

S
p
e
e
d
u
p

Number of Processors

 0
 1000
 3000
 5000
 7000
10000
20000

Figure 6: WALTZ30 Speedup with Varying Granularities.increases with the problem size. Therefore, we tested our mechanisms and system on three programs withincreasing problem sizes where the problem size to MANNERS, LIFE and WALTZ are the number of gueststo be assigned, the grid size, and the number of regions3, respectively. All programs were tested under themaster-slave with chunking scheduling strategy. The chunk size was set to 5 with rule granularity �xed at20000 (i.e. 50.75ms).Figure 7 illustrates the performance results of MANNERS on di�erent problem sizes and vividly displaysscalable speedup of our scheme. Figure 8 and Figure 9 are the results of similar experiments on LIFE andWALTZ. The speedup achieved on smaller problems is lower because the available parallelism is not enoughto keep all processors busy. When problem size becomes larger, processor utilization increases and so is thespeedup achieved.Controlled vs. Unrestricted ParallelismToo much water drowned the miller. If the available parallelism is not exploited appropriately, the bene�tof parallel processing can easily be overwhelmed by the scheduling and synchronization overhead. In ourcase, since the embedded parallelism in the application is fully expressed, the key issue comes down toe�ciently process the collection of parallel instantiations on available computation resources. For a thread-based implementation like ours, this issue manifests itself in a trade-o� between parallel processing of asmany instantiations as possible and controlling the number of concurrent threads. If a new thread is createdfor each parallel instantiation (i.e. Strategy 1), we get maximal parallelism on the one hand but highestthread management overhead on the other hand. Using the master-salves scheduling strategy, the numberof threads is �xed but the communication and synchronization cost increase because of the need to partitionand dispatch parallel instantiations to the worker threads.To understand the e�ect of thread management overhead on system performance, we compare the resultsbetween applying Strategy 1 (maximal parallelism) and Strategy 4 (master-slave with chunking). Figure 10 isa 3-D display of two sets of experiments on WALTZ10. The timing curves on the base plane are the executiontime while the B-spline surfaces are to demonstrate the performance di�erences. It is quite evident thatmaster-salves with chunking outperforms maximal parallelism by a substantial margin. Figure 11 presentsthe results of similar experiments on LIFE30. The di�erence is smaller but still perceptible. This suggeststhat throttled parallelism is much better than unrestricted parallelism.3In the scene generated by the data generator for WALTZ, a region consists of 72 line segments.15

0

2

4

6

8

10

12

0 2 4 6 8 10 12

S
p
e
e
d
u
p

Number of Processors

 64
128
256
512

Figure 7: MANNERS Speedup on Di�erent Problem Sizes.
0

2

4

6

8

10

12

0 2 4 6 8 10 12

S
p
e
e
d
u
p

Number of Processors

10 x 10
20 x 20
30 x 30
40 x 40

Figure 8: LIFE Speedup on Di�erent Problem Sizes.16

0

2

4

6

8

10

12

0 2 4 6 8 10 12

S
p
e
e
d
u
p

Number of Processors

10
20
30

Figure 9: WALTZ Speedup on Di�erent Problem Sizes.
Master-Slave with Chunking
Master-Slave with Chunking

1
3

5
7

9
11

13 0
50

100
150

0

5000

10000

15000

20000

Number of Processors

Execution Time (Seconds)

Granularity (Iterations)

Maximal Parallelism
Maximal Parallelism

Figure 10: 3-D Display of Controlled vs. Maximal Parallelism on WALTZ10.17

Master-Slave with Chunking
Master-Slave with Chunking

1
3

5
7

9
11

13 0
100

200
300

400
500

600

0

5000

10000

15000

20000

Number of Processors

Execution Time (Seconds)

Granularity (Iterations)

Maximal Parallelism
Maximal Parallelism

Figure 11: 3-D Display of Controlled vs. Maximal Parallelism on LIFE30.Just when we expect to observe similar type of performance di�erence on MANNERS program, it doesnot happen to be the case. Figure 12 is the 3-D graph of the similar experiments as above. The performanceof maximal parallelism is not only comparable to that of master-slave with chunking, it actually performsbetter when the granularity of the rules and the number of processors increase. A closer look at the problemreveals a pattern of concurrent behavior peculiar to the MANNERS program. As depicted in Figure 1,the number of parallel executable instantiations is quite small in the early stage of the execution. Whenchunking is applied, the available parallelism is left unexploited while under maximal parallelism strategythese instantiations are always processed in parallel.As a summary, the master-slave strategy which creates only a limited number of threads is, in general,better than the maximal parallelism strategy which creates as many threads as the number of parallelinstantiations. However, the actual performance gain still depends on the characteristics of the underlyingprogram. When the degree of concurrency in an application is low, the maximal parallelism strategy is likelyto be better.The E�ect of ChunkingIn last section, master-salve with chunking appeared to be the winner in overall performance. The questionof determining appropriate chunk size follows. It is unlikely to have a single chunk size that is optimal forevery program. We need, at minimum, to determine if performance as a function of chunk size is behavedwell enough to o�er a system default. We test the benchmark programs with di�erent chunk size of 1 (i.e.no chunking), 5, 10, and 20. Each one of them is tested with a �xed level of rule granularity. To understandthe correlation of chunking with respect to rule processing time, the same set of experiments is carried outwith di�erent levels of rule granularity.Figure 13 is the results on MANNERS512 with rule granularity set to 1000. We can observe quite clearlythat chunking is always better than no chunking at this level of granularity. A chunk size of 5 provides thebest performance. On the other hand, with the granularity of rule raised to 20000, the best performance isobtained when chunking is not applied as shown in Figure 14. Similar results can be observed on both LIFEand WALTZ except that chunk size of 5 is not necessary a clear winner over other chunk sizes. Because ofthe space limit, the results are not presented in here. See [34] for complete experiment results.As a summary, reducing the granularity of rules improves the results we get from chunking. This is18

Master-Slave with Chunking
Master-Slave with Chunking

1
3

5
7

9
11

13 0
400

800
1200

1600

0

5000

10000

15000

20000

Number of Processors

Execution Time (Seconds)

Granularity (Iterations)
Maximal Parallelism
Maximal Parallelism

Figure 12: 3-D Display of Controlled vs. Maximal Parallelism on MANNERS256.
0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12

E
x
e
c
u
t
i
o
n

T
i
m
e

(
S
e
c
o
n
d
s
)

Number of Processors

 1
 5
10
20

Figure 13: MANNERS512 Execution Time on Di�erent Chunk Sizes with Rule Granularity Fixed at 1000.19

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10 12

E
x
e
c
u
t
i
o
n

T
i
m
e

(
S
e
c
o
n
d
s
)

Number of Processors

 1
 5
10
20

Figure 14: MANNERS512 Execution Time on Di�erent Chunk Sizes with Rule Granularity Fixed at 20000.primarily because of the reduction in thread management, communication, and synchronization overhead.However, when the average granularity of the rules or the chunk size become larger, the loss of parallelismo�sets the bene�t of chunking. In general, chunking with chunk size 5 provides the best performance whenthe rule granularity is smaller than 5000. When the granularity is larger than 5000, it is better to do withoutchunking. In other words, chunking is good for cases where the per rule scheduling overhead is comparableor larger than that of the granularity of rule. This result suggests a dynamic scheduling strategy with eitheruser-speci�ed granularity assignment to each rule or an automatic estimation done by the system. We areinvestigating this issue in our real implementation of an object-based parallel rule language equipped withdecomposition abstraction mechanisms.6 Conclusions and Future WorkWe have shown in this paper that, contrary to the conclusion drawn by previous research, production systemsand rule-based programs do encompass high degree of concurrency and it is possible to e�ectively exploitsuch level of parallelism. These results are obtained when a programmer is provided with decompositionabstraction mechanisms to specify the natural parallelism inherited in the application domain. The novelapproach of using data relationships (functional dependency in particular) in the derivation of informationfor parallelism is a promising direction that has never been recognized before. Based on a new techniqueof rapid system development for early evaluation and experimentation, we show that the proposed set ofmechanisms can be e�ciently implemented on shared-memory multiprocessors.Even with e�ective implementation, the granularity of rule is still critical to the actual performance gain.If this information is available to the run-time scheduler, then a strategy of master-slave with dynamic chunksize is very likely to perform better than the strategy with �xed chunk size or no chunking at all. Obviously,a user-speci�ed granularity level assigned to each rule (similar to a priority assignment or certainty factor) isan immediate solution. We plan to provide this feature in our actual implementation. However, unlike otherproposed mechanisms in our approach, proper granularity assignment is in general not readily available fromthe application semantics since it involves an estimation of processing time for each rule. An alternative wayis to have the system estimate the right granularity for a rule either from its syntactic structure or from anexecution pro�le.We are embodying our decomposition abstraction mechanisms on the Venus/C++-based modular rulelanguage [6] targeting Sequent Symmetry shared-memory multiprocessors. We choose Venus because it is20

probably the �rst sequential rule-based programming language to provide both a declarative syntactic andsemantic mechanism to support top-down modular design of rule-based programs. The embodiment of ourmechanisms instantly converts the language into a parallel rule language, which is called Venus/DA. Thelanguage system is not only intended to serve as a test-bed for semantic-based exploration of parallelism inproduction systems, but also to be used for the planned extension of rule-based technology into databaseapplications.References[1] Francois Bancihon and Setrag Khosha�an. A calculus for complex objects. In Proc. 15th ACM Symp.on Principles of Database Systems, pages 53{59, 1986.[2] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and Recovery inDatabase Systems. Addison-Wesley, Reading, MA, 1987.[3] Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. PRESTO: A system for object-orientedparallel programming. Software - Practice and Experience, 18(8):713{732, August 1988.[4] Elisa Bertino, Mauro Negri, Giuseppe Pelagatti, and Licia Sbattella. Object-oriented query languages:The notion and the issues. IEEE Trans. on Knowledge and Data Engineering, 4(3):223{237, June 1992.[5] David A. Brant, Timothy Grose, Bernie Lofaso, and Daniel P. Miranker. E�ects of database size onrule system performance: Five case studies. In Proc. 17th Intl. Conf. on Very Large Data Bases, pages287{295, 1991.[6] James C. Browne and et. al. A new approach to modularity in rule-based programming. In ICTAI'94:IEEE Intl. Conf. on Tools for Arti�cial Intelligence, 1994.[7] C.L. Forgy, Anoop Gupta, A. Newell, and R. Wedig. Initial assessment of architectures for productionsystems. In Proc. 4th National Conference on Arti�cial Intelligence (AAAI-84), pages 116{120, Austin,TX, August 1984.[8] Anoop Gupta. Implementing OPS5 production systems on DADO. Technical Report CMU-CS-84-115,Department of Computer Science, Carnegie Mellon University, Pittsburgh, December 1983.[9] Anoop Gupta. Parallelism in Production Systems. PhD thesis, Department of Computer Science,Carnegie Mellon University, Pittsburgh, March 1986.[10] Anoop Gupta, Charles Forgy, and Allen Newell. High-speed implementation of rule-based systems.ACM Trans on Computer Systems, 7(2):119{146, May 1989.[11] Wilson Harvey, Dirk Kalp, Milind Tambe, David McKeown, and Aleen Newell. The e�ectiveness of task-level parallelism for production systems. Journal of Parallel and Distributed Computing, 13(4):395{411,December 1991.[12] T. Ishida. Methods and e�ectiveness of parallel rule �ring. In Proc. IEEE 6th Conference on Arti�cialIntelligence Applications, pages 116{122, 1990.[13] T. Ishida and S. Stolfo. Toward the parallel execution of rules in production system programs. In Proc.IEEE Intl. Conf. on Parallel Processing, pages 568{574, 1985.[14] M.A. Kelly and R.E. Seviora. An evaluation of DRete on CUPID for OPS5 matching. In Proc. 11thInternational Joint Conference on Arti�cial Intelligence (IJCAI-89), Detroit, MI, August 1989.[15] G. Kiernan, C. de Maindreville, and E. Simon. Making deductive database a practical technology: Astep forward. In ACM SIGMOD Intl. Conf. on Management of Data, pages 237{246, 1990.[16] Chin-Ming Kuo, Daniel P. Miranker, and James C. Browne. On the performance of the CREL system.Journal of Parallel and Distributed Computing, 13(4):424{441, December 1991.21

[17] S. Kuo, D. Moldovan, and S. Cha. Control in production systems with multiple rule �rings. In Proc.IEEE Intl. Conf. on Parallel Processing, 1990, Vol. II, pages 243{246, 1990.[18] Steve Kuo and Dan Moldovan. Implementation of multiple rule �ring production systems on hypercube.Journal of Parallel and Distributed Computing, 13(4):383{394, December 1991.[19] Steve Kuo and Dan Moldovan. The state of the art in parallel production systems. Journal of Paralleland Distributed Computing, 15(1):1{26, May 1992.[20] Ho Soo Lee and Marshall I. Schor. Match algorithms for generalized Rete networks. Arti�cial Intelli-gence, 54(3):249{274, April 1992.[21] David Maier. The Theory of Relational Databases. Computer Science Press, Rockville, Maryland, 1983.[22] Daniel P. Miranker. TREAT: A New and E�cient Match Algorithm for AI Production Systems. PhDthesis, Department of Computer Science, Columbia University, 1987. Also published by Morgan-Kaufmann, 1990.[23] Daniel P. Miranker, David A. Brant, B.J. Lofaso, and David Gadbois. On the performance of lazymatching in production systems. In National Conference on Arti�cial Intelligence, pages 685{692, July1990.[24] Daniel P. Miranker and B.J. Lofaso. The organization and performance of a TREAT based productionsystem compiler. IEEE Trans. on Knowledge and Data Engineering, 3(1):3{10, March 1991.[25] Daniel E. Neiman. Design and Control of Parallel Rule-Firing Production Systems. PhD thesis, Uni-versity of Massachusetts at Amherst, September 1992.[26] Daniel E. Neiman. Issues in the design and control of parallel rule-�ring production systems. Journalof Parallel and Distributed Computing, 1994. To appear.[27] Alexander J. Pasik. A Methodology for Programming Production Systems and Its Implications on Par-allelism. PhD thesis, Columbia University, 1989.[28] James G. Schmolze. Guaranteeing serializable results in synchronous parallel production systems. Jour-nal of Parallel and Distributed Computing, 13(4):348{365, December 1991.[29] J.G. Schmolze and S. Goel. A parallel asynchronous distributed production system. In Proc. AAAI{90,pages 65{71, 1990.[30] A. Sohn and J-L Gaudiot. A survey on the parallel distributed processing of production systems.International Journal on Arti�cial Intelligence Tools, 1(2):279{331, June 1992.[31] Salvatore J. Stolfo, Ouri Wolfson, Philip K. Chan, Hasanat M. Dewan, Leland Woodbury, Jason S.Glazier, and David A. Ohsie. PARULEL: Parallel rule processing using meta-rules for redaction. Journalof Parallel and Distributed Computing, 13(4):366{382, December 1991.[32] S.J. Stolfo. Five parallel algorithms for production system execution on the DADOmachine. In NationalConference on Arti�cial Intelligence, pages 300{307, 1984.[33] Shiow-yang Wu and James C. Browne. Explicit parallel structuring for rule based programming. InProc. 7th International Parallel Processing Symposium, pages 479{488, 1993.[34] Shiow-yang Wu, Daniel P. Miranker, and James C. Browne. Decomposition abstraction in parallel rulelanguages. Submitted for publication, 1994. 22

