
An Optimal Hypercube Algorithm for theAll Nearest Smaller Values ProblemDina Kravets� C. Greg PlaxtonyAbstractGiven a sequence of n elements, the All Nearest Smaller Values (ANSV) problem isto �nd, for each element in the sequence, the nearest element to the left (right) that issmaller, or to report that no such element exists. Time and work optimal algorithmsfor this problem are known on all the PRAM models [4, 6], but the running time of thebest previous hypercube algorithm [9] is optimal only when the number of processorsp satis�es 1 � p � n=((lg3 n)(lg lgn)2). In this paper, we prove that any normalhypercube algorithm requires
(n) processors to solve the ANSV problem in O(lgn)time, and we present the �rst normal hypercube algorithm for the ANSV problem thatis optimal for all values of n and p. We use our ANSV algorithm to give the �rstO(lgn)-time n-processor normal hypercube algorithms for triangulating a monotonepolygon and for constructing a Cartesian tree.
�Department of Computer Science, New Jersey Institute of Technology, University Heights, Newark,NJ 07102. Supported by NSF Research Initiation Award CCR{9308204 and the New Jersey Institute ofTechnology SBR under Grant No. 421220. Email: dina@cis.njit.edu.yDepartment of Computer Science, University of Texas, Austin, TX 78712. Supported by the TexasAdvanced Research Program under Grant No. 003658{461. Email: plaxton@cs.utexas.edu.

1 IntroductionThe All Nearest Smaller Values (ANSV) problem is de�ned as follows. Let W = hwi : 0 �i < ni be a sequence of n elements. For each wi, 0 � i < n, we want to �nd the nearestelement to the left of wi inW and the nearest element to the right of wi inW that are smallerthan wi, if such elements exist. More formally, the left nearest neighbor of wi in W (calledthe left match of wi) is w` such that w` < wi and wi � wj for all ` < j < i. Similarly, theright nearest neighbor of wi in W (called the right match of wi) is wr such that wr < wi andwi � wj for all i < j < r. Recently, the ANSV problem has been identi�ed as an importantsub-problem in the design of e�cient parallel algorithms. In particular, a subroutine for theANSV problem is used by Aggarwal et al. [2] in parallel searching of staircase-Monge arrays,and by Berkman et al. [4] in �nding a triangulation of a monotone polygon, preprocessingfor answering range minimum queries in constant time, reconstructing a binary tree from itsinorder and either preorder or postorder labelings, and matching parenthesis. Furthermore,two fundamental problems can be reduced to ANSV: (i) merging two sorted lists [5, 10], and(ii) �nding the maximum of n elements [13].The ANSV problem is easy to solve sequentially in O(n) time using a stack. Berkman,Schieber, and Vishkin [4] give the following PRAM algorithms for the ANSV problem: (i)an O(lg n)-time (n= lg n)-processor CREW PRAM algorithm, and (ii) an O(lg lg n)-time(n= lg lg n)-processor CRCW PRAM algorithm. Chen [6] gives an EREW PRAM algorithmthat matches the CREW PRAM bounds of [4]. In this paper, we develop the �rst O(lg n)-time hypercube algorithm for the ANSV problem. Our algorithm uses n processors andbelongs to the class of so-called \normal" hypercube algorithms, and thus achieves the sameprocessor/time bounds on any of the bounded-degree variants of the hypercube (e.g., thebutter
y, cube-connected cycles, and shu�e-exchange). Furthermore, we prove that anynormal hypercube algorithm requires
(n) processors to solve the ANSV problem in O(lg n)time.Our paper is not the �rst to consider the complexity of normal hypercube algorithmsfor the ANSV problem. In particular, J�aJ�a and Ryu [9] give a normal hypercube algorithmfor the ANSV problem with optimal running time for any number p of processors satisfying1 � p � n=((lg3 n)(lg lg n)2). In contrast, our algorithm is optimal for all values of n andp. (Our O(lg n)-time, n-processor algorithm is easily generalized to obtain a p-processoralgorithm running in time O((n=p) lg p + lg n).) For the case n = p, J�aJ�a and Ryu [9]obtain a time bound of O(lg n(lg lg n)2) by making use of the Sharesort [7] sorting algorithmas a subroutine. Our O(lg n)-time algorithm, on the other hand, does not make use of ageneral routing or sorting subroutine; instead, we con�ne our on-line routing operationsto restricted classes of permutations for which optimal-time normal hypercube are known.Most importantly, we make use of the the optimal parentheses routing algorithm of Mayrand Werchner [12].We use our ANSV algorithm to obtain more e�cient hypercube algorithms for the fol-lowing two problems:� Triangulating a monotone polygon. A simple polygon is monotone with respect toa line ` if any line orthogonal to ` intersects the polygon in at most two points.The triangulation of a simple polygon has numerous applications in computational1

geometry [15]. The triangulation of a monotone polygon is a subroutine used in all ofthe known parallel algorithms for triangulating simple polygons. Berkman et al. [4]give CREW and CRCW PRAM algorithms for triangulating a monotone polygon.J�aJ�a and Ryu [9] give a normal hypercube algorithm for this problem with the sameasymptotic performance as their ANSV algorithm. We give the �rst O(lg n)-time n-processor normal hypercube algorithm for monotone polygon triangulation.� Building a Cartesian tree. The Cartesian tree of a sequence W = hwi : 0 � i < niis a binary tree where the root corresponds to the element wk = min0�i<n wi, the leftchild is the Cartesian tree of hwi : 0 � i < ki, and the right child is the Cartesian treeof hwi : k < i < ni [14]. The Cartesian tree is used in preprocessing algorithms foranswering range minimum queries. Berkman et al. [4] show how to �nd the Cartesiantree in O(lg n) time using an (n= lg n)-processor CREW PRAM. We obtain the �rstO(lg n)-time n-processor normal hypercube algorithm for this problem.The remainder of this paper is organized as follows. Section 2 de�nes the model ofcomputation. Section 3 presents our normal hypercube algorithm for the ANSV problem.Section 4 presents a lower bound for the ANSV problem. Sections 5 and 6 provide normalhypercube algorithms for triangulating a monotone polygon and building a Cartesian tree.2 Normal Hypercube AlgorithmsA dimension-d hypercube may be constructed as follows. First, associate a unique d-bitID with each of n = 2d processors. Second, connect (by a two-way channel) all pairs ofprocessors whose IDs di�er in a single bit position. A channel (or edge) connecting twoprocessors x and y (that is, with IDs x and y) will be referred to as a dimension i edge ifand only if x and y di�er in bit position i.In this paper, we make the standard assumption that each processor of a p-processormachine has access to a local memory con�gured in O(lg p)-bit words. With respect to theANSV problem, we will further assume that each of the given elementswi can be representedwith a constant number of words. We analyze the complexity of our algorithms in terms oftime steps. In a single time step each processor can send and/or receive a single word of datafrom an adjacent processor, and can perform one CPU operation on word-sized operands. Inaddition, we require that: (i) only one dimension of edges is used at any given time step, and(ii) the dimension used at time step t+1 is within 1 (modulo d) of the dimension used at timestep t, t � 0. Algorithms satisfying conditions (i) and (ii) are often referred to as normalhypercube algorithms [11, Section 3.1.3]. Normal algorithms are widely regarded as themost interesting class of hypercube algorithms, since they can be executed with constant-factor slowdown on any of the bounded-degree variants of the hypercube (e.g., butter
y,shu�e-exchange, cube-connected cycles).Note that any normal hypercube algorithm can be executed with constant slowdown onan EREW PRAM with the same number of processors. (The converse does not hold.)2

3 Two Hypercube Algorithms for the ANSV ProblemIn this section we present two O(lg n)-time n-processor normal hypercube algorithms: (i)an algorithm for solving an (n= lg n)-input ANSV problem (Subsection 3.1), and (ii) analgorithm for the usual n-input ANSV problem (Subsection 3.2).3.1 An (n= lg n)-input n-processor algorithmWe only describe how to �nd right matches; left matches are found analogously. TheSparseANSV algorithm is based on the CREW PRAM algorithm of Berkman et al. [4].Before describing the algorithm, we give some de�nitions and notations. We assume a d-dimensional hypercube containing 2d = n processors, d � 1. Let d0 denote the minimuminteger such that 2d0 � d � d0. Note that d0 � lg d = lg lg n. For all i and j such that0 � i < 2d�d0 and 0 � j < d� d0, the processor with ID i � (d� d0) + j will be referred to asprocessor (i; j). Local variable w at processor (i; j) will be referred to as w[i; j].The input to our algorithm is a set of integer variables w[i; 0], 0 � i < 2d�d0 . For eachi, 0 � i < 2d�d0 , let r(i) denote the minimum integer such that i < r(i) < 2d�d0 andw[i; 0] > w[r(i); 0]. If no such integer exists, then let r(i) = +1. Further de�ne the right-match count of i, denoted c(i), to be the number of integers j such that 0 � j < 2d�d0 andr(j) = i. The output of our algorithm is integer variables c[i; 0] = c(i) and r[i; 0] = r(i),0 � i < 2d�d0 . For all integers � and � such that 0 � � < 2d�d0���1 and 0 � � < d � d0,let A�;� denote the subcube consisting of the 2� processors (� � 2�+1 + i; �), 0 � i < 2�.Similarly, let B�;� denote the subcube consisting of the 2� processors (� � 2�+1 + 2� + i; �),0 � i < 2�. Note that the subcubes A�;� and B�;� partition the (2d�d0) � (d� d0) processors(i; j) with 0 � i < 2d�d0 and 0 � j < d� d0. Figure 3.1 shows the partition of the processorsinto A�;�'s and B�;�'s. Let C�;� = A�;� [B�;�.De�ne a sequence of records S to be quasi-sorted if and only if the subsequence S0 of Sconsisting of all records with key value not equal to +1 is sorted. For all integers x and i,let xi denote the ith bit of the binary representation of x (numbering from 0), and let x(i)denote the integer obtained by complementing the ith bit of x. De�ne the greedy decreasingsubsequence of a sequence hai : 0 � i < ni ashai : ai < aj for all 0 � j < i < ni:In the description of our algorithm, each step consists of the general idea of the step(italicized), followed by the details of the step, which include the speci�cation of the routinesthat implement the step on the hypercube and the running time of the implementation.Algorithm SparseANSV1. For each i, 0 � i < 2d�d0 , if r(i) 6= +1 then set f [i; 0] to the most signi�cant bitposition in which the binary representation of i di�ers from that of r(i). If r(i) = +1then set f [i; 0] = +1.At each processor (i; 0), 0 � i < 2d�d0 , we execute the following loop:3

A0,0

B0,0

A1,0

B1,0

A2,0

B2,0

A3,0

B3,0

A7,0

B7,0

A0,1

B0,1

A1,1

B1,1

A3,1

B3,1

A0,2

B0,2

B1,2

A0,3

1

2

3

4

5

6

7

8

14

15=I−1

0

0 1 2 3=J−1

Figure 3.1: The partition of the processors into A�;�'s and B�;�'s; I = 2d�d0 and J = d�d0.4

f [i; 0] := +1w0[i; 0] := +1for j = 0 to d� d0 � 1w0[i; 0] := minfw0[i; 0]; w0[i(j); 0]gif (ij = 0 ^ f [i; 0] = +1^w[i; 0] > w0[i; 0]) thenf [i; 0] := jImplementation: Single pass over dimensions d0 to d � 1. Running time: O(d).Remarks: See Figure 3.2 for an example.
0000

0 1 2 3

10
13

5

4

1

7

20

9

17

12

15

8

3

23

2

18

input x
0 1 2 3

1
1

0

2

3

0

3

0

1

0

2

1

0

f after step 1
0 1 2 3

10
13

5

4 7

20

9

17 12

15

8

3

23

s after step 2(b)
0 1 2 3

10
13

5

4

7

20

9

17

12

15

8

3

23

s after step 2(a)

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111Figure 3.2: The contents of certain variables following the �rst few steps of algorithmSparseANSV.2. Let S�;� denote the subsequence of all wi values such that f [i; 0] = � and ji � 2���1k =�, 0 � � < 2d�d0���1, 0 � � < d�d0. Note that each S�;� is an increasing subsequence.In the following substeps, we identify each subsequence S�;�, save the addresses of thewi's constituting S�;�, and concentrate S�;� in subcube A�;�.(a) Set s[i; j] = +1, 0 � i < 2d�d0 , 0 � j < d � d0. For all i such that 0 � i < 2d�d0and f [i; 0] 6= +1, route w[i; 0] to s[i; f [i; 0]]. Implementation: Greedy routing5

over dimensions 0 to d0 � 1. Running time: O(lg d). Remark: Note that thegreedy routing is collision-free.(b) Set i0[i; j] to i, 0 � i < 2d�d0 , 0 � j < d � d0. Stably sort the pairs (s; i0) withineach subcube A�;� in ascending order of s. Implementation: Monotone route.Running time: O(d). Remarks: (i) Note that the (s; i0) pairs in A�;� are alreadyquasi-sorted (sorting a quasi-sorted sequence is also referred to in the literatureas concentration routing); (ii) The i0 values will be used in Step 5(a) to sendinformation regarding the wi's back to the appropriate original locations.3. Let T�;� denote the greedy decreasing subsequence of those wi values for which i� = 1and ji � 2���1k = �, 0 � � < 2d�d0���1, 0 � � < d � d0. In the following substeps,we identify each subsequence T�;�, save the addresses of the wi's constituting T�;�, andconcentrate T�;� in subcube B�;�.(a) For 0 � i < 2d�d0 , 0 � j < d � d0, copy w[i; 0] to t[i; j]. Let B0�;� denote the setof all processors in B�;� such that some lower-numbered processor in B�;� has astrictly smaller value of t. At each processor belonging to some B0�;�, set t to +1.Implementation: Pre�x operation. Running time: O(d).(b) Stably sort the pairs (t; i0) within each subcube B�;� in descending order of t.Implementation: Monotone route. Running Time: O(d). Remarks: (i) Notethat the pairs (t; i0) in each subcube B�;� are already quasi-sorted; (ii) The i0values will be used in Step 6(a) to send information regarding the wi's back tothe appropriate original locations.4. Perform the following operations within each subcube C�;�. First, merge the sortedsequences S�;� and T�;�. Then, use pre�x operations to determine the right match ofeach element in S�;�. (As proven in [4], the right match of every element of S�;� is anelement of T�;�.) Use additional pre�x operations to count, for each element y of T�;�,the number of elements x in S�;� such that y is the right match of x.(a) At each processor (i; �) in A�;� such that s 6= +1, set r[i; �] to j where (j; �)is the lowest-numbered processor of B�;� such that s[i; �] > t[j; �]. If no suchprocessor (j; �) exists, then set r[i; �] to +1. Implementation: Bitonic mergeand pre�x operations within each subcube C�;�. Running time: O(d).(b) For each processor (j; �) in B�;�, set c(j; �) to the number of processors (i; �) inA�;� for which (j; �) is the lowest-numbered processor in B�;� with s[i; �] > t[j; �].Implementation: Pre�x operations within each subcube C�;�. Running time:O(d).5. Route r(i) to processor (i; 0), 0 � i < 2d�d0 .(a) Sort the pairs (i0; r) within each subcube A�;� in ascending order of i0. Implemen-tation: Monotone route. Running time: O(d). Remark: This routing operationis the inverse of that applied in Step 2(b).(b) For each i, 0 � i < 2d�d0 , at most one processor of the form (i; j), 0 � j <d � d0, contains a value of r that is not equal to +1. Route this value to r[i; 0].6

Implementation: Greedy routing over dimensions 0 to d0 � 1. Running time:O(lg d).6. For each i, 0 � i < 2d�d0 , sum the associated partial counts computed in Step 4(b) toobtain c(i), and store the result in processor (i; 0).(a) Sort the pairs (i0; c) within each subcube B�;� in descending order of i0. Implemen-tation: Monotone route. Running time: O(d). Remark: This routing operationis the inverse of that applied in Step 3(b).(b) For each i, 0 � i < 2d�d0 , sum the values of c[i; j], 0 � j < d � d0, and store theresult in c[i; 0]. Implementation: Pre�x operation. Running time: O(lg d).Since each step of SparseANSV runs in O(d) time, this algorithm solves any (n= lg n)-inputANSV problem in O(lg n) time using n processors. The central lemma underlying the proofof correctness of algorithm SparseANSV is due to Berkman et al. [4], and is stated below. Weomit the proof of correctness of algorithm SparseANSV since it is quite similar to the proofof correctness of the CREW PRAM algorithm of Berkman et al. [4].Lemma 3.1 ([4]) The right matches for the elements of S�;� are among the elements ofT�;�.3.2 An n-input n-processor algorithmWe will now show how to solve a larger ANSV problem using the same number of processors.The algorithm presented in this section o�ers two main advantages over the algorithm ofBerkman et al. [4]: (i) the present algorithm runs e�ciently on any hypercubic machine, and(ii) the high-level structure of the present algorithm is somewhat simpler. The simpli�cationwe achieve is primarily due to Lemma 3.2 (stated at the end of this section), which providesa useful property for streamlining the search for matches.We assume a d-dimensional hypercube containing 2d = n processors, d � 1. Let d0denote the minimum integer such that 2d0 � d� d0. Note that d0 � lg d = lg lg n. It will beconvenient to emulate a (d+1)-dimensional hypercube on the given d-dimensional machine.(This can be done with constant slowdown.) In what follows, the term \processor" should beinterpreted as \virtual processor". For all i and j such that 0 � i < 2d�d0+1 and 0 � j < 2d0,the processor with ID k = i � 2d0 + j will be referred to either as processor k or as processor(i; j). Local variable w at processor k (resp., processor (i; j)) will be referred to as w[k](resp., w[i; j]).The input to our algorithm is a set of integer variables w[k], 0 � k < 2d. In order tosimplify the presentation, we assume that the w[k]'s are distinct. (At the end of this section,we prove that there is no loss of generality inherent in this assumption; see Lemma 3.3.)For each k, 0 � k < 2d, let r(k) denote the minimum integer such that k < r(k) < 2d andw[k] > w[r(k)]. If no such integer exists, then let r(k) = +1. Analogously, let `(k) denotethe maximum integer such that 0 � `(k) < k and w[`(k)] < w[k]. If no such integer exists,then let `(k) = �1. The output consists of integer variables `[k] = `(k) and r[k] = r(k),0 � k < 2d. 7

We now present our algorithm, which runs in O(d) steps. For each i, 0 � i < 2d�d0+1, letCi denote the d0-dimensional subcube consisting of processors (i; j), 0 � j < 2d0 .Algorithm ANSV1. Recursively solve the ANSV problem within each subcube Ci. In addition, �nd theminimum element in Ci, denoted mi.(a) If d = 0, then set `[0] = �1, r[0] = +1, and return. Otherwise, recursivelyapply algorithm ANSV within each d0-dimensional subcube Ci, 0 � i < 2d�d0 , andthen set `0[k] = `[k] and r0[k] = r[k], 0 � k < 2d. Implementation: Recursivecall. Running time: T (d0), where T (d) denotes the running time of ANSV on ad-dimensional hypercube. (We will ultimately �nd that T (d) = O(d), and so therunning time of this step is O(lg d).)(b) At each processor (i; 0), 0 � i < 2d�d0 , set m[i; 0] to the minimum w value in Ci.Implementation: Pre�x operation. Running time: O(d).2. Call SparseANSV to �nd the right matches for the sequence M = hmi : 0 � i < n= lg ni.Let R(mi) denote the right match of mi among the elements of M .(a) At each processor (i; 0), 0 � i < 2d�d0 , set R[i; 0] to the minimum integer i0 suchthat i < i0 < 2d�d0 and m[i; 0] > m[i0; 0] (or to +1 if no such integer i0 exists),and set c[i; 0] to the number of integers i0, 0 � i0 < i, such that R[i0; 0] = i.Implementation: SparseANSV, pre�x operation. Running time: O(d).3. Prune the sequence S 0i = hmi; : : : ; wi�lgn�1i (resp., T 0i = hw(i�1)�lgn; : : : ;mii) withineach subcube Ci by eliminating from it any element with right (resp., left) match in S 0i(resp., T 0i). Let Si (resp., Ti) refer to the pruned sequence.(a) For all integers i and j such that 0 � i < 2d�d0+1 and 0 � j < 2d0 , set k[i; j] toi � 2d0 + j. Route the pair (k;w) (resp., (�1;+1)) at processor (i; j) to variables(k0; w0) at processor (2 � i; j) if and only if `0[i; j] = �1 (resp., `0[i; j] 6= �1),0 � i < 2d�d0 , 0 � j < 2d0. Route the pair (k;w) (resp., (�1;+1)) at processor(i; j) to variables (k0; w0) at processor (2 � i + 1; j) if and only if r0[i; j] = +1(resp., r0[i; j] 6= +1), 0 � i < 2d�d0 , 0 � j < 2d0 . Route c[i; 0] to c[2 � i; 0],0 � i < 2d�d0 . Set c[2 � i + 1; 0] to 1 if R[i; 0] 6= +1, and to 0 otherwise,0 � i < 2d�d0 . Implementation: Monotone route operations. Running time:O(d).(b) Stably sort the pairs (w0; k0) within each subcube C2�i in descending order of w0.Stably sort the pairs (w0; k0) within each subcube C2�i+1 in ascending order of w0.Implementation: Monotone route. (Note that the (w0; k0) pairs in each Ci arealready quasi-sorted.) Running time: O(lg d).4. Copy each sequence Ti to a set of f(i) consecutive subcubes, where f(i) denotes thenumber of integers j such that R(mj) = i.8

(a) Set a[i; 0] to 2d0 � P0�i0<i c[i0; 0], 0 � i < 2d�d0+1. Set a[i; j] to a[i; 0] + j, andc[i; j] to c[i; 0], 0 � i < 2d�d0+1, 0 � j < 2d0 . Implementation: Pre�x operation.Running time: O(d).(b) If c 6= 0, route the tuple (i mod 2; c; k0; w0) at processor (i; j) to variables (b; c; k0; w0)at processor a[i; j], 0 � i < 2d�d0+1, 0 � j < 2d0 . At any processor that does notreceive a tuple in this routing operation, set (b; c; k0; w0) = (�1; 0;�1;+1). Im-plementation: Monotone route. Running time: O(d).(c) If c > 1, route the tuple (b; 0; k0; w0) at processor (i; j) to variables (b; c; k0; w0) atprocessors (i + i0; j), 0 � i < 2d�d0+1, 0 � i0 < c, 0 � j < 2d0 . Implementation:Pre�x operation. Running time: O(d).5. Route copies of Si and TR(mi) to a common subcube.Associate a right (resp., left) parenthesis with each processor (i; j) such that b = 0(resp., b = 1). (Do not associate a parenthesis with any processor (i; j) such thatb = �1.) Note that the following conditions are satis�ed: (i) each subcube Ci eithercontains no parentheses, entirely left parentheses, or entirely right parentheses, (ii)for each subcube Ci of left parentheses there is a \matching" subcube Ci0 of rightparentheses, 0 � i < i0 < 2d�d0+1. Furthermore, Ci and Ci0 are matching subcubesif and only if R[i; 0] was set to i0 in Step 3. We can e�ciently exchange informationbetween all pairs of matching subcubes in parallel by making use of the parenthesisrouting operation of Mayr and Werchner [12]. In the following two substeps, the indicesi and i0 range over all pairs of matching subcubes, 0 � i < i0 < 2d�d0+1.(a) Route the pair (k0; w0) stored in processor (i0; j) to variables (k00; w00) at processor(i; j), 0 � j < 2d0 . Implementation: Parenthesis route. Running time: O(d).(b) Route the pair (k0; w0) stored in processor (i; j) to variables (k00; w00) at processor(i0; j), 0 � j < 2d0 . Implementation: Parenthesis route. Running time: O(d).6. Determine the right match r00(w) for each w in Si among the elements of TR(mi). Setr(w) to be the leftmost of r(w) and r00(w).The following substeps are now performed for each integer i such that Ci is a \left"subcube (i.e., b = 1 throughout the subcube), 0 � i < 2d�d0+1.(a) At each processor (i; j) such that 0 � j < 2d0 and w0[i; j] 6= +1, set r00[i; j] tok00[i; j0] where j0 is the maximum integer such that 0 � j0 < 2d0 and w0[i; j] >w00[i; j0]. If no such integer j0 exists, then set r00[i; j] to +1. Implementation:Bitonic merge, pre�x operation. Running time: O(d).(b) For all j such that 0 � j < 2d0 and w0[i; j] 6= +1, route r00[i; j] to r00[k0]. Imple-mentation: Monotone route. Running time: O(d).(c) At each processor that received an r00 value in the preceding substep, set r tominfr; r00g. Running time: O(1).7. Determine the left match `00(w; i) for each w in TR(mi) among the elements of Si. Set`00(w) to be the rightmost of the `(w; i)'s. Set `(w) to be the rightmost of `(w) and`00(w). 9

Note that every \right" subcube Ci (i.e., b = 0 throughout the subcube) for whichc 6= 0 belongs to a contiguous sequence of right subcubes hCj : i � j < i + �i suchthat: (i) � > 0, (ii) every processor in Ci has c = �, (iii) every other processor in thesequence of subcubes has c = 0, and (iv) every subcube in the sequence contains thesame sorted sequence of 2d0 (w0; k0) pairs. The following substeps are now performedfor all such pairs of integers (i;�) in parallel.(a) At each processor (i+�0; j) such that 0 � �0 < �, 0 � j < 2d0, and w0[i+�0; j] 6=+1, set `00[i+ �0; j] to k00[i+�0; j0] where j0 is the maximum integer such that0 � j0 < 2d0 and w00[i+�0; j0] < w0[i+�0; j]. If no such integer j0 exists, then set`00[i+ �0; j] to �1. Implementation: Bitonic merge, pre�x operation. Runningtime: O(d).(b) For all j such that 0 � j < 2d0 and w0[i; j] 6= +1, set `00[i; j] to max0��0<� `00[i+�0; j]. Implementation: Pre�x operation. Running time: O(d).(c) For all j such that 0 � j < 2d0 and w0[i; j] 6= +1, route `00[i; j] to `00[k0]. Imple-mentation: Monotone route. Running time: O(d).(d) At each processor that received an `00 value in the preceding substep, set ` tomaxf`; `00g. Running time: O(1).8. Note that Steps 2 through 7 above are based on a call to SparseANSV that computesthe right matches of the subcube minima. (See Step 2.) We now perform an entirelysymmetric sequence of steps corresponding to the left matches of the subcube minima.For the time complexity, note that the �rst step of this algorithm takes time T (d0) andall the other steps take time O(d). The solution to the recurrence T (d) = T (d0) + O(d) isO(d), and thus this algorithm solves the n-input ANSV problem in O(lg n) time using nprocessors.The correctness of algorithm ANSV depends on the following lemma.Lemma 3.2 Given k non-empty integer sequences Xi, 0 � i < k, let Y denote the singlesequence obtained by concatenating the Xi's in ascending order of i. Let mi denote theminimum integer in Xi, 0 � i < k. If all elements of Y are distinct, then for all w in Xisuch that the right match of w in Y belongs to Xj , j > i, either: (i) the right match of mibelongs to Xj , or (ii) the left match of mj belongs to Xi.Proof: Abusing our notation slightly, let r(w) (resp., `(w)) denote the right (resp., left)match of w. For w to the left of w0 in Y , let [w;w0] denote the sequence of integers within Ythat starts at w and ends at w0. Similarly, let (w;w0) denote the sequence [w;w0] excludingw and w0.If w = mi, then the lemma is trivially satis�ed. Thus, assume that w 6= mi. Sincer(w) 2 Xj and j > i, we know that w is to the right of mi in Xi. Since mi is the minimumvalue in Xi, r(mi) 62 Xi. Similarly, `(mj) 62 Xj . From the de�nition of a right match,we know that r(w) is the minimum value in [w; r(w)] and that w0 > w > r(w) for allw0 2 (w; r(w)). Since w > mi and r(w) � mj, w0 > mi and w0 > mj for all w0 2 (w; r(w)).Hence, r(mi) is either r(w) or to the right of r(w), and `(mj) is to the left of w. Assuming10

(as in the statement of the lemma) that all elements of Y are distinct, either mi > mj ormj > mi. In the former case, r(mi) is at or to the left of mj, and thus, r(mi) 2 Xj . In thelatter case, `(mj) is at or to the right of mi, and thus, `(mj) 2 Xi.We can now complete the argument for the correctness of the ANSV algorithm. Thesequence Xi in Lemma 3.2 corresponds to the elements stored in subcube Ci. Since the right(resp., left) match of every element in hw(i�1)�lgn; : : : ;mii (resp., hmi; : : : ; wi�lgn�1i) lies insubcube Ci, the sequence Si (resp., Ti) contains every element in subcube Ci whose right(resp., left) match lies outside subcube Ci. Thus, the right match of each element in Siis determined correctly either in Step 6 of the iteration based on the right matches of thesubcube minima when we process Si and TR(mi), or in Step 7 of the iteration based on theleft matches of the subcube minima when we process Tj and SL(mj), where L(mj) = i.Finally, note that the proof of Lemma 3.2, and hence also our proof of correctness ofalgorithm ANSV, relies on the assumption that all the input elements (i.e., the w[k]'s) aredistinct. The following lemma shows that this assumption can easily be avoided.Lemma 3.3 Let A be a comparison-based algorithm for a restricted version of the ANSVproblem in which all input elements are distinct. Then A can be used to solve the unrestrictedANSV problem in the same asymptotic time and processor bounds.Proof: Let an instance I of the unrestricted ANSV problem be given, and assume thatour goal is to calculate right matches only. (A similar approach can be used to calculateleft matches.) We modify I to obtain a same-size instance I 0 such that: (i) all elements ofinstance I 0 are distinct, and (ii) the right matches of the elements in I are in correspondoncewith those in I 0. The modi�cation is straightforward; we simply append (in the \low-order"dlg ne bit positions) the binary representation of the integer i to each element wi of I. Putdi�erently, whenever two equal elements wi and wj of I are compared by algorithm A, wereturn wi < wj if and only if i < j.4 A Lower BoundThis section establishes a lower bound for the ANSV problem on a wide class of �xed-connection networks, including the hypercube and all of its bounded-degree variants. J�aJ�aand Ryu [9] use a separator-based argument to establish the same asymptotic lower boundfor the shu�e-exchange and cube-connected cycles. However, the bound they obtain for thehypercube is weaker than ours by a plg p factor. The factor of plg p arises because thehypercube has �(p=plg p)-size separators, whereas the shu�e-exchange and cube-connectedcycles have �(p= lg p)-size separators. Our (non-separator-based) argument establishes thesame lower bound not only for the hypercube, shu�e-exchange, and cube-connected cycles,but also for any bounded-degree expander network. (The separator-based approach of J�aJ�aand Ryu [9] does not give a non-trivial lower bound for bounded-degree expander networks.)The lower bound is proven under the following set of assumptions:L1 Each input key is provided at exactly one processor.11

L2 In a single time step, a processor can send and receiveO(1) messages, and performO(1)local operations. A message can hold O(1) keys. The only local operations allowed onkeys are copy and comparison.L3 Each of the p processors is
(lg p) hops away from at least p� p= lg p processors.The last assumption is satis�ed by a wide class of �xed-connection networks. In the caseof the hypercube as well as all bounded-degree networks (including, of course, the bounded-degree variants of the hypercube), every processor is
(lg p) hops away from p�p" processorsfor any constant " > 0.Theorem 1 Under Assumptions L1 to L3, any p-processor algorithm for the ANSV problemrequires
((n=p) lg p) steps. The same bound holds for the problem of merging two sortedlists of length n=2.Proof: We establish the lower bound for a highly restricted version of the ANSV problem.(It will be apparent that the problem we consider may also be viewed as a restriction of themerging problem; hence, our lower bound also applies to merging.) In particular, we assumethat the input consists of a sequence of n = 4m distinct keys (for convenience, we assumethat n is a multiple of 4) ha0; : : : ; a2m�1; b2m�1; : : : ; b0iand an integer k, 0 � k < m. The following properties are satis�ed by the input: (i) Theai's are in ascending order, that is, ai�1 < ai for 0 < i < 2m; (ii) The bi's are in descendingorder, that is, bi > bi�1 for 0 < i < 2m; (iii) Key bm+i has rank 3m+ i, 0 � i < m; (iv) Keyam+i has rank 2m + i, k � i < m (v) Key ai has rank i, 0 � i < k; (vi) The minimum ofkeys ai+k and bi has rank 2i + k, and the maximum of these two keys has rank 2i+ k + 1,0 � i < m. Thus, to determine the right match of ai+k, 0 � i < m, it is both necessaryand su�cient to compare keys ai+k and bi. If ai+k > bi then the right match of ai+k is bi;otherwise, the right match of ai+k is bi�1 (unless i = 0, in which case the right match of ai+kis unde�ned).In accordance with Assumption L1, we assume that each key is input at a single processor.Let `(ai) (resp., `(bi)) denote the index of the processor initially holding ai (resp., bi), and let�(i; j) denote the length of a shortest path between processors i and j. Assume without lossof generality that input variable k is provided at all processors. Let A denote an arbitraryalgorithm for this restricted version of the ANSV problem, and let Mk denote the maximumtotal number of messages sent by algorithm A for each k, 0 � k < m. Note thatMk � X0�i<m�(`(ai+k); `(bi)):Setting M 0i = P0�k�m �(`(ai+k); `(bi)), 0 � i < m, we �nd thatX0�i<mM 0i = X0�i<m X0�k<m�(`(ai+k); `(bi))� X0�k�mMk:12

We now consider two cases. First, assume there exists an index set I � f0; : : : ;m � 1gsuch that jIj � 116(n=p) lg p and `(bi) is the same for all i in I. In this case the lower boundholds by Assumption L2 since the processor initially holding the set of bi's indexed by Imust examine each of these keys.Now assume that no such index set I exists. Using Assumption L3, we �nd that atleast 34m of the bi's with 0 � i < m are initially located
(lg p) hops away from any �xedprocessor. Hence M 0i =
(n lg p), 0 � i < m, andX0�k<mMk =
(n2 lg p):By averaging, we conclude that for some choice of k, Mk =
(n lg p). Assumption L2 thenimplies that A must run for
((n=p) lg p) steps in order to generate a total of
(n lg p)messages.5 Monotone Polygon TriangulationA polygon is monotone if and only if it consists of two polygonal chains that are monotonewith respect to the same line. (A polygonal chain C is monotone with respect to a line L ifany line orthogonal to L intersects C in at most one point.) Let P be a monotone polygonconsisting of two chains: the \upper" chain U = hui : 0 � i < si and the \lower" chainD = hdi : 0 � i < ti, where u0 = dt�1 and us�1 = d0. A recent result of Atallah and Chen [3]gives an optimal hypercube algorithm for determining the line with respect to which a givenpolygon is monotone, if such a line exists. Their result allows us to assume that the givenpolygon is monotone with respect to the x-axis. (If not, a trivial transformation can beapplied to ensure that this property holds.) Note that in a polygon that is monotone withrespect to the x-axis, all the vertices on the upper chain (resp., lower chain) have distinctx-coordinates. A monotone polygon is one-sided if either its upper or lower chain consistsof a single edge, called the distinguished edge.Our algorithm for triangulating a monotone polygon follows the approach of Berkman etal. [4], Aggarwal et al. [1], and Goodrich [8]. The algorithm consists of two stages. In the�rst stage, we decompose the monotone polygon into one-sided monotone polygons. In thesecond stage, we triangulate the one-sided monotone polygons.We assume a d-dimensional hypercube containing 2d = n processors, d � 1. Localvariable y at processor i will be referred to as y[i]. The input to our algorithm consists oftwo sets of real variables x[i] and y[i], 0 � i < 2d. Variables x and y at processors i in therange 0 � i < s (resp., s � i < 2d) are the x- and y-coordinates of vertices hui : 0 � i < si(resp., hdi : 0 � i < ti). For each i, 0 � i < 2d, let r(i) (resp., `(i)) denote the integer j,0 � j < 2d, such that the edge from (x[i]; y[i]) to (x[j]; y[j]) is a right (resp., left) edge in thetriangulation of P (see Step 3 for the de�nitions of right and left edges). If no such integerexists, then let r(i) = +1 (resp., `(i) = �1). The output consists of integer variablesr[i] = r(i) and `[i] = `(i), 0 � i < 2d. 13

Algorithm Triangulate1. Decompose P into one-sided monotone polygons as follows. Merge sequences U and Dby the x-coordinates of their vertices. Let Ui (resp., Di) be the subsequence of U (resp.,D) that consists of vertices which lie between vertex di and vertex di�1 (resp., ui andui+1) in the merged list. Note that Ui = Ui [fdi; di�1g (resp., Di = Di [fui; ui+1g)is a one-sided monotone polygon with (di; di�1) (resp., (ui; ui+1)) as the distinguishededge.Set i0[i] = mins�j<2dfj : x[j] � x[i] � x[j � 1]g, (x0[i]; y0[i]) = (x[i0[i]]; y[i0[i]]),and (x00[i]; y00[i]) = (x[i0[i] � 1]; y[i0[i] � 1]), 0 � i < s. Set i0[i] = min0�j<sfj :x[j] � x[i] � x[j + 1]g, (x0[i]; y0[i]) = (x[i0[i]]; y[i0[i]]), and (x00[i]; y00[i]) = (x[i0[i] +1]; y[i0[i] + 1]), s � i < 2d. Implementation: Bitonic merge, pre�x operation.Running time: O(d).2. Rotate each one-sided monotone polygon Ui, 0 � i < t (resp., Di, 0 � i < s), by thesmallest possible angle around the �rst (smallest x-coordinate) endpoint of its distin-guished edge so that the distinguished edge is parallel to x-axis.Set (x[i]; y[i]) = �(x[i]; y[i]), where the function � computes the coordinates of(x[i]; y[i]) after a rotation around point (x0[i]; y0[i]) by the smallest angle thatmakes y00[i] = y0[i]. Set (x00[i]; y00[i]) = �(x00[i]; y00[i]), 0 � i < 2d. Implementation:Local arithmetic operations. Running time: O(1).3. For each vertex q in a one-sided polygon Ui (resp., Di) compute \right" and \left"edges, as de�ned below.� The right edge of q is the edge (q; r) where r is the vertex of Ui (resp., Di) with thesmallest x-coordinate such that x(q) < x(r) and y(q) � y(r) (resp., y(q) � y(r)).� The left edge of q is the edge (q; `) where ` is the vertex of Ui (resp., Di) with thelargest x-coordinate such that x(r) � x(q) and y(q) > y(r) (resp., y(q) � y(r)).(a) Set r[i] = mini<jfj : i0[j] = i0[i] and y[i] � y[j]g, 0 � i < s. For any r[i],0 � i < s, that was not set in the previous step, set r[i] = i0[i]� 1. Set `[i] =maxj<ifj : i0[j] = i0[i] and y[i] > y[j]g, 0 � i < s. For any `[i], 0 � i < s, that wasnot set in the previous step, set `[i] = i0[i]. Implementation: Algorithm ANSV runon variable y and segmented according to the variable i0. Running time: O(d).(b) Set r[i] = maxj<ifj : i0[j] = i0[i] and y[i] � y[j]g, s � i < 2d. For any r[i],s � i < 2d, that was not set in the previous step, set r[i] = i0[i] + 1. Set`[i] = mini<jfj : i0[j] = i0[i] and y[i] < y[j]g, s � i < 2d. For any `[i], s � i < 2d,that was not set in the previous step, set `[i] = i0[i]. Implementation: AlgorithmANSV run on variable y and segmented according to the variable i0. Runningtime: O(d).Algorithm Triangulate runs in O(lg n) time on an n-processor hypercube. The correctnessof the algorithm follows from the work of Berkman et al. [4]. Furthermore, Berkman et al. [4]show how to reduce the problem of merging two sorted lists of length n to the problem of14

triangulating a monotone polygon of size n. In view of Theorem 1 (see Section 4), thisreduction implies that an
(n)-processor hypercube is needed to triangulate a monotonepolygon in O(lg n) time. Thus, our normal hypercube algorithm is processor-optimal as wellas time-optimal.6 Building a Cartesian TreeLet the Cartesian tree of a sequence W = hwi : 0 � i < ni be de�ned as in Section 1.Berkman et al. [4] prove that the parent of any element wi in the Cartesian tree is the largerof wi's left and right matches. Thus, a straightforward application of the ANSV algorithmyields an O(lg n)-time n-processor normal hypercube algorithm for constructing a Cartesiantree.7 Concluding RemarksIn this paper, we have presented an O(lg n)-time n-processor normal hypercube algorithmfor the ANSV problem. It would be interesting to extend our techniques to obtain e�cientnormal hypercube algorithms for other fundamental problems.References[1] A. Aggarwal, B. Chazelle, L. Guibas, C. �O'D�unlaing, and C. K. Yap. Parallel compu-tational geometry. Algorithmica, 3(3):293{327, 1988.[2] A. Aggarwal, D. Kravets, J. K. Park, and S. Sen. Parallel searching in generalizedMonge arrays with applications. In Proceedings of the 2nd Annual ACM Symposium onParallel Algorithms and Architectures, pages 259{268, 1990.[3] M. J. Atallah and D. Z. Chen. Optimal parallel hypercube algorithms for polygon prob-lems. In Proceedings of the 5th IEEE Symposium on Parallel and Distributed Processing,pages 208{215, 1993.[4] O. Berkman, B. Schieber, and U. Vishkin. Optimal doubly logarithmic parallel algo-rithms based on �nding nearest smaller values. Journal of Algorithms, 14(3):344{370,1993.[5] A. Borodin and J. E. Hopcroft. Routing, merging, and sorting on parallel models ofcomputation. Journal of Computer and System Sciences, 30:130{145, 1985.[6] D. Z. Chen. E�cient geometric algorithms in the EREW-PRAM. In Proceedings of the28th Annual Allerton Conference on Communication, Control, and Computing, pages818{827, 1990.[7] R. E. Cypher and C. G. Plaxton. Deterministic sorting in nearly logarithmic timeon the hypercube and related computers. Journal of Computer and System Sciences,47:501{548, 1993. 15

[8] M. T. Goodrich. Triangulating a polygon in parallel. Journal of Algorithms, 10:327{351,1989.[9] J. F. J�aJ�a and K. W. Ryu. Optimal algorithms on the pipelined hypercube and relatednetworks. IEEE Transactions on Parallel and Distributed Systems, 4:582{591, 1993.[10] C. P. Kruskal. Searching, merging, and sorting. IEEE Transactions on Computers,C-32(10):942{946, 1983.[11] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,Hypercubes, volume 1. Morgan Kaufmann Publishers, San Mateo, CA, 1992.[12] E. W. Mayr and R. Werchner. Optimal routing of parentheses on the hypercube. In Pro-ceedings of the 4th Annual ACM Symposium on Parallel Algorithms and Architectures,pages 109{117, 1992.[13] L. G. Valiant. Parallelism in comparison problems. SIAM Journal on Computing,4:348{355, 1975.[14] J. Vuillemin. A uni�ed look at data structures. Communications of the ACM, 23:229{239, 1980.[15] C. Yap. Parallel triangulation of a polygon in two calls to the trapezoidal map. Algo-rithmica, 3:279{288, 1988.

16

