An Optimal Hypercube Algorithm for the
All Nearest Smaller Values Problem

Dina Kravets* C. Greg Plaxton'

Abstract

Given a sequence of n elements, the All Nearest Smaller Values (ANSV) problem is
to find, for each element in the sequence, the nearest element to the left (right) that is
smaller, or to report that no such element exists. Time and work optimal algorithms
for this problem are known on all the PRAM models [4, 6], but the running time of the
best previous hypercube algorithm [9] is optimal only when the number of processors
p satisfies 1 < p < n/((Ig°n)(lglgn)?). In this paper, we prove that any normal
hypercube algorithm requires €2(n) processors to solve the ANSV problem in O(lgn)
time, and we present the first normal hypercube algorithm for the ANSV problem that
is optimal for all values of n and p. We use our ANSV algorithm to give the first
O(lg n)-time n-processor normal hypercube algorithms for triangulating a monotone
polygon and for constructing a Cartesian tree.

*Department of Computer Science, New Jersey Institute of Technology, University Heights, Newark,
NJ 07102. Supported by NSF Research Initiation Award CCR-9308204 and the New Jersey Institute of
Technology SBR under Grant No. 421220. Email: dina@cis.njit.edu.

TDepartment of Computer Science, University of Texas, Austin, TX 78712. Supported by the Texas
Advanced Research Program under Grant No. 003658-461. Email: plaxton@cs.utexas.edu.

1 Introduction

The All Nearest Smaller Values (ANSV) problem is defined as follows. Let W = (w; : 0 <
i < n) be a sequence of n elements. For each w;, 0 < i < n, we want to find the nearest
element to the left of w; in W and the nearest element to the right of w; in W that are smaller
than w;, if such elements exist. More formally, the left nearest neighbor of w; in W (called
the left match of w;) is wy such that wy < w; and w; < w; for all £ < j < ¢. Similarly, the
right nearest neighbor of w; in W (called the right match of w;) is w, such that w, < w; and
w; <w; for all © < 5 < r. Recently, the ANSV problem has been identified as an important
sub-problem in the design of efficient parallel algorithms. In particular, a subroutine for the
ANSV problem is used by Aggarwal et al. [2] in parallel searching of staircase-Monge arrays,
and by Berkman et al. [4] in finding a triangulation of a monotone polygon, preprocessing
for answering range minimum queries in constant time, reconstructing a binary tree from its
inorder and either preorder or postorder labelings, and matching parenthesis. Furthermore,
two fundamental problems can be reduced to ANSV: (i) merging two sorted lists [5, 10], and
(ii) finding the maximum of n elements [13].

The ANSV problem is easy to solve sequentially in O(n) time using a stack. Berkman,
Schieber, and Vishkin [4] give the following PRAM algorithms for the ANSV problem: (i)
an O(lgn)-time (n/lgn)-processor CREW PRAM algorithm, and (ii) an O(lglgn)-time
(n/lglgn)-processor CRCW PRAM algorithm. Chen [6] gives an EREW PRAM algorithm
that matches the CREW PRAM bounds of [4]. In this paper, we develop the first O(lgn)-
time hypercube algorithm for the ANSV problem. Our algorithm uses n processors and
belongs to the class of so-called “normal” hypercube algorithms, and thus achieves the same
processor/time bounds on any of the bounded-degree variants of the hypercube (e.g., the
butterfly, cube-connected cycles, and shuffle-exchange). Furthermore, we prove that any
normal hypercube algorithm requires €(n) processors to solve the ANSV problem in O(Ign)
time.

Our paper is not the first to consider the complexity of normal hypercube algorithms
for the ANSV problem. In particular, JaJ&a and Ryu [9] give a normal hypercube algorithm
for the ANSV problem with optimal running time for any number p of processors satisfying
1 < p<n/((g°n)(glgn)?). In contrast, our algorithm is optimal for all values of n and
p. (Our O(lgn)-time, n-processor algorithm is easily generalized to obtain a p-processor
algorithm running in time O((n/p)lgp + lgn).) For the case n = p, JaJ4 and Ryu [9]
obtain a time bound of O(lg n(lglgn)?) by making use of the Sharesort [7] sorting algorithm
as a subroutine. Our O(lgn)-time algorithm, on the other hand, does not make use of a
general routing or sorting subroutine; instead, we confine our on-line routing operations
to restricted classes of permutations for which optimal-time normal hypercube are known.
Most importantly, we make use of the the optimal parentheses routing algorithm of Mayr
and Werchner [12].

We use our ANSV algorithm to obtain more efficient hypercube algorithms for the fol-
lowing two problems:

o Iriangulating a monotone polygon. A simple polygon is monotone with respect to
a line ¢ if any line orthogonal to /¢ intersects the polygon in at most two points.
The triangulation of a simple polygon has numerous applications in computational

geometry [15]. The triangulation of a monotone polygon is a subroutine used in all of
the known parallel algorithms for triangulating simple polygons. Berkman et al. [4]
give CREW and CRCW PRAM algorithms for triangulating a monotone polygon.
JaJa and Ryu [9] give a normal hypercube algorithm for this problem with the same
asymptotic performance as their ANSV algorithm. We give the first O(Ign)-time n-
processor normal hypercube algorithm for monotone polygon triangulation.

e Building a Cartesian tree. The Cartesian tree of a sequence W = (w; : 0 < ¢ < n)
is a binary tree where the root corresponds to the element w; = ming<;<, w;, the left
child is the Cartesian tree of (w; : 0 < ¢ < k), and the right child is the Cartesian tree
of (w; : k <1 < n) [14]. The Cartesian tree is used in preprocessing algorithms for
answering range minimum queries. Berkman et al. [4] show how to find the Cartesian
tree in O(lgn) time using an (n/lgn)-processor CREW PRAM. We obtain the first

O(lgn)-time n-processor normal hypercube algorithm for this problem.

The remainder of this paper is organized as follows. Section 2 defines the model of
computation. Section 3 presents our normal hypercube algorithm for the ANSV problem.
Section 4 presents a lower bound for the ANSV problem. Sections 5 and 6 provide normal
hypercube algorithms for triangulating a monotone polygon and building a Cartesian tree.

2 Normal Hypercube Algorithms

A dimension-d hypercube may be constructed as follows. First, associate a unique d-bit
ID with each of n = 27 processors. Second, connect (by a two-way channel) all pairs of
processors whose IDs differ in a single bit position. A channel (or edge) connecting two
processors @ and y (that is, with IDs @ and y) will be referred to as a dimension ¢ edge if
and only if @ and y differ in bit position 1.

In this paper, we make the standard assumption that each processor of a p-processor
machine has access to a local memory configured in O(lg p)-bit words. With respect to the
ANSYV problem, we will further assume that each of the given elements w; can be represented
with a constant number of words. We analyze the complexity of our algorithms in terms of
time steps. In a single time step each processor can send and/or receive a single word of data
from an adjacent processor, and can perform one CPU operation on word-sized operands. In
addition, we require that: (i) only one dimension of edges is used at any given time step, and
(ii) the dimension used at time step t 41 is within 1 (modulo d) of the dimension used at time
step ¢, t > 0. Algorithms satisfying conditions (i) and (ii) are often referred to as normal
hypercube algorithms [11, Section 3.1.3]. Normal algorithms are widely regarded as the
most interesting class of hypercube algorithms, since they can be executed with constant-
factor slowdown on any of the bounded-degree variants of the hypercube (e.g., butterfly,
shuffle-exchange, cube-connected cycles).

Note that any normal hypercube algorithm can be executed with constant slowdown on
an EREW PRAM with the same number of processors. (The converse does not hold.)

3 Two Hypercube Algorithms for the ANSV Problem

In this section we present two O(lg n)-time n-processor normal hypercube algorithms: (i)
an algorithm for solving an (n/lgn)-input ANSV problem (Subsection 3.1), and (ii) an
algorithm for the usual n-input ANSV problem (Subsection 3.2).

3.1 An (n/lgn)-input n-processor algorithm

We only describe how to find right matches; left matches are found analogously. The
SparseANSV algorithm is based on the CREW PRAM algorithm of Berkman et al. [4].
Before describing the algorithm, we give some definitions and notations. We assume a d-
dimensional hypercube containing 2¢ = n processors, d > 1. Let d’ denote the minimum
integer such that 2¢ > d — d’. Note that ¢’ ~ lgd = lglgn. For all 7 and j such that
0<i<2"% and 0 <j < d—d, the processor with ID 7 - (d — d') + j will be referred to as
processor (i,7). Local variable w at processor (7, j) will be referred to as wli, j].

The input to our algorithm is a set of integer variables wli,0], 0 < i < 2%%. For each
i, 0 < i < 2% let () denote the minimum integer such that i < r(i) < 29 and
w(i,0] > w[r(:),0]. If no such integer exists, then let r(¢) = +oc. Further define the right-
match count of i, denoted ¢(i), to be the number of integers j such that 0 < j < 29=4" and
r(j) = ¢. The output of our algorithm is integer variables c[i,0] = ¢(¢) and r[z,0] = r(z),
0 < i< 2%%, For all integers o and 3 such that 0 < o < 2°¥=~1 and 0 < B < d — d',
let A, s denote the subcube consisting of the 27 processors (a - 20+t 44, 3), 0 < 7 < 2°.
Similarly, let B, s denote the subcube consisting of the 2° processors (a - 2°+1 427 44 3),
0 <17 < 2°. Note that the subcubes A, 5 and B, s partition the (Zd_d/) - (d — d') processors
(i,7) with 0 <7 < 29% and 0 < j < d — d'. Figure 3.1 shows the partition of the processors
into A, g’s and B, g’s. Let C, 3= A,5U B, 3.

Define a sequence of records S to be quasi-sorted if and only if the subsequence S’ of S
consisting of all records with key value not equal to +o0 is sorted. For all integers = and 1,
let a; denote the 7th bit of the binary representation of z (numbering from 0), and let 2
denote the integer obtained by complementing the ith bit of x. Define the greedy decreasing
subsequence of a sequence (a; : 0 <1 < n) as

(a; :a; < a; forall 0 < j << n).

In the description of our algorithm, each step consists of the general idea of the step
(italicized), followed by the details of the step, which include the specification of the routines
that implement the step on the hypercube and the running time of the implementation.

‘ Algorithm SparseANSV ‘

1. For each i, 0 < i < 297 if r(i) # +oo then set f[i,0] to the most significant bit
position in which the binary representation of i differs from that of r(i). If r(i) = +o0
then set f[i,0] = +oo.

At each processor (1,0), 0 <1 < 29-4" we execute the following loop:

0 1 2 3=J-1

e o0 0 0 0 0

® o 0o 0

® o6 0 0 0 0 o

® 6 6 0 0 0 o

14 A70

15=I-1| By

Figure 3.1: The partition of the processors into A, g's and B, g’s; [= 20=4" and J = d—d'.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Figure 3.2: The contents of certain variables following the first few

71i,0] 1= o0
w'[i,0] := +o0

for j=0tod—d —1
w'[1,0] := min{w'[i, 0], w[i), 0]}
if (1, =0A f[i,0] = +o0

Awli, 0] > w'[7,0]) then
f[iv 0] =7

Implementation: Single pass over dimensions d’ to d — 1. Running time: O(d).
Remarks: See Figure 3.2 for an example.

input X
0O 1 2 3

f after step 1
0 1 2 3

s after step 2(a) s after step 2(b)

01 2 3

1 2 3

100 |
13
5
4
1
7 [-
20 R MU R—
9

10

|—\
|

10

|—\
®

0
oo
oo

5
oo
oo
oo

8|S

17 R R R —
12 [H
15 R R R —
8
3 R R R —
23
2 R R R —
18

8 8 olr vV o, |lolw]|lo|lw 8 N ok -

:818:8|8:8(8:8

38818]=8:8:8]88:8:8]>8:88

881818881888 {~iBi88BIS

81818 (8[8|xn|8[~[8(3]|8(8[8]|8 (8

§i8|3iw|8i8

|

7

8

|

5

818[8[8]8

888:8[88i8:/88i8:8/88ig:~

8i8[3iw[8:8[8iK[8:8[8:8]8:8
378787818787818[8(8{8{8{BIBI I~

SparseANSV.

2. Let S, 5 denote the subsequence of all w; values such that f[i,0] =

a,0<a <271 0 <3 <d—d. Notethat cach S, g is an increasing subsequence.
In the following substeps, we identify each subsequence S, g, save the addresses of the

w; s constituting S, 5, and concentrate S, g in subcube A, g.

steps of algorithm

B and {z : 2_5_1J =

(a) Set s[i,7] = +o0, 0 <i < 2% 0<j<d—d. Forall i such that 0 <7 < 2¢=¢

and f[i,0] # 400, route wi,0] to sz, f[z, 0]].

Implementation: Greedy routing

over dimensions 0 to d’ — 1. Running time: O(lgd). Remark: Note that the
greedy routing is collision-free.

Set '[i,7] to 1, 0 < i < 2%%, 0 < j < d—d. Stably sort the pairs (s,i’) within
each subcube A, s in ascending order of s. Implementation: Monotone route.
Running time: O(d). Remarks: (i) Note that the (s,:’) pairs in A, g are already
quasi-sorted (sorting a quasi-sorted sequence is also referred to in the literature
as concentration routing); (ii) The ¢’ values will be used in Step 5(a) to send
information regarding the w;’s back to the appropriate original locations.

3. Let T, p denote the greedy decreasing subsequence of those w; values for which ig =1

and L

i-2_5_1J =a,0<a< 2?01 0< 3 <d—d. In the following substeps,

we identify each subsequence T, g, save the addresses of the w;’s constituting 7o g, and
concentrate T, g in subcube B, 5.

(a)

(b)

For 0 < i< 2%, 0<j<d—d, copy w[i,0] to t[i,]]. Let B!, ; denote the set
of all processors in B, g such that some lower-numbered processor in B, 3 has a
strictly smaller value of . At each processor belonging to some B/, 5, set ¢ to +oc.
Implementation: Prefix operation. Running time: O(d).

Stably sort the pairs (¢,¢) within each subcube B, s in descending order of ¢.
Implementation: Monotone route. Running Time: O(d). Remarks: (i) Note
that the pairs (¢,4') in each subcube B, s are already quasi-sorted; (ii) The
values will be used in Step 6(a) to send information regarding the w;’s back to
the appropriate original locations.

4. Perform the following operations within each subcube C,, 5. First, merge the sorted
sequences S, 3 and T, 3. Then, use prefix operations to determine the right match of
each element in S, 5. (As proven in [4], the right match of every element of S, 5 is an

element of T, 53.) Use additional prefix operations to count, for each element y of T, s,
the number of elements x in S, 3 such that y is the right match of x.

(a)

(b)

At each processor (¢,3) in A, s such that s # 400, set r[i, 5] to j where (7, 3)
is the lowest-numbered processor of B, s such that s[i, 3] > t[j,5]. If no such
processor (j,/3) exists, then set r[i, 5] to +o0o. Implementation: Bitonic merge
and prefix operations within each subcube C, 5. Running time: O(d).

For each processor (7,) in Ba g, set ¢(j,) to the number of processors (i, 3) in
A, for which (j, 3) is the lowest-numbered processor in B, s with sz, 5] > t[J, 3].
Implementation: Prefix operations within each subcube C, 3. Running time:

O(d).

5. Route r(i) to processor (i,0), 0 <i < 2=,

(a)

(b)

Sort the pairs (¢/,r) within each subcube A, 5 in ascending order of ¢'. Implemen-
tation: Monotone route. Running time: O(d). Remark: This routing operation
is the inverse of that applied in Step 2(b).

For each 7, 0 < i < 297, at most one processor of the form (1,7), 0 < j <
d — d', contains a value of r that is not equal to +00. Route this value to r[z, 0].

Implementation: Greedy routing over dimensions 0 to d — 1. Running time:

O(lg d).

6. For each i, 0 < i < 297 sum the associated partial counts computed in Step {(b) to
obtain ¢(v), and store the result in processor (1,0).

(a) Sort the pairs (¢, ¢) within each subcube B, 5 in descending order of 7. Implemen-
tation: Monotone route. Running time: O(d). Remark: This routing operation
is the inverse of that applied in Step 3(b).

(b) For each 7, 0 < i < 2%%, sum the values of ¢[i,], 0 < j < d — d', and store the
result in ¢[z, 0]. Implementation: Prefix operation. Running time: O(lg d).

Since each step of SparseANSV runs in O(d) time, this algorithm solves any (n/lg n)-input
ANSV problem in O(Ign) time using n processors. The central lemma underlying the proof
of correctness of algorithm SparseANSV is due to Berkman et al. [4], and is stated below. We
omit the proof of correctness of algorithm SparseANSV since it is quite similar to the proof

of correctness of the CREW PRAM algorithm of Berkman et al. [4].

Lemma 3.1 ([4]) The right matches for the elements of S, 5 are among the elements of
Tas-

3.2 An n-input n-processor algorithm

We will now show how to solve a larger ANSV problem using the same number of processors.
The algorithm presented in this section offers two main advantages over the algorithm of
Berkman et al. [4]: (i) the present algorithm runs efficiently on any hypercubic machine, and
(ii) the high-level structure of the present algorithm is somewhat simpler. The simplification
we achieve is primarily due to Lemma 3.2 (stated at the end of this section), which provides
a useful property for streamlining the search for matches.

We assume a d-dimensional hypercube containing 2¢ = n processors, d > 1. Let d'
denote the minimum integer such that 2¥ > d — d’. Note that d’' ~ lgd = lglgn. It will be
convenient to emulate a (d + 1)-dimensional hypercube on the given d-dimensional machine.
(This can be done with constant slowdown.) In what follows, the term “processor” should be
interpreted as “virtual processor”. For all 7 and j such that 0 < i < 29=%+1 and 0 < j < 27,
the processor with ID k =i - 2% + j will be referred to either as processor k or as processor
(7,7). Local variable w at processor k (resp., processor (7,j)) will be referred to as wl[k]
(resp., wli, j]).

The input to our algorithm is a set of integer variables w[k], 0 < k < 2%. In order to
simplify the presentation, we assume that the w[k|’s are distinct. (At the end of this section,
we prove that there is no loss of generality inherent in this assumption; see Lemma 3.3.)
For each k, 0 < k < 2% let r(k) denote the minimum integer such that k < r(k) < 2¢ and
wlk] > w[r(k)]. If no such integer exists, then let r(k) = +00. Analogously, let /(k) denote
the maximum integer such that 0 < {(k) < k and w[l(k)] < w[k]. If no such integer exists,
then let /(k) = —oc. The output consists of integer variables ([k] = ((k) and r[k] = r(k),
0<k<24.

We now present our algorithm, which runs in O(d) steps. For each 7,0 <i < 2d=d'+1 et
C; denote the d’-dimensional subcube consisting of processors (¢,7), 0 < j < 2",

| Algorithm ANSV

1. Recursively solve the ANSV problem within each subcube C;. In addition, find the

minimum element in C;, denoted m;.

(a)

(b)

If d = 0, then set ([0] = —o0, r[0] = 400, and return. Otherwise, recursively
apply algorithm ANSV within each d’-dimensional subcube C;, 0 < i < 2%% and
then set ('[k] = ([k] and r'[k] = r[k], 0 < k < 2. Implementation: Recursive
call. Running time: T'(d"), where T'(d) denotes the running time of ANSV on a
d-dimensional hypercube. (We will ultimately find that T'(d) = O(d), and so the
running time of this step is O(lgd).)

At each processor (i,0), 0 < i < 29 set m]i, 0] to the minimum w value in C;.
Implementation: Prefix operation. Running time: O(d).

2. Call SparseANSV to find the right matches for the sequence M = (m; : 0 <1 < n/lgn).
Let R(m;) denote the right match of m; among the elements of M.

(a)

At each processor (i,0), 0 < i < 29=% set R[i,0] to the minimum integer 7’ such
that 7 < i’ < 2%% and m[i,0] > m[i’,0] (or to +oo if no such integer i’ exists),
and set ¢[7,0] to the number of integers i/, 0 < i < ¢, such that R[¢',0] = 1.
Implementation: SparseANSV, prefix operation. Running time: O(d).

3. Prune the sequence S = (mj, ..., Wiign-1) (resp., T = (Wi1)ign,--.,mi)) within
each subcube C; by eliminating from it any element with right (resp., left) match in S!
(resp., T'). Let S; (resp., T;) refer to the pruned sequence.

(a)

For all integers ¢ and j such that 0 < i < 2979+ and 0 < j < 2%, set k[4, j] to
i - 2% 4 j. Route the pair (k,w) (resp., (—1,400)) at processor (i,) to variables
(k',w') at processor (2 -1,7) if and only if I'[1,j] = —oo (resp., {'[i, 7] # —o0),
0<i<?2% 0<j <2 Route the pair (k,w) (resp., (—1,400)) at processor
(7,7) to variables (k’,w’) at processor (2-i¢ 4+ 1,7) if and only if #'[i, 5] = 400
(vesp., r'[i,7] # 4+o0), 0 < i < 297 0 < j < 2%, Route ¢[i,0] to ¢[2 - i,0],
0 < i< 2% Set ¢2-i+1,0] to 1 if R[i,0] # +o0o, and to 0 otherwise,
0 < i < 2% Implementation: Monotone route operations. Running time:
O(d).

Stably sort the pairs (w’, ') within each subcube Cy.; in descending order of w'.
Stably sort the pairs (w’, k') within each subcube Cy.;41 in ascending order of w'.
Implementation: Monotone route. (Note that the (w’,k’) pairs in each C; are
already quasi-sorted.) Running time: O(lg d).

4. Copy each sequence T; to a set of f(i) consecutive subcubes, where f(i) denotes the
number of integers j such that R(m;) = 1.

(a) Set afi,0] to 27 - So<ircic[,0], 0 < < 28=4"+1 " Set a[i, j] to ali,0] + 7, and
cli, j] to ¢[i,0], 0 < i < 2=¥+1 0 < j < 2¢. Implementation: Prefix operation.
Running time: O(d).

(b) If ¢ # 0, route the tuple (2 mod 2, ¢, k', w’) at processor (i, 7) to variables (b, ¢, k', w')
at processor afi, j], 0 <1 < 2979+ 0 < 5 < 2% At any processor that does not
receive a tuple in this routing operation, set (b, ¢, k', w') = (—1,0,—1,+00). Im-
plementation: Monotone route. Running time: O(d).

(c) If ¢ > 1, route the tuple (b,0, k', w’) at processor (i, j) to variables (b, ¢, k', w’) at
processors (i +1',7), 0 <1 < 249+ 0 <4/ < ¢, 0 < j < 2%, Implementation:
Prefix operation. Running time: O(d).

5. Route copies of S; and Tr(p,) to a common subcube.

Associate a right (resp., left) parenthesis with each processor (7,) such that b = 0
(resp., b = 1). (Do not associate a parenthesis with any processor (z,7) such that
b = —1.) Note that the following conditions are satisfied: (i) each subcube C; either
contains no parentheses, entirely left parentheses, or entirely right parentheses, (ii)
for each subcube C; of left parentheses there is a “matching” subcube Cj of right
parentheses, 0 < i < ¢/ < 29=¥+1 Furthermore, C; and Cy are matching subcubes
if and only if R[i,0] was set to ¢’ in Step 3. We can efficiently exchange information
between all pairs of matching subcubes in parallel by making use of the parenthesis
routing operation of Mayr and Werchner [12]. In the following two substeps, the indices
i and i’ range over all pairs of matching subcubes, 0 < i < i’ < 24-¢+1,

(a) Route the pair (k', w') stored in processor (i, j) to variables (k”,w") at processor
(i,7), 0 < j < 2. Implementation: Parenthesis route. Running time: O(d).

(b) Route the pair (k/’, w') stored in processor (i,7) to variables (k”,w”) at processor
(i',7), 0 < j < 2¥. Implementation: Parenthesis route. Running time: O(d).

6. Determine the right match r"(w) for each w in S; among the elements of Trem,). Set
r(w) to be the leftmost of r(w) and r"(w).

The following substeps are now performed for each integer ¢ such that C; is a “left”
subcube (i.e., b = 1 throughout the subcube), 0 < i < 24-4'+1,

(a) At each processor (i,j) such that 0 < j < 2% and w'[i,] # +oc, set r"[1,] to
k"[i, 5] where j' is the maximum integer such that 0 < j/ < 2% and w'[7,j] >
w"[1,7']. If no such integer j" exists, then set r”’[7, j] to +o00. Implementation:
Bitonic merge, prefix operation. Running time: O(d).

(b) For all j such that 0 < j < 2% and w'[1, j] # +oo, route r"[1, 5] to r"[k']. Imple-
mentation: Monotone route. Running time: O(d).

(c) At each processor that received an r” value in the preceding substep, set r to
min{r,r”’}. Running time: O(1).

7. Determine the left match ("(w, i) for each w in Trn,) among the elements of S;. Set
"(w) to be the rightmost of the {(w,i)’s. Set {(w) to be the rightmost of ((w) and

"(w).

Note that every “right” subcube C; (i.e., b = 0 throughout the subcube) for which
¢ # 0 belongs to a contiguous sequence of right subcubes (C; : ¢ < j < i+ A) such
that: (i) A > 0, (ii) every processor in C; has ¢ = A, (iii) every other processor in the
sequence of subcubes has ¢ = 0, and (iv) every subcube in the sequence contains the
same sorted sequence of 2¢ (w', k') pairs. The following substeps are now performed
for all such pairs of integers (i, A) in parallel.

(a) At each processor (14 A’,) such that 0 < A’ < A, 0 < j < 2%, and w'[i+ A/, j] #
+oo, set "[i + A’ 7] to k"t + A’, j'] where 3’ is the maximum integer such that
0 <4 <2¥ and w"[i + A/, j'] < w'[i + A, j]. If no such integer j/ exists, then set
"t + A’} j] to —oo. Implementation: Bitonic merge, prefix operation. Running
time: O(d).

(b) For all j such that 0 < j < 2¢ and w'[4,] # 400, set {"[1,]] to maxo<ar<a "1 +
A, j]. Implementation: Prefix operation. Running time: O(d).

(¢) For all j such that 0 < j < 2¢ and w'[i,] # +oc, route [i, j] to {"[k']. Imple-
mentation: Monotone route. Running time: O(d).

(d) At each processor that received an ¢ value in the preceding substep, set ¢ to

max{/,("}. Running time: O(1).

8. Note that Steps 2 through 7 above are based on a call to SparseANSV that computes
the right matches of the subcube minima. (See Step 2.) We now perform an entirely
symmetric sequence of steps corresponding to the left matches of the subcube minima.

For the time complexity, note that the first step of this algorithm takes time T'(d’) and
all the other steps take time O(d). The solution to the recurrence T'(d) = T'(d") + O(d) is
O(d), and thus this algorithm solves the n-input ANSV problem in O(lgn) time using n
processors.

The correctness of algorithm ANSV depends on the following lemma.

Lemma 3.2 Given k non-empty integer sequences X;, 0 <1 < k, let Y denote the single
sequence obtained by concatenating the X;’s in ascending order of 1. Let m; denote the
mintmum integer in X;, 0 <@ < k. If all elements of Y are distinct, then for all w in X;
such that the right match of w in Y belongs to X;, j > i, either: (i) the right match of m;
belongs to X;, or (i) the left match of m;j belongs to X.

Proof: Abusing our notation slightly, let r(w) (resp., {(w)) denote the right (resp., left)
match of w. For w to the left of w’ in Y, let [w, w'] denote the sequence of integers within Y
that starts at w and ends at w’. Similarly, let (w,w’) denote the sequence [w,w'] excluding
w and w'.

If w = m;, then the lemma is trivially satisfied. Thus, assume that w #* m,. Since
r(w) € X; and j > 7, we know that w is to the right of m, in X;. Since m,; is the minimum
value in X;, r(m;) € X;. Similarly, {(m;) € X;. From the definition of a right match,
we know that r(w) is the minimum value in [w,r(w)] and that w’ > w > r(w) for all
w' € (w,r(w)). Since w > m; and r(w) > mj, w' > m; and W' > m; for all W’ € (w,r(w)).
Hence, r(m;) is either r(w) or to the right of r(w), and ¢(m;) is to the left of w. Assuming

10

(as in the statement of the lemma) that all elements of Y are distinct, either m; > m; or
mj > m;. In the former case, r(m;) is at or to the left of m;, and thus, r(m;) € X;. In the
latter case, £(m;) is at or to the right of m;, and thus, {(m;) € X,;,. &

We can now complete the argument for the correctness of the ANSV algorithm. The
sequence X; in Lemma 3.2 corresponds to the elements stored in subcube ;. Since the right
(resp., left) match of every element in (wg_1yigp,-.., M) (resp., (Mi,..., Wilgn—1)) lies in
subcube C;, the sequence S; (resp., 7;) contains every element in subcube C; whose right
(resp., left) match lies outside subcube C;. Thus, the right match of each element in S;
is determined correctly either in Step 6 of the iteration based on the right matches of the
subcube minima when we process S; and Tg(y,), or in Step 7 of the iteration based on the
left matches of the subcube minima when we process 7; and Sp (), where L(m;) = 1.

Finally, note that the proof of Lemma 3.2, and hence also our proof of correctness of
algorithm ANSV, relies on the assumption that all the input elements (i.e., the w[k]’s) are
distinct. The following lemma shows that this assumption can easily be avoided.

Lemma 3.3 Let A be a comparison-based algorithm for a restricted version of the ANSV
problem in which all input elements are distinct. Then A can be used to solve the unrestricted
ANSV problem in the same asymptotic time and processor bounds.

Proof: Let an instance [of the unrestricted ANSV problem be given, and assume that
our goal is to calculate right matches only. (A similar approach can be used to calculate
left matches.) We modify I to obtain a same-size instance [’ such that: (i) all elements of
instance [’ are distinct, and (ii) the right matches of the elements in [are in correspondonce
with those in I'. The modification is straightforward; we simply append (in the “low-order”
[lgn] bit positions) the binary representation of the integer i to each element w; of I. Put
differently, whenever two equal elements w; and w; of I are compared by algorithm A, we
return w; < w; if and only if ¢ < 7. W

4 A Lower Bound

This section establishes a lower bound for the ANSV problem on a wide class of fixed-
connection networks, including the hypercube and all of its bounded-degree variants. JaJa
and Ryu [9] use a separator-based argument to establish the same asymptotic lower bound
for the shuffle-exchange and cube-connected cycles. However, the bound they obtain for the
hypercube is weaker than ours by a +/Igp factor. The factor of \/Igp arises because the
hypercube has ©(p/+/lg p)-size separators, whereas the shuffle-exchange and cube-connected
cycles have O(p/lg p)-size separators. Our (non-separator-based) argument establishes the
same lower bound not only for the hypercube, shuffle-exchange, and cube-connected cycles,
but also for any bounded-degree expander network. (The separator-based approach of JaJa
and Ryu [9] does not give a non-trivial lower bound for bounded-degree expander networks.)

The lower bound is proven under the following set of assumptions:

L1 Each input key is provided at exactly one processor.

11

L2 In a single time step, a processor can send and receive O(1) messages, and perform O(1)
local operations. A message can hold O(1) keys. The only local operations allowed on
keys are copy and comparison.

L3 Each of the p processors is Q(lg p) hops away from at least p — p/lg p processors.

The last assumption is satisfied by a wide class of fixed-connection networks. In the case
of the hypercube as well as all bounded-degree networks (including, of course, the bounded-
degree variants of the hypercube), every processor is Q(lg p) hops away from p— p® processors
for any constant ¢ > 0.

Theorem 1 Under Assumptions L1 to L3, any p-processor algorithm for the ANSV problem
requires Q((n/p)lgp) steps. The same bound holds for the problem of merging two sorted
lists of length n/2.

Proof: We establish the lower bound for a highly restricted version of the ANSV problem.
(It will be apparent that the problem we consider may also be viewed as a restriction of the
merging problem; hence, our lower bound also applies to merging.) In particular, we assume
that the input consists of a sequence of n = 4m distinct keys (for convenience, we assume
that n is a multiple of 4)

<Cl0, .. .,agm_l,bzm_l, .. .,bo>

and an integer k, 0 < k < m. The following properties are satisfied by the input: (i) The
a;’s are in ascending order, that is, a;—; < a; for 0 <1 < 2m; (ii) The b,’s are in descending
order, that is, b; > b;,_; for 0 < ¢ < 2m; (iii) Key by, 4; has rank 3m + ¢, 0 <1 < m; (iv) Key
At has rank 2m + i, k < i < m (v) Key @; has rank ¢, 0 < ¢ < k; (vi) The minimum of
keys a;yr and b; has rank 27 4+ k, and the maximum of these two keys has rank 21 + k + 1,
0 <1 < m. Thus, to determine the right match of a;yz, 0 < ¢ < m, it is both necessary
and sufficient to compare keys a;4; and b;. If ;41 > b; then the right match of a;1x is b;;
otherwise, the right match of a;4x is b;—; (unless ¢ = 0, in which case the right match of a;4

is undefined).

In accordance with Assumption L1, we assume that each key is input at a single processor.
Let {(a;) (resp., ((b;)) denote the index of the processor initially holding a; (resp., b;), and let
A(1, 7) denote the length of a shortest path between processors ¢ and j. Assume without loss
of generality that input variable k is provided at all processors. Let A denote an arbitrary
algorithm for this restricted version of the ANSV problem, and let M} denote the maximum
total number of messages sent by algorithm A for each k£, 0 < k < m. Note that

My = Y Alaie), (b))
0<i<m
Setting M = > << All(air), £(b;)), 0 <7 < m, we find that
Z Mi/ = Z Z A(g(ai-l-k)vg(bi))

0<i<m 0<i<m 0<k<m

< > M.

0<k<m

12

We now consider two cases. First, assume there exists an index set I C {0,...,m — 1}
such that |/| > <=(n/p)lg p and £(b;) is the same for all ¢ in I. In this case the lower bound
holds by Assumption L2 since the processor initially holding the set of b;’s indexed by [
must examine each of these keys.

Now assume that no such index set [exists. Using Assumption L3, we find that at
least %m of the b;’s with 0 < ¢ < m are initially located Q(lgp) hops away from any fixed
processor. Hence M! = Q(nlgp), 0 <i < m, and

> My =Qn’lgp).

0<k<m

By averaging, we conclude that for some choice of k, My = Q(nlgp). Assumption L2 then
implies that A must run for Q((n/p)lgp) steps in order to generate a total of Q(nlgp)
messages. Hl

5 Monotone Polygon Triangulation

A polygon is monotone if and only if it consists of two polygonal chains that are monotone
with respect to the same line. (A polygonal chain C' is monotone with respect to a line £ if
any line orthogonal to £ intersects C' in at most one point.) Let P be a monotone polygon
consisting of two chains: the “upper” chain U = (u; : 0 < ¢ < s) and the “lower” chain
D ={(d;:0<i<t), where ug = d;—y and us_1 = dy. A recent result of Atallah and Chen [3]
gives an optimal hypercube algorithm for determining the line with respect to which a given
polygon is monotone, if such a line exists. Their result allows us to assume that the given
polygon is monotone with respect to the x-axis. (If not, a trivial transformation can be
applied to ensure that this property holds.) Note that in a polygon that is monotone with
respect to the z-axis, all the vertices on the upper chain (resp., lower chain) have distinct
x-coordinates. A monotone polygon is one-sided if either its upper or lower chain consists
of a single edge, called the distinguished edge.

Our algorithm for triangulating a monotone polygon follows the approach of Berkman et
al. [4], Aggarwal et al. [1], and Goodrich [8]. The algorithm consists of two stages. In the
first stage, we decompose the monotone polygon into one-sided monotone polygons. In the
second stage, we triangulate the one-sided monotone polygons.

We assume a d-dimensional hypercube containing 2¢ = n processors, d > 1. Local
variable y at processor 7 will be referred to as y[i]. The input to our algorithm consists of
two sets of real variables z[i] and y[i], 0 <7 < 2¢. Variables z and y at processors 7 in the
range 0 < i < s (resp., s <1 < 2%) are the z- and y-coordinates of vertices (u; : 0 <7 < s)
(resp., (d; : 0 < i < t)). For each 7, 0 <7 < 2¢ let r(:) (vesp., {(i)) denote the integer j,
0 < 7 < 2% such that the edge from (x[:],y[z]) to (z[7], y[7]) is a right (resp., left) edge in the
triangulation of P (see Step 3 for the definitions of right and left edges). If no such integer
exists, then let r(¢) = +oo (resp., (1) = —o0). The output consists of integer variables

r[i] = r(:) and (1] = ((3), 0 <1 < 2%

13

‘ Algorithm Triangulate ‘

1. Decompose P into one-sided monotone polygons as follows. Merge sequences U and D
by the x-coordinates of their vertices. Let U; (resp., D;) be the subsequence of U (resp.,
D) that consists of vertices which lie between vertex d; and vertex d;,_y (resp., u; and
Uiy1) in the merged list. Note that U; = U; U {d;,d;—1} (resp., Dy = D; U{u;, uig1})
is a one-sided monotone polygon with (d;,d;—1) (resp., (ui,uir1)) as the distinguished
edge.

Set '[i] = min,;9a{y : 2lj] < 2[t] < 2[5 = 1]}, (2'[i], ¢'[1]) = (2["[], y[T2]),
and (z"[¢],y"[1]) = («[¢'[e] — 1], y[Z'[7] — 1]), 0 <7 < s. Set ¢'[1] = ming<jcs{J :
e[y < 2] < wlj+ 1}, (@[], y'Ti]) = (e['l]] yl'l]]), and (2"[].y"[2]) = («[2'[2] +
1],y[e'[:] + 1]), s < ¢ < 2% Implementation: Bitonic merge, prefix operation.
Running time: O(d).

2. Rotate each one-sided monotone polygon U;, 0 <1 <t (resp., D;, 0 < i < s), by the
smallest possible angle around the first (smallest x-coordinate) endpoint of its distin-
quished edge so that the distinguished edge is parallel to x-axis.

Set (x[i],y[i]) = O(x[i], y[t]), where the function § computes the coordinates of
(x[¢], y[t]) after a rotation around point (z'[¢],y’[¢:]) by the smallest angle that
makes y”[i] = y'[¢]. Set (z"[i],y"[:]) = 0(="[1],y"[:]), 0 < i < 2%. Implementation:
Local arithmetic operations. Running time: O(1).

3. For each vertex q in a one-sided polygon U; (resp., D;) compute “right” and “left”
edges, as defined below.

e The right edge of q is the edge (g, r) where r is the vertex of U; (resp., D;) with the
smallest z-coordinate such that x(q) < x(r) and y(q) > y(r) (resp., y(q) < y(r)).

e The left edge of q is the edge (¢, () where ¢ is the vertex of U; (resp., D;) with the
largest @-coordinate such that x(r) < x(q) and y(q) > y(r) (resp., y(q) < y(r)).

(a) Set r[i] = min,;{j : [j] = [¢{] and y[1] > y[j]}, 0 < @ < s. For any r[i],
0 < i < s, that was not set in the previous step, set r[i] = ¢'[i] — 1. Set ([i] =
max;<;{j : ¢'[7] =[] and y[¢] > y[j]}, 0 <1 < s. For any ([i], 0 < i < s, that was
not set in the previous step, set £[i] = ¢[;]. Implementation: Algorithm ANSV run
on variable y and segmented according to the variable ¢". Running time: O(d).

(b) Set r[i] = max;;{j : 7[j] = ¢[}] and y[i] < y[5]}, s < 1 < 2% For any r[i],
s < i < 24 that was not set in the previous step, set r[i] = i'[i] + 1. Set
(1] = min;;{j : ¢'[§] = ¢'[{] and y[i] < y[j]}, s <4 < 2% For any ([i], s < i < 2%,
that was not set in the previous step, set £[:] = ¢’[;]. Implementation: Algorithm
ANSV run on variable y and segmented according to the variable /. Running

time: O(d).

Algorithm Triangulate runs in O(lg n) time on an n-processor hypercube. The correctness
of the algorithm follows from the work of Berkman et al. [4]. Furthermore, Berkman et al. [4]
show how to reduce the problem of merging two sorted lists of length n to the problem of

14

triangulating a monotone polygon of size n. In view of Theorem 1 (see Section 4), this
reduction implies that an Q(n)-processor hypercube is needed to triangulate a monotone
polygon in O(lgn) time. Thus, our normal hypercube algorithm is processor-optimal as well
as time-optimal.

6 Building a Cartesian Tree

Let the Cartesian tree of a sequence W = (w; : 0 < ¢ < n) be defined as in Section 1.
Berkman et al. [4] prove that the parent of any element w; in the Cartesian tree is the larger
of w;’s left and right matches. Thus, a straightforward application of the ANSV algorithm
yields an O(lg n)-time n-processor normal hypercube algorithm for constructing a Cartesian
tree.

7 Concluding Remarks

In this paper, we have presented an O(lgn)-time n-processor normal hypercube algorithm
for the ANSV problem. It would be interesting to extend our techniques to obtain efficient
normal hypercube algorithms for other fundamental problems.

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dfmlaing, and C. K. Yap. Parallel compu-
tational geometry. Algorithmica, 3(3):293-327, 1988.

2] A. Aggarwal, D. Kravets, J. K. Park, and S. Sen. Parallel searching in generalized
Monge arrays with applications. In Proceedings of the 2nd Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 259-268, 1990.

[3] M. J. Atallah and D. Z. Chen. Optimal parallel hypercube algorithms for polygon prob-
lems. In Proceedings of the 5th IEEFE Symposium on Parallel and Distributed Processing,
pages 208-215, 1993.

[4] O. Berkman, B. Schieber, and U. Vishkin. Optimal doubly logarithmic parallel algo-
rithms based on finding nearest smaller values. Journal of Algorithms, 14(3):344-370,
1993.

[5] A. Borodin and J. E. Hopcroft. Routing, merging, and sorting on parallel models of
computation. Journal of Computer and System Sciences, 30:130-145, 1985.

[6] D. Z. Chen. Efficient geometric algorithms in the EREW-PRAM. In Proceedings of the
28th Annual Allerton Conference on Communication, Control, and Computing, pages

818-827, 1990.

[7] R. E. Cypher and C. G. Plaxton. Deterministic sorting in nearly logarithmic time
on the hypercube and related computers. Journal of Computer and System Sciences,

47:501-548, 1993.

15

[8] M. T. Goodrich. Triangulating a polygon in parallel. Journal of Algorithms, 10:327-351,
1989.

9] J. F. JaJa and K. W. Ryu. Optimal algorithms on the pipelined hypercube and related
networks. [EFEE Transactions on Parallel and Distributed Systems, 4:582-591, 1993.

[10] C. P. Kruskal. Searching, merging, and sorting. [KEE Transactions on Computers,
(C-32(10):942-946, 1983.

[11] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes, volume 1. Morgan Kaufmann Publishers, San Mateo, CA, 1992.

[12] E. W. Mayr and R. Werchner. Optimal routing of parentheses on the hypercube. In Pro-
ceedings of the 4th Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 109-117, 1992.

[13] L. G. Valiant. Parallelism in comparison problems. SIAM Journal on Computing,
4:348-355, 1975.

[14] J. Vuillemin. A unified look at data structures. Communications of the ACM, 23:229—
239, 1980.

[15] C. Yap. Parallel triangulation of a polygon in two calls to the trapezoidal map. Algo-
rithmica, 3:279-288, 1988.

16

