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This thesis studies the problems of packet routing and sorting on parallel models
of computation that are based on a fixed, bounded-degree topology. It establishes
lower bounds for several classes of sorting networks and algorithms, and describes
techniques and algorithms for packet routing and sorting on mesh-connected and

related networks.

A lower bound of Q(lgnlglgn/lglglgn) is established for the depth of shuffle-
unshuffle sorting networks, a class of sorting networks that maps efficiently to the hy-
percube and its bounded-degree variants. A stronger lower bound of Q(lg* n/ lglg n)
is shown for a subclass of the shuffle-unshuffle sorting networks whose structure cor-
responds to the class of ascend and descend algorithms on the hypercube. These
lower bounds also extend to restricted classes of non-oblivious sorting algorithms
on hypercubic networks. A lower bound of Q(nlg? n/(Iglgn)?) is shown for the size
of Shellsort sorting networks, and for the running time of non-oblivious Shellsort
algorithms. The lower bound establishes a trade-off between the running time of a

Shellsort algorithm and the length of the underlying increment sequence.

For the problems of permutation routing and sorting on meshes and related



networks, a set of techniques is proposed that can be used to convert many random-
ized algorithms into deterministic algorithms with matching running time and queue
size. Applications of these techniques lead to a deterministic algorithm for sorting
on the two-dimensional mesh that achieves a running time of 2n+ o(n), and a fairly
simple deterministic algorithm for routing with a running time of 2n + o(n) and
very small queue size. Some other applications of the techniques are also described.
Finally, the thesis gives algorithms and lower bounds for routing and sorting on

multi-dimensional meshes and meshes with bus connections.
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Chapter 1

Introduction

Among the many theoretical models of parallel computation that have been pro-
posed, the Parallel Random Access Machine (PRAM) is undoubtedly the most
highly studied. In the PRAM model, a set of sequential processors communicates
via a shared memory. In a single step of the computation, each processor can per-
form a bounded amount of internal computation, and access an arbitrary location
in the shared memory. In particular, this also means that any pair of processors can
communicate in a single step. While this assumption of a shared memory allows for
a succinct statement of many parallel algorithms, it also makes the PRAM model

somewhat unrealistic.

In more realistic models of parallel computation, the memory is distributed
among the processing devices, and each processing device can only communicate
with a small, fixed set of neighbors in a single step, while several communication
steps are necessary in order to send a message between processing devices that are
not directly connected to each other by a communication link. We refer to such a

model of computation as having a fixed topology.

As a result of this restriction to communication among neighboring processing

devices, the need arises for efficient algorithms that implement a variety of commu-



nication patterns between processing devices not directly connected to each other.
Such algorithms are commonly referred to as routing algorithms, and they have been
studied extensively in the last two decades. Another problem that is closely related
to the routing problem, but also important in its own right, is the problem of par-
allel sorting. Both routing and sorting are important subroutines in many parallel
algorithms, and various models of specialized hardware devices for these problems

have been proposed.

1.1 Model of Computation

In this thesis, we consider the problems of routing and sorting on parallel models
of computation that are based on a fixed topology. We focus our attention on the
following two classes of machines, which we refer to as fized-connection networks, and
circuits. A fized-connection network consists of a collection of sequential processors
connected by a sparse system of communication links. The processors operate in a
synchronous fashion, and communicate by sending messages over the communication
links. In a single step, a processor can read a constant number of the messages
that were sent to it in the previous step, perform some fixed amount of internal
computation, and send a constant number of messages across its communication

links to neighboring processors.

By a circuit, we understand a collection of specialized hardware devices arranged
in the form of a directed acyclic graph. Each hardware device can perform a fixed
elementary operation on a set of input values supplied by its incoming edges, and
output the results of this operation on its outgoing edges in the following step.
The computation of a circuit is started by supplying a set of input values to a
set of special devices with in-degree zero called input nodes. The results of the
computation appear at the output nodes, which are special devices with out-degree

zero. Examples of circuits are sorting networks built from comparators, or Boolean



circuits composed of AND, OR, and NOT gates.

The main differences between fixed-connection networks and circuits are as fol-
lows. The fixed-connection network is usually considered as a model for a general-
purpose parallel computer, where each processor in the network is equivalent in
power to a sequential Random Access Machine. The system of communication links
should be chosen in such a way that the resulting topology of the network is simple
and allows for an elegant and efficient solution of a variety of algorithmic problems.
In contrast, circuits are designed as special-purpose hardware for one particularly
important application, such as sorting, routing, or the computation of a fixed arith-
metic or Boolean expression. The devices used in the circuit are usually extremely
simple, and perform a fixed operation on the input values. The topology of the
circuit, on the other hand, may be complicated and irregular, as it does not have
to support any other applications. (Of course, due to layout constraints or other

considerations, it may still be advantageous to have a simple topology.)

Another difference between the two models is in the possible initial distribution
of the input values and the structure of the computation. Under the fixed-connection
network model, every processor can initially contain one or even a large number of
input values, while in a circuit every input node can have at most one input. On
the other hand, the circuit model is especially suitable for pipelined computations.
In particular, if the circuit is leveled, then a new set of input values can enter the
network in every step. Here, we say that a circuit is leveled, if and only if there exists
a labeling of the nodes with integer values such that all input nodes are labeled with
0, all output nodes are labeled with some value [, and every edge goes from a node

with label 7 to a node with label ¢ + 1, for some +.

We remark at this point that the distinction between fixed-connection networks
and circuits is not always as clear as may be suggested by the above presentation.
The reader should think about these two classes as the two extremes in a spectrum

of possibilities, rather than as two unrelated and completely disjoint classes. In fact,



there are numerous relationships between the two classes. For example, a number of
sorting and switching circuits, such as the bitonic sorter or the Bene§ permutation
routing network, can be efficiently implemented on many important fixed-connection
networks. As another example, a switching circuit composed of 2-input 2-output
switches usually requires some additional processor power and memory space in its
nodes, for example, to control the sequence of switch settings, or to buffer packets
that are delayed. Also, many systolic algorithms are suitable for implementation on

fixed-connection networks as well as circuits of specialized hardware devices.

In the following, the number of processors of a fixed-connection network is
denoted by N. We use the symbol N to denote the set of natural numbers, and [n]
to denote the set {0,...,n — 1}. Given z,y € N*, we define the Hamming distance

between 2 and y as ham (z,y) Sk 2y — yi|, where 2; and y; denote the ith

components of z and ¥, respectively. We also define ham,, (z,y) & S5 min{|z; —

yilsm = |z — yil }.

In the next section, we describe the classes of mesh-connected and hypercubic
fixed-connection networks, and define the problems of routing and sorting on these
networks. Section 1.3 describes sorting circuits based on comparator and switching
elements. Finally, Section 1.4 contains an overview of the main contributions of this
thesis. Detailed descriptions of previous results can be found in the introductory

sections of the subsequent chapters.

1.2 Fixed-Connection Networks

A fixed-connection network can be described by an undirected graph G = (V, E),
where each vertex v; corresponds to a processor p;, and each edge (v;, v;) corresponds
to a communication link between processors p; and p;. Unless explicitely stated
otherwise, we assume that all communication links are bidirectional, and that a

bounded amount of information can be transmitted in either direction in a single



step. Note that this definition does not take the possible existence of buses in the
network into account, as these are usually connected to more than two processors.

Such networks with buses are discussed in Chapter 6.

A variety of different fixed-connection networks have been proposed in the lit-
erature; for further references and an overview of the most important classes of
networks, we refer the reader to Leighton’s text [66]. In this thesis, we restrict
our attention to the families of mesh-connected and hypercubic networks, which
are probably the most important and most extensively investigated classes of fixed-
connection networks. They have a simple structure and admit elegant and efficient

implementations of a variety of parallel algorithms.

Aside from their practical importance, we believe that the mesh-connected and
hypercubic networks also deserve further attention due to the interesting relationship
between the two classes. On the one hand, the mesh-connected networks and the
hypercube are closely related in structure. On the other hand, the two-dimensional
mesh and the hypercubic networks are on opposite ends of the spectrum with respect
to diameter and layout area, and hence many of the techniques developed for one of
the two classes are not suitable for the other. This raises the question of whether we
can obtain algorithms that achieve good performance on both the two-dimensional
mesh and the hypercubic networks, as well as on the entire spectrum of multi-

dimensional meshes in between.

1.2.1 Mesh-Connected Networks

The d-dimensional mesh-connected network of side length n (or d-dimensional mesh
for short) is the network M, 4 = (V,F) with V = [n]? and £ = {(z,y) € V? |
ham (z,y) = 1}. By adding wrap-around edges to this network, we obtain the d-
dimensional torus of side length n, formally defined as T}, 4 = (V, E) with V = [n]?

and F = {(z,y) € V? | ham, (z,y) = 1}. Other closely related networks are meshes



and tori with diagonal edges, trigonal and hexagonal meshes, and the various classes

of meshes with buses discussed in Chapter 6.

The one-dimensional mesh and torus networks are also often referred to as the
linear array and ring, respectively. Many problems related to routing and sorting
on these networks are already fairly well understood, and hence we restrict our
attention to networks of dimension at least 2. We only remark at this point that
a good understanding of these one-dimensional networks is very important in the
study of routing and sorting algorithms for networks of dimension 2 and higher,
as many of these algorithms use routing and sorting on linear arrays and rings as

subroutines.

Of particular practical importance are the cases of the two-dimensional mesh
and torus. A number of parallel machines have been designed and built based on
these topologies (e.g., see [3]), and numerous algorithmic problems have been studied
both in theory and practice. In contrast, the meshes and tori of dimension d > 3,
also called multi-dimensional meshes, have received somewhat less attention, and

many problems related to routing and sorting on these networks remain open.

1.2.2 Hypercubic Networks

The second family of fixed-connection networks that we consider in this thesis are
the hypercubic networks. For d > 0, the d-dimensional hypercube is defined as
Hy = (V,E) with V = {0,1}? and E = {(2,y) € V? | ham (2,y) = 1}. Thus,
a d-dimensional hypercube has N = 2% processors that can be labeled with the
29 bit strings of length d in such a way that two processors are connected by a
communication link if and only if their labels differ in exactly one bit position. Note
that the d-dimensional hypercube is nothing more than a d-dimensional mesh of
side length 2. Thus, we can regard the two-dimensional mesh and the hypercube as

being on opposite ends of the spectrum of mesh-connected networks.



One disadvantage of the hypercube is its non-constant degree. In a hypercube
of dimension d, each of the N = 2% processors is connected to d other processors; for
larger N this quickly becomes impractical. However, many important algorithms
for the hypercube have a very regular structure that does not require the full con-
nectivity afforded by the network. To formalize this claim, we say that a processor
communicates across dimension ¢ if it sends a message to the neighbor whose label
differs in the ¢th bit position from its own label. An algorithm for the d-dimensional
hypercube is called normal if we can assign a label [(7) € N to the ith step of its
computation, for all ¢ € N, such that |{(: + 1) — [(z)| < 1 and every processor only
communicates across dimension /(i) mod d in the ith step of the computation. Two
natural subclasses of the normal algorithms are obtained by imposing the conditions
l(i+1)=1(¢)+1and I(¢ 4+ 1) = (i) — 1, respectively, on the labeling of the com-
putation steps in the above definition; the resulting classes of algorithms are known

as the ascend and descend classes, respectively

Examples of important normal algorithms are the Fast Fourier Transform, prefix
computations, and bitonic merging and sorting. (We remark that all of these algo-
rithms can also be efficiently implemented as ascend or descend algorithms.) The
simple and regular structure of this class of algorithms has motivated the definition
of several bounded-degree variants of the hypercube, called hypercubic networks,
which can efficiently execute these algorithms. Examples of hypercubic networks
are the butterfly, shuffle-exchange, and cube-connected cycles. For a formal defini-
tion of these networks, we refer the reader to [66]. In the present context, it suffices
to know that any hypercubic network can simulate an arbitrary normal algorithm on
a hypercube of the same size with only constant slowdown. Like the two-dimensional
mesh and the torus, the hypercubic networks have served as the basis for a number

of actual parallel machines [3].



1.2.3 Routing and Sorting on Fixed-Connection Networks

In our study of fixed-connection networks, we focus on the problems of routing and
sorting. We restrict our attention to store-and-forward routing techniques; see [67]
for an overview of other message routing methods. We define the packet routing
problem on a fixed-connection network as the problem of rearranging a set of pack-
ets in the network such that every packet ends up at the processor specified in its
destination address. Here, the address of a processor is determined by some fixed
bijection Z : V > [|V]] called an indexing scheme. A 1-1 routing problem, or permu-
tation routing problem, is a routing problem in which each processor initially holds
at most one packet, and each processor receives at most one packet. A routing prob-
lem in which each processor is the source of at most &y packets and the destination

of at most ko packets is called a k;—ky routing problem, or a k;—k5 relation.

We distinguish between off-line and on-line routing problems. In an off-line
routing problem, the sources and destinations of all the packets are known in ad-
vance, and an appropriate schedule for the movement of the packets in the network
can be computed before the start of the actual routing process. The problem of
off-line routing is then to prove the existence of a schedule that can be executed
within a certain time bound, and to compute such a schedule efficiently. In an
on-line routing problem, the sources and destinations of the packets are not known
in advance, and thus each processor has to decide its next action based only on
the local information it has accumulated up to the current time. A special case of
on-line routing is the dynamic routing problem, in which packets are continuously

generated during a computation of the network.

In the 1-1 sorting problem, we assume that every processor initially holds a
single packet, where each packet contains a key drawn from a totally ordered set.
Our goal is to rearrange the packets in such a way that the packet with rank 7 (i.e.,

with key of rank ¢) is moved to the processor with index i, for all ¢. Similarly, we



can define the k—k sorting problem, where each processor initially holds & packets,

and the packet with rank ¢ has to be moved to the processor with rank |¢/k].

Note that a trivial lower bound for both routing and sorting is given by the
diameter of the network. This implies a lower bound of r(n—1) for the r-dimensional
mesh, and of Q(lgn) for the hypercubic networks. A lower bound for k—k routing
and sorting is given by the bisection width of the network. For the r-dimensional
mesh, this bisection width is n”~!, and hence at least %” steps are needed in the case
where all kn” packets have to cross the bisection. In the remainder of this thesis, a
routing or sorting algorithm for a hypercubic network is called optimal if its running
time matches the lower bound within a constant factor. In contrast, an algorithm
for a mesh-connected network is called optimal if its running time matches the lower

bound within an additive lower order term.

Finally, we remark that there is a close relationship between the problems of
routing and sorting on parallel machines. For example, a routing problem in which
each processor is the source and destination of exactly one packet can be solved by
sorting the packets with respect to their destination addresses. More generally, many
routing algorithms for fixed-connection networks involve the sorting of small subsets
of the packets, while many sorting algorithms use off-line routing in intermediate

steps of the computation.

1.3 Sorting Networks

A circuit can be described by a directed acyclic graph D = (V, E), where each vertex
v; € V corresponds to a hardware device g¢;, and each directed edge (v;,v;) € E
corresponds to a wire from an output of g; to an input of g;. In the case where
there are several different kinds of hardware devices in the circuit, we assume an
appropriate labeling of the set of vertices. If a device produces several different

outputs, or if it performs a non-commutative operation on several inputs, then an



additional labeling of the edges is needed to specify the order of the input and output

values of the device.

Among the number of different classes of circuits that have been studied, the
class of Boolean circuits built from AND, OR, and NOT gates has probably received
the most attention. In this thesis, we are not concerned with Boolean circuits, but
instead we focus on the class of comparator and switching circuits. The circuits
in this class are built from comparators and switches, and have been extensively
studied in the context of routing and sorting. In this thesis, we limit our attention
to the problem of constructing efficient sorting circuits, or sorting networks. For an
introduction to routing circuits (also often referred to as interconnection networks)

and a survey of results, we refer the reader to [51, 87, 108].

A 2-input comparator is a device that compares two integer values supplied on
its input wires, and then outputs the larger of the two values on the output wire
labeled as the maximum output, and the smaller value on the output wire labeled
as the minimum output. A 2-input switch is a device with two inputs z¢ and x4
and two outputs yo and y;. Depending on a special internal state called the switch
position, two packets arriving on the inputs zg and z; are either directly moved to
the corresponding outputs (that is, the packet on z¢ is moved to yg, and the packet
on 1 is moved to y1 ), or they are exchanged and then moved to the corresponding
outputs. The switch position can either be set by some external process, or it can
be locally computed in the switch. Thus, a comparator can be viewed as a switch
in which the switch position is determined by a comparison of two values contained
in the incoming packets. These definitions of comparators and switches can be

generalized to the case of k inputs and outputs, k£ > 2, in a natural way.

Let C' be a circuit of comparators and switches with n input nodes z;, 0 <7 < n,
and n output nodes y;, 0 < ¢ < n. Then C is called a sorting network if, for any
assignment of input values to the input nodes, the values will eventually appear

in sorted order at the output nodes. Similarly, we can define merging networks

10



that merge two or more sorted lists, or selection networks that select the input
value of a specified rank. The size of a sorting network is given by the number
of comparators, while the depth of a sorting network is defined as the length of
the longest path from an input node to an output node. It follows from simple
information-theoretic arguments that every sorting circuit has Q(nlgn) size and
Q(lgn) depth. For a detailed introduction to the theory of sorting networks, and a
survey of early results, we refer the reader to Knuth’s text [50]. Some references to

more recent work can be found in Section 2.1.

Most of the literature on sorting networks assumes that the network consists
entirely of comparator elements, and that no copying of values is possible (i.e., no
fan-out is allowed at the nodes). However, sometimes it may be convenient to relax
some of these conditions. For example, Muller and Preparata [80] have designed
a small-depth sorting circuit consisting of comparators and Boolean components.
As another example, it is possible to design fault-tolerant circuits by allowing a
constant fan-out at the nodes [5, 68]. In this thesis, we allow both comparators and
switches to appear in a sorting network. As we will see in Chapter 2, this allows
for an elegant definition of several natural classes of sorting networks that can be

efficiently emulated on mesh-connected and hypercubic fixed-connection networks.

1.4 Summary of Thesis Results

In the following we give an overview of the main contributions of this thesis.

In Chapter 2, we prove lower bounds on the depth of shuffle-unshuffle sorting
networks, a class of sorting networks whose structure corresponds to the class of
normal algorithms on the hypercube. We first show a lower bound of Q(lg? n/ Iglg n)
for the special case of shuffle-based sorting networks, which correspond to the ascend
and descend algorithms on the hypercube. Through a generalization of the proof

technique, we then establish a lower bound of Q (%) for the entire class of

11



shuffle-unshuffle sorting networks. The only previously known lower bound for these
classes of networks was the trivial Q(lgn) bound. We also describe extensions of our
lower bounds to restricted classes of non-oblivious sorting algorithms on hypercubes
and multi-dimensional meshes. The results of this chapter are joint work with my
advisor Greg Plaxton, and preliminary versions of the material have appeared in [90]

and [91].

Shellsort is a well known sequential sorting paradigm that has also been used in
the design of small depth sorting networks. While Shellsort algorithms have a very
simple structure, it is often very difficult to analyze or bound their performance.
In Chapter 3, we present general lower bounds on the running time of Shellsort
networks and algorithms. We first give a fairly simple proof of a lower bound of
Q(nlg?n/(lglgn)?) on the size of any Shellsort sorting network. This bound is
then extended to the running time of non-oblivious Shellsort algorithms. The lower
bounds establish a trade-off between the running time of a Shellsort algorithm and
the length of the underlying increment sequence. This chapter also represents joint

work with Greg Plaxton; a preliminary version was published in [89].

Chapter 4 considers the problems of permutation routing and sorting on meshes
and tori. Over the last few years, a number of authors have proposed randomized
algorithms for these problems that achieve a smaller running time or queue size than
the best deterministic solutions. The main contribution of Chapter 4 is a technique
that allows us to convert many of these randomized algorithms into deterministic
algorithms with matching running times and queue sizes (within a lower order ad-
ditive term). Using this technique, we derive a new deterministic routing algorithm
for the two-dimensional mesh with a running time of 2n + o(n) and a queue size
of 5, and a sorting algorithm with a running time of 2n 4 o(n) and a queue size of
around 25. We also point out some other applications of this technique. This chap-
ter describes joint work with Michael Kaufmann and Jop Sibeyn, and preliminary

versions of this material have appeared in [47] and [111].
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For routing and sorting on multi-dimensional meshes and tori, the running times
of the fastest algorithms known are about a factor of 2 away from the diameter lower
bound. In Chapter 5, we reduce this gap by giving improved upper and lower bounds
for sorting in the multi-packet model of the mesh. For networks of sufficiently high
constant dimension, our bounds are nearly tight. We also describe algorithms for
permutation routing that nearly match the diameter bound. A preliminary version

of these results has appeared in [112].

Chapter 6 studies the problems of permutation routing and sorting on several
models of meshes with fixed and reconfigurable buses. Part of this material has
been published in [113]. Finally, Chapter 7 contains some concluding remarks and

directions for further research.
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Chapter 2

Lower Bounds for

Shuffle-Unshuflle Sorting
Networks

This chapter considers shuffle-unshuffle sorting networks, a class of comparator
networks whose structure maps efficiently to the hypercube and any of its bounded
degree variants. Leighton and Plaxton [71, 88] have recently discovered a family
of n-input shuffle-unshuffle sorting networks with depth 20(v/Iglgn) lg n; these net-
works are the only known sorting networks of depth o(lg”n) that are not based
on expanders. In this chapter, we present a lower bound of Q(lg?n/lglgn) for

the subclass of shuffle-based networks. In addition, we establish a lower bound of

Q (l%;légl;gnn) for the entire class of shuffle-unshuffle sorting networks, thus ruling

out the existence of optimal, O(lgn)-depth sorting networks in this class. We also
describe a restricted class of non-oblivious sorting algorithms on the hypercube that

is covered by our lower bounds.
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2.1 Introduction

A variety of different classes of sorting networks have been described in the liter-
ature. Of particular interest here are the so-called AKS network [2] discovered by
Ajtai, Komlés, and Szemerédi, and the sorting networks proposed by Batcher [7].
While the AKS network is the only known sorting network with O(lgn) depth, it also
suffers from two significant shortcomings. First, the multiplicative constant hidden
by the O-notation is impractically large. Through a series of improvements [18, 86],
this constant has been reduced to below 2000, but remains impractical. Second,
the structure of the network is highly irregular, and does not seem to map effi-
ciently to any of the common interconnection schemes. For example, Cypher [25]
has shown that any emulation of the AKS network on the cube-connected cycles re-
quires Q(lg” n) time. (A sorting algorithm emulates the AKS network if it performs

the same sequence of comparisons on any input.)

In contrast, the networks proposed by Batcher have a relatively simple struc-
ture and a small associated constant, and can be efficiently implemented on many
common interconnection schemes, including meshes and hypercubic networks. This
makes them the networks of choice in many practical applications, even though they
have depth @(lg2 n) and are thus asymptotically inferior to AKS. This situation has
motivated a number of attempts to construct O(lgn)-depth sorting networks with
simpler, more regular topologies, and/or a considerably smaller constant. Three
classes of networks that have received particular attention are Shellsort networks,

periodic sorting networks, and shuffle-unshuffle sorting networks.

Shellsort networks have a very simple structure that is based on the sequential
Shellsort sorting algorithm. A class of Shellsort networks with depth ©(lg?n) was
given by Pratt [95]. For Shellsort networks based on monotonically decreasing in-
crement sequences, Cypher [24] has established a lower bound of Q(lg n/lglgn).

A more general lower bound that holds for all Shellsort networks, and even non-
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oblivious Shellsort algorithms, is established in Chapter 3 of this thesis; similar
bounds have also been established by Poonen [92]. These results answer in the neg-
ative the longstanding open question of whether a running time of O(nlgn) can be

achieved by any Shellsort algorithm.

A comparator network is called a periodic sorting network if every input per-
mutation can be sorted by repeatedly passing it through the network. The primary
motivation for such periodic networks is the reduction in hardware cost achieved
by applying the same network repeatedly to the input. A periodic sorting network
of depth O(lgn) and running time O(lg?n) was given by Dowd, Perl, Rudolph,
and Saks [28]. Very recently, Kutylowski, Lorys, Oesterdiekhoff, and Wanka [60]
have shown the existence of periodic networks of depth 5 and running time O(lg* n)
based on expanders. No non-trivial lower bounds for periodic sorting networks are

currently known.

In this chapter, we focus on the class of shuffle-unshuffle sorting networks, a
notion that is formalized below. We establish a depth lower bound of Q(lg? n/ Iglg n)
for the subclass of shuffle-based sorting networks, and a lower bound of 2 (%)
for arbitrary shuffle-unshuffle sorting networks. In fact, our lower bound argument
can be extended to certain restricted classes of non-oblivious sorting algorithms on
hypercubic networks and multi-dimensional meshes. Before elaborating any further

on these results, we will briefly describe the comparator network model, and define

several classes of sorting networks.

2.1.1 Shuffle-Unshuffle Sorting Networks

In Section 1.3, a comparator network was defined as an acyclic circuit of comparator
elements, each having two input wires and two output wires. We will use this
model throughout most of this chapter, but will also briefly consider the following

alternative model.
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In this model, a comparator network on n registers is determined by a sequence
of pairs (I1;, &;), 0 < ¢ < ¢, where II; is a permutation of {0,...,n — 1} and &; is a
vector of length |n/2] over {+, —, 0, 1}. The network receives as input a permutation
of {0,...,n — 1} that is initially stored in the registers, and then operates on the
input in £ consecutive steps. In step ¢, 0 < ¢ < £, the register contents are permuted
according to Il;, and then the operation stored in the kth component of Z; is applied
to registers 2k and 2k 4 1. In a “4” operation, the values stored in the two registers
are compared, and the smaller of the values is stored in register 2k, the larger one
in 2k + 1. In a “=” operation, the values are stored in the opposite order. A “0”
means that no operation takes place on the corresponding pair of registers. A “1”
operation simply exchanges the values of the two registers. A comparator network
is called a sorting network if it maps every possible input permutation to the same

output permutation.

It is well known that these two models of comparator networks are equivalent.
(That is, given any network in one model, there exists a network in the other model
with the same size and depth that implements the same mapping from inputs to
outputs.) While the first model often appears more intuitive, we can use the second
one to define some interesting special classes of networks by restricting the possible

choices for the permutations II;.

The shuffle permutation g, on n = 2% inputs may be defined as follows. If
Jd—1 -+ -jo denotes the binary representation of some integer j, 0 < 7 < n, then
7s(J) has binary representation jg_g - - -jojd—1. A sorting network is called shuffle-
unshuffle if I1; = wgp, or II; = 7T5_h1 holds for all z. A natural subclass of the shuffle-
unshuffle sorting networks can be obtained by requiring II; = 7y, for all ¢; we say
that a network satisfying this condition is shuffle-based. Similarly, if 1I; = 7T5_h1 for

all 7, then the network is unshuffle-based.

The primary motivation for the definition of these two classes of networks is

given by the fact that they can be efficiently implemented on any of the hypercu-
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bic fixed-connection networks (i.e., the hypercube, butterfly, cube-connected cycles,
or shuffle-exchange). More precisely, the structure of the shuffle-unshuffle sorting
networks corresponds exactly to the class of normal algorithms on the hypercube,
while the structures of the shuffle-based and unshuffle-based networks correspond
to the classes of descend and ascend algorithms, respectively (see Subsection 1.2.2
for a definition of these classes). Most of the algorithms that have been proposed
for the hypercube are normal; important examples are Fast Fourier Transform, par-
allel prefix, bitonic merging and sorting. In fact, it can be argued that the primary
motivation for the study of the bounded-degree variants of the hypercube (i.e., the
butterfly, cube-connected cycles, and shuffle-exchange) has been the capability of

these networks to efficiently implement the class of normal algorithms.

The study of shuffle-based sorting networks was proposed by Knuth [50, Ex-
ercise 5.3.4.47]. The best upper bound for this class is given by Batcher’s bitonic
sort [7], with a depth of O(lg? n).

The class of shuffle-unshuffle sorting networks was defined by Leighton and
Plaxton [71, 88], who show the existence of a family of shuffle-unshuffle sorting
networks with depth 20(V/glg n) lg . The construction of these networks is based
on a “probabilistic” sorting network described in [70], which sorts all but a super-
polynomially small fraction of the possible input permutations. We point out that
the depth of the above networks is o(lg'**n), for all € > 0, and that they represent
the only known sorting networks of depth o(lg2 n) that are not based on expanders.
Naturally, this raises the question of whether a depth of O(lgn) can be achieved by

any shuffle-unshuflle sorting network.

2.1.2 Overview of this Chapter

In the following sections, we resolve this question by showing a lower bound of

Q (%) on the depth of any shuffle-unshuffle sorting network. We also show
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a stronger lower bound of Q(lg? n/lglgn) for the class of shuffle-based sorting net-
works, thus establishing a separation between the power of strictly shuffle-based (or
unshuffle-based) networks, and networks in which both shuffling and unshuffling is
allowed. Our lower bounds also extends to certain restricted classes of non-oblivious
sorting algorithms on hypercubic machines and multi-dimensional meshes. However,
our lower bound argument does not allow the copying of elements by the algorithm.
Thus, the Sharesort sorting algorithm of Cypher and Plaxton [26], which achieves
a running time of O(lgnlglgn) (with preprocessing) on any of the hypercubic ma-
chines, is not subject to our lower bound. Nonetheless, we believe that our present
results are already interesting in their own right, and that they may constitute an
important step towards more general lower bounds for sorting on hypercubic ma-

chines.

The remainder of this chapter is organized as follows. Section 2.2 describes
the basic ideas underlying our proof technique. Section 2.3 contains some useful
definitions and lemmas. Section 2.4 proves the lower bound for shuffle-based net-
works. Section 2.5 then shows the lower bound for arbitrary shuffle-unshuffle sorting
networks. Some extensions and limitations of our proof technique are discussed in

Section 2.6. Finally, Section 2.7 lists some open questions for future research.

2.2 Proof Ideas

In this section, we give a very informal description of the most important ideas
in the proofs of the lower bounds. We first outline the lower bound argument
for shuffle-based networks given in Section 2.4. We then explain why this relatively
simple argument does not extend to the more general class of shuffle-unshuffle sorting
networks, and describe the additional ideas that are needed in order to get a lower

bound for this class.
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2.2.1 A Naive Proof Idea

A simple observation concerning comparator networks is that a sorting network must
perform a comparison on every pair of adjacent values in every input, that is, every
pair of values {m, m+1} must appear on the input wires of some comparator element.
(We assume the inputs to be permutations of {0,...,n — 1}.) Thus, one might
attempt to prove a lower bound of ¢ for the depth of a class of comparator networks
by showing, for all networks in the class, the existence of an input permutation r,
and of a set of adjacent values {m, ..., m=+1} in 7, such that no two elements of the
set are compared up to level £ of the network. In the following, we will call such a
set an incomparable set. If we apply this proof idea to a shuffle-unshuffle network,
starting out with the set of all values as our incomparable set, and, whenever two
elements of the set get compared, removing one of them from the set, then we might
lose up to half of the elements in any given level. So using this simple approach,
we could only show the trivial lower bound of Q(lgn) for the depth of a sorting

network.

2.2.2 The Proof for Shufle-Based Sorting Networks

The key idea to overcome this problem is to modify the proof technique in a way
that allows us to exploit the structural properties of the particular class of networks
that we are studying. To explain this idea, we consider the case of the shuffle-based
networks; the case of the unshuffle-based networks is symmetric. Note that a shuffle-
based network can be seen as a concatenation of a number of butterfly networks of
depth lg n each. Thus, if we can show that the size of our incomparable set decreases
by at most a polylogarithmic factor in each butterfly, then at least Q(lgn/lglgn)
consecutive butterflies are needed in order to bring the size of the incomparable set
down to 1; this directly implies the Q(lg®n/lglgn) lower bound for shuffle-based

sorting networks.
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The following recursive definition of a butterfly is crucial for understanding our
proof technique: A butterfly with 2¢ inputs and depth d consists of two parallel
2¢=1_input butterflies of depth d — 1, followed by a final level of up to 2%~! compara-
tors. Every comparator in the final level takes one input from the outputs of each
of the two 29~ !-input subnetworks. Finally, a 1-input butterfly is just a wire. This
“tournament-like” structure leads to the following important property of a butterfly:
An observer of a 2%-input butterfly tournament who sees the outcomes of all com-
parisons in the two 2%~ !-input subnetworks, but not the outcomes of the final level
of comparisons, will not be able to say anything about the relative ordering of any
two items taken from different subnetworks. In other words, the observer will not be
able to say anything about the relative strength of the two “subtournaments” before
the final stage. This “disjointness property” of the subnetworks plays a crucial role

in the lower bound argument.

Instead of maintaining only a single incomparable set, we now maintain a col-
lection of incomparable sets in each recursive subnetwork. More precisely, after
entering a new butterfly of depth lgn, we partition our current incomparable set
into nlg>n disjoint incomparable sets, most of which are empty, with Ig>n sets en-
tering on each wire (recall that a single wire is a l-input butterfly). Thus, every
2-input butterfly has two different collections of lg® n incomparable sets arriving on
its two input wires. It is now possible to recombine these sets to get a new collec-
tion of roughly lg® n incomparable sets, containing all of the elements of the two

collections.

More generally, due to the recursive structure of a butterfly, in every level we
recursively have two different collections of ©(lg” n) incomparable sets coming from
two disjoint subnetworks. We show that there exists a partial matching between
these two collections of sets such that, if we combine the sets according to the
matching and remove one element from every pair of elements from the same set

that gets compared, we obtain a new collection of incomparable sets while losing only
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a very small fraction of our elements. The number of sets in this new collection is
only slightly larger than the number of sets in either of the two previous collections.
The aforementioned “disjointness property” of the two subnetworks is needed at
this point to make sure that the new sets in the collection each contain adjacent

elements, under some appropriately chosen set of input permutations.

If we repeat this process over all Ig n levels of the butterfly, then we end up with
a single collection of ©(lg® n) incomparable sets. The total number of elements in
the sets is only a constant factor smaller than it was when we entered the butterfly.
If we pick the largest of the @(lg3 n) sets as our new incomparable set, then we only

lose a polylogarithmic factor in the size of the set.

To formalize this proofidea, Section 2.3 introduces the notion of an input pattern
representing a class of similar inputs. A class of inputs with the desired property
(existence of a large incomparable set) is then constructed in Section 2.4 by stepwise

refinement of a given input pattern in every level of the network.

2.2.3 The Proof for Shufle-Unshuffle Sorting Networks

The above argument does not work for arbitrary shuffle-unshuffle networks, as they
do not satisfy the “disjointness property” of the two subnetworks used in the ar-
gument. To overcome this obstacle and prove a lower bound for arbitrary shuffle-
unshuffle sorting networks, we introduce the class of shuffle-unshuffle networks with

“bounded overlap”.

Assume we are given an arbitrary shuffle-unshuffle network A with £ levels
(I;,Z;), 0 < 7 < £, as described in the register model of a comparator network.
In order to define the “span” and “overlap” of A, it is convenient to introduce a
number of auxiliary variables. Let a; = 1 if II; = 7y, and a; = —1if II; = ﬂs_hl,

0 < i < . (We remark that the value of ag has no impact on the definitions that

follow.) Let b; = 37<;;a;, 0 < ¢ < (. The span of A may now be defined as

22



|{b; : 0 < i < (}|. The overlap of A is the minimum integer r > 0 such that either:
(i) b; <bj+rforall0 << j<{ or(ii) b > b; —rforall 0 <i< j < L Note
that a network has overlap 0 iff II; = II; for all 1 < < j < £. Furthermore, the
span of a network is always at least as large as its overlap, with equality occurring

only in the case £ = 0, where the span and overlap are both 0.

The proof of the general lower bound in Section 2.5 is based on two main
additional ideas. First, we show in Subsection 2.5.1 how the lower bound argument
for shuffle-based networks can be modified to handle shuffle-unshuffle networks with
small overlap. The overall structure of this proof is very similar to that for shuffle-
based networks. However, a number of subtle changes are required in order to extend
the argument to networks with non-zero overlap. The modified proof is based on
the observation that, informally speaking, a shuffle-based network with small overlap
still satisfies some relaxed version of the “disjointness property”. More precisely, we
obtain a trade-off between the overlap of the network and the lower bound that can

be shown.

Second, we show in Subsection 2.5.2 that any shuffle-unshuffle network can be
partitioned into a number of consecutive shuffle-unshuffle networks such that the

overlap of each network in the partition is sufficiently smaller than its depth.

2.3 Definitions and Basic Lemmas

This section contains a number of definitions and lemmas that are needed for the
proof of the lower bound. In the first subsection, we introduce the concepts of
input patterns and input pattern refinement. Subsection 2.3.2 defines our notion of
a comparator network and its action on an input pattern, and introduces the class

of reverse delta network. Finally, Subsection 2.3.3 contains a few basic lemmas.

In the following, unless explicitly stated otherwise, the set of input wires of a

comparator network is denoted W. An input to a comparator network is a total
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mapping from W to a set V of possible input values. We will restrict our attention
to inputs 7 that are permutations of [n], i.e., where |W| =n, V = [n], and 7 is one-
to-one. The set of all one-to-one functions from a set A to a set B will be denoted
by (A — B), and so the set of all inputs of a given comparator network may be
written as (W +— V). Furthermore, for a function f on a set A and a subset B of
A, let f, denote the functional restriction of f to B. For two functions fo and f;

on disjoint sets Ag and A;, we write fo @ fi for the union of fy and fi:

fo(z) forall z in Ag, and
fi(z) forall z in A;y.

(fo® fi)() =

2.3.1 Input Patterns and Refinement

In the following definitions, we introduce the notions of input patterns and input
pattern refinement, which are fundamental to our proof technique. Informally, an
input pattern describes a set of inputs with certain common properties. Input
pattern refinement is the process of imposing additional constraints on such a set of

inputs.
Definition 2.3.1 Let P be a set and <p be a total ordering on P.

(a) Aninput pattern is a total mapping from W to P.

(b) Let po, p1 be two input patterns. We say that pg can be refined to py (written
po Dw p1) if (po(w) <p po(w)) = (pi(w) <p pi(w')) holds for all w and w’
m W.

(c) Let p be an input pattern and m be an input. We say that p can be refined to
7 (written p Dw 7 ) if (p(w) <p p(w’)) = (7(w) < w(w')) holds for all w and
w' in W.

The set P will be referred to as the pattern alphabet, and the elements of P are

called pattern symbols. Throughout this chapter, pattern symbols are denoted by
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script letters.

def

Example 2.3.1 Let W < {wy,...,w,_1}, P = {S, M, L}, and let the ordering
<p on P be given by S <p M <p L. (Informally, the symbols S, M, and L may
be interpreted as “Small”, “Medium”, and “Large”, respectively.) Then the input
pattern p assigning L to wg and wy and M to all other wires can be refined to all
inputs that assign the two largest values to wqy and wy. We could also refine p to
other input patterns, for example to a pattern p’' such that L is assigned to wo and
wy, S is assigned to wy, and M is assigned to all other wires. The new pattern p’
can itself be refined to all inputs that assign the largest values to wg and wy, and the

smallest value to wq.

The relation Dy defined above is a partial ordering on the set of input patterns.
Note that the set V of input values can be regarded as a special case of a pattern
alphabet with the ordering of the natural numbers. Every pattern can be refined to
some input, and we could assume that the pattern alphabet P is always a subset
of V. The pattern-to-pattern refinement in Part (b) of Definition 2.3.1 would then
become a special case of the pattern-to-input refinement in Part (¢). However, in
the following we will not restrict our choice of P to subsets of V. We will see that
this gives us more power of expression and, thus, simplifies the presentation of the

proof.

We may think of an input pattern p as a description of the set of inputs to which
p can be refined. This set is denoted p[V] < {7 : 7 is an input such that p Dy 7}.
When we refine a pattern pg to py, then we are imposing additional constraints on
this set of inputs. Formally, we have (po Dw p1) < (po[V] 2 p1[V]). Alternatively,
the reader may also view an input pattern p as a shorthand for a logical predicate

that holds for exactly the inputs in p[V].
Definition 2.3.2 Let p and q be input patterns on W, and let U be a subset of W.
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(a) The input pattern p;, on U is the restriction of p to U.

(b) We say that p can be U-refined to q (written p Dy q) if p Dw ¢ and p(w) =
q(w) holds for all w in W\ U.

Definition 2.3.3 Let Uy and Uy be disjoint subsets of W, pg be an input pattern
on Uy, and py be an input pattern on Uy. Then ¢ = po & p1 is the input pattern on

Uy U Uy such that 4y, = Po and Uy, = P1-

If for two patterns py and p; both pg Dw p1 and p; Dw po hold, then we
say that pp and p; are equivalent. In this case, we have po[V] = p1[V], and the
refinement steps from pg to p; and vice versa can be achieved by simply renaming
the pattern symbols in a way that preserves the ordering <p. Hence, we call this

special case of a refinement step an order-preserving renaming.

def

Example 2.3.2 Let W & {wq,...,wo_1} and P = {P; : i > 0} with P; <p Pis1
Jor all i > 0. Then any input pattern p is equivalent to the input pattern pg, k> 0

obtained from p by substituting every pattern symbol P; in p by Piyr, for all v.

2.3.2 Comparator Networks

We now further formalize our notion of a comparator network, and explain how
its domain of operation can be extended from the set of inputs to the set of input

patterns.

In the following, a comparator network is interpreted as a mapping from a set
of possible inputs to a set of possible outputs. More precisely, a comparator network
A on input wires W and output wires W’ defines a mapping (which we also denote
by A) from (W — V) to (W’ +— V) such that every input 7 : W +— V is mapped to
an output 7' : W/ — V that is a “permutation” of 7. By this we mean that there

exists a bijection p : W — W' such that 7(w) = 7’(p(w)) holds for all w in W.
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Let Af, A7 be two sets of n-input comparator networks. Then AF® AT, the serial
composition of Aj and A}, denotes the set of all networks A that can be obtained by
connecting the output wires of a network from Af to the input wires of a network
from Aj. In some cases, we may want to impose certain special conditions on this
connection between the output wires of the first network and the input wires of
the second network. If no conditions are stated, then the connections can be made
according to an arbitrary one-to-one mapping. As it happens, we often make use of
the serial composition operator in the context of singleton sets Aj and Aj. In such
a case, we may write, for example, Ag@ A; (where Ag, Ay are networks) rather than
{Ao} @ {A4}.

Given two comparator networks Ag and Ay on disjoint sets of input and output
wires, we obtain the parallel composition of Ay and Ay as the union of the two
networks, written Ag @& Ay. The set of input (output) wires of Ag & Ay is the union
of the sets of input (output) wires of Ag and A;. Given these definitions, we can

now formally define the class of reverse delta networks.

Definition 2.3.4 A 2°-input comparator network A is called an s-level reverse delta

network if

e s =0 and A contains no comparator elements, or
e 5> 0 and A is an element of (Ao @& A1) @ [y, where

(i) Ag and Ay are (s — 1)-level reverse delta networks, and

(ii) Uy consists of one level with at most 2°~1 comparator elements,

such that every comparator in I'y takes one input from an output wire of Ag

and the other input from an output wire of Aq.

Note that we do not require the ith level to have exactly 2i~! comparator

elements. This corresponds to allowing the reverse delta network to contain “0” (do
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nothing) and “1” (exchange) circuit elements, as introduced in the “register model”

of a comparator network.

We call a network A an (I, s)-iterated reverse delta network if it consists of [
consecutive s-level reverse delta networks, or, formally, if A belongs to Ag®- - -®@A;_1
where every A; is an s-level reverse delta network. It should be pointed out that this
definition allows an arbitrary fixed permutation between any two consecutive reverse
delta networks, due to our definition of serial composition. Recall that we allowed
both comparators and switching elements in our network. For this model it has been
shown that any permutation on n = 2¢ inputs can be routed by a shuffle-exchange
network with 3d —4 levels [85, 76, 118]. Thus, eliminating the permutations between
the reverse delta networks would only increase the depth of the circuit by at most

a constant factor.

A comparator network A was identified with a mapping from the set of inputs
to the set of outputs. The following definition extends A to a function from the set
of input patterns to the set of output patterns. (An output pattern is a mapping

from the set of output wires to the set of pattern symbols.)

Definition 2.3.5 Given a comparator network A, an input pattern pg, and an out-

put pattern py such that py (W) = po(W), we define
Alpo) = p1 & Mpo[V]) = pu[V].

Note that this definition characterizes the behavior of a comparator network
on an input pattern in the way we would expect: If two pattern symbols Py and
P1 arrive on the input wires of a comparator gate, then the symbol that is larger
according to the ordering <p will appear on the max-output of the gate, and the
smaller one will appear on the min-output. This implies that any set of inputs that
can be expressed by an input pattern will produce a set of outputs that can be

expressed by an output pattern.
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Definition 2.3.6 We say that two input wires wo and wy collide in a network A
under an input 7 if the input values w(wg) and w(wy) are compared in A when w is

given as input.

According to the above definition, two wires whose respective values meet in a
noncomparator element, that is, a “0” (do nothing) or “1” (exchange) switch, are
not regarded as colliding. In the rest of the chapter, we do not have to distinguish
between the different circuit elements any more, since the entire lower bound ar-
gument is based on the notion of collision introduced above and extended to input

patterns in the following.

Given a network A and an input m, we can always determine whether two
input values are compared or not. (Recall that we only consider inputs that are
permutations.) This is not the case for input patterns, since an input pattern can
contain several occurences of the same pattern symbol. This motivates the following

definition of collision for input patterns:

Definition 2.3.7 Let A be a comparator network, let p be an input pattern for A,

and let wg and wy be two input wires of A.

(a) We say that wg and wy collide in A under p if they collide in A under every

input in p[V].

(b) We say that wo and w; can collide in A under p if there exists an input in

plV] such that wo and wy collide in A.

(c) We say that wg and wy cannot collide in A under p if there is no input in p[V]

such that wg and wy collide in A.

(d) A set U C W is called non-colliding in A under p if any two wires in U cannot

collide in A under p.
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def

Example 2.3.3 Let W = {wo, wy, wy, w3}, P = {8, M, L}, and let the ordering
<p on P be given by § <p M <p L. Let the network A consist of a comparator
between wy and wsy, followed by a comparator between wo and ws, followed by a
comparator between wg and ws, where all comparators are directed towards the wire
with the larger index. Then the following holds under the input pattern p that maps

wo to S, wy and we to M, and ws to L:

(1) Wires wy and wy collide in A under p since the very first comparator is between

these two wires.

(2) Wires wy and ws can collide in A under p, since we can refine p to an in-
put ™ that assigns a larger value to wy than to wo. In that case, the input
value assigned to wq will be compared to that of ws in the second comparator.

Similarly, we can collide with ws in A under p.

(3) Wires wg and ws collide in A under p, since no exchange can occur in the
second comparator of the network under any input © with p Dw . Also, wq

and wy (resp. wz) cannot collide in A under p.

Note that, if two wires collide (cannot collide) in some network A under an input
pattern p, then they also collide (cannot collide) in A under any refinement p’ of p.
Similarly, if a set U is non-colliding in A under p, then it is also non-colliding in A

under p’. The property can collide is not preserved under arbitrary refinement.

In the following we restrict our attention to a fixed pattern alphabet P which

is used throughout the lower bound argument:
PEAS;, X j, My, Li 24,5 > 0}
The ordering <p on P is defined by

Si <p Siy1,

Si <p Ao,
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Xy <p Aij,
Xij <p M,
M; <p X,
M; <p L;, and

Liy1 <p L,

for all nonnegative integers i, j.

Definition 2.3.8 For a pattern p and a pattern symbol P we define the [P]-set of
p as the set {w e W : p(w) = P}.

Definition 2.3.9 We say that a comparator network A has an incomparable set of
size m if there exists an input pattern p and an integer i such that the [M;]-set of

p is of size m and is non-colliding in A under p.

2.3.3 Basic Lemmas

The following lemmas will be used in our lower bound argument. Their proofs are

fairly straightforward and we will only sketch some of the proof ideas.

Lemma 2.3.1 Let p be an input pattern on W such that only the pattern symbols
So, Mo, and Ly appear in p. Let Wy and Wy be disjoint subsets of W with W =
Wo U Wy and let A be the [My]-set of p. Let qo and qy be input patterns on Wy
and Wy, respectively, with Sy <p qo(w), q1(w) <p Lo for all w in A. Then from

Plu, DAnWo Go and Pl Danw, qi, we can infer p D4 go D g1

This lemma ensures that, given an input pattern p for a network A = Ag & Ay,
we obtain a refinement of p if we separately refine the input patterns Pl for Ag
and Plw, for Ay according to the above rules, where Wy and Wy are the sets of input

wires of Ag and Ay, respectively.
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Lemma 2.3.2 Let A be a comparator network, p be an input pattern for A, and A
be the [M;]-set of p. If A is non-colliding in A under p, then for every input wire
w in A there exists a unique output wire w' such that =(w) = A(x)(w') holds for all

7 in p[V].

Informally, the above lemma states that an input value on a wire w in a non-
colliding [M;]-set follows the same “path” through the network under all inputs
in p[V]. The proof of the lemma is by a simple induction on the depth of the
network. This one-to-one correspondence between the input and output wires of a

non-colliding [M,]-set is also the underlying idea in the next lemma.

Lemma 2.3.3 Let A be a comparator network in Ag@A1, © be a nonnegative integer,
and p be an input pattern for Ao such that its [M;]-set A is non-colliding in Ag
under p. Let ¢ & Ao(p) be an input pattern for Ay and B be the [M;]-set of q.
Then for every ¢' with ¢ Dp ¢ there exists a p’ with p D4 p' such that ¢ = Ao(p').
Furthermore, if the [M;]-set of ¢ is non-colliding in Ay under ¢, then the [M;]-set

of p' is non-colliding in A under p'.

To verify the validity of the final lemma, note that the paths taken by the M;-
symbols through a network are not changed if we rename the rest of the symbols in

the way described in the lemma.

Lemma 2.3.4 Let A be a comparator network, p be an input pattern for A, and A
be the [M;]-set of p. Let p;(p) be the input pattern obtained from p by changing all
pattern symbols P with P <p M; to Sp, all pattern symbols P with M; <p P to
Lo, and all pattern symbols M; to Mq. If A is non-colliding in A under p, then A

is also non-colliding in A under p;(p).
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2.4 Bounds for Shuffle-Based Networks

This section contains the proof of the lower bound for sorting on shuffle-based net-
works. Before giving the formal proof, we briefly describe the proof strategy in

terms of the definitions of the previous section.

2.4.1 Proof Strategy

To prove that a network A is not a sorting network, we will show that the network
has an incomparable set of size at least 2. The input pattern p associated with the
incomparable set can then be refined to an input such that the wires in the [M;]-set
contain adjacent input values; this implies that A does not sort all inputs in p[V].
The input pattern p will be constructed using stepwise refinement, starting out with

a pattern containing only the symbol M.

In general, we will assume that whenever we enter a new reverse delta network
the current pattern p only contains the pattern symbols My, Sg, and Ly, with the
latter two symbols marking the input wires carrying values that are smaller and

larger, respectively, than those of the wires in the [Mg]-set.

We then split up the pattern p into n patterns p;, 0 < ¢ < n, of size 1, with one
p; corresponding to each input wire (1-input reverse delta network). Every pattern
p; can be interpreted as having lg® n non-colliding sets Mo, .. o Mg g, where M;
is the [M]-set of p;, for 0 < j < Ig® n. Except for My, all of these sets will be empty

at this point.

Thus, every 2-input reverse delta network will have two collections of [M;]-sets,
denoted by Moo, ..., M1 and My g,..., M1, where t = lg3 n, entering on the
first and second input wire, respectively. In general, in every level of the recursive
definition of a reverse delta network we will have two collections of ©(lg”n) non-
colliding [M]-sets coming from each of the two disjoint subnetworks. We will be

able to recombine these collections to obtain a single collection of non-colliding
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[M]-sets such that this single collection still contains nearly all of the input wires
that were in either of the two collections, while the number of sets will only increase
marginally. Hence, on average, the new sets will contain roughly twice as many

elements as the old sets.

This proof step is performed by showing the existence of an appropriate match-
ing between the two collections, and refining the two input patterns according to
this matching. After the last level of the reverse delta network, we will have a
collection of ©(lg® n) non-colliding sets containing only a constant factor fewer el-
ements than the “original” [Mg]-set before the current reverse delta network. We
can choose the largest of these sets as our new non-colliding [M,]-set by performing
an order-preserving renaming of the pattern p, mapping the wires in this set to My

and all of the wires in the other sets to some §; or £;. This procedure is iterated

over @(lglglgnn) consecutive reverse delta networks.

2.4.2 The Proof

The proof is divided into several steps: First, Lemma 2.4.1 establishes the existence
of a pattern p with a “large” [My]-set that is non-colliding in a single reverse delta
network under p. This is the main part of our proof, and also the one that contains
the novel proof ideas. This lemma is used by Lemmas 2.4.2 and 2.4.3 to show that
a fairly large incomparable set can be maintained over several consecutive reverse
delta networks in an iterated reverse delta network. Finally, a corollary establishes

the lower bound.

We point out that Lemma 2.4.1 is actually a special case of Lemma 2.5.1, which
will be established in the next section. Nonetheless, we have chosen to give a
complete proof of the lemma at this point. We believe that the special case treated
in Lemma 2.4.1 is somewhat simpler and more intuitive than Lemma 2.5.1, and that

it may help the reader in understanding the more general results of the next section.
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Lemma 2.4.1 Let A be an s-level reverse delta network, s > 0, and let p be an
input pattern for A such that only the pattern symbols Sg, Lo, and Mg occur in p.
Let A be the [Mo]-set of p, and let k be any positive integer. Then there exists an
input pattern q with p D4 q and t(s) YB3 4+ sk? sets Mo, ..., Mysy—1 of input wires
such that the following properties hold, where B & U0§i<t(s) M;:

(1) Every M; is the [M;]-set of q,
(2) Every M; is non-colliding in A under q,

(3) BC A, and

(4) 1B > 4] - =5,

Proof: We will prove the lemma by induction over s, the number of levels in the

reverse delta network.

Base Case: s =0

We define the sets Mo, . .., Mygy_; by setting My to A and all M;, 1 < i < ¢(0),
to the empty set. If we set ¢ = p, then Properties (1) to (4) are satisfied.
In particular, Property (2) is satisfied since a 0-level reverse delta network
does not contain any comparators, and hence every set is non-colliding in the

network under every input pattern.

Induction Step: s > 0

An s-level reverse delta network A consists of two (s — 1)-level reverse delta
networks Ag and Ay, and an sth level I'y satisfying the conditions of Defini-
tion 2.3.4. The input wires W of A can be partitioned into the sets Wy and
W1 of input wires of Ay and Ay, respectively. Let py & Plw, and p; & Plw, -
Then Ag & AN W, is the [Mo]-set of py and Ay L AN W, is the [M]-set of

P1-
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Applying the induction hypothesis to Ag, pg, and Ag we can infer the existence
of an input pattern gy with po D4, ¢o, and of t(s — 1) disjoint sets My,

0 <¢<t(s—1),such that

o cvery My, is the [M;]-set of ¢,

e every My ; is non-colliding in Ag under go,
e By C Ag, and

o [Bo| > |Ao| - E=5tel,

where By & U0§i<t(s—1) M.

Correspondingly, for Ay, p1, and A; we get an input pattern ¢, disjoint sets
My;, 0<i<t(s—1),and aset By, with the same properties.

We will now construct the sets M;, 0 < ¢ < (s), by combining the sets M,

of Ag with the sets M;; of Ay, according to some partial matching to be

determined in the following.

Note that, due to the topology of a reverse delta network, no element of a
set Mp,; can collide in A with any element of a set M, ; before level s. Also,
because of Lemma 2.3.2, any two elements wg in Mo ; and w; in M, ; either

collide in level s of A under ¢g & ¢y, or they cannot collide in that level.

For 0 <4, < t(s—1), we define C; ; as the set of all wg in My, such that wq

collides with some w; in M, ; in level s of A under ¢o @ ¢;.

For 0 <4 < k* and 0 < j < t(s), we define

My ; 0<y <y,

M (i) (Mo \Cjj—i) UMy j—i i <j<t(s—1),
My i ts—1)<j<t(s—1)4+1, and
0 ts—1)+1<j<t(s).

By their construction, the sets M (¢, 7) are non-colliding in A under go & ¢q. If

def

we let i = U;<jci(s—1) Cjj—i for 0 <i < k%, then
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) M@, )= (Bo\ Li) UB.
0<j<t(s)
The € ; are pairwise disjoint and contained in By. Thus, the L;’s are also
pairwise disjoint and contained in By. Hence, by averaging there exists an ¢,
0 < idp < k%, such that |L; | < %. We use this ip to determine the partial

matching between the My ; and the M ;.

More precisely, for all j with 0 < j < t(s), we match the set My ; with the set
My ;_;, to obtain a new set M; def M (4o, j) (here we assume My ; and M ; to
be the empty set for i < 0 and ¢ > t(s—1)). Thus, the new set M; is obtained
by removing the wires in C'; ;_;, from My ;, and merging the resulting set with
My ;_;,. We now show that this choice of M; satisfies Properties (3) and (4).
We have

B = |J M

0<j<t(s)
= (Bo\Ly)UBy

C BoUB;
C AgUA,
= A.

This establishes Property (3). Verifying Property (4) is also straightforward:

|B] = |Bol +|Bi| — L]
(s=1)-]Aq|
k?

s—1
= (4ol + 41y (1= 57 ) < 12

(s= 1) 14| _|B
k2 k2

9 14|

PCHEY

s—1)-|A
> |A0|— ( k)2|1|

+ 1A - — [ Lio]

v

Al -

v
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To complete our proof, we have to construct a refinement ¢ of p such that
Properties (1) and (2) hold for ¢ and the sets M;. We do this by Ag-refining
go to some ¢} and A;-refining ¢; to some ¢|. Then py D4, ¢} and p1 D4, qi,

and by Lemma 2.3.1 the pattern ¢ & g, @ qy is an A-refinement of p.

We refine o to ¢ in the following steps:

1. First change all pattern symbols M; and &;; with i > (s — 1) to M, 2
and X > ;, respectively.

2. Then change the pattern symbols of all wires in C};_;; with ig <@ <
t(s—1) to X;

jo» Where jg is chosen such that before this step only symbols

AX; ; with 7 < jo appear in the pattern.
The steps for the refinement of ¢ to ¢ are:

1’. First change all pattern symbols M; and &; ; with i > #(s — 1) to M; 2
and X > ;, respectively.
2. Then change all pattern symbols M; and A;; with 0 < i < t(s — 1) to

My, and Xy, ;, respectively.

All refinement steps described above are order-preserving renamings and, thus,
valid refinement steps. Steps 1 and 1’ remove all symbols M; and X ; with
t(s — 1) <14 < t(s) from the patterns. Then Steps 2 and 2’ can be executed
to perform the matching between the sets My; and M; ;. Note that Steps 1
and 1’ are not really necessary since we can assume that the patterns g and
¢1 themselves have been constructed using the above refinement steps, and
that, therefore, no symbols M; and A; ; with ¢ > ¢(s — 1) exist in the pattern.
However, in order to simplify our induction hypothesis, we have chosen not to

make this assumption.

The pattern ¢ = ¢}, & ¢} has been constructed such that the sets M; are the
[M]-sets of ¢, so Property (1) is satisfied.
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To see that Property (2) holds, note that C; ;, the set of input wires of My,
that collide with an input wire of M; ; in I'; under go @ ¢1, also contains the
same colliding wires with respect to ¢ = ¢(@®¢}. The sets My ; are non-colliding
in Ag under ¢} and, thus, also non-colliding in A under ¢. Similarly, the sets

M, ; are non-colliding in A under ¢. Hence,
M = (Mo \ Cjj—ig) U My j—i

is non-colliding in A under g¢.

Lemma 2.4.2 Let A be an (l, s)-iterated reverse delta network with { > 0 and s =
lgn. Let W be the set of input wires of A, and let n = |W| > 8 be the number
of input wires of A. Then there exists an input pattern p such that the following
properties hold, where D is the [Mg]-set of p:

(1) Only the symbols Sy, Mo, and Ly occur in p,
(2) D is non-colliding in A under p, and
(3) |D| > n/lg'n.

Proof: We will prove the lemma by induction over [, the number of consecutive

reverse delta network in A.

Induction Start: [ =0

Choose D = W and p such that p(w) = Mg for all w in W.

Induction Step: [ > 0

A (I, s)-iterated reverse delta network A consists of an ({—1, s)-iterated reverse
delta network Ay followed by a single s-level reverse delta network A, or,

formally, A € Ag ® A.
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By the induction hypothesis there exists a pattern p’ such that the following
properties hold, where D’ is the [My]-set of p':

e Only the symbols Sy, Mg, and Ly occur in p/,

e D’ is non-colliding in Ag under p’, and

o |D'| > n/lgt=Vy,
Then the input pattern ¢’ & Ao(p') for A contains only the symbols Sy, Mo,
and Lo. The [Mo]-set B’ of ¢ has size |B'| = |D'| > n/1g*!=Y n.
We can now apply Lemma 2.4.1 with A, ¢/, and s = k = Ign. By the lemma,
there exists an input pattern ¢” with ¢’ Dp: ¢” and t(lgn) = 21g® n disjoint
sets Mo, ..., Mi1gn)—1 of input wires of A such that

e every M; is the [M;]-set of ¢”,

e every M; is non-colliding in A under ¢”,

e B C B’, and

B'|1
o 182 |B - R > ot (1 ),

where B" & Uo<i<t(gny Mi-

Ign

By averaging, there exists a set M;,, 0 < ip < 21lg° n, of size at least

0

n (1 1 ) S "
21g4l—1n lgn - 1g4ln7
where the last inequality follows from the fact that £(1—1/lgn) > 1/lgn for

all n > 8.

By Lemma 2.3.3, there exists an input pattern p” for A with p’ Dp/ p” such
that ¢ = Ao(p”). The set M;, is non-colliding in A, hence the [M,,]-set D of

p”" is non-colliding in A € Ag ® A under p”.

Then, by Lemma 2.3.4, there exists an input pattern p such that

e only the symbols Sy, Mg, and Ly occur in p, and
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e D is non-colliding in A under p.

Furthermore, we have |D| = |M;,| > n/lg* n. This concludes the induction

step.

Due to Definition 2.3.9, this directly implies the following lemma.

Lemma 2.4.3 Let A be an (l, s)-iterated reverse delta network with { > 0 and s =

lgn. Then A has an incomparable set of size at least n/lg* n.

Corollary 2.4.0.1 All n-input sorting networks with iterated delta topology have

depth Q (ffg—@)

Proof: Let A be an (I,lgn)-iterated reverse delta network with [ < ﬁf;—n. By

Lemma 2.4.3, A has an incomparable set of size at least

n S n -1
T e,

Thus, A cannot be a sorting network. Note that the constant 1/4 obtained in this

proof can be improved to 1/(2+ ¢€) by a sharper analysis in Lemmas 2.4.1 and 2.4.2.

a

2.5 Bounds for Shuffle-Unshuflle Networks

In this section, we extend the ideas of the previous section to the case of arbi-
trary shuffle-unshuffle sorting networks. We first show in Subsection 2.5.1 that a
large incomparable set can be effectively maintained over the levels of any shuffle-
unshuffle network with sufficiently small overlap. The main result of this section is
Lemma 2.5.2, which bounds the decrease in the size of the incomparable set that

can occur in any 2%input shuffle-unshuffle network with span s < d and overlap
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r. This lemma is then used in Subsection 2.5.2 to establish our lower bound for

arbitrary shuffle-unshuffle sorting networks.

2.5.1 Networks with Small Overlap

The actual argument addressing the size of the incomparable set in a shuffle-unshuffle
network with small overlap is contained in the proof of Lemma 2.5.1, and is described

with respect to a more general class of networks, called (d, s, r)-hypercubic networks.

We now give an inductive definition of the class of (d, s, r)-hypercubic networks,
which properly contains the class of 2%-input shuffle-unshuffle networks with span
s < d and overlap r. Note that the 2¢ output wires of a (d, s, r)-hypercubic network

are partitioned into 297" output groups of size 2'.

Definition 2.5.1 For r < s < d, a 2%-input comparator network A is called a

(d, s, r)-hypercubic network if:

(a) s—r =0, A is a network containing no comparators at all (i.e., the 2% input
wires are directly connected to the 2¢ output wires), and the output wires of A

have been partitioned into 2%~" output groups of size 2", or
(b) s—1r >0 and A is an element of (Ao B A1) @ A, where

o Ag and Ay are (d — 1,5 — 1, r)-hypercubic networks, and

e A is the parallel composition of 22"t disjoint 2"t -input comparator
networks A;, 0 < i < 29771 of arbitrary size and depth, such that: (i)
the 2711 input wires of each network A; are connected to one output group
of size 2" of Ag and one output group of size 2" of Ay, and (ii) the 2"+
output wires of each network A; are partitioned to form two of the 29="

output groups of network A.

The following Lemma 2.5.1 is actually a generalization of Lemma 2.4.1, and the
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proof also has a very similar structure. However, a number of often subtle changes

are needed to establish the result.

Lemma 2.5.1 Let A be a (d, s, r)-hypercubic network with r < s < d, and p be an
input pattern for A such that only the pattern symbols Sg, Lo, and Mg occur in p.
Let A be the [Mg]-set of p, and k be any positive integer. Then there exists an input
pattern q with p D4 q and t(s) Lor . 3 4 (s —1r)-2" - k% sets M;, 0 <1 < t(s), of

input wires such that the following properties hold, where B & U0§i<t(s) M;:
(1) Every M; is the [M;]-set of q.
(2) Every M; is non-colliding in A under q.
(3) BC A.
(4) 1B] > |A] - LA,

(5) No two elements of any [M;]-set of A(q) are located in the same output group
of A.

Proof: The proof is by induction on s — r.

Base Case: s —r =10

In this case the network A does not contain any comparator elements. We
define the sets M;, 0 < ¢ < ¢(0), by partitioning A into 2" - k3 sets such
that no two elements in any set are located in the same output group. (Each
output group has size 2" < 2" - k% so this is clearly possible.) If we define ¢
as the pattern obtained from p by relabeling each wire in set M; with M;, for
0 < ¢ < t(0), then Properties (1) to (5) are satisfied.

Induction Step: s —r > 0

A (d, s, r)-hypercubic network consists of two (d — 1, s — 1, r)-hypercubic net-

works Ag and Ay, and a network A satisfying the conditions of Definition 2.5.1.
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The input wires W of A can be partitioned into the sets Wy and Wy of in-
put wires of Ay and Ay, respectively. Let py & Pl and p; & Ply, - Then
Ao = ANW, is the [Mo]-set of py and Ay L ANW, is the [Mo]-set of py.

Applying the induction hypothesis to Ag, pg, and Ag, we can infer the existence
of an input pattern gy with po D4, ¢o, and of t(s — 1) disjoint sets My,

0 <¢<t(s—1),such that
o cvery My, is the [M;]-set of ¢,
e every My ; is non-colliding in Ag under go,

° BO C 1407
|Bo| > |Ao| — L=riH4el and

no two elements of any [M;]-set of Ag(qo) are located in the same output

group of Ag,

def
where BO = U0§i<t(s—1) MOJ'-

Correspondingly, for Ay, p1, and Ay, we get an input pattern ¢y, disjoint sets

My;, 0<i<t(s—1),and aset By, with the same properties.

We will now construct the sets M;, 0 < ¢ < (s), by combining the sets M,
of Ag with the sets M;; of Ay, according to some partial matching to be

determined in the following.

Because no [M;]-set of Ag(qo) (resp., Aq(g1)) contains any two elements that
are located in the same output group of Ag (resp., A1), no element of any set

Moy, (resp., M ;) can collide with any other element of the same set in A.

Also, due to the topology of a (d, s, r)-hypercubic network, no element of a set
My ; can collide in Ag @ Ay with any element of a set M; ;. By Lemma 2.3.2,
we can determine for each w in a set My, (resp., Mj ;) the output wire w’ of
Ag (resp., Ay) that receives the value 7(w) under all 7 in ¢o[V] (resp., ¢1[V]).

Thus, for any such w we can determine the subnetwork A, (where v is some
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function f of w) of A that will receive m(w) as an input value under all 7 in
qo[V] (resp., :[V]).

For 0 <i,j < t(s — 1), we define C; ; as the set of all wires wy in Mp; such
that f(wo) = f(wq) holds for some wy in M ;. Note that the C;;’s are not
pairwise disjoint. However, since each subnetwork A, receives only 2" input
values from Ay, every element wq in Mp; is contained in at most 2" sets C; ;.

Also, each (7 ; contains all wires in My ; that can collide in A with some wire

in M ;.

For 0 < i< 2" k% and 0 < j < £(s), we define

My ; 0<y <y,

M (i) & (Mo \Cjj—i) UMy j—i i <j<t(s—1),
My i ts—1)<j<t(s—1)4+1, and
0 ts—1)+1<j<t(s).

By their construction, the sets M (¢, 7) are non-colliding in A under go & ¢q. If

def

we let i = Us<jci(s—1) Cjj—i for 0 <4 <27 - k%, then
) M@, )= (Bo\ Li) UB.
0<j<t(s)
Since every element of By can occur at most 2" times in the sets C} ;, every
element of By can occur at most 2" times in the sets L;. Hence, by averaging
| Bo

there exists an ig, 0 < 4 < k% - 27 such that |L; | < 2. We use this 7o to

determine the partial matching between the My ;’s and the M, ;’s.

More precisely, for all j such that 0 < j < #(s), we match the set My ; with
the set M; ;_;, to obtain a new set M; def M (9o, j). (Here we assume My ;
and M;; to be the empty set for ¢ < 0 and ¢ > ¢(s — 1).) Thus, the new
set M; is obtained by removing the wires in C;;_;; from My ;, and merging

the resulting set with M; ;_;,. We now show that this choice of M; satisfies
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Properties (3) and (4). We have

B = |J M
0<j<t(s)
= (Bo\Ly)UBy

C BoUB;
C AgUA,
= A.

This establishes Property (3). Verifying Property (4) is also straightforward:

|Bl = |Bol +|Bi| = [Li,]
> |AO|_(s—r—kzl)-|A0|+|A1|_(s—r—l€21)-|A1|_|Li0|
= (ol + 140 (1= EELE ) —
St T
> |A|—7(S_,:l'|A|

To complete our proof, we construct a refinement ¢ of p such that Proper-
ties (1), (2), and (5) hold for ¢ and the sets M;. We do this by Ag-refining ¢
to some ¢}, and Aj-refining ¢; to some ¢{. Then py D4, ¢, and p1 D4, ¢}, and

by Lemma 2.3.1 the pattern ¢ & g, & qy is an A-refinement of p.
We refine ¢g to ¢ in the following steps:
1. First change all pattern symbols M; and A} ; with ¢ > t(s—1) to M; or 2
and X or 2 ;, respectively.

2. Then change the pattern symbols of all wires in C};_;; with ig <@ <

t(s—1) to X, j,, where jg is chosen such that before this step only symbols

AX; ; with 7 < jo appear in the pattern.
The steps for the refinement of ¢ to ¢ are:
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1’. First change all pattern symbols M; and A; ; with 7 > t(s—1) to M, or 2
and X or 2 ;, respectively.
2'. Then change all pattern symbols M; and A;; with 0 < ¢ < {(s — 1) to

My, and Xy, ;, respectively.

All refinement steps described above are order-preserving renamings and, thus,
valid refinement steps. Steps 1 and 1’ remove all symbols M; and A;; with
t(s — 1) <i < t(s) from the patterns. Then Steps 2 and 2’ can be executed to
perform the matching between the sets My ; and M, ;. Note that Steps 1 and
1’ are not really necessary since we can assume that the patterns gg and ¢
themselves have been constructed using the above refinement steps, and hence
that no symbols M; and A;; with ¢ > #(s — 1) exist in the pattern. However,
in order to simplify our induction hypothesis, we have chosen not to make this

assumption.

The pattern ¢ = ¢}, & ¢} has been constructed such that the sets M; are the
[M]-sets of ¢, so Property (1) is satisfied.

To see that Property (2) holds, note that the set C; ;, which contains all input
wires of My ; that can collide with an input wire of M ; in A under ¢o @ ¢1,
also contains the same colliding wires with respect to ¢ = ¢ ® ¢{. The sets
My ; are non-colliding in Ay under ¢ and, thus, also non-colliding in A under

g. Similarly, the sets M; ; are non-colliding in A under ¢. Hence,
Mj = (Mo,; \ Cjj—i) U Mi j—i

is non-colliding in A under g¢.

Finally, due to the definition of the sets C;; that were removed from the
matched sets, no two elements of any [M;]-set of A(g) are in the same output

group of A. This establishes Property (5).
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Lemma 2.5.2 Let A be a 2%-input shuffle-unshuffle network with span s < d and
overlap v, and let A be an arbitrary comparator network with an incomparable set of

size v. Then any network in A @ A has an incomparable set of size v > v/(s*-27).

Proof: According to Definition 2.3.9, there exists an input pattern py such
that some [M; ]-set C' of pg is of size v and is non-colliding in A under py. By
Lemma 2.3.4, we can assume that ig = 0, and that pg contains only the symbols S,

My, and Lg.

Every 2%-input shuffle-unshuffle network with span s < d and overlap r is equiv-
alent to a (d, s, r)-hypercubic network. Hence, we can apply Lemma 2.5.1 to A. Let
k=s, p=A(po), and A be the [Mg]-set of p. Then by Lemma 2.5.1, there exists
an input pattern ¢ with p D4 ¢ and ¢(s) < 252" disjoint sets M;, 0 < i < {(s) of

input wires of A such that
e every M; is the [M;]-set of ¢,
e every M; is non-colliding in A under ¢,
e BC A, and
o [Bl2v-(1-1/s),
def

where B = U0§i<t(s) M;. By averaging, there exists a set M;,, 0 < jo < £(s), of size

at least
1B v
263 .9r = gt.or’

where the inequality follows from the fact that 1(1—1/s) > 1/sfor s > 3. (For s < 3,
the claim follows from v/ > v/2°.) By Lemma 2.3.3, there exists an input pattern
go with pg D¢ ¢o such that ¢ = A(qy) and the [M;,]-set of go is non-colliding in
A® A under go. Since ¢ = A(qo), the M ]-set of gy also contains at least v/(s*-2")

elements.

a
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The following lemma can be established by partitioning a shuffle-unshuffle net-
work of overlap r and depth ¢ into [¢/d] consecutive shuffle-unshuffle networks of

overlap r and depth at most d, and applying Lemma 2.5.2 to each of the networks.

Lemma 2.5.3 Let A be an n-input shuffle-unshuffle network with depth £ and over-

lap r < d=lgn. Then A has an incomparable set of size at least
"
(d4 . QT)[Z/d] )
Lemma 2.5.3 immediately implies the following lower bound for shuffle-unshuffle
networks with bounded overlap. Note that for the special case r = 0, we obtain the
result in Section 2.4. However, if the overlap is ©(d), we only get the trivial Q(lgn)

lower bound.

Theorem 2.5.1 Any n-input shuffle-unshuffle sorting network with overlap r has

depth © ().

2.5.2 Networks with Arbitrary Overlap

In this subsection we establish the main result of this chapter, a lower bound on the
depth of arbitrary shuffle-unshuffle sorting networks. In order to prove the result, we
need one more lemma. Informally, Lemma 2.5.4 below states that we can maintain a
fairly large incomparable set over the levels of any shuffle-unshuffle network of span
at most d. The proof of the lemma is based on the idea that any shuffle-unshuffle
network with depth ¢ either has a small overlap relative to ¢, or can be (recursively)
partitioned into several consecutive networks satisfying this property. In the first
case, we can use Lemma 2.5.2 to bound the size of the incomparable set. The second

case is handled by induction.

Lemma 2.5.4 Let A be a shuffle-unshuffle network with depth ¢ and span s < d,

def

let a(l,s) = ({ —s/2)/(lgs/lglgs), and let A be an arbitrary comparator network
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with an incomparable set of size v. Then any network in A A has an incomparable

set of size V', where

K/ > 84 . 29~a(€,5)‘

Proof: The proof is by induction on the depth £ of the network.

Base Case: ( < 216

Using s < £ < 2% we obtain lg s/lglgs < 4 and

9-4/2 > 0 >

-o(l >
9-a(l,s) > 1 =tz

Then the claim follows by a simple application of Lemma 2.5.2.

Induction Step: ¢ > 26

For the induction step, we assume a shuffle-unshuffle network A with depth ¢,

overlap r, and span s < d. Now suppose that r < 9-«a(/,s). In this case, the

claim follows by a simple application of Lemma 2.5.2.

Hence, in the following we assume that

9s
9.al > — -
r>9-alls) 2 2lgs/lglgs

(2.1)

Note that s > r > 9-a(l,s) and £ > 2% imply s > 2!6 and Iglgs/lgs < 1/4.

Due to the definition of overlap, there exist shuffle-unshuffle networks A;,

0 < ¢ < 2, with depth ¢; and span s;, such that A belongs to Ay ® Ay,

bo+ 1y =1L, and sg+ s; = s+ r. By applying the induction hypothesis first to

A and Ag , and then to A ® Ag and Aq, we obtain

14 . .
7 S 8401 . 29 Oz(fo,SO) . 8411 . 29 a(fl,sl)

_ 4 9z
- 80'81'2 )

where z & a(ly, so) + a(lq, s1). Using min{sg,s1} > r, max{sg,s1} < s, and

Equation (2.1) we obtain

: { lgsog  lgs } Igr
min , >
lglg sg’ lglg s¢ lglg s
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v

1 | ( 9s )
lglg s & 2lgs/lglg s

! 1(1)
lglg s & lg s

_ lgs (1_lglgs)
- lglgs lgs )~

v

Using this bound, and the fact that 1/(1—¢) < 142¢ holds fore = Iglgs/lgs <
1/2, we obtain

< <£0—80/2 £1—81/2)< 1 )
s lgs/lglgs  lgs/lglgs/) \1—Iglgs/lgs

KO—SO/Q £1—81/2)
1+4+21gl 1
<1g8/lglgs lgs/lglg s (1+2lglgs/lgs)

fo—So/Q £1—81/2 (
by — 240, — 2)-2
lgs/lglg s lgs/lglgs+(0 /246 —1/2)
C—3s/2—1/2 lglg s\ 2

= ——— "+ (l—-5/2—-1r/2)-2
lgs/lglgs +(E=s/2=1/2) (Lgs)

lglgs)2
lg s

r lglgs)2
< bs)— ————+l—5/2)-2 .
< albs) 21gs/1g1gs+( 5/2) ( lg s

Note that Equation (2.1) implies

rlgs
9lglg s’

l—s/2<

and hence

r 2r

~ 2lgs/lglgs + 9lgs/lglgs
5r
181gs/lglg s
5s
afts) - 4(lg s/ lglg s)?
4lg s
9 1

r < al,s)

= al,s)—

IN

< a(l,s) -

216

where the last two inequalities follow from Equation (2.1) and s > 2'°, respec-

tively. Using max{sg, s1} < s we obtain
v
i S 861 . 811 . 291’

I//
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< Sg . 8411 . 29~a(€,5)—41g5
< st 24lgs . 29~a(€,5)—4lg5
— 84 . 29~a(€,5)‘

a

Theorem 2.5.2 Any shuffle-unshuffle sorting network has depth (%).

Proof: Let A be an n-input shuffle-unshuffle network of depth ¢, n = 2¢. We
partition A into k < [{/d] consecutive shuffle-unshuffle networks A;, 0 < ¢ < k,
with depth ¢; and span d. This can be done by defining Ag as the shortest prefix of
the levels of the network A with span d, A as the shortest prefix of A — Ay with
span d, and so on. (At the end, we may have to add some additional levels to the
network in order to get a span of exactly d for Ay_;. Adding such additional levels

to the network can certainly not increase the size of the largest incomparable set.)

Let A be a network containing no comparator elements at all. Clearly, A belongs
to A ® A, and A has an incomparable set of size n. We now apply Lemma 2.5.4
once for each network A;, 0 < ¢ < k. It follows that there exists an incomparable

set of size n’ in A, such that

9(4; —d/2)
E/ — H d4.2(1gd/1g1gd) S 2<1gd/91§1gd)7
" 0<i<k

for d sufficiently large. Hence, if £ < 9-dlgd/lglgd, then n’ > 1, and it follows that

A cannot be a sorting network.

a

2.6 Extensions and Limitations of the Proof Technique

This section discusses some extensions and limitations of our proof technique. In the

first subsection, we describe how our bounds can be generalized to certain classes of
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non-oblivious sorting algorithms on the hypercube. Subsection 2.6.2 contains some
extensions to multi-dimensional meshes. Finally, we explain why our results cannot

be extended to the average or randomized case.

2.6.1 Non-Oblivious Sorting Algorithms

The lower bounds for shuffle-based and shuffle-unshuffle sorting networks can be ex-
tended to certain restricted classes of non-oblivious sorting algorithms on hypercubic
machines. Recall that in the lower bound arguments, it was never assumed that the
labeling of the circuit elements with {4, — 0,1} was fixed beforehand. Instead, in
every level, we can allow the network to choose this labeling in an arbitrary, deter-
ministic fashion. (That is, the label of each circuit element may be computed as an
arbitrary function of the outcomes of all comparisons previously made throughout

the entire network.)

Our lower bounds also extend to the case where a processor can temporarily
hold more than one element during the computation, provided that elements cannot
be copied. (Here, we assume that a processor can send an element to a neighbor-
ing processor, without receiving another element in return.) To prove this claim, we
observe that no processor can accumulate more than Ig? n elements during any com-
putation of length 1g? n. We can then model each processor by a “sub-hypercube”
of Ig?n “sub-processors”, each containing at most one element. We assume that in
a single step, an arbitrary amount of computation can be performed within each
“sub-hypercube”; this gives ©(lglg n) additional dimensions in the network, which
can be “handled” by adding ©(lglgn) to the overlap of the networks occurring in

the lower bound argument.

These observations lead us to the following class of non-oblivious sorting algo-

rithms on the hypercube that is covered by our lower bounds:

(1) The algorithm has to be deterministic, normal (resp., ascend/descend), and
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comparison-based. (That is, the only way of accessing the value of an element

is by means of a comparison with another element.)

(2) No copies of elements can be made. (It is unclear whether our techniques can

be extended to a model where copying of elements is allowed.)

(3) The sequence of shuffles and unshuffles in the normal algorithm is oblivious.
(In fact, it is clear that this sequence only needs to be fixed O(lgn) steps in

advance, and we believe that it should be possible to remove this restriction.)
(4) Initially, each processor holds a single element.

(5) In a single step, each processor can perform an arbitrary amount of internal
computation, and can send one element, plus an arbitrary amount of auxiliary

information, to one of its neighbors.

While this class covers a fairly wide range of sorting algorithms, it does unfortunately
not include the Sharesort algorithm of Cypher and Plaxton [26], which makes copies

of some of the elements.

2.6.2 Multi-Dimensional Meshes

We can also extend our lower bounds to some restricted classes of sorting algorithms
on multi-dimensional meshes. In [121], Wanka describes the following natural ex-
tension of the class of ascend algorithms to multi-dimensional meshes. In an ascend
algorithm on a d-dimensional mesh of side length m, the dimensions are visited in
strictly ascending order. Whenever we visit a dimension, we perform m steps of
communication across this dimension. Thus, in a single visit to a dimension, an
algorithm could completely sort the elements in each linear array along that dimen-
sion. Note that this class of algorithms corresponds to the class of sorting networks

built from m-input comparator gates, where consecutive levels of the network are
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connected by an m-way unshuffle permutation (as defined in the register model of

a comparator network).

An example of an ascend algorithm on the two-dimensional mesh is the Shearsort
algorithm [100, 101], which alternatingly sorts along the rows and along the columns.
Recently, Corbett and Scherson [23] and Wanka [121] have described two different
generalizations of this algorithm to meshes of arbitrary dimension. Both of the
algorithms can be implemented as ascend algorithms, and they achieve a running

time of O(d*mlgm) on the d-dimensional mesh of sidelength m.

Using the techniques in this chapter, we can show an Q(d*m1gm/lg(dm)) lower
bound for the class of ascend sorting algorithms on multi-dimensional meshes (un-
der the conditions stated in the previous subsection, that is, the algorithms have to
be comparison-based and no copying of elements is allowed). For meshes with non-
constant dimension, this implies that no ascend algorithm can achieve an asymptot-
ically optimal running time. For constant d and sufficiently large m, we can show

that any ascend algorithm requires more than (d — 1) - dm steps.

Similarly, we can define natural extensions of the classes of normal algorithms,
and normal algorithms with overlap, to multi-dimensional meshes. For normal al-

gorithms, we obtain a lower bound of Q(dmlgd/lglg d).

2.6.3 Average Case and Randomized Algorithms

Our lower bounds do not apply to probabilistic sorting networks, that is, networks
that sort the vast majority of input permutations, but are not sorting networks in
the strict sense. In fact, Leighton and Plaxton [70] have designed a shuffle-unshuffle
comparator network of depth O(lgn) that sorts all but a super-polynomially small
fraction of the inputs. Their techniques can also be used to construct a shuffle-based
network of depth O(lgnlglgn) that sorts all but a polynomially small fraction of

the inputs.

55



Similarly, we cannot hope to extend our lower bounds to “randomized” sorting
networks, which may contain additional “randomizing” circuit elements that inter-
change the input values with probability 1/2, and leave them unchanged otherwise.
In [70], Leighton and Plaxton show how to construct a randomized shuffle-unshuffle
network of depth O(lgn) that sorts every input permutation with high probability.
This new element can also be used to construct a shuffle-based randomized sorter

of depth O(lgnlglgn).

2.7 Open Questions

In this chapter, we have established lower bounds on the depth of shuffle-based and
shuffle-unshuffle sorting networks. Our techniques also apply to certain restricted
classes of non-oblivious sorting algorithms on hypercubes and multi-dimensional
meshes. A gap remains between our lower bounds and the best upper bounds
known, and it would certainly be an interesting improvement to narrow or close this
gap.

An important open question is whether we can extend our lower bounds to more
general classes of non-oblivious sorting algorithms on the hypercube. Of particu-
lar interest in this respect would be the class of normal comparison-based sorting
algorithms, or any other natural class of algorithms that includes the Sharesort

algorithm of Cypher and Plaxton [26].

Another possible direction for future research would be to consider other re-
stricted classes of sorting networks. As a natural extension of the shuffle-unshuffle
networks, we could consider the class of sorting networks whose structure corre-
sponds to the class of “leveled” algorithms on the hypercube, where in each step
communication only occurs across a single dimension, but the sequence of dimen-
sions can be arbitrary. (Note that this class of algorithms cannot be emulated

with constant slowdown on any of the bounded-degree variants of the hypercube.)
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Other classes of interest would be sorting networks based on a single permutation,

or periodic sorting networks [28, 48, 60].

Finally, it is an open problem whether our techniques can be applied to obtain

lower bounds for shuffle-based or shuffle-unshuffle selection networks.
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Chapter 3

Lower Bounds for Shellsort

In this chapter we establish lower bounds on the worst-case complexity of Shell-
sort networks and algorithms. In particular, we give a fairly simple proof of an
Q(nlg? n/(lglgn)?) lower bound for the size of Shellsort sorting networks, for arbi-
trary increment sequences. We also show an identical lower bound for the running
time of non-oblivious Shellsort algorithms. Our lower bounds establish an almost
tight trade-off between the running time of a Shellsort algorithm and the length of

the underlying increment sequence.

3.1 Introduction

Shellsort is a classical sorting algorithm introduced by Shell in 1959 [104]. The
algorithm is based on a sequence H = hg,..., h,—1 of positive integers called an
increment sequence. An input file A = A[0],..., A[n — 1] of elements is sorted by
performing an hj-sort for every increment h; in H, starting with h,,_; and going
down to hg. Every hj-sort partitions the positions of the input array into congruence
classes modulo A;, and then performs Insertion Sort on each of these classes. It is

not difficult to see that at least one of the A;’s must be equal to 1 in order for the
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algorithm to sort all input files properly. Furthermore, once some increment equal
to 1 has been processed, the file will certainly be sorted. Hence, we may assume

without loss of generality that ig =1 and h; > 1 for all 7 > 0.

The running time of Shellsort varies heavily depending on the choice of the
increment sequence H. Most practical Shellsort algorithms set H to the prefix
of a single, monotonically increasing infinite sequence of integers, using only the
increments that are less than n. Shellsort algorithms based on such increment
sequences are called uniform. In a nonuniform Shellsort algorithm, H may depend

on the input size » in an arbitrary fashion.

A general analysis of the running time of Shellsort is difficult because of the vast
number of possible increment sequences, each of which can lead to a different run-
ning time and behavior of the resulting algorithm. Consequently, many important
questions concerning general upper and lower bounds for Shellsort have remained
open, in spite of a number of attempts to solve them. Apart from pure mathe-
matical curiosity, the interest in Shellsort is motivated by the good performance of
many of the known increment sequences. The algorithm is very easy to implement,
and outperforms most other sorting methods on small or nearly sorted input files.

Moreover, Shellsort is an in-place sorting algorithm, so it is very space-efficient.

3.1.1 Previous Results on Shellsort

The original algorithm proposed by Shell was based on the increment sequence given
by hm—1 = |n/2], hm—a = [n/4],...,ho = 1. However, this choice of H leads to
a worst case running time of ©(n?) if n is a power of 2. Subsequently, several
authors proposed modifications to Shell’s original sequence [63, 34, 50] in the hope
of obtaining a better running time. Papernov and Stasevich [84] showed that the
sequence of Hibbard [34], consisting of the increments of the form 2% — 1, achieves

a running time of O(n%/2). A common feature of all of these sequences is that they
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are nearly geometric, meaning that they approximate a geometric sequence within

an additive constant.

An exception is the sequence designed by Pratt [95], which consists of all incre-
ments of the form 2°37. This sequence gives a running time of O(nlg? n), which still
represents the best asymptotic bound known for any increment sequence. In prac-
tice, the sequence is not popular because it has length @(lg2 n); implementations
of Shellsort tend to use O(lgn)-length increment sequences because these result in
better running times for files of moderate size [36]. In addition, there is no hope of

getting an O(nlgn)-time algorithm based on a sequence of length w(lgn).

Pratt [95] also showed an Q(n?/?) lower bound for all nearly geometric sequences.
Partly due to this result, it was conjectured for quite a while that @(n3/2) is the
best worst-case running time achievable by increment sequences of length O(lgn).
However, in 1982, Sedgewick [103] improved this upper bound to O(n*/?), using an
approximation of a geometric sequence that is not nearly geometric in the above
sense. Subsequently, Incerpi and Sedgewick [36] designed a family of O(lgn)-length
increment sequences with running times O(nl"'e/\/lg_”)7 for all € > 0. Chazelle
achieves a similar running time with a class of nonuniform sequences [36]; his con-

struction is based on a generalization of Pratt’s sequence.

The sequences proposed by Incerpi and Sedgewick are all within a constant
factor of a geometric sequence, that is, they satisfy 7; = © (oej) for some con-
stant @ > 0. Weiss [122, 125] showed that all sequences of this type take time
Q(nl"'e/\/lg_”), but his proof assumed an as yet unproven conjecture on the number
of inversions in the Frobenius pattern. Based on this so-called Inversion Conjecture,
he also showed an Q(nl"'e/\/lg_”) lower bound for the O(lg n)-length increment se-
quences of Chazelle. The question of existence of Shellsort algorithms with running

time O(nlgn) remained unresolved.

The two classes of increment sequences given by Incerpi and Sedgewick and

by Chazelle are of particular interest because they not only establish an improved
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upper bound for sequences of length O(lgn), but also indicate an interesting trade-
off between the running time and the length of an increment sequence. Specifically,
using a construction described in [36], it is possible to achieve better asymptotic

running times by allowing longer increment sequences.

Another goal in the study of Shellsort is the construction of sorting networks
of small depth and size. A Shellsort sorting network of depth ~ 0.61g*n based on
increments of the form 237 was given by Pratt [95]. Thus, his network came very
close to the fastest known network at that time, due to Batcher [7], with depth
~ 0.51g* n. In 1983, Ajtai, Komlés, and Szemerédi [2] designed a sorting network of
depth O(lgn); however, their construction suffers from an irregular topology and a
large constant hidden by the O-notation. This situation has motivated the search for
O(lgn)-depth sorting networks with simpler topologies or a smaller multiplicative
constant. Shellsort has been considered a potential candidate for such a network
[119], due to the rich variety of possible increment sequences and the lack of non-
trivial general lower bounds. The lower bounds of Pratt and Weiss also apply to

network size, but they only hold for very restricted classes of increment sequences.

Cypher [24] has established an Q(nlg*n/lglgn) lower bound for the size of
Shellsort networks. However, his proof technique only works for monotone incre-
ment sequences, that is, sequences that are monotonically increasing. Though this
captures a very general class of sequences, it does not rule out the possibility of an

O(lg n)-depth network based on some nonmonotone sequence.

Very recently, and independent of our work, Poonen [92] has shown a lower
bound of Q(nlg?n/(lglgn)?) that holds for arbitrary Shellsort algorithms. His
lower bound also has the form of a trade-off between the running time of a Shellsort
algorithm and the length of the underlying increment sequence. The proof uses
techniques from solid geometry and is quite intricate. A comparison of Poonen’s

results and the results in this chapter will be given in the next subsection.
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3.1.2 Overview of this Chapter

In this chapter we show lower bounds on the worst-case complexity of Shellsort. In
particular, we give a fairly simple proof of an Q(nlg®n/(lglgn)?) lower bound for
the size of Shellsort networks, for arbitrary increment sequences. We also establish
an identical lower bound for the running time of Shellsort algorithms, again for
arbitrary increment sequences. As in Poonen’s paper, our lower bounds establish a
trade-off between the running time of an algorithm and the length of the underlying
increment sequence. This gives lower bounds for increment sequences of length
O(lgn) that come very close to the best known upper bounds. At the other end of
the spectrum, the trade-off implies that no increment sequence can match Pratt’s

upper bound with significantly fewer increments.

Our proof technique is based on purely combinatorial arguments, and we believe
that it is significantly simpler than the technique used by Poonen. The technique
also leads to certain improvements in the lower bounds, particularly in the trade-off
between the running time and the length of the increment sequence. The result by
Poonen, on the other hand, is of independent interest, since it establishes a variant
of the Inversion Conjecture of Weiss [125] using a new geometric approach to the
Frobenius Problem. The technique used in this chapter is not based on a proof of
the Inversion Conjecture. Instead, it shows how to “combine” Frobenius patterns
to construct permutations with a large number of inversions. This result, together
with the idea of dividing an increment sequence into “stages” (also called “intervals”

n [92]), leads to the strong lower bounds of this chapter.

Throughout this chapter, we will limit our attention to increment sequences of
length O(lg* n/(lglgn)?). Lower bounds for longer increment sequences are implied
by the fact that Shellsort performs at least €2(n) comparisons for every increment
less than n/2. The results of this chapter are presented in an “incremental” fashion,

starting with a very basic argument for a restricted class of algorithms, and extend-
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ing the lower bounds to more general classes in each of the subsequent sections.

This chapter is organized as follows. Section 3.2 illustrates our proof technique
by giving a simple and informal argument showing a lower bound for the depth of
Shellsort networks based on monotone increment sequences. Section 3.3 introduces a
number of definitions and simple lemmas, and then proceeds to give a formal proof
of a general lower bound for the depth and size of arbitrary Shellsort networks.
Section 3.4 then establishes a lower bound on the running time of non-oblivious
Shellsort algorithms based on arbitrary increment sequences. Section 3.5 contains
a discussion of our results and a comparison with the best known upper bounds.

Finally, Section 3.6 lists some open questions for future research.

3.2 The Basic Proof Idea

In this section we illustrate our proof idea by giving a very simple and informal
argument showing a polylogarithmic lower bound for the depth of any Shellsort
network based on a monotone increment sequence of length at most clg® n/(lglg n)?,
for some small ¢. In the following sections, we will then formalize and extend this

technique to obtain more general lower bounds.

Let H be a monotone increment sequence with m < clg?n/(lglg n)? increments.
We now divide the increment sequence H into a number of stages So,...,S5:1.
Every stage S; is a set consisting of all increments h; of H such that n; > h; >
ni+1, Where ng,...,n; are chosen appropriately. We define the n; by ng = n and
Niy1 = ni/lgk n;, for ¢ > 0 and some fixed integer k. In this informal argument, we

will not be concerned about the integrality of the expressions obtained. Note that

Ign

Tlelen disjoint stages. There are

the n; divide the increment sequence into at least

at least s & 2kllgg77l7‘gn disjoint stages consisting of increments h; > nt/2,
By averaging, one of these stages, say S;, will contain at most m/s < QICgkl{ggnn

increments. Now suppose there exists an input permutation A such that, after
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sorting A by all increments in stages So to S;, some element is still Q(n;) positions
away from its final position in the sorted file. Since H is monotone, we know that
from now on only comparisons over a distance of at most n;4; positions will be
performed. Hence, we can conclude that the element has to pass through at least

Q(n;/niy1) = Qg* n) comparators in order to reach its final, correct position.

To complete the proof we have to show the existence of a permutation A such
that some element is still “far out of place” after sorting A by all increments in S to
S;. We will only give an informal argument at this point; a formal proof will be given
in the next subsection. Consider all permutations of length n of the following form:
Every element is in its correct, final position, except for the elements in a block of
size n;, ranging from some position a to position ¢+ n; — 1 in the permutation. The
elements in this block are allowed to be scrambled up in an arbitrary way. It is easy
to see that a permutation of this form is already sorted by all increments greater
than n;, that is, all increments in stages Sg to S;_1. Hence, no exchanges will occur

during these stages.

We now look at what happens in the block of size n; during stage S;. Note that
no element outside the block will have an impact on the elements in the block. Thus,
when we sort the permutation by some increment h; with n; > h; > n;4q, the new
position of any element only depends on its previous position and on the elements

in the at most 7+ < lgk n; other positions in the block that are in its hj-class. By
J

2cklgn

Te Tz increments in stage S;. Hence, the

our assumption, there are at most m/s <
position of an element after stage 5; only depends on its position before the stage,
which can be arbitrary, and on the elements in at most

2ck2 Ign

(1g* ni)m/ "< (Igng) e

other positions. If we choose ¢ such that 4ck? < 1 — ¢, for some € > 0, then we get

2ck? lgn

(lgm) Tglg n < 22ck2lgn

< 24ck2 lgn;
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= o(n).

This means that for large n, the position of an element in the block after sorting by
all increments in .S; will only depend on the elements in o(n;) other positions in the
block. If we assign the smallest elements in the block to these positions, then an
element that is larger than these, but smaller than all other elements will end up in
a position close to the largest elements after stage .S;. Hence, this element is Q(n;)

positions away from its final position. All in all, we get the following result:

Theorem 3.2.1 Let H be a monotone increment sequence of length at most ¢lg® n/
(Iglgn)?, and let k be such that 4ck* < 1 — ¢, for some ¢ > 0. Then any sorting
network based on H has depth (lgk n)

The above argument is quite informal and does not make use of the full potential
of our proof technique; it has mainly been given to illustrate the basic proof idea
and to demonstrate its simplicity. The above result implies that we cannot hope to

match the O(lg®n)-depth upper bound of Pratt [95] with any increment sequence

1—e)lg?n

of fewer than T6(lgTg )2

increments, thus answering a question left open by Cypher’s
lower bound [24]. It also implies that we cannot achieve polylogarithmic depth with

increment sequences of length o(lg* n/(lglg n)?).

By extending the argument we will be able to show much stronger lower bounds
for shorter increment sequences. More precisely, we can get a trade-off between
depth and increment sequence length by choosing appropriate values for the integers
n; that divide the increment sequence into stages. We can also extend the result to
non-oblivious Shellsort algorithms by showing the existence of an input such that
not just one, but “a large number” of elements are “far out of place” after the sparse

stage 5.
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3.3 Lower Bounds for Networks

In this section, we will show general lower bounds for the depth and size of Shellsort
sorting networks. We start off by giving a number of definitions and simple lemmas.
We then show how to formalize and generalize the argument of Section 3.2 to obtain
a trade-off between the depth of a Shellsort network and the length of the underlying
increment sequence. Next, we explain how the results on network depth imply lower
bounds on the size of Shellsort networks. We conclude this section by extending our

results to nonmonotone increment sequences.

3.3.1 Definitions and Simple Lemmas

This section contains a number of basic definitions and associated lemmas. All of

the lemmas are quite straightforward and so their proofs have been omitted.

We will use II(n) to denote the set of n! permutations over {0,...,n — 1}. A
0-1 permutation of length n is an n-tuple over {0,1}. Thus {0, 1}" denotes the set

of 2™ 0-1 permutations.

Throughout this chapter we will assume that the input files are drawn from
I(n). We will use the letters A, B, and C' to denote elements from [I(n), and we
will use X, Y, and Z to denote 0-1 permutations. We say that a file A is h-sorted
if A[¢i] < A[i+ h], for 0 <7 < n — h. The following trivial lemma arises as a special

case of the last definition.

Lemma 3.3.1 Fvery file of length n is h-sorted for any h > n.

In the following, let H = hg,...,h,_1 be an increment sequence of length
m > 1. Let min(H) denote the smallest increment in H. We say that a file is

H-sorted if and only if it is h;-sorted for all ¢ such that 0 <7 < m.
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Definition 3.3.1 Let template(H,n) denote the 0-1 permutation X obtained by
setting X[i] to 1 if and only if there exist nonnegative integers ag, ..., a,_1 such

that

= Z a; - h;.

0<5<m

Lemma 3.3.2 The 0-1 permutation template(H,n) is H-sorted.

Lemma 3.3.3 The number of 1’s in the 0-1 permutation template(H,n) is at most

|
min(H)|
Definition 3.3.2 For any 0-1 permutation X of length n' with 0 < n’ < n, let

pad (X, n) denote the 0-1 permutation Y of length n obtained by setting

, X[i] 0<i<n/, and
Yi[i] =
1 n <i<n.
Lemma 3.3.4 Let X be an arbitrary 0-1 permutation of length n' with 0 < n’ < n.
Then X is H-sorted if and only if pad(X,n) is H-sorted.

Definition 3.3.3 For any 0-1 permutation X of length n > 0, and any integer k,
let shift(X, k) denote the 0-1 permutation Y obtained by setting

0 ifi—k<0,
Y[i]=% X[i—k] if0<i—k<n, and
1 ifi — k> mn.

Lemma 3.3.5 For any 0-1 permutation X and any integer k, if X is H-sorted,
then shift(X, k) is also H-sorted.

In the following definition, a Boolean expression is assumed to represent 1 if it

is true, and 0 if it is false.

67



Definition 3.3.4 For any 0-1 permutation X of length n > 0, let perm(X) denote
the permutation Y in I1(n) obtained by setting

Y[il= ) (X[Ul= X[+ D (X[ < X[,

0<j<i 0<j<n

Lemma 3.3.6 Let X be an arbitrary 0-1 permutation. Then X is H-sorted if and

only if perm(X) is H-sorted.

We say that an element A[j] of a permutation A in Il(n) is k places out of
position if |A[j] — j| > k. The following lemma will be used in Section 3.3.2 to

obtain a simple lower bound on the depth of any Shellsort sorting network.

Lemma 3.3.7 Let X denote any H-sorted 0-1 permutation of length n, let ¢ denote
the number of 1’s in X, and let j denote the least index such that X[j]=1 (if i =0

then set j = n). Then element perm(X)[j] is n — i — j places out of position.

3.3.2 A More General Lower Bound

We will now generalize the proof technique presented in the previous section to
obtain a trade-off between the length of an increment sequence H and the lower
bound for the depth of a sorting network based on H. For the sake of simplicity, we
assume H to be monotone. It will be shown later that this assumption is not really

necessary.

As before, we divide the increment sequence into stages Sp, ..., S¢_1, such that
stage S; contains all increments h; with n; > h; > n;11. We define the n; by
ng =n and n;4q = {ni/lgk niJ, but we now assume k to be a function of the input
size n and the increment sequence length m. Note that the number of stages t is

determined by our choice of k. In particular, if we choose k such that

(1 )" <2,
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then we get at least s stages that contain only elements greater n'/2. Solving this

inequality we get

k= {lgi"J . (3.1)

2slglgn

as a possible choice of k. We will now formalize our earlier observation that an
element can be “far out of place” after sorting by all increments up to stage 5;,

provided that S; contains “few” increments.

Lemma 3.3.8 Let H be an increment sequence for permutations of length n, and
suppose that for some integers v,v’ with 0 < v/ < v < n there are at most u
increments h; with v/ < h; < v in H. If [%]" = o(v), then there exists an input
file A such that: (i) A is sorted by all h; > V', and (ii) there exists an element in A

that is Q(v) places away from its final position.

Proof: Let H' denote the subsequence of H consisting of all increments h; such
that h; > v/, let H” denote the subsequence of H’ consisting of all increments h;
such that h; < v, and let X = template(H",v). We know that X is H"-sorted
by Lemma 3.3.2. Lemma 3.3.1 then implies that X is also H'-sorted. Note that

|H"| < p and min(H") > v'. Hence, by Lemma 3.3.3, the number of 1’s in X is at

[i-‘ ' = o(v).

I//

most

Now let Y = pad(X,n). By Lemma 3.3.4, the 0-1 permutation Y is H’-sorted.
Furthermore, since the number of 1’s in Y is exactly n — v greater than the number
of I's in X, and X[0] = Y[0] = 1, Lemma 3.3.6 implies that the permutation
A= perm(Y) is H'-sorted, and by Lemma 3.3.7 some element of A is Q(v) places

out of position.

a

In the preceding argument, we could also have defined Y as shift(pad(X,n),j)
for any integer j with 0 < j < n —v. We will make use of this observation to

establish Corollary 3.3.1.1 below.
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Theorem 3.3.1 Any Shellsort sorting network based on a monotone increment se-

Ign
Q (2(2+e)ﬁ) 7

quence of length m has depth

for all ¢ > 0.

Proof: We will partition the increment sequence H into at least s = (1 + ¢p)v/m

1/2

disjoint stages consisting of increments h; with h; > n'/%, for some ¢ > 0. By

averaging, one of these stages, say 5;, will contain at most

pe {%J - L\-/I-EGOJ

increments. Using Equation 3.1 we determine k as:

b { lgn J
C[2(1 4 €o)/mliglgn

Define v = n; and v/ = n;11. We now have

vm
vH k T+eo
< e

Ign
S (lgn)2(1+60)21g1gn
lgn
= 22(14¢)?
1g v
< 9 (1+¢9)?

= o(v).

Thus, we can apply Lemma 3.3.8. According to the lemma, there exists a permuta-
tion such that an element is Q(n;) positions away from its final position after stage
S;. Since all subsequent increments are less than or equal to 1,41, this element must

pass through at least Q(n;/n;+1) comparators. We have

n:
— > lgn
541
lgn
— (lgni)\‘2(l+eo)\/ﬁlglgnJ
lgn

Z (lg ni)2(1+60)(1+61)\/ﬁ1g1gn
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lgn
( lglgn,) (1+eg) (1+e1)v/m

v

21glgn

gm0

) (1+e0) 1+€1)\/_

v
TN
B

where € is chosen to satisfy the inequality (24 ¢) > 2(1 4 €0)(1 + €1)(1 + €2).

a

3.3.3 A Lower Bound for Network Size

The depth lower bound of Theorem 3.3.1 also implies a lower bound on the size of
any Shellsort network based on a monotone increment sequence. We will not give a
formal proof of this result, since it arises as a special case of the lower bound for the
running time of non-oblivious Shellsort algorithms established in the next section.

Instead, we will briefly describe the main idea.

Lemma 3.3.8 shows how to construct an input file A that is sorted under all
increments in stages Sy to S; of an increment sequence H such that one element
Alz] in A is “far out of place”. In fact, as discussed immediately after the proof
of Lemma 3.3.8, we can use the method of the lemma to construct a set of n — n;
“shifted” versions of such an input file A. In particular, let A;, 0 < j < n—n;, denote
the input file obtained by setting Y to shift(pad(X,n), j) instead of pad (X, n). Note
that Ag = A. Let Agp[z] be the element proven to be far out of place in Ay. By
construction, the element A;[z 4 j] is far out of place in A;. Due to the common
structure of the input files, element A;[z 4+ j] in file A; will never pass through
the same comparator as element Ag[z + k] in Ag, for any j # k. Instead, the two
elements will always be exactly k& — j positions apart at each level of the sorting

network. This implies the result.

Corollary 3.3.1.1 Any sorting network based on a monotone increment sequence
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of length m has size

for all ¢ > 0.

We can now compare our result to the lower bound of Q(nlg?n/lglgn) for
network size given by Cypher [24]. The main difference between the two results is
that Cypher gets a lower bound that is independent of the length of the increment
sequence, while we get a trade-off between network size and increment sequence
length. This makes our lower bound much stronger for short increment sequences.
Our method also implies a lower bound of Q(nlg®n/(lglgn)?) for increment se-
quences of arbitrary length, since every increment increases the size of a Shellsort
network by at least n. This is slightly weaker than Cypher’s lower bound. However,
Cypher’s bound only applies to monotone increment sequences, while our result also
holds for nonmonotone sequences, as will be shown in the next subsection. Another
strength of our method is its simplicity and flexibility, which will makes it possible to

extend our lower bound to non-oblivious Shellsort algorithms and certain variations

of Shellsort.

3.3.4 Nonmonotone Increment Sequences

So far, we have restricted our attention to monotone increment sequences. We
will now show that this restriction is really unnecessary, and that the same lower
bounds also apply to nonmonotone sequences. Recall that we obtained the depth
lower bound by showing the existence of an input permutation such that an element
is “far out of place” after the “sparse” stage S;. More precisely, Lemma 3.3.8 showed
the existence of a permutation A that is already sorted by all increments in stages
So through S; and that contains such an element. Thus, no exchanges are performed
by the increments in stages So through 5; on input A, and the lower bound follows.

We will make use of the following well-known lemma (see, for example, [95]) in order
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to extend this argument to nonmonotonic increment sequences.

Lemma 3.3.9 For any two increments h, h', if we h'-sort an h-sorted file, it stays

h-sorted.

Now suppose we have a nonmonotone increment sequence H. We can divide H
into stages So, ..., 5;—1 as before, with stage S5; containing all increments %; with
n; > h; > niy1. Again, there exists a “sparse” stage S; with few increments, and a
permutation sorted by all increments in § & SqU---US; such that some element is
“far out of place”. If we take A as the input permutation, then by Lemma 3.3.9 A will
stay sorted by all increments in .S throughout the network. Hence, no exchanges will
take place during the applications of Insertion Sort corresponding to increments in
S. This implies that all of the exchanges needed to move the “out-of-place” element
to its final position are performed by increments #; < n;;q, and the lower bound
follows. The same reasoning also applies to the lower bound for network size, and

to the results obtained in the next section. This gives us the following result:

Corollary 3.3.1.2 Any sorting network based on an increment sequence of length
m has size
Ign
Q (n . 2(2+6)ﬁ) )
for all ¢ > 0.
Note that this result does not rule out the existence of nonmonotone increment
sequences that perform better than the “corresponding” monotone sequences (that

is, the sequences obtained by sorting the nonmonotone sequences into increasing

order). It is an open question whether such sequences exist.
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3.4 Non-Oblivious Shellsort Algorithms

The results obtained so far all rely on the fact, established in Lemma 3.3.8, that
we can construct an input file such that one element is “far away” from its final
position in the sorted file. We were able to extend the lower bounds to network size
due to the oblivious nature of sorting networks. However, the results for network
size do not imply a lower bound for the running time of Shellsort algorithms that

are non-oblivious.

In this subsection, we will establish such a lower bound. The high-level structure
of the proof is the same as that of the depth lower bound in the last section; we
only have to substitute Lemma 3.3.8 by a stronger lemma showing that there exists
an input file A such that not just one, but “a large number” of the elements in A
are “far away” from their final position. This result is formalized in the following

lemma, which we will prove later in this subsection.

Lemma 3.4.1 Let H be an increment sequence applied to input files of length n,
and suppose that for some integers v, v’ with 4 < v/ < v < n there are at most
p increments h; with v/ < hy < v in H. If [5]" < v/1g’v, then there exists an

input file A such that: (i) A is sorted by all h; > V', and (ii) there exist Q(n/ g v)

elements in A that are Q(v/1g? v) places away from their final position.

Given an increment sequence H, we can establish the lower bound for non-
oblivious Shellsort algorithms by dividing I into stages in the same way as in
the proof of Theorem 3.3.1, and then applying the above Lemma 3.4.1 instead of
Lemma 3.3.8. The lower bound obtained is slightly weaker than the one for network
size, since Lemma 3.4.1 only shows that a polylog fraction of the elements are a

polylog fraction of n;_; out of place. This gives the following theorem:

Theorem 3.4.1 Any Shellsort algorithm based on an increment sequence of length
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m has running time
n lgn
0 (T . 2(2+e)ﬁ) 7
lg”n
for all ¢ > 0.

We remark that the exponent “5” in the preceding theorem is not the best
possible. It results from summing the exponents “3” and “2” appearing in the
statement of Lemma 3.4.1, which can be improved to “2” and “17”, respectively. We

have chosen to weaken these constants in order to simplify the proof of Lemma 3.4.1.

Comparing the bound of Theorem 3.4.1 to previous results we note that the
lower bounds of Pratt [95] and Weiss [122] only hold for increment sequences ap-
proximating a geometric sequence, while the lower bound of Theorem 3.4.1 applies
to all increment sequences. Also, the bound given by Weiss, which holds for a more
general class than Pratt’s bound, is based on an unproven conjecture about the

number of inversions in certain input files.

The remainder of this subsection contains the proof of Lemma 3.4.1. To es-
tablish the result, we will need a few technical lemmas. The first two lemmas are
straightforward and their proofs will be omitted. In particular, Lemma 3.4.2 is a

straightforward generalization of Lemma 3.3.7.

Lemma 3.4.2 Let X denote any H-sorted 0-1 permutation of length n, let ¢ denote
the number of 1’s in X, let n/ be such that 0 < n’ < n—2i, and let j =3 gy 0 X[k].

Then at least j elements of perm(X) are n — n’ — i places out of position.

Definition 3.4.1 For any 0-1 permutation X of length n' such that 0 < n' < n,
let perm*(X,n) denote the permutation Y in 1L(n) obtained from Z = perm(X) by
setting

Y[i] = Z[i mod n'] + L%J .
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Lemma 3.4.3 Let X be any 0-1 permutation of length n' such that 0 < n’ < n.
Then X is H-sorted if and only if perm* (X, n) is H-sorted. If i elements of perm(X)
are j places out of position, then at least i - |n/n'| elements of perm*(X,n) are j

places out of position.

In the following, let H be an arbitrary increment sequence. Let v be any integer

with v > 4, and define a &' v —20/1g? v and § &= v —v/1g%v.

Lemma 3.4.4 Let X denote a 0-1 permutation of length v > 4 with X[0] = 1 and
YPo<icy X[H] < v/ lg® v. Then there exists an integer k, 0 < k < (v —«) |lgv|, such
that the 0-1 permutation Y & shift(X, k) satisfies
STOYE> > YTl
0<i<e a<li<y
Proof: Suppose, for the sake of contradiction, that
S shift(X k)i < Y shift(X, k)[i]
0<i<e a<li<y
holds for all k£ with 0 < k < (v — a) |lgr|. This implies that > <, X[i] <
Y a—k<icv—k X[i]. Using Rg E Y o<ica—k X [t], this can be rewritten as Rj <

Ry_(y—a) — By, or Ry < %Rk—(y—oz)' Hence,
R(u—oz)l_lguj < Q_Ugyj R07
and from Rg < 3750, X[{] < v/ lg? v we get

2
Riv—oyligy] < —5— < L.
(ma)lisy] < 5

This is clearly a contradiction, since X[0] = 1 implies R | > L

v—a)|lgv

a

In the next lemma, given 0-1 permutations X and Y, we will use or(X,Y) to
denote the 0-1 permutation Z obtained by setting bit Z[] to the logical OR of bits
X[i] and Y[i], 0 <7 < n. Clearly, if X and Y are H-sorted, then or(X,Y) is also
H-sorted.
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Lemma 3.4.5 Let X be an H-sorted 0-1 permutation of length v with x = Zogi@
X[ <v/lg*v. Let 2’ & Lo<icatk X[1] where (zlgr)/2 <k < v/(21g®v). Then
there exists an H-sorted 0-1 permutation Y of length v with 3 o<;c, Y[i] < 22 and

B 1 7

Z Y[i]>2 1—1— '

0<i<a+2k gV

Proof: We will set Y to Y; i or(X, shift(X, 7)) for some appropriately chosen
integer 7, 1 < j < k. Note that by Lemma 3.3.5, any such 0-1 permutation Y; is H-
sorted, and it is easy to see that > o<;., Y;[i] < 2z holds. Let v} = 3"qcicqayar Yilil-
It remains to show the existence of an integer jg, 1 < jo < k, such that y§0 >

2(1 = 1/lgv)a’. We will accomplish this by means of an averaging argument. We

have
7
Z yi > 2ka’ — (x)
1<5<k 2

Hence, there exists a jo, 1 < jg < k, such that

, 2kz’! — (952)
Y5, = A
, =1
> 2x —
- lg v

Now choose Y =Y.

a

Lemma 3.4.6 Let Y be an H-sorted 0-1 permutation of length v with 3 o<;c, Y[i]

<v/lg*v and

SV > Y[

0<i<e a<li<y
Then there exists an H -sorted 0-1 permutation Z of length v such that y ;. Z[i] <
v/1g*v and

Z Z[i] = Qv/1g v).

0<i<p
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Proof: We will “transform” the given 0-1 permutation Y into a 0-1 permutation
of the desired form by a sequence of applications of Lemma 3.4.5. Let Yy &£ Y. The
jth application of Lemma 3.4.5 will be used to obtain Y; from Y;_4, j > 1. Let
Yj = Lo<icy Yilil; and let yf = 3 ocicoqaiyo 150 Yili]- Note that yg > 3ocico, Y] 2

Yo/2. Then Lemma 3.4.5 implies that y; < 2749, and

2 ()]
y]_ lgl/ Yo

for j <lgv —lgyo — 3lglg v (the latter inequality ensures that a + 27ylgy < 3).
Setting jo to |lgv —lgyo — 3lglgv|, and making use of the inequality y, > yo/2,
we find that y;, < v/lg®v and

y;b = Qyz,) = Qv/ 1g3 v).
Hence, we can choose 7 =Y/, .
a

Given the above lemmas, we are now ready to proceed with the proof of Lemma

3.4.1.

Proof: Let H' denote the subsequence of H consisting of exactly those increments
h; such that h; > v/, let H"” denote the subsequence of H’ consisting of exactly
those increments h; such that h; < v, and let X = template(H",v). We know that
X is H"-sorted by Lemma 3.3.2. Note that |H”| < g and min(H"”) > /. Hence, by

Lemma 3.3.3, we have

s x<[s] <

— 3 .
0<i<v lg”v
By Lemmas 3.3.5 and 3.4.4, the existence of X implies the existence of a 0-1 per-
mutation Y of length v such that Y is H"-sorted and
SV > Y[
0<i<e a<li<y
The existence of Y then establishes, via Lemma 3.4.6, the existence of a 0-1 permu-

tation Z of length v such that:
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e 7 is H"-sorted,
® > o<icw 4l < v/ lg® v, and
o Yocics Z[i] = Qv/1g%v).

By Lemma 3.3.1 and Lemma 3.3.6 we know that B = perm(Z) is H'-sorted, and
Lemma 3.4.2 implies that B contains Q(v/lg® v/) elements that are Q(v/ lg? v) places
out of position. Let A = perm*(Z,n). By Lemma 3.4.3, A is H'-sorted and contains

Q(n/1g’v) elements that are Q(v/lg? v) places out of position.

a

3.5 Discussion

In this chapter, we have given a fairly simple proof of a lower bound of Q(nlg®n/

(Iglgn)?) for the size of any Shellsort network, thus ruling out the existence of a
network of size O(nlg n) based on a nonmonotone increment sequence. By extending
our argument to the case of non-oblivious algorithms, we have also established a

general lower bound for Shellsort that holds for arbitrary increment sequences.

Our lower bound can be further generalized to a fairly large class of “Shellsort-
like” algorithms, including the Shaker Sort algorithm of Incerpi and Sedgewick [37,
124] as well as other algorithms proposed by Knuth [50] and Dobosiewicz [27].
Poonen [92] has formally defined a class of such algorithms, called Shellsort-type
algorithms, and has shown how to extend his lower bound to this class. We will not
elaborate further on such possible extensions, and instead refer the reader to the

presentation in [92] and [89].

The lower bound of Theorem 3.4.1 establishes a trade-off between the running
time of a Shellsort algorithm and the length of the underlying increment sequence.

We will now compare this lower bound trade-off with the best known upper bound
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trade-off given by the nonuniform increment sequences of Chazelle (see the non-
uniform case of Theorem 3 in [36]). Expressing the running time as a function of

the increment sequence length m we obtain the following bounds:

1

Lower Bound: T > lg?n . p EFovm
2
Upper Bound: T < mn - nvm

Note that both the factor 1/1g” n in the lower bound and the factor m in the upper
bound are only significant for increment sequences of length Q(lg* n/(lglgn)?). In
every other case, the upper and lower bounds differ only by a factor of 4 + ¢ in
the exponent. In the lower bound trade-off shown by Poonen, the constant in the

exponent is 1/432 instead of 1/(2 + ¢).

We can also express the length of the increment sequence as a function of the
running time. In this case, for m = o(lg* n/(lglgn)?), the lower and upper bounds
are only a constant factor apart. This means that, for a given T, the length of
the increment sequence of Chazelle that achieves running time 7 is only a factor of
16 4 € larger than the minimum length possible under our lower bound trade-off.
(For Poonen’s result, this factor would be much larger.) In other words, one cannot
hope to match the running time of Chazelle’s sequences with significantly shorter

increment sequences.

3.6 Open Questions

The primary remaining challenge in the study of Shellsort seems to be the virtual
nonexistence of both upper and lower bounds for the average case complexity. A
result for a particular increment sequence is given by Knuth [50], who determines
an average case running time of Q(n3/2) for Shell’s original sequence. Increment se-
quences of the form (h, 1) and (h, k, 1) were investigated by Knuth [50] and Yao [126],
respectively. Weiss [123] conducted an extensive empirical study and conjectured

that Shellsort will on average not perform significantly better than in the worst
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case. Any general upper or lower bounds for the average case would certainly be

very interesting.

It would be nice to close the remaining gap between the upper and lower bounds.
Our lower bound trade-off comes quite close to the known upper bounds, but there

is certainly still room for improvement.

Finally, one might try to find interesting “Shellsort-like” algorithms that are

not covered by our proof technique, and that lead to improved running times.
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Chapter 4

Deterministic Routing and

Sorting on Meshes

Thia chapter considers the problems of deterministic routing and sorting on meshes
and related networks. We introduce a new technique that can be used to convert
many of the randomized algorithms proposed in the literature into deterministic
algorithms with (nearly) matching running times. We describe several applications
of this technique, including deterministic algorithms for routing and sorting on the
two-dimensional 7 X7 mesh that run in time 2n+o0(n) with small constant queue size.
Apart from these particular applications, we believe that the technique enhances our
understanding of routing and sorting on meshes in general, by showing an interesting

relation between randomization and local sorting steps.

4.1 Introduction

In this chapter, we describe algorithms and techniques for routing and sorting
on meshes and tori. In our presentation, we concentrate on the case of the two-

dimensional mesh, but we also state a number of results for other, related networks.

82



We are mainly concerned with the problems of 1-1 routing and 1-1 sorting, where
before and after the operation each processor holds a single element. In the next

paragraphs, we recall and expand some of the definitions given in Section 1.2.

In the following, we assume an n X n mesh-connected array of synchronous
processors. Fach of the n? processors is identified by its row and column coordinates.
Every processor is connected to each of its four neighbors through a bidirectional
link, and a bounded amount of information can be transmitted in either direction
in a single step of a computation. The packet routing problem is the problem of
rearranging a set of packets in a network, such that every packet ends up at the
processor specified in its destination address. A routing problem in which every
processor is the source and destination of at most one packet is called a 1-1 routing
problem, or permutation routing problem. In the 1-1 sorting problem, we assume
that every processor initially holds a single packet, where each packet contains a
key drawn from some totally ordered set. Our goal is to rearrange the packets in
such a way that the packet with the key of rank k is moved to the unique processor
with index k, for all k. The index of a processor in the mesh is determined by an

indexing scheme.

Formally, an indexing scheme for an n X n mesh is a bijection Z from [n] x [n] to
[n?]. If Z(¢, j) = k for some processor (4, j) € [n] x[n] and some k € [n?], then we say
that processor (¢,7) has index k. The problem of sorting an input with respect to

an indexing scheme 7 is to move every element y of the input to the processor with

def

index Z(Rank (y, X)), where Rank (y, X) = [{z € X | 2 < y}| and X denotes the
set of all input elements. An example of a simple indexing scheme is the row-major
indexing scheme, or row-major order, which is given by indexing the processors from

the left to the right, and from the top row to the bottom row. It can be formally
defined by

I(t1,51) < I(ia,J2) & (01 < 22) V[(i1 =12) A (J1 < J2)]-
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A related indexing scheme is the snake-like row-major order defined by

Z(i1,41) < Z(i2,72) & (i1 <d2) V [(i1 = i) A([(i1 odd ) A (J1 < j2)]V

[(41 even ) A (71 > j2)])]-

Similarly, one can define the column-major and snake-like column-major orders.

Sorting algorithms on the mesh are usually designed with a particular indexing
scheme in mind, and techniques developed for one indexing scheme may not work
well for others. Throughout this chapter, we assume a blocked indexing scheme
similar to the one used in [42, 43]. The indexing scheme is defined by partitioning
the mesh into blocks of size n® X n®, and using an arbitrary indexing inside each
block, while the blocks themselves are ordered in the mesh according to snake-like

row-major indexing.

Finally, the queue size is the maximum number of packets that have to be stored
at any processor during the execution of an algorithm. We point out that there are
several different possible definitions of the queue size. Under one definition, each
communication link of a processor has an associated buffer that can hold a single
packet, and the queue size is defined as the number of packets that do not fit into
these buffers, and that are stored in an additional queue inside the processor. We
will refer to this as the internal queue size of an algorithm. (Thus, a hot-potato or
deflection routing algorithm has an internal queue size of zero.) In the remainder
of this thesis, we define the queue size as the maximum number of packets that are
located at a single processor at any point in time, including those packets that are
routed in the next step. Thus, an internal queue size of ¢ on a d-dimensional mesh
corresponds to a queue size of at most ¢ 4+ 2d in our model. A good routing or
sorting algorithm should have a fast running time, a small queue size, and a simple

control structure.
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4.1.1 Previous Results

The study of sorting on the two-dimensional mesh was initiated by Orcutt [83] and
Thompson and Kung [114], who gave algorithms based on Batcher’s Bitonic Sort [7]
with running times of O(nlgn) and 6n + o(n), respectively. In the following years,
a number of sorting algorithms were proposed for the mesh (see, for example, [52,
62, 82, 100, 101]); these algorithms make a variety of different assumptions about
the power of the underlying model of the mesh. More recently, most of the work
has focused on variants of the two models described in the following, which we refer

to as the single-packet model and the multi-packet model.

The single-packet model (also often referred to as the Schnorr-Shamir model)
assumes that a processor can hold only a single packet at any point in time, plus
some unbounded amount of additional information. This unbounded additional
information may be used to decide the next action taken by the processor; however,
it may not be used to create a new packet and substitute it for the currently held
packet. At any step in the computation, a single packet plus an unbounded amount
of header information may be transmitted across each directed edge. It is assumed
that a comparison-exchange operation between adjacent packets can be performed

in a single step.

For this model of the mesh, Schnorr and Shamir [102] showed an upper bound
of 3n + o(n) for sorting into row-major order. They also proved a lower bound of
3n — o(n), independently discovered by Kunde [54]. The same proof technique has
also been used to show lower bounds for arbitrary indexing schemes [54]; the best
general lower bound is currently 2.27n [32]. Note that the upper bound does not
make use of the unbounded local memory and header information permitted in the
model, while the lower bounds hold even under these rather unrealistic assumptions.
Thus, the power of the model seems to be mainly determined by the restriction to

a single packet per processor.
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Another model that has recently received some attention is the multi-packet
model of the mesh (also sometimes referred to as the MIMD model). In this model,
a processor may hold a constant number of packets at any point in time, and packets
may be copied or deleted. In any step of the computation, a single packet plus
O(lgn) header information can be transmitted across each directed edge, and local
memory is restricted to O(lgn) bits. The only general lower bound for sorting
and routing on the multi-packet model of the mesh is given by the diameter of the
network, and several groups of authors have recently described sorting algorithms

for this model that achieve a running time of less than 3n.

A 2.5n4 o(n) time randomized algorithm for this model was given by Kaklama-
nis, Krizanc, Narayanan, and Tsantilas [43]. Their algorithm requires a queue size of
at least 8. Using very different techniques, Kunde [58] designed a deterministic algo-
rithm matching the 2.5n+o0(n) randomized bound. Apart from being deterministic,
Kunde’s algorithm also has a number of other advantages over that of Kaklamanis,
Krizanc, Narayanan, and Tsantilas. The algorithm has a fairly simple structure,
and no processor holds more than 2 packets at any point in time. The algorithm
does not make any copies of packets, and it generalizes nicely to meshes of arbitrary
dimension and to multi-packet sorting problems. Moreover, the elements are sorted
into snake-like row-major order, while the randomized algorithm sorts with respect

to the somewhat more complicated blocked indexing scheme mentioned earlier.

However, if one is interested in developing an algorithm that comes closer to
the distance bound of 2n — 2, then it seems very difficult to apply the techniques
used in Kunde’s deterministic algorithm. In fact, Narayanan [81] has shown that
any deterministic algorithm for sorting into row-major order that achieves a queue
size of 2, and that does not make any copies of elements, must take at least 2.125n
steps. The approach taken in the randomized algorithm [43], on the other hand, was
subsequently used by Kaklamanis and Krizanc [42] to design an optimal randomized

sorting algorithm, with a running time of 2n + o(n) and constant queue size.
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The permutation routing problem has also been extensively studied under the
multi-packet model of the mesh. In particular, Valiant and Brebner [117] proposed
a randomized algorithm with a running time of (2d — 1)n+ o(n) and a queue size of
O(lgn) on the d-dimensional mesh, d > 2. A deterministic algorithm for the two-
dimensional mesh with a running time of (24 ¢)n and a queue size of O(1/¢) was
described by Kunde [56], and a randomized routing algorithm with running time
2n+o(n) and constant queue size was described by Rajasekaran and Tsantilas [99].
Subsequently, Leighton, Makedon, and Tollis [69] gave a deterministic algorithm for
routing that runs in 2n — 2 steps with constant queue size. However, the exact value
for the queue size is rather large. Rajasekaran and Overholt [98] gave an improved
construction that reduced the queue size to below 200. Very recently, Kaklamanis,
Krizanc, and Rao have obtained several fairly simple optimal randomized and off-
line algorithms for the two-dimensional and three-dimensional mesh, and for the

two-dimensional torus.

Finally, the routing problem has also been studied under a number of more
restricted models, such as hot-potato routing, oblivious routing, or routing along
minimal paths. For an overview of results on such restricted, and hence more real-

istic, models, we refer the reader to the surveys in [11, 115].

4.1.2 Overview of this Chapter

In this chapter, we describe a new technique that allows us to convert a number of
recently proposed randomized algorithms for routing and sorting into deterministic
algorithms that achieve the same running time, within a lower order additive term.
We explain the main idea behind the technique, and describe several applications.
For convenience, we will sometimes use the term “derandomization” (in quotes) to
refer to this technique. However, we point out that it is not related to the techniques

that are commonly associated with this term in the literature (e.g., see [77]).
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As our first application, we consider a randomized algorithm for routing on two-
dimensional meshes proposed by Kaklamanis, Krizanc, and Rao [44]. As a result,
we obtain a deterministic algorithm for permutation routing on two-dimensional
meshes with a running time of 2n 4 o(n) and a queue size of 5. The only optimal
deterministic algorithm previously known for this problem [69, 98] had a running
time of 2n — 2 and a queue size of at least 112. Extending this result to other
networks, we obtain the first optimal deterministic algorithms for routing on the

three-dimensional mesh and the two-dimensional torus.

Next, we apply the technique to an optimal randomized algorithm for sorting
on the two-dimensional mesh proposed by Kaklamanis and Krizanc [42]. We obtain
a deterministic algorithm that runs in time 2n + o(n) with a queue size of about
25. The fastest deterministic algorithm previously known for this problem [58]
achieved a running time of 2.5n + o(n) and a queue size of 2. We also obtain
improved deterministic algorithms for sorting on three-dimensional meshes and on
two-dimensional and three-dimensional tori. Finally, we point out some additional
applications of the technique to multi-packet sorting and selection, and to routing

on meshes with buses.

The chapter is organized as follows. Section 4.2 defines some terminology. Sec-
tion 4.3 describes the basic ideas underlying our technique. Section 4.4 contains
the results for permutation routing, and Section 4.5 contains the results for sort-
ing. Finally, Section 4.6 describes some other applications of our techniques, and

Section 4.7 offers some concluding remarks.

4.2 Terminology

Throughout this chapter, we frequently have to reason about quantities that are
determined to within a lower order additive term. We use the notation ~ f(n)

(“approximately f(n)”) to refer to a term in the range between f(n) — o(f(n)) and
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f(n) 4+ o(f(n)). Also, we say that a set of k elements is evenly distributed among
m sets if every set contains ~ k/m elements. For ky,ky > 1, a k;—ko relation is a
routing problem in which each processor is the source of at most k; packets and the
destination of at most ko packets. An approximate k1—ky relation on a linear array
is a routing problem in which each block of m consecutive processors is the source

of at most mk; 4+ o(n) packets and the destination of at most mky + o(n) packets.

Given a partition of the mesh into blocks of equal size, we use the terms row of
blocks and column of blocks to refer to the sets of blocks with common vertical and
horizontal coordinates, respectively. Finally, we say that an algorithm is optimal if

its running time is ~ [, where [ is the best lower bound.

4.3 Basic Ideas

A large number of randomized algorithms for routing and sorting on fixed-connection
networks have been designed in recent years, and in a number of cases these algo-
rithms are superior to the best deterministic solutions in terms of both performance
and simplicity. Many of these algorithms follow a very simple two-phase scheme
proposed by Valiant [116], in which the elements are first randomly distributed over
a sufficiently large region of the network. In the second phase, the elements are then

routed towards their destinations.

The main purpose of the randomization phase in these algorithms is to distribute
packets with similar ranks or destinations evenly over the network. In the following,

we describe a technique that simulates this effect in a deterministic fashion.

4.3.1 The Sort-and-Unshuffle Operation

Our technique is based on a combination of local sorting and off-line routing. For-

mally, assume a fixed-connection network with N processors, each containing a single
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element. Partition the network into N'=7 groups of N” processors, for some v < 1,
and sort the elements within each group with respect to their key values (or desti-
nations, in the case of a routing problem). After this sorting step, the element with
rank j in group ¢ is located in processor j of the group, for all ¢ with 0 < i < N'=7
and all j with 0 < 57 < N7. In the second step, we route the element in processor j
of group 2 to processor ¢ + {ﬁJ - N'=7in group j mod N1=7.

We refer to the above operation as the sort-and-unshuffle operation. (This name
is motivated by the close relationship between the off-line routing problem in the
second step of the operation, and the class of k-way unshuffle permutations defined
further below.) Note that after the second step of the operation, all sets of elements
with similar key values are approximately evenly distributed among the groups of

processors. More precisely, the following holds.

Lemma 4.3.1 Let A be any sel of consecutive values in [n?]. Then after evecu-

tion of the sort-and-unshuffle operation, every group of processors contains between

|A]
NT=7

— N and N|1AL + N7 elements with rank in A.

In the case of the two-dimensional mesh, the groups of processors in the sort-
and-unshuffle operation will usually be square submeshes, or blocks, of processors.
Thus, we will partition the mesh into blocks of size n® x n?, for some 8 < 1. We
assume that the blocks are indexed in such a way that blocks with consecutive indices

are adjacent (or close to each other). The packets are then sorted, and the element

in processor j of block ¢ is routed to 7 + {nQZwJ 0220 in group j mod n2=2°,

We point out that the idea of deterministically “spreading” elements of similar
rank and destination over the network is not really new. In particular, similar
techniques are used in the Columnsort algorithm of Leighton [64] and the 3n 4 o(n)
algorithm of Schnorr and Shamir [102], as well as in several of Kunde’s algorithms
(e.g., see [57, 59]). However, none of these papers elaborates on the close relationship

between these techniques and the ideas used in many randomized algorithms.
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In the following, we attempt to explain this relationship, and to design a general
method that can be used to “derandomize” (in an informal sense) many of the
known randomized algorithms on meshes and related networks. As a result, we not
only obtain improved deterministic algorithms for a number of problems related to
routing and sorting, but we also get some new insights that may lead to a more
unified perspective of the multitude of routing and sorting algorithms that have

been proposed for the mesh.

4.3.2 Implementation on Meshes

As an example, consider the following simplified variant of the randomized routing
algorithm for the mesh described by Valiant and Brebner [117]. The algorithm
first sends every packet to a random location in the network along row-column
paths. In the second phase, the packets are routed towards their destinations, again
along row-column paths. It can be shown that the above algorithm terminates in
approximately 4n steps, with high probability; the queue size is O(lgn). To convert
this algorithm into a deterministic algorithm, we substitute the sort-and-unshuffle
operation for the first phase of the algorithm. In addition, we also have to change the
second phase of the algorithm slightly, in order to avoid the queue size from growing
too large. The details of this change depend on the particular structure of the
algorithm, the indexing scheme, and the size of the blocks in the sort-and-unshuffle

operation, and we will not elaborate on these issues at this point.

While the above algorithm is very simple, many other randomized algorithms
have a significantly more complex structure. In particular, the elements are often
not randomized over the entire network, but only within a fairly small region. Also,
consecutive steps of the computation may be overlapped in a sophisticated manner.
This raises a number of additional technical issues that need to be resolved in order

to “derandomize” such an algorithm.
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To simulate such a restricted randomization within a small region of the network,
we can define a corresponding restricted variant of the sort-and-unshuffle operation.
For example, the randomized algorithms considered in the subsequent sections use
several forms of restricted randomization within rows or columns. A corresponding
sort-and-unshuffle operation might, for example, operate within rows of blocks of
length 7 and height 7”. Such a sort-and-unshuffle operation can be implemented

using the class of xk-way unshuffle permutations defined in the following.

Definition 4.3.1 For anyn,x > 0 with n mod k = 0, we define the x-way unshuffle
permutation on n positions 0, ..., n—1 as the permutation 7, that moves the element
in position i to position 7.(i) = (i mod k) - n/k + |i/r|. We say that we perform
a k-way unshuffle permutation on the columns (rows) of a mesh, if we move all

elements located in column (row) i to the corresponding positions in column (row)

m.(7), for all i.

A sort-and-unshuffle operation within a row of blocks of length n and height n”
can then be implemented by first sorting the elements in each block of size n” x n® by
their destination blocks, into row-major order, and then performing an (nl_ﬁ)—way

unshuffle permutation on the columns of the mesh. After this step, the following

holds.

Lemma 4.3.2 Let By and By be any pair of n® x n” blocks located in the row of
blocks, and let D be any destination block. Let N; denote the number of packets in

B; that have a destination in D, for 1 <i < 2. Then we have [Ny — Ny| < n'=5,

The above lemma is a special case of Lemma 4.3.1. A corresponding lemma for
the case of sorting is presented in Subsection 4.5.2 (see Lemma 4.5.1). The above
lemma says that all elements with a common destination block are approximately
evenly distributed over all blocks in the row of blocks. By repeating the local sorting

of the blocks after the sort-and-unshuffle operation, we could then make sure that all
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elements with a common destination block are evenly distributed over all columns

of the row of blocks, rather than just over all blocks.

4.3.3 The Counter Scheme

As mentioned in the context of the simplified variant of the Valiant/Brebner algo-
rithm, to get a correct deterministic algorithm it is often not possible to simply
replace each randomized step by a corresponding deterministic step. In many cases,
it is also necessary to modify some of the other, deterministic steps of a randomized
algorithm, particularly in the routing of the elements to their final destinations. All
of the deterministic algorithms obtained in this chapter have the property that they
first route each packet to an approximate destination, and then use local routing to

bring each packet to its correct final destination.

More precisely, we partition the network into destination blocks of size n® x n®.
Every packet is then routed to some position inside the destination block containing
its destination address. (In the case of sorting, some packets will actually be routed
to neighboring destination blocks.) Once this has been completed, we can then use
local routing over a distance of O(n®) to bring the packets to their final destinations.
Algorithms for the local routing problem with a running time of O(n®) have been
described by Kunde [56] and Cheung and Lau [15]. This simplifies the task some-
what, since we only have to be concerned with the problem of moving the packets

to their destination blocks.

However, when routing the packets into the destination blocks, we have to make
sure that not too many packets enter across the same edge, and that no processor of
the block receives too many packets. In a randomized setting, this can be achieved
by routing each packet to a random location within its destination block (see, for
example, the randomized sorting algorithm of Kaklamanis and Krizanc described in

Subsection 4.5.1). In our deterministic algorithms, we will use the counter scheme
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described in the following.

To explain the idea behind this technique, we consider a routing scheme in
which all packets are routed along the columns, until they turn into the rows and
enter their destination blocks across the row edges. We assume that, after entering
its destination block, each packet keeps on moving in its current direction until it
encounters a processor with a free slot in memory. Thus, if we can make sure that all
packets with a common destination block are evenly distributed among the incoming
rows of the block, then no processor of the block receives too many packets. The
counter scheme distributes the packets in each column with a common destination

block evenly among the entering rows using a system of counters.

In every column, we maintain one counter for each destination block of the
mesh. All counters are initially set to zero. Whenever a packet headed for a certain
destination block arrives at the location of the corresponding counter, this counter
is increased. (More precisely, we have two counters for each destination block, one
located above the destination block and counting forward, and one located below the
destination block and counting backward.) The new value of the counter, together
with a fixed offset value assigned to each counter, determines the row that the packet
should choose to enter its destination block. It will be shown that, in the algorithms
presented in the next sections, this scheme distributes the packets evenly among
the incoming rows of any destination block, provided that we assign an appropriate

pattern of offset values to the counters.

4.4 Permutation Routing

In this section we apply the ideas explained in the previous section to a randomized
routing algorithm for the two-dimensional mesh proposed by Kaklamanis, Krizanc,
and Rao [44]. We obtain a deterministic algorithm with a running time of 2n+o(n)

and a queue size of 5. We also describe some other applications to two-dimensional
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tori and three-dimensional meshes.

In the first subsection, we give a brief description of the randomized algorithm
n [44]. Subsection 4.4.2 contains the new deterministic algorithm. Finally, Subsec-

tion 4.4.3 gives some extensions of the result.

4.4.1 A Simple Randomized Algorithm

We now give a brief description of the randomized algorithm in [44]. Partition the
mesh vertically into four quarters (Jg to @3, where ; contains the columns % to
(¢4 1)% — 1. Every packet is then first routed along the row to an intermediate
destination, where it turns into a column. In this column, the packet moves to
its destination row, and then in the destination row to its final destination. The

intermediate destination is chosen randomly according to the following rules:

(1) Packets in Qo and @)1 with a destination in Qg or @J1 choose an intermediate

position in (.

(2) Packets in Qg and @)1 with a destination in Q2 or Q)3 choose an intermediate

position in (5.

(3) Packets in Q2 and Q3 with a destination in Qg or @J1 choose an intermediate

position in (4.

(4) Packets in Q2 and Q3 with a destination in Q2 or @3 choose an intermediate

position in (3.

It is shown in [44] that this routing scheme results in a running time of 2n+O(lgn)
and a queue size of O(lgn), with high probability. (The queue size can be im-
proved to O(1) with some modifications in the algorithm.) An off-line version of the

algorithm runs in time 2n — 1 with a queue size of 4.
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4.4.2 The Deterministic Algorithm

The high-level structure of our deterministic algorithm is very similar. As in the
randomized algorithm, all packets are first routed along the rows to intermediate
locations, then along the columns to their destination rows, and finally along the
rows to their final destinations. The intermediate locations also satisfy the above
four rules, but are now determined by an appropriate unshuffle permutation on the
columns of the mesh, rather than being chosen at random. We also need a few
additional local steps, and the counter scheme. (Actually, instead of the counter
scheme, we could also use an appropriate local sorting step at the end of the column
routing in Step (6) of the algorithm.) The deterministic algorithm consists of the

following steps.

Algorithm ROUTE:

(1) Partition the mesh into destination blocks of size n® x n®, 2/3 < o < 1, and

let every packet determine its destination block.

(2) Partition the mesh into blocks of size n” x n?, 2/3 < 3 < 1, and sort the
packets in each block by their destination blocks, into row-major order. Here,
it is assumed that the set of destination blocks is ordered in some arbitrary

fixed way, say according to a row-major order of the blocks.

nl—

4’6)—Way unshuffle permutation on the

(3) In each quarter @;, perform an (

columns.

(4) Route all packets in (; whose destination is in Qg or Q1 into Qg. Route all
packets in ) and ()1 whose destination is in ()2 or ()3 into J3. Route all
packets in ()2 and ()3 whose destination is in (Jg or ) into ¢)1. Route all
packets in ()3 whose destination is in )3 or ()3 into (J3. The routing is done

in such a way that only row edges are used, and that every packet travels a
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distance that is a multiple of n/4.

Again sort the packets in each n® x n” block by their destination blocks, into

row-major order.

In each column of the mesh, route every packet to a row passing through its
destination block. Note that up to this point, we have not yet determined
the exact row across which a packet will enter its destination block. This
is now done during the column routing, using the counter scheme explained
in Subsection 4.3.3. This scheme is described in more depth in the following

Step (6a). It will be shown that at most 3 packets turn in any single processor.

(6a) In order to get to its destination block, a packet traveling along its col-
umn could turn in any of the n% consecutive rows passing through that
block. To make sure that the row elements are distributed evenly among

2=2o counters, two for each of

these rows, we maintain in each column n
the %n2—2a destination blocks in the half of the mesh that contains the
column. (Note that all packets are already in the correct half of the mesh
before Step (6).) The n'~ counters for any particular row of $n'~ des-

1=a processors immediately above

tination blocks are located in the %n
and below the n® rows passing through these destination blocks. When-
ever a row element destined for a particular block arrives at one of the
two corresponding counters, this counter is either increased by one, mod-

200—1 (

ulo 2n in the case of the counters above the destination rows), or

2o=1 (in the case of the counters below the

decreased by one, modulo 2n
destination rows). The row across which the packet will enter its desti-
nation block is determined by the sum, modulo n®, of the new counter
value and a fixed offset value associated with each counter. A counter

in column ¢ of the half, 0 < ¢ < n/2, that corresponds to a destination

block in the jth column of destination blocks in this half of the mesh,
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0 <j < in'7* is assigned the offset value (i + j - 2n?*~') mod n°.

(7) Route the packets along the rows into their destination blocks in a greedy
fashion, giving priority to the element with the farther distance to travel.
After entering its destination block, a packet will stop at the first processor
that has a free memory slot for an additional packet. Here, we say that a
processor has a free slot if it currently holds less than 3 packets that are not
just passing through the processor. Due to the counter scheme in Step (6a),

the incoming packets are evenly distributed over the rows of any destination

block.

(8) Perform local routing over a distance of O(n®) to bring every element to its

final destination.

Let us first analyze the running time of the above algorithm. Clearly, each of
the Steps (1), (2), (5), and (8) only take time o(n). Step (3) and Step (4) can
be overlapped as follows. Rather than first performing the unshuffle operation in
Step (3), and then doing the overlapping in Step (4), we can send the packets directly
to the locations they will assume after Step (4). This means that all blocks in )y and
(3, as well as those blocks in 1 and () that are close to the center column, have
received all of their elements by time 0.5n+o0(n), while it takes up to time 0.75n4o0(n)
for the other blocks in 1 and )9 to receive all of their packets. As soon as a block
has received all of its packets, it can perform the local sort in Step (5), and start
with the column routing in Step (6). This routing problem is an approximate 2-2
relation on a linear array, and can hence be routed in n+o(n) steps (see [44]). Thus,
Step (6) of the algorithm will terminate between time 1.5n4 o(n) and 1.75n4 o(n),
depending on the location of the column in the mesh. Assuming that Step (6a)
has distributed the packets evenly over the incoming rows of each destination block,
Step (7) can be interpreted as the problem of routing an approximate 2-1 relation

on a linear array of length n/2, where packets that have a distance of d to travel

98



are not allowed to move before time n/2 —d. This routing process is started at time
1.5n 4 o(n) and terminates at time 2n 4 o(n). Thus, the above algorithm runs in

time 2n + o(n).

It remains to show that the packets are indeed evenly distributed over the
incoming rows of each destination block, and that the total queue size is bounded
by 5. Consider a destination block D and two n® x n” blocks By and By located in
the same quarter and the same row of blocks. Lemma 4.3.2 says that the number
of packets with destination block D will differ by at most n'=% = o(n®) between By
and Bg, after Step (4). This implies that after Step (5), the number of packets with
destination block D will differ by at most 2n'~7 between any two columns in the
quarter. There are at most n?® packets with destination block D in the quarter.

Hence, any of the § columns in the quarter can contain at most

2o 1-8 20—1
T -I— 2n 7" =~ 4n @
4
packets with destination block D, which are evenly distributed among 21221 rows

by the counter technique (up to a difference of 1). (Due to the assignment of offset
values to the counters, packets with different destination blocks always turn in dif-
ferent processors.) This implies that at most 3 packets turn in any single processor.
If we limit our attention to a single column, then all packets with destination block
D in that column are distributed over only a small fraction of the incoming rows of
D. However, if we look at blocks of n® consecutive columns, then the elements with
destination block D in these columns are evenly distributed among all incoming
rows of D, due to the n® different offset values of the 2n® counters corresponding
to D. This implies that the routing in Step (7) terminates in such a way that every

processor of D receives at most 3 packets.

The maximum possible queue size in Step (6) of the algorithm is given by a
scenario in which 3 packets have to turn in a given processor, while 2 other packets

are temporarily passing through the processor. The maximum queue size during
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Step (7) is also 5; all other steps achieve even smaller queue sizes.

One issue we have ignored so far is that a packet may already be located in a
row passing through its destination block before Step (6). Such a packet will not
pass any counter on its way along the column. We can assign destination rows to
these packets before the start of the column routing, and set the initial values of
the counters accordingly. This can be done locally during Step (5) of the algorithm.

Altogether, we have shown the following result.

Theorem 4.4.1 There exists a deterministic routing algorithm for two-dimensional

meshes with a running time of 2n + o(n) and a queue size of 5.

For a = 3 = 2/3, the running time of the algorithm is 2n+O(n*/?). A modified

version of the algorithm runs in time 2n 4+ O(n'/?).

Kaklamanis, Krizanc, and Rao [44] also give a randomized algorithm that routes
any 2-2 relation in time 2n + o(n), and a corresponding off-line scheme with a
running time of 2n and a queue size of 8. For the deterministic case, we can show

the following result.

Lemma 4.4.1 Any 2-2 relation can be routed deterministically in time 2n + o(n)

with a queue size of 10.

The algorithm proceeds as follows. First, we partition the packets into two sets
such that all packets with a common destination block are evenly divided between
the two sets. This can be done deterministically by sorting the packets in each
block of size n” x n® by destination blocks, and taking the two sets as the packets
with odd and even ranks, respectively. We then route both sets simultaneously,
using the deterministic algorithm given above. One of the sets will be routed on
row-column-row paths, and the other one on column-row-column paths. Due to the

overlap between the three phases of the algorithm, it is possible that packets in
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different phases of the algorithm contend for the same edge. These contentions will
be resolved by giving priority to the packet in the lower numbered phase. In [44],
Kaklamanis, Krizanc, and Rao show that their randomized algorithm routes any
2-2 relation in time 2n + o(n), with high probability. It can be checked that their

proof also extends to our deterministic algorithm.

4.4.3 Extensions

Kaklamanis, Krizanc, and Rao also give optimal randomized and off-line algorithms
for tori and three-dimensional meshes. In this subsection, we give similar exten-
sions for the deterministic case. The first extension, an optimal algorithm for
three-dimensional meshes, is achieved by a reduction to the problem of routing
a 2-2 relation on a two-dimensional subnetwork, described in [44]. Together with

Lemma 4.4.1, this gives the following result.

Theorem 4.4.2 There exists a deterministic algorithm for permutation routing on

the three-dimensional mesh with a running time of 3n+o(n) and a queue size of 13.

The fastest deterministic algorithm previously known for this problem has a
running time of (3 + %)n and is due to Kunde [57]. Our approach can also be
used to obtain deterministic algorithms for routing in d-dimensional meshes with
d > 3. Using the unshuffle operation and the counter scheme, we can convert the
randomized algorithm of Valiant and Brebner [117] into a deterministic algorithm
with a running time of (2d —1)n+o(n). This can be improved to (2d —3)n+o(n) by
using the above algorithm for three-dimensional meshes as a subroutine. For d = 4,
this gives a slight improvement over the fastest previously known algorithm [57],
which achieves a running time of (5 + ¢)n and a queue size of O(1/¢). However, for
larger values of d, this approach does not give an improvement over Kunde’s results.

Algorithms for multi-dimensional meshes with significantly better running times are

presented in the next chapter of this thesis.
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In [44], Kaklamanis, Krizanc, and Rao give a second optimal randomized al-
gorithm for the two-dimensional mesh that has a slightly simpler structure than
the one described in the previous subsection. As before, all packets are routed on
row-column-row paths. A packet that originates in column ¢ and whose destination
is in column ¢’ chooses its intermediate column uniformly at random from all [ with
|l =i+ |l =] < n—1. If several packets contend for an edge, priority is given to the
packet with the farther distance to travel. Using the techniques of this chapter, it is
not difficult to convert this algorithm into a deterministic algorithm with a running

time of 2n + o(n) and a queue size of 6.

Finally, Kaklamanis, Krizanc, and Rao give an optimal randomized algorithm
for the two-dimensional torus that has a very similar structure. In this algorithm,
one half of the packets is routed on row-column-row paths, and the other half on
column-row-column paths. A packet that is routed on a row-column-row path, and
that originates in column i and is destined for column ', chooses its intermediate
column uniformly at random from all [ with |l — 4| 4 |l —4'| < & — 1. The case of
the packets that are routed on column-row-column paths is symmetric. If several
packets contend for an edge, priority is given to the packet with the farther distance
to travel. This algorithm can also be converted into a deterministic one, and we

obtain the following theorem. (The exact queue size of the algorithm is between 10

and 20.)

Theorem 4.4.3 There exists a deterministic algorithm for permutation routing on

the n X n torus with a running time of n + o(n) and constant queue size.

4.5 Optimal Deterministic Sorting

In this section, we apply the techniques described in the previous sections to a class
of randomized sorting algorithms proposed by Kaklamanis and Krizanc [42]. We

obtain the first optimal deterministic sorting algorithm for two-dimensional meshes,
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as well as improved deterministic algorithms for the three-dimensional mesh and the

two-dimensional and three-dimensional torus.

In the first subsection, we give a description of the randomized algorithm in [42].
In Subsection 4.5.2 we describe the modifications required to convert this random-
ized algorithm into a deterministic one. Subsection 4.5.3 contains the deterministic
algorithm and a proof of the claimed bounds on time and queue size. Finally, Sub-

section 4.5.4 gives a few extensions.

4.5.1 An Optimal Randomized Algorithm

In this following we give a high level description of a randomized algorithm with
running time 2n 4 o(n) and constant queue size proposed by Kaklamanis and
Krizanc [42]. Their algorithm is based on an earlier 2.5n 4+ o(n) time algorithm
of Kaklamanis, Krizanc, Narayanan, and Tsantilas [43]. The complete structure of
the algorithm is quite complicated, and so our description will necessarily ignore a

number of important details. For a full description the reader is referred to [42].

Our description of the algorithm uses a slightly different numbering of the steps
than the original description. The mesh is divided into four quadrants (g, @1, @2,
and (3. The four quadrants are again divided into a total of 16 subquadrants,
labeled Ty to T15. We assume that the four subquadrants located around the center
are labeled Ty to T5. In addition, a block B of side length o(n) around the center

of the mesh is used to sort the sample elements and select the splitters.

Algorithm RANDOMSORT:

(1) Select a random sample set S of size o(n) from the n® elements using coin

flipping.

(2) Each sample element picks a random location in the block B at the center of
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the mesh, and routes a copy of itself greedily towards that location. To make
sure that the routing is completed in n steps, we give the sample elements

priority over all other elements.

Each of the n? packets in the mesh flips a coin, and, depending on the outcome,

declares itself either a row element or a column element.

Each row element selects a random location between 0 and n/4 — 1 in its
row, inside its current subquadrant. Similarly, each column element selects a
random location between 0 and n/4 — 1 in its column. Note that in this step,
the elements do not actually go to their selected destination. Thus, Step (4)

takes time o(n).

Now copies of each element are routed to the four locations in the middle
subquadrants Ty to T35 that correspond to the locations randomly selected in
Step (4). This means that each of the four subquadrants Ty to 715 receives

copies of all n? elements in the mesh.

The sample set is sorted in the center block B, and n’ elements of equidistant

ranks are chosen as splitters. This takes time o(n).

The n’ splitters are broadcast in the middle subquadrants Ty to T5. During
the broadcast, the global ranks of the splitters are computed using a pipelined
prefix computation that counts, for each splitter, the number of elements that
are smaller. The results of this computation arrives at the center points of the

four quadrants 0.5n 4 o(n) steps after they were sent out.

Each element, upon receiving the splitter elements broadcast from the center
of the mesh, can determine its rank to within 0(712_5)7 the accuracy of the
splitters. From this approximate rank, the element can compute the block of

side length O(n'=%/2) most likely to contain its final destination. If this block
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is outside its current quadrant, the element kills itself. Otherwise, it selects a

random location within this block.

(9) All surviving elements route themselves to the chosen location. The routing is
done in a greedy fashion, where row elements first route along their column to
the correct row, while column elements first route along their row to the correct
column. However, a slightly more complicated priority scheme than the usual
“farthest distance to travel first” is required in this routing step. The same
priority scheme is also employed in our deterministic algorithm; a description
of this scheme is given in the proof of Lemma 4.5.5. It can be shown that
every element reaches its approximate destination within time n 4 o(n) after

the splitters were broadcast from the center of the mesh.

(10) The exact ranks of the splitter elements are broadcast in each quadrant, start-
ing at the center of the quadrant after completion of Step (7). Hence, every
element receives the exact splitter ranks within n+4o(n) steps after the splitters

were broadcast from the center.

(11) Now local routing over a distance of O(n'=%/2) can be used to bring each

element to its final location in time o(n).

The above algorithm can be scheduled in time 2n + o(n). For a more complete
description of the algorithm, and a proof of the stated time bounds, we refer the
reader to the paper by Kaklamanis and Krizanc [42]. Here, we only add the following

remarks considered important in the present context.

e The algorithm sorts with respect to an indexing scheme with the property that
processors whose indices differ by O(n?~%) are at most O(n'~%/2) steps apart.
If this condition is not satisfied, as, for example, in row-major indexing, then
the elements will not be able to compute good approximate destinations from

their approximate ranks in Step (8).
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e One of the purposes of the randomization in Steps (2),(3), and (4) is to get a
good bound on the queue size. However, randomization alone will only guar-
antee a queue size of O(lgn) with high probability. To reduce the queue size
to a constant, the algorithm uses a packet redistribution technique described

in [99] and attributed to Leighton.

e The routing in Step (5) of the algorithm is done according to a rather in-
genious schedule described in [42]. In this schedule, the row elements and
column elements of a subquadrant may move along different paths. However,
all row elements (column elements) of a subquadrant move in lock step until
they enter their destination subquadrant. The routing to the random loca-
tions selected in Step (4) is done either before the elements start to move
according to the schedule, or upon entering the destination subquadrant, or
after they have already reached the destination subquadrant. While we will
not go into the details of this routing schedule, it is nonetheless important
to realize that Step (5) is deterministic, since the random locations of the
elements were already chosen in the preceding step. The routing in Step (5)
would work equally well if those destinations had been chosen according to
some deterministic strategy. Hence, we will be able to use this schedule in our

deterministic algorithm without modification.

e Iinally, note that the routing in Step (5) has to take at least 1.25n steps,
and thus will not be completely finished when the set of splitters is broadcast
at time n + o(n). However, it can be shown that all elements reach their

destination before the arrival of the splitter front.

4.5.2 Getting a Deterministic Algorithm

In this subsection we explain the modifications that have to be made in the ran-

domized algorithm described in the previous subsection in order to get an optimal
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deterministic algorithm. The randomized algorithm uses randomization in a num-
ber of different phases, and for a number of different purposes, which are informally

described in the following.

e Randomization is used in Step (1) of the algorithm to select a sample set that,
with high probability, yields a set of “good”, that is, roughly evenly spaced,
splitters. In this subsection, we describe a deterministic sampling technique
that guarantees such a set of “good” splitters, and which can be substituted

for the randomized sampling in Step (1).

e In Step (3), elements use a coin flip to identify themselves as either row ele-
ments or column elements. The effect of this coin flipping technique is that,
with high probability, about half of the elements become row elements (resp.
column elements), and that the set of row elements (resp. column elements)
is spread out evenly over the range of input values. This can be achieved
deterministically by sorting locally and taking the elements with even ranks
as row elements, and the elements with odd ranks as column elements, as in

the algorithm underlying Lemma 4.4.1.

e In Step (4), every row element chooses a random position in its row inside
its subquadrant, and every column element chooses a random position inside
its column. This has the effect that, with high probability, the row elements
(column elements) of similar rank and, hence, similar final destination, are
evenly distributed among the columns (rows) of their subquadrant. This is
needed in Step (9) of the algorithm to make sure that the routing of the
elements to their destination blocks is finished within the required time bounds
and with constant queue size. The effect of this randomization step will be

“simulated” with the sort-and-unshuflle operation described in Section 4.3.

e Finally, in Step (8) every element selects a random location within its destina-

tion block. Here, randomization is used to assure that not too many elements
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route themselves to the same location in their destination block. As demon-
strated in the previous section, this can be achieved deterministically by using

the counter scheme.

As in the routing algorithm of Subsection 4.4.2; we divide the mesh into blocks
of size n” x n”, with % < B < 1. When applying the unshuffle operation to simulate

Step (4) of the randomized algorithm, we sort the row elements (column elements)

1—/3)_

in each block into row-major (column major) order, and then perform an ("

way unshuffle permutation on the columns (rows) of each subquadrant. The effect
of this operation is described in the following lemma, which follows directly from

Lemma 4.3.1.

Lemma 4.5.1 Let By and By be any pair of n® x n® blocks located in the same
row (column) of blocks of some subquadrant T;, 0 < ¢ < 15, and let A be any set of
consecutive values in [n?]. Let N; denote the number of elements in B; whose global

ni=#
e

rank among all n* elements is in A, for 1 < j < 2. Then we have |[N; — Ny| <

To simulate the effect of Step (3) of the randomized algorithm, we sort each
block of size n? x n?, and label all elements with even ranks as row elements, and
all elements with odd ranks as column elements. We remark that this technique is
closely related to the unshuffle operation. More precisely, the following analogue of

Lemma 4.5.1 holds.

Lemma 4.5.2 Let A be any set of consecutive values in [n?], and let the number of
row elements and column elements whose global rank among all n? elements is in A

be denoted by N, and N., respectively. Then we have |N, — N.| < n?~20,

The last ingredient needed for our deterministic algorithm is a deterministic
sampling technique that results in a set of “good” splitter elements. Our technique

is essentially a simplified version of a more sophisticated sampling technique used in
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the parallel selection algorithm of Cole and Yap [20]. Our goal is to deterministically
select a set of approximately evenly spaced splitters from a set of keys X of cardi-

2

nality n“. More precisely, we are interested in selecting a set of splitter elements

D ={dy,...,di—1} with d;yq > d;, such that the following property holds for all i:
(1) =07 < Rank (d;, X) < 22

To achieve this, we will our sample set using the following two steps:

§

(i) Partition the mesh into blocks of size n® x n®, 2 < § < 1, and sort the elements

in each block.

(ii) Select n® equidistant elements from each sorted block as sample elements,
starting with the smallest element and going up to the (n°)th largest element.
If the elements were sorted into row-major order in the first step, then we can

simply select the elements in the first column of each block.

The sample set selected in the above two steps contains n2~% elements, which
are routed to the center of the mesh and sorted. We claim that the global rank
of each sample element can now be computed to within an additive term of n?~9%.

More precisely the following lemma holds.

2— 2

Lemma 4.5.3 Let S be a sample set of size n?~% chosen from a set X of size n

in the manner described above. Then for any s € S with Rank (s, S) =i we have

(i+1—n2"%) .0 < Rank (s, X) < (i +1)-n°.

Proof: Let X; denote the set of elements in block ¢ of the mesh, 0 < i < n2-2%,
Partition the sample set S into n2~2% subsets S;, 0 < i < n?>~2%, where each S;
consists of those elements of S that were drawn from subset X; in the first phase of
the sampling algorithm. Now associate with each s € S; the set T'(s) consisting of

all elements # € X; with s < 2 < ¢/, where s’ is next larger sample element drawn
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from the same subset X;. Note that this defines a partition of the input set X, and

that each of the n?~9 sets T'(s) contains exactly n® elements.

Now let 51 € S; and sy € S; be two arbitrary sample elements. If sy < s9, then
every element of T'(sy) must be larger than sq. There are |S| — Rank (s1,5) — 1
elements sy with s; < sy in S; hence Rank (s;, X) < (Rank (sy,S) + 1) - n®. If

sg < s1, then we have the following two cases:

a) If sy is the largest element in S; with s < sy, then all elements in T'(s3),
g J

except for sy itself, can be either smaller or larger than s;.

(b) If sy is not the largest element in S; with s, < sy, then all elements in 7'(s;)

must be smaller than s;.

Note that there are Rank (s1,5) 4+ 1 elements sy € S with s; < s1, and at most
7272 of these fall under case (a), including s; itself. Hence, at least (Rank (s, 5) +

1 — 1?72 . n® elements in X are smaller than s;.
a

The following theorem establishes a way of selecting a set of “good” splitters

from the sample. It can be proved by a simple application of the above lemma.

Theorem 4.5.1 Let D be the splitter set of size n® consisting of all s € S with
Rank (s, S) =1 - n?=2% for some nonnegative integer i. Then D is a set of “good”

splitters, that is, it satisfies Property (1) stated above.

Note that, while the sample set contains w(n) elements, the splitter set selected
from the sample is of size o(n). The latter fact will be used in the step of our sorting

algorithm where the entire splitter set is broadcast to every packet in the mesh.
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4.5.3 The Deterministic Algorithm

In the following description of the deterministic sorting algorithm, we maintain the

numbering of the steps used in the randomized algorithm. Some of the steps in the

algorithm can be taken directly from the randomized algorithm, but others have to

be substantially changed. The algorithm sorts with respect to the blocked indexing

defined in Section 4.1, where the size of the blocks in the indexing is n®, for some

constant «. The size of the sample and splitter sets is determined by a constant §,

already used in the description of the sampling technique in the previous subsection.

Finally, we have to choose a constant 3 that determines the size of the blocks used by

the unshuffle operation. These constants have to be chosen such that % < a,f3,6 < 1.

Algorithm SORT:

(1)

(2)

§

Select a sample set of size n?~% by sorting blocks of size n® x n’ and taking

the first column in each block. This takes time O(n’) = o(n).

Route a copy of the sample set to a block B of size n' /2 x n'=9/2 at the center
of the mesh. This can be completed in n steps; the details of this routing step

are given in the proof of Lemma 4.5.4.

Divide the n? elements into n?/2 row elements and n%/2 column elements as

described in Subsection 4.5.2. This operation takes time O(n”) = o(n).

In each block of size n” x n?, sort the row elements into row-major order.

Now select for each row element a new location in its row, within its current

n
4

subquadrant, corresponding to an ( ’6)—Way unshuffle permutation on the

columns, as described in Section 4.3. Similarly, sort the column elements in
each block into column-major order, and select new locations according to an

(”14_’6)—Way unshuffle permutation on the rows. Again, as in the randomized

algorithm, the elements will not actually move to the chosen locations in this
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step. This will be done in Step (5).

This step is the same as in the randomized algorithm. We route copies of
each element to the four locations in the middle subquadrants Ty to T3 that
correspond to the locations chosen in Step (4). This step takes time 1.25n,

but every copy reaches its location before the arrival of the splitter elements.

This step is also the same as in the randomized case. The sample set is sorted
in the center block B, and n’ elements of equidistant ranks are chosen as
splitters. This takes time O(n'=%/2) = o(n), and Theorem 4.5.1 guarantees

that every splitter can determine its global rank to within O(n?79%).

This step is again the same as in the randomized algorithm. The splitters are
broadcast in each of the subquadrants Ty to T3, and the exact global ranks of

the splitter elements are computed. This takes time 0.5n.

Each element hit by the splitter front can determine its rank to within a
range of O(n?7%) ranks. This enables the element to determine the block
of side length n® that will contain most of the elements within this range
in the final sorted order. If that block is outside its current quadrant, then
the element kills itself. Note that an element may actually not end up in
this block in the final sorted order, but the properties of our indexing scheme
guarantee that the chosen block will be close to its final destination. Now,
before routing the elements to their approximate destinations, we perform the

following additional step:

(8a) Divide the mesh into blocks of size n” x n”. As soon as such a block
has been completely traversed by the splitter front, the row elements in
the block are sorted into row-major order by their n® x n® destination
blocks, where the ordering of the destination blocks can be arbitrary.

Similarly, the column elements in the block are sorted into column-major
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order by destination blocks. The purpose of this step is to distribute the
row (column) elements with a common destination block evenly among

the columns (rows) of the n® x n® block.

Note that this step takes time O(n”) = o(n) per block, from the moment the
splitter front enters the block until the sorting of the row and column elements
in the block is completed. Thus, we can initiate the routing in the following
Step (9) by broadcasting a Start signal from the center of the mesh O(n”)

steps after the broadcast of the splitter set.

(9) After the arrival of the Start signal, every element routes itself greedily towards
its destination block. Row elements go first along the columns until they reach
their destination row, and column elements travel first along their row until
they reach their destination column. We can employ the same priority scheme
that is used in the randomized algorithm. Note that up to this moment, the
exact destinations of the elements inside their destination blocks have not
vet been determined. This will be done during the routing, in the following
Step (9a). It will be established in Lemma 4.5.5 that the routing terminates
in n 4 o(n) steps with constant queue size. A more detailed description of the

routing is given in the proof of the lemma.

(9a) Use the counter scheme described in the routing algorithm in Subsec-
tion 4.4.2 to distribute the elements evenly over the rows and columns
of the destination blocks. (Alternatively, this could also be achieved by
interleaving the routing in Step (9) with a non-constant number of local
sorting steps, such that the total time spent on local sorting is o(n). The
same idea could also be applied in the case of the routing algorithm for

the torus discussed in Subsection 4.4.3.)

(10) This step is the same as in the randomized algorithm. The exact ranks of the

splitter elements are broadcast from the center of each quadrant 0.5n steps
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after the splitters were sent out from the center. After another 0.5n steps, all

elements have received the splitter ranks.

(11) We now perform local routing over a distance of O(n®) to bring each element

to its final destination. This takes time O(n?).

Our claim is that this algorithm runs in time 2n+4o0(n) with constant queue size.
The exact bound for the queue size is at most 25; we elaborate on this issue briefly
in the proof of Claim 5 in Appendix A. We establish our result in the following two

lemmas.

Lemma 4.5.4 The sample set of size n?>~% selected in Step (1) can be routed in
n steps to a block of size n'=%/2 x n'=%/2 qround the center of the mesh, without

delaying the routing in Step (5) by more than o(n) steps.

Proof: Since our sample set is of size w(n), we have to be a bit careful in the
design of this routing step to make sure that the movement of the splitters towards
the center does not delay the movement of the packets in Step (5). We propose
the following solution. After Step (1), all elements in the sample set are located in

5 % nd block. Now move all sample elements

the first column of their respective n
located in a block that is in the ith row of blocks into the ith column of that block,
for i = 1,...,n'"=%. This can be done in o(n) time by locally routing inside each
block. Now use column routing to move all sample elements to the n® middle rows
of the mesh. This is completed in 0.5n steps. Next, we use row routing to move
the sample elements into the block in the center, which takes another 0.5n steps.

2-26

Observe that in the routing we have only used edges in n = o(n) columns and

n’ = o(n) rows of the mesh. Hence, we can guarantee that the routing of Step (5)
is delayed by at most o(n) steps by simply reserving these edges for the sample

elements, and restricting the other packets to the remaining rows and columns. (It

can be shown that this restriction is not really necessary.)
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Lemma 4.5.5 The greedy routing to destination blocks in Step (9) runs in time

n + o(n) with constant queue size.

The proof of Lemma 4.5.5 is given in Appendix A. Together, Lemma 4.5.4 and

Lemma 4.5.5 establish the following result.

Theorem 4.5.2 There exists a deterministic algorithm for sorting on the n X n

mesh with running time 2n + o(n) and constant queue size.

It is not difficult to see that the above algorithm still works if we sort with
respect to a slightly different indexing scheme, in which the blocks of size n® x n®
are ordered along the diagonals rather than along the rows. This is somewhat
interesting in that there exists a lower bound of 4n —o(n) in the single-packet model
for this modified indexing scheme. Thus, an indexing scheme that is “good” for the

multi-packet model may not be “good” at all for the single-packet model.

4.5.4 Extensions

In [42], Kaklamanis and Krizanc extend their results to three-dimensional meshes
and two-dimensional and three-dimensional tori. These extensions also hold for the

deterministic case, and we get the following results.

Theorem 4.5.3 There exists a deterministic algorithm for sorting on the three-

dimensional mesh with running time 3.5n 4 o(n) and constant queue size.

Theorem 4.5.4 There exists a deterministic algorithm for sorting on the two-

dimensional torus with running time 1.25n 4 o(n) and constant queue size.

Theorem 4.5.5 There exists a deterministic algorithm for sorting on the three-

dimensional torus with running time 2n + o(n) and constant queue size.
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The best deterministic algorithms previously known for these problems required
running times of 5n 4 o(n), 2n + o(n) and 3n + o(n), respectively. Using the above
algorithms for three-dimensional meshes and tori as subroutines, we can obtain
improved algorithms for sorting on d-dimensional meshes and tori, d > 4, with
running times of (2d — 2.5)n 4 o(n) and (d — 1)n + o(n), respectively. The best
deterministic algorithms previously known for these networks required (2d — 1)n
steps on the mesh and dn + o(n) on the torus [55]. In the next chapter, we present

algorithms that significantly improve on these bounds, for all d > 5.

4.6 Some Other Applications

The techniques described in this chapter can also be applied to a number of other
randomized algorithms. In the following, we briefly describe a few of these applica-

tions.

Optimal algorithms for k—k sorting on meshes and tori have recently been pro-
posed in [47] and [59]. The two algorithms are very similar, and they can both be
seen as an efficient implementation of Leighton’s Columnsort [64] on the mesh. The
algorithm in [47] is obtained by “derandomizing” a randomized algorithm in [46],
and provides a particularly simple and elegant application of the sort-and-unshuffle
operation. The result also indicates an interesting relationship between Columnsort

and certain classes of simple randomized sorting algorithms.

Kaufmann, Meyer, and Sibeyn [45] have recently reported a routing algorithm
with a running time of 2n 4+ O(1) and an internal queue size of 2, based on the
randomized algorithm of Kaklamanis, Krizanc, and Rao [44] that was considered
in Subsection 4.4.3. (This translates into a queue size of at most 6 in our model.)
This improves on other recent algorithms [17, 106] that are based on the approach
of Leighton, Makedon, and Tollis [69].

Our techniques can also be used to derive faster deterministic algorithms for
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meshes with additional (non-reconfigurable) row and column buses, based on a class
of randomized algorithms described by Sibeyn, Kaufmann, and Raman [107]. See

Chapter 6 for a definition of these networks.

Another application leads to faster deterministic algorithms for selection on
meshes and tori [111]. The fastest randomized selection algorithm currently known
runs in 1.15n steps [22]. Using the techniques in this chapter, this bound can be

matched deterministically.

In our presentation, we have only considered those applications that lead to
an improvement over the best previous deterministic results. However, many other
randomized algorithms in the literature can also be converted into deterministic
ones, including the “original” randomized algorithm for the mesh by Valiant and

Brebner [117] and the algorithm of Rajasekaran and Tsantilas [99].

4.7 Conclusion

In this chapter, we have described a set of techniques that allows us to “derandom-
ize” (in an informal sense) many randomized algorithms for routing and sorting on
meshes that have been proposed in recent years. By applying these techniques, we
can obtain optimal or improved deterministic algorithms for a number of routing
and sorting problems on meshes and related networks. The techniques are very
general and seems to apply to most of the randomized algorithms that have been
proposed in the literature. In fact, as a result of this work, we are currently not
aware of any randomized algorithm for permutation routing or sorting on meshes
or related networks whose running time cannot be matched, within a lower order
additive term, by a deterministic algorithm. (Of course, this claim does not hold for
more restricted models of the mesh, e.g., models that only allow hot-potato routing,

or that disallow local sorting steps.)

This raises the question whether randomization is of any help at all in the design
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of routing and sorting algorithms for the type of theoretical mesh model assumed

in this chapter. In this context, three important points have to be made.

e Many of the randomized algorithms still have a simpler control structure and
smaller lower order terms than their deterministic counterparts, which re-
peatedly perform local sorting. In fact, the results of this chapter could be
interpreted as saying that randomization is an efficient way of avoiding such

local sorting steps.

e The results in this chapter would not have been possible without the extensive
study of randomized schemes for routing and sorting by a number of authors,
which has resulted in a variety of fast randomized algorithms [42, 43, 44, 46,
99, 117]. Thus, randomization can also be seen as a useful tool in the design

of deterministic algorithms.

e Finally, most randomized routing algorithms, including those in [44], can also
be applied to dynamic routing problems, in which packets are continuously
generated during an ongoing computation. In contrast, the deterministic algo-
rithms obtained with our techniques cannot be easily adapted to the dynamic

case, due to the local sorting steps.

It is an interesting question whether the ideas described in this chapter may also
be useful for other classes of networks, and perhaps even other types of problems.
Of course, as presented the techniques are only efficient on networks with large
diameter, since we repeatedly sort fairly large subsets of the input. A straightforward
application to networks with small diameter, such as the hypercubic networks, would

lead to a blow-up in the running time due to the time spent on local sorting.

Subsequent to this work, Sibeyn [105] has reported an optimal algorithm for
sorting into row-major order. The algorithm achieves a queue size of 5, and is

significantly simpler than the one described in Section 4.5. However, a number of
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questions still remain open, such as the existence of an optimal sorting algorithm
that does not make any copies, or the exact complexity of the selection problem on

the mesh.

Another open problem is the complexity of permutation routing and 1-1 sorting
on multi-dimensional meshes. The best algorithms currently known are still nearly
a factor of 2 away from the diameter lower bound. We will focus on this problem in

the next chapter of this thesis

In this subsection, we have only discussed open questions that are directly re-
lated to the results of this chapter. Some other suggestions for future work on

meshes can be found in Chapter 7.
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Chapter 5

Bounds for Multi-Dimensional

Meshes

This chapter establishes improved bounds for 1-1 routing and sorting on multi-
dimensional meshes and tori. In particular, we give a fairly simple deterministic
algorithm for sorting on the d-dimensional mesh of side length n that achieves a
running time of 3dn/2 4 o(n) without making any copies of the elements. We give
deterministic algorithms with running times of 5dn/4+o0(n) and 3dn/4+4o0(n) for the
d-dimensional mesh and torus, respectively, that make one copy of each element. We
also show lower bounds for sorting with respect to a large class of indexing schemes,
under a model of the mesh where each processor can hold an arbitrary number of
packets. Finally, we describe algorithms for permutation routing whose running

times come very close to the diameter lower bound.

5.1 Introduction

Much of the previous work on mesh routing and sorting has concentrated on the

one-dimensional and two-dimensional cases, while the meshes of dimension d > 2

120



(hereinafter referred to as multi-dimensional meshes) have received somewhat less
attention. Although the problems of routing and sorting on these networks have
previously been studied by a number of authors, there are still considerable gaps

between the best upper and lower bounds.

In this chapter, we focus on the problems of 1-1 routing and sorting on multi-
dimensional meshes with constant dimension d. Recall that a d-dimensional mesh of
side length n consists of N = n¢ processors, where each processor is identified by a d-
tupel (p1,...,pq) in []?. Two processors P = (po,...,p4—1) and Q = (qo, .- -, G4—1)
are connected by a bidirectional communication link iff there exists an 7 in [d] with
|pi —qi|l = 1 and p; = ¢; for all j in [d] with j # ¢. The d-dimensional torus is
obtained from the d-dimensional mesh by adding wrap-around edges between all
pairs of processors (po, ..., ps—1) and (qo, - .., q4—1) such that there exists an 7 in [d]
with |p; — ¢;| = n — 1 and p; = ¢; for all j in [d] with j # 1.

In Section 4.1, we defined the row-major and snake-like row-major indexing
schemes for the two-dimensional mesh. Both of these schemes can be naturally
extended to multi-dimensional networks; see [58] for a formal definition. In this
chapter, as in the preceding one, we assume a blocked indexing scheme. The indexing
scheme is defined by partitioning the mesh into d-dimensional blocks of side length
n®, for some « < 1, and using a snake-like indexing scheme inside each block, while
the blocks themselves are ordered according to another snake-like indexing. Blocked

indexing schemes have recently been used in a number of fast sorting algorithms

(e.g., see [42, 43, 47, 59]).

An obvious lower bound for the running time of any algorithm for 1-1 routing
or sorting is given by the diameter D of the network. (That is, D = d(n — 1) for the
d-dimensional mesh and D = dn/2 for the d-dimensional torus.) The performance of
an algorithm for routing or sorting on theoretical models of the mesh is commonly
measured by its running time, its queue size (that is, the maximum number of

packets any node has to store during the algorithm), and of course by factors such
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as the overall simplicity of the algorithm and the demands it places on the local
control hardware or software. In the following, we focus on the time complexity
of routing and sorting on meshes and tori of arbitrary constant dimension, and
we express our results in terms of the diameter D of the network. All presented

algorithms have a queue size of O(d).

5.1.1 Previous Results

Early examples of sorting algorithms for multi-dimensional meshes were given by
Thompson and Kung [114] and Nassimi and Sahni [82]. A lower bound of 2D —
n — o(n) for sorting on multi-dimensional meshes was established for the single-
packet model [53, 102], in which each processor can only hold a single packet at any
time. This bound applies to most of the indexing schemes used in the literature.
An algorithm with a running time of 2D — n + o(n) was subsequently described by
Kunde [55].

No non-trivial general lower bounds are known for sorting on d-dimensional
meshes in the multi-packet model, in which a processor can hold any constant num-
ber of packets at a time. The best upper bound in this model is currently at
2D — 5n/2+ o(n). (This result can be obtained from the 7n/2 4 o(n) time sorting
algorithm for the three-dimensional mesh in [42].) Hence, for large values of d, this
upper bound is still nearly a factor of 2 away from the diameter lower bound. This
is also true in the case of the d-dimensional torus, where the best upper bound is
currently at 2D — n 4 o(n). (This bound is implied by the 2n + o(n) time sorting

algorithm for the three-dimensional torus in [42].)

Slightly better results have been obtained for permutation routing on d-di-
mensional networks. For this problem, Kunde [57] has described algorithms that
run in time (d4 (d — 2)(1/d)"/4=2) 4 €)n on the mesh, and in about half that time

on the torus. For networks of low dimension, this is a significant improvement over
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previous results. However, for larger dimensions this result is again nearly a factor
of 2 away from the diameter lower bound. In fact, even for off-line routing no better

results are currently known.

For the problems of k—k routing and sorting on d-dimensional networks, there
are obvious lower bounds of kn/2 for the mesh and kn/4 for the torus, due to the
bisection width of the networks. For k& > 4r, several randomized and deterministic
algorithms have recently been proposed that match this lower bound, within a lower

order additive term [46, 47, 59].

5.1.2 Overview of this Chapter

In this chapter, we show improved bounds for 1-1 routing and sorting on multi-
dimensional meshes and tori. Our first result is a deterministic algorithm for sorting
on multi-dimensional meshes of side length n that achieves a running time of 3D /24
o(n). The algorithm has a fairly simple structure, and does not make any copies of
the packets. We also show that the running time of the algorithm can be reduced to
5D /44 o(n) by making one copy of each packet. A similar technique is then applied
to the multi-dimensional torus, leading to a deterministic algorithm with a running
time of 3D/2 4+ o(n). In contrast, the fastest previously known sorting algorithms

required 2D — 5n/2+ o(n) steps on the mesh and 2D — n + o(n) steps on the torus.

Thus, our algorithms improve significantly over previous results for sorting,
and in fact even for off-line routing, on multi-dimensional meshes and tori. The
ideas underlying our algorithms are quite simple, but the ideas used in the design
and analysis are somewhat different from those in previous algorithms for multi-
dimensional networks. While we restrict our attention in this chapter to constant
values of d, the claimed time bounds also hold for a limited range of networks of

non-constant dimension.

In addition, we show lower bounds for sorting with respect to a large class of
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indexing schemes, under a model of the mesh where each processor can hold an
arbitrary number of packets. Our lower bounds are the first non-trivial general
lower bounds for sorting in the multi-packet model of the mesh, and they imply
that our upper bounds are nearly optimal on networks of sufficiently high constant
dimension under a large class of indexing schemes. (Some restricted lower bounds
for the two-dimensional mesh have been obtained by Narayanan [81].) In fact, we
are not aware of any fast sorting algorithm for multi-dimensional networks that uses
an indexing scheme not covered by our lower bound. Using similar ideas, we can

also establish a lower bound for selection on multi-dimensional meshes.

Finally, we describe algorithms for permutation routing on multi-dimensional
meshes and tori whose running times nearly match the diameter lower bound. In
particular, the algorithms achieve a running time of D + en, for any ¢ > 0 and d

sufficiently large (depending on ¢).

The remainder of this chapter is organized as follows. Section 5.2 contains some
useful definitions and lemmas. Section 5.3 describes our algorithms for sorting. Sec-
tion 5.4 contains the lower bounds, and Section 5.5 gives our results for permutation

routing. Finally, Section 5.6 lists some open questions for future research.

5.2 Preliminaries

In this section, we give some useful definitions and lemmas. We begin with a brief
discussion of the sort-and-unshuffle operation described in Chapter 4. In Subsec-

tion 5.2.2, we state some results on greedy routing of certain classes of permutations.

5.2.1 Randomization and Unshuffling

In the following, we review the technique for converting randomized into determin-

istic algorithms for routing and sorting on meshes described in Chapter 4. The
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technique is based on an operation called sort-and-unshuffle. The purpose of this
operation is to evenly distribute packets with similar destinations (in the case of
routing) or similar ranks (in the case of sorting) over some large region of the net-

work, using a combination of local sorting and off-line routing.

In the following, we assume an arbitrary blocked indexing scheme on a d-di-
mensional mesh, where the blocks have side length »® with o < 1. In the first step
of the sort-and-unshuffle operation, the packets are sorted inside each block. In the
second step, the packets of each block are distributed evenly over all the blocks. This
is done by routing the packet of rank j, 0 < j < 2%, in block i, 0 < i < nd1=2) o
position 7 + {j/nd(l_a)J -nd1=2) in block j mod nd1=2),

Note that this second step is an off-line routing problem; the particular permu-
tation that has to be routed will be referred to as unshuffle permutation. (If we lay
out the processors of the network in a chain according to the indexing function, then
this permutation is identical to an (nd(l_a))—way unshuffle operation on the chain,

as defined in Subsection 4.3.2.)

Informally speaking, the structure of the unshuffle permutation exhibits many
of the “nice” properties commonly associated with “average” or “random” permuta-
tions. In particular, the unshuffle permutation has the property that the destinations
of the packets in any region of the network are approximately evenly distributed
over the entire network. As a consequence, an unshuffle permutation can usually be

routed as efficiently as a random permutation.

It was shown in Chapter 4 that the sort-and-unshuffle operation can in many
cases be employed as a “substitute” for randomization. Following a scheme originally
proposed by Valiant [116], many randomized algorithms for routing and sorting on
meshes start by sending the packets to random intermediate destinations. This has
the effect of distributing packets with destinations close to each other evenly over the
network. The sort-and-unshuffle operation simulates this effect in a deterministic

manner. Using this relationship between randomization and the sort-and-unshuffle
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operation, the algorithms of this chapter can be described in both randomized and

deterministic terms.

Note that the definition of the unshuffle permutation is with respect to a partic-
ular indexing scheme and its associated constant «. If @« = 1/2, then every unshuffle
permutation sends exactly one packet from block ¢y to block i1, for all 79,4, with
0 < dg, i1 < nt1=2), (That is, every unshuffle permutation performs an “all-to-all”
or “total exchange” among blocks of side length n®.) For any two unshuffle permu-
tations 7y and 7y with respect to indexings Zo and Zy, respectively, with o = 1/2, we
have mg = pg o7 0 p1, where pg and py are appropriately chosen local permutations
that move packets only within the blocks. Thus, to show that all unshuffle permuta-
tions with & = 1/2 can be efficiently routed, it suffices to show that some unshuffle
permutation with @ = 1/2 can be efficiently routed. Similarly, we can also reduce
any unshuffle permutation with @ > 1/2 to the case o« = 1/2 by performing local
permutations before and after the unshuffle permutation. Thus, for the remainder

of this section, we assume o = 1/2.

5.2.2 Some Results on Greedy Routing

Routing is used as an important subroutine in many sorting algorithms for fixed-
connection networks. In the algorithms presented in this chapter, we use the sort-
and-unshuffle operation of Chapter 4, and therefore we need efficient routing schemes
for unshuffle permutations. (Our results can also be obtained using randomization
instead of the sort-and-unshuffle operation. We believe that the analysis is somewhat

simpler in the deterministic case.)

We consider two different greedy routing schemes, which we refer to as the
standard greedy and the extended greedy routing scheme. In the standard greedy
routing scheme [65], every packet moves greedily towards its destination along edges

of increasing dimension. In the case of edge contentions, priority is given to the
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packet with the farthest distance to travel.

In the extended greedy routing scheme, several permutations are simultaneously
routed by running d “copies” of the standard greedy routing scheme. More precisely,
we partition the set of packets into d sets Sy, ..., S4—1 of (approximately) equal size,
and route the packetsin set S; along edges of increasing dimension modulo d, starting

with dimension ¢ and ending with dimension (i — 1) mod d.

Note that if the input for the extended greedy routing scheme is not given
in the form of k separate permutations, but as a k—k routing problem, then we
need to make sure that the origins and destinations of the packets in each set S;
are (approximately) evenly distributed over the entire network. This can be done
either in a randomized way, by having each packet choose a random set S;, or in a
deterministic way, by locally sorting blocks of side length o(n), and defining S; as

the set of packets with a local rank 3 such that y mod d = 1.

It is a natural question to ask how many (random or unshuffle) permutations
can be routed simultaneously under the above routing schemes. To make this ques-
tion more precise, we define the notions of diameter-optimal and distance-optimal
routing. We say that a routing algorithm on a d-dimensional mesh is diameter-
optimal if all packets are delivered to their destination in time D + o(n), where D
is the diameter of the network. We say that a routing algorithm is distance-optimal
if each packet is delivered in time S + o(n), where S is the distance between the

source and the destination of the packet.

In the context of an optimal randomized algorithm for k—k sorting, it was shown
by Kaufmann, Rajasekaran, and Sibeyn [46] that up to 4d random permutations can
be routed diameter-optimally on d-dimensional meshes and tori under the extended
greedy routing scheme, with high probability. The same bound can also be shown
for unshuffle permutations, leading to the optimal deterministic algorithms for k-
k sorting in [47, 59]. However, these results cannot be extended to the case of

distance-optimal routing.
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For the standard greedy routing scheme, it is easy to see that one unshuffle
permutation can be routed distance-optimally on d-dimensional meshes and tori.
Leighton [65] has shown that this is also the case for a single random permutation,
with high probability. (In fact, his result shows that it is unlikely that any packet is
delayed by more than O(lgn) steps.) For the extended greedy routing scheme, we

can show the following result.

Lemma 5.2.1 Up to 2d unshuffle permutations can be routed distance-optimally on

the d-dimensional torus.

Proof: We show how to route 2d unshuffle permutations with & = 1/2 in such a
way that no two packets ever contend for an edge, and hence no packet ever gets

delayed during the routing. For the sake of simplicity, we assume n® = n!/2 to be

odd.

Due to the structure of a torus, we can consider every block of side length n'/2
to be at the center of a d-dimensional mesh (without wrap-around edges). There are
n%? blocks containing n%? processors each. In each block B;, we can now assign
one processor to each of the n%/2 blocks in the entire network, as follows. We assign
the center processor of B; to B; itself, and we assign each other processor P; to the
unique block in the network whose position with respect to B; corresponds to the

position of P; with respect to the center processor of B;.

Thus, in each block B;, we obtain a mapping ¢; that maps each block B; in the
network to a processor ¢;(B;) in B;. We now use this mapping to define the start
positions of the packets originating in B;. We assume that the packets are given in
the form of 2d permutations 5, 0 < v < 2d, and that permutation S, is routed first

along dimension v mod d.

We first assign start positions to the packetsin Sg to Sy_1. Define 9, : [nl/z]d —
[n1/2]% as the function that shifts the coordinates of an element of [n!/2]% by v posi-

tions to the right, or formally, ¥, ((zo,...,24-1)) = (Td—py -+ s Td—1,T0y -+ -, Td—p—1)-
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Then a packet in .S, with source in B; and destination in B; is initially located in
processor ¥, (¢;(B;)) in B;. (Here, we assume that each processor in B; is identified
by an element of [2'/2]?, with (0, ..., 0) being the processor with the smallest global

coordinates in B;.)

A packet starting in location (zq, ..., 24-1) of B; is routed to the corresponding
processor (g, ..., 24—1) of its destination block B;. This means that the distance a
packets travels in a single dimension is always a multiple of n1/2, and that packets
only turn into the next dimension at times [ - n'/2 with [ € N. Due to the above
assignment of initial locations to the packets, and due to the structure of the torus,
whenever a packet pg in Sp has to turn, say from dimension v into dimension v + 1,
then the (at most) d — 1 other packets p; € S;, 1 < j < d, currently located in
the same processor have the property that p; has to turn from dimension (v +
j) mod d into dimension (v + j + 1) mod d. In addition, a packet p; that turns into
a new dimension continues to travel in the same direction as the packet p(;11ymoda it
“replaces” in this dimension. Thus, all packets can turn into their new dimensions

without contention.

It remains to show that the permutations S; to Ss4_1 can be routed at the
same time as Sy to Sg_;. Let o : [n'/?]¢ — [n'/?]? be the function that maps each
processor (2o, . .., 24_1) € [n'/?]%in a block B; to the unique processor (yo, . . ., Ya_1)
that has the same distance from the center processor of B;, but is located in the
opposite direction from the center processor. Then a packetin S,44, 0 < v < d, with
source in B; and destination in B; is initially located in processor o((zo,...,24-1)),
where (z¢,...,24-1) = ¥, (¢:(B;)) is the initial location the packet would have
assumed if it were contained in set S,. This means that throughout the routing, no
packet in the sets Sy to Soq_1 will ever contend for an edge with a packet in the sets
So to S4_1, since any packets from these sets that are encountered always move in

the opposite direction.

a
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However, this simple analysis does not extend to the case of the d-dimensional
mesh without wrap-around edges. In fact, it is not difficult to show that even
d random permutations cannot be routed distance-optimally on the d-dimensional
mesh under the extended greedy routing scheme. Using a more complicated analysis,

we can show the following result for meshes without wrap-around edges.

Lemma 5.2.2 Up to |d/2]| unshuffle permutations can be routed distance-optimally

on the d-dimensional mesh.

We only describe the main ideas behind the proof. Let ao = 1/2. We partition
the set of packets into d subsets by splitting each of the [d/2]| permutations 7; into
two sets S9; and Sy;41, such that S9; contains all the packets that have a destination
in a block B; with j = 0 mod 2. The initial locations of the packets in Sy to Sq—;
are then chosen in exactly the same way as in the case of the sets Sy to Sy_1 in
the proof of the previous lemma. (That is, in the definition of the mappings ¢,
we treat the mesh as if it were a torus with wrap-around connections.) To show
that the packets are routed distance-optimally under the extended greedy routing
scheme, we need to upperbound the number of packets that have to pass through
any directed edge at any point in time; this is done using bounds for certain surfaces

in d-dimensional space similar to the bounds for volumes in Lemma 2 of [32].

The maximum number of permutations that can be routed distance-optimally
on the mesh is actually slightly larger than the above bound. In particular, we can

prove the following result for the case of the three-dimensional mesh.

Lemma 5.2.3 For d = 3, two unshuffle permutations can be routed distance-opti-

mally on the d-dimensional mesh.
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5.3 Upper Bounds for Sorting

In this section, we give improved algorithms for 1-1 sorting. In the first subsection,
we describe the basic ideas underlying our algorithms. Subsections 5.3.2 and 5.3.3

contain our algorithms for multi-dimensional meshes and tori, respectively.

5.3.1 Basic Ideas

The basic ideas underlying our algorithms are quite simple. Consider the case of the
d-dimensional mesh, and let C' denote the set of processors that have a distance of
at most D /4 from the center. Note that exactly half of the processors of the network
are contained in this center region C'. Also, no processor in C has a distance of more

than 3D /4 from any other processor of the network.

These observations lead to the following idea for a fast sorting algorithm. In
the first phase, we concentrate all packets into the center region C, in such a way
that packets of similar ranks are evenly distributed over C'. Next, we locally sort
the packets inside each block of side length n® (as defined by the blocked indexing
scheme) that is contained in C'. Since all packets were evenly distributed over
the center region in the first phase, we can use the local ranks of the packets to
obtain good approximations of the global ranks, and hence the final destinations,
of all packets. In the third phase, we route each packet to some location in the
block containing its approximate final destination. In the fourth phase, we use local

sorting to bring each packet to its final destination.

Note that no packet has to travel a distance of more than 3D/4 in the first or
the third phase. Thus, if we can show that the routing in these two phases can be

done distance-optimally, then the above scheme runs in time 3D/2 4+ o(n).

In the next subsection, we give a more detailed description of a deterministic
algorithm based on the ideas presented in this section. We show that the routing

problems in the first and third phase of the algorithm can be reduced to the simul-
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taneous routing of several unshuffle permutations. We also present an even faster
algorithm that makes one copy of each packet. In Subsection 5.3.3, we use similar

ideas to obtain algorithms for the d-dimensional torus.

5.3.2 Sorting on Multi-Dimensional Meshes

In the following, we give fast deterministic sorting algorithms based on the ideas
described in the previous subsection. We assume a blocked snake-like indexing
scheme with blocks of side length n®. In addition, we also assume an arbitrary fixed
numbering of the n%(1=2) /2 blocks located in the center region C', independent of

the indexing scheme. We begin with the following simple algorithm:

Algorithm SimpleSort:

(1) Sort the packets in each block of side length n.

(2) Distribute the packets in each block evenly over all blocks in C'. This is done
by routing the packet of rank 7, 0 < ¢ < n%, in block 7, 0 < j < pdi=ea)
to position j + {i/nd(l_a)J -n?1=2) in block i mod (n*1=)/2) in C. (Here,
the numbering of the destination blocks is with respect to the arbitrary fixed
numbering of the blocks in C'.) Note that each processor in C' receives exactly

two packets.
(3) Sort the packets in each block of side length n® in C.

(4) Send the packets in each block in €' towards their destinations. This is done
by routing the packet of rank i, 0 < i < 209, in block j, 0 < j < nd(l_a)/Q
of C' to position j + (i mod 2n422=1)) . pd(1=2) /2 in block {i/(Qnd(Qa_l))J.
(Here, the numbering of the source blocks is with respect to the arbitrary
fixed numbering of the blocks in C'.) Note that each processor in the network

receives exactly one packet.
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(5) Perform two steps of odd-even transposition sort between neighboring blocks.

The correctness of the above algorithm is implied by the following lemma, which

can be proved along the lines of Lemma 3.2 in [47].

Lemma 5.3.1 After Step (4) of Algorithm SimpleSort, each packet is at most one

block away from its destination.

Next, we analyze the running time of the above algorithm. Clearly, Steps (1),
(3), and (5) each run in time O(n®) = o(n). For the routing in Step (2), the following

can be shown.

Lemma 5.3.2 Step (2) of Algorithm SimpleSort can be reduced to the routing of

two partial unshuffle permutations.

Proof: Consider the packets of a single unshuffle permutation 7. Let .S be the set
of processors that contain a packet with destination in C'. In each block, exactly half
of the processors are in 5, and the destinations of the packets in these processors
are evenly distributed over all blocks in C'. Let #’ be the partial permutation
consisting only of the packets that are initially located in S. After 7’ has been
routed, we move the remaining half of the packets to the processors in 5. By routing
another instance of the partial unshuffle permutation 7', we can now distribute these
remaining packets evenly over the blocks in C. Of course, the two instances of 7’

can also be started simultaneously.
O

By Lemma 5.2.3, we know that two partial unshuffle permutations can be routed
distance-optimally on meshes of dimension d > 3. Since no packet has to travel a

distance of more than 3D/4, this implies that the routing is completed in time

3D/4 4 o(n). Also note that the routing problem in Step (4) is exactly the inverse
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of the problem in Step (2), and therefore runs within the same time bound. This

establishes the following result.

Theorem 5.3.1 For any constant d, there exists a deterministic sorting algorithm
for the d-dimensional mesh with a running time of 3D /24 o(n) that does not make

any copies of the packets.

By Lemma 5.2.2, up to |d/2| unshuffle permutations can be routed distance-
optimally on d-dimensional meshes. By modifying Algorithm SimpleSort appro-
priately, we can use this extra bandwidth to establish the following result for k—k

sorting.

Corollary 5.3.1.1 Ifk < |d/4], then there exists a deterministic algorithm for k—k
sorting on the d-dimensional mesh with a running time of 3D /2 + o(n) that does

not make any copies of the packets.

We can also get a slight improvement in the running time for 1-1 sorting, by
concentrating the packets into a smaller center region C'. In general, however, the
running time of this improved algorithm is still (3/2 — ¢)D, for all ¢ > 0 and d

sufficiently large (depending on ¢).

Corollary 5.3.1.2 Let C(r) be the set of processors of distance at most r from the
center point. If |C(r)| > 2n?/d, then there exists a deterministic sorting algorithm

for the d-dimensional mesh with a running time of D + 2r 4 o(n).

Next, we show that the time for 1-1 sorting can be reduced to 5D/4 + o(n)
by making one copy of each packet. To do so, we modify Algorithm SimpleSort
appropriately; the resulting algorithm is called CopySort. Steps (1), (3), and (5)
remain the same as in Algorithm SimpleSort. The routing in Step (2) of SimpleSort

is augmented as follows. As before, we distribute the packets evenly over the blocks
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in C'. In addition, we make one copy of each packet, and route this copy to a
processor in the unique block of the center region ' that is located exactly on the
opposite side of the center point than the destination processor of the original in
this step, and that has the same distance from the center point. The routing of
the copies can be done simultaneously with the routing of the originals, and the
entire Step (2) can be implemented by routing four partial unshuffle permutations.
By Lemma 5.2.2, the routing is completed in 3D/4 + o(n) steps for d > 8. The

following lemma can be shown using simple geometric arguments.

Lemma 5.3.3 After Step (3) of Algorithm CopySort, no processor in the network
is more than a distance of D /2 + o(n) away from both the original and the copy of

any packet.

In Step (4) of CopySort, we first delete either the original or the copy of each
packet, depending on which one is farther away from the destination. Then the
remaining packets are routed towards their destination. This routing can again be
implemented by four partial unshuffle permutations. By Lemma 5.3.3, no packet

has to travel more than a distance of D /2. This establishes the following result.

Theorem 5.3.2 For any constant d > 8, there exists a deterministic sorting algo-

rithm for the d-dimensional mesh with a running time of 5D /4 + o(n).

For larger values of d, this result can again be slightly improved by concentrating
into a smaller center region. Alternatively, we can also adapt the algorithm to k—k
sorting with k < |d/8].

5.3.3 Sorting on Multi-Dimensional Tori

In this subsection, we adapt the ideas of the previous subsections to the case of

the d-dimensional torus. We describe a modification of the Algorithm CopySort
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from the previous subsection, which we refer to as TorusSort. As before, Steps (1),
(3), and (5) perform local sorting operations. In Step (2), we distribute the packets
evenly over the entire network. In addition, we also make a copy of each packet, and
route this copy to a processor in the unique block in the network that is D/2 steps
away from the destination processor of the original packet in this step. Step (2) can
be implemented by routing two full unshuffle permutations; the routing takes time

D + o(n). Then the following lemma holds.

Lemma 5.3.4 After Step (3) of Algorithm TorusSort, no processor in the network
is more than a distance of D /2 + o(n) away from both the original and the copy of

any packet.

As before, half of the packets are deleted in Step (4), and the remaining packets
are routed towards their destination. This routing can be implemented by two
partial unshuffle permutations. By Lemma 5.3.4, no packet has to travel more than

a distance of D/2 4 o(n). Using Lemma 5.2.1 we obtain the following result.

Theorem 5.3.3 For any constant d, there exists a deterministic sorting algorithm

for the d-dimensional torus with a running time of 3D/2 4 o(n).

By modifying Algorithm TorusSort appropriately, and using the extra band-

width supplied by Lemma 5.2.1, we can establish the following result.

Corollary 5.3.3.1 For any constant d, there exists a deterministic algorithm for

d—d sorting on the d-dimensional torus with a running time of 3D /2 + o(n).

Alternatively, we can also get a slight improvement in the running time for
1-1 sorting. As an example, we can obtain a fairly simple algorithm for the two-
dimensional torus that uses four copies of each packet and runs in time 1.375n. In
general, however, the running time of the improved algorithm is still (3/2 —¢€) D, for

all ¢ > 0 and d sufficiently large (depending on ¢).
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5.4 Lower Bounds for Sorting

In this section, we establish lower bounds for sorting on multi-dimensional meshes
and tori under the multi-packet model. The lower bounds hold for a large class of
indexing schemes, including most of the indexing schemes used in the literature. Our
lower bound technique is an extension of the Joker Zone argument of Kunde [53]
and Schnorr and Shamir [102] to the multi-packet model. An important difference
is that our lower bounds are based on edge capacity arguments, and do not place
any limits on the number of packets that can be held inside a single processor. We

begin the section with a few definitions.

We say that an indexing scheme 7 of the d-dimensional mesh is compatible if
there exists a 3 < 1 such that for every index i € [n? — n??], the set of processors
with indices in {7,...,7+n"? — 1} contains a complete (d — 1)-dimensional subnet-
work of side length n. (Informally speaking, this means that a compatible indexing
scheme has the property that a joker zone of n%? packets suffices to move the final
destination of a packet to any processor within a (d — 1)-dimensional sub-network.)
Note that the natural extensions of the row-major, snake-like, blocked row-major,
and blocked snake-like indexing schemes to multi-dimensional networks are com-
patible indexing schemes. In the remainder of this section, we assume an arbitrary

compatible indexing scheme with associated constant 3.

We use Cy, to denote the processors of a d-dimensional diamond of radius
(1 =) - D/4 around the center of a d-dimensional mesh. (That is, the set of
processors that have a distance of at most (1 — ) - D/4 from the center.) The
number of processors in Cy is denoted by Vj ., and the number of processors on
the surface of (., is denoted by Sg.. Then the following upper bounds can be

shown using Chernoff Bounds [14].
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Lemma 5.4.1 For any d and any v > 0, we have
Vdﬂ/ S e—w2d/4 . nd

and

5.4.1 Sorting without Copying

We first establish a lower bound for sorting under the restriction that no copies of

the packets can be made. Our main lemma for this case is as follows.

Lemma 5.4.2 Let d and v be chosen such that
d-Sqn~- ((%—I—l?pr) -D—dnﬁ) < nd—VdW

holds for large enough n. If no copying of packets is allowed, then sorting on the
d-dimensional mesh with respect to an arbitrary compatible indexing scheme takes

at least D4 (1 —~) - D/2 — n — dn” steps.

Proof: Consider the computation of an arbitrary sorting algorithm up to time
(2 +12)- D —dnP. At most d- Sy, packets can enter the diamond Cy,, in each
step. Thus, the above inequality implies that not all of the n? — Vi~ packets that

are initially outside the diamond can have entered up to this point.

Now consider an arbitrary packet located outside the diamond at time (% +

1%y D —dn”. This packet has a distance of at least (1 +15%)- D from at least one
of the corners of the network. (Otherwise, the packet would be in the diamond.)
Thus, the present position of the packet is independent of the content of a block of

side length n” located in that corner.

As we assume a compatible indexing scheme, the content of this block can force
the destination of the packet to be in any processor of a (d — 1)-dimensional sub-

network of side length n. There exists a processor in this sub-network that has a
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distance of at least (% + ITTW) - D —n from the current position of the packet. Hence,

at least (3 4+ 132) - D — n additional steps are needed under some assignment of

values to the corner block.

a

Theorem 5.4.1 If no copying of packets is allowed, then for every ¢ > 0 there
exists a dy such that for all d > dgy, sorting on the d-dimensional mesh with respect

to a compatible indexing scheme takes at least (3/2 — €)D steps.

To establish this theorem, we use Lemma 5.4.1 to show that the condition in
Lemma 5.4.2 holds for v = 3¢ and d sufficiently large (depending on €), The claim
then follows by a direct application of Lemma 5.4.2. Together with Theorem 5.3.2,
this result establishes a separation between the complexities of sorting with and
without copying, for large values of d. Unfortunately, Lemma 5.4.1 does not give
any good bounds for small values of d. In this case, we can show lower bounds by
adapting our argument to the particular network in question. In particular, we can

establish the following theorem.

Theorem 5.4.2 If no copying of packets is allowed, then for d > 5 the diameter

bound cannot be asymptotically matched under any compatible indexing scheme.

For the torus, it can be shown that the lower bounds for the single-packet
model also extend to the multi-packet model, assuming that no copying is allowed.
Informally speaking, the reason is that the torus does not have a center point towards

which the packets could be routed.

5.4.2 Sorting with Copying

Our lower bound technique can also be extended to a model in which unlimited

copying of packets is allowed. For this case, we obtain the following result.
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Theorem 5.4.3 If unlimited copying of packels is allowed, then for every ¢ > 0
there exists a dy such that for all d > dy, sorting on the d-dimensional mesh with

respect to a compatible indexing scheme takes at least (5/4 — €)D steps.

We only describe the main ideas in the proof of the above theorem. The basic
idea for this lower bound is that we choose the center diamond small enough such
that only a small fraction of the packets can be routed into this diamond. Next,
we argue that the edge bandwidth of the network does not allow every packet to
distribute a large number of copies of itself over the network. (Formally, the number
of communication steps required to route copies of a packet to a number of locations
in the network is lowerbounded by the length of a minimal “broadcast tree” con-
necting these locations.) This implies that an appropriate loading of the joker zones

can force the rank of a packet to be such that no copy is close to its destination.

However, this technique does not give any non-trivial lower bounds for reason-
able values of d. We expect that some results for smaller d can be obtained by
adapting our argument to the particular low-dimensional network in question. In

the case of the torus, we obtain the following result.

Theorem 5.4.4 If unlimited copying of packels is allowed, then for every ¢ > 0
there exists a dy such that for all d > dqy, sorting on the d-dimensional torus with

respect to a compatible indexing scheme takes at least (3/2 — €)D steps.

The lower bounds can be extended to many non-compatible indexing schemes.
In fact, it is not difficult to show that the above bounds hold for the vast majority
of all possible indexing schemes. (A similar result for the single-packet model was
described by Kunde [54].) Of course, such a result is not a very good measure for
the generality of our lower bounds, since most indexing schemes are highly irregular
and thus unsuitable for any efficient sorting scheme. More important in this respect
is that we are not aware of any fast sorting algorithm that assumes an indexing

scheme not covered by our lower bound.
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5.4.3 Selection

Using similar ideas, we can also show a lower bound of (9/16 —¢) - D for the problem
of selecting the median at the center processor of a high-dimensional mesh. A trivial
lower bound for this problem is given by the radius of the network. (That is, D/2

for the multi-dimensional mesh and D for the multi-dimensional torus.)

By Lemma 5.4.1, we know that for any ¢ > 0 and any sufficiently large d, only a
small fraction of the packets can enter Cy . in the first D/2 steps of any algorithm.
Let x be any processor outside Cy .. Then the set of processors that have a distance
of at most (5/16 — 2¢) - D from @ contains only a small fraction of the n? processors
in the network. This means that up to time (5/16 —2¢) - D, no packet located outside
(g, can be “ruled out” as the median element. Hence, up to (1 —¢)-D/4 additional
steps may be necessary to move the median to the center processor, and we get the

following result.

Theorem 5.4.5 For every ¢ > 0 there exists a dy such that for all d > dy, selection

on the d-dimensional mesh takes at least (9/16 — ¢)D steps.

An upper bound of D + o(n) can be obtained by a modification of the sorting
algorithms in Section 5.3. For large values of d, this result can be improved to
3D/4 4+ en. On the multi-dimensional torus, a running time of D + en can be

achieved for large d, thus coming very close to the trivial lower bound of D.

5.5 Permutation Routing

The lower bounds established in the previous section are restricted to the case of
sorting. In this section, we show the existence of algorithms for permutation routing
on multi-dimensional networks that nearly match the diameter lower bound. The

algorithms are based on similar ideas as the sorting algorithms in Subsection 5.3. In
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particular, they use a similar reduction to the distance-optimal routing of a number

of unshuffle permutations.

Consider the following idea for a randomized routing algorithm. For a packet
with source processor  and destination processor y, we define S(z,y) as the set
of processors that have a distance of at most D/2 from both z and y. Note that
S(z,y) is non-empty for all # and y. Thus, a simple two-phase algorithm could route
a packet with source  and destination y by first sending the packet to a random
processor in S(z,y), and then to its destination y. If we could solve the resulting
two routing problems distance-optimally, then we would obtain a total running time

of D+ o(n) for the algorithm.

Unfortunately, we do not know how to reduce these two routing problems to a
small number of random or unshuffle permutations. To do so, we have to modify
the above algorithm slightly. We define S, (z, y) as the set of processors that have a
distance of at most D /2 + v from both x and y. In the first phase of the algorithm,
we now route each packet with source z and destination y to a random processor
in S, (z,y). In the corresponding deterministic algorithm, we partition the network
into blocks of side length n®, and distribute all packets with source in block X and
destination in block Y evenly over S, (X,Y), the set of blocks that have a distance
of at most D/2+ v from both block X and block Y.

If we choose v such that k- |5, (X,Y)| > n? holds for all blocks X and Y, then
we can reduce each phase of the algorithm to the simultaneous routing of £ unshuffle
permutations. For a block X, define ¢(X) as the corner processor that is closest
to X. Then we can lowerbound |5, (X,Y)| by |S,(¢(X),c(Y))]. An analysis shows
that for d > 4 and v = n/2, we have [d/2]-|5,(c(X),c(Y))] > n?, and hence we can
reduce each phase of the algorithm to the routing of |d/2] unshuffle permutations.

Using Lemma 5.2.2, we obtain the following result.

Theorem 5.5.1 For all d, there exists a deterministic algorithm for permutation
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routing on the d-dimensional mesh with a running time of D + n + o(n).

The routing scheme can be easily adapted to the multi-dimensional torus. For
d >3 and v = n/16, we have 2d - |5, (X,Y)| > n?, and by Lemma 5.2.1 we obtain

the following result.

Theorem 5.5.2 For all d, there exists a deterministic algorithm for permutation

routing on the d-dimensional torus with a running time of D + n/8 4+ o(n).

An analysis using the bounds in Lemma 5.4.1 shows that in high-dimensional
meshes (tori), most processors have a distance of around D/2 from any particular
corner (any particular processor). This means that as d increases, we can choose

smaller and smaller values for v.

Theorem 5.5.3 For alle > 0, there exists a dy such that for alld > dy, permutation

routing can be done in time D + en on d-dimensional meshes and tori.

Finally, by making careful use of the bandwidth provided by Lemma 5.2.1, we
can show the following result for the torus. Note that this result comes very close

to both the diameter and the distance bound.

Theorem 5.5.4 For all € > 0, there exists a dg such that for all d > do, 2d-2d

routing can be done in time (1+ ¢€) - D on d-dimensional tori.

5.6 Open Questions

In this chapter, we have shown improved bounds for routing and sorting on multi-
dimensional meshes and tori. While our bounds are nearly tight for high-dimensional
networks, we do not obtain very good bounds for networks of small, fixed dimension.

In particular, it is an interesting question whether there exists an optimal algorithm
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for sorting on the two-dimensional mesh that does not make any copies, or whether

any optimal sorting algorithm exists for some d > 3.

Another open question is whether the lower bounds for sorting can be extended
to arbitrary indexing schemes. One possible approach to this problem is to try to
adapt some of the techniques that have been used to show lower bounds for arbitrary

indexing schemes in the single-packet model [31].

It would also be nice to obtain algorithms for permutation routing that match
the diameter bound more closely. For example, one might try to overlap the two
routing phases of the algorithm in Section 5.5, and bound the running time of
the resulting algorithm. Finally, it is an open question whether the diameter and

bisection bounds can be matched simultaneously for routing on meshes of dimension

d>2.
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Chapter 6

Routing and Sorting on Meshes

with Buses

This chapter considers the problems of permutation routing and sorting on several
models of meshes with fixed and reconfigurable buses. We describe two fairly simple
deterministic algorithms for permutation routing on two-dimensional networks, and
an algorithm for d-dimensional networks. We also give deterministic algorithms for
1-1 sorting. The algorithms can be implemented on a variety of different models of

meshes with buses.

6.1 Introduction

One of the main drawbacks of the theoretical mesh model is its large diameter in
comparison to many other networks, such as the hypercube and its bounded-degree
variants [66]. An n x n mesh has a radius of n — 1, and hence even computa-
tions that require only a very limited amount of communication, for example prefix

computations, still require at least n — 1 communication steps.

To remedy this situation, it was proposed by several authors [10, 41, 109] to
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augment the mesh architecture with high-speed buses that allow fast communication
between processors located in different areas of the mesh. This has resulted in a
large body of literature on various different models of meshes with bus connections,
and a number of important algorithmic problems have been studied under these
models. Among the most frequently studied problems on meshes with buses are
Maximum [1, 10, 21, 79], Prefix Sums [6, 13, 21, 61, 94, 109], Selection [12, 33,
94, 109], as well as certain algorithmic problems in image processing and graph
theory [38, 40, 79, 93, 110]. Additional literature can be found in [75] and the above

references.

Due to the low communication requirements of most of the above problems,
significant speed-ups over the standard mesh can be achieved. The exact time
complexities of the proposed algorithms depend heavily on the properties of the
bus system. For example, the maximum of n? elements can be computed in time
O(lglgn) on an n X n mesh with a fully reconfigurable bus, while the same problem
requires ©(n'/?) steps on a mesh with fixed row and column buses. On the mesh
without buses, at least n — 1 steps are needed. In the following, we briefly describe

some of the main features of the bus system that determine the power of the model.

(1) Architecture of the bus system: A bus is called global if it is connected to all
processors in the network. A bus that is connected to only a subset of the
processors is called local. Examples of meshes with one or several global buses
are given in [1, 10, 79, 109]. Most of the work on local buses has focused on the
mesh with row and column buses [21, 94, 110], although other architectures

have been proposed [78, 110].

(2) Reconfigurability of the buses: A bus is called reconfigurable if it can be par-
titioned into subbuses, such that each subbus can be used as a separate, inde-
pendent bus. A bus that is not reconfigurable is called fized. In a system with

reconfigurable buses, the possible partitions of the buses depend on the layout
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of the bus system. As an example, consider an n X n mesh with reconfigurable
row and column buses laid out in the obvious way. Then each of the n row
buses (column buses) can only be partitioned into subbuses connecting groups

of consecutive processors of the respective row (column).

(3) Conflict resolution for bus access: Most papers assume that the buses have
broadcast capability, that is, a value written on the bus by one processor can
be read by all other processors connected to the bus in the next step. An-
other common assumption is that the result is undefined if several processors
attempt to write on the same bus in a single step of the computation. Us-
ing the PRAM terminology, we refer to such a bus as being Concurrent Read
Ezxclusive Write, or CREW for short. Similarly, we could define CRCW or
EREW buses. There is a close relationship between a shared memory cell in

a CREW/CRCW/EREW PRAM and a global bus of the same type [78].

Additional features that have been studied include buses with non-unit delay [75, 79],
and buses that allow pipelining of messages under certain conditions [30]. Finally,
the concept of a mesh with a reconfigurable bus system can also be generalized to

reconfigurable networks of arbitrary topology [8].

The model of computation assumed in this chapter is a mesh with row and
column buses. We consider both fixed and reconfigurable buses. Of course, all
algorithms designed for such a model also run on more powerful models, such as the
Polymorphic Torus [75], the RMESH [79], or the PARBUS [120], whose bus system
can be reconfigured into row and column buses. On the other hand, it does not seem
that these more powerful, but also less realistic, models offer any advantages with
respect to permutation routing and 1-1 sorting, which are primarily restricted by
the bisection width of the network. Unless explicitly stated otherwise, we assume

the buses to be CREW.

An alternative way to overcome the diameter restriction of the standard mesh is
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to augment the network with a sparse system of bidirectional communication links
connecting processors in different areas of the mesh. Examples for this approach
are the Mesh of Trees [66], or the Packed Exponential Connections [49]. It turns
out that many of the algorithms and techniques described in this chapter can be

adapted to these classes of networks, and we will point this out in a few instances.

6.1.1 Related Results

In this chapter, we fovus on the problems of permutation routing and 1-1 sorting
(see Subsection 1.2.3 for a definition of these problems). It is easy to see that both
of these problems require at least ©(n) steps on all proposed variants of meshes with
buses, due to bisection width. However, the exact complexity of these problems has

only recently been investigated.

The study of permutation routing on meshes with row and column buses was
proposed by Leung and Shende [72]. They assume a model of computation, here-
inafter referred to as the mesh with fized buses, that consists of a mesh with non-
reconfigurable row and column buses in addition to the standard mesh edges. For
the one-dimensional case, they obtain a permutation routing algorithm running in
2n/3 steps with small constant queue size. They also show a matching lower bound
of 2n/3 for this problem; this lower bound can be extended to multi-dimensional
networks. For the two-dimensional case, Leung and Shende show that every per-
mutation can be routed off-line in n + 1 steps. They also describe a deterministic
on-line algorithm that routes in time (7/6 4 ¢)n + o(n) and queue size O(1/¢) on
the two-dimensional mesh with fixed buses, and in time (7(d — 1)/6 4+ ¢)n + o(n)
and queue size O(¢'~%) on d-dimensional networks. (Recall that the queue size is
the maximum number of packets any node has to store during the algorithms.) In a
subsequent paper [73], they obtain an improved algorithm for the two-dimensional

case, running in time (1+ €)n + o(n) with a queue size of O(1/¢).
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Rajasekaran and McKendall [96, 97] describe randomized algorithms for routing
and sorting on a network in which the mesh edges have been replaced by a global
reconfigurable bus. This model is essentially the same as the PARBUS, but has the
additional property that every subbus of length 1 can be used in the same way as
a bidirectional edge in a standard mesh. This means that in this case a message
can be transmitted in either direction in a single step. There is an obvious lower
bound of n/2 steps for permutation routing and sorting in this model, due to the
bisection width of the network. Rajasekaran and McKendall describe a 3n/4 time
deterministic algorithm for permutation routing in the one-dimensional case, and a
randomized algorithm for the two-dimensional case that achieves a running time of
(14€)n and a queue size of O(1/¢), with high probability. They also give randomized

algorithms for sorting with the same bounds on running time and queue size.

While the assumption of bidirectional communication in subbuses of length 1
made in the model of Rajasekaran and McKendall may be technologically feasible, it
can also be perceived as somewhat unsatisfactory from a theoretical point of view,
since it adversely affects the simplicity of the model. In this context, we point
out that many of their algorithms, including the (1 4 €)n time routing algorithm
for the two-dimensional case, do not make use of this assumption. Similarly, their
algorithms do not use any bus connections other than those along a single row or
column. Thus, in the following we consider a model with reconfigurable row and
column buses, and we assume that only one processor can write on a subbus in
any single step, regardless of the length of that subbus. Note that in this model,
hereinafter referred to as the mesh with reconfigurable buses, there is a trivial lower

bound of n steps for permutation routing and sorting due to bisection width.

Comparing the two different models of meshes with buses described above, we
observe that the mesh with reconfigurable buses can emulate the standard mesh with
constant slowdown by partitioning the buses appropriately. In the case of the mesh

with fixed buses, on the other hand, we cannot remove the standard mesh edges
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without losing the capability of efficiently performing local communication among
groups of adjacent processors. In fact, several routing algorithms for such a network
with fixed buses and no local connections have been proposed by Iwama, Miyano,
and Kambayashi [39]. Due to the impossibility of efficient local communication,

their algorithms have a queue size of ©(n) in the worst case.

Very recently, and independent of our work, Sibeyn, Kaufmann, and Raman
[107] have obtained a randomized routing algorithm for the two-dimensional mesh
with fixed buses that runs in time 0.78n, and an algorithm for d-dimensional net-
works that runs in time (2 — 1/d)n 4 o(n). (The exact running time is actually
slightly better than this bound.) By applying the techniques described in Chap-
ter 4 of this thesis, it is possible to obtain deterministic algorithms that match the

running times of these randomized algorithms, within a lower order additive term.

Sibeyn, Kaufmann, and Raman also show improved lower bounds for routing
on meshes with fixed buses. In particular, they show lower bounds of 0.69n and
0.72n for the two-dimensional and three-dimensional cases, respectively, and a lower
bound of approximately djTln for d-dimensional networks. (The lower bound for the

two-dimensional case was also discovered by Cheung and Lau [16].)

In other independent work, Cogolludo and Rajasekaran [19] have given a % +
o(n) time randomized routing algorithm for the two-dimensional mesh with recon-
figurable buses, under the assumption that subbuses of length 1 can be used as
bidirectional edges. They also give an algorithm with running time %” — &4 T o(n)
for a model with two unidirectional reconfigurable buses in each row and column.

For the problem of k—k routing on d-dimensional networks, d > 1, there are
obvious lower bounds of kn/3 and kn for the mesh with fixed and reconfigurable
buses, respectively, due to the bisection width of the network. For the mesh with
fixed buses, Rajasekaran [96] and Sibeyn, Kaufmann, and Raman [107] describe ran-

domized algorithms that match this lower bound, within a lower order additive term.

An optimal randomized algorithm for k—k sorting on the mesh with reconfigurable
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buses can be obtained by a straightforward implementation of the algorithm for the
standard mesh given in [46]. Very recent work by Kaufmann, Sibeyn, and Suel [47]

and Kunde [59] implies that this bound can also be matched deterministically.

6.1.2 Overview of this Chapter

In this chapter, we study the problems of permutation routing and 1-1 sorting on
meshes with row and column buses. We consider several variants of this model, with

both fixed and reconfigurable buses.

In the first part of the chapter, we describe two fairly simple algorithms for the
two-dimensional case that achieve a running time of n 4 o(n) and very small queue
size, and an algorithm for d-dimensional networks, d > 3, with a running time of
(2—1/d)n+o(n) and a queue size of 2. An interesting feature of these algorithms is
that they can be efficiently implemented on a variety of different classes of networks.
The algorithms are obtained with a new technique that allows us to convert certain
off-line routing schemes into deterministic on-line algorithms. We believe that this

technique may have further applications.

In the second part of the chapter, we present two algorithms for 1-1 sorting.
The first algorithm is based on a deterministic sampling technique, and its running
time matches that for permutation routing, within a lower order additive term. The
second algorithm is based on a variation of Columnsort, and runs in time n + o(n)
on meshes with reconfigurable buses of arbitrary constant dimension, thus nearly

matching the bisection lower bound of n steps.

The remainder of this chapter is organized as follows. Section 6.2 contains the
results for permutation routing, and Section 6.3 describes our algorithms for sorting.

Finally, Section 6.4 lists some open questions for future research.
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6.2 Permutation Routing

In this section, we describe a technique that allows us to convert certain off-line
routing schemes into deterministic routing algorithms. We then use this technique
to design new algorithms for permutation routing on meshes with buses. We begin
by giving an alternative description of a simple n 4+ 1 step off-line routing scheme
proposed by Leung and Shende [72, 73]. In Subsection 6.2.2 we show how this
off-line routing scheme can be used to obtain a fast and fairly simple deterministic
routing algorithm for two-dimensional meshes with buses. Subsection 6.2.3 applies
the technique to multi-dimensional networks. Finally, Subsection 6.2.4 gives another

algorithm for the two-dimensional case.

6.2.1 Off-line Routing

In the off-line routing scheme of Leung and Shende [72, 73], every packet is routed
to its destination by first routing it on a column bus to its destination row, and
then routing it on a row bus to its destination column in the following step. Thus,
the algorithm does not make use of the mesh edges at all. Leung and Shende show
that, for any input permutation, a schedule for the above routing scheme can be
computed in time O(n7/2) by computing a sequence of n maximum matchings. Once

the schedule has been computed, it can be executed in n + 1 steps.

Now consider the following interpretation of the above scheduling problem. The
columns of the mesh are interpreted as processes Py, ..., P,_1. Every process P; has
exclusive ownership of its column bus, and has to transmit the n packets initially
located in its column to their destinations. To do so, a process needs to send packets
on the row buses, which are interpreted as resources Ry, ..., R,_1. Before a packet
can be transmitted across a row bus to its final destination, it has to be routed
within its column to the correct row; this can be done in the preceding step using

the column bus. If & packets in column ¢ have a destination in row j, then process
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P; needs to access resource R; for k time steps. These k steps can be scheduled in
any arbitrary order, provided that in any given step, each resource is accessed by
at most one process, and each process uses at most one resource. The problem of

finding a minimum time schedule that satisfies all of these demands is known as the

Open Shop Scheduling Problem [29].

For 0 < 4,5 < n, let D;;, the demand of process P; for resource I;, be the

number of packets in column 7 that have a destination in row j. Note that

n—1
> Dij=n (6.1)
=0

holds for all j, since every row is the destination of exactly n packets. Correspond-

ingly, we also have
n—1
> Dij=n (6.2)
=0

for all 2, since every column is the origin of exactly n packets. A simple algorithm for
finding a minimum time schedule computes a sequence of maximum matchings in the
bipartite graph G = (U, V, E) defined by U ={Fy, ..., P._1}, V ={Ro,..., R._1},
and IV = {(P;, R;) | D;; > 0}. More precisely, the algorithm first computes a max-
imum matching M of GG, and schedules each process with its matched resource for
Diyin time steps, where Dp,in = min{D; ; | (P, R;) € M}. Next, we subtract D,
from all D;; with (P, R;) € M, construct a new bipartite graph G’ corresponding
to the new values of the D, ;, and compute a new maximum matching A’. This
procedure is repeated until all demands D; ; have been reduced to zero. Using Hall’s
Matching Theorem, it can be shown that Equations (6.1) and (6.2) guarantee that
the resulting schedule has a length of at most ». This in turn implies that at most n
matchings have to be computed, since for every matching the length of the schedule

is increased by at least one step.

A maximum matching on a bipartite graph with 2n vertices can be computed
in time O(n*/?) using the algorithm of Hopcroft and Karp [35]. Thus, the entire

schedule can be computed in time O(n/2). Of course, this makes the algorithm
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inappropriate for use as an on-line algorithm. In the next subsection, we show how

this off-line algorithm can be converted into an on-line algorithm that runs in time

n+ o(n).

6.2.2 Routing on Two-Dimensional Networks

In order to get a running time of n 4 o(n), we modify the above algorithm in such
a way that the routing schedule can be computed on-line in time o(n). Executing
the computed schedule then takes another n + o(n) steps. The key idea in our
construction is a technique to reduce the size of the scheduling problem that has to
be solved, and thus the size and number of the matchings that have to be computed.
Informally speaking, this can be done by partitioning the mesh into a smaller number
of processes and resources, and by treating sets of packets with similar sources and
destinations as if they were a single packet. This is described more formally in the

following.

We partition the network into blocks B;, 0 < i < n?72%, of size n® x n®, where
« is some constant that is smaller, but sufficiently close to 1 (for example, oo = 0.9).
We assume that the blocks B; are indexed in row-major order. (Thus, By and
B,2—2a_; are the blocks in the upper left and lower right corner, respectively.) We
now interpret each of the n' = columns of blocks as a process, and each of the n!=®
rows of blocks as a resource. Each process P;, 0 < ¢ < n'~?, has exclusive ownership

“, consists of n® row

of its n® column buses, while each resource R;, 0 < j < n'~
buses. At most one process is allowed to access a single resource at any point in the
algorithm. Thus, a process that has exclusive access to a resource can transmit up

to n® packets across the row buses of the resource in a single step.

We now have to arrange the packets inside the processes in such a way that we
can make optimal use of this new configuration. To do so we have to slightly relax

the goal of the routing schedule that has to be computed. Rather than requiring each
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packet to be at its final destination after execution of the schedule, we are content
with routing each packet to some position in the n® x n® block that contains its
destination. After completion of the schedule, we can then bring the packets to their

final destinations by routing locally inside each block.

To arrange the packets for the routing schedule, we sort the blocks into row-
major order, where the packets are sorted by the index of their destination block.
We say that a row of a block B; is clean if all its packets have the same destination
block. Otherwise, we say that the row is dirty. All n® packets in a clean row of a
block are transmitted across the row buses to their common destination block in a
single step, after they have been routed to the correct row of blocks in the preceding
step. If a row of a block is dirty, then the packets in the row are transmitted across
the row buses to their respective destination blocks in r separate steps, where r
is the number of distinct destination blocks that occur among the packets in the
row. In other words, such a row is treated in the same way as r separate rows; this
increases the number of steps required to route this row by r — 1.

2—2«a

Since there are only n blocks, this increases the number of steps required

to route the elements of a single block across the row buses by at most n?72% — 1.
Consequently, the number of steps required to route all the elements of a process

P; across the row buses is increased by less than n373?. Hence, if D; ; denotes the

number of steps that process P; needs resource R;, then

nl—@_1
> Dij<n+4n* (6.3)

=0
holds for all processes P;. Correspondingly, it can shown that

nl—@_1
Z D;;<n+ p373 (6.4)

=0
holds for all resources R;, since for any two blocks By, By, there can be at most two

dirty rows in By that contain packets destined for B;. Equations (6.3) and (6.4)
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guarantee the existence of a schedule of length at most n + n373 — p 4+ o(n) that
routes every packet to its destination block.

It remains to show that such a schedule can be computed in time o(n). Since we

l1—a

only have n processes and resources, the graph G that is used in the construction

l1—a

of the schedule has only 2n vertices. Hence, a maximum matching in this graph

can be computed in time O ((nl_a)5/2). For each matching that is computed, at

2—2«a

least one edge is removed from the graph. This implies that at most n matchings

have to be computed, and the total time to compute the schedule sequentially is
bounded by O ((nl_a)g/z) = o(n).

In order to implement this computation on a mesh with buses, all the data
needed to construct the graph G is routed on the buses to a small area, say in
the center of the mesh, where the schedule is computed and then broadcast to all
blocks. It suffices if each block contributes the numbers m;, 0 < i < 2?72, where
m; 1s defined as the number of elements in the block that are destined to block B;.
This can clearly be done in time o(n), since only a small amount of information has
to be transmitted. We do not elaborate any further on the implementation of the
maximum matching algorithm on the mesh. Since we do not need an algorithm that
is faster than the sequential one, this is an easy task. (In fact, we could even afford
a straightforward simulation of a turing machine algorithm on the mesh; this could

be done with a queue size of one.) All in all, we obtain the following algorithm:

Algorithm ROUTE:

(1) Partition the mesh into blocks of size n® x n®. Sort the packets in each block

into row-major order by destination blocks. This takes O(n™) steps.

(2) In each block, compute the m;, 0 <7 < n?7?% (m; was defined as the number
of packets with destination block B;). Send the m; to a block of side length

n?2% in the center of the mesh. This takes O(n*2) steps.

156



(3) Compute the schedule and broadcast it to all blocks of the mesh. This takes
O ((nl_a)9/2) steps.

(4) Execute the computed schedule of length n + n3=3<.

(5) Perform local routing inside each block to bring the packets to their final

destinations. This takes time O(n®).

It remains to show that the above algorithm can be implemented with a small,
constant queue size. Consider any destination block B; inside the mesh, and recall
that up to n® packets enter B; across the row buses in a single step. Due to the
sorting in Step (1) of the algorithm, every block in the mesh can have at most two
dirty rows that contain elements with destination block B;. This implies that B;

only receives packets in at most n® 4 2n272%

steps of the schedule. If we require
that the packets arriving in the ¢th such step are stored by the processors in the
(¢ mod n®)th column of B;, then most processors in B; only get a single packet,
while up to 2n2~® processors receive two packets. In addition, every processor in
B; can also contain one packet with source in B; that has not been sent out yet.
Finally, some of the processors in B;, say those on the diagonal of the block, also
have to store the n® packets that can enter the block across the column buses in

each step, and that are then routed across the row buses in the following step. This

gives a total queue size of 4.

We can decrease the queue size to 3 by assuming that the elements in the
diagonal of B; do not receive any of the packets entering the block across the row
buses. To get a queue size of 2, we require that every destination block stops
accepting new packets from the row buses after it has received n® — 1 batches of
packets. It can be shown that every block is still able to deliver the vast majority
of its packets to their destination blocks. We can now rearrange the packets in each
block, and then deliver the remaining packets; the details of this construction are

omitted. This establishes the following result.
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Theorem 6.2.1 There exists a deterministic algorithm for permutation routing on

the n x n mesh with buses that runs in time n 4 o(n) with a queue size of 2.

Note that the above algorithm does not assume any particular model of the
mesh with row and column buses. In fact, the algorithm can be efficiently imple-
mented on a variety of different classes of networks. For the mesh with fixed buses,
this improves upon the best previously known deterministic algorithm [73] in both
running time and queue size. As an example, the algorithm in [73] requires a queue
size of more than 200 to obtain a running time of 1.2n. (However, the algorithm
is not as fast as the independently discovered algorithms of Sibeyn, Kaufmann,
and Raman [107].) On the mesh with reconfigurable buses, our algorithm improves
upon the best previously known randomized algorithm of Rajasekaran and McK-
endall [97], and matches the bisection lower bound, within a lower order additive

term.

The algorithm can also be easily adapted to the Polymorphic Torus network
described in [75]. (This network is essentially a mesh with reconfigurable row and
column buses and additional wrap-around connections.) The resulting algorithm
routes any permutation in time n/2 + o(n), and thus nearly matches the bisection

lower bound of n/2.

For another example, consider a model of the mesh with fixed buses in which
the buses have a non-unit propagation delay p(n). It was observed by Cheung and
Lau [16] that, for any non-constant delay function p, routing takes time 2n —o(n) in
this model, assuming that no pipelining is allowed on the buses. However, if we lift
this restriction and allow a processor that sends a packet on the bus to send another
packet in the next step, then we can route in time n + o(n), for any p = o(n), using

a variant of the above algorithm.

The above result shows that for the problem of permutation routing, even a

fairly simple algorithm on the mesh with buses can achieve a speed-up by a factor of

158



2 over meshes without buses. Moreover, our algorithm has a queue size of 2. In this
context, we point out that the 3n — 3 step off-line scheme for routing on the standard
mesh described by Annexstein and Baumslag [4], as well as the 3n 4 o(n) sorting
algorithm of Schnorr and Shamir [102], achieve a queue size of 1 only because in the
standard mesh model two packets can be exchanged across an edge in a single step.
Since we do not allow two arbitrary processors that are connected to a common bus
to exchange two packets in a single step, it seems difficult to design any algorithm

with a queue size of 1 that uses the buses to transmit packets.

An even greater speed-up over the standard mesh can be achieved for certain
restricted classes of permutations. Consider a partial permutation with only a small
number of packets (say, at most en?). In the case of the standard mesh, this problem
still requires a running time of 2n — 2 in the worst case. On the mesh with buses,
our only restriction is the bisection bound, and hence we could hope for a speed-up
of up to 1/e over full permutation routing. The above algorithm can be adapted in
such a way that it achieves this bound for any constant ¢, provided that the sources

and destinations of the packets are approximately evenly distributed over the mesh.

In the following, a partial permutation with no more than en? packets is called
an e-permutation. We say that an e-permutation is §-approximate if every m x m
block of the mesh is the source and destination of at most em? + § packets, for all

m with 1 < m < n. Then the following holds for all € > 0.

Corollary 6.2.1.1 For any 6 = o(n), there exists a deterministic algorithm that
routes every d-approximate e-permutation in time en + o(n) with a queue size of 2.
6.2.3 Routing on Multi-Dimensional Networks

In the following, we apply the techniques from the previous subsection to obtain
an improved deterministic algorithm for routing on multi-dimensional meshes with

buses. On a d-dimensional network with side length n, our algorithm achieves a
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running time of (2 — 1/d)n 4 o(n) and a queue size of 2. This bound also holds
for a limited range of non-constant dimensions, provided that the side length n is

sufficiently larger than the dimension d.

Our algorithm is based on a well-known scheme for off-line routing on d-di-
mensional meshes described by Annexstein and Baumslag [4]. The routing scheme
consists of 2d — 1 phases. In phase ¢, 1 < ¢ < d — 1, each packet is routed along
dimension ¢ to an appropriately chosen intermediate location. In phase 7, d < i <
2d — 1, each packet is greedily routed along dimension 2d — ¢. Each phase of the
routing scheme involves a collection of routing problems on linear arrays of length
n, and thus takes at most n steps on the standard mesh. Hence, the entire routing is
completed after (2d — 1)n steps. This bound can be matched on meshes with buses,
even if only buses are used to route the packets. (On the mesh with fixed buses,
this running time can easily be reduced by using the 2n/3 time algorithm of Leung

and Shende [72] to perform the linear array routing.)

In order to route a given permutation with the above routing scheme, it is
necessary to determine appropriate choices for the intermediate locations assumed
by the packets in the first d — 1 phases. The existence of such intermediate locations
is implied by Hall’s Matching Theorem, and they can be computed by constructing
a sequence of perfect matchings in a graph; the details of this construction can be
derived from the description in Section 1.7.5 of [66]. While the routing is similar in
this respect to the scheme studied in the previous subsection, it is also important
to realize the differences between the two schemes. In particular, we are not aware
of any interpretation of the d-dimensional scheme as an instance of the Open Shop
Scheduling Problem. On the other hand, it does not appear to be possible to

generalize the two-dimensional scheme to higher dimensions.

Fast algorithms for computing appropriate intermediate locations are given in
[74]. For our purposes, it suffices that the running time of these computations is

polynomial in n?, the number of packets in the network. In order to convert the
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above off-line routing scheme into an on-line algorithm, we introduce the notion of a
super-packet. Informally speaking, a super-packet consists of a collection of packets
that have similar sources and destinations, and that move in lock step. By combining
a large number of packets into a single super-packet, we are able to decrease the
number of packets in the network (and thus the number and size of the matchings
that have to be computed) in such a way that the intermediate locations can be

computed in time o(n).

Formally, partition the mesh into d-dimensional blocks of side length n®, for
some « close to 1 (say a = 0.99). Then sort the packets in each block according to
their destination blocks, and combine up to n%° packets with a common destination
block into a single super-packet, say for 5 = 0.9. Thus, the packets in a super-packet
can be arranged in a d-dimensional submesh of side length #”. In each block, we
obtain at most n@=F) 4 pd(1=2) gyper-packets. Hence, the number of super-packets
in the entire mesh is n? =) 4 o(n?1=F)). We can assign to each super-packet a
unique block of side length n” inside the correct destination block, by running an
appropriate prefix computation. We can now interpret the remaining problem as
a o(nd(l_ﬁ))—approxima‘ce permutation routing problem on a d-dimensional mesh
with side length n'=”, where each communication step takes time n” (since it takes
n? steps to move all packets of a super-packet using pld=1)F8 buses). Due to the
small number of super-packets in this new routing problem, we can now compute
the intermediate locations for the above routing scheme in time o(n). This directly
implies an on-line algorithm for routing on d-dimensional buses with a running time
of (2d — 1)n+ o(n).

An issue we have ignored in the above description is that by combining the
packets into super-packets, we only get an o(n)-approximate permutation and not
a permutation in the strict sense. This problem can be easily overcome by, for
example, first routing a (partial) permutation containing the vast majority of the

packets with the above algorithm; the few remaining packets can then be routed in
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o(n).

In the remainder of this subsection, we show how this algorithm can be modified
to run in time (2 — 1/d)n. Note that the above algorithm only uses a small part of
the available bandwidth, since at any point in time all communication is performed
across a single dimension. In order to obtain an algorithm whose running time does
not grow linearly with the dimension d, we have to make simultaneous use of all the
buses in the network. The basic idea to achieve this is to partition the packets of
the routing problem into d sets of packets. Each set of packets can then be routed in
time (2d — 1)n/d+o(n) using the above algorithm. Since that algorithm uses only a
single dimension in each time step, we can route all d sets of packets simultaneously

without increasing the running time.

Formally, we partition the mesh into d subnetworks by assigning the label j to
each processor with coordinates (ig, ..., i4—1) and ig+- - -+i4—1 = j mod d. Next, we
partition the packets of the routing problem into d sets by first sorting the packets
in each block of side length n® by destination blocks, as before, and then assigning
each packet with rank 7 in the block to set j mod d. Note that in this way, for
any destination block B, we have an approximately equal number of packets with
destination in B in each of the d sets of packets. There are n?/d packets in each set,
and hence in each set there are approximately n?®/d packets with destination block
B. Next, we move the packets in set 7, 0 < 7 < d, to the subnetwork consisting
of the processors with label 7, such that each processor receives exactly one packet.
Note that all packets with common source and destination blocks are approximately

evenly distributed among the d sets.

We now route every set of packets by first routing it within its subnetwork to the
correct destination block, and then within the destination block to its final position.
We can simultaneously perform the routing in each of the subnetworks by running
a “copy” of the above uni-axial algorithm in each subnetwork. in such a way that

no two subnetworks communicate across the same dimension at any point in time.
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Due to their special structure, each of the d disjoint subnetworks is connected to all
dn®=1 buses, and can use all n%~! buses associated with a particular dimension in a
single step. Since every subnetwork only contains n¢/d packets, each of the 2d — 1
phases of the uni-axial algorithm only requires n/d steps. The queue size of this
algorithm is 4. Using ideas similar to those in the previous subsection, the queue

size can be reduced to 2. This gives us the following result.

Theorem 6.2.2 There exists a deterministic algorithm for routing on d-dimension-

al meshes with buses that runs in time (2 — 1/d)n+ o(n) with a queue size of 2.

The exact lower order term depends on the algorithm used in the computation
of the intermediate locations of the packets. The algorithm can be efficiently im-
plemented on a variety of multi-dimensional networks. An even faster algorithm for

reconfigurable networks is presented in the next section in the context of sorting.

6.2.4 Fast Routing without Matching

While the routing algorithms described in the previous subsections are fast from a
theoretical point of view, they are certainly not eflicient in practice. One source of
this inefficiency are the fairly large additive lower order terms in the running times
of the algorithms. As an example, choosing aw = 9/11 results in a lower order term
of O(n®/'1) in the case of the two-dimensional algorithm. As the constant hidden
by the big-Oh notation is sufficiently large, this lower order term would dominate
the running time of the algorithm on networks of realistic size. Another source of
inefficiency is the complicated control structure of the algorithm, especially in the
computation of the matchings. In particular, this makes the algorithm unsuitable

for any implementation in hardware.

In the following, we describe an n+O(n?/3) time algorithm for two-dimensional

networks that does not require any computation of matchings, and that uses only
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prefix computations and local sorting as subroutines. Like the algorithm in Subsec-
tion 6.2.2, it is based on the off-line algorithm of Leung and Shende, and assumes
that the network is partitioned into blocks of side length n®, for some «. However,
instead of computing an optimal schedule for the usage of the buses, the algorithm
computes an assignment of the row buses to the columns of blocks (and of the col-
umn buses to the rows of blocks) that stays fixed throughout most of the algorithm.
In this assignment, each column of blocks receives in each row of blocks a number of
row buses that is proportional to the number of its packets that have a destination in
this row of blocks. (Alternatively, the algorithm can also be described as computing
an approximate solution for a special case of the Open Shop Scheduling Problem.)

Let o = 2/3, let s; ; denote the number of packets in the 7th column of blocks

whose destination is in the jth row of blocks, and let b;; = [S;’J

|. We now assign
b; ; row buses in the jth row of blocks to the ith column of blocks, and b; ; column

buses in the ¢th column of blocks to the jth row of blocks. Note that

nt/2_1

> big<ntl?
=0

holds for all j, 0 < j < n!/3, and

/31

> by <at?
=0

holds for all i, 0 < i < n'/?. This assures that the total number of buses assigned
in each row of blocks and each column of blocks does not exceed n?/3. Such an
assignment of the row buses to the columns of blocks, and of the column buses to

the rows of blocks, can be easily computed from the b; ; using prefix computations.

After the assignment of the buses has been computed, we run the following
protocol for n + 1 steps. In each step, b; ; column buses in the ¢th column of blocks
are used to transmit b; ; packets (with destination in the jth row of blocks) to the
jth row of blocks. Also, in each step, b; ; row buses in the jth row of blocks are used

to transmit b; ; packets to their destination blocks. Thus, all packets routed along
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the columns in step k are routed along the rows to their destination blocks in step
k+ 1. (We assume that the row buses are idle during the first step of the protocol,

and the column buses are idle during the last step.)

After n + 1 steps of the above protocol, there are at most s;; —n-b;; < n
untransmitted packets in the ¢th column of blocks that have a destination in the jth
row of blocks. We can now transmit these remaining packets by setting b; ; = nt/3
for all 4, j, and running the above protocol for another n?/3 4 1 steps. Finally, local

routing inside each block can be used to bring every element to its final destination.

Altogether, we obtain the following algorithm.

Algorithm ROUTE2:

(1) Partition the mesh into blocks of side length n?/%. Use local sorting and

prefix computations to compute the assignment of the buses. This takes time

O(n?13).
(2) Run the protocol described above for n 4 1 steps.
(3) Set b; ; = n'/3 for all 4, j, and run the protocol for another n/3 + 1 steps.

(4) Perform local routing inside each block to bring the packets to their final

destinations. This takes time O(n?/?).

One important detail has been omitted from the description so far. Before
running the protocol in Steps (2) and (3), we have to arrange the packets inside the
blocks such that, for all ¢, 7, all b; ; row and column buses can be used in any step,
and such that no write conflicts occur. This can be done in time O(n%/?) using local

sorting and prefix computations. This establishes the following result.

Theorem 6.2.3 There exists a deterministic algorithm for permutation routing on
the n x n mesh with buses that runs in time n 4+ O(n?/3) with constant queue size

and that uses only prefix computations and local sorting as subroutines.
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The above algorithm achieves a queue size of 4; this can be reduced to 2 by a
more careful (but also more involved) implementation. The algorithm can again be
implemented on several different models of meshes with buses. Of course, it needs to
be pointed out that the algorithm is still too complicated to be of immediate practical
interest. However, we believe that the result is interesting in that it indicates that
even very simple global operations such as prefix computations might be useful
in the design of efficient routing algorithms on meshes with buses. In contrast,
all previously described algorithms for these networks use the buses only for the
transmission of the packets, and not for the computation of the routing schedule.
While such a restriction to local control is appropriate for networks that do not
provide any fast global communication, it may be that some amount of global control
is useful on networks that support fast (but low bandwidth) global primitives such

as prefix computations.

6.3 Sorting

In this section we describe two algorithms for sorting on meshes with buses. The
first algorithm makes use of the routing algorithms given in the previous section,
and its running time (nearly) matches that for permutation routing on all models
of meshes with buses. The second algorithm assumes a mesh with reconfigurable
buses, and its running time matches the bisection lower bound for networks of any
dimension d = 0(n1/3). Thus, this algorithm also implies an improved bound for

permutation routing on reconfigurable networks.

Recall that in the sorting problem we have to move the element of rank 7 to the
processor with index ¢, for all 7. Sorting algorithms on meshes and related networks
are usually designed with a particular indexing of the processors in mind. In the
following we assume a blocked indexing scheme, in which the network is partitioned

into blocks of side length n?, 2/3 < § < 1, and the processors in each block have
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consecutive indices, while the blocks are indexed in snake-like row-major order.

6.3.1

Sorting by Deterministic Sampling

The following algorithm uses the deterministic sampling technique described in Sub-

section 4.5.2, which computes a set of splitter elements whose ranks are determined

to within an additive lower order term. This essentially reduces the problem of

sorting to that of routing an appropriate permutation, plus some local operations.

The structure of the algorithm is as follows:

Algorithm SORT:

(1)
(2)

(3)

(6)

(7)

Sort each block of side length nd into row-major order. This takes time O(n®).

Route copies of the elements in the first column of each block to a block B of

side length n'=%/2 in the center of the mesh. This takes time O(n!=%/2).

Sort the elements in B and select 7° elements of equidistant ranks as splitter

elements. This takes time O(n'~%/2),

Use prefix computations to compute the exact ranks of the splitters, and broad-

cast them to all blocks. This takes time O(n?%).

It was shown in Theorem 4.5.1 that the ¢th splitter element has a rank between
(i —1)-n?>7% and i-n?7%. Hence, every element can now determine its rank
to within n?=% = O(n25). Using prefix computations, we can assign each
element a preliminary destination that is at most one block away from its

final destination.

Route every element to its preliminary destination using the routing algorithm

in Subsection 6.2.2 (or any other routing algorithm).

Perform local sorting between consecutive blocks. This takes time O(n?).
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Apart from Step (6), all steps of the above algorithm take time o(n). Thus,
the running time of the algorithm is determined by the running time of the routing
algorithm used in Step (6), up to a lower order term. For § = 2/3, we get the

following result.

Theorem 6.3.1 For all models of meshes with buses, there exists a sorting algo-
rithm whose running time matches that for permutation routing, within O(n2/3)

steps.

6.3.2 Sorting on Meshes with Reconfigurable Buses

Our second algorithm is based on a variation of Leighton’s Columnsort algorithm [64]
similar to that described in [47, 59]. The algorithm can be efficiently implemented on
several classes of meshes with reconfigurable buses, and also on the Mesh of Trees [66]
and the Packed Exponential Connections [49], but it does not give improved bounds

on meshes with fixed buses.

We start out by describing how the class of x-way unshuffle permutations can
be efficiently solved on a linear array with a reconfigurable bus. We then give the
sorting algorithm for networks of arbitrary dimension, and explain how it can be

implemented through a sequence of k-way unshuffle permutations on linear arrays.

Recall that, for any n, x > 0 with n mod s = 0, the k-way unshuffle permutation
on n elements is defined as the permutation 7, that moves the element in position
i to position 7(¢) = (i mod k) - n/k + |i/k], for all ¢ in [n]. We observe that if
k= n'~% for some § > 1/2, then a k-way unshuffle permutation on a linear array of
length n has the effect of distributing the elements of each block of length n® evenly
over all n'=% blocks of length n?.

Due to bisection arguments, at least n/2 steps are required to route an n'~S-way

unshuffle permutation on a linear array with a reconfigurable bus. The following

routing scheme matches this bound, within a lower order term. The routing scheme
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consists of two parts. In the first part, we route all packets that have to move to the
right; in the second part, we route all packets that have to move to the left. Since

the two parts are symmetric, we only describe how to route the rightgoing packets.

The schedule for the rightgoing packets is divided into n'=%/2 phases P;, 0 <
i < n'=%/2. Phase P; of the schedule consists of n'=% — 2i subphases S; ;, and each

subphase takes n?°~! steps. Thus, the entire schedule has a length of

(n'=?/2)-1 (n'~?/2)-1 s

Z (n1—5 _ 22-) op2-1 = g _ 9261 Z P = n

+
=0 =0 2

-3

Given a partition of the array into n' =% blocks of length n%, we say that block
1 sends to block j if all packets in block ¢ that have a destination in block j are
transmitted to this destination. Note that for all ¢ and j, exactly n2°~! packets in
block ¢ have a destination in block j. Under our schedule, the rightgoing packets

are transmitted according to the following rules:

a) In any su ase ;o ock 2 sends to block n*7° — ¢ — 1.
(a) In any subphase S; ¢, block i sends to block n!=% —

(b) In any subphase S; ; with 1 < j < n'=% — 24, block i sends to block i 4 j — 1,
while block 7 + 7 sends to block nt=% — 4 1.

The following sorting algorithm for d-dimensional networks assumes a blocked
indexing scheme with blocks of side length n®, § = 2/3. The algorithm alternates
local sorting and communication steps. Each communication step performs a to-
tal exchange operation among the blocks. The total exchange operation, also often
called all-to-all personalized communication, is a well-known communication prob-
lem that arises in a number of parallel applications (e.g., see Section 1.3 of [9]).

(1) Sort the elements inside each block. This takes time O(d - n®) using, say, the
k-k sorting algorithm for the standard mesh described in [47, 59].
(2) Perform a total exchange among the blocks, where block i sends the n#(29=1)

elements with a local rank of j mod n4(1=9 to block j, for all i, j.
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(3) Sort the elements inside each block.

(4) Perform a total exchange among the blocks, where block i sends the n#(26=1)

elements with a local rank between j - n4(20=1) and G+1)- nd(25-1) _ 1 to

block j, for all ¢, j.

(5) Perform local sorting between consecutive blocks. This takes time O(d - n%).

After Step (4) of the algorithm, every element is at most one block away from its
final destination (see [47] for a proof of this claim). Thus, the local sorting in Step (5)
moves each element to its final destination. Steps (2) and (4) can be implemented by
performing an appropriate local permutation in each block, followed by d consecutive
n'~%-way unshuffle permutations, where the ith unshuffle permutation is applied
to all linear arrays in direction of the ¢th dimension. However, using this simple

approach we only get a running time of dn/2 + o(n) for each of Steps (2) and (4),

since at any point in time only buses along a single dimension are being used.

To overcome this problem, we partition the mesh into d subnetworks, where
the vth subnetwork consists of all processors with coordinates (zg,...,24-1) such
that Zf;ol x; = v mod d. We also partition the set of elements into d subsets, such

d(28-1

that each subset contains exactly n )/d elements that have to be sent from any

block 7 to any block j.

Each linear array inside a subnetwork has a length of n/d, and can hence perform
an unshuffle permutation in time 75 4o0(n). We can now implement Steps (2) and (4)
in n/2+4o0(n) steps each, by routing each subset within its corresponding subnetwork,
where the 7th unshuffle permutation is applied to the elements of the jth subset in

direction of dimension (7 + j) mod d. This gives the following result.

Theorem 6.3.2 Foranyd= 0(n1/3), there exists a deterministic sorting algorithm
for d-dimensional meshes with reconfigurable buses that runs in time n + o(n) with

queue size two.
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For the Polymorphic Torus, and the mesh with two unidirectional reconfigurable
buses of [19], we can obtain a running time of n/2+ o(n), by simultaneously routing
the leftgoing and rightgoing elements in the unshuffle permutation. The same bound
can be achieved on the Mesh of Trees. We can also adapt the algorithm to run in
time 32—+ o(g";) on the Packed Exponential Connections [49] of arbitrary constant
dimension. In all of these cases, the algorithm nearly matches the bisection bound.

Finally, we point out that it is straightforward to adapt the algorithm to the
k—k sorting problem, in which each processor is the source and destination of k
packets. (For k& < 1, the k—k sorting problem can be defined in a similar way as
the d-approximate e-permutations in Subsection 6.2.2.) The resulting algorithm

matches the bisection lower bound within an additive lower order term for all &

with &£ = Q(1/n'7°) for some ¢ > 0.

Theorem 6.3.3 For any constant ¢ > 0, and for any k, d with k = Q(1/n'7°) and
d=o ((n . kl/d)l/S), there exists a k—k sorting algorithm for d-dimensional meshes

with reconfigurable buses that runs in time kn + o(kn) with queue size two.

6.4 Summary and Open Problems

In this chapter, we have described deterministic algorithms for permutation routing

and sorting on several models of meshes with fixed and reconfigurable buses.

While the routing algorithms in Section 6.2 are based on fairly simple ideas,
they are impractical due to their complicated control structure and the large lower
order terms in the running times. It is an open question whether the ideas of this

chapter can be used in the design of more practical algorithms.

Another possible research direction is to find efficient algorithms for routing
with locality, or for the routing of sparse or irregular communication patterns. In

this context, the buses might be helpful in the design of algorithms that adapt to the
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degree of locality, sparseness, and irregularity of a problem. One possible approach
to this problem is to first show the existence of a good off-line solution, and then try
to convert this off-line solution into an on-line algorithm using the ideas presented

in this chapter.
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Chapter 7

Concluding Remarks

In this thesis we have established lower bounds for several classes of sorting networks
and algorithms, and have described techniques and algorithms for packet routing
and sorting on meshes and related networks. In the following, we discuss a few open

questions in the context of our work.

The results of Chapter 2 are related to two central open questions in the the-
ory of parallel sorting. One question asks for the existence of an O(lgn)-time de-
terministic sorting algorithm for the hypercube. The other question concerns the
existence of O(lgn)-depth sorting networks that are “more practical” than the AKS
network. (By this we mean sorting networks that have a simpler structure or a
smaller associated constant, or that can be mapped efficiently to common classes of
fixed-connection networks.) While both of these questions remain open, the results
in Chapters 2 and 3 provide negative answers for some classes of algorithms and

networks that have been considered in this context.

Another important open question concerns the average-case complexity of Shell-
sort algorithms. No general upper and lower bounds for the average case are cur-
rently known, and it seems that any progress on this question would require some

fundamental new ideas. Even for many of the most common increment sequences,
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no formal analysis of the average case has been done.

The study of routing and sorting on meshes has received a lot of attention in
recent years, and significant progress has been achieved. Optimal or nearly optimal
deterministic solutions are now known for a number of problems, and while some
open questions remain, overall there seems to be a fairly good understanding of the
worst-case complexity of these problems on theoretical mesh models that place no

restrictions on the complexity and structure of the algorithms.

However, many important questions remain open for more realistic, and thus
more restricted, models of the mesh, and for dynamic and irregular routing prob-
lems that do not fit into the framework of permutation routing. Examples of such
restricted models are hot-potato routing, oblivious routing, or models that restrict
the adaptivity of the algorithm or require packets to move along paths of minimum
length; see [11, 115] for an overview. We believe that future work on meshes will

likely focus more on these types of problems.

174



Appendix A

Proof of Lemma 4.5.5

Lemma 4.5.5 The greedy routing to destination blocks in Step (9) runs in time

n + o(n) with constant queue size.

Proof: The routing in Step (9) is initiated by a Start signal that is broadcast from
the center of the mesh at time n + o(n). All time bounds stated in the following
are with respect to the moment at which this signal was sent out. In the following
analysis of the routing, we restrict our attention to the lower right quadrant of the

mesh.

As stated in the algorithm, we assume the same routing scheme as in the optimal
randomized algorithm. In this scheme, every element moves to its destination block
in two phases. In the first phase, row elements move inside their current column to
their destination row, while column elements move inside their current row to their
destination column. In the second phase, the elements move to their destination
blocks. If several packets that are in the same phase contend for an edge, priority is
given to the element with the farthest distance to travel. In the following, we only
consider the routing of the row elements during their first phase, and the routing of
the column elements during their second phase. Thus, we are only oncerned with the

problem of routing inside the columns; a symmetric argument holds for the routing
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inside the rows.

Until time 0.5n, we reserve the entire edge capacity of the columns for row
elements that are in their first phase. At time 0.5n, we start reserving half of the
bandwidth of each column for column elements in their second phase. More precisely,
starting at time 0.5n, we reserve half of the capacity of the topmost column edge
for column elements in their second phase. Starting in the next step, we reserve
half of the capacity of the next column edge for the column elements, until at time
0.75n all column edges in the center subquadrant 75 have half of their capacity
reserved for the column elements. At time 0.75n, we start reserving only a quarter
of the capacity for column elements. As before, this change is initially applied only
in the topmost column, and then propagated downwards. It will be seen that this
guarantees that, once an element has started moving, it is never delayed until it

reaches its destination.

Assuming the above routing scheme, we establish Lemma 4.5.5 through a series
of five claims. The proof of Claim (5) is based on an informal explanation of the
corresponding proof for the optimal randomized sorting algorithm in [42], given to

the author by Christos Kaklamanis.

Claim (1): During the first phase of the routing, there are % £ o(n) row elements
in each of the leftmost n/4 columns of the quadrant, and the destinations of the row

elements in each column are evenly distributed over all destination blocks.

Proof: Consider any fixed subquadrant of the mesh after Step (3) of the algorithm.
By Lemma 4.5.2, the number of row elements in the subquadrant that are destined
to a particular n® x n® destination block differs by at most %n2—2ﬁ from the number

of column elements destined to that block. Lemma 4.5.1 then guarantees that, after

the (”14_5)—Way unshuffle of the row and column elements in Step (4), the number of
elements destined to any particular destination block D differs by at most 13—6712_25

between the row elements in any column of blocks and the column elements in any
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row of blocks of the subquadrant. After all 16 subquadrants have been overlapped
into a single subquadrant, this becomes 3n2~2# = o(n”). Hence, in each block of size
n” x nf, the sorting in Step (8a) has the effect of distributing the row elements with
destination block D evenly over the n® columns, and the column elements evenly
over the n” rows, up to a difference of one. Since there are %nl_ﬁ such blocks in each
column of blocks in the quadrant, the number of elements destined to any particular
destination block differs by at most %nl_ﬁ between the row elements in any column

2—2«a

and the column elements in any row. Since there are only %n destination blocks

in each quadrant, every column has & 4 O(n?>7#=2%) row elements.

a
Claim (2): The queue size remains constant during the routing in Step (9).

Proof: The proof of this claim is similar to the argument of Subsection 4.4.2.
Assume the same assignment of offset values to the counters as in the routing al-

20-1 elements

gorithm. It follows from Claim (1) that every column contains ~ 2n
destined for any particular destination block. Hence, the counter technique guaran-
tees that at most 2 row elements turn into a row in any processor. More precisely,

2a—1 elements for each destination block,

if every column were to contain exactly 2n
then exactly one row element would turn in any processor, since no two counters
corresponding to the same column and the same row of destination blocks would

ever have the same value. Due to the low-order variations in the number of elements,

we get a bit of overlap between the counters.

Next, we have to show that the initial assignment of values to the counters
ensures that not too many row elements enter their destination block across the
same row. Consider a fixed destination block D, and any set of »n® consecutive
columns. We will show that the values assumed by those 2r” counters in our set
of columns that correspond to destination block D are evenly distributed from 0 to

n® — 1. Note that the initial values of these counters are evenly distributed from
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0 to n* — 1. Claim (1) can then be used to show that ~ 2n**~! elements with

destination block D turn into any particular row. Hence, ~ %na elements enter
destination block D through any particular row. If, after entering D, each element
stops in the first processor that has not yet received a row element, then every
processor in D receives at most one row element. This proves that the routing step

achieves a constant queue size.

a

Note that in the rest of the sorting algorithm the maximum queue size is clearly
bounded by some constant > 16. At the beginning of Step (9), some processors can
hold up to 16 elements. During the first phase of the routing, some processors may
temporarily have to hold up to 18 packets. In addition, up to 2 row elements and up
to 2 column elements might have to turn in the processor. Also, a processor could
become the destination of at most one row element and one column element in the
second phase of the routing. Another memory slot is needed for the broadcast of the
exact splitter ranks in Step (10) of the algorithm. Thus, the total queue size around
25. This bound could probably be slightly improved by a more careful analysis and

implementation.

Claim (3): Every column receives ~ n/4 column elements in the second phase,
and the destinations of these elements are evenly distributed among all destination

blocks in that column.

Proof: Since the accuracy of the splitters is 0(712_5)7 every destination block
receives n?® + O(n2_5) elements. By Lemma 4.5.2, approximately half of these el-
ements are column elements. It was shown in the proof of Claim (2) that in any

block of n® consecutive rows, ~ 2p?@~!

column elements of any particular destina-
tion block turn into any of the n® columns passing through that block. Multiplying

this by the number of blocks of n® consecutive rows in the subquadrant (which is
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1

1= " we conclude that every column receives ~ sn” elements with any partic-

in
ular destination block. Multiplying this term by the number of destination blocks

)

in the same column (which is %n , we can infer that every column receives ~ %

elements.

a

Claim (4): If a row element reaches its destination row by time n—r+4o(n), where
r is the distance it has to travel inside the destination row, then the element arrives

at its destination block by time n + o(n).

Proof: (Sketch) Consider a routing problem on a linear array with n/2 processors
and n/2 packets, where each processor is the destination of exactly one packet. It
is well known that a greedy routing strategy that gives priority to the packets with
farther distance to travel delivers all packets within time n/2 — 1, even if processors
may initially hold an arbitrary number of packets (see, for example, [66, Section
1.7.1]). It can be shown by a simple induction on the number of routing steps that
this remains true even if we impose the additional constraint that a packet may not
move before time n/2 — d, where d is the distance the packet has to travel. We can
interpret the routing of the column elements inside the column as such a routing
problem on a linear array that is started at time n/2 + o(n). In this case, we have
n/2 processors, but only n/4 packets. Hence, half of the capacity suffices to route
all packets. Since the routing problem has the additional properties that all packets
start in the first n/4 processors, and that the destinations of the packets in every
large block of processors are evenly distributed over the entire array, it can be shown
that the capacity required for this routing problem can be reduced to a quarter after

the first n/4 steps.

a

We have now established that the elements reach their destination blocks by
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time n 4 o(n), provided that they are not delayed too much in the first phase of the
routing. The remainder of the proof gives an analysis of this first phase, in which the
row elements are routed inside their column. The lemma then follows immediately

from Claim (4) and the following result.

Claim (5): Every row element reaches its destination row by time n — r + o(n),

where r is the distance the element has to travel in the destination row.

Proof: (Sketch) Note that the routing of the row elements inside any particular
column is independent of the routing in any other column. Thus, we can interpret
this routing phase as a routing problem on a linear array, where the destinations of
the elements in the array are given by the destination rows, while the priorities of the
elements are determined by the total Manhattan distances to the destination blocks.
We identify every processor in the lower right quadrant by a pair of coordinates
(z,y), where (0,0) denotes the center of the mesh and (n/2 — 1,0) denotes the
upper right corner of the quadrant. Only the n/4 columns passing through the
upper left subquadrant are used in this phase. Note that the routing in column ¢,
0 <7< n/4,is started i steps after the routing in column 0. It can be shown that
the time for routing the row elements in column n/4 — 1 to their destination blocks
gives an upper bound for the time it would take to route the same set of elements
in any other column, within a lower order additive term. Hence, in the following we

limit our attention to the routing in column n/4 — 1.

By Claim (1), we know that there are ~ n/2 row elements in the topmost n/4
processors of the column, and that the destinations of these elements are evenly
distributed over all destination blocks in the quadrant. However, we do not know
anything about the distribution of these elements inside the column at the beginning
of the routing. Some processors could hold up to 8 row elements, while others
could have none. In the following, we limit our attention to the following two

distributions of the elements inside the column. In the first distribution Aq, all
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~ n/2 elements are initially located in the topmost processor of the column, with
coordinates (n/4 — 1,0). In the second distribution Ay, all ~ n/2 elements are
initially located in processor (n/4 — 1,n/4 — 1). Note that neither A; nor Ay can
actually occur in the algorithm, since a single processor has at most 8 row elements
at the beginning of the routing. We consider these two distributions here because
they provide an upper bound for the routing time of all other distributions. More
precisely, the following can be shown. Let A be an arbitrary distribution of the
elements in the column, and let T'(e, A) denote the time to route an element e to
its destination row under distribution A. Then it can be shown that the inequality
T(e,A) < max{T(e,A1),T(e,Az)} holds for all elements e. Thus, if all packets
arrive at their destination rows in time under both Ay and Ay, then they also arrive

in time under any other distribution.

Now consider distribution A, where initially all ~ n/2 elements are located
in the topmost processor of the column. The Start signal arrives at this processor
n/4 —1 steps after it was broadcast from the center. Now the elements start moving
towards their destination row, where priority is given to those elements that have
the farthest distance to travel. In any step up to time n/2, one row element leaves
the topmost processor and move towards its destination row. Once an element
has started moving, it is not delayed until it reaches its destination row. Between
time n/2 and 3n/4, only one row element leaves the topmost processor in any two
consecutive steps, and from time 3n/4 to the end of the routing, three elements leave
the topmost processor in any four consecutive steps. As before, an element moves

to its destination row without being delayed once it has left the topmost processor.

Now consider the set of elements that have to travel a total distance of at least
3n/8. Due to Claim (1), there are ~ n/4 such elements in the column. Since these
elements have a higher priority than the rest, all these elements leave the topmost
processor between time n/4 and n/2. By Claim (1), the destination blocks of these

elements are evenly distributed over the area of the quadrant that is at least 3n/8
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away from the topmost processor. Using simple geometric arguments, it can be

shown that all of these elements reach their destination row in time.

Next, consider the set of elements that have to travel a distance between n/4
and 3n/8. There are ~ n/8 of these elements, and they leave the topmost processor
between time n/2 and time 3n/4. It can be shown that these elements also reach
their destination row in time. Similarly, it can be shown that the set of elements
that have to travel a distance of less than 3n/16 can be routed to their destination
rows between time 3n/4 and time n. The remaining problem is now to find a way to
route those elements that have to travel a distance between 3n/16 and n/4. We can
solve this problem by observing that the capacity reserved for the column elements
between time n/2 and 3n/4 is not completely used up by these elements. The reason
is that the rows from which the column elements turn into the column are evenly
distributed over the topmost n/4 rows of the quadrant. Hence, many of the slots
reserved for these elements are not immediately claimed by the column elements,
and we can use these empty slots to route row elements that only have to travel a
short distance. It can be shown that all remaining row elements can be routed in

this way, and that they reach their destination row in time.

This proves that all packets reach their destination row in time under distribu-

tion Aj. A similar argument can be given for distribution As.

a
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