
CopyrightbyTorsten Suel1994

Routing and Sorting on Fixed TopologiesbyTorsten Suel, Dipl.-Inform., M.S.C.SDissertationPresented to the Faculty of the Graduate School ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDoctor of PhilosophyThe University of Texas at AustinDecember, 1994

Routing and Sorting on Fixed Topologies
Approved byDissertation Committee:

AcknowledgmentsFirst, I would like to thank my advisor Greg Plaxton. Greg showed a lot of patiencewith me during the �rst years of my study, and was always available for discussionsand encouragement throughout my stay at UT. Thanks also to the other membersof my dissertation committee, Tom Leighton, Jay Misra, Vijaya Ramachandran,Robert van de Geijn, and Martin Wong, for their time and e�orts.Over the years, my work has bene�ted from discussions with a number of people,including Nelson Amaral, Tsan-sheng Hsu, Phil MacKenzie, Rajmohan Rajaraman,Jop Sibeyn, and Rolf Wanka. Thanks also to all friends, o�cemates, and colleaguesthat made my stay in Austin a great experience.Finally, and most importantly, I would like to thank my parents, Anton andSigrid Suel, without whose constant love and support nothing of this would havebeen possible. Torsten SuelThe University of Texas at AustinDecember 1994 iv

Routing and Sorting on Fixed TopologiesPublication No.Torsten Suel, Ph.D.The University of Texas at Austin, 1994Supervisor: Charles Gregory PlaxtonThis thesis studies the problems of packet routing and sorting on parallel modelsof computation that are based on a �xed, bounded-degree topology. It establisheslower bounds for several classes of sorting networks and algorithms, and describestechniques and algorithms for packet routing and sorting on mesh-connected andrelated networks.A lower bound of
(lgn lg lgn= lg lg lg n) is established for the depth of shu�e-unshu�e sorting networks, a class of sorting networks that maps e�ciently to the hy-percube and its bounded-degree variants. A stronger lower bound of
(lg2 n= lg lg n)is shown for a subclass of the shu�e-unshu�e sorting networks whose structure cor-responds to the class of ascend and descend algorithms on the hypercube. Theselower bounds also extend to restricted classes of non-oblivious sorting algorithmson hypercubic networks. A lower bound of
(n lg2 n=(lg lgn)2) is shown for the sizeof Shellsort sorting networks, and for the running time of non-oblivious Shellsortalgorithms. The lower bound establishes a trade-o� between the running time of aShellsort algorithm and the length of the underlying increment sequence.For the problems of permutation routing and sorting on meshes and relatedv

networks, a set of techniques is proposed that can be used to convert many random-ized algorithms into deterministic algorithms with matching running time and queuesize. Applications of these techniques lead to a deterministic algorithm for sortingon the two-dimensional mesh that achieves a running time of 2n+ o(n), and a fairlysimple deterministic algorithm for routing with a running time of 2n + o(n) andvery small queue size. Some other applications of the techniques are also described.Finally, the thesis gives algorithms and lower bounds for routing and sorting onmulti-dimensional meshes and meshes with bus connections.

vi

ContentsAcknowledgments ivAbstract vChapter 1 Introduction 11.1 Model of Computation : 21.2 Fixed-Connection Networks : 41.2.1 Mesh-Connected Networks : 51.2.2 Hypercubic Networks : 61.2.3 Routing and Sorting on Fixed-Connection Networks : : : : : 81.3 Sorting Networks : 91.4 Summary of Thesis Results : 11Chapter 2 Lower Bounds for Shu�e-Unshu�e Sorting Networks 142.1 Introduction : 152.1.1 Shu�e-Unshu�e Sorting Networks : : : : : : : : : : : : : : : 162.1.2 Overview of this Chapter : 182.2 Proof Ideas : 19vii

2.2.1 A Naive Proof Idea : 202.2.2 The Proof for Shu�e-Based Sorting Networks : : : : : : : : : 202.2.3 The Proof for Shu�e-Unshu�e Sorting Networks : : : : : : : 222.3 De�nitions and Basic Lemmas : 232.3.1 Input Patterns and Re�nement : : : : : : : : : : : : : : : : : 242.3.2 Comparator Networks : 262.3.3 Basic Lemmas : 312.4 Bounds for Shu�e-Based Networks : : : : : : : : : : : : : : : : : : : 332.4.1 Proof Strategy : 332.4.2 The Proof : 342.5 Bounds for Shu�e-Unshu�e Networks : : : : : : : : : : : : : : : : : 412.5.1 Networks with Small Overlap : : : : : : : : : : : : : : : : : : 422.5.2 Networks with Arbitrary Overlap : : : : : : : : : : : : : : : : 492.6 Extensions and Limitations of the Proof Technique : : : : : : : : : : 522.6.1 Non-Oblivious Sorting Algorithms : : : : : : : : : : : : : : : 532.6.2 Multi-Dimensional Meshes : 542.6.3 Average Case and Randomized Algorithms : : : : : : : : : : 552.7 Open Questions : 56Chapter 3 Lower Bounds for Shellsort 583.1 Introduction : 583.1.1 Previous Results on Shellsort : : : : : : : : : : : : : : : : : : 593.1.2 Overview of this Chapter : 623.2 The Basic Proof Idea : 63viii

3.3 Lower Bounds for Networks : 663.3.1 De�nitions and Simple Lemmas : : : : : : : : : : : : : : : : : 663.3.2 A More General Lower Bound : : : : : : : : : : : : : : : : : 683.3.3 A Lower Bound for Network Size : : : : : : : : : : : : : : : : 713.3.4 Nonmonotone Increment Sequences : : : : : : : : : : : : : : : 723.4 Non-Oblivious Shellsort Algorithms : : : : : : : : : : : : : : : : : : : 743.5 Discussion : 793.6 Open Questions : 80Chapter 4 Deterministic Routing and Sorting on Meshes 824.1 Introduction : 824.1.1 Previous Results : 854.1.2 Overview of this Chapter : 874.2 Terminology : 884.3 Basic Ideas : 894.3.1 The Sort-and-Unshu�e Operation : : : : : : : : : : : : : : : 894.3.2 Implementation on Meshes : : : : : : : : : : : : : : : : : : : 914.3.3 The Counter Scheme : 934.4 Permutation Routing : 944.4.1 A Simple Randomized Algorithm : : : : : : : : : : : : : : : : 954.4.2 The Deterministic Algorithm : : : : : : : : : : : : : : : : : : 964.4.3 Extensions : 1014.5 Optimal Deterministic Sorting : 1024.5.1 An Optimal Randomized Algorithm : : : : : : : : : : : : : : 103ix

4.5.2 Getting a Deterministic Algorithm : : : : : : : : : : : : : : : 1064.5.3 The Deterministic Algorithm : : : : : : : : : : : : : : : : : : 1114.5.4 Extensions : 1154.6 Some Other Applications : 1164.7 Conclusion : 117Chapter 5 Bounds for Multi-Dimensional Meshes 1205.1 Introduction : 1205.1.1 Previous Results : 1225.1.2 Overview of this Chapter : 1235.2 Preliminaries : 1245.2.1 Randomization and Unshu�ing : : : : : : : : : : : : : : : : : 1245.2.2 Some Results on Greedy Routing : : : : : : : : : : : : : : : : 1265.3 Upper Bounds for Sorting : 1315.3.1 Basic Ideas : 1315.3.2 Sorting on Multi-Dimensional Meshes : : : : : : : : : : : : : 1325.3.3 Sorting on Multi-Dimensional Tori : : : : : : : : : : : : : : : 1355.4 Lower Bounds for Sorting : 1375.4.1 Sorting without Copying : 1385.4.2 Sorting with Copying : 1395.4.3 Selection : 1415.5 Permutation Routing : 1415.6 Open Questions : 143Chapter 6 Routing and Sorting on Meshes with Buses 145x

6.1 Introduction : 1456.1.1 Related Results : 1486.1.2 Overview of this Chapter : 1516.2 Permutation Routing : 1526.2.1 O�-line Routing : 1526.2.2 Routing on Two-Dimensional Networks : : : : : : : : : : : : 1546.2.3 Routing on Multi-Dimensional Networks : : : : : : : : : : : : 1596.2.4 Fast Routing without Matching : : : : : : : : : : : : : : : : : 1636.3 Sorting : 1666.3.1 Sorting by Deterministic Sampling : : : : : : : : : : : : : : : 1676.3.2 Sorting on Meshes with Recon�gurable Buses : : : : : : : : : 1686.4 Summary and Open Problems : 171Chapter 7 Concluding Remarks 173Appendix A Proof of Lemma 4.5.5 175Bibliography 183Vita 197
xi

Chapter 1IntroductionAmong the many theoretical models of parallel computation that have been pro-posed, the Parallel Random Access Machine (PRAM) is undoubtedly the mosthighly studied. In the PRAM model, a set of sequential processors communicatesvia a shared memory. In a single step of the computation, each processor can per-form a bounded amount of internal computation, and access an arbitrary locationin the shared memory. In particular, this also means that any pair of processors cancommunicate in a single step. While this assumption of a shared memory allows fora succinct statement of many parallel algorithms, it also makes the PRAM modelsomewhat unrealistic.In more realistic models of parallel computation, the memory is distributedamong the processing devices, and each processing device can only communicatewith a small, �xed set of neighbors in a single step, while several communicationsteps are necessary in order to send a message between processing devices that arenot directly connected to each other by a communication link. We refer to such amodel of computation as having a �xed topology.As a result of this restriction to communication among neighboring processingdevices, the need arises for e�cient algorithms that implement a variety of commu-1

nication patterns between processing devices not directly connected to each other.Such algorithms are commonly referred to as routing algorithms, and they have beenstudied extensively in the last two decades. Another problem that is closely relatedto the routing problem, but also important in its own right, is the problem of par-allel sorting. Both routing and sorting are important subroutines in many parallelalgorithms, and various models of specialized hardware devices for these problemshave been proposed.1.1 Model of ComputationIn this thesis, we consider the problems of routing and sorting on parallel modelsof computation that are based on a �xed topology. We focus our attention on thefollowing two classes of machines, which we refer to as �xed-connection networks, andcircuits. A �xed-connection network consists of a collection of sequential processorsconnected by a sparse system of communication links. The processors operate in asynchronous fashion, and communicate by sending messages over the communicationlinks. In a single step, a processor can read a constant number of the messagesthat were sent to it in the previous step, perform some �xed amount of internalcomputation, and send a constant number of messages across its communicationlinks to neighboring processors.By a circuit, we understand a collection of specialized hardware devices arrangedin the form of a directed acyclic graph. Each hardware device can perform a �xedelementary operation on a set of input values supplied by its incoming edges, andoutput the results of this operation on its outgoing edges in the following step.The computation of a circuit is started by supplying a set of input values to aset of special devices with in-degree zero called input nodes. The results of thecomputation appear at the output nodes, which are special devices with out-degreezero. Examples of circuits are sorting networks built from comparators, or Boolean2

circuits composed of AND, OR, and NOT gates.The main di�erences between �xed-connection networks and circuits are as fol-lows. The �xed-connection network is usually considered as a model for a general-purpose parallel computer, where each processor in the network is equivalent inpower to a sequential Random Access Machine. The system of communication linksshould be chosen in such a way that the resulting topology of the network is simpleand allows for an elegant and e�cient solution of a variety of algorithmic problems.In contrast, circuits are designed as special-purpose hardware for one particularlyimportant application, such as sorting, routing, or the computation of a �xed arith-metic or Boolean expression. The devices used in the circuit are usually extremelysimple, and perform a �xed operation on the input values. The topology of thecircuit, on the other hand, may be complicated and irregular, as it does not haveto support any other applications. (Of course, due to layout constraints or otherconsiderations, it may still be advantageous to have a simple topology.)Another di�erence between the two models is in the possible initial distributionof the input values and the structure of the computation. Under the �xed-connectionnetwork model, every processor can initially contain one or even a large number ofinput values, while in a circuit every input node can have at most one input. Onthe other hand, the circuit model is especially suitable for pipelined computations.In particular, if the circuit is leveled, then a new set of input values can enter thenetwork in every step. Here, we say that a circuit is leveled, if and only if there existsa labeling of the nodes with integer values such that all input nodes are labeled with0, all output nodes are labeled with some value l, and every edge goes from a nodewith label i to a node with label i+ 1, for some i.We remark at this point that the distinction between �xed-connection networksand circuits is not always as clear as may be suggested by the above presentation.The reader should think about these two classes as the two extremes in a spectrumof possibilities, rather than as two unrelated and completely disjoint classes. In fact,3

there are numerous relationships between the two classes. For example, a number ofsorting and switching circuits, such as the bitonic sorter or the Bene�s permutationrouting network, can be e�ciently implemented on many important �xed-connectionnetworks. As another example, a switching circuit composed of 2-input 2-outputswitches usually requires some additional processor power and memory space in itsnodes, for example, to control the sequence of switch settings, or to bu�er packetsthat are delayed. Also, many systolic algorithms are suitable for implementation on�xed-connection networks as well as circuits of specialized hardware devices.In the following, the number of processors of a �xed-connection network isdenoted by N . We use the symbol N to denote the set of natural numbers, and [n]to denote the set f0; : : : ; n� 1g. Given x; y 2 Nk, we de�ne the Hamming distancebetween x and y as ham (x; y) def= Pki=1 jxi � yij, where xi and yi denote the ithcomponents of x and y, respectively. We also de�ne hamn(x; y) def= Pki=1 minfjxi �yij; n� jxi � yijg.In the next section, we describe the classes of mesh-connected and hypercubic�xed-connection networks, and de�ne the problems of routing and sorting on thesenetworks. Section 1.3 describes sorting circuits based on comparator and switchingelements. Finally, Section 1.4 contains an overview of the main contributions of thisthesis. Detailed descriptions of previous results can be found in the introductorysections of the subsequent chapters.1.2 Fixed-Connection NetworksA �xed-connection network can be described by an undirected graph G = (V;E),where each vertex vi corresponds to a processor pi, and each edge (vi; vj) correspondsto a communication link between processors pi and pj . Unless explicitely statedotherwise, we assume that all communication links are bidirectional, and that abounded amount of information can be transmitted in either direction in a single4

step. Note that this de�nition does not take the possible existence of buses in thenetwork into account, as these are usually connected to more than two processors.Such networks with buses are discussed in Chapter 6.A variety of di�erent �xed-connection networks have been proposed in the lit-erature; for further references and an overview of the most important classes ofnetworks, we refer the reader to Leighton's text [66]. In this thesis, we restrictour attention to the families of mesh-connected and hypercubic networks, whichare probably the most important and most extensively investigated classes of �xed-connection networks. They have a simple structure and admit elegant and e�cientimplementations of a variety of parallel algorithms.Aside from their practical importance, we believe that the mesh-connected andhypercubic networks also deserve further attention due to the interesting relationshipbetween the two classes. On the one hand, the mesh-connected networks and thehypercube are closely related in structure. On the other hand, the two-dimensionalmesh and the hypercubic networks are on opposite ends of the spectrum with respectto diameter and layout area, and hence many of the techniques developed for one ofthe two classes are not suitable for the other. This raises the question of whether wecan obtain algorithms that achieve good performance on both the two-dimensionalmesh and the hypercubic networks, as well as on the entire spectrum of multi-dimensional meshes in between.1.2.1 Mesh-Connected NetworksThe d-dimensional mesh-connected network of side length n (or d-dimensional meshfor short) is the network Mn;d = (V;E) with V = [n]d and E = f(x; y) 2 V 2 jham (x; y) = 1g. By adding wrap-around edges to this network, we obtain the d-dimensional torus of side length n, formally de�ned as Tn;d = (V;E) with V = [n]dand E = f(x; y) 2 V 2 j hamn(x; y) = 1g. Other closely related networks are meshes5

and tori with diagonal edges, trigonal and hexagonal meshes, and the various classesof meshes with buses discussed in Chapter 6.The one-dimensional mesh and torus networks are also often referred to as thelinear array and ring, respectively. Many problems related to routing and sortingon these networks are already fairly well understood, and hence we restrict ourattention to networks of dimension at least 2. We only remark at this point thata good understanding of these one-dimensional networks is very important in thestudy of routing and sorting algorithms for networks of dimension 2 and higher,as many of these algorithms use routing and sorting on linear arrays and rings assubroutines.Of particular practical importance are the cases of the two-dimensional meshand torus. A number of parallel machines have been designed and built based onthese topologies (e.g., see [3]), and numerous algorithmic problems have been studiedboth in theory and practice. In contrast, the meshes and tori of dimension d � 3,also called multi-dimensional meshes, have received somewhat less attention, andmany problems related to routing and sorting on these networks remain open.1.2.2 Hypercubic NetworksThe second family of �xed-connection networks that we consider in this thesis arethe hypercubic networks. For d > 0, the d-dimensional hypercube is de�ned asHd = (V;E) with V = f0; 1gd and E = f(x; y) 2 V 2 j ham (x; y) = 1g. Thus,a d-dimensional hypercube has N = 2d processors that can be labeled with the2d bit strings of length d in such a way that two processors are connected by acommunication link if and only if their labels di�er in exactly one bit position. Notethat the d-dimensional hypercube is nothing more than a d-dimensional mesh ofside length 2. Thus, we can regard the two-dimensional mesh and the hypercube asbeing on opposite ends of the spectrum of mesh-connected networks.6

One disadvantage of the hypercube is its non-constant degree. In a hypercubeof dimension d, each of the N = 2d processors is connected to d other processors; forlarger N this quickly becomes impractical. However, many important algorithmsfor the hypercube have a very regular structure that does not require the full con-nectivity a�orded by the network. To formalize this claim, we say that a processorcommunicates across dimension i if it sends a message to the neighbor whose labeldi�ers in the ith bit position from its own label. An algorithm for the d-dimensionalhypercube is called normal if we can assign a label l(i) 2 N to the ith step of itscomputation, for all i 2 N, such that jl(i+ 1)� l(i)j � 1 and every processor onlycommunicates across dimension l(i) mod d in the ith step of the computation. Twonatural subclasses of the normal algorithms are obtained by imposing the conditionsl(i+ 1) = l(i) + 1 and l(i+ 1) = l(i)� 1, respectively, on the labeling of the com-putation steps in the above de�nition; the resulting classes of algorithms are knownas the ascend and descend classes, respectivelyExamples of important normal algorithms are the Fast Fourier Transform, pre�xcomputations, and bitonic merging and sorting. (We remark that all of these algo-rithms can also be e�ciently implemented as ascend or descend algorithms.) Thesimple and regular structure of this class of algorithms has motivated the de�nitionof several bounded-degree variants of the hypercube, called hypercubic networks,which can e�ciently execute these algorithms. Examples of hypercubic networksare the buttery, shu�e-exchange, and cube-connected cycles. For a formal de�ni-tion of these networks, we refer the reader to [66]. In the present context, it su�cesto know that any hypercubic network can simulate an arbitrary normal algorithm ona hypercube of the same size with only constant slowdown. Like the two-dimensionalmesh and the torus, the hypercubic networks have served as the basis for a numberof actual parallel machines [3]. 7

1.2.3 Routing and Sorting on Fixed-Connection NetworksIn our study of �xed-connection networks, we focus on the problems of routing andsorting. We restrict our attention to store-and-forward routing techniques; see [67]for an overview of other message routing methods. We de�ne the packet routingproblem on a �xed-connection network as the problem of rearranging a set of pack-ets in the network such that every packet ends up at the processor speci�ed in itsdestination address. Here, the address of a processor is determined by some �xedbijection I : V 7! [jV j] called an indexing scheme. A 1{1 routing problem, or permu-tation routing problem, is a routing problem in which each processor initially holdsat most one packet, and each processor receives at most one packet. A routing prob-lem in which each processor is the source of at most k1 packets and the destinationof at most k2 packets is called a k1{k2 routing problem, or a k1{k2 relation.We distinguish between o�-line and on-line routing problems. In an o�-linerouting problem, the sources and destinations of all the packets are known in ad-vance, and an appropriate schedule for the movement of the packets in the networkcan be computed before the start of the actual routing process. The problem ofo�-line routing is then to prove the existence of a schedule that can be executedwithin a certain time bound, and to compute such a schedule e�ciently. In anon-line routing problem, the sources and destinations of the packets are not knownin advance, and thus each processor has to decide its next action based only onthe local information it has accumulated up to the current time. A special case ofon-line routing is the dynamic routing problem, in which packets are continuouslygenerated during a computation of the network.In the 1{1 sorting problem, we assume that every processor initially holds asingle packet, where each packet contains a key drawn from a totally ordered set.Our goal is to rearrange the packets in such a way that the packet with rank i (i.e.,with key of rank i) is moved to the processor with index i, for all i. Similarly, we8

can de�ne the k{k sorting problem, where each processor initially holds k packets,and the packet with rank i has to be moved to the processor with rank bi=kc.Note that a trivial lower bound for both routing and sorting is given by thediameter of the network. This implies a lower bound of r(n�1) for the r-dimensionalmesh, and of
(lgn) for the hypercubic networks. A lower bound for k{k routingand sorting is given by the bisection width of the network. For the r-dimensionalmesh, this bisection width is nr�1, and hence at least kn2 steps are needed in the casewhere all knr packets have to cross the bisection. In the remainder of this thesis, arouting or sorting algorithm for a hypercubic network is called optimal if its runningtime matches the lower bound within a constant factor. In contrast, an algorithmfor a mesh-connected network is called optimal if its running time matches the lowerbound within an additive lower order term.Finally, we remark that there is a close relationship between the problems ofrouting and sorting on parallel machines. For example, a routing problem in whicheach processor is the source and destination of exactly one packet can be solved bysorting the packets with respect to their destination addresses. More generally, manyrouting algorithms for �xed-connection networks involve the sorting of small subsetsof the packets, while many sorting algorithms use o�-line routing in intermediatesteps of the computation.1.3 Sorting NetworksA circuit can be described by a directed acyclic graph D = (V;E), where each vertexvi 2 V corresponds to a hardware device gi, and each directed edge (vi; vj) 2 Ecorresponds to a wire from an output of gi to an input of gj . In the case wherethere are several di�erent kinds of hardware devices in the circuit, we assume anappropriate labeling of the set of vertices. If a device produces several di�erentoutputs, or if it performs a non-commutative operation on several inputs, then an9

additional labeling of the edges is needed to specify the order of the input and outputvalues of the device.Among the number of di�erent classes of circuits that have been studied, theclass of Boolean circuits built from AND, OR, and NOT gates has probably receivedthe most attention. In this thesis, we are not concerned with Boolean circuits, butinstead we focus on the class of comparator and switching circuits. The circuitsin this class are built from comparators and switches, and have been extensivelystudied in the context of routing and sorting. In this thesis, we limit our attentionto the problem of constructing e�cient sorting circuits, or sorting networks. For anintroduction to routing circuits (also often referred to as interconnection networks)and a survey of results, we refer the reader to [51, 87, 108].A 2-input comparator is a device that compares two integer values supplied onits input wires, and then outputs the larger of the two values on the output wirelabeled as the maximum output, and the smaller value on the output wire labeledas the minimum output. A 2-input switch is a device with two inputs x0 and x1and two outputs y0 and y1. Depending on a special internal state called the switchposition, two packets arriving on the inputs x0 and x1 are either directly moved tothe corresponding outputs (that is, the packet on x0 is moved to y0, and the packeton x1 is moved to y1), or they are exchanged and then moved to the correspondingoutputs. The switch position can either be set by some external process, or it canbe locally computed in the switch. Thus, a comparator can be viewed as a switchin which the switch position is determined by a comparison of two values containedin the incoming packets. These de�nitions of comparators and switches can begeneralized to the case of k inputs and outputs, k � 2, in a natural way.Let C be a circuit of comparators and switches with n input nodes xi, 0 � i < n,and n output nodes yi, 0 � i < n. Then C is called a sorting network if, for anyassignment of input values to the input nodes, the values will eventually appearin sorted order at the output nodes. Similarly, we can de�ne merging networks10

that merge two or more sorted lists, or selection networks that select the inputvalue of a speci�ed rank. The size of a sorting network is given by the numberof comparators, while the depth of a sorting network is de�ned as the length ofthe longest path from an input node to an output node. It follows from simpleinformation-theoretic arguments that every sorting circuit has
(n lgn) size and
(lgn) depth. For a detailed introduction to the theory of sorting networks, and asurvey of early results, we refer the reader to Knuth's text [50]. Some references tomore recent work can be found in Section 2.1.Most of the literature on sorting networks assumes that the network consistsentirely of comparator elements, and that no copying of values is possible (i.e., nofan-out is allowed at the nodes). However, sometimes it may be convenient to relaxsome of these conditions. For example, Muller and Preparata [80] have designeda small-depth sorting circuit consisting of comparators and Boolean components.As another example, it is possible to design fault-tolerant circuits by allowing aconstant fan-out at the nodes [5, 68]. In this thesis, we allow both comparators andswitches to appear in a sorting network. As we will see in Chapter 2, this allowsfor an elegant de�nition of several natural classes of sorting networks that can bee�ciently emulated on mesh-connected and hypercubic �xed-connection networks.1.4 Summary of Thesis ResultsIn the following we give an overview of the main contributions of this thesis.In Chapter 2, we prove lower bounds on the depth of shu�e-unshu�e sortingnetworks, a class of sorting networks whose structure corresponds to the class ofnormal algorithms on the hypercube. We �rst show a lower bound of
(lg2 n= lg lg n)for the special case of shu�e-based sorting networks, which correspond to the ascendand descend algorithms on the hypercube. Through a generalization of the prooftechnique, we then establish a lower bound of
 � lgn lg lgnlg lg lgn � for the entire class of11

shu�e-unshu�e sorting networks. The only previously known lower bound for theseclasses of networks was the trivial
(lgn) bound. We also describe extensions of ourlower bounds to restricted classes of non-oblivious sorting algorithms on hypercubesand multi-dimensional meshes. The results of this chapter are joint work with myadvisor Greg Plaxton, and preliminary versions of the material have appeared in [90]and [91].Shellsort is a well known sequential sorting paradigm that has also been used inthe design of small depth sorting networks. While Shellsort algorithms have a verysimple structure, it is often very di�cult to analyze or bound their performance.In Chapter 3, we present general lower bounds on the running time of Shellsortnetworks and algorithms. We �rst give a fairly simple proof of a lower bound of
(n lg2 n=(lg lgn)2) on the size of any Shellsort sorting network. This bound isthen extended to the running time of non-oblivious Shellsort algorithms. The lowerbounds establish a trade-o� between the running time of a Shellsort algorithm andthe length of the underlying increment sequence. This chapter also represents jointwork with Greg Plaxton; a preliminary version was published in [89].Chapter 4 considers the problems of permutation routing and sorting on meshesand tori. Over the last few years, a number of authors have proposed randomizedalgorithms for these problems that achieve a smaller running time or queue size thanthe best deterministic solutions. The main contribution of Chapter 4 is a techniquethat allows us to convert many of these randomized algorithms into deterministicalgorithms with matching running times and queue sizes (within a lower order ad-ditive term). Using this technique, we derive a new deterministic routing algorithmfor the two-dimensional mesh with a running time of 2n + o(n) and a queue sizeof 5, and a sorting algorithm with a running time of 2n + o(n) and a queue size ofaround 25. We also point out some other applications of this technique. This chap-ter describes joint work with Michael Kaufmann and Jop Sibeyn, and preliminaryversions of this material have appeared in [47] and [111].12

For routing and sorting on multi-dimensional meshes and tori, the running timesof the fastest algorithms known are about a factor of 2 away from the diameter lowerbound. In Chapter 5, we reduce this gap by giving improved upper and lower boundsfor sorting in the multi-packet model of the mesh. For networks of su�ciently highconstant dimension, our bounds are nearly tight. We also describe algorithms forpermutation routing that nearly match the diameter bound. A preliminary versionof these results has appeared in [112].Chapter 6 studies the problems of permutation routing and sorting on severalmodels of meshes with �xed and recon�gurable buses. Part of this material hasbeen published in [113]. Finally, Chapter 7 contains some concluding remarks anddirections for further research.

13

Chapter 2Lower Bounds forShu�e-Unshu�e SortingNetworksThis chapter considers shu�e-unshu�e sorting networks, a class of comparatornetworks whose structure maps e�ciently to the hypercube and any of its boundeddegree variants. Leighton and Plaxton [71, 88] have recently discovered a familyof n-input shu�e-unshu�e sorting networks with depth 2O(plg lgn) lg n; these net-works are the only known sorting networks of depth o(lg2 n) that are not basedon expanders. In this chapter, we present a lower bound of
(lg2 n= lg lgn) forthe subclass of shu�e-based networks. In addition, we establish a lower bound of
 � lgn lg lgnlg lg lgn � for the entire class of shu�e-unshu�e sorting networks, thus rulingout the existence of optimal, O(lgn)-depth sorting networks in this class. We alsodescribe a restricted class of non-oblivious sorting algorithms on the hypercube thatis covered by our lower bounds. 14

2.1 IntroductionA variety of di�erent classes of sorting networks have been described in the liter-ature. Of particular interest here are the so-called AKS network [2] discovered byAjtai, Koml�os, and Szemer�edi, and the sorting networks proposed by Batcher [7].While the AKS network is the only known sorting network with O(lgn) depth, it alsosu�ers from two signi�cant shortcomings. First, the multiplicative constant hiddenby the O-notation is impractically large. Through a series of improvements [18, 86],this constant has been reduced to below 2000, but remains impractical. Second,the structure of the network is highly irregular, and does not seem to map e�-ciently to any of the common interconnection schemes. For example, Cypher [25]has shown that any emulation of the AKS network on the cube-connected cycles re-quires
(lg2 n) time. (A sorting algorithm emulates the AKS network if it performsthe same sequence of comparisons on any input.)In contrast, the networks proposed by Batcher have a relatively simple struc-ture and a small associated constant, and can be e�ciently implemented on manycommon interconnection schemes, including meshes and hypercubic networks. Thismakes them the networks of choice in many practical applications, even though theyhave depth �(lg2 n) and are thus asymptotically inferior to AKS. This situation hasmotivated a number of attempts to construct O(lgn)-depth sorting networks withsimpler, more regular topologies, and/or a considerably smaller constant. Threeclasses of networks that have received particular attention are Shellsort networks,periodic sorting networks, and shu�e-unshu�e sorting networks.Shellsort networks have a very simple structure that is based on the sequentialShellsort sorting algorithm. A class of Shellsort networks with depth �(lg2 n) wasgiven by Pratt [95]. For Shellsort networks based on monotonically decreasing in-crement sequences, Cypher [24] has established a lower bound of
(lg2 n= lg lgn).A more general lower bound that holds for all Shellsort networks, and even non-15

oblivious Shellsort algorithms, is established in Chapter 3 of this thesis; similarbounds have also been established by Poonen [92]. These results answer in the neg-ative the longstanding open question of whether a running time of O(n lgn) can beachieved by any Shellsort algorithm.A comparator network is called a periodic sorting network if every input per-mutation can be sorted by repeatedly passing it through the network. The primarymotivation for such periodic networks is the reduction in hardware cost achievedby applying the same network repeatedly to the input. A periodic sorting networkof depth O(lgn) and running time O(lg2 n) was given by Dowd, Perl, Rudolph,and Saks [28]. Very recently, Kuty lowski, Lory�s, Oesterdiekho�, and Wanka [60]have shown the existence of periodic networks of depth 5 and running time O(lg2 n)based on expanders. No non-trivial lower bounds for periodic sorting networks arecurrently known.In this chapter, we focus on the class of shu�e-unshu�e sorting networks, anotion that is formalized below. We establish a depth lower bound of
(lg2 n= lg lg n)for the subclass of shu�e-based sorting networks, and a lower bound of
 � lgn lg lgnlg lg lgn �for arbitrary shu�e-unshu�e sorting networks. In fact, our lower bound argumentcan be extended to certain restricted classes of non-oblivious sorting algorithms onhypercubic networks and multi-dimensional meshes. Before elaborating any furtheron these results, we will briey describe the comparator network model, and de�neseveral classes of sorting networks.2.1.1 Shu�e-Unshu�e Sorting NetworksIn Section 1.3, a comparator network was de�ned as an acyclic circuit of comparatorelements, each having two input wires and two output wires. We will use thismodel throughout most of this chapter, but will also briey consider the followingalternative model. 16

In this model, a comparator network on n registers is determined by a sequenceof pairs (�i; ~xi), 0 � i < `, where �i is a permutation of f0; : : : ; n� 1g and ~xi is avector of length bn=2c over f+;�; 0; 1g. The network receives as input a permutationof f0; : : : ; n � 1g that is initially stored in the registers, and then operates on theinput in ` consecutive steps. In step i, 0 � i < `, the register contents are permutedaccording to �i, and then the operation stored in the kth component of ~xi is appliedto registers 2k and 2k+1. In a \+" operation, the values stored in the two registersare compared, and the smaller of the values is stored in register 2k, the larger onein 2k + 1. In a \�" operation, the values are stored in the opposite order. A \0"means that no operation takes place on the corresponding pair of registers. A \1"operation simply exchanges the values of the two registers. A comparator networkis called a sorting network if it maps every possible input permutation to the sameoutput permutation.It is well known that these two models of comparator networks are equivalent.(That is, given any network in one model, there exists a network in the other modelwith the same size and depth that implements the same mapping from inputs tooutputs.) While the �rst model often appears more intuitive, we can use the secondone to de�ne some interesting special classes of networks by restricting the possiblechoices for the permutations �i.The shu�e permutation �sh on n = 2d inputs may be de�ned as follows. Ifjd�1 � � �j0 denotes the binary representation of some integer j, 0 � j < n, then�sh(j) has binary representation jd�2 � � �j0jd�1. A sorting network is called shu�e-unshu�e if �i = �sh or �i = ��1sh holds for all i. A natural subclass of the shu�e-unshu�e sorting networks can be obtained by requiring �i = �sh for all i; we saythat a network satisfying this condition is shu�e-based. Similarly, if �i = ��1sh forall i, then the network is unshu�e-based.The primary motivation for the de�nition of these two classes of networks isgiven by the fact that they can be e�ciently implemented on any of the hypercu-17

bic �xed-connection networks (i.e., the hypercube, buttery, cube-connected cycles,or shu�e-exchange). More precisely, the structure of the shu�e-unshu�e sortingnetworks corresponds exactly to the class of normal algorithms on the hypercube,while the structures of the shu�e-based and unshu�e-based networks correspondto the classes of descend and ascend algorithms, respectively (see Subsection 1.2.2for a de�nition of these classes). Most of the algorithms that have been proposedfor the hypercube are normal; important examples are Fast Fourier Transform, par-allel pre�x, bitonic merging and sorting. In fact, it can be argued that the primarymotivation for the study of the bounded-degree variants of the hypercube (i.e., thebuttery, cube-connected cycles, and shu�e-exchange) has been the capability ofthese networks to e�ciently implement the class of normal algorithms.The study of shu�e-based sorting networks was proposed by Knuth [50, Ex-ercise 5.3.4.47]. The best upper bound for this class is given by Batcher's bitonicsort [7], with a depth of O(lg2 n).The class of shu�e-unshu�e sorting networks was de�ned by Leighton andPlaxton [71, 88], who show the existence of a family of shu�e-unshu�e sortingnetworks with depth 2O(plg lgn) lg n. The construction of these networks is basedon a \probabilistic" sorting network described in [70], which sorts all but a super-polynomially small fraction of the possible input permutations. We point out thatthe depth of the above networks is o(lg1+� n), for all � > 0, and that they representthe only known sorting networks of depth o(lg2 n) that are not based on expanders.Naturally, this raises the question of whether a depth of O(lg n) can be achieved byany shu�e-unshu�e sorting network.2.1.2 Overview of this ChapterIn the following sections, we resolve this question by showing a lower bound of
 � lgn lg lgnlg lg lgn � on the depth of any shu�e-unshu�e sorting network. We also show18

a stronger lower bound of
(lg2 n= lg lgn) for the class of shu�e-based sorting net-works, thus establishing a separation between the power of strictly shu�e-based (orunshu�e-based) networks, and networks in which both shu�ing and unshu�ing isallowed. Our lower bounds also extends to certain restricted classes of non-oblivioussorting algorithms on hypercubic machines and multi-dimensional meshes. However,our lower bound argument does not allow the copying of elements by the algorithm.Thus, the Sharesort sorting algorithm of Cypher and Plaxton [26], which achievesa running time of O(lgn lg lg n) (with preprocessing) on any of the hypercubic ma-chines, is not subject to our lower bound. Nonetheless, we believe that our presentresults are already interesting in their own right, and that they may constitute animportant step towards more general lower bounds for sorting on hypercubic ma-chines.The remainder of this chapter is organized as follows. Section 2.2 describesthe basic ideas underlying our proof technique. Section 2.3 contains some usefulde�nitions and lemmas. Section 2.4 proves the lower bound for shu�e-based net-works. Section 2.5 then shows the lower bound for arbitrary shu�e-unshu�e sortingnetworks. Some extensions and limitations of our proof technique are discussed inSection 2.6. Finally, Section 2.7 lists some open questions for future research.2.2 Proof IdeasIn this section, we give a very informal description of the most important ideasin the proofs of the lower bounds. We �rst outline the lower bound argumentfor shu�e-based networks given in Section 2.4. We then explain why this relativelysimple argument does not extend to the more general class of shu�e-unshu�e sortingnetworks, and describe the additional ideas that are needed in order to get a lowerbound for this class. 19

2.2.1 A Naive Proof IdeaA simple observation concerning comparator networks is that a sorting network mustperform a comparison on every pair of adjacent values in every input, that is, everypair of values fm;m+1gmust appear on the input wires of some comparator element.(We assume the inputs to be permutations of f0; : : : ; n � 1g.) Thus, one mightattempt to prove a lower bound of ` for the depth of a class of comparator networksby showing, for all networks in the class, the existence of an input permutation �,and of a set of adjacent values fm; : : :;m+ ig in �, such that no two elements of theset are compared up to level ` of the network. In the following, we will call such aset an incomparable set. If we apply this proof idea to a shu�e-unshu�e network,starting out with the set of all values as our incomparable set, and, whenever twoelements of the set get compared, removing one of them from the set, then we mightlose up to half of the elements in any given level. So using this simple approach,we could only show the trivial lower bound of
(lgn) for the depth of a sortingnetwork.2.2.2 The Proof for Shu�e-Based Sorting NetworksThe key idea to overcome this problem is to modify the proof technique in a waythat allows us to exploit the structural properties of the particular class of networksthat we are studying. To explain this idea, we consider the case of the shu�e-basednetworks; the case of the unshu�e-based networks is symmetric. Note that a shu�e-based network can be seen as a concatenation of a number of buttery networks ofdepth lg n each. Thus, if we can show that the size of our incomparable set decreasesby at most a polylogarithmic factor in each buttery, then at least
(lgn= lg lg n)consecutive butteries are needed in order to bring the size of the incomparable setdown to 1; this directly implies the
(lg2 n= lg lgn) lower bound for shu�e-basedsorting networks. 20

The following recursive de�nition of a buttery is crucial for understanding ourproof technique: A buttery with 2d inputs and depth d consists of two parallel2d�1-input butteries of depth d�1, followed by a �nal level of up to 2d�1 compara-tors. Every comparator in the �nal level takes one input from the outputs of eachof the two 2d�1-input subnetworks. Finally, a 1-input buttery is just a wire. This\tournament-like" structure leads to the following important property of a buttery:An observer of a 2d-input buttery tournament who sees the outcomes of all com-parisons in the two 2d�1-input subnetworks, but not the outcomes of the �nal levelof comparisons, will not be able to say anything about the relative ordering of anytwo items taken from di�erent subnetworks. In other words, the observer will not beable to say anything about the relative strength of the two \subtournaments" beforethe �nal stage. This \disjointness property" of the subnetworks plays a crucial rolein the lower bound argument.Instead of maintaining only a single incomparable set, we now maintain a col-lection of incomparable sets in each recursive subnetwork. More precisely, afterentering a new buttery of depth lg n, we partition our current incomparable setinto n lg3 n disjoint incomparable sets, most of which are empty, with lg3 n sets en-tering on each wire (recall that a single wire is a 1-input buttery). Thus, every2-input buttery has two di�erent collections of lg3 n incomparable sets arriving onits two input wires. It is now possible to recombine these sets to get a new collec-tion of roughly lg3 n incomparable sets, containing all of the elements of the twocollections.More generally, due to the recursive structure of a buttery, in every level werecursively have two di�erent collections of �(lg3 n) incomparable sets coming fromtwo disjoint subnetworks. We show that there exists a partial matching betweenthese two collections of sets such that, if we combine the sets according to thematching and remove one element from every pair of elements from the same setthat gets compared, we obtain a new collection of incomparable sets while losing only21

a very small fraction of our elements. The number of sets in this new collection isonly slightly larger than the number of sets in either of the two previous collections.The aforementioned \disjointness property" of the two subnetworks is needed atthis point to make sure that the new sets in the collection each contain adjacentelements, under some appropriately chosen set of input permutations.If we repeat this process over all lg n levels of the buttery, then we end up witha single collection of �(lg3 n) incomparable sets. The total number of elements inthe sets is only a constant factor smaller than it was when we entered the buttery.If we pick the largest of the �(lg3 n) sets as our new incomparable set, then we onlylose a polylogarithmic factor in the size of the set.To formalize this proof idea, Section 2.3 introduces the notion of an input patternrepresenting a class of similar inputs. A class of inputs with the desired property(existence of a large incomparable set) is then constructed in Section 2.4 by stepwisere�nement of a given input pattern in every level of the network.2.2.3 The Proof for Shu�e-Unshu�e Sorting NetworksThe above argument does not work for arbitrary shu�e-unshu�e networks, as theydo not satisfy the \disjointness property" of the two subnetworks used in the ar-gument. To overcome this obstacle and prove a lower bound for arbitrary shu�e-unshu�e sorting networks, we introduce the class of shu�e-unshu�e networks with\bounded overlap".Assume we are given an arbitrary shu�e-unshu�e network � with ` levels(�i; ~xi), 0 � i < `, as described in the register model of a comparator network.In order to de�ne the \span" and \overlap" of �, it is convenient to introduce anumber of auxiliary variables. Let ai = 1 if �i = �sh and ai = �1 if �i = ��1sh ,0 � i < `. (We remark that the value of a0 has no impact on the de�nitions thatfollow.) Let bi = P1�j�i aj , 0 � i < `. The span of � may now be de�ned as22

jfbi : 0 � i < `gj. The overlap of � is the minimum integer r � 0 such that either:(i) bi � bj + r for all 0 � i < j < `, or (ii) bi � bj � r for all 0 � i < j < `. Notethat a network has overlap 0 i� �i = �j for all 1 � i < j < `. Furthermore, thespan of a network is always at least as large as its overlap, with equality occurringonly in the case ` = 0, where the span and overlap are both 0.The proof of the general lower bound in Section 2.5 is based on two mainadditional ideas. First, we show in Subsection 2.5.1 how the lower bound argumentfor shu�e-based networks can be modi�ed to handle shu�e-unshu�e networks withsmall overlap. The overall structure of this proof is very similar to that for shu�e-based networks. However, a number of subtle changes are required in order to extendthe argument to networks with non-zero overlap. The modi�ed proof is based onthe observation that, informally speaking, a shu�e-based network with small overlapstill satis�es some relaxed version of the \disjointness property". More precisely, weobtain a trade-o� between the overlap of the network and the lower bound that canbe shown.Second, we show in Subsection 2.5.2 that any shu�e-unshu�e network can bepartitioned into a number of consecutive shu�e-unshu�e networks such that theoverlap of each network in the partition is su�ciently smaller than its depth.2.3 De�nitions and Basic LemmasThis section contains a number of de�nitions and lemmas that are needed for theproof of the lower bound. In the �rst subsection, we introduce the concepts ofinput patterns and input pattern re�nement. Subsection 2.3.2 de�nes our notion ofa comparator network and its action on an input pattern, and introduces the classof reverse delta network. Finally, Subsection 2.3.3 contains a few basic lemmas.In the following, unless explicitly stated otherwise, the set of input wires of acomparator network is denoted W . An input to a comparator network is a total23

mapping from W to a set V of possible input values. We will restrict our attentionto inputs � that are permutations of [n], i.e., where jW j = n, V = [n], and � is one-to-one. The set of all one-to-one functions from a set A to a set B will be denotedby (A 7! B), and so the set of all inputs of a given comparator network may bewritten as (W 7! V). Furthermore, for a function f on a set A and a subset B ofA, let fjB denote the functional restriction of f to B. For two functions f0 and f1on disjoint sets A0 and A1, we write f0 � f1 for the union of f0 and f1:(f0 � f1)(x) def= 8><>: f0(x) for all x in A0, andf1(x) for all x in A1.2.3.1 Input Patterns and Re�nementIn the following de�nitions, we introduce the notions of input patterns and inputpattern re�nement, which are fundamental to our proof technique. Informally, aninput pattern describes a set of inputs with certain common properties. Inputpattern re�nement is the process of imposing additional constraints on such a set ofinputs.De�nition 2.3.1 Let P be a set and <P be a total ordering on P .(a) An input pattern is a total mapping from W to P .(b) Let p0, p1 be two input patterns. We say that p0 can be re�ned to p1 (writtenp0 �W p1) if (p0(w) <P p0(w0))) (p1(w) <P p1(w0)) holds for all w and w0in W .(c) Let p be an input pattern and � be an input. We say that p can be re�ned to� (written p �W �) if (p(w) <P p(w0))) (�(w) < �(w0)) holds for all w andw0 in W .The set P will be referred to as the pattern alphabet, and the elements of P arecalled pattern symbols. Throughout this chapter, pattern symbols are denoted by24

script letters.Example 2.3.1 Let W def= fw0; : : : ; wn�1g, P def= fS;M;Lg, and let the ordering<P on P be given by S <P M <P L. (Informally, the symbols S, M, and L maybe interpreted as \Small", \Medium", and \Large", respectively.) Then the inputpattern p assigning L to w0 and w1 and M to all other wires can be re�ned to allinputs that assign the two largest values to w0 and w1. We could also re�ne p toother input patterns, for example to a pattern p0 such that L is assigned to w0 andw1, S is assigned to w2, and M is assigned to all other wires. The new pattern p0can itself be re�ned to all inputs that assign the largest values to w0 and w1, and thesmallest value to w2.The relation �W de�ned above is a partial ordering on the set of input patterns.Note that the set V of input values can be regarded as a special case of a patternalphabet with the ordering of the natural numbers. Every pattern can be re�ned tosome input, and we could assume that the pattern alphabet P is always a subsetof V . The pattern-to-pattern re�nement in Part (b) of De�nition 2.3.1 would thenbecome a special case of the pattern-to-input re�nement in Part (c). However, inthe following we will not restrict our choice of P to subsets of V . We will see thatthis gives us more power of expression and, thus, simpli�es the presentation of theproof.We may think of an input pattern p as a description of the set of inputs to whichp can be re�ned. This set is denoted p[V] def= f� : � is an input such that p �W �g.When we re�ne a pattern p0 to p1, then we are imposing additional constraints onthis set of inputs. Formally, we have (p0 �W p1) , (p0[V] � p1[V]). Alternatively,the reader may also view an input pattern p as a shorthand for a logical predicatethat holds for exactly the inputs in p[V].De�nition 2.3.2 Let p and q be input patterns on W , and let U be a subset of W .25

(a) The input pattern pjU on U is the restriction of p to U .(b) We say that p can be U -re�ned to q (written p �U q) if p �W q and p(w) =q(w) holds for all w in W n U .De�nition 2.3.3 Let U0 and U1 be disjoint subsets of W , p0 be an input patternon U0, and p1 be an input pattern on U1. Then q = p0 � p1 is the input pattern onU0 [U1 such that qjU0 = p0 and qjU1 = p1.If for two patterns p0 and p1 both p0 �W p1 and p1 �W p0 hold, then wesay that p0 and p1 are equivalent. In this case, we have p0[V] = p1[V], and there�nement steps from p0 to p1 and vice versa can be achieved by simply renamingthe pattern symbols in a way that preserves the ordering <P . Hence, we call thisspecial case of a re�nement step an order-preserving renaming.Example 2.3.2 Let W def= fw0; : : : ; wn�1g and P def= fPi : i � 0g with Pi <P Pi+1for all i � 0. Then any input pattern p is equivalent to the input pattern pk, k � 0obtained from p by substituting every pattern symbol Pi in p by Pi+k, for all i.2.3.2 Comparator NetworksWe now further formalize our notion of a comparator network, and explain howits domain of operation can be extended from the set of inputs to the set of inputpatterns.In the following, a comparator network is interpreted as a mapping from a setof possible inputs to a set of possible outputs. More precisely, a comparator network� on input wires W and output wires W 0 de�nes a mapping (which we also denoteby �) from (W 7! V) to (W 0 7! V) such that every input � : W 7! V is mapped toan output �0 : W 0 7! V that is a \permutation" of �. By this we mean that thereexists a bijection � : W 7! W 0 such that �(w) = �0(�(w)) holds for all w in W .26

Let ��0, ��1 be two sets of n-input comparator networks. Then ��0
��1, the serialcomposition of ��0 and ��1, denotes the set of all networks � that can be obtained byconnecting the output wires of a network from ��0 to the input wires of a networkfrom ��1. In some cases, we may want to impose certain special conditions on thisconnection between the output wires of the �rst network and the input wires ofthe second network. If no conditions are stated, then the connections can be madeaccording to an arbitrary one-to-one mapping. As it happens, we often make use ofthe serial composition operator in the context of singleton sets ��0 and ��1. In sucha case, we may write, for example, �0
�1 (where �0, �1 are networks) rather thanf�0g
 f�1g.Given two comparator networks �0 and �1 on disjoint sets of input and outputwires, we obtain the parallel composition of �0 and �1 as the union of the twonetworks, written �0 � �1. The set of input (output) wires of �0 � �1 is the unionof the sets of input (output) wires of �0 and �1. Given these de�nitions, we cannow formally de�ne the class of reverse delta networks.De�nition 2.3.4 A 2s-input comparator network � is called an s-level reverse deltanetwork if� s = 0 and � contains no comparator elements, or� s > 0 and � is an element of (�0 ��1)
 �s, where(i) �0 and �1 are (s� 1)-level reverse delta networks, and(ii) �s consists of one level with at most 2s�1 comparator elements,such that every comparator in �s takes one input from an output wire of �0and the other input from an output wire of �1.Note that we do not require the ith level to have exactly 2i�1 comparatorelements. This corresponds to allowing the reverse delta network to contain \0" (do27

nothing) and \1" (exchange) circuit elements, as introduced in the \register model"of a comparator network.We call a network � an (l; s)-iterated reverse delta network if it consists of lconsecutive s-level reverse delta networks, or, formally, if � belongs to �0
� � �
�l�1where every �i is an s-level reverse delta network. It should be pointed out that thisde�nition allows an arbitrary �xed permutation between any two consecutive reversedelta networks, due to our de�nition of serial composition. Recall that we allowedboth comparators and switching elements in our network. For this model it has beenshown that any permutation on n = 2d inputs can be routed by a shu�e-exchangenetwork with 3d�4 levels [85, 76, 118]. Thus, eliminating the permutations betweenthe reverse delta networks would only increase the depth of the circuit by at mosta constant factor.A comparator network � was identi�ed with a mapping from the set of inputsto the set of outputs. The following de�nition extends � to a function from the setof input patterns to the set of output patterns. (An output pattern is a mappingfrom the set of output wires to the set of pattern symbols.)De�nition 2.3.5 Given a comparator network �, an input pattern p0, and an out-put pattern p1 such that p1(W) = p0(W), we de�ne�(p0) = p1 , �(p0[V]) = p1[V]:Note that this de�nition characterizes the behavior of a comparator networkon an input pattern in the way we would expect: If two pattern symbols P0 andP1 arrive on the input wires of a comparator gate, then the symbol that is largeraccording to the ordering <P will appear on the max-output of the gate, and thesmaller one will appear on the min-output. This implies that any set of inputs thatcan be expressed by an input pattern will produce a set of outputs that can beexpressed by an output pattern. 28

De�nition 2.3.6 We say that two input wires w0 and w1 collide in a network �under an input � if the input values �(w0) and �(w1) are compared in � when � isgiven as input.According to the above de�nition, two wires whose respective values meet in anoncomparator element, that is, a \0" (do nothing) or \1" (exchange) switch, arenot regarded as colliding. In the rest of the chapter, we do not have to distinguishbetween the di�erent circuit elements any more, since the entire lower bound ar-gument is based on the notion of collision introduced above and extended to inputpatterns in the following.Given a network � and an input �, we can always determine whether twoinput values are compared or not. (Recall that we only consider inputs that arepermutations.) This is not the case for input patterns, since an input pattern cancontain several occurences of the same pattern symbol. This motivates the followingde�nition of collision for input patterns:De�nition 2.3.7 Let � be a comparator network, let p be an input pattern for �,and let w0 and w1 be two input wires of �.(a) We say that w0 and w1 collide in � under p if they collide in � under everyinput in p[V].(b) We say that w0 and w1 can collide in � under p if there exists an input inp[V] such that w0 and w1 collide in �.(c) We say that w0 and w1 cannot collide in � under p if there is no input in p[V]such that w0 and w1 collide in �.(d) A set U �W is called non-colliding in � under p if any two wires in U cannotcollide in � under p. 29

Example 2.3.3 Let W def= fw0; w1; w2; w3g, P def= fS;M;Lg, and let the ordering<P on P be given by S <P M <P L. Let the network � consist of a comparatorbetween w1 and w2, followed by a comparator between w2 and w3, followed by acomparator between w0 and w3, where all comparators are directed towards the wirewith the larger index. Then the following holds under the input pattern p that mapsw0 to S, w1 and w2 to M, and w3 to L:(1) Wires w1 and w2 collide in � under p since the very �rst comparator is betweenthese two wires.(2) Wires w1 and w3 can collide in � under p, since we can re�ne p to an in-put � that assigns a larger value to w1 than to w2. In that case, the inputvalue assigned to w1 will be compared to that of w3 in the second comparator.Similarly, w2 can collide with w3 in � under p.(3) Wires w0 and w3 collide in � under p, since no exchange can occur in thesecond comparator of the network under any input � with p �W �. Also, w0and w1 (resp. w2) cannot collide in � under p.Note that, if two wires collide (cannot collide) in some network � under an inputpattern p, then they also collide (cannot collide) in � under any re�nement p0 of p.Similarly, if a set U is non-colliding in � under p, then it is also non-colliding in �under p0. The property can collide is not preserved under arbitrary re�nement.In the following we restrict our attention to a �xed pattern alphabet P whichis used throughout the lower bound argument:P def= fSi;Xi;j ;Mi;Li : i; j � 0g:The ordering <P on P is de�ned bySi <P Si+1;Si <P X0;0;30

Xi;j <P Xi;j+1;Xi;j <P Mi;Mi <P Xi+1;0;Mi <P Lj ; andLi+1 <P Li;for all nonnegative integers i, j.De�nition 2.3.8 For a pattern p and a pattern symbol P we de�ne the [P]-set ofp as the set fw 2 W : p(w) = Pg.De�nition 2.3.9 We say that a comparator network � has an incomparable set ofsize m if there exists an input pattern p and an integer i such that the [Mi]-set ofp is of size m and is non-colliding in � under p.2.3.3 Basic LemmasThe following lemmas will be used in our lower bound argument. Their proofs arefairly straightforward and we will only sketch some of the proof ideas.Lemma 2.3.1 Let p be an input pattern on W such that only the pattern symbolsS0, M0, and L0 appear in p. Let W0 and W1 be disjoint subsets of W with W =W0 [W1 and let A be the [M0]-set of p. Let q0 and q1 be input patterns on W0and W1, respectively, with S0 <P q0(w); q1(w) <P L0 for all w in A. Then frompjW0 �A\W0 q0 and pjW1 �A\W1 q1, we can infer p �A q0 � q1.This lemma ensures that, given an input pattern p for a network � = �0 � �1,we obtain a re�nement of p if we separately re�ne the input patterns pjW0 for �0and pjW0 for �1 according to the above rules, where W0 and W1 are the sets of inputwires of �0 and �1, respectively. 31

Lemma 2.3.2 Let � be a comparator network, p be an input pattern for �, and Abe the [Mi]-set of p. If A is non-colliding in � under p, then for every input wirew in A there exists a unique output wire w0 such that �(w) = �(�)(w0) holds for all� in p[V].Informally, the above lemma states that an input value on a wire w in a non-colliding [Mi]-set follows the same \path" through the network under all inputsin p[V]. The proof of the lemma is by a simple induction on the depth of thenetwork. This one-to-one correspondence between the input and output wires of anon-colliding [Mi]-set is also the underlying idea in the next lemma.Lemma 2.3.3 Let � be a comparator network in �0
�1, i be a nonnegative integer,and p be an input pattern for �0 such that its [Mi]-set A is non-colliding in �0under p. Let q def= �0(p) be an input pattern for �1 and B be the [Mi]-set of q.Then for every q0 with q �B q0 there exists a p0 with p �A p0 such that q0 = �0(p0).Furthermore, if the [Mi]-set of q0 is non-colliding in �1 under q0, then the [Mi]-setof p0 is non-colliding in � under p0.To verify the validity of the �nal lemma, note that the paths taken by the Mi-symbols through a network are not changed if we rename the rest of the symbols inthe way described in the lemma.Lemma 2.3.4 Let � be a comparator network, p be an input pattern for �, and Abe the [Mi]-set of p. Let �i(p) be the input pattern obtained from p by changing allpattern symbols P with P <P Mi to S0, all pattern symbols P with Mi <P P toL0, and all pattern symbols Mi to M0. If A is non-colliding in � under p, then Ais also non-colliding in � under �i(p). 32

2.4 Bounds for Shu�e-Based NetworksThis section contains the proof of the lower bound for sorting on shu�e-based net-works. Before giving the formal proof, we briey describe the proof strategy interms of the de�nitions of the previous section.2.4.1 Proof StrategyTo prove that a network � is not a sorting network, we will show that the networkhas an incomparable set of size at least 2. The input pattern p associated with theincomparable set can then be re�ned to an input such that the wires in the [Mi]-setcontain adjacent input values; this implies that � does not sort all inputs in p[V].The input pattern p will be constructed using stepwise re�nement, starting out witha pattern containing only the symbol M0.In general, we will assume that whenever we enter a new reverse delta networkthe current pattern p only contains the pattern symbols M0, S0, and L0, with thelatter two symbols marking the input wires carrying values that are smaller andlarger, respectively, than those of the wires in the [M0]-set.We then split up the pattern p into n patterns pi, 0 � i < n, of size 1, with onepi corresponding to each input wire (1-input reverse delta network). Every patternpi can be interpreted as having lg3 n non-colliding sets M0; : : : ;Mlg3 n�1, where Mjis the [Mj]-set of pi, for 0 � j < lg3 n. Except for M0, all of these sets will be emptyat this point.Thus, every 2-input reverse delta network will have two collections of [Mi]-sets,denoted by M0;0; : : : ;M0;t�1 and M1;0; : : : ;M1;t�1, where t = lg3 n, entering on the�rst and second input wire, respectively. In general, in every level of the recursivede�nition of a reverse delta network we will have two collections of �(lg3 n) non-colliding [Mj]-sets coming from each of the two disjoint subnetworks. We will beable to recombine these collections to obtain a single collection of non-colliding33

[Mj]-sets such that this single collection still contains nearly all of the input wiresthat were in either of the two collections, while the number of sets will only increasemarginally. Hence, on average, the new sets will contain roughly twice as manyelements as the old sets.This proof step is performed by showing the existence of an appropriate match-ing between the two collections, and re�ning the two input patterns according tothis matching. After the last level of the reverse delta network, we will have acollection of �(lg3 n) non-colliding sets containing only a constant factor fewer el-ements than the \original" [M0]-set before the current reverse delta network. Wecan choose the largest of these sets as our new non-colliding [M0]-set by performingan order-preserving renaming of the pattern p, mapping the wires in this set to M0and all of the wires in the other sets to some Si or Li. This procedure is iteratedover �(lgnlg lgn) consecutive reverse delta networks.2.4.2 The ProofThe proof is divided into several steps: First, Lemma 2.4.1 establishes the existenceof a pattern p with a \large" [M0]-set that is non-colliding in a single reverse deltanetwork under p. This is the main part of our proof, and also the one that containsthe novel proof ideas. This lemma is used by Lemmas 2.4.2 and 2.4.3 to show thata fairly large incomparable set can be maintained over several consecutive reversedelta networks in an iterated reverse delta network. Finally, a corollary establishesthe lower bound.We point out that Lemma 2.4.1 is actually a special case of Lemma 2.5.1, whichwill be established in the next section. Nonetheless, we have chosen to give acomplete proof of the lemma at this point. We believe that the special case treatedin Lemma 2.4.1 is somewhat simpler and more intuitive than Lemma 2.5.1, and thatit may help the reader in understanding the more general results of the next section.34

Lemma 2.4.1 Let � be an s-level reverse delta network, s � 0, and let p be aninput pattern for � such that only the pattern symbols S0, L0, and M0 occur in p.Let A be the [M0]-set of p, and let k be any positive integer. Then there exists aninput pattern q with p �A q and t(s) def= k3 + sk2 sets M0; : : : ;Mt(s)�1 of input wiressuch that the following properties hold, where B def= S0�i<t(s)Mi:(1) Every Mi is the [Mi]-set of q,(2) Every Mi is non-colliding in � under q,(3) B � A, and(4) jBj � jAj � s�jAjk2 .Proof: We will prove the lemma by induction over s, the number of levels in thereverse delta network.Base Case: s = 0We de�ne the sets M0; : : : ;Mt(0)�1 by setting M0 toA and all Mi, 1 � i < t(0),to the empty set. If we set q = p, then Properties (1) to (4) are satis�ed.In particular, Property (2) is satis�ed since a 0-level reverse delta networkdoes not contain any comparators, and hence every set is non-colliding in thenetwork under every input pattern.Induction Step: s > 0An s-level reverse delta network � consists of two (s � 1)-level reverse deltanetworks �0 and �1, and an sth level �s satisfying the conditions of De�ni-tion 2.3.4. The input wires W of � can be partitioned into the sets W0 andW1 of input wires of �0 and �1, respectively. Let p0 def= pjW0 and p1 def= pjW1 .Then A0 def= A \W0 is the [M0]-set of p0 and A1 def= A \W1 is the [M0]-set ofp1. 35

Applying the induction hypothesis to �0, p0, and A0 we can infer the existenceof an input pattern q0 with p0 �A0 q0, and of t(s � 1) disjoint sets M0;i,0 � i < t(s � 1), such that� every M0;i is the [Mi]-set of q0,� every M0;i is non-colliding in �0 under q0,� B0 � A0, and� jB0j � jA0j � (s�1)�jA0jk2 ,where B0 def= S0�i<t(s�1)M0;i.Correspondingly, for �1, p1, and A1 we get an input pattern q1, disjoint setsM1;i, 0 � i < t(s� 1), and a set B1, with the same properties.We will now construct the sets Mi, 0 � i < t(s), by combining the sets M0;iof �0 with the sets M1;j of �1, according to some partial matching to bedetermined in the following.Note that, due to the topology of a reverse delta network, no element of aset M0;i can collide in � with any element of a set M1;j before level s. Also,because of Lemma 2.3.2, any two elements w0 in M0;i and w1 in M1;j eithercollide in level s of � under q0 � q1, or they cannot collide in that level.For 0 � i; j < t(s� 1), we de�ne Ci;j as the set of all w0 in M0;i such that w0collides with some w1 in M1;j in level s of � under q0 � q1.For 0 � i < k2 and 0 � j < t(s), we de�neM(i; j) def= 8>>>>>>><>>>>>>>: M0;j 0 � j < i,(M0;j n Cj;j�i) [M1;j�i i � j < t(s � 1),M1;j�i t(s � 1) � j < t(s � 1) + i, and; t(s � 1) + i � j < t(s).By their construction, the sets M(i; j) are non-colliding in � under q0� q1. Ifwe let Li def= Si�j<t(s�1) Cj;j�i for 0 � i < k2, then36

[0�j<t(s)M(i; j) = (B0 n Li) [B1:The Ci;j are pairwise disjoint and contained in B0. Thus, the Li's are alsopairwise disjoint and contained in B0. Hence, by averaging there exists an i0,0 � i0 < k2, such that jLi0 j � jB0jk2 . We use this i0 to determine the partialmatching between the M0;i and the M1;j .More precisely, for all j with 0 � j < t(s), we match the set M0;j with the setM1;j�i0 to obtain a new set Mj def= M(i0; j) (here we assume M0;i and M1;i tobe the empty set for i < 0 and i � t(s� 1)). Thus, the new set Mj is obtainedby removing the wires in Cj;j�i0 from M0;j , and merging the resulting set withM1;j�i0 . We now show that this choice of Mj satis�es Properties (3) and (4).We have B def= [0�j<t(s)Mj= (B0 n Li0) [B1� B0 [B1� A0 [A1= A:This establishes Property (3). Verifying Property (4) is also straightforward:jBj = jB0j+ jB1j � jLi0 j� jA0j � (s� 1) � jA0jk2 + jA1j � (s� 1) � jA1jk2 � jLi0 j= (jA0j+ jA1j)�1� s� 1k2 �� jLi0 j� jAj � (s� 1) � jAjk2 � jB0jk2� jAj � (s) � jAjk2 : 37

To complete our proof, we have to construct a re�nement q of p such thatProperties (1) and (2) hold for q and the sets Mj . We do this by A0-re�ningq0 to some q00 and A1-re�ning q1 to some q01. Then p0 �A0 q00 and p1 �A1 q01,and by Lemma 2.3.1 the pattern q def= q00 � q01 is an A-re�nement of p.We re�ne q0 to q00 in the following steps:1. First change all pattern symbols Mi and Xi;j with i � t(s� 1) to Mi+k2and Xi+k2;j , respectively.2. Then change the pattern symbols of all wires in Ci;i�i0 with i0 � i <t(s�1) to Xi;j0 , where j0 is chosen such that before this step only symbolsXi;j with j < j0 appear in the pattern.The steps for the re�nement of q1 to q01 are:10. First change all pattern symbols Mi and Xi;j with i � t(s� 1) to Mi+k2and Xi+k2;j , respectively.20. Then change all pattern symbols Mi and Xi;j with 0 � i < t(s � 1) toMi+i0 and Xi+i0 ;j , respectively.All re�nement steps described above are order-preserving renamings and, thus,valid re�nement steps. Steps 1 and 10 remove all symbols Mi and Xi;j witht(s � 1) � i < t(s) from the patterns. Then Steps 2 and 20 can be executedto perform the matching between the sets M0;i and M1;j . Note that Steps 1and 10 are not really necessary since we can assume that the patterns q0 andq1 themselves have been constructed using the above re�nement steps, andthat, therefore, no symbols Mi and Xi;j with i � t(s� 1) exist in the pattern.However, in order to simplify our induction hypothesis, we have chosen not tomake this assumption.The pattern q = q00 � q01 has been constructed such that the sets Mi are the[Mi]-sets of q, so Property (1) is satis�ed.38

To see that Property (2) holds, note that Ci;j, the set of input wires of M0;ithat collide with an input wire of M1;j in �s under q0 � q1, also contains thesame colliding wires with respect to q = q00�q01. The sets M0;i are non-collidingin �0 under q00 and, thus, also non-colliding in � under q. Similarly, the setsM1;j are non-colliding in � under q. Hence,Mj = (M0;j nCj;j�i0) [M1;j�i0is non-colliding in � under q.2Lemma 2.4.2 Let � be an (l; s)-iterated reverse delta network with l > 0 and s =lg n. Let W be the set of input wires of �, and let n = jW j � 8 be the numberof input wires of �. Then there exists an input pattern p such that the followingproperties hold, where D is the [M0]-set of p:(1) Only the symbols S0, M0, and L0 occur in p,(2) D is non-colliding in � under p, and(3) jDj � n= lg4l n.Proof: We will prove the lemma by induction over l, the number of consecutivereverse delta network in �.Induction Start: l = 0Choose D = W and p such that p(w) = M0 for all w in W .Induction Step: l > 0A (l; s)-iterated reverse delta network � consists of an (l�1; s)-iterated reversedelta network �0 followed by a single s-level reverse delta network �, or,formally, � 2 �0
 �. 39

By the induction hypothesis there exists a pattern p0 such that the followingproperties hold, where D0 is the [M0]-set of p0:� Only the symbols S0, M0, and L0 occur in p0,� D0 is non-colliding in �0 under p0, and� jD0j � n= lg4(l�1)n.Then the input pattern q0 def= �0(p0) for � contains only the symbols S0, M0,and L0. The [M0]-set B0 of q0 has size jB0j = jD0j � n= lg4(l�1) n.We can now apply Lemma 2.4.1 with �, q0, and s = k = lgn. By the lemma,there exists an input pattern q00 with q0 �B0 q00 and t(lg n) = 2 lg3 n disjointsets M0; : : : ;Mt(lgn)�1 of input wires of � such that� every Mi is the [Mi]-set of q00,� every Mi is non-colliding in � under q00,� B00 � B0, and� jB00j � jB0j � jB0j�lgnlg2 n � nlg4(l�1) n(1� 1lgn),where B00 def= S0�i<t(lgn)Mi.By averaging, there exists a set Mi0 , 0 � i0 < 2 lg3 n, of size at leastn2 lg4l�1 n �1� 1lg n� � nlg4l n;where the last inequality follows from the fact that 12(1� 1= lgn) � 1= lgn forall n � 8.By Lemma 2.3.3, there exists an input pattern p00 for � with p0 �D0 p00 suchthat q00 = �0(p00). The set Mi0 is non-colliding in �, hence the [Mi0]-set D ofp00 is non-colliding in � 2 �0
 � under p00.Then, by Lemma 2.3.4, there exists an input pattern p such that� only the symbols S0, M0, and L0 occur in p, and40

� D is non-colliding in � under p.Furthermore, we have jDj = jMi0 j � n= lg4l n. This concludes the inductionstep.2 Due to De�nition 2.3.9, this directly implies the following lemma.Lemma 2.4.3 Let � be an (l; s)-iterated reverse delta network with l > 0 and s =lg n. Then � has an incomparable set of size at least n= lg4l n.Corollary 2.4.0.1 All n-input sorting networks with iterated delta topology havedepth
 � lg2 nlg lgn�.Proof: Let � be an (l; lgn)-iterated reverse delta network with l < lgn4 lg lgn . ByLemma 2.4.3, � has an incomparable set of size at leastnlg4l n > nlg� lg nlg lg n� n = 1:Thus, � cannot be a sorting network. Note that the constant 1=4 obtained in thisproof can be improved to 1=(2 + �) by a sharper analysis in Lemmas 2.4.1 and 2.4.2.22.5 Bounds for Shu�e-Unshu�e NetworksIn this section, we extend the ideas of the previous section to the case of arbi-trary shu�e-unshu�e sorting networks. We �rst show in Subsection 2.5.1 that alarge incomparable set can be e�ectively maintained over the levels of any shu�e-unshu�e network with su�ciently small overlap. The main result of this section isLemma 2.5.2, which bounds the decrease in the size of the incomparable set thatcan occur in any 2d-input shu�e-unshu�e network with span s � d and overlap41

r. This lemma is then used in Subsection 2.5.2 to establish our lower bound forarbitrary shu�e-unshu�e sorting networks.2.5.1 Networks with Small OverlapThe actual argument addressing the size of the incomparable set in a shu�e-unshu�enetwork with small overlap is contained in the proof of Lemma 2.5.1, and is describedwith respect to a more general class of networks, called (d; s; r)-hypercubic networks.We now give an inductive de�nition of the class of (d; s; r)-hypercubic networks,which properly contains the class of 2d-input shu�e-unshu�e networks with spans � d and overlap r. Note that the 2d output wires of a (d; s; r)-hypercubic networkare partitioned into 2d�r output groups of size 2r.De�nition 2.5.1 For r � s � d, a 2d-input comparator network � is called a(d; s; r)-hypercubic network if:(a) s� r = 0, � is a network containing no comparators at all (i.e., the 2d inputwires are directly connected to the 2d output wires), and the output wires of �have been partitioned into 2d�r output groups of size 2r, or(b) s� r > 0 and � is an element of (�0 � �1)
 �, where� �0 and �1 are (d� 1; s� 1; r)-hypercubic networks, and� � is the parallel composition of 2d�r�1 disjoint 2r+1-input comparatornetworks �i, 0 � i < 2d�r�1, of arbitrary size and depth, such that: (i)the 2r+1 input wires of each network �i are connected to one output groupof size 2r of �0 and one output group of size 2r of �1, and (ii) the 2r+1output wires of each network �i are partitioned to form two of the 2d�routput groups of network �.The following Lemma 2.5.1 is actually a generalization of Lemma 2.4.1, and the42

proof also has a very similar structure. However, a number of often subtle changesare needed to establish the result.Lemma 2.5.1 Let � be a (d; s; r)-hypercubic network with r � s � d, and p be aninput pattern for � such that only the pattern symbols S0, L0, and M0 occur in p.Let A be the [M0]-set of p, and k be any positive integer. Then there exists an inputpattern q with p �A q and t(s) def= 2r � k3 + (s� r) � 2r � k2 sets Mi, 0 � i < t(s), ofinput wires such that the following properties hold, where B def= S0�i<t(s)Mi:(1) Every Mi is the [Mi]-set of q.(2) Every Mi is non-colliding in � under q.(3) B � A.(4) jBj � jAj � (s�r)�jAjk2 .(5) No two elements of any [Mi]-set of �(q) are located in the same output groupof �.Proof: The proof is by induction on s � r.Base Case: s � r = 0In this case the network � does not contain any comparator elements. Wede�ne the sets Mi, 0 � i < t(0), by partitioning A into 2r � k3 sets suchthat no two elements in any set are located in the same output group. (Eachoutput group has size 2r � 2r � k3, so this is clearly possible.) If we de�ne qas the pattern obtained from p by relabeling each wire in set Mi with Mi, for0 � i < t(0), then Properties (1) to (5) are satis�ed.Induction Step: s� r > 0A (d; s; r)-hypercubic network consists of two (d� 1; s� 1; r)-hypercubic net-works �0 and �1, and a network � satisfying the conditions of De�nition 2.5.1.43

The input wires W of � can be partitioned into the sets W0 and W1 of in-put wires of �0 and �1, respectively. Let p0 def= pjW0 and p1 def= pjW1 . ThenA0 def= A \W0 is the [M0]-set of p0 and A1 def= A \W1 is the [M0]-set of p1.Applying the induction hypothesis to �0, p0, and A0, we can infer the existenceof an input pattern q0 with p0 �A0 q0, and of t(s � 1) disjoint sets M0;i,0 � i < t(s � 1), such that� every M0;i is the [Mi]-set of q0,� every M0;i is non-colliding in �0 under q0,� B0 � A0,� jB0j � jA0j � (s�r�1)�jA0jk2 , and� no two elements of any [Mi]-set of �0(q0) are located in the same outputgroup of �0,where B0 def= S0�i<t(s�1)M0;i.Correspondingly, for �1, p1, and A1, we get an input pattern q1, disjoint setsM1;i, 0 � i < t(s� 1), and a set B1, with the same properties.We will now construct the sets Mi, 0 � i < t(s), by combining the sets M0;iof �0 with the sets M1;j of �1, according to some partial matching to bedetermined in the following.Because no [Mi]-set of �0(q0) (resp., �1(q1)) contains any two elements thatare located in the same output group of �0 (resp., �1), no element of any setM0;i (resp., M1;i) can collide with any other element of the same set in �.Also, due to the topology of a (d; s; r)-hypercubic network, no element of a setM0;i can collide in �0 ��1 with any element of a set M1;j . By Lemma 2.3.2,we can determine for each w in a set M0;i (resp., M1;j) the output wire w0 of�0 (resp., �1) that receives the value �(w) under all � in q0[V] (resp., q1[V]).Thus, for any such w we can determine the subnetwork �� (where � is some44

function f of w) of � that will receive �(w) as an input value under all � inq0[V] (resp., q1[V]).For 0 � i; j < t(s � 1), we de�ne Ci;j as the set of all wires w0 in M0;i suchthat f(w0) = f(w1) holds for some w1 in M1;j . Note that the Ci;j's are notpairwise disjoint. However, since each subnetwork �� receives only 2r inputvalues from �1, every element w0 in M0;i is contained in at most 2r sets Ci;j.Also, each Ci;j contains all wires in M0;i that can collide in � with some wirein M1;j.For 0 � i < 2r � k2 and 0 � j < t(s), we de�neM(i; j) def= 8>>>>>>><>>>>>>>: M0;j 0 � j < i,(M0;j n Cj;j�i) [M1;j�i i � j < t(s � 1),M1;j�i t(s � 1) � j < t(s � 1) + i, and; t(s � 1) + i � j < t(s).By their construction, the sets M(i; j) are non-colliding in � under q0� q1. Ifwe let Li def= Si�j<t(s�1) Cj;j�i for 0 � i < 2r � k2, then[0�j<t(s)M(i; j) = (B0 n Li) [B1:Since every element of B0 can occur at most 2r times in the sets Ci;j , everyelement of B0 can occur at most 2r times in the sets Li. Hence, by averagingthere exists an i0, 0 � i0 < k2 � 2r, such that jLi0 j � jB0jk2 . We use this i0 todetermine the partial matching between the M0;i's and the M1;j 's.More precisely, for all j such that 0 � j < t(s), we match the set M0;j withthe set M1;j�i0 to obtain a new set Mj def= M(i0; j). (Here we assume M0;iand M1;i to be the empty set for i < 0 and i � t(s � 1).) Thus, the newset Mj is obtained by removing the wires in Cj;j�i0 from M0;j , and mergingthe resulting set with M1;j�i0 . We now show that this choice of Mj satis�es45

Properties (3) and (4). We haveB def= [0�j<t(s)Mj= (B0 n Li0) [B1� B0 [B1� A0 [A1= A:This establishes Property (3). Verifying Property (4) is also straightforward:jBj = jB0j+ jB1j � jLi0 j� jA0j � (s� r � 1) � jA0jk2 + jA1j � (s� r� 1) � jA1jk2 � jLi0 j= (jA0j+ jA1j)�1� (s� r � 1)k2 �� jLi0 j� jAj � (s� r� 1) � jAjk2 � jB0jk2� jAj � (s� r) � jAjk2To complete our proof, we construct a re�nement q of p such that Proper-ties (1), (2), and (5) hold for q and the sets Mj . We do this by A0-re�ning q0to some q00 and A1-re�ning q1 to some q01. Then p0 �A0 q00 and p1 �A1 q01, andby Lemma 2.3.1 the pattern q def= q00 � q01 is an A-re�nement of p.We re�ne q0 to q00 in the following steps:1. First change all pattern symbols Mi and Xi;j with i � t(s�1) to Mi+2r �k2and Xi+2r �k2;j , respectively.2. Then change the pattern symbols of all wires in Ci;i�i0 with i0 � i <t(s�1) to Xi;j0 , where j0 is chosen such that before this step only symbolsXi;j with j < j0 appear in the pattern.The steps for the re�nement of q1 to q01 are:46

10. First change all pattern symbols Mi and Xi;j with i � t(s�1) to Mi+2r �k2and Xi+2r �k2;j , respectively.20. Then change all pattern symbols Mi and Xi;j with 0 � i < t(s � 1) toMi+i0 and Xi+i0 ;j , respectively.All re�nement steps described above are order-preserving renamings and, thus,valid re�nement steps. Steps 1 and 10 remove all symbols Mi and Xi;j witht(s� 1) � i < t(s) from the patterns. Then Steps 2 and 20 can be executed toperform the matching between the sets M0;i and M1;j . Note that Steps 1 and10 are not really necessary since we can assume that the patterns q0 and q1themselves have been constructed using the above re�nement steps, and hencethat no symbols Mi and Xi;j with i � t(s� 1) exist in the pattern. However,in order to simplify our induction hypothesis, we have chosen not to make thisassumption.The pattern q = q00 � q01 has been constructed such that the sets Mi are the[Mi]-sets of q, so Property (1) is satis�ed.To see that Property (2) holds, note that the set Ci;j , which contains all inputwires of M0;i that can collide with an input wire of M1;j in � under q0 � q1,also contains the same colliding wires with respect to q = q00 � q01. The setsM0;i are non-colliding in �0 under q00 and, thus, also non-colliding in � underq. Similarly, the sets M1;j are non-colliding in � under q. Hence,Mj = (M0;j nCj;j�i0) [M1;j�i0is non-colliding in � under q.Finally, due to the de�nition of the sets Ci;j that were removed from thematched sets, no two elements of any [Mi]-set of �(q) are in the same outputgroup of �. This establishes Property (5).2 47

Lemma 2.5.2 Let � be a 2d-input shu�e-unshu�e network with span s � d andoverlap r, and let � be an arbitrary comparator network with an incomparable set ofsize �. Then any network in �
� has an incomparable set of size �0 � �=(s4 � 2r).Proof: According to De�nition 2.3.9, there exists an input pattern p0 suchthat some [Mi0]-set C of p0 is of size � and is non-colliding in � under p0. ByLemma 2.3.4, we can assume that i0 = 0, and that p0 contains only the symbols S0,M0, and L0.Every 2d-input shu�e-unshu�e network with span s � d and overlap r is equiv-alent to a (d; s; r)-hypercubic network. Hence, we can apply Lemma 2.5.1 to �. Letk = s, p = �(p0), and A be the [M0]-set of p. Then by Lemma 2.5.1, there existsan input pattern q with p �A q and t(s) � 2s3 � 2r disjoint sets Mi, 0 � i < t(s) ofinput wires of � such that� every Mi is the [Mi]-set of q,� every Mi is non-colliding in � under q,� B � A, and� jBj � � � (1� 1=s),where B def= S0�i<t(s)Mi. By averaging, there exists a set Mj0 , 0 � j0 < t(s), of sizeat least jBj2s3 � 2r � �s4 � 2r ;where the inequality follows from the fact that 12(1�1=s) � 1=s for s � 3. (For s < 3,the claim follows from �0 � �=2s.) By Lemma 2.3.3, there exists an input patternq0 with p0 �C q0 such that q = �(q0) and the [Mj0]-set of q0 is non-colliding in�
� under q0. Since q = �(q0), the [Mj0]-set of q0 also contains at least �=(s4 �2r)elements.2 48

The following lemma can be established by partitioning a shu�e-unshu�e net-work of overlap r and depth ` into d`=de consecutive shu�e-unshu�e networks ofoverlap r and depth at most d, and applying Lemma 2.5.2 to each of the networks.Lemma 2.5.3 Let � be an n-input shu�e-unshu�e network with depth ` and over-lap r � d = lg n. Then � has an incomparable set of size at leastn(d4 � 2r)d`=de :Lemma 2.5.3 immediately implies the following lower bound for shu�e-unshu�enetworks with bounded overlap. Note that for the special case r = 0, we obtain theresult in Section 2.4. However, if the overlap is �(d), we only get the trivial
(lgn)lower bound.Theorem 2.5.1 Any n-input shu�e-unshu�e sorting network with overlap r hasdepth
 � lg2 nr+lg lgn�.2.5.2 Networks with Arbitrary OverlapIn this subsection we establish the main result of this chapter, a lower bound on thedepth of arbitrary shu�e-unshu�e sorting networks. In order to prove the result, weneed one more lemma. Informally, Lemma 2.5.4 below states that we can maintain afairly large incomparable set over the levels of any shu�e-unshu�e network of spanat most d. The proof of the lemma is based on the idea that any shu�e-unshu�enetwork with depth ` either has a small overlap relative to `, or can be (recursively)partitioned into several consecutive networks satisfying this property. In the �rstcase, we can use Lemma 2.5.2 to bound the size of the incomparable set. The secondcase is handled by induction.Lemma 2.5.4 Let � be a shu�e-unshu�e network with depth ` and span s � d,let �(`; s) def= (` � s=2)=(lg s= lg lg s), and let � be an arbitrary comparator network49

with an incomparable set of size �. Then any network in �
� has an incomparableset of size �0, where ��0 � s4 � 29��(`;s):Proof: The proof is by induction on the depth ` of the network.Base Case: ` � 216Using s � ` � 216, we obtain lg s= lg lg s � 4 and9 � �(`; s) � 9 � `=24 � ` � r:Then the claim follows by a simple application of Lemma 2.5.2.Induction Step: ` > 216For the induction step, we assume a shu�e-unshu�e network � with depth `,overlap r, and span s � d. Now suppose that r � 9 � �(`; s). In this case, theclaim follows by a simple application of Lemma 2.5.2.Hence, in the following we assume thatr > 9 � �(`; s) � 9s2 lg s= lg lg s: (2.1)Note that s � r > 9 � �(`; s) and ` > 216 imply s > 216 and lg lg s= lg s < 1=4.Due to the de�nition of overlap, there exist shu�e-unshu�e networks �i,0 � i < 2, with depth `i and span si, such that � belongs to �0
 �1,`0 + `1 = `, and s0 + s1 = s+ r. By applying the induction hypothesis �rst to� and �0 , and then to �
 �0 and �1, we obtain��0 � s40 � 29��(`0;s0) � s41 � 29��(`1;s1)= s40 � s41 � 29x;where x def= �(`0; s0) + �(`1; s1). Using minfs0; s1g � r, maxfs0; s1g � s, andEquation (2.1) we obtainmin� lg s0lg lg s0 ; lg s1lg lg s1� � lg rlg lg s50

� 1lg lg s � lg� 9s2 lg s= lg lg s�� 1lg lg s � lg� slg s�= lg slg lg s � �1� lg lg slg s � :Using this bound, and the fact that 1=(1��) � 1+2� holds for � = lg lg s= lg s <1=2, we obtainx � � `0 � s0=2lg s= lg lg s + `1 � s1=2lg s= lg lg s�� 11� lg lg s= lg s�� � `0 � s0=2lg s= lg lg s + `1 � s1=2lg s= lg lg s� (1 + 2 lg lg s= lg s)= `0 � s0=2lg s= lg lg s + `1 � s1=2lg s= lg lg s + (`0 � s0=2 + `1 � s1=2) � 2� lg lg slg s �2= `� s=2� r=2lg s= lg lg s + (`� s=2� r=2) � 2�lg lg slg s �2� �(`; s)� r2 lg s= lg lg s + (`� s=2) � 2� lg lg slg s �2 :Note that Equation (2.1) implies`� s=2 < r lg s9 lg lg s ;and hence x � �(`; s)� r2 lg s= lg lg s + 2r9 lg s= lg lg s= �(`; s)� 5r18 lg s= lg lg s� �(`; s)� 5s4(lg s= lg lg s)2� �(`; s)� 4 lg s9 ;where the last two inequalities follow from Equation (2.1) and s > 216, respec-tively. Using maxfs0; s1g � s we obtain��0 � s40 � s41 � 29x51

� s40 � s41 � 29��(`;s)�4lg s� s4 � 24 lg s � 29��(`;s)�4 lg s= s4 � 29��(`;s):2Theorem 2.5.2 Any shu�e-unshu�e sorting network has depth
 � lgn lg lgnlg lg lgn �.Proof: Let � be an n-input shu�e-unshu�e network of depth `, n = 2d. Wepartition � into k � d`=de consecutive shu�e-unshu�e networks �i, 0 � i < k,with depth `i and span d. This can be done by de�ning �0 as the shortest pre�x ofthe levels of the network � with span d, �1 as the shortest pre�x of � � �0 withspan d, and so on. (At the end, we may have to add some additional levels to thenetwork in order to get a span of exactly d for �k�1. Adding such additional levelsto the network can certainly not increase the size of the largest incomparable set.)Let � be a network containing no comparator elements at all. Clearly, � belongsto �
 �, and � has an incomparable set of size n. We now apply Lemma 2.5.4once for each network �i, 0 � i < k. It follows that there exists an incomparableset of size n0 in �, such thatnn0 = Y0�i<k d4 � 2� 9(`i�d=2)lg d= lg lg d� � 2� 9`lg d= lg lg d�;for d su�ciently large. Hence, if ` < 9 �d lg d= lg lg d, then n0 > 1, and it follows that� cannot be a sorting network.22.6 Extensions and Limitations of the Proof TechniqueThis section discusses some extensions and limitations of our proof technique. In the�rst subsection, we describe how our bounds can be generalized to certain classes of52

non-oblivious sorting algorithms on the hypercube. Subsection 2.6.2 contains someextensions to multi-dimensional meshes. Finally, we explain why our results cannotbe extended to the average or randomized case.2.6.1 Non-Oblivious Sorting AlgorithmsThe lower bounds for shu�e-based and shu�e-unshu�e sorting networks can be ex-tended to certain restricted classes of non-oblivious sorting algorithms on hypercubicmachines. Recall that in the lower bound arguments, it was never assumed that thelabeling of the circuit elements with f+;�; 0; 1g was �xed beforehand. Instead, inevery level, we can allow the network to choose this labeling in an arbitrary, deter-ministic fashion. (That is, the label of each circuit element may be computed as anarbitrary function of the outcomes of all comparisons previously made throughoutthe entire network.)Our lower bounds also extend to the case where a processor can temporarilyhold more than one element during the computation, provided that elements cannotbe copied. (Here, we assume that a processor can send an element to a neighbor-ing processor, without receiving another element in return.) To prove this claim, weobserve that no processor can accumulate more than lg2 n elements during any com-putation of length lg2 n. We can then model each processor by a \sub-hypercube"of lg2 n \sub-processors", each containing at most one element. We assume that ina single step, an arbitrary amount of computation can be performed within each\sub-hypercube"; this gives �(lg lg n) additional dimensions in the network, whichcan be \handled" by adding �(lg lg n) to the overlap of the networks occurring inthe lower bound argument.These observations lead us to the following class of non-oblivious sorting algo-rithms on the hypercube that is covered by our lower bounds:(1) The algorithm has to be deterministic, normal (resp., ascend/descend), and53

comparison-based. (That is, the only way of accessing the value of an elementis by means of a comparison with another element.)(2) No copies of elements can be made. (It is unclear whether our techniques canbe extended to a model where copying of elements is allowed.)(3) The sequence of shu�es and unshu�es in the normal algorithm is oblivious.(In fact, it is clear that this sequence only needs to be �xed �(lg n) steps inadvance, and we believe that it should be possible to remove this restriction.)(4) Initially, each processor holds a single element.(5) In a single step, each processor can perform an arbitrary amount of internalcomputation, and can send one element, plus an arbitrary amount of auxiliaryinformation, to one of its neighbors.While this class covers a fairly wide range of sorting algorithms, it does unfortunatelynot include the Sharesort algorithm of Cypher and Plaxton [26], which makes copiesof some of the elements.2.6.2 Multi-Dimensional MeshesWe can also extend our lower bounds to some restricted classes of sorting algorithmson multi-dimensional meshes. In [121], Wanka describes the following natural ex-tension of the class of ascend algorithms to multi-dimensional meshes. In an ascendalgorithm on a d-dimensional mesh of side length m, the dimensions are visited instrictly ascending order. Whenever we visit a dimension, we perform m steps ofcommunication across this dimension. Thus, in a single visit to a dimension, analgorithm could completely sort the elements in each linear array along that dimen-sion. Note that this class of algorithms corresponds to the class of sorting networksbuilt from m-input comparator gates, where consecutive levels of the network are54

connected by an m-way unshu�e permutation (as de�ned in the register model ofa comparator network).An example of an ascend algorithm on the two-dimensional mesh is the Shearsortalgorithm [100, 101], which alternatingly sorts along the rows and along the columns.Recently, Corbett and Scherson [23] and Wanka [121] have described two di�erentgeneralizations of this algorithm to meshes of arbitrary dimension. Both of thealgorithms can be implemented as ascend algorithms, and they achieve a runningtime of O(d2m lgm) on the d-dimensional mesh of sidelength m.Using the techniques in this chapter, we can show an
(d2m lgm= lg(dm)) lowerbound for the class of ascend sorting algorithms on multi-dimensional meshes (un-der the conditions stated in the previous subsection, that is, the algorithms have tobe comparison-based and no copying of elements is allowed). For meshes with non-constant dimension, this implies that no ascend algorithm can achieve an asymptot-ically optimal running time. For constant d and su�ciently large m, we can showthat any ascend algorithm requires more than (d� 1) � dm steps.Similarly, we can de�ne natural extensions of the classes of normal algorithms,and normal algorithms with overlap, to multi-dimensional meshes. For normal al-gorithms, we obtain a lower bound of
(dm lg d= lg lg d).2.6.3 Average Case and Randomized AlgorithmsOur lower bounds do not apply to probabilistic sorting networks, that is, networksthat sort the vast majority of input permutations, but are not sorting networks inthe strict sense. In fact, Leighton and Plaxton [70] have designed a shu�e-unshu�ecomparator network of depth O(lgn) that sorts all but a super-polynomially smallfraction of the inputs. Their techniques can also be used to construct a shu�e-basednetwork of depth O(lgn lg lgn) that sorts all but a polynomially small fraction ofthe inputs. 55

Similarly, we cannot hope to extend our lower bounds to \randomized" sortingnetworks, which may contain additional \randomizing" circuit elements that inter-change the input values with probability 1=2, and leave them unchanged otherwise.In [70], Leighton and Plaxton show how to construct a randomized shu�e-unshu�enetwork of depth O(lg n) that sorts every input permutation with high probability.This new element can also be used to construct a shu�e-based randomized sorterof depth O(lgn lg lg n).2.7 Open QuestionsIn this chapter, we have established lower bounds on the depth of shu�e-based andshu�e-unshu�e sorting networks. Our techniques also apply to certain restrictedclasses of non-oblivious sorting algorithms on hypercubes and multi-dimensionalmeshes. A gap remains between our lower bounds and the best upper boundsknown, and it would certainly be an interesting improvement to narrow or close thisgap.An important open question is whether we can extend our lower bounds to moregeneral classes of non-oblivious sorting algorithms on the hypercube. Of particu-lar interest in this respect would be the class of normal comparison-based sortingalgorithms, or any other natural class of algorithms that includes the Sharesortalgorithm of Cypher and Plaxton [26].Another possible direction for future research would be to consider other re-stricted classes of sorting networks. As a natural extension of the shu�e-unshu�enetworks, we could consider the class of sorting networks whose structure corre-sponds to the class of \leveled" algorithms on the hypercube, where in each stepcommunication only occurs across a single dimension, but the sequence of dimen-sions can be arbitrary. (Note that this class of algorithms cannot be emulatedwith constant slowdown on any of the bounded-degree variants of the hypercube.)56

Other classes of interest would be sorting networks based on a single permutation,or periodic sorting networks [28, 48, 60].Finally, it is an open problem whether our techniques can be applied to obtainlower bounds for shu�e-based or shu�e-unshu�e selection networks.

57

Chapter 3Lower Bounds for ShellsortIn this chapter we establish lower bounds on the worst-case complexity of Shell-sort networks and algorithms. In particular, we give a fairly simple proof of an
(n lg2 n=(lg lgn)2) lower bound for the size of Shellsort sorting networks, for arbi-trary increment sequences. We also show an identical lower bound for the runningtime of non-oblivious Shellsort algorithms. Our lower bounds establish an almosttight trade-o� between the running time of a Shellsort algorithm and the length ofthe underlying increment sequence.3.1 IntroductionShellsort is a classical sorting algorithm introduced by Shell in 1959 [104]. Thealgorithm is based on a sequence H = h0; : : : ; hm�1 of positive integers called anincrement sequence. An input �le A = A[0]; : : : ; A[n � 1] of elements is sorted byperforming an hj-sort for every increment hj in H , starting with hm�1 and goingdown to h0. Every hj-sort partitions the positions of the input array into congruenceclasses modulo hj , and then performs Insertion Sort on each of these classes. It isnot di�cult to see that at least one of the hj 's must be equal to 1 in order for the58

algorithm to sort all input �les properly. Furthermore, once some increment equalto 1 has been processed, the �le will certainly be sorted. Hence, we may assumewithout loss of generality that h0 = 1 and hj > 1 for all j > 0.The running time of Shellsort varies heavily depending on the choice of theincrement sequence H . Most practical Shellsort algorithms set H to the pre�xof a single, monotonically increasing in�nite sequence of integers, using only theincrements that are less than n. Shellsort algorithms based on such incrementsequences are called uniform. In a nonuniform Shellsort algorithm, H may dependon the input size n in an arbitrary fashion.A general analysis of the running time of Shellsort is di�cult because of the vastnumber of possible increment sequences, each of which can lead to a di�erent run-ning time and behavior of the resulting algorithm. Consequently, many importantquestions concerning general upper and lower bounds for Shellsort have remainedopen, in spite of a number of attempts to solve them. Apart from pure mathe-matical curiosity, the interest in Shellsort is motivated by the good performance ofmany of the known increment sequences. The algorithm is very easy to implement,and outperforms most other sorting methods on small or nearly sorted input �les.Moreover, Shellsort is an in-place sorting algorithm, so it is very space-e�cient.3.1.1 Previous Results on ShellsortThe original algorithm proposed by Shell was based on the increment sequence givenby hm�1 = bn=2c, hm�2 = bn=4c ; : : : ; h0 = 1. However, this choice of H leads toa worst case running time of �(n2) if n is a power of 2. Subsequently, severalauthors proposed modi�cations to Shell's original sequence [63, 34, 50] in the hopeof obtaining a better running time. Papernov and Stasevich [84] showed that thesequence of Hibbard [34], consisting of the increments of the form 2k � 1, achievesa running time of O(n3=2). A common feature of all of these sequences is that they59

are nearly geometric, meaning that they approximate a geometric sequence withinan additive constant.An exception is the sequence designed by Pratt [95], which consists of all incre-ments of the form 2i3j . This sequence gives a running time of O(n lg2 n), which stillrepresents the best asymptotic bound known for any increment sequence. In prac-tice, the sequence is not popular because it has length �(lg2 n); implementationsof Shellsort tend to use O(lgn)-length increment sequences because these result inbetter running times for �les of moderate size [36]. In addition, there is no hope ofgetting an O(n lgn)-time algorithm based on a sequence of length !(lgn).Pratt [95] also showed an
(n3=2) lower bound for all nearly geometric sequences.Partly due to this result, it was conjectured for quite a while that �(n3=2) is thebest worst-case running time achievable by increment sequences of length O(lgn).However, in 1982, Sedgewick [103] improved this upper bound to O(n4=3), using anapproximation of a geometric sequence that is not nearly geometric in the abovesense. Subsequently, Incerpi and Sedgewick [36] designed a family of O(lgn)-lengthincrement sequences with running times O(n1+�=plgn), for all � > 0. Chazelleachieves a similar running time with a class of nonuniform sequences [36]; his con-struction is based on a generalization of Pratt's sequence.The sequences proposed by Incerpi and Sedgewick are all within a constantfactor of a geometric sequence, that is, they satisfy hj = � ��j� for some con-stant � > 0. Weiss [122, 125] showed that all sequences of this type take time
(n1+�=plgn), but his proof assumed an as yet unproven conjecture on the numberof inversions in the Frobenius pattern. Based on this so-called Inversion Conjecture,he also showed an
(n1+�=plgn) lower bound for the O(lg n)-length increment se-quences of Chazelle. The question of existence of Shellsort algorithms with runningtime O(n lgn) remained unresolved.The two classes of increment sequences given by Incerpi and Sedgewick andby Chazelle are of particular interest because they not only establish an improved60

upper bound for sequences of length O(lg n), but also indicate an interesting trade-o� between the running time and the length of an increment sequence. Speci�cally,using a construction described in [36], it is possible to achieve better asymptoticrunning times by allowing longer increment sequences.Another goal in the study of Shellsort is the construction of sorting networksof small depth and size. A Shellsort sorting network of depth � 0:6 lg2 n based onincrements of the form 2i3j was given by Pratt [95]. Thus, his network came veryclose to the fastest known network at that time, due to Batcher [7], with depth� 0:5 lg2 n. In 1983, Ajtai, Koml�os, and Szemer�edi [2] designed a sorting network ofdepth O(lgn); however, their construction su�ers from an irregular topology and alarge constant hidden by the O-notation. This situation has motivated the search forO(lgn)-depth sorting networks with simpler topologies or a smaller multiplicativeconstant. Shellsort has been considered a potential candidate for such a network[119], due to the rich variety of possible increment sequences and the lack of non-trivial general lower bounds. The lower bounds of Pratt and Weiss also apply tonetwork size, but they only hold for very restricted classes of increment sequences.Cypher [24] has established an
(n lg2 n= lg lgn) lower bound for the size ofShellsort networks. However, his proof technique only works for monotone incre-ment sequences, that is, sequences that are monotonically increasing. Though thiscaptures a very general class of sequences, it does not rule out the possibility of anO(lgn)-depth network based on some nonmonotone sequence.Very recently, and independent of our work, Poonen [92] has shown a lowerbound of
(n lg2 n=(lg lgn)2) that holds for arbitrary Shellsort algorithms. Hislower bound also has the form of a trade-o� between the running time of a Shellsortalgorithm and the length of the underlying increment sequence. The proof usestechniques from solid geometry and is quite intricate. A comparison of Poonen'sresults and the results in this chapter will be given in the next subsection.61

3.1.2 Overview of this ChapterIn this chapter we show lower bounds on the worst-case complexity of Shellsort. Inparticular, we give a fairly simple proof of an
(n lg2 n=(lg lg n)2) lower bound forthe size of Shellsort networks, for arbitrary increment sequences. We also establishan identical lower bound for the running time of Shellsort algorithms, again forarbitrary increment sequences. As in Poonen's paper, our lower bounds establish atrade-o� between the running time of an algorithm and the length of the underlyingincrement sequence. This gives lower bounds for increment sequences of lengthO(lgn) that come very close to the best known upper bounds. At the other end ofthe spectrum, the trade-o� implies that no increment sequence can match Pratt'supper bound with signi�cantly fewer increments.Our proof technique is based on purely combinatorial arguments, and we believethat it is signi�cantly simpler than the technique used by Poonen. The techniquealso leads to certain improvements in the lower bounds, particularly in the trade-o�between the running time and the length of the increment sequence. The result byPoonen, on the other hand, is of independent interest, since it establishes a variantof the Inversion Conjecture of Weiss [125] using a new geometric approach to theFrobenius Problem. The technique used in this chapter is not based on a proof ofthe Inversion Conjecture. Instead, it shows how to \combine" Frobenius patternsto construct permutations with a large number of inversions. This result, togetherwith the idea of dividing an increment sequence into \stages" (also called \intervals"in [92]), leads to the strong lower bounds of this chapter.Throughout this chapter, we will limit our attention to increment sequences oflength O(lg2 n=(lg lg n)2). Lower bounds for longer increment sequences are impliedby the fact that Shellsort performs at least
(n) comparisons for every incrementless than n=2. The results of this chapter are presented in an \incremental" fashion,starting with a very basic argument for a restricted class of algorithms, and extend-62

ing the lower bounds to more general classes in each of the subsequent sections.This chapter is organized as follows. Section 3.2 illustrates our proof techniqueby giving a simple and informal argument showing a lower bound for the depth ofShellsort networks based on monotone increment sequences. Section 3.3 introduces anumber of de�nitions and simple lemmas, and then proceeds to give a formal proofof a general lower bound for the depth and size of arbitrary Shellsort networks.Section 3.4 then establishes a lower bound on the running time of non-obliviousShellsort algorithms based on arbitrary increment sequences. Section 3.5 containsa discussion of our results and a comparison with the best known upper bounds.Finally, Section 3.6 lists some open questions for future research.3.2 The Basic Proof IdeaIn this section we illustrate our proof idea by giving a very simple and informalargument showing a polylogarithmic lower bound for the depth of any Shellsortnetwork based on a monotone increment sequence of length at most c lg2 n=(lg lg n)2,for some small c. In the following sections, we will then formalize and extend thistechnique to obtain more general lower bounds.Let H be a monotone increment sequence with m � c lg2 n=(lg lg n)2 increments.We now divide the increment sequence H into a number of stages S0; : : : ; St�1.Every stage Si is a set consisting of all increments hj of H such that ni � hj >ni+1, where n0; : : : ; nt are chosen appropriately. We de�ne the ni by n0 = n andni+1 = ni= lgk ni, for i � 0 and some �xed integer k. In this informal argument, wewill not be concerned about the integrality of the expressions obtained. Note thatthe ni divide the increment sequence into at least lgnk lg lgn disjoint stages. There areat least s def= lgn2k lg lgn disjoint stages consisting of increments hj � n1=2.By averaging, one of these stages, say Si, will contain at most m=s � 2ck lgnlg lgnincrements. Now suppose there exists an input permutation A such that, after63

sorting A by all increments in stages S0 to Si, some element is still
(ni) positionsaway from its �nal position in the sorted �le. Since H is monotone, we know thatfrom now on only comparisons over a distance of at most ni+1 positions will beperformed. Hence, we can conclude that the element has to pass through at least
(ni=ni+1) =
(lgk n) comparators in order to reach its �nal, correct position.To complete the proof we have to show the existence of a permutation A suchthat some element is still \far out of place" after sorting A by all increments in S0 toSi. We will only give an informal argument at this point; a formal proof will be givenin the next subsection. Consider all permutations of length n of the following form:Every element is in its correct, �nal position, except for the elements in a block ofsize ni, ranging from some position a to position a+ni� 1 in the permutation. Theelements in this block are allowed to be scrambled up in an arbitrary way. It is easyto see that a permutation of this form is already sorted by all increments greaterthan ni, that is, all increments in stages S0 to Si�1. Hence, no exchanges will occurduring these stages.We now look at what happens in the block of size ni during stage Si. Note thatno element outside the block will have an impact on the elements in the block. Thus,when we sort the permutation by some increment hj with ni � hj > ni+1, the newposition of any element only depends on its previous position and on the elementsin the at most nihj � lgk ni other positions in the block that are in its hj -class. Byour assumption, there are at most m=s � 2ck lgnlg lgn increments in stage Si. Hence, theposition of an element after stage Si only depends on its position before the stage,which can be arbitrary, and on the elements in at most�lgk ni�m=s � (lgni) 2ck2 lg nlg lg nother positions. If we choose c such that 4ck2 < 1� �, for some � > 0, then we get(lgni) 2ck2 lg nlg lg n � 22ck2 lgn� 24ck2 lgni64

= o(ni):This means that for large n, the position of an element in the block after sorting byall increments in Si will only depend on the elements in o(ni) other positions in theblock. If we assign the smallest elements in the block to these positions, then anelement that is larger than these, but smaller than all other elements will end up ina position close to the largest elements after stage Si. Hence, this element is
(ni)positions away from its �nal position. All in all, we get the following result:Theorem 3.2.1 Let H be a monotone increment sequence of length at most c lg2 n=(lg lg n)2, and let k be such that 4ck2 < 1 � �, for some � > 0. Then any sortingnetwork based on H has depth
 �lgk n�.The above argument is quite informal and does not make use of the full potentialof our proof technique; it has mainly been given to illustrate the basic proof ideaand to demonstrate its simplicity. The above result implies that we cannot hope tomatch the O(lg2 n)-depth upper bound of Pratt [95] with any increment sequenceof fewer than (1��) lg2 n16(lg lgn)2 increments, thus answering a question left open by Cypher'slower bound [24]. It also implies that we cannot achieve polylogarithmic depth withincrement sequences of length o(lg2 n=(lg lg n)2).By extending the argument we will be able to show much stronger lower boundsfor shorter increment sequences. More precisely, we can get a trade-o� betweendepth and increment sequence length by choosing appropriate values for the integersni that divide the increment sequence into stages. We can also extend the result tonon-oblivious Shellsort algorithms by showing the existence of an input such thatnot just one, but \a large number" of elements are \far out of place" after the sparsestage Si. 65

3.3 Lower Bounds for NetworksIn this section, we will show general lower bounds for the depth and size of Shellsortsorting networks. We start o� by giving a number of de�nitions and simple lemmas.We then show how to formalize and generalize the argument of Section 3.2 to obtaina trade-o� between the depth of a Shellsort network and the length of the underlyingincrement sequence. Next, we explain how the results on network depth imply lowerbounds on the size of Shellsort networks. We conclude this section by extending ourresults to nonmonotone increment sequences.3.3.1 De�nitions and Simple LemmasThis section contains a number of basic de�nitions and associated lemmas. All ofthe lemmas are quite straightforward and so their proofs have been omitted.We will use �(n) to denote the set of n! permutations over f0; : : : ; n � 1g. A0-1 permutation of length n is an n-tuple over f0; 1g. Thus f0; 1gn denotes the setof 2n 0-1 permutations.Throughout this chapter we will assume that the input �les are drawn from�(n). We will use the letters A, B, and C to denote elements from �(n), and wewill use X , Y , and Z to denote 0-1 permutations. We say that a �le A is h-sortedif A[i] � A[i+ h], for 0 � i < n� h. The following trivial lemma arises as a specialcase of the last de�nition.Lemma 3.3.1 Every �le of length n is h-sorted for any h � n.In the following, let H = h0; : : : ; hm�1 be an increment sequence of lengthm � 1. Let min(H) denote the smallest increment in H . We say that a �le isH-sorted if and only if it is hi-sorted for all i such that 0 � i < m.66

De�nition 3.3.1 Let template(H; n) denote the 0-1 permutation X obtained bysetting X [i] to 1 if and only if there exist nonnegative integers a0; : : : ; am�1 suchthat i = X0�j<m aj � hj :Lemma 3.3.2 The 0-1 permutation template(H; n) is H-sorted.Lemma 3.3.3 The number of 1's in the 0-1 permutation template(H; n) is at most� nmin(H)�m :De�nition 3.3.2 For any 0-1 permutation X of length n0 with 0 � n0 � n, letpad(X; n) denote the 0-1 permutation Y of length n obtained by settingY [i] = 8><>: X [i] 0 � i < n0, and1 n0 � i < n.Lemma 3.3.4 Let X be an arbitrary 0-1 permutation of length n0 with 0 � n0 � n.Then X is H-sorted if and only if pad(X; n) is H-sorted.De�nition 3.3.3 For any 0-1 permutation X of length n � 0, and any integer k,let shift(X; k) denote the 0-1 permutation Y obtained by settingY [i] = 8>>>><>>>>: 0 if i� k < 0,X [i� k] if 0 � i� k < n, and1 if i� k � n.Lemma 3.3.5 For any 0-1 permutation X and any integer k, if X is H-sorted,then shift(X; k) is also H-sorted.In the following de�nition, a Boolean expression is assumed to represent 1 if itis true, and 0 if it is false. 67

De�nition 3.3.4 For any 0-1 permutation X of length n � 0, let perm(X) denotethe permutation Y in �(n) obtained by settingY [i] = X0�j<i(X [j] = X [i]) + X0�j<n(X [j]< X [i]);Lemma 3.3.6 Let X be an arbitrary 0-1 permutation. Then X is H-sorted if andonly if perm(X) is H-sorted.We say that an element A[j] of a permutation A in �(n) is k places out ofposition if jA[j] � jj � k. The following lemma will be used in Section 3.3.2 toobtain a simple lower bound on the depth of any Shellsort sorting network.Lemma 3.3.7 Let X denote any H-sorted 0-1 permutation of length n, let i denotethe number of 1's in X, and let j denote the least index such that X [j] = 1 (if i = 0then set j = n). Then element perm(X)[j] is n � i� j places out of position.3.3.2 A More General Lower BoundWe will now generalize the proof technique presented in the previous section toobtain a trade-o� between the length of an increment sequence H and the lowerbound for the depth of a sorting network based on H . For the sake of simplicity, weassume H to be monotone. It will be shown later that this assumption is not reallynecessary.As before, we divide the increment sequence into stages S0; : : : ; St�1, such thatstage Si contains all increments hj with ni � hj > ni+1. We de�ne the ni byn0 = n and ni+1 = jni= lgk nik, but we now assume k to be a function of the inputsize n and the increment sequence length m. Note that the number of stages t isdetermined by our choice of k. In particular, if we choose k such that�lgk n�s � n1=2;68

then we get at least s stages that contain only elements greater n1=2. Solving thisinequality we get k = � lg n2s lg lgn� : (3.1)as a possible choice of k. We will now formalize our earlier observation that anelement can be \far out of place" after sorting by all increments up to stage Si,provided that Si contains \few" increments.Lemma 3.3.8 Let H be an increment sequence for permutations of length n, andsuppose that for some integers �; �0 with 0 < �0 < � � n there are at most �increments hj with �0 < hj � � in H. If � ��0 �� = o(�), then there exists an input�le A such that: (i) A is sorted by all hj > �0, and (ii) there exists an element in Athat is
(�) places away from its �nal position.Proof: Let H 0 denote the subsequence of H consisting of all increments hj suchthat hj > �0, let H 00 denote the subsequence of H 0 consisting of all increments hjsuch that hj � �, and let X = template(H 00; �). We know that X is H 00-sortedby Lemma 3.3.2. Lemma 3.3.1 then implies that X is also H 0-sorted. Note thatjH 00j � � and min(H 00) > � 0. Hence, by Lemma 3.3.3, the number of 1's in X is atmost � ��0�� = o(�):Now let Y = pad(X; n). By Lemma 3.3.4, the 0-1 permutation Y is H 0-sorted.Furthermore, since the number of 1's in Y is exactly n� � greater than the numberof 1's in X , and X [0] = Y [0] = 1, Lemma 3.3.6 implies that the permutationA def= perm(Y) is H 0-sorted, and by Lemma 3.3.7 some element of A is
(�) placesout of position.2 In the preceding argument, we could also have de�ned Y as shift(pad(X; n); j)for any integer j with 0 � j � n � �. We will make use of this observation toestablish Corollary 3.3.1.1 below. 69

Theorem 3.3.1 Any Shellsort sorting network based on a monotone increment se-quence of length m has depth
�2 lg n(2+�)pm� ;for all � > 0.Proof: We will partition the increment sequence H into at least s = (1 + �0)pmdisjoint stages consisting of increments hj with hj � n1=2, for some �0 > 0. Byaveraging, one of these stages, say Si, will contain at most� def= �ms � = $ pm1 + �0%increments. Using Equation 3.1 we determine k as:k = � lg n2(1 + �0)pm lg lg n�De�ne � = ni and �0 = ni+1. We now have� ��0�� � llgk �m pm1+�0� (lgn) lg n2(1+�0)2 lg lg n= 2 lg n2(1+�0)2� 2 lg �(1+�0)2= o(�):Thus, we can apply Lemma 3.3.8. According to the lemma, there exists a permuta-tion such that an element is
(ni) positions away from its �nal position after stageSi. Since all subsequent increments are less than or equal to ni+1, this element mustpass through at least
(ni=ni+1) comparators. We havenini+1 � lgk ni= (lgni)j lg n2(1+�0)pm lg lg nk� (lgni) lg n2(1+�0)(1+�1)pm lg lg n70

� �2 lg lg nilg lg n � lg n2(1+�0)(1+�1)pm� �2 11+�2 � lg n2(1+�0)(1+�1)pm= 2 lg n(2+�)pm ;where � is chosen to satisfy the inequality (2 + �) � 2(1 + �0)(1 + �1)(1 + �2).23.3.3 A Lower Bound for Network SizeThe depth lower bound of Theorem 3.3.1 also implies a lower bound on the size ofany Shellsort network based on a monotone increment sequence. We will not give aformal proof of this result, since it arises as a special case of the lower bound for therunning time of non-oblivious Shellsort algorithms established in the next section.Instead, we will briey describe the main idea.Lemma 3.3.8 shows how to construct an input �le A that is sorted under allincrements in stages S0 to Si of an increment sequence H such that one elementA[z] in A is \far out of place". In fact, as discussed immediately after the proofof Lemma 3.3.8, we can use the method of the lemma to construct a set of n � ni\shifted" versions of such an input �le A. In particular, let Aj , 0 � j < n�ni, denotethe input �le obtained by setting Y to shift(pad(X; n); j) instead of pad(X; n). Notethat A0 = A. Let A0[z] be the element proven to be far out of place in A0. Byconstruction, the element Aj [z + j] is far out of place in Aj . Due to the commonstructure of the input �les, element Aj [z + j] in �le Aj will never pass throughthe same comparator as element Ak[z + k] in Ak, for any j 6= k. Instead, the twoelements will always be exactly k � j positions apart at each level of the sortingnetwork. This implies the result.Corollary 3.3.1.1 Any sorting network based on a monotone increment sequence71

of length m has size
�n � 2 lg n(2+�)pm� ;for all � > 0.We can now compare our result to the lower bound of
(n lg2 n= lg lg n) fornetwork size given by Cypher [24]. The main di�erence between the two results isthat Cypher gets a lower bound that is independent of the length of the incrementsequence, while we get a trade-o� between network size and increment sequencelength. This makes our lower bound much stronger for short increment sequences.Our method also implies a lower bound of
(n lg2 n=(lg lg n)2) for increment se-quences of arbitrary length, since every increment increases the size of a Shellsortnetwork by at least n. This is slightly weaker than Cypher's lower bound. However,Cypher's bound only applies to monotone increment sequences, while our result alsoholds for nonmonotone sequences, as will be shown in the next subsection. Anotherstrength of our method is its simplicity and exibility, which will makes it possible toextend our lower bound to non-oblivious Shellsort algorithms and certain variationsof Shellsort.3.3.4 Nonmonotone Increment SequencesSo far, we have restricted our attention to monotone increment sequences. Wewill now show that this restriction is really unnecessary, and that the same lowerbounds also apply to nonmonotone sequences. Recall that we obtained the depthlower bound by showing the existence of an input permutation such that an elementis \far out of place" after the \sparse" stage Si. More precisely, Lemma 3.3.8 showedthe existence of a permutation A that is already sorted by all increments in stagesS0 through Si and that contains such an element. Thus, no exchanges are performedby the increments in stages S0 through Si on input A, and the lower bound follows.We will make use of the following well-known lemma (see, for example, [95]) in order72

to extend this argument to nonmonotonic increment sequences.Lemma 3.3.9 For any two increments h; h0, if we h0-sort an h-sorted �le, it staysh-sorted.Now suppose we have a nonmonotone increment sequence H . We can divide Hinto stages S0; : : : ; St�1 as before, with stage Si containing all increments hj withni � hj > ni+1. Again, there exists a \sparse" stage Si with few increments, and apermutation sorted by all increments in S def= S0 [� � �[Si such that some element is\far out of place". If we takeA as the input permutation, then by Lemma 3.3.9A willstay sorted by all increments in S throughout the network. Hence, no exchanges willtake place during the applications of Insertion Sort corresponding to increments inS. This implies that all of the exchanges needed to move the \out-of-place" elementto its �nal position are performed by increments hj � ni+1, and the lower boundfollows. The same reasoning also applies to the lower bound for network size, andto the results obtained in the next section. This gives us the following result:Corollary 3.3.1.2 Any sorting network based on an increment sequence of lengthm has size
�n � 2 lg n(2+�)pm� ;for all � > 0.Note that this result does not rule out the existence of nonmonotone incrementsequences that perform better than the \corresponding" monotone sequences (thatis, the sequences obtained by sorting the nonmonotone sequences into increasingorder). It is an open question whether such sequences exist.73

3.4 Non-Oblivious Shellsort AlgorithmsThe results obtained so far all rely on the fact, established in Lemma 3.3.8, thatwe can construct an input �le such that one element is \far away" from its �nalposition in the sorted �le. We were able to extend the lower bounds to network sizedue to the oblivious nature of sorting networks. However, the results for networksize do not imply a lower bound for the running time of Shellsort algorithms thatare non-oblivious.In this subsection, we will establish such a lower bound. The high-level structureof the proof is the same as that of the depth lower bound in the last section; weonly have to substitute Lemma 3.3.8 by a stronger lemma showing that there existsan input �le A such that not just one, but \a large number" of the elements in Aare \far away" from their �nal position. This result is formalized in the followinglemma, which we will prove later in this subsection.Lemma 3.4.1 Let H be an increment sequence applied to input �les of length n,and suppose that for some integers �; �0 with 4 � �0 < � � n there are at most� increments hj with �0 < hj � � in H. If � ��0 �� � �= lg3 �, then there exists aninput �le A such that: (i) A is sorted by all hj > �0, and (ii) there exist
(n= lg3 �)elements in A that are
(�= lg2 �) places away from their �nal position.Given an increment sequence H , we can establish the lower bound for non-oblivious Shellsort algorithms by dividing H into stages in the same way as inthe proof of Theorem 3.3.1, and then applying the above Lemma 3.4.1 instead ofLemma 3.3.8. The lower bound obtained is slightly weaker than the one for networksize, since Lemma 3.4.1 only shows that a polylog fraction of the elements are apolylog fraction of ni�1 out of place. This gives the following theorem:Theorem 3.4.1 Any Shellsort algorithm based on an increment sequence of length74

m has running time
� nlg5 n � 2 lg n(2+�)pm� ;for all � > 0.We remark that the exponent \5" in the preceding theorem is not the bestpossible. It results from summing the exponents \3" and \2" appearing in thestatement of Lemma 3.4.1, which can be improved to \2" and \1", respectively. Wehave chosen to weaken these constants in order to simplify the proof of Lemma 3.4.1.Comparing the bound of Theorem 3.4.1 to previous results we note that thelower bounds of Pratt [95] and Weiss [122] only hold for increment sequences ap-proximating a geometric sequence, while the lower bound of Theorem 3.4.1 appliesto all increment sequences. Also, the bound given by Weiss, which holds for a moregeneral class than Pratt's bound, is based on an unproven conjecture about thenumber of inversions in certain input �les.The remainder of this subsection contains the proof of Lemma 3.4.1. To es-tablish the result, we will need a few technical lemmas. The �rst two lemmas arestraightforward and their proofs will be omitted. In particular, Lemma 3.4.2 is astraightforward generalization of Lemma 3.3.7.Lemma 3.4.2 Let X denote any H-sorted 0-1 permutation of length n, let i denotethe number of 1's in X, let n0 be such that 0 � n0 < n�2i, and let j = P0�k<n0 X [k].Then at least j elements of perm(X) are n � n0 � i places out of position.De�nition 3.4.1 For any 0-1 permutation X of length n0 such that 0 � n0 � n,let perm�(X; n) denote the permutation Y in �(n) obtained from Z def= perm(X) bysetting Y [i] = Z[i mod n0] + � in0� � n0:75

Lemma 3.4.3 Let X be any 0-1 permutation of length n0 such that 0 � n0 � n.ThenX isH-sorted if and only if perm�(X; n) is H-sorted. If i elements of perm(X)are j places out of position, then at least i � bn=n0c elements of perm�(X; n) are jplaces out of position.In the following, let H be an arbitrary increment sequence. Let � be any integerwith � � 4, and de�ne � def= � � 2�= lg2 � and � def= � � �= lg2 �.Lemma 3.4.4 Let X denote a 0-1 permutation of length � � 4 with X [0] = 1 andP0�i<� X [i]� �= lg3 �. Then there exists an integer k, 0 � k � (� � �) blg �c, suchthat the 0-1 permutation Y def= shift(X; k) satis�esX0�i<� Y [i] � X��i<� Y [i]:Proof: Suppose, for the sake of contradiction, thatX0�i<� shift(X; k)[i]< X��i<� shift(X; k)[i]holds for all k with 0 � k � (� � �) blg �c. This implies that P0�i<��kX [i] <P��k�i<��k X [i]. Using Rk def= P0�i<��k X [i], this can be rewritten as Rk <Rk�(���) � Rk, or Rk < 12Rk�(���). Hence,R(���)blg �c < 2�blg �cR0;and from R0 �P0�i<� X [i] � �= lg3 � we getR(���)blg�c < 2lg3 � < 1:This is clearly a contradiction, since X [0] = 1 implies R(���)blg�c � 1.2 In the next lemma, given 0-1 permutations X and Y , we will use or(X; Y) todenote the 0-1 permutation Z obtained by setting bit Z[i] to the logical OR of bitsX [i] and Y [i], 0 � i < n. Clearly, if X and Y are H-sorted, then or(X; Y) is alsoH-sorted. 76

Lemma 3.4.5 Let X be an H-sorted 0-1 permutation of length � with x def= P0�i<�X [i] � �= lg3 �. Let x0 def= P0�i<�+kX [i] where (x lg �)=2 � k � �=(2 lg2 �). Thenthere exists an H-sorted 0-1 permutation Y of length � with P0�i<� Y [i] � 2x andX0�i<�+2k Y [i] � 2�1� 1lg �� x0:Proof: We will set Y to Yj def= or(X; shift(X; j)) for some appropriately choseninteger j, 1 � j � k. Note that by Lemma 3.3.5, any such 0-1 permutation Yj is H-sorted, and it is easy to see that P0�i<� Yj [i] � 2x holds. Let y0j = P0�i<�+2k Yj [i].It remains to show the existence of an integer j0, 1 � j0 � k, such that y0j0 �2(1 � 1= lg �)x0. We will accomplish this by means of an averaging argument. Wehave X1�j�k y0j � 2kx0 � x02!:Hence, there exists a j0, 1 � j0 � k, such thaty0j0 � 2kx0 � �x02 �k� 2x0 � x0 � 1lg �� 2�1� 1lg ��x0:Now choose Y = Yj0 .2Lemma 3.4.6 Let Y be an H-sorted 0-1 permutation of length � with P0�i<� Y [i]� �= lg3 � and X0�i<� Y [i] � X��i<� Y [i]:Then there exists an H-sorted 0-1 permutation Z of length � such thatP0�i<� Z[i] ��= lg3 � and X0�i<�Z[i] =
(�= lg3 �):77

Proof: We will \transform" the given 0-1 permutation Y into a 0-1 permutationof the desired form by a sequence of applications of Lemma 3.4.5. Let Y0 def= Y . Thejth application of Lemma 3.4.5 will be used to obtain Yj from Yj�1, j � 1. Letyj = P0�i<� Yj [i], and let y0j = P0�i<�+2jy0 lg� Yj [i]. Note that y00 �P0�i<� Y [i] �y0=2. Then Lemma 3.4.5 implies that yj � 2jy0, andy0j � �2�1� 1lg ���j y00for j � lg � � lg y0 � 3 lg lg � (the latter inequality ensures that � + 2jy0 lg � � �).Setting j0 to blg � � lg y0 � 3 lg lg �c, and making use of the inequality y00 � y0=2,we �nd that yj0 � �= lg3 � andy0j0 =
(yj0) =
(�= lg3 �):Hence, we can choose Z = Yj0 .2 Given the above lemmas, we are now ready to proceed with the proof of Lemma3.4.1.Proof: Let H 0 denote the subsequence of H consisting of exactly those incrementshj such that hj > �0, let H 00 denote the subsequence of H 0 consisting of exactlythose increments hj such that hj � �, and let X = template(H 00; �). We know thatX is H 00-sorted by Lemma 3.3.2. Note that jH 00j � � and min(H 00) > �0. Hence, byLemma 3.3.3, we have X0�i<�X [i] � � ��0�� � �lg3 � :By Lemmas 3.3.5 and 3.4.4, the existence of X implies the existence of a 0-1 per-mutation Y of length � such that Y is H 00-sorted andX0�i<� Y [i] � X��i<� Y [i]:The existence of Y then establishes, via Lemma 3.4.6, the existence of a 0-1 permu-tation Z of length � such that: 78

� Z is H 00-sorted,� P0�i<� Z[i] � �= lg3 �, and� P0�i<� Z[i] =
(�= lg3 �).By Lemma 3.3.1 and Lemma 3.3.6 we know that B = perm(Z) is H 0-sorted, andLemma 3.4.2 implies that B contains
(�= lg3 �) elements that are
(�= lg2 �) placesout of position. Let A = perm�(Z; n). By Lemma 3.4.3, A is H 0-sorted and contains
(n= lg3 �) elements that are
(�= lg2 �) places out of position.23.5 DiscussionIn this chapter, we have given a fairly simple proof of a lower bound of
(n lg2 n=(lg lg n)2) for the size of any Shellsort network, thus ruling out the existence of anetwork of size O(n lgn) based on a nonmonotone increment sequence. By extendingour argument to the case of non-oblivious algorithms, we have also established ageneral lower bound for Shellsort that holds for arbitrary increment sequences.Our lower bound can be further generalized to a fairly large class of \Shellsort-like" algorithms, including the Shaker Sort algorithm of Incerpi and Sedgewick [37,124] as well as other algorithms proposed by Knuth [50] and Dobosiewicz [27].Poonen [92] has formally de�ned a class of such algorithms, called Shellsort-typealgorithms, and has shown how to extend his lower bound to this class. We will notelaborate further on such possible extensions, and instead refer the reader to thepresentation in [92] and [89].The lower bound of Theorem 3.4.1 establishes a trade-o� between the runningtime of a Shellsort algorithm and the length of the underlying increment sequence.We will now compare this lower bound trade-o� with the best known upper bound79

trade-o� given by the nonuniform increment sequences of Chazelle (see the non-uniform case of Theorem 3 in [36]). Expressing the running time as a function ofthe increment sequence length m we obtain the following bounds:Lower Bound: T � nlg5 n � n 1(2+�)pmUpper Bound: T � mn � n 2pmNote that both the factor 1= lg5 n in the lower bound and the factor m in the upperbound are only signi�cant for increment sequences of length
(lg2 n=(lg lgn)2). Inevery other case, the upper and lower bounds di�er only by a factor of 4 + � inthe exponent. In the lower bound trade-o� shown by Poonen, the constant in theexponent is 1=432 instead of 1=(2 + �).We can also express the length of the increment sequence as a function of therunning time. In this case, for m = o(lg2 n=(lg lg n)2), the lower and upper boundsare only a constant factor apart. This means that, for a given T , the length ofthe increment sequence of Chazelle that achieves running time T is only a factor of16 + � larger than the minimum length possible under our lower bound trade-o�.(For Poonen's result, this factor would be much larger.) In other words, one cannothope to match the running time of Chazelle's sequences with signi�cantly shorterincrement sequences.3.6 Open QuestionsThe primary remaining challenge in the study of Shellsort seems to be the virtualnonexistence of both upper and lower bounds for the average case complexity. Aresult for a particular increment sequence is given by Knuth [50], who determinesan average case running time of
(n3=2) for Shell's original sequence. Increment se-quences of the form (h; 1) and (h; k; 1) were investigated by Knuth [50] and Yao [126],respectively. Weiss [123] conducted an extensive empirical study and conjecturedthat Shellsort will on average not perform signi�cantly better than in the worst80

case. Any general upper or lower bounds for the average case would certainly bevery interesting.It would be nice to close the remaining gap between the upper and lower bounds.Our lower bound trade-o� comes quite close to the known upper bounds, but thereis certainly still room for improvement.Finally, one might try to �nd interesting \Shellsort-like" algorithms that arenot covered by our proof technique, and that lead to improved running times.

81

Chapter 4Deterministic Routing andSorting on MeshesThia chapter considers the problems of deterministic routing and sorting on meshesand related networks. We introduce a new technique that can be used to convertmany of the randomized algorithms proposed in the literature into deterministicalgorithms with (nearly) matching running times. We describe several applicationsof this technique, including deterministic algorithms for routing and sorting on thetwo-dimensional n�n mesh that run in time 2n+o(n) with small constant queue size.Apart from these particular applications, we believe that the technique enhances ourunderstanding of routing and sorting on meshes in general, by showing an interestingrelation between randomization and local sorting steps.4.1 IntroductionIn this chapter, we describe algorithms and techniques for routing and sortingon meshes and tori. In our presentation, we concentrate on the case of the two-dimensional mesh, but we also state a number of results for other, related networks.82

We are mainly concerned with the problems of 1{1 routing and 1{1 sorting, wherebefore and after the operation each processor holds a single element. In the nextparagraphs, we recall and expand some of the de�nitions given in Section 1.2.In the following, we assume an n � n mesh-connected array of synchronousprocessors. Each of the n2 processors is identi�ed by its row and column coordinates.Every processor is connected to each of its four neighbors through a bidirectionallink, and a bounded amount of information can be transmitted in either directionin a single step of a computation. The packet routing problem is the problem ofrearranging a set of packets in a network, such that every packet ends up at theprocessor speci�ed in its destination address. A routing problem in which everyprocessor is the source and destination of at most one packet is called a 1{1 routingproblem, or permutation routing problem. In the 1{1 sorting problem, we assumethat every processor initially holds a single packet, where each packet contains akey drawn from some totally ordered set. Our goal is to rearrange the packets insuch a way that the packet with the key of rank k is moved to the unique processorwith index k, for all k. The index of a processor in the mesh is determined by anindexing scheme.Formally, an indexing scheme for an n�n mesh is a bijection I from [n]� [n] to[n2]. If I(i; j) = k for some processor (i; j) 2 [n]� [n] and some k 2 [n2], then we saythat processor (i; j) has index k. The problem of sorting an input with respect toan indexing scheme I is to move every element y of the input to the processor withindex I(Rank (y;X)), where Rank (y;X) def= jfx 2 X j x < ygj and X denotes theset of all input elements. An example of a simple indexing scheme is the row-majorindexing scheme, or row-major order, which is given by indexing the processors fromthe left to the right, and from the top row to the bottom row. It can be formallyde�ned by I(i1; j1) < I(i2; j2) , (i1 < i2) _ [(i1 = i2) ^ (j1 < j2)] :83

A related indexing scheme is the snake-like row-major order de�ned byI(i1; j1) < I(i2; j2) , (i1 < i2) _ [(i1 = i2)^([(i1 odd) ^ (j1 < j2)]_[(i1 even) ^ (j1 > j2)])] :Similarly, one can de�ne the column-major and snake-like column-major orders.Sorting algorithms on the mesh are usually designed with a particular indexingscheme in mind, and techniques developed for one indexing scheme may not workwell for others. Throughout this chapter, we assume a blocked indexing schemesimilar to the one used in [42, 43]. The indexing scheme is de�ned by partitioningthe mesh into blocks of size n� � n�, and using an arbitrary indexing inside eachblock, while the blocks themselves are ordered in the mesh according to snake-likerow-major indexing.Finally, the queue size is the maximum number of packets that have to be storedat any processor during the execution of an algorithm. We point out that there areseveral di�erent possible de�nitions of the queue size. Under one de�nition, eachcommunication link of a processor has an associated bu�er that can hold a singlepacket, and the queue size is de�ned as the number of packets that do not �t intothese bu�ers, and that are stored in an additional queue inside the processor. Wewill refer to this as the internal queue size of an algorithm. (Thus, a hot-potato ordeection routing algorithm has an internal queue size of zero.) In the remainderof this thesis, we de�ne the queue size as the maximum number of packets that arelocated at a single processor at any point in time, including those packets that arerouted in the next step. Thus, an internal queue size of c on a d-dimensional meshcorresponds to a queue size of at most c + 2d in our model. A good routing orsorting algorithm should have a fast running time, a small queue size, and a simplecontrol structure. 84

4.1.1 Previous ResultsThe study of sorting on the two-dimensional mesh was initiated by Orcutt [83] andThompson and Kung [114], who gave algorithms based on Batcher's Bitonic Sort [7]with running times of O(n lgn) and 6n+ o(n), respectively. In the following years,a number of sorting algorithms were proposed for the mesh (see, for example, [52,62, 82, 100, 101]); these algorithms make a variety of di�erent assumptions aboutthe power of the underlying model of the mesh. More recently, most of the workhas focused on variants of the two models described in the following, which we referto as the single-packet model and the multi-packet model.The single-packet model (also often referred to as the Schnorr-Shamir model)assumes that a processor can hold only a single packet at any point in time, plussome unbounded amount of additional information. This unbounded additionalinformation may be used to decide the next action taken by the processor; however,it may not be used to create a new packet and substitute it for the currently heldpacket. At any step in the computation, a single packet plus an unbounded amountof header information may be transmitted across each directed edge. It is assumedthat a comparison-exchange operation between adjacent packets can be performedin a single step.For this model of the mesh, Schnorr and Shamir [102] showed an upper boundof 3n + o(n) for sorting into row-major order. They also proved a lower bound of3n � o(n), independently discovered by Kunde [54]. The same proof technique hasalso been used to show lower bounds for arbitrary indexing schemes [54]; the bestgeneral lower bound is currently 2:27n [32]. Note that the upper bound does notmake use of the unbounded local memory and header information permitted in themodel, while the lower bounds hold even under these rather unrealistic assumptions.Thus, the power of the model seems to be mainly determined by the restriction toa single packet per processor. 85

Another model that has recently received some attention is the multi-packetmodel of the mesh (also sometimes referred to as the MIMD model). In this model,a processor may hold a constant number of packets at any point in time, and packetsmay be copied or deleted. In any step of the computation, a single packet plusO(lgn) header information can be transmitted across each directed edge, and localmemory is restricted to O(lgn) bits. The only general lower bound for sortingand routing on the multi-packet model of the mesh is given by the diameter of thenetwork, and several groups of authors have recently described sorting algorithmsfor this model that achieve a running time of less than 3n.A 2:5n+o(n) time randomized algorithm for this model was given by Kaklama-nis, Krizanc, Narayanan, and Tsantilas [43]. Their algorithm requires a queue size ofat least 8. Using very di�erent techniques, Kunde [58] designed a deterministic algo-rithm matching the 2:5n+o(n) randomized bound. Apart from being deterministic,Kunde's algorithm also has a number of other advantages over that of Kaklamanis,Krizanc, Narayanan, and Tsantilas. The algorithm has a fairly simple structure,and no processor holds more than 2 packets at any point in time. The algorithmdoes not make any copies of packets, and it generalizes nicely to meshes of arbitrarydimension and to multi-packet sorting problems. Moreover, the elements are sortedinto snake-like row-major order, while the randomized algorithm sorts with respectto the somewhat more complicated blocked indexing scheme mentioned earlier.However, if one is interested in developing an algorithm that comes closer tothe distance bound of 2n � 2, then it seems very di�cult to apply the techniquesused in Kunde's deterministic algorithm. In fact, Narayanan [81] has shown thatany deterministic algorithm for sorting into row-major order that achieves a queuesize of 2, and that does not make any copies of elements, must take at least 2:125nsteps. The approach taken in the randomized algorithm [43], on the other hand, wassubsequently used by Kaklamanis and Krizanc [42] to design an optimal randomizedsorting algorithm, with a running time of 2n+ o(n) and constant queue size.86

The permutation routing problem has also been extensively studied under themulti-packet model of the mesh. In particular, Valiant and Brebner [117] proposeda randomized algorithm with a running time of (2d� 1)n+ o(n) and a queue size ofO(lgn) on the d-dimensional mesh, d � 2. A deterministic algorithm for the two-dimensional mesh with a running time of (2 + �)n and a queue size of O(1=�) wasdescribed by Kunde [56], and a randomized routing algorithm with running time2n+ o(n) and constant queue size was described by Rajasekaran and Tsantilas [99].Subsequently, Leighton, Makedon, and Tollis [69] gave a deterministic algorithm forrouting that runs in 2n�2 steps with constant queue size. However, the exact valuefor the queue size is rather large. Rajasekaran and Overholt [98] gave an improvedconstruction that reduced the queue size to below 200. Very recently, Kaklamanis,Krizanc, and Rao have obtained several fairly simple optimal randomized and o�-line algorithms for the two-dimensional and three-dimensional mesh, and for thetwo-dimensional torus.Finally, the routing problem has also been studied under a number of morerestricted models, such as hot-potato routing, oblivious routing, or routing alongminimal paths. For an overview of results on such restricted, and hence more real-istic, models, we refer the reader to the surveys in [11, 115].4.1.2 Overview of this ChapterIn this chapter, we describe a new technique that allows us to convert a number ofrecently proposed randomized algorithms for routing and sorting into deterministicalgorithms that achieve the same running time, within a lower order additive term.We explain the main idea behind the technique, and describe several applications.For convenience, we will sometimes use the term \derandomization" (in quotes) torefer to this technique. However, we point out that it is not related to the techniquesthat are commonly associated with this term in the literature (e.g., see [77]).87

As our �rst application, we consider a randomized algorithm for routing on two-dimensional meshes proposed by Kaklamanis, Krizanc, and Rao [44]. As a result,we obtain a deterministic algorithm for permutation routing on two-dimensionalmeshes with a running time of 2n + o(n) and a queue size of 5. The only optimaldeterministic algorithm previously known for this problem [69, 98] had a runningtime of 2n � 2 and a queue size of at least 112. Extending this result to othernetworks, we obtain the �rst optimal deterministic algorithms for routing on thethree-dimensional mesh and the two-dimensional torus.Next, we apply the technique to an optimal randomized algorithm for sortingon the two-dimensional mesh proposed by Kaklamanis and Krizanc [42]. We obtaina deterministic algorithm that runs in time 2n + o(n) with a queue size of about25. The fastest deterministic algorithm previously known for this problem [58]achieved a running time of 2:5n + o(n) and a queue size of 2. We also obtainimproved deterministic algorithms for sorting on three-dimensional meshes and ontwo-dimensional and three-dimensional tori. Finally, we point out some additionalapplications of the technique to multi-packet sorting and selection, and to routingon meshes with buses.The chapter is organized as follows. Section 4.2 de�nes some terminology. Sec-tion 4.3 describes the basic ideas underlying our technique. Section 4.4 containsthe results for permutation routing, and Section 4.5 contains the results for sort-ing. Finally, Section 4.6 describes some other applications of our techniques, andSection 4.7 o�ers some concluding remarks.4.2 TerminologyThroughout this chapter, we frequently have to reason about quantities that aredetermined to within a lower order additive term. We use the notation � f(n)(\approximately f(n)") to refer to a term in the range between f(n)� o(f(n)) and88

f(n) + o(f(n)). Also, we say that a set of k elements is evenly distributed amongm sets if every set contains � k=m elements. For k1; k2 � 1, a k1{k2 relation is arouting problem in which each processor is the source of at most k1 packets and thedestination of at most k2 packets. An approximate k1{k2 relation on a linear arrayis a routing problem in which each block of m consecutive processors is the sourceof at most mk1 + o(n) packets and the destination of at most mk2 + o(n) packets.Given a partition of the mesh into blocks of equal size, we use the terms row ofblocks and column of blocks to refer to the sets of blocks with common vertical andhorizontal coordinates, respectively. Finally, we say that an algorithm is optimal ifits running time is � l, where l is the best lower bound.4.3 Basic IdeasA large number of randomized algorithms for routing and sorting on �xed-connectionnetworks have been designed in recent years, and in a number of cases these algo-rithms are superior to the best deterministic solutions in terms of both performanceand simplicity. Many of these algorithms follow a very simple two-phase schemeproposed by Valiant [116], in which the elements are �rst randomly distributed overa su�ciently large region of the network. In the second phase, the elements are thenrouted towards their destinations.The main purpose of the randomization phase in these algorithms is to distributepackets with similar ranks or destinations evenly over the network. In the following,we describe a technique that simulates this e�ect in a deterministic fashion.4.3.1 The Sort-and-Unshu�e OperationOur technique is based on a combination of local sorting and o�-line routing. For-mally, assume a �xed-connection network with N processors, each containing a single89

element. Partition the network into N1� groups of N processors, for some < 1,and sort the elements within each group with respect to their key values (or desti-nations, in the case of a routing problem). After this sorting step, the element withrank j in group i is located in processor j of the group, for all i with 0 � i < N1�and all j with 0 � j < N . In the second step, we route the element in processor jof group i to processor i+ j jN1� k �N1� in group j mod N1� .We refer to the above operation as the sort-and-unshu�e operation. (This nameis motivated by the close relationship between the o�-line routing problem in thesecond step of the operation, and the class of �-way unshu�e permutations de�nedfurther below.) Note that after the second step of the operation, all sets of elementswith similar key values are approximately evenly distributed among the groups ofprocessors. More precisely, the following holds.Lemma 4.3.1 Let A be any set of consecutive values in [n2]. Then after execu-tion of the sort-and-unshu�e operation, every group of processors contains betweenjAjN1� �N1� and jAjN1� + N1� elements with rank in A.In the case of the two-dimensional mesh, the groups of processors in the sort-and-unshu�e operation will usually be square submeshes, or blocks, of processors.Thus, we will partition the mesh into blocks of size n� � n� , for some � < 1. Weassume that the blocks are indexed in such a way that blocks with consecutive indicesare adjacent (or close to each other). The packets are then sorted, and the elementin processor j of block i is routed to i+ j jn2�2� k � n2�2� in group j mod n2�2� .We point out that the idea of deterministically \spreading" elements of similarrank and destination over the network is not really new. In particular, similartechniques are used in the Columnsort algorithm of Leighton [64] and the 3n+ o(n)algorithm of Schnorr and Shamir [102], as well as in several of Kunde's algorithms(e.g., see [57, 59]). However, none of these papers elaborates on the close relationshipbetween these techniques and the ideas used in many randomized algorithms.90

In the following, we attempt to explain this relationship, and to design a generalmethod that can be used to \derandomize" (in an informal sense) many of theknown randomized algorithms on meshes and related networks. As a result, we notonly obtain improved deterministic algorithms for a number of problems related torouting and sorting, but we also get some new insights that may lead to a moreuni�ed perspective of the multitude of routing and sorting algorithms that havebeen proposed for the mesh.4.3.2 Implementation on MeshesAs an example, consider the following simpli�ed variant of the randomized routingalgorithm for the mesh described by Valiant and Brebner [117]. The algorithm�rst sends every packet to a random location in the network along row-columnpaths. In the second phase, the packets are routed towards their destinations, againalong row-column paths. It can be shown that the above algorithm terminates inapproximately 4n steps, with high probability; the queue size is O(lgn). To convertthis algorithm into a deterministic algorithm, we substitute the sort-and-unshu�eoperation for the �rst phase of the algorithm. In addition, we also have to change thesecond phase of the algorithm slightly, in order to avoid the queue size from growingtoo large. The details of this change depend on the particular structure of thealgorithm, the indexing scheme, and the size of the blocks in the sort-and-unshu�eoperation, and we will not elaborate on these issues at this point.While the above algorithm is very simple, many other randomized algorithmshave a signi�cantly more complex structure. In particular, the elements are oftennot randomized over the entire network, but only within a fairly small region. Also,consecutive steps of the computation may be overlapped in a sophisticated manner.This raises a number of additional technical issues that need to be resolved in orderto \derandomize" such an algorithm. 91

To simulate such a restricted randomization within a small region of the network,we can de�ne a corresponding restricted variant of the sort-and-unshu�e operation.For example, the randomized algorithms considered in the subsequent sections useseveral forms of restricted randomization within rows or columns. A correspondingsort-and-unshu�e operation might, for example, operate within rows of blocks oflength n and height n� . Such a sort-and-unshu�e operation can be implementedusing the class of �-way unshu�e permutations de�ned in the following.De�nition 4.3.1 For any n; � > 0 with n mod � = 0, we de�ne the �-way unshu�epermutation on n positions 0; : : : ; n�1 as the permutation �� that moves the elementin position i to position ��(i) def= (i mod �) � n=� + bi=�c. We say that we performa �-way unshu�e permutation on the columns (rows) of a mesh, if we move allelements located in column (row) i to the corresponding positions in column (row)��(i), for all i.A sort-and-unshu�e operation within a row of blocks of length n and height n�can then be implemented by �rst sorting the elements in each block of size n��n� bytheir destination blocks, into row-major order, and then performing an (n1��)-wayunshu�e permutation on the columns of the mesh. After this step, the followingholds.Lemma 4.3.2 Let B1 and B2 be any pair of n� � n� blocks located in the row ofblocks, and let D be any destination block. Let Ni denote the number of packets inBi that have a destination in D, for 1 � i � 2. Then we have jN1 �N2j � n1��.The above lemma is a special case of Lemma 4.3.1. A corresponding lemma forthe case of sorting is presented in Subsection 4.5.2 (see Lemma 4.5.1). The abovelemma says that all elements with a common destination block are approximatelyevenly distributed over all blocks in the row of blocks. By repeating the local sortingof the blocks after the sort-and-unshu�e operation, we could then make sure that all92

elements with a common destination block are evenly distributed over all columnsof the row of blocks, rather than just over all blocks.4.3.3 The Counter SchemeAs mentioned in the context of the simpli�ed variant of the Valiant/Brebner algo-rithm, to get a correct deterministic algorithm it is often not possible to simplyreplace each randomized step by a corresponding deterministic step. In many cases,it is also necessary to modify some of the other, deterministic steps of a randomizedalgorithm, particularly in the routing of the elements to their �nal destinations. Allof the deterministic algorithms obtained in this chapter have the property that they�rst route each packet to an approximate destination, and then use local routing tobring each packet to its correct �nal destination.More precisely, we partition the network into destination blocks of size n��n�.Every packet is then routed to some position inside the destination block containingits destination address. (In the case of sorting, some packets will actually be routedto neighboring destination blocks.) Once this has been completed, we can then uselocal routing over a distance of O(n�) to bring the packets to their �nal destinations.Algorithms for the local routing problem with a running time of O(n�) have beendescribed by Kunde [56] and Cheung and Lau [15]. This simpli�es the task some-what, since we only have to be concerned with the problem of moving the packetsto their destination blocks.However, when routing the packets into the destination blocks, we have to makesure that not too many packets enter across the same edge, and that no processor ofthe block receives too many packets. In a randomized setting, this can be achievedby routing each packet to a random location within its destination block (see, forexample, the randomized sorting algorithm of Kaklamanis and Krizanc described inSubsection 4.5.1). In our deterministic algorithms, we will use the counter scheme93

described in the following.To explain the idea behind this technique, we consider a routing scheme inwhich all packets are routed along the columns, until they turn into the rows andenter their destination blocks across the row edges. We assume that, after enteringits destination block, each packet keeps on moving in its current direction until itencounters a processor with a free slot in memory. Thus, if we can make sure that allpackets with a common destination block are evenly distributed among the incomingrows of the block, then no processor of the block receives too many packets. Thecounter scheme distributes the packets in each column with a common destinationblock evenly among the entering rows using a system of counters.In every column, we maintain one counter for each destination block of themesh. All counters are initially set to zero. Whenever a packet headed for a certaindestination block arrives at the location of the corresponding counter, this counteris increased. (More precisely, we have two counters for each destination block, onelocated above the destination block and counting forward, and one located below thedestination block and counting backward.) The new value of the counter, togetherwith a �xed o�set value assigned to each counter, determines the row that the packetshould choose to enter its destination block. It will be shown that, in the algorithmspresented in the next sections, this scheme distributes the packets evenly amongthe incoming rows of any destination block, provided that we assign an appropriatepattern of o�set values to the counters.4.4 Permutation RoutingIn this section we apply the ideas explained in the previous section to a randomizedrouting algorithm for the two-dimensional mesh proposed by Kaklamanis, Krizanc,and Rao [44]. We obtain a deterministic algorithm with a running time of 2n+o(n)and a queue size of 5. We also describe some other applications to two-dimensional94

tori and three-dimensional meshes.In the �rst subsection, we give a brief description of the randomized algorithmin [44]. Subsection 4.4.2 contains the new deterministic algorithm. Finally, Subsec-tion 4.4.3 gives some extensions of the result.4.4.1 A Simple Randomized AlgorithmWe now give a brief description of the randomized algorithm in [44]. Partition themesh vertically into four quarters Q0 to Q3, where Qi contains the columns in4 to(i + 1)n4 � 1. Every packet is then �rst routed along the row to an intermediatedestination, where it turns into a column. In this column, the packet moves toits destination row, and then in the destination row to its �nal destination. Theintermediate destination is chosen randomly according to the following rules:(1) Packets in Q0 and Q1 with a destination in Q0 or Q1 choose an intermediateposition in Q0.(2) Packets in Q0 and Q1 with a destination in Q2 or Q3 choose an intermediateposition in Q2.(3) Packets in Q2 and Q3 with a destination in Q0 or Q1 choose an intermediateposition in Q1.(4) Packets in Q2 and Q3 with a destination in Q2 or Q3 choose an intermediateposition in Q3.It is shown in [44] that this routing scheme results in a running time of 2n+O(lgn)and a queue size of O(lgn), with high probability. (The queue size can be im-proved to O(1) with some modi�cations in the algorithm.) An o�-line version of thealgorithm runs in time 2n� 1 with a queue size of 4.95

4.4.2 The Deterministic AlgorithmThe high-level structure of our deterministic algorithm is very similar. As in therandomized algorithm, all packets are �rst routed along the rows to intermediatelocations, then along the columns to their destination rows, and �nally along therows to their �nal destinations. The intermediate locations also satisfy the abovefour rules, but are now determined by an appropriate unshu�e permutation on thecolumns of the mesh, rather than being chosen at random. We also need a fewadditional local steps, and the counter scheme. (Actually, instead of the counterscheme, we could also use an appropriate local sorting step at the end of the columnrouting in Step (6) of the algorithm.) The deterministic algorithm consists of thefollowing steps.Algorithm ROUTE:(1) Partition the mesh into destination blocks of size n� � n�, 2=3 � � < 1, andlet every packet determine its destination block.(2) Partition the mesh into blocks of size n� � n� , 2=3 � � < 1, and sort thepackets in each block by their destination blocks, into row-major order. Here,it is assumed that the set of destination blocks is ordered in some arbitrary�xed way, say according to a row-major order of the blocks.(3) In each quarter Qi, perform an (n1��4)-way unshu�e permutation on thecolumns.(4) Route all packets in Q1 whose destination is in Q0 or Q1 into Q0. Route allpackets in Q0 and Q1 whose destination is in Q2 or Q3 into Q2. Route allpackets in Q2 and Q3 whose destination is in Q0 or Q1 into Q1. Route allpackets in Q2 whose destination is in Q2 or Q3 into Q3. The routing is donein such a way that only row edges are used, and that every packet travels a96

distance that is a multiple of n=4.(5) Again sort the packets in each n� � n� block by their destination blocks, intorow-major order.(6) In each column of the mesh, route every packet to a row passing through itsdestination block. Note that up to this point, we have not yet determinedthe exact row across which a packet will enter its destination block. Thisis now done during the column routing, using the counter scheme explainedin Subsection 4.3.3. This scheme is described in more depth in the followingStep (6a). It will be shown that at most 3 packets turn in any single processor.(6a) In order to get to its destination block, a packet traveling along its col-umn could turn in any of the n� consecutive rows passing through thatblock. To make sure that the row elements are distributed evenly amongthese rows, we maintain in each column n2�2� counters, two for each ofthe 12n2�2� destination blocks in the half of the mesh that contains thecolumn. (Note that all packets are already in the correct half of the meshbefore Step (6).) The n1�� counters for any particular row of 12n1�� des-tination blocks are located in the 12n1�� processors immediately aboveand below the n� rows passing through these destination blocks. When-ever a row element destined for a particular block arrives at one of thetwo corresponding counters, this counter is either increased by one, mod-ulo 2n2��1 (in the case of the counters above the destination rows), ordecreased by one, modulo 2n2��1 (in the case of the counters below thedestination rows). The row across which the packet will enter its desti-nation block is determined by the sum, modulo n�, of the new countervalue and a �xed o�set value associated with each counter. A counterin column i of the half, 0 � i < n=2, that corresponds to a destinationblock in the jth column of destination blocks in this half of the mesh,97

0 � j < 12n1��, is assigned the o�set value (i+ j � 2n2��1) mod n�.(7) Route the packets along the rows into their destination blocks in a greedyfashion, giving priority to the element with the farther distance to travel.After entering its destination block, a packet will stop at the �rst processorthat has a free memory slot for an additional packet. Here, we say that aprocessor has a free slot if it currently holds less than 3 packets that are notjust passing through the processor. Due to the counter scheme in Step (6a),the incoming packets are evenly distributed over the rows of any destinationblock.(8) Perform local routing over a distance of O(n�) to bring every element to its�nal destination.Let us �rst analyze the running time of the above algorithm. Clearly, each ofthe Steps (1), (2), (5), and (8) only take time o(n). Step (3) and Step (4) canbe overlapped as follows. Rather than �rst performing the unshu�e operation inStep (3), and then doing the overlapping in Step (4), we can send the packets directlyto the locations they will assume after Step (4). This means that all blocks in Q0 andQ3, as well as those blocks in Q1 and Q2 that are close to the center column, havereceived all of their elements by time 0:5n+o(n), while it takes up to time 0:75n+o(n)for the other blocks in Q1 and Q2 to receive all of their packets. As soon as a blockhas received all of its packets, it can perform the local sort in Step (5), and startwith the column routing in Step (6). This routing problem is an approximate 2{2relation on a linear array, and can hence be routed in n+o(n) steps (see [44]). Thus,Step (6) of the algorithm will terminate between time 1:5n+ o(n) and 1:75n+ o(n),depending on the location of the column in the mesh. Assuming that Step (6a)has distributed the packets evenly over the incoming rows of each destination block,Step (7) can be interpreted as the problem of routing an approximate 2{1 relationon a linear array of length n=2, where packets that have a distance of d to travel98

are not allowed to move before time n=2�d. This routing process is started at time1:5n + o(n) and terminates at time 2n + o(n). Thus, the above algorithm runs intime 2n+ o(n).It remains to show that the packets are indeed evenly distributed over theincoming rows of each destination block, and that the total queue size is boundedby 5. Consider a destination block D and two n� � n� blocks B1 and B2 located inthe same quarter and the same row of blocks. Lemma 4.3.2 says that the numberof packets with destination block D will di�er by at most n1�� = o(n�) between B1and B2, after Step (4). This implies that after Step (5), the number of packets withdestination block D will di�er by at most 2n1�� between any two columns in thequarter. There are at most n2� packets with destination block D in the quarter.Hence, any of the n4 columns in the quarter can contain at mostn2�n4 + 2n1�� =� 4n2��1packets with destination block D, which are evenly distributed among 2n2��1 rowsby the counter technique (up to a di�erence of 1). (Due to the assignment of o�setvalues to the counters, packets with di�erent destination blocks always turn in dif-ferent processors.) This implies that at most 3 packets turn in any single processor.If we limit our attention to a single column, then all packets with destination blockD in that column are distributed over only a small fraction of the incoming rows ofD. However, if we look at blocks of n� consecutive columns, then the elements withdestination block D in these columns are evenly distributed among all incomingrows of D, due to the n� di�erent o�set values of the 2n� counters correspondingto D. This implies that the routing in Step (7) terminates in such a way that everyprocessor of D receives at most 3 packets.The maximum possible queue size in Step (6) of the algorithm is given by ascenario in which 3 packets have to turn in a given processor, while 2 other packetsare temporarily passing through the processor. The maximum queue size during99

Step (7) is also 5; all other steps achieve even smaller queue sizes.One issue we have ignored so far is that a packet may already be located in arow passing through its destination block before Step (6). Such a packet will notpass any counter on its way along the column. We can assign destination rows tothese packets before the start of the column routing, and set the initial values ofthe counters accordingly. This can be done locally during Step (5) of the algorithm.Altogether, we have shown the following result.Theorem 4.4.1 There exists a deterministic routing algorithm for two-dimensionalmeshes with a running time of 2n+ o(n) and a queue size of 5.For � = � = 2=3, the running time of the algorithm is 2n+O(n2=3). A modi�edversion of the algorithm runs in time 2n+O(n1=2).Kaklamanis, Krizanc, and Rao [44] also give a randomized algorithm that routesany 2{2 relation in time 2n + o(n), and a corresponding o�-line scheme with arunning time of 2n and a queue size of 8. For the deterministic case, we can showthe following result.Lemma 4.4.1 Any 2{2 relation can be routed deterministically in time 2n + o(n)with a queue size of 10.The algorithm proceeds as follows. First, we partition the packets into two setssuch that all packets with a common destination block are evenly divided betweenthe two sets. This can be done deterministically by sorting the packets in eachblock of size n� � n� by destination blocks, and taking the two sets as the packetswith odd and even ranks, respectively. We then route both sets simultaneously,using the deterministic algorithm given above. One of the sets will be routed onrow-column-row paths, and the other one on column-row-column paths. Due to theoverlap between the three phases of the algorithm, it is possible that packets in100

di�erent phases of the algorithm contend for the same edge. These contentions willbe resolved by giving priority to the packet in the lower numbered phase. In [44],Kaklamanis, Krizanc, and Rao show that their randomized algorithm routes any2{2 relation in time 2n + o(n), with high probability. It can be checked that theirproof also extends to our deterministic algorithm.4.4.3 ExtensionsKaklamanis, Krizanc, and Rao also give optimal randomized and o�-line algorithmsfor tori and three-dimensional meshes. In this subsection, we give similar exten-sions for the deterministic case. The �rst extension, an optimal algorithm forthree-dimensional meshes, is achieved by a reduction to the problem of routinga 2{2 relation on a two-dimensional subnetwork, described in [44]. Together withLemma 4.4.1, this gives the following result.Theorem 4.4.2 There exists a deterministic algorithm for permutation routing onthe three-dimensional mesh with a running time of 3n+o(n) and a queue size of 13.The fastest deterministic algorithm previously known for this problem has arunning time of (3 + 13)n and is due to Kunde [57]. Our approach can also beused to obtain deterministic algorithms for routing in d-dimensional meshes withd > 3. Using the unshu�e operation and the counter scheme, we can convert therandomized algorithm of Valiant and Brebner [117] into a deterministic algorithmwith a running time of (2d�1)n+o(n). This can be improved to (2d�3)n+o(n) byusing the above algorithm for three-dimensional meshes as a subroutine. For d = 4,this gives a slight improvement over the fastest previously known algorithm [57],which achieves a running time of (5 + �)n and a queue size of O(1=�). However, forlarger values of d, this approach does not give an improvement over Kunde's results.Algorithms for multi-dimensional meshes with signi�cantly better running times arepresented in the next chapter of this thesis.101

In [44], Kaklamanis, Krizanc, and Rao give a second optimal randomized al-gorithm for the two-dimensional mesh that has a slightly simpler structure thanthe one described in the previous subsection. As before, all packets are routed onrow-column-row paths. A packet that originates in column i and whose destinationis in column i0 chooses its intermediate column uniformly at random from all l withjl� ij+ jl� i0j � n�1. If several packets contend for an edge, priority is given to thepacket with the farther distance to travel. Using the techniques of this chapter, it isnot di�cult to convert this algorithm into a deterministic algorithm with a runningtime of 2n+ o(n) and a queue size of 6.Finally, Kaklamanis, Krizanc, and Rao give an optimal randomized algorithmfor the two-dimensional torus that has a very similar structure. In this algorithm,one half of the packets is routed on row-column-row paths, and the other half oncolumn-row-column paths. A packet that is routed on a row-column-row path, andthat originates in column i and is destined for column i0, chooses its intermediatecolumn uniformly at random from all l with jl � ij+ jl � i0j � n2 � 1. The case ofthe packets that are routed on column-row-column paths is symmetric. If severalpackets contend for an edge, priority is given to the packet with the farther distanceto travel. This algorithm can also be converted into a deterministic one, and weobtain the following theorem. (The exact queue size of the algorithm is between 10and 20.)Theorem 4.4.3 There exists a deterministic algorithm for permutation routing onthe n� n torus with a running time of n+ o(n) and constant queue size.4.5 Optimal Deterministic SortingIn this section, we apply the techniques described in the previous sections to a classof randomized sorting algorithms proposed by Kaklamanis and Krizanc [42]. Weobtain the �rst optimal deterministic sorting algorithm for two-dimensional meshes,102

as well as improved deterministic algorithms for the three-dimensional mesh and thetwo-dimensional and three-dimensional torus.In the �rst subsection, we give a description of the randomized algorithm in [42].In Subsection 4.5.2 we describe the modi�cations required to convert this random-ized algorithm into a deterministic one. Subsection 4.5.3 contains the deterministicalgorithm and a proof of the claimed bounds on time and queue size. Finally, Sub-section 4.5.4 gives a few extensions.4.5.1 An Optimal Randomized AlgorithmIn this following we give a high level description of a randomized algorithm withrunning time 2n + o(n) and constant queue size proposed by Kaklamanis andKrizanc [42]. Their algorithm is based on an earlier 2:5n + o(n) time algorithmof Kaklamanis, Krizanc, Narayanan, and Tsantilas [43]. The complete structure ofthe algorithm is quite complicated, and so our description will necessarily ignore anumber of important details. For a full description the reader is referred to [42].Our description of the algorithm uses a slightly di�erent numbering of the stepsthan the original description. The mesh is divided into four quadrants Q0; Q1; Q2,and Q3. The four quadrants are again divided into a total of 16 subquadrants,labeled T0 to T15. We assume that the four subquadrants located around the centerare labeled T0 to T3. In addition, a block B of side length o(n) around the centerof the mesh is used to sort the sample elements and select the splitters.Algorithm RANDOMSORT:(1) Select a random sample set S of size o(n) from the n2 elements using coinipping.(2) Each sample element picks a random location in the block B at the center of103

the mesh, and routes a copy of itself greedily towards that location. To makesure that the routing is completed in n steps, we give the sample elementspriority over all other elements.(3) Each of the n2 packets in the mesh ips a coin, and, depending on the outcome,declares itself either a row element or a column element.(4) Each row element selects a random location between 0 and n=4 � 1 in itsrow, inside its current subquadrant. Similarly, each column element selects arandom location between 0 and n=4� 1 in its column. Note that in this step,the elements do not actually go to their selected destination. Thus, Step (4)takes time o(n).(5) Now copies of each element are routed to the four locations in the middlesubquadrants T0 to T3 that correspond to the locations randomly selected inStep (4). This means that each of the four subquadrants T0 to T3 receivescopies of all n2 elements in the mesh.(6) The sample set is sorted in the center block B, and n� elements of equidistantranks are chosen as splitters. This takes time o(n).(7) The n� splitters are broadcast in the middle subquadrants T0 to T3. Duringthe broadcast, the global ranks of the splitters are computed using a pipelinedpre�x computation that counts, for each splitter, the number of elements thatare smaller. The results of this computation arrives at the center points of thefour quadrants 0:5n+ o(n) steps after they were sent out.(8) Each element, upon receiving the splitter elements broadcast from the centerof the mesh, can determine its rank to within O(n2��), the accuracy of thesplitters. From this approximate rank, the element can compute the block ofside length O(n1��=2) most likely to contain its �nal destination. If this block104

is outside its current quadrant, the element kills itself. Otherwise, it selects arandom location within this block.(9) All surviving elements route themselves to the chosen location. The routing isdone in a greedy fashion, where row elements �rst route along their column tothe correct row, while column elements �rst route along their row to the correctcolumn. However, a slightly more complicated priority scheme than the usual\farthest distance to travel �rst" is required in this routing step. The samepriority scheme is also employed in our deterministic algorithm; a descriptionof this scheme is given in the proof of Lemma 4.5.5. It can be shown thatevery element reaches its approximate destination within time n + o(n) afterthe splitters were broadcast from the center of the mesh.(10) The exact ranks of the splitter elements are broadcast in each quadrant, start-ing at the center of the quadrant after completion of Step (7). Hence, everyelement receives the exact splitter ranks within n+o(n) steps after the splitterswere broadcast from the center.(11) Now local routing over a distance of O(n1��=2) can be used to bring eachelement to its �nal location in time o(n).The above algorithm can be scheduled in time 2n+ o(n). For a more completedescription of the algorithm, and a proof of the stated time bounds, we refer thereader to the paper by Kaklamanis and Krizanc [42]. Here, we only add the followingremarks considered important in the present context.� The algorithm sorts with respect to an indexing scheme with the property thatprocessors whose indices di�er by O(n2��) are at most O(n1��=2) steps apart.If this condition is not satis�ed, as, for example, in row-major indexing, thenthe elements will not be able to compute good approximate destinations fromtheir approximate ranks in Step (8).105

� One of the purposes of the randomization in Steps (2),(3), and (4) is to get agood bound on the queue size. However, randomization alone will only guar-antee a queue size of O(lg n) with high probability. To reduce the queue sizeto a constant, the algorithm uses a packet redistribution technique describedin [99] and attributed to Leighton.� The routing in Step (5) of the algorithm is done according to a rather in-genious schedule described in [42]. In this schedule, the row elements andcolumn elements of a subquadrant may move along di�erent paths. However,all row elements (column elements) of a subquadrant move in lock step untilthey enter their destination subquadrant. The routing to the random loca-tions selected in Step (4) is done either before the elements start to moveaccording to the schedule, or upon entering the destination subquadrant, orafter they have already reached the destination subquadrant. While we willnot go into the details of this routing schedule, it is nonetheless importantto realize that Step (5) is deterministic, since the random locations of theelements were already chosen in the preceding step. The routing in Step (5)would work equally well if those destinations had been chosen according tosome deterministic strategy. Hence, we will be able to use this schedule in ourdeterministic algorithm without modi�cation.� Finally, note that the routing in Step (5) has to take at least 1:25n steps,and thus will not be completely �nished when the set of splitters is broadcastat time n + o(n). However, it can be shown that all elements reach theirdestination before the arrival of the splitter front.4.5.2 Getting a Deterministic AlgorithmIn this subsection we explain the modi�cations that have to be made in the ran-domized algorithm described in the previous subsection in order to get an optimal106

deterministic algorithm. The randomized algorithm uses randomization in a num-ber of di�erent phases, and for a number of di�erent purposes, which are informallydescribed in the following.� Randomization is used in Step (1) of the algorithm to select a sample set that,with high probability, yields a set of \good", that is, roughly evenly spaced,splitters. In this subsection, we describe a deterministic sampling techniquethat guarantees such a set of \good" splitters, and which can be substitutedfor the randomized sampling in Step (1).� In Step (3), elements use a coin ip to identify themselves as either row ele-ments or column elements. The e�ect of this coin ipping technique is that,with high probability, about half of the elements become row elements (resp.column elements), and that the set of row elements (resp. column elements)is spread out evenly over the range of input values. This can be achieveddeterministically by sorting locally and taking the elements with even ranksas row elements, and the elements with odd ranks as column elements, as inthe algorithm underlying Lemma 4.4.1.� In Step (4), every row element chooses a random position in its row insideits subquadrant, and every column element chooses a random position insideits column. This has the e�ect that, with high probability, the row elements(column elements) of similar rank and, hence, similar �nal destination, areevenly distributed among the columns (rows) of their subquadrant. This isneeded in Step (9) of the algorithm to make sure that the routing of theelements to their destination blocks is �nished within the required time boundsand with constant queue size. The e�ect of this randomization step will be\simulated" with the sort-and-unshu�e operation described in Section 4.3.� Finally, in Step (8) every element selects a random location within its destina-tion block. Here, randomization is used to assure that not too many elements107

route themselves to the same location in their destination block. As demon-strated in the previous section, this can be achieved deterministically by usingthe counter scheme.As in the routing algorithm of Subsection 4.4.2, we divide the mesh into blocksof size n� �n� , with 23 < � < 1. When applying the unshu�e operation to simulateStep (4) of the randomized algorithm, we sort the row elements (column elements)in each block into row-major (column major) order, and then perform an (n1��4)-way unshu�e permutation on the columns (rows) of each subquadrant. The e�ectof this operation is described in the following lemma, which follows directly fromLemma 4.3.1.Lemma 4.5.1 Let B1 and B2 be any pair of n� � n� blocks located in the samerow (column) of blocks of some subquadrant Ti, 0 � i � 15, and let A be any set ofconsecutive values in [n2]. Let Nj denote the number of elements in Bj whose globalrank among all n2 elements is in A, for 1 � j � 2. Then we have jN1�N2j � n1��4 .To simulate the e�ect of Step (3) of the randomized algorithm, we sort eachblock of size n� � n� , and label all elements with even ranks as row elements, andall elements with odd ranks as column elements. We remark that this technique isclosely related to the unshu�e operation. More precisely, the following analogue ofLemma 4.5.1 holds.Lemma 4.5.2 Let A be any set of consecutive values in [n2], and let the number ofrow elements and column elements whose global rank among all n2 elements is in Abe denoted by Nr and Nc, respectively. Then we have jNr �Ncj � n2�2�.The last ingredient needed for our deterministic algorithm is a deterministicsampling technique that results in a set of \good" splitter elements. Our techniqueis essentially a simpli�ed version of a more sophisticated sampling technique used in108

the parallel selection algorithm of Cole and Yap [20]. Our goal is to deterministicallyselect a set of approximately evenly spaced splitters from a set of keys X of cardi-nality n2. More precisely, we are interested in selecting a set of splitter elementsD = fd0; : : : ; dt�1g with di+1 > di, such that the following property holds for all i:(1) (i�1)n2t � Rank (di; X) � in2tTo achieve this, we will our sample set using the following two steps:(i) Partition the mesh into blocks of size n��n� , 23 < � < 1, and sort the elementsin each block.(ii) Select n� equidistant elements from each sorted block as sample elements,starting with the smallest element and going up to the (n�)th largest element.If the elements were sorted into row-major order in the �rst step, then we cansimply select the elements in the �rst column of each block.The sample set selected in the above two steps contains n2�� elements, whichare routed to the center of the mesh and sorted. We claim that the global rankof each sample element can now be computed to within an additive term of n2��.More precisely the following lemma holds.Lemma 4.5.3 Let S be a sample set of size n2�� chosen from a set X of size n2in the manner described above. Then for any s 2 S with Rank (s; S) = i we have(i+ 1� n2�2�) � n� < Rank (s;X) < (i+ 1) � n�:Proof: Let Xi denote the set of elements in block i of the mesh, 0 � i < n2�2�.Partition the sample set S into n2�2� subsets Si, 0 � i < n2�2�, where each Siconsists of those elements of S that were drawn from subset Xi in the �rst phase ofthe sampling algorithm. Now associate with each s 2 Si the set T (s) consisting ofall elements x 2 Xi with s � x < s0, where s0 is next larger sample element drawn109

from the same subset Xi. Note that this de�nes a partition of the input set X , andthat each of the n2�� sets T (s) contains exactly n� elements.Now let s1 2 Si and s2 2 Sj be two arbitrary sample elements. If s1 < s2, thenevery element of T (s2) must be larger than s1. There are jSj � Rank (s1; S) � 1elements s2 with s1 < s2 in S; hence Rank (s1; X) < (Rank (s1; S) + 1) � n�. Ifs2 � s1, then we have the following two cases:(a) If s2 is the largest element in Sj with s2 � s1, then all elements in T (s2),except for s2 itself, can be either smaller or larger than s1.(b) If s2 is not the largest element in Sj with s2 � s1, then all elements in T (s2)must be smaller than s1.Note that there are Rank (s1; S) + 1 elements s2 2 S with s2 � s1, and at mostn2�2� of these fall under case (a), including s1 itself. Hence, at least (Rank (s1; S) +1� n2�2�) � n� elements in X are smaller than s1.2 The following theorem establishes a way of selecting a set of \good" splittersfrom the sample. It can be proved by a simple application of the above lemma.Theorem 4.5.1 Let D be the splitter set of size n� consisting of all s 2 S withRank (s; S) = i � n2�2�, for some nonnegative integer i. Then D is a set of \good"splitters, that is, it satis�es Property (1) stated above.Note that, while the sample set contains !(n) elements, the splitter set selectedfrom the sample is of size o(n). The latter fact will be used in the step of our sortingalgorithm where the entire splitter set is broadcast to every packet in the mesh.110

4.5.3 The Deterministic AlgorithmIn the following description of the deterministic sorting algorithm, we maintain thenumbering of the steps used in the randomized algorithm. Some of the steps in thealgorithm can be taken directly from the randomized algorithm, but others have tobe substantially changed. The algorithm sorts with respect to the blocked indexingde�ned in Section 4.1, where the size of the blocks in the indexing is n�, for someconstant �. The size of the sample and splitter sets is determined by a constant �,already used in the description of the sampling technique in the previous subsection.Finally, we have to choose a constant � that determines the size of the blocks used bythe unshu�e operation. These constants have to be chosen such that 23 < �,�,� < 1.Algorithm SORT:(1) Select a sample set of size n2�� by sorting blocks of size n� � n� and takingthe �rst column in each block. This takes time O(n�) = o(n).(2) Route a copy of the sample set to a block B of size n1��=2�n1��=2 at the centerof the mesh. This can be completed in n steps; the details of this routing stepare given in the proof of Lemma 4.5.4.(3) Divide the n2 elements into n2=2 row elements and n2=2 column elements asdescribed in Subsection 4.5.2. This operation takes time O(n�) = o(n).(4) In each block of size n� � n� , sort the row elements into row-major order.Now select for each row element a new location in its row, within its currentsubquadrant, corresponding to an (n1��4)-way unshu�e permutation on thecolumns, as described in Section 4.3. Similarly, sort the column elements ineach block into column-major order, and select new locations according to an(n1��4)-way unshu�e permutation on the rows. Again, as in the randomizedalgorithm, the elements will not actually move to the chosen locations in this111

step. This will be done in Step (5).(5) This step is the same as in the randomized algorithm. We route copies ofeach element to the four locations in the middle subquadrants T0 to T3 thatcorrespond to the locations chosen in Step (4). This step takes time 1:25n,but every copy reaches its location before the arrival of the splitter elements.(6) This step is also the same as in the randomized case. The sample set is sortedin the center block B, and n� elements of equidistant ranks are chosen assplitters. This takes time O(n1��=2) = o(n), and Theorem 4.5.1 guaranteesthat every splitter can determine its global rank to within O(n2��).(7) This step is again the same as in the randomized algorithm. The splitters arebroadcast in each of the subquadrants T0 to T3, and the exact global ranks ofthe splitter elements are computed. This takes time 0:5n.(8) Each element hit by the splitter front can determine its rank to within arange of O(n2��) ranks. This enables the element to determine the blockof side length n� that will contain most of the elements within this rangein the �nal sorted order. If that block is outside its current quadrant, thenthe element kills itself. Note that an element may actually not end up inthis block in the �nal sorted order, but the properties of our indexing schemeguarantee that the chosen block will be close to its �nal destination. Now,before routing the elements to their approximate destinations, we perform thefollowing additional step:(8a) Divide the mesh into blocks of size n� � n� . As soon as such a blockhas been completely traversed by the splitter front, the row elements inthe block are sorted into row-major order by their n� � n� destinationblocks, where the ordering of the destination blocks can be arbitrary.Similarly, the column elements in the block are sorted into column-major112

order by destination blocks. The purpose of this step is to distribute therow (column) elements with a common destination block evenly amongthe columns (rows) of the n� � n� block.Note that this step takes time O(n�) = o(n) per block, from the moment thesplitter front enters the block until the sorting of the row and column elementsin the block is completed. Thus, we can initiate the routing in the followingStep (9) by broadcasting a Start signal from the center of the mesh O(n�)steps after the broadcast of the splitter set.(9) After the arrival of the Start signal, every element routes itself greedily towardsits destination block. Row elements go �rst along the columns until they reachtheir destination row, and column elements travel �rst along their row untilthey reach their destination column. We can employ the same priority schemethat is used in the randomized algorithm. Note that up to this moment, theexact destinations of the elements inside their destination blocks have notyet been determined. This will be done during the routing, in the followingStep (9a). It will be established in Lemma 4.5.5 that the routing terminatesin n+ o(n) steps with constant queue size. A more detailed description of therouting is given in the proof of the lemma.(9a) Use the counter scheme described in the routing algorithm in Subsec-tion 4.4.2 to distribute the elements evenly over the rows and columnsof the destination blocks. (Alternatively, this could also be achieved byinterleaving the routing in Step (9) with a non-constant number of localsorting steps, such that the total time spent on local sorting is o(n). Thesame idea could also be applied in the case of the routing algorithm forthe torus discussed in Subsection 4.4.3.)(10) This step is the same as in the randomized algorithm. The exact ranks of thesplitter elements are broadcast from the center of each quadrant 0:5n steps113

after the splitters were sent out from the center. After another 0:5n steps, allelements have received the splitter ranks.(11) We now perform local routing over a distance of O(n�) to bring each elementto its �nal destination. This takes time O(n�).Our claim is that this algorithm runs in time 2n+o(n) with constant queue size.The exact bound for the queue size is at most 25; we elaborate on this issue brieyin the proof of Claim 5 in Appendix A. We establish our result in the following twolemmas.Lemma 4.5.4 The sample set of size n2�� selected in Step (1) can be routed inn steps to a block of size n1��=2 � n1��=2 around the center of the mesh, withoutdelaying the routing in Step (5) by more than o(n) steps.Proof: Since our sample set is of size !(n), we have to be a bit careful in thedesign of this routing step to make sure that the movement of the splitters towardsthe center does not delay the movement of the packets in Step (5). We proposethe following solution. After Step (1), all elements in the sample set are located inthe �rst column of their respective n� � n� block. Now move all sample elementslocated in a block that is in the ith row of blocks into the ith column of that block,for i = 1; : : : ; n1��. This can be done in o(n) time by locally routing inside eachblock. Now use column routing to move all sample elements to the n� middle rowsof the mesh. This is completed in 0:5n steps. Next, we use row routing to movethe sample elements into the block in the center, which takes another 0:5n steps.Observe that in the routing we have only used edges in n2�2� = o(n) columns andn� = o(n) rows of the mesh. Hence, we can guarantee that the routing of Step (5)is delayed by at most o(n) steps by simply reserving these edges for the sampleelements, and restricting the other packets to the remaining rows and columns. (Itcan be shown that this restriction is not really necessary.)114

2Lemma 4.5.5 The greedy routing to destination blocks in Step (9) runs in timen+ o(n) with constant queue size.The proof of Lemma 4.5.5 is given in Appendix A. Together, Lemma 4.5.4 andLemma 4.5.5 establish the following result.Theorem 4.5.2 There exists a deterministic algorithm for sorting on the n � nmesh with running time 2n+ o(n) and constant queue size.It is not di�cult to see that the above algorithm still works if we sort withrespect to a slightly di�erent indexing scheme, in which the blocks of size n� � n�are ordered along the diagonals rather than along the rows. This is somewhatinteresting in that there exists a lower bound of 4n�o(n) in the single-packet modelfor this modi�ed indexing scheme. Thus, an indexing scheme that is \good" for themulti-packet model may not be \good" at all for the single-packet model.4.5.4 ExtensionsIn [42], Kaklamanis and Krizanc extend their results to three-dimensional meshesand two-dimensional and three-dimensional tori. These extensions also hold for thedeterministic case, and we get the following results.Theorem 4.5.3 There exists a deterministic algorithm for sorting on the three-dimensional mesh with running time 3:5n+ o(n) and constant queue size.Theorem 4.5.4 There exists a deterministic algorithm for sorting on the two-dimensional torus with running time 1:25n+ o(n) and constant queue size.Theorem 4.5.5 There exists a deterministic algorithm for sorting on the three-dimensional torus with running time 2n + o(n) and constant queue size.115

The best deterministic algorithms previously known for these problems requiredrunning times of 5n+ o(n), 2n+ o(n) and 3n+ o(n), respectively. Using the abovealgorithms for three-dimensional meshes and tori as subroutines, we can obtainimproved algorithms for sorting on d-dimensional meshes and tori, d � 4, withrunning times of (2d � 2:5)n + o(n) and (d � 1)n + o(n), respectively. The bestdeterministic algorithms previously known for these networks required (2d � 1)nsteps on the mesh and dn+ o(n) on the torus [55]. In the next chapter, we presentalgorithms that signi�cantly improve on these bounds, for all d > 5.4.6 Some Other ApplicationsThe techniques described in this chapter can also be applied to a number of otherrandomized algorithms. In the following, we briey describe a few of these applica-tions.Optimal algorithms for k{k sorting on meshes and tori have recently been pro-posed in [47] and [59]. The two algorithms are very similar, and they can both beseen as an e�cient implementation of Leighton's Columnsort [64] on the mesh. Thealgorithm in [47] is obtained by \derandomizing" a randomized algorithm in [46],and provides a particularly simple and elegant application of the sort-and-unshu�eoperation. The result also indicates an interesting relationship between Columnsortand certain classes of simple randomized sorting algorithms.Kaufmann, Meyer, and Sibeyn [45] have recently reported a routing algorithmwith a running time of 2n + O(1) and an internal queue size of 2, based on therandomized algorithm of Kaklamanis, Krizanc, and Rao [44] that was consideredin Subsection 4.4.3. (This translates into a queue size of at most 6 in our model.)This improves on other recent algorithms [17, 106] that are based on the approachof Leighton, Makedon, and Tollis [69].Our techniques can also be used to derive faster deterministic algorithms for116

meshes with additional (non-recon�gurable) row and column buses, based on a classof randomized algorithms described by Sibeyn, Kaufmann, and Raman [107]. SeeChapter 6 for a de�nition of these networks.Another application leads to faster deterministic algorithms for selection onmeshes and tori [111]. The fastest randomized selection algorithm currently knownruns in 1:15n steps [22]. Using the techniques in this chapter, this bound can bematched deterministically.In our presentation, we have only considered those applications that lead toan improvement over the best previous deterministic results. However, many otherrandomized algorithms in the literature can also be converted into deterministicones, including the \original" randomized algorithm for the mesh by Valiant andBrebner [117] and the algorithm of Rajasekaran and Tsantilas [99].4.7 ConclusionIn this chapter, we have described a set of techniques that allows us to \derandom-ize" (in an informal sense) many randomized algorithms for routing and sorting onmeshes that have been proposed in recent years. By applying these techniques, wecan obtain optimal or improved deterministic algorithms for a number of routingand sorting problems on meshes and related networks. The techniques are verygeneral and seems to apply to most of the randomized algorithms that have beenproposed in the literature. In fact, as a result of this work, we are currently notaware of any randomized algorithm for permutation routing or sorting on meshesor related networks whose running time cannot be matched, within a lower orderadditive term, by a deterministic algorithm. (Of course, this claim does not hold formore restricted models of the mesh, e.g., models that only allow hot-potato routing ,or that disallow local sorting steps.)This raises the question whether randomization is of any help at all in the design117

of routing and sorting algorithms for the type of theoretical mesh model assumedin this chapter. In this context, three important points have to be made.� Many of the randomized algorithms still have a simpler control structure andsmaller lower order terms than their deterministic counterparts, which re-peatedly perform local sorting. In fact, the results of this chapter could beinterpreted as saying that randomization is an e�cient way of avoiding suchlocal sorting steps.� The results in this chapter would not have been possible without the extensivestudy of randomized schemes for routing and sorting by a number of authors,which has resulted in a variety of fast randomized algorithms [42, 43, 44, 46,99, 117]. Thus, randomization can also be seen as a useful tool in the designof deterministic algorithms.� Finally, most randomized routing algorithms, including those in [44], can alsobe applied to dynamic routing problems, in which packets are continuouslygenerated during an ongoing computation. In contrast, the deterministic algo-rithms obtained with our techniques cannot be easily adapted to the dynamiccase, due to the local sorting steps.It is an interesting question whether the ideas described in this chapter may alsobe useful for other classes of networks, and perhaps even other types of problems.Of course, as presented the techniques are only e�cient on networks with largediameter, since we repeatedly sort fairly large subsets of the input. A straightforwardapplication to networks with small diameter, such as the hypercubic networks, wouldlead to a blow-up in the running time due to the time spent on local sorting.Subsequent to this work, Sibeyn [105] has reported an optimal algorithm forsorting into row-major order. The algorithm achieves a queue size of 5, and issigni�cantly simpler than the one described in Section 4.5. However, a number of118

questions still remain open, such as the existence of an optimal sorting algorithmthat does not make any copies, or the exact complexity of the selection problem onthe mesh.Another open problem is the complexity of permutation routing and 1{1 sortingon multi-dimensional meshes. The best algorithms currently known are still nearlya factor of 2 away from the diameter lower bound. We will focus on this problem inthe next chapter of this thesisIn this subsection, we have only discussed open questions that are directly re-lated to the results of this chapter. Some other suggestions for future work onmeshes can be found in Chapter 7.

119

Chapter 5Bounds for Multi-DimensionalMeshesThis chapter establishes improved bounds for 1{1 routing and sorting on multi-dimensional meshes and tori. In particular, we give a fairly simple deterministicalgorithm for sorting on the d-dimensional mesh of side length n that achieves arunning time of 3dn=2 + o(n) without making any copies of the elements. We givedeterministic algorithms with running times of 5dn=4+o(n) and 3dn=4+o(n) for thed-dimensional mesh and torus, respectively, that make one copy of each element. Wealso show lower bounds for sorting with respect to a large class of indexing schemes,under a model of the mesh where each processor can hold an arbitrary number ofpackets. Finally, we describe algorithms for permutation routing whose runningtimes come very close to the diameter lower bound.5.1 IntroductionMuch of the previous work on mesh routing and sorting has concentrated on theone-dimensional and two-dimensional cases, while the meshes of dimension d > 2120

(hereinafter referred to as multi-dimensional meshes) have received somewhat lessattention. Although the problems of routing and sorting on these networks havepreviously been studied by a number of authors, there are still considerable gapsbetween the best upper and lower bounds.In this chapter, we focus on the problems of 1{1 routing and sorting on multi-dimensional meshes with constant dimension d. Recall that a d-dimensional mesh ofside length n consists of N = nd processors, where each processor is identi�ed by a d-tupel (p1; : : : ; pd) in [n]d. Two processors P = (p0; : : : ; pd�1) and Q = (q0; : : : ; qd�1)are connected by a bidirectional communication link i� there exists an i in [d] withjpi � qij = 1 and pj = qj for all j in [d] with j 6= i. The d-dimensional torus isobtained from the d-dimensional mesh by adding wrap-around edges between allpairs of processors (p0; : : : ; pd�1) and (q0; : : : ; qd�1) such that there exists an i in [d]with jpi � qij = n � 1 and pj = qj for all j in [d] with j 6= i.In Section 4.1, we de�ned the row-major and snake-like row-major indexingschemes for the two-dimensional mesh. Both of these schemes can be naturallyextended to multi-dimensional networks; see [58] for a formal de�nition. In thischapter, as in the preceding one, we assume a blocked indexing scheme. The indexingscheme is de�ned by partitioning the mesh into d-dimensional blocks of side lengthn�, for some � < 1, and using a snake-like indexing scheme inside each block, whilethe blocks themselves are ordered according to another snake-like indexing. Blockedindexing schemes have recently been used in a number of fast sorting algorithms(e.g., see [42, 43, 47, 59]).An obvious lower bound for the running time of any algorithm for 1{1 routingor sorting is given by the diameter D of the network. (That is, D = d(n� 1) for thed-dimensional mesh and D = dn=2 for the d-dimensional torus.) The performance ofan algorithm for routing or sorting on theoretical models of the mesh is commonlymeasured by its running time, its queue size (that is, the maximum number ofpackets any node has to store during the algorithm), and of course by factors such121

as the overall simplicity of the algorithm and the demands it places on the localcontrol hardware or software. In the following, we focus on the time complexityof routing and sorting on meshes and tori of arbitrary constant dimension, andwe express our results in terms of the diameter D of the network. All presentedalgorithms have a queue size of O(d).5.1.1 Previous ResultsEarly examples of sorting algorithms for multi-dimensional meshes were given byThompson and Kung [114] and Nassimi and Sahni [82]. A lower bound of 2D �n � o(n) for sorting on multi-dimensional meshes was established for the single-packet model [53, 102], in which each processor can only hold a single packet at anytime. This bound applies to most of the indexing schemes used in the literature.An algorithm with a running time of 2D � n+ o(n) was subsequently described byKunde [55].No non-trivial general lower bounds are known for sorting on d-dimensionalmeshes in the multi-packet model, in which a processor can hold any constant num-ber of packets at a time. The best upper bound in this model is currently at2D � 5n=2 + o(n). (This result can be obtained from the 7n=2 + o(n) time sortingalgorithm for the three-dimensional mesh in [42].) Hence, for large values of d, thisupper bound is still nearly a factor of 2 away from the diameter lower bound. Thisis also true in the case of the d-dimensional torus, where the best upper bound iscurrently at 2D � n + o(n). (This bound is implied by the 2n + o(n) time sortingalgorithm for the three-dimensional torus in [42].)Slightly better results have been obtained for permutation routing on d-di-mensional networks. For this problem, Kunde [57] has described algorithms thatrun in time (d+ (d� 2)(1=d)1=(d�2) + �)n on the mesh, and in about half that timeon the torus. For networks of low dimension, this is a signi�cant improvement over122

previous results. However, for larger dimensions this result is again nearly a factorof 2 away from the diameter lower bound. In fact, even for o�-line routing no betterresults are currently known.For the problems of k{k routing and sorting on d-dimensional networks, thereare obvious lower bounds of kn=2 for the mesh and kn=4 for the torus, due to thebisection width of the networks. For k � 4r, several randomized and deterministicalgorithms have recently been proposed that match this lower bound, within a lowerorder additive term [46, 47, 59].5.1.2 Overview of this ChapterIn this chapter, we show improved bounds for 1{1 routing and sorting on multi-dimensional meshes and tori. Our �rst result is a deterministic algorithm for sortingon multi-dimensional meshes of side length n that achieves a running time of 3D=2+o(n). The algorithm has a fairly simple structure, and does not make any copies ofthe packets. We also show that the running time of the algorithm can be reduced to5D=4+o(n) by making one copy of each packet. A similar technique is then appliedto the multi-dimensional torus, leading to a deterministic algorithm with a runningtime of 3D=2 + o(n). In contrast, the fastest previously known sorting algorithmsrequired 2D� 5n=2 + o(n) steps on the mesh and 2D�n+ o(n) steps on the torus.Thus, our algorithms improve signi�cantly over previous results for sorting,and in fact even for o�-line routing, on multi-dimensional meshes and tori. Theideas underlying our algorithms are quite simple, but the ideas used in the designand analysis are somewhat di�erent from those in previous algorithms for multi-dimensional networks. While we restrict our attention in this chapter to constantvalues of d, the claimed time bounds also hold for a limited range of networks ofnon-constant dimension.In addition, we show lower bounds for sorting with respect to a large class of123

indexing schemes, under a model of the mesh where each processor can hold anarbitrary number of packets. Our lower bounds are the �rst non-trivial generallower bounds for sorting in the multi-packet model of the mesh, and they implythat our upper bounds are nearly optimal on networks of su�ciently high constantdimension under a large class of indexing schemes. (Some restricted lower boundsfor the two-dimensional mesh have been obtained by Narayanan [81].) In fact, weare not aware of any fast sorting algorithm for multi-dimensional networks that usesan indexing scheme not covered by our lower bound. Using similar ideas, we canalso establish a lower bound for selection on multi-dimensional meshes.Finally, we describe algorithms for permutation routing on multi-dimensionalmeshes and tori whose running times nearly match the diameter lower bound. Inparticular, the algorithms achieve a running time of D + �n, for any � > 0 and dsu�ciently large (depending on �).The remainder of this chapter is organized as follows. Section 5.2 contains someuseful de�nitions and lemmas. Section 5.3 describes our algorithms for sorting. Sec-tion 5.4 contains the lower bounds, and Section 5.5 gives our results for permutationrouting. Finally, Section 5.6 lists some open questions for future research.5.2 PreliminariesIn this section, we give some useful de�nitions and lemmas. We begin with a briefdiscussion of the sort-and-unshu�e operation described in Chapter 4. In Subsec-tion 5.2.2, we state some results on greedy routing of certain classes of permutations.5.2.1 Randomization and Unshu�ingIn the following, we review the technique for converting randomized into determin-istic algorithms for routing and sorting on meshes described in Chapter 4. The124

technique is based on an operation called sort-and-unshu�e. The purpose of thisoperation is to evenly distribute packets with similar destinations (in the case ofrouting) or similar ranks (in the case of sorting) over some large region of the net-work, using a combination of local sorting and o�-line routing.In the following, we assume an arbitrary blocked indexing scheme on a d-di-mensional mesh, where the blocks have side length n� with � < 1. In the �rst stepof the sort-and-unshu�e operation, the packets are sorted inside each block. In thesecond step, the packets of each block are distributed evenly over all the blocks. Thisis done by routing the packet of rank j, 0 � j < nd�, in block i, 0 < i � nd(1��), toposition i+ jj=nd(1��)k � nd(1��) in block j mod nd(1��).Note that this second step is an o�-line routing problem; the particular permu-tation that has to be routed will be referred to as unshu�e permutation. (If we layout the processors of the network in a chain according to the indexing function, thenthis permutation is identical to an (nd(1��))-way unshu�e operation on the chain,as de�ned in Subsection 4.3.2.)Informally speaking, the structure of the unshu�e permutation exhibits manyof the \nice" properties commonly associated with \average" or \random" permuta-tions. In particular, the unshu�e permutation has the property that the destinationsof the packets in any region of the network are approximately evenly distributedover the entire network. As a consequence, an unshu�e permutation can usually berouted as e�ciently as a random permutation.It was shown in Chapter 4 that the sort-and-unshu�e operation can in manycases be employed as a \substitute" for randomization. Following a scheme originallyproposed by Valiant [116], many randomized algorithms for routing and sorting onmeshes start by sending the packets to random intermediate destinations. This hasthe e�ect of distributing packets with destinations close to each other evenly over thenetwork. The sort-and-unshu�e operation simulates this e�ect in a deterministicmanner. Using this relationship between randomization and the sort-and-unshu�e125

operation, the algorithms of this chapter can be described in both randomized anddeterministic terms.Note that the de�nition of the unshu�e permutation is with respect to a partic-ular indexing scheme and its associated constant �. If � = 1=2, then every unshu�epermutation sends exactly one packet from block i0 to block i1, for all i0; i1 with0 � i0; i1 < nd(1��). (That is, every unshu�e permutation performs an \all-to-all"or \total exchange" among blocks of side length n�.) For any two unshu�e permu-tations �0 and �1 with respect to indexings I0 and I1, respectively, with � = 1=2, wehave �0 = �0 ��1 � �1, where �0 and �1 are appropriately chosen local permutationsthat move packets only within the blocks. Thus, to show that all unshu�e permuta-tions with � = 1=2 can be e�ciently routed, it su�ces to show that some unshu�epermutation with � = 1=2 can be e�ciently routed. Similarly, we can also reduceany unshu�e permutation with � > 1=2 to the case � = 1=2 by performing localpermutations before and after the unshu�e permutation. Thus, for the remainderof this section, we assume � = 1=2.5.2.2 Some Results on Greedy RoutingRouting is used as an important subroutine in many sorting algorithms for �xed-connection networks. In the algorithms presented in this chapter, we use the sort-and-unshu�e operation of Chapter 4, and therefore we need e�cient routing schemesfor unshu�e permutations. (Our results can also be obtained using randomizationinstead of the sort-and-unshu�e operation. We believe that the analysis is somewhatsimpler in the deterministic case.)We consider two di�erent greedy routing schemes, which we refer to as thestandard greedy and the extended greedy routing scheme. In the standard greedyrouting scheme [65], every packet moves greedily towards its destination along edgesof increasing dimension. In the case of edge contentions, priority is given to the126

packet with the farthest distance to travel.In the extended greedy routing scheme, several permutations are simultaneouslyrouted by running d \copies" of the standard greedy routing scheme. More precisely,we partition the set of packets into d sets S0; : : : ; Sd�1 of (approximately) equal size,and route the packets in set Si along edges of increasing dimension modulo d, startingwith dimension i and ending with dimension (i� 1) mod d.Note that if the input for the extended greedy routing scheme is not givenin the form of k separate permutations, but as a k{k routing problem, then weneed to make sure that the origins and destinations of the packets in each set Siare (approximately) evenly distributed over the entire network. This can be doneeither in a randomized way, by having each packet choose a random set Si, or in adeterministic way, by locally sorting blocks of side length o(n), and de�ning Si asthe set of packets with a local rank y such that y mod d = i.It is a natural question to ask how many (random or unshu�e) permutationscan be routed simultaneously under the above routing schemes. To make this ques-tion more precise, we de�ne the notions of diameter-optimal and distance-optimalrouting. We say that a routing algorithm on a d-dimensional mesh is diameter-optimal if all packets are delivered to their destination in time D + o(n), where Dis the diameter of the network. We say that a routing algorithm is distance-optimalif each packet is delivered in time S + o(n), where S is the distance between thesource and the destination of the packet.In the context of an optimal randomized algorithm for k{k sorting, it was shownby Kaufmann, Rajasekaran, and Sibeyn [46] that up to 4d random permutations canbe routed diameter-optimally on d-dimensional meshes and tori under the extendedgreedy routing scheme, with high probability. The same bound can also be shownfor unshu�e permutations, leading to the optimal deterministic algorithms for k{k sorting in [47, 59]. However, these results cannot be extended to the case ofdistance-optimal routing. 127

For the standard greedy routing scheme, it is easy to see that one unshu�epermutation can be routed distance-optimally on d-dimensional meshes and tori.Leighton [65] has shown that this is also the case for a single random permutation,with high probability. (In fact, his result shows that it is unlikely that any packet isdelayed by more than O(lg n) steps.) For the extended greedy routing scheme, wecan show the following result.Lemma 5.2.1 Up to 2d unshu�e permutations can be routed distance-optimally onthe d-dimensional torus.Proof: We show how to route 2d unshu�e permutations with � = 1=2 in such away that no two packets ever contend for an edge, and hence no packet ever getsdelayed during the routing. For the sake of simplicity, we assume n� = n1=2 to beodd.Due to the structure of a torus, we can consider every block of side length n1=2to be at the center of a d-dimensional mesh (without wrap-around edges). There arend=2 blocks containing nd=2 processors each. In each block Bi, we can now assignone processor to each of the nd=2 blocks in the entire network, as follows. We assignthe center processor of Bi to Bi itself, and we assign each other processor Pj to theunique block in the network whose position with respect to Bi corresponds to theposition of Pj with respect to the center processor of Bi.Thus, in each block Bi, we obtain a mapping �i that maps each block Bj in thenetwork to a processor �i(Bj) in Bi. We now use this mapping to de�ne the startpositions of the packets originating in Bi. We assume that the packets are given inthe form of 2d permutations S� , 0 � � < 2d, and that permutation S� is routed �rstalong dimension � mod d.We �rst assign start positions to the packets in S0 to Sd�1. De�ne � : [n1=2]d 7![n1=2]d as the function that shifts the coordinates of an element of [n1=2]d by � posi-tions to the right, or formally, �((x0; : : : ; xd�1)) = (xd�� ; : : : ; xd�1; x0; : : : ; xd���1).128

Then a packet in S� with source in Bi and destination in Bj is initially located inprocessor �(�i(Bj)) in Bi. (Here, we assume that each processor in Bi is identi�edby an element of [n1=2]d, with (0; : : : ; 0) being the processor with the smallest globalcoordinates in Bi.)A packet starting in location (x0; : : : ; xd�1) of Bi is routed to the correspondingprocessor (x0; : : : ; xd�1) of its destination block Bj . This means that the distance apackets travels in a single dimension is always a multiple of n1=2, and that packetsonly turn into the next dimension at times l � n1=2 with l 2 N. Due to the aboveassignment of initial locations to the packets, and due to the structure of the torus,whenever a packet p0 in S0 has to turn, say from dimension � into dimension � + 1,then the (at most) d � 1 other packets pj 2 Sj , 1 � j < d, currently located inthe same processor have the property that pj has to turn from dimension (� +j) mod d into dimension (� + j + 1) mod d. In addition, a packet pj that turns intoa new dimension continues to travel in the same direction as the packet p(j+1)modd it\replaces" in this dimension. Thus, all packets can turn into their new dimensionswithout contention.It remains to show that the permutations Sd to S2d�1 can be routed at thesame time as S0 to Sd�1. Let � : [n1=2]d 7! [n1=2]d be the function that maps eachprocessor (x0; : : : ; xd�1) 2 [n1=2]d in a block Bi to the unique processor (y0; : : : ; yd�1)that has the same distance from the center processor of Bi, but is located in theopposite direction from the center processor. Then a packet in S�+d, 0 � � < d, withsource in Bi and destination in Bj is initially located in processor �((x0; : : : ; xd�1)),where (x0; : : : ; xd�1) = �(�i(Bj)) is the initial location the packet would haveassumed if it were contained in set S� . This means that throughout the routing, nopacket in the sets Sd to S2d�1 will ever contend for an edge with a packet in the setsS0 to Sd�1, since any packets from these sets that are encountered always move inthe opposite direction.2 129

However, this simple analysis does not extend to the case of the d-dimensionalmesh without wrap-around edges. In fact, it is not di�cult to show that evend random permutations cannot be routed distance-optimally on the d-dimensionalmesh under the extended greedy routing scheme. Using a more complicated analysis,we can show the following result for meshes without wrap-around edges.Lemma 5.2.2 Up to bd=2c unshu�e permutations can be routed distance-optimallyon the d-dimensional mesh.We only describe the main ideas behind the proof. Let � = 1=2. We partitionthe set of packets into d subsets by splitting each of the bd=2c permutations �i intotwo sets S2i and S2i+1, such that S2i contains all the packets that have a destinationin a block Bj with j = 0 mod 2. The initial locations of the packets in S0 to Sd�1are then chosen in exactly the same way as in the case of the sets S0 to Sd�1 inthe proof of the previous lemma. (That is, in the de�nition of the mappings �i,we treat the mesh as if it were a torus with wrap-around connections.) To showthat the packets are routed distance-optimally under the extended greedy routingscheme, we need to upperbound the number of packets that have to pass throughany directed edge at any point in time; this is done using bounds for certain surfacesin d-dimensional space similar to the bounds for volumes in Lemma 2 of [32].The maximum number of permutations that can be routed distance-optimallyon the mesh is actually slightly larger than the above bound. In particular, we canprove the following result for the case of the three-dimensional mesh.Lemma 5.2.3 For d = 3, two unshu�e permutations can be routed distance-opti-mally on the d-dimensional mesh. 130

5.3 Upper Bounds for SortingIn this section, we give improved algorithms for 1{1 sorting. In the �rst subsection,we describe the basic ideas underlying our algorithms. Subsections 5.3.2 and 5.3.3contain our algorithms for multi-dimensional meshes and tori, respectively.5.3.1 Basic IdeasThe basic ideas underlying our algorithms are quite simple. Consider the case of thed-dimensional mesh, and let C denote the set of processors that have a distance ofat most D=4 from the center. Note that exactly half of the processors of the networkare contained in this center region C. Also, no processor in C has a distance of morethan 3D=4 from any other processor of the network.These observations lead to the following idea for a fast sorting algorithm. Inthe �rst phase, we concentrate all packets into the center region C, in such a waythat packets of similar ranks are evenly distributed over C. Next, we locally sortthe packets inside each block of side length n� (as de�ned by the blocked indexingscheme) that is contained in C. Since all packets were evenly distributed overthe center region in the �rst phase, we can use the local ranks of the packets toobtain good approximations of the global ranks, and hence the �nal destinations,of all packets. In the third phase, we route each packet to some location in theblock containing its approximate �nal destination. In the fourth phase, we use localsorting to bring each packet to its �nal destination.Note that no packet has to travel a distance of more than 3D=4 in the �rst orthe third phase. Thus, if we can show that the routing in these two phases can bedone distance-optimally, then the above scheme runs in time 3D=2 + o(n).In the next subsection, we give a more detailed description of a deterministicalgorithm based on the ideas presented in this section. We show that the routingproblems in the �rst and third phase of the algorithm can be reduced to the simul-131

taneous routing of several unshu�e permutations. We also present an even fasteralgorithm that makes one copy of each packet. In Subsection 5.3.3, we use similarideas to obtain algorithms for the d-dimensional torus.5.3.2 Sorting on Multi-Dimensional MeshesIn the following, we give fast deterministic sorting algorithms based on the ideasdescribed in the previous subsection. We assume a blocked snake-like indexingscheme with blocks of side length n�. In addition, we also assume an arbitrary �xednumbering of the nd(1��)=2 blocks located in the center region C, independent ofthe indexing scheme. We begin with the following simple algorithm:Algorithm SimpleSort:(1) Sort the packets in each block of side length n�.(2) Distribute the packets in each block evenly over all blocks in C. This is doneby routing the packet of rank i, 0 � i < nd�, in block j, 0 < j � nd(1��),to position j + ji=nd(1��)k � nd(1��) in block i mod (nd(1��)=2) in C. (Here,the numbering of the destination blocks is with respect to the arbitrary �xednumbering of the blocks in C.) Note that each processor in C receives exactlytwo packets.(3) Sort the packets in each block of side length n� in C.(4) Send the packets in each block in C towards their destinations. This is doneby routing the packet of rank i, 0 � i < 2nd�, in block j, 0 < j � nd(1��)=2of C to position j + (i mod 2nd(2��1)) � nd(1��)=2 in block ji=(2nd(2��1))k.(Here, the numbering of the source blocks is with respect to the arbitrary�xed numbering of the blocks in C.) Note that each processor in the networkreceives exactly one packet. 132

(5) Perform two steps of odd-even transposition sort between neighboring blocks.The correctness of the above algorithm is implied by the following lemma, whichcan be proved along the lines of Lemma 3.2 in [47].Lemma 5.3.1 After Step (4) of Algorithm SimpleSort, each packet is at most oneblock away from its destination.Next, we analyze the running time of the above algorithm. Clearly, Steps (1),(3), and (5) each run in time O(n�) = o(n). For the routing in Step (2), the followingcan be shown.Lemma 5.3.2 Step (2) of Algorithm SimpleSort can be reduced to the routing oftwo partial unshu�e permutations.Proof: Consider the packets of a single unshu�e permutation �. Let S be the setof processors that contain a packet with destination in C. In each block, exactly halfof the processors are in S, and the destinations of the packets in these processorsare evenly distributed over all blocks in C. Let �0 be the partial permutationconsisting only of the packets that are initially located in S. After �0 has beenrouted, we move the remaining half of the packets to the processors in S. By routinganother instance of the partial unshu�e permutation �0, we can now distribute theseremaining packets evenly over the blocks in C. Of course, the two instances of �0can also be started simultaneously.2 By Lemma 5.2.3, we know that two partial unshu�e permutations can be routeddistance-optimally on meshes of dimension d � 3. Since no packet has to travel adistance of more than 3D=4, this implies that the routing is completed in time3D=4 + o(n). Also note that the routing problem in Step (4) is exactly the inverse133

of the problem in Step (2), and therefore runs within the same time bound. Thisestablishes the following result.Theorem 5.3.1 For any constant d, there exists a deterministic sorting algorithmfor the d-dimensional mesh with a running time of 3D=2 + o(n) that does not makeany copies of the packets.By Lemma 5.2.2, up to bd=2c unshu�e permutations can be routed distance-optimally on d-dimensional meshes. By modifying Algorithm SimpleSort appro-priately, we can use this extra bandwidth to establish the following result for k{ksorting.Corollary 5.3.1.1 If k � bd=4c, then there exists a deterministic algorithm for k{ksorting on the d-dimensional mesh with a running time of 3D=2 + o(n) that doesnot make any copies of the packets.We can also get a slight improvement in the running time for 1{1 sorting, byconcentrating the packets into a smaller center region C. In general, however, therunning time of this improved algorithm is still (3=2 � �)D, for all � > 0 and dsu�ciently large (depending on �).Corollary 5.3.1.2 Let C(r) be the set of processors of distance at most r from thecenter point. If jC(r)j � 2nd=d, then there exists a deterministic sorting algorithmfor the d-dimensional mesh with a running time of D + 2r + o(n).Next, we show that the time for 1{1 sorting can be reduced to 5D=4 + o(n)by making one copy of each packet. To do so, we modify Algorithm SimpleSortappropriately; the resulting algorithm is called CopySort. Steps (1), (3), and (5)remain the same as in Algorithm SimpleSort. The routing in Step (2) of SimpleSortis augmented as follows. As before, we distribute the packets evenly over the blocks134

in C. In addition, we make one copy of each packet, and route this copy to aprocessor in the unique block of the center region C that is located exactly on theopposite side of the center point than the destination processor of the original inthis step, and that has the same distance from the center point. The routing ofthe copies can be done simultaneously with the routing of the originals, and theentire Step (2) can be implemented by routing four partial unshu�e permutations.By Lemma 5.2.2, the routing is completed in 3D=4 + o(n) steps for d � 8. Thefollowing lemma can be shown using simple geometric arguments.Lemma 5.3.3 After Step (3) of Algorithm CopySort, no processor in the networkis more than a distance of D=2 + o(n) away from both the original and the copy ofany packet.In Step (4) of CopySort, we �rst delete either the original or the copy of eachpacket, depending on which one is farther away from the destination. Then theremaining packets are routed towards their destination. This routing can again beimplemented by four partial unshu�e permutations. By Lemma 5.3.3, no packethas to travel more than a distance of D=2. This establishes the following result.Theorem 5.3.2 For any constant d � 8, there exists a deterministic sorting algo-rithm for the d-dimensional mesh with a running time of 5D=4 + o(n).For larger values of d, this result can again be slightly improved by concentratinginto a smaller center region. Alternatively, we can also adapt the algorithm to k{ksorting with k � bd=8c.5.3.3 Sorting on Multi-Dimensional ToriIn this subsection, we adapt the ideas of the previous subsections to the case ofthe d-dimensional torus. We describe a modi�cation of the Algorithm CopySort135

from the previous subsection, which we refer to as TorusSort. As before, Steps (1),(3), and (5) perform local sorting operations. In Step (2), we distribute the packetsevenly over the entire network. In addition, we also make a copy of each packet, androute this copy to a processor in the unique block in the network that is D=2 stepsaway from the destination processor of the original packet in this step. Step (2) canbe implemented by routing two full unshu�e permutations; the routing takes timeD + o(n). Then the following lemma holds.Lemma 5.3.4 After Step (3) of Algorithm TorusSort, no processor in the networkis more than a distance of D=2 + o(n) away from both the original and the copy ofany packet.As before, half of the packets are deleted in Step (4), and the remaining packetsare routed towards their destination. This routing can be implemented by twopartial unshu�e permutations. By Lemma 5.3.4, no packet has to travel more thana distance of D=2 + o(n). Using Lemma 5.2.1 we obtain the following result.Theorem 5.3.3 For any constant d, there exists a deterministic sorting algorithmfor the d-dimensional torus with a running time of 3D=2 + o(n).By modifying Algorithm TorusSort appropriately, and using the extra band-width supplied by Lemma 5.2.1, we can establish the following result.Corollary 5.3.3.1 For any constant d, there exists a deterministic algorithm ford{d sorting on the d-dimensional torus with a running time of 3D=2 + o(n).Alternatively, we can also get a slight improvement in the running time for1{1 sorting. As an example, we can obtain a fairly simple algorithm for the two-dimensional torus that uses four copies of each packet and runs in time 1:375n. Ingeneral, however, the running time of the improved algorithm is still (3=2� �)D, forall � > 0 and d su�ciently large (depending on �).136

5.4 Lower Bounds for SortingIn this section, we establish lower bounds for sorting on multi-dimensional meshesand tori under the multi-packet model. The lower bounds hold for a large class ofindexing schemes, including most of the indexing schemes used in the literature. Ourlower bound technique is an extension of the Joker Zone argument of Kunde [53]and Schnorr and Shamir [102] to the multi-packet model. An important di�erenceis that our lower bounds are based on edge capacity arguments, and do not placeany limits on the number of packets that can be held inside a single processor. Webegin the section with a few de�nitions.We say that an indexing scheme I of the d-dimensional mesh is compatible ifthere exists a � < 1 such that for every index i 2 [nd � n�d], the set of processorswith indices in fi; : : : ; i+ n�d � 1g contains a complete (d� 1)-dimensional subnet-work of side length n. (Informally speaking, this means that a compatible indexingscheme has the property that a joker zone of n�d packets su�ces to move the �naldestination of a packet to any processor within a (d� 1)-dimensional sub-network.)Note that the natural extensions of the row-major, snake-like, blocked row-major,and blocked snake-like indexing schemes to multi-dimensional networks are com-patible indexing schemes. In the remainder of this section, we assume an arbitrarycompatible indexing scheme with associated constant �.We use Cd; to denote the processors of a d-dimensional diamond of radius(1 �) � D=4 around the center of a d-dimensional mesh. (That is, the set ofprocessors that have a distance of at most (1 �) � D=4 from the center.) Thenumber of processors in Cd; is denoted by Vd; , and the number of processors onthe surface of Cd; is denoted by Sd; . Then the following upper bounds can beshown using Cherno� Bounds [14]. 137

Lemma 5.4.1 For any d and any > 0, we haveVd; � e�2d=4 � ndand Sd; � 8 � e�2d=16 � nd�1:5.4.1 Sorting without CopyingWe �rst establish a lower bound for sorting under the restriction that no copies ofthe packets can be made. Our main lemma for this case is as follows.Lemma 5.4.2 Let d and be chosen such thatd � Sd; � ��12 + 1� 4 � �D � dn�� < nd � Vd;holds for large enough n. If no copying of packets is allowed, then sorting on thed-dimensional mesh with respect to an arbitrary compatible indexing scheme takesat least D + (1�) �D=2� n� dn� steps.Proof: Consider the computation of an arbitrary sorting algorithm up to time(12 + 1�4) �D � dn� . At most d � Sd; packets can enter the diamond Cd; in eachstep. Thus, the above inequality implies that not all of the nd � Vd; packets thatare initially outside the diamond can have entered up to this point.Now consider an arbitrary packet located outside the diamond at time (12 +1�4) �D�dn� . This packet has a distance of at least (12 + 1�4) �D from at least oneof the corners of the network. (Otherwise, the packet would be in the diamond.)Thus, the present position of the packet is independent of the content of a block ofside length n� located in that corner.As we assume a compatible indexing scheme, the content of this block can forcethe destination of the packet to be in any processor of a (d � 1)-dimensional sub-network of side length n. There exists a processor in this sub-network that has a138

distance of at least (12 + 1�4) �D�n from the current position of the packet. Hence,at least (12 + 1�4) � D � n additional steps are needed under some assignment ofvalues to the corner block.2Theorem 5.4.1 If no copying of packets is allowed, then for every � � 0 thereexists a d0 such that for all d � d0, sorting on the d-dimensional mesh with respectto a compatible indexing scheme takes at least (3=2� �)D steps.To establish this theorem, we use Lemma 5.4.1 to show that the condition inLemma 5.4.2 holds for = 3� and d su�ciently large (depending on �), The claimthen follows by a direct application of Lemma 5.4.2. Together with Theorem 5.3.2,this result establishes a separation between the complexities of sorting with andwithout copying, for large values of d. Unfortunately, Lemma 5.4.1 does not giveany good bounds for small values of d. In this case, we can show lower bounds byadapting our argument to the particular network in question. In particular, we canestablish the following theorem.Theorem 5.4.2 If no copying of packets is allowed, then for d � 5 the diameterbound cannot be asymptotically matched under any compatible indexing scheme.For the torus, it can be shown that the lower bounds for the single-packetmodel also extend to the multi-packet model, assuming that no copying is allowed.Informally speaking, the reason is that the torus does not have a center point towardswhich the packets could be routed.5.4.2 Sorting with CopyingOur lower bound technique can also be extended to a model in which unlimitedcopying of packets is allowed. For this case, we obtain the following result.139

Theorem 5.4.3 If unlimited copying of packets is allowed, then for every � � 0there exists a d0 such that for all d � d0, sorting on the d-dimensional mesh withrespect to a compatible indexing scheme takes at least (5=4� �)D steps.We only describe the main ideas in the proof of the above theorem. The basicidea for this lower bound is that we choose the center diamond small enough suchthat only a small fraction of the packets can be routed into this diamond. Next,we argue that the edge bandwidth of the network does not allow every packet todistribute a large number of copies of itself over the network. (Formally, the numberof communication steps required to route copies of a packet to a number of locationsin the network is lowerbounded by the length of a minimal \broadcast tree" con-necting these locations.) This implies that an appropriate loading of the joker zonescan force the rank of a packet to be such that no copy is close to its destination.However, this technique does not give any non-trivial lower bounds for reason-able values of d. We expect that some results for smaller d can be obtained byadapting our argument to the particular low-dimensional network in question. Inthe case of the torus, we obtain the following result.Theorem 5.4.4 If unlimited copying of packets is allowed, then for every � � 0there exists a d0 such that for all d � d0, sorting on the d-dimensional torus withrespect to a compatible indexing scheme takes at least (3=2� �)D steps.The lower bounds can be extended to many non-compatible indexing schemes.In fact, it is not di�cult to show that the above bounds hold for the vast majorityof all possible indexing schemes. (A similar result for the single-packet model wasdescribed by Kunde [54].) Of course, such a result is not a very good measure forthe generality of our lower bounds, since most indexing schemes are highly irregularand thus unsuitable for any e�cient sorting scheme. More important in this respectis that we are not aware of any fast sorting algorithm that assumes an indexingscheme not covered by our lower bound.140

5.4.3 SelectionUsing similar ideas, we can also show a lower bound of (9=16��) �D for the problemof selecting the median at the center processor of a high-dimensional mesh. A triviallower bound for this problem is given by the radius of the network. (That is, D=2for the multi-dimensional mesh and D for the multi-dimensional torus.)By Lemma 5.4.1, we know that for any � > 0 and any su�ciently large d, only asmall fraction of the packets can enter Cd;� in the �rst D=2 steps of any algorithm.Let x be any processor outside Cd;�. Then the set of processors that have a distanceof at most (5=16� 2�) �D from x contains only a small fraction of the nd processorsin the network. This means that up to time (5=16�2�) �D, no packet located outsideCd;� can be \ruled out" as the median element. Hence, up to (1� �) �D=4 additionalsteps may be necessary to move the median to the center processor, and we get thefollowing result.Theorem 5.4.5 For every � � 0 there exists a d0 such that for all d � d0, selectionon the d-dimensional mesh takes at least (9=16� �)D steps.An upper bound of D + o(n) can be obtained by a modi�cation of the sortingalgorithms in Section 5.3. For large values of d, this result can be improved to3D=4 + �n. On the multi-dimensional torus, a running time of D + �n can beachieved for large d, thus coming very close to the trivial lower bound of D.5.5 Permutation RoutingThe lower bounds established in the previous section are restricted to the case ofsorting. In this section, we show the existence of algorithms for permutation routingon multi-dimensional networks that nearly match the diameter lower bound. Thealgorithms are based on similar ideas as the sorting algorithms in Subsection 5.3. In141

particular, they use a similar reduction to the distance-optimal routing of a numberof unshu�e permutations.Consider the following idea for a randomized routing algorithm. For a packetwith source processor x and destination processor y, we de�ne S(x; y) as the setof processors that have a distance of at most D=2 from both x and y. Note thatS(x; y) is non-empty for all x and y. Thus, a simple two-phase algorithm could routea packet with source x and destination y by �rst sending the packet to a randomprocessor in S(x; y), and then to its destination y. If we could solve the resultingtwo routing problems distance-optimally, then we would obtain a total running timeof D + o(n) for the algorithm.Unfortunately, we do not know how to reduce these two routing problems to asmall number of random or unshu�e permutations. To do so, we have to modifythe above algorithm slightly. We de�ne S�(x; y) as the set of processors that have adistance of at most D=2 + � from both x and y. In the �rst phase of the algorithm,we now route each packet with source x and destination y to a random processorin S�(x; y). In the corresponding deterministic algorithm, we partition the networkinto blocks of side length n�, and distribute all packets with source in block X anddestination in block Y evenly over S�(X; Y), the set of blocks that have a distanceof at most D=2 + � from both block X and block Y .If we choose � such that k � jS�(X; Y)j � nd holds for all blocks X and Y , thenwe can reduce each phase of the algorithm to the simultaneous routing of k unshu�epermutations. For a block X , de�ne c(X) as the corner processor that is closestto X . Then we can lowerbound jS�(X; Y)j by jS�(c(X); c(Y))j. An analysis showsthat for d � 4 and � = n=2, we have bd=2c � jS�(c(X); c(Y))j � nd, and hence we canreduce each phase of the algorithm to the routing of bd=2c unshu�e permutations.Using Lemma 5.2.2, we obtain the following result.Theorem 5.5.1 For all d, there exists a deterministic algorithm for permutation142

routing on the d-dimensional mesh with a running time of D + n+ o(n).The routing scheme can be easily adapted to the multi-dimensional torus. Ford � 3 and � = n=16, we have 2d � jS�(X; Y)j � nd, and by Lemma 5.2.1 we obtainthe following result.Theorem 5.5.2 For all d, there exists a deterministic algorithm for permutationrouting on the d-dimensional torus with a running time of D + n=8 + o(n).An analysis using the bounds in Lemma 5.4.1 shows that in high-dimensionalmeshes (tori), most processors have a distance of around D=2 from any particularcorner (any particular processor). This means that as d increases, we can choosesmaller and smaller values for �.Theorem 5.5.3 For all � > 0, there exists a d0 such that for all d � d0, permutationrouting can be done in time D + �n on d-dimensional meshes and tori.Finally, by making careful use of the bandwidth provided by Lemma 5.2.1, wecan show the following result for the torus. Note that this result comes very closeto both the diameter and the distance bound.Theorem 5.5.4 For all � > 0, there exists a d0 such that for all d � d0, 2d{2drouting can be done in time (1 + �) �D on d-dimensional tori.5.6 Open QuestionsIn this chapter, we have shown improved bounds for routing and sorting on multi-dimensional meshes and tori. While our bounds are nearly tight for high-dimensionalnetworks, we do not obtain very good bounds for networks of small, �xed dimension.In particular, it is an interesting question whether there exists an optimal algorithm143

for sorting on the two-dimensional mesh that does not make any copies, or whetherany optimal sorting algorithm exists for some d � 3.Another open question is whether the lower bounds for sorting can be extendedto arbitrary indexing schemes. One possible approach to this problem is to try toadapt some of the techniques that have been used to show lower bounds for arbitraryindexing schemes in the single-packet model [31].It would also be nice to obtain algorithms for permutation routing that matchthe diameter bound more closely. For example, one might try to overlap the tworouting phases of the algorithm in Section 5.5, and bound the running time ofthe resulting algorithm. Finally, it is an open question whether the diameter andbisection bounds can be matched simultaneously for routing on meshes of dimensiond � 2.

144

Chapter 6Routing and Sorting on Mesheswith BusesThis chapter considers the problems of permutation routing and sorting on severalmodels of meshes with �xed and recon�gurable buses. We describe two fairly simpledeterministic algorithms for permutation routing on two-dimensional networks, andan algorithm for d-dimensional networks. We also give deterministic algorithms for1{1 sorting. The algorithms can be implemented on a variety of di�erent models ofmeshes with buses.6.1 IntroductionOne of the main drawbacks of the theoretical mesh model is its large diameter incomparison to many other networks, such as the hypercube and its bounded-degreevariants [66]. An n � n mesh has a radius of n � 1, and hence even computa-tions that require only a very limited amount of communication, for example pre�xcomputations, still require at least n � 1 communication steps.To remedy this situation, it was proposed by several authors [10, 41, 109] to145

augment the mesh architecture with high-speed buses that allow fast communicationbetween processors located in di�erent areas of the mesh. This has resulted in alarge body of literature on various di�erent models of meshes with bus connections,and a number of important algorithmic problems have been studied under thesemodels. Among the most frequently studied problems on meshes with buses areMaximum [1, 10, 21, 79], Pre�x Sums [6, 13, 21, 61, 94, 109], Selection [12, 33,94, 109], as well as certain algorithmic problems in image processing and graphtheory [38, 40, 79, 93, 110]. Additional literature can be found in [75] and the abovereferences.Due to the low communication requirements of most of the above problems,signi�cant speed-ups over the standard mesh can be achieved. The exact timecomplexities of the proposed algorithms depend heavily on the properties of thebus system. For example, the maximum of n2 elements can be computed in timeO(lg lg n) on an n�n mesh with a fully recon�gurable bus, while the same problemrequires �(n1=3) steps on a mesh with �xed row and column buses. On the meshwithout buses, at least n� 1 steps are needed. In the following, we briey describesome of the main features of the bus system that determine the power of the model.(1) Architecture of the bus system: A bus is called global if it is connected to allprocessors in the network. A bus that is connected to only a subset of theprocessors is called local. Examples of meshes with one or several global busesare given in [1, 10, 79, 109]. Most of the work on local buses has focused on themesh with row and column buses [21, 94, 110], although other architectureshave been proposed [78, 110].(2) Recon�gurability of the buses: A bus is called recon�gurable if it can be par-titioned into subbuses, such that each subbus can be used as a separate, inde-pendent bus. A bus that is not recon�gurable is called �xed. In a system withrecon�gurable buses, the possible partitions of the buses depend on the layout146

of the bus system. As an example, consider an n�n mesh with recon�gurablerow and column buses laid out in the obvious way. Then each of the n rowbuses (column buses) can only be partitioned into subbuses connecting groupsof consecutive processors of the respective row (column).(3) Conict resolution for bus access: Most papers assume that the buses havebroadcast capability, that is, a value written on the bus by one processor canbe read by all other processors connected to the bus in the next step. An-other common assumption is that the result is unde�ned if several processorsattempt to write on the same bus in a single step of the computation. Us-ing the PRAM terminology, we refer to such a bus as being Concurrent ReadExclusive Write, or CREW for short. Similarly, we could de�ne CRCW orEREW buses. There is a close relationship between a shared memory cell ina CREW/CRCW/EREW PRAM and a global bus of the same type [78].Additional features that have been studied include buses with non-unit delay [75, 79],and buses that allow pipelining of messages under certain conditions [30]. Finally,the concept of a mesh with a recon�gurable bus system can also be generalized torecon�gurable networks of arbitrary topology [8].The model of computation assumed in this chapter is a mesh with row andcolumn buses. We consider both �xed and recon�gurable buses. Of course, allalgorithms designed for such a model also run on more powerful models, such as thePolymorphic Torus [75], the RMESH [79], or the PARBUS [120], whose bus systemcan be recon�gured into row and column buses. On the other hand, it does not seemthat these more powerful, but also less realistic, models o�er any advantages withrespect to permutation routing and 1{1 sorting, which are primarily restricted bythe bisection width of the network. Unless explicitly stated otherwise, we assumethe buses to be CREW.An alternative way to overcome the diameter restriction of the standard mesh is147

to augment the network with a sparse system of bidirectional communication linksconnecting processors in di�erent areas of the mesh. Examples for this approachare the Mesh of Trees [66], or the Packed Exponential Connections [49]. It turnsout that many of the algorithms and techniques described in this chapter can beadapted to these classes of networks, and we will point this out in a few instances.6.1.1 Related ResultsIn this chapter, we fovus on the problems of permutation routing and 1{1 sorting(see Subsection 1.2.3 for a de�nition of these problems). It is easy to see that bothof these problems require at least �(n) steps on all proposed variants of meshes withbuses, due to bisection width. However, the exact complexity of these problems hasonly recently been investigated.The study of permutation routing on meshes with row and column buses wasproposed by Leung and Shende [72]. They assume a model of computation, here-inafter referred to as the mesh with �xed buses, that consists of a mesh with non-recon�gurable row and column buses in addition to the standard mesh edges. Forthe one-dimensional case, they obtain a permutation routing algorithm running in2n=3 steps with small constant queue size. They also show a matching lower boundof 2n=3 for this problem; this lower bound can be extended to multi-dimensionalnetworks. For the two-dimensional case, Leung and Shende show that every per-mutation can be routed o�-line in n + 1 steps. They also describe a deterministicon-line algorithm that routes in time (7=6 + �)n + o(n) and queue size O(1=�) onthe two-dimensional mesh with �xed buses, and in time (7(d � 1)=6 + �)n + o(n)and queue size O(�1�d) on d-dimensional networks. (Recall that the queue size isthe maximum number of packets any node has to store during the algorithms.) In asubsequent paper [73], they obtain an improved algorithm for the two-dimensionalcase, running in time (1 + �)n+ o(n) with a queue size of O(1=�).148

Rajasekaran and McKendall [96, 97] describe randomized algorithms for routingand sorting on a network in which the mesh edges have been replaced by a globalrecon�gurable bus. This model is essentially the same as the PARBUS, but has theadditional property that every subbus of length 1 can be used in the same way asa bidirectional edge in a standard mesh. This means that in this case a messagecan be transmitted in either direction in a single step. There is an obvious lowerbound of n=2 steps for permutation routing and sorting in this model, due to thebisection width of the network. Rajasekaran and McKendall describe a 3n=4 timedeterministic algorithm for permutation routing in the one-dimensional case, and arandomized algorithm for the two-dimensional case that achieves a running time of(1+�)n and a queue size of O(1=�), with high probability. They also give randomizedalgorithms for sorting with the same bounds on running time and queue size.While the assumption of bidirectional communication in subbuses of length 1made in the model of Rajasekaran and McKendall may be technologically feasible, itcan also be perceived as somewhat unsatisfactory from a theoretical point of view,since it adversely a�ects the simplicity of the model. In this context, we pointout that many of their algorithms, including the (1 + �)n time routing algorithmfor the two-dimensional case, do not make use of this assumption. Similarly, theiralgorithms do not use any bus connections other than those along a single row orcolumn. Thus, in the following we consider a model with recon�gurable row andcolumn buses, and we assume that only one processor can write on a subbus inany single step, regardless of the length of that subbus. Note that in this model,hereinafter referred to as the mesh with recon�gurable buses, there is a trivial lowerbound of n steps for permutation routing and sorting due to bisection width.Comparing the two di�erent models of meshes with buses described above, weobserve that the mesh with recon�gurable buses can emulate the standard mesh withconstant slowdown by partitioning the buses appropriately. In the case of the meshwith �xed buses, on the other hand, we cannot remove the standard mesh edges149

without losing the capability of e�ciently performing local communication amonggroups of adjacent processors. In fact, several routing algorithms for such a networkwith �xed buses and no local connections have been proposed by Iwama, Miyano,and Kambayashi [39]. Due to the impossibility of e�cient local communication,their algorithms have a queue size of �(n) in the worst case.Very recently, and independent of our work, Sibeyn, Kaufmann, and Raman[107] have obtained a randomized routing algorithm for the two-dimensional meshwith �xed buses that runs in time 0:78n, and an algorithm for d-dimensional net-works that runs in time (2 � 1=d)n + o(n). (The exact running time is actuallyslightly better than this bound.) By applying the techniques described in Chap-ter 4 of this thesis, it is possible to obtain deterministic algorithms that match therunning times of these randomized algorithms, within a lower order additive term.Sibeyn, Kaufmann, and Raman also show improved lower bounds for routingon meshes with �xed buses. In particular, they show lower bounds of 0:69n and0:72n for the two-dimensional and three-dimensional cases, respectively, and a lowerbound of approximately d�1d n for d-dimensional networks. (The lower bound for thetwo-dimensional case was also discovered by Cheung and Lau [16].)In other independent work, Cogolludo and Rajasekaran [19] have given a 17n18 +o(n) time randomized routing algorithm for the two-dimensional mesh with recon-�gurable buses, under the assumption that subbuses of length 1 can be used asbidirectional edges. They also give an algorithm with running time 2n3 � n64 + o(n)for a model with two unidirectional recon�gurable buses in each row and column.For the problem of k{k routing on d-dimensional networks, d � 1, there areobvious lower bounds of kn=3 and kn for the mesh with �xed and recon�gurablebuses, respectively, due to the bisection width of the network. For the mesh with�xed buses, Rajasekaran [96] and Sibeyn, Kaufmann, and Raman [107] describe ran-domized algorithms that match this lower bound, within a lower order additive term.An optimal randomized algorithm for k{k sorting on the mesh with recon�gurable150

buses can be obtained by a straightforward implementation of the algorithm for thestandard mesh given in [46]. Very recent work by Kaufmann, Sibeyn, and Suel [47]and Kunde [59] implies that this bound can also be matched deterministically.6.1.2 Overview of this ChapterIn this chapter, we study the problems of permutation routing and 1{1 sorting onmeshes with row and column buses. We consider several variants of this model, withboth �xed and recon�gurable buses.In the �rst part of the chapter, we describe two fairly simple algorithms for thetwo-dimensional case that achieve a running time of n+ o(n) and very small queuesize, and an algorithm for d-dimensional networks, d � 3, with a running time of(2�1=d)n+o(n) and a queue size of 2. An interesting feature of these algorithms isthat they can be e�ciently implemented on a variety of di�erent classes of networks.The algorithms are obtained with a new technique that allows us to convert certaino�-line routing schemes into deterministic on-line algorithms. We believe that thistechnique may have further applications.In the second part of the chapter, we present two algorithms for 1{1 sorting.The �rst algorithm is based on a deterministic sampling technique, and its runningtime matches that for permutation routing, within a lower order additive term. Thesecond algorithm is based on a variation of Columnsort, and runs in time n + o(n)on meshes with recon�gurable buses of arbitrary constant dimension, thus nearlymatching the bisection lower bound of n steps.The remainder of this chapter is organized as follows. Section 6.2 contains theresults for permutation routing, and Section 6.3 describes our algorithms for sorting.Finally, Section 6.4 lists some open questions for future research.151

6.2 Permutation RoutingIn this section, we describe a technique that allows us to convert certain o�-linerouting schemes into deterministic routing algorithms. We then use this techniqueto design new algorithms for permutation routing on meshes with buses. We beginby giving an alternative description of a simple n + 1 step o�-line routing schemeproposed by Leung and Shende [72, 73]. In Subsection 6.2.2 we show how thiso�-line routing scheme can be used to obtain a fast and fairly simple deterministicrouting algorithm for two-dimensional meshes with buses. Subsection 6.2.3 appliesthe technique to multi-dimensional networks. Finally, Subsection 6.2.4 gives anotheralgorithm for the two-dimensional case.6.2.1 O�-line RoutingIn the o�-line routing scheme of Leung and Shende [72, 73], every packet is routedto its destination by �rst routing it on a column bus to its destination row, andthen routing it on a row bus to its destination column in the following step. Thus,the algorithm does not make use of the mesh edges at all. Leung and Shende showthat, for any input permutation, a schedule for the above routing scheme can becomputed in time O(n7=2) by computing a sequence of n maximum matchings. Oncethe schedule has been computed, it can be executed in n+ 1 steps.Now consider the following interpretation of the above scheduling problem. Thecolumns of the mesh are interpreted as processes P0; : : : ; Pn�1. Every process Pi hasexclusive ownership of its column bus, and has to transmit the n packets initiallylocated in its column to their destinations. To do so, a process needs to send packetson the row buses, which are interpreted as resources R0; : : : ; Rn�1. Before a packetcan be transmitted across a row bus to its �nal destination, it has to be routedwithin its column to the correct row; this can be done in the preceding step usingthe column bus. If k packets in column i have a destination in row j, then process152

Pi needs to access resource Rj for k time steps. These k steps can be scheduled inany arbitrary order, provided that in any given step, each resource is accessed byat most one process, and each process uses at most one resource. The problem of�nding a minimum time schedule that satis�es all of these demands is known as theOpen Shop Scheduling Problem [29].For 0 � i; j < n, let Di;j , the demand of process Pi for resource Rj , be thenumber of packets in column i that have a destination in row j. Note thatn�1Xi=0 Di;j = n (6.1)holds for all j, since every row is the destination of exactly n packets. Correspond-ingly, we also have n�1Xj=0Di;j = n (6.2)for all i, since every column is the origin of exactly n packets. A simple algorithm for�nding a minimum time schedule computes a sequence of maximum matchings in thebipartite graph G = (U; V; E) de�ned by U = fP0; : : : ; Pn�1g, V = fR0; : : : ; Rn�1g,and E = f(Pi; Rj) j Di;j > 0g. More precisely, the algorithm �rst computes a max-imum matching M of G, and schedules each process with its matched resource forDmin time steps, where Dmin = minfDi;j j (Pi; Rj) 2 Mg. Next, we subtract Dminfrom all Di;j with (Pi; Rj) 2 M , construct a new bipartite graph G0 correspondingto the new values of the Di;j , and compute a new maximum matching M 0. Thisprocedure is repeated until all demands Di;j have been reduced to zero. Using Hall'sMatching Theorem, it can be shown that Equations (6.1) and (6.2) guarantee thatthe resulting schedule has a length of at most n. This in turn implies that at most nmatchings have to be computed, since for every matching the length of the scheduleis increased by at least one step.A maximum matching on a bipartite graph with 2n vertices can be computedin time O(n5=2) using the algorithm of Hopcroft and Karp [35]. Thus, the entireschedule can be computed in time O(n7=2). Of course, this makes the algorithm153

inappropriate for use as an on-line algorithm. In the next subsection, we show howthis o�-line algorithm can be converted into an on-line algorithm that runs in timen+ o(n).6.2.2 Routing on Two-Dimensional NetworksIn order to get a running time of n + o(n), we modify the above algorithm in sucha way that the routing schedule can be computed on-line in time o(n). Executingthe computed schedule then takes another n + o(n) steps. The key idea in ourconstruction is a technique to reduce the size of the scheduling problem that has tobe solved, and thus the size and number of the matchings that have to be computed.Informally speaking, this can be done by partitioning the mesh into a smaller numberof processes and resources, and by treating sets of packets with similar sources anddestinations as if they were a single packet. This is described more formally in thefollowing.We partition the network into blocks Bi, 0 � i < n2�2�, of size n� � n�, where� is some constant that is smaller, but su�ciently close to 1 (for example, � = 0:9).We assume that the blocks Bi are indexed in row-major order. (Thus, B0 andBn2�2��1 are the blocks in the upper left and lower right corner, respectively.) Wenow interpret each of the n1�� columns of blocks as a process, and each of the n1��rows of blocks as a resource. Each process Pi, 0 � i < n1��, has exclusive ownershipof its n� column buses, while each resource Rj , 0 � j < n1��, consists of n� rowbuses. At most one process is allowed to access a single resource at any point in thealgorithm. Thus, a process that has exclusive access to a resource can transmit upto n� packets across the row buses of the resource in a single step.We now have to arrange the packets inside the processes in such a way that wecan make optimal use of this new con�guration. To do so we have to slightly relaxthe goal of the routing schedule that has to be computed. Rather than requiring each154

packet to be at its �nal destination after execution of the schedule, we are contentwith routing each packet to some position in the n� � n� block that contains itsdestination. After completion of the schedule, we can then bring the packets to their�nal destinations by routing locally inside each block.To arrange the packets for the routing schedule, we sort the blocks into row-major order, where the packets are sorted by the index of their destination block.We say that a row of a block Bi is clean if all its packets have the same destinationblock. Otherwise, we say that the row is dirty. All n� packets in a clean row of ablock are transmitted across the row buses to their common destination block in asingle step, after they have been routed to the correct row of blocks in the precedingstep. If a row of a block is dirty, then the packets in the row are transmitted acrossthe row buses to their respective destination blocks in r separate steps, where ris the number of distinct destination blocks that occur among the packets in therow. In other words, such a row is treated in the same way as r separate rows; thisincreases the number of steps required to route this row by r � 1.Since there are only n2�2� blocks, this increases the number of steps requiredto route the elements of a single block across the row buses by at most n2�2� � 1.Consequently, the number of steps required to route all the elements of a processPi across the row buses is increased by less than n3�3�. Hence, if Di;j denotes thenumber of steps that process Pi needs resource Rj , thenn1���1Xj=0 Di;j < n+ n3�3� (6.3)holds for all processes Pi. Correspondingly, it can shown thatn1���1Xi=0 Di;j < n+ n3�3� (6.4)holds for all resources Rj , since for any two blocks Bk ; Bl, there can be at most twodirty rows in Bk that contain packets destined for Bl. Equations (6.3) and (6.4)155

guarantee the existence of a schedule of length at most n + n3�3� = n + o(n) thatroutes every packet to its destination block.It remains to show that such a schedule can be computed in time o(n). Since weonly have n1�� processes and resources, the graph G that is used in the constructionof the schedule has only 2n1�� vertices. Hence, a maximum matching in this graphcan be computed in time O ��n1���5=2�. For each matching that is computed, atleast one edge is removed from the graph. This implies that at most n2�2� matchingshave to be computed, and the total time to compute the schedule sequentially isbounded by O ��n1���9=2� = o(n).In order to implement this computation on a mesh with buses, all the dataneeded to construct the graph G is routed on the buses to a small area, say inthe center of the mesh, where the schedule is computed and then broadcast to allblocks. It su�ces if each block contributes the numbers mi, 0 � i < n2�2�, wheremi is de�ned as the number of elements in the block that are destined to block Bi.This can clearly be done in time o(n), since only a small amount of information hasto be transmitted. We do not elaborate any further on the implementation of themaximum matching algorithm on the mesh. Since we do not need an algorithm thatis faster than the sequential one, this is an easy task. (In fact, we could even a�orda straightforward simulation of a turing machine algorithm on the mesh; this couldbe done with a queue size of one.) All in all, we obtain the following algorithm:Algorithm ROUTE:(1) Partition the mesh into blocks of size n� � n�. Sort the packets in each blockinto row-major order by destination blocks. This takes O(n�) steps.(2) In each block, compute the mi, 0 � i < n2�2� (mi was de�ned as the numberof packets with destination block Bi). Send the mi to a block of side lengthn2�2� in the center of the mesh. This takes O(n2�2�) steps.156

(3) Compute the schedule and broadcast it to all blocks of the mesh. This takesO �(n1��)9=2� steps.(4) Execute the computed schedule of length n+ n3�3�.(5) Perform local routing inside each block to bring the packets to their �naldestinations. This takes time O(n�).It remains to show that the above algorithm can be implemented with a small,constant queue size. Consider any destination block Bi inside the mesh, and recallthat up to n� packets enter Bi across the row buses in a single step. Due to thesorting in Step (1) of the algorithm, every block in the mesh can have at most twodirty rows that contain elements with destination block Bi. This implies that Bionly receives packets in at most n� + 2n2�2� steps of the schedule. If we requirethat the packets arriving in the ith such step are stored by the processors in the(i mod n�)th column of Bi, then most processors in Bi only get a single packet,while up to 2n2�� processors receive two packets. In addition, every processor inBi can also contain one packet with source in Bi that has not been sent out yet.Finally, some of the processors in Bi, say those on the diagonal of the block, alsohave to store the n� packets that can enter the block across the column buses ineach step, and that are then routed across the row buses in the following step. Thisgives a total queue size of 4.We can decrease the queue size to 3 by assuming that the elements in thediagonal of Bi do not receive any of the packets entering the block across the rowbuses. To get a queue size of 2, we require that every destination block stopsaccepting new packets from the row buses after it has received n� � 1 batches ofpackets. It can be shown that every block is still able to deliver the vast majorityof its packets to their destination blocks. We can now rearrange the packets in eachblock, and then deliver the remaining packets; the details of this construction areomitted. This establishes the following result.157

Theorem 6.2.1 There exists a deterministic algorithm for permutation routing onthe n� n mesh with buses that runs in time n + o(n) with a queue size of 2.Note that the above algorithm does not assume any particular model of themesh with row and column buses. In fact, the algorithm can be e�ciently imple-mented on a variety of di�erent classes of networks. For the mesh with �xed buses,this improves upon the best previously known deterministic algorithm [73] in bothrunning time and queue size. As an example, the algorithm in [73] requires a queuesize of more than 200 to obtain a running time of 1:2n. (However, the algorithmis not as fast as the independently discovered algorithms of Sibeyn, Kaufmann,and Raman [107].) On the mesh with recon�gurable buses, our algorithm improvesupon the best previously known randomized algorithm of Rajasekaran and McK-endall [97], and matches the bisection lower bound, within a lower order additiveterm.The algorithm can also be easily adapted to the Polymorphic Torus networkdescribed in [75]. (This network is essentially a mesh with recon�gurable row andcolumn buses and additional wrap-around connections.) The resulting algorithmroutes any permutation in time n=2 + o(n), and thus nearly matches the bisectionlower bound of n=2.For another example, consider a model of the mesh with �xed buses in whichthe buses have a non-unit propagation delay �(n). It was observed by Cheung andLau [16] that, for any non-constant delay function �, routing takes time 2n�o(n) inthis model, assuming that no pipelining is allowed on the buses. However, if we liftthis restriction and allow a processor that sends a packet on the bus to send anotherpacket in the next step, then we can route in time n+ o(n), for any � = o(n), usinga variant of the above algorithm.The above result shows that for the problem of permutation routing, even afairly simple algorithm on the mesh with buses can achieve a speed-up by a factor of158

2 over meshes without buses. Moreover, our algorithm has a queue size of 2. In thiscontext, we point out that the 3n�3 step o�-line scheme for routing on the standardmesh described by Annexstein and Baumslag [4], as well as the 3n + o(n) sortingalgorithm of Schnorr and Shamir [102], achieve a queue size of 1 only because in thestandard mesh model two packets can be exchanged across an edge in a single step.Since we do not allow two arbitrary processors that are connected to a common busto exchange two packets in a single step, it seems di�cult to design any algorithmwith a queue size of 1 that uses the buses to transmit packets.An even greater speed-up over the standard mesh can be achieved for certainrestricted classes of permutations. Consider a partial permutation with only a smallnumber of packets (say, at most �n2). In the case of the standard mesh, this problemstill requires a running time of 2n � 2 in the worst case. On the mesh with buses,our only restriction is the bisection bound, and hence we could hope for a speed-upof up to 1=� over full permutation routing. The above algorithm can be adapted insuch a way that it achieves this bound for any constant �, provided that the sourcesand destinations of the packets are approximately evenly distributed over the mesh.In the following, a partial permutation with no more than �n2 packets is calledan �-permutation. We say that an �-permutation is �-approximate if every m �mblock of the mesh is the source and destination of at most �m2 + � packets, for allm with 1 � m � n. Then the following holds for all � > 0.Corollary 6.2.1.1 For any � = o(n), there exists a deterministic algorithm thatroutes every �-approximate �-permutation in time �n + o(n) with a queue size of 2.6.2.3 Routing on Multi-Dimensional NetworksIn the following, we apply the techniques from the previous subsection to obtainan improved deterministic algorithm for routing on multi-dimensional meshes withbuses. On a d-dimensional network with side length n, our algorithm achieves a159

running time of (2 � 1=d)n + o(n) and a queue size of 2. This bound also holdsfor a limited range of non-constant dimensions, provided that the side length n issu�ciently larger than the dimension d.Our algorithm is based on a well-known scheme for o�-line routing on d-di-mensional meshes described by Annexstein and Baumslag [4]. The routing schemeconsists of 2d � 1 phases. In phase i, 1 � i � d � 1, each packet is routed alongdimension i to an appropriately chosen intermediate location. In phase i, d � i �2d � 1, each packet is greedily routed along dimension 2d � i. Each phase of therouting scheme involves a collection of routing problems on linear arrays of lengthn, and thus takes at most n steps on the standard mesh. Hence, the entire routing iscompleted after (2d� 1)n steps. This bound can be matched on meshes with buses,even if only buses are used to route the packets. (On the mesh with �xed buses,this running time can easily be reduced by using the 2n=3 time algorithm of Leungand Shende [72] to perform the linear array routing.)In order to route a given permutation with the above routing scheme, it isnecessary to determine appropriate choices for the intermediate locations assumedby the packets in the �rst d�1 phases. The existence of such intermediate locationsis implied by Hall's Matching Theorem, and they can be computed by constructinga sequence of perfect matchings in a graph; the details of this construction can bederived from the description in Section 1.7.5 of [66]. While the routing is similar inthis respect to the scheme studied in the previous subsection, it is also importantto realize the di�erences between the two schemes. In particular, we are not awareof any interpretation of the d-dimensional scheme as an instance of the Open ShopScheduling Problem. On the other hand, it does not appear to be possible togeneralize the two-dimensional scheme to higher dimensions.Fast algorithms for computing appropriate intermediate locations are given in[74]. For our purposes, it su�ces that the running time of these computations ispolynomial in nd, the number of packets in the network. In order to convert the160

above o�-line routing scheme into an on-line algorithm, we introduce the notion of asuper-packet. Informally speaking, a super-packet consists of a collection of packetsthat have similar sources and destinations, and that move in lock step. By combininga large number of packets into a single super-packet, we are able to decrease thenumber of packets in the network (and thus the number and size of the matchingsthat have to be computed) in such a way that the intermediate locations can becomputed in time o(n).Formally, partition the mesh into d-dimensional blocks of side length n�, forsome � close to 1 (say � = 0:99). Then sort the packets in each block according totheir destination blocks, and combine up to nd� packets with a common destinationblock into a single super-packet, say for � = 0:9. Thus, the packets in a super-packetcan be arranged in a d-dimensional submesh of side length n� . In each block, weobtain at most nd(���)+nd(1��) super-packets. Hence, the number of super-packetsin the entire mesh is nd(1��) + o(nd(1��)). We can assign to each super-packet aunique block of side length n� inside the correct destination block, by running anappropriate pre�x computation. We can now interpret the remaining problem asa o(nd(1��))-approximate permutation routing problem on a d-dimensional meshwith side length n1�� , where each communication step takes time n� (since it takesn� steps to move all packets of a super-packet using n(d�1)� buses). Due to thesmall number of super-packets in this new routing problem, we can now computethe intermediate locations for the above routing scheme in time o(n). This directlyimplies an on-line algorithm for routing on d-dimensional buses with a running timeof (2d� 1)n+ o(n).An issue we have ignored in the above description is that by combining thepackets into super-packets, we only get an o(n)-approximate permutation and nota permutation in the strict sense. This problem can be easily overcome by, forexample, �rst routing a (partial) permutation containing the vast majority of thepackets with the above algorithm; the few remaining packets can then be routed in161

o(n).In the remainder of this subsection, we show how this algorithm can be modi�edto run in time (2� 1=d)n. Note that the above algorithm only uses a small part ofthe available bandwidth, since at any point in time all communication is performedacross a single dimension. In order to obtain an algorithm whose running time doesnot grow linearly with the dimension d, we have to make simultaneous use of all thebuses in the network. The basic idea to achieve this is to partition the packets ofthe routing problem into d sets of packets. Each set of packets can then be routed intime (2d�1)n=d+o(n) using the above algorithm. Since that algorithm uses only asingle dimension in each time step, we can route all d sets of packets simultaneouslywithout increasing the running time.Formally, we partition the mesh into d subnetworks by assigning the label j toeach processor with coordinates (i0; : : : ; id�1) and i0+� � �+id�1 = j mod d. Next, wepartition the packets of the routing problem into d sets by �rst sorting the packetsin each block of side length n� by destination blocks, as before, and then assigningeach packet with rank j in the block to set j mod d. Note that in this way, forany destination block B, we have an approximately equal number of packets withdestination in B in each of the d sets of packets. There are nd=d packets in each set,and hence in each set there are approximately nd�=d packets with destination blockB. Next, we move the packets in set i, 0 � j < d, to the subnetwork consistingof the processors with label i, such that each processor receives exactly one packet.Note that all packets with common source and destination blocks are approximatelyevenly distributed among the d sets.We now route every set of packets by �rst routing it within its subnetwork to thecorrect destination block, and then within the destination block to its �nal position.We can simultaneously perform the routing in each of the subnetworks by runninga \copy" of the above uni-axial algorithm in each subnetwork. in such a way thatno two subnetworks communicate across the same dimension at any point in time.162

Due to their special structure, each of the d disjoint subnetworks is connected to alldnd�1 buses, and can use all nd�1 buses associated with a particular dimension in asingle step. Since every subnetwork only contains nd=d packets, each of the 2d� 1phases of the uni-axial algorithm only requires n=d steps. The queue size of thisalgorithm is 4. Using ideas similar to those in the previous subsection, the queuesize can be reduced to 2. This gives us the following result.Theorem 6.2.2 There exists a deterministic algorithm for routing on d-dimension-al meshes with buses that runs in time (2� 1=d)n+ o(n) with a queue size of 2.The exact lower order term depends on the algorithm used in the computationof the intermediate locations of the packets. The algorithm can be e�ciently im-plemented on a variety of multi-dimensional networks. An even faster algorithm forrecon�gurable networks is presented in the next section in the context of sorting.6.2.4 Fast Routing without MatchingWhile the routing algorithms described in the previous subsections are fast from atheoretical point of view, they are certainly not e�cient in practice. One source ofthis ine�ciency are the fairly large additive lower order terms in the running timesof the algorithms. As an example, choosing � = 9=11 results in a lower order termof O(n9=11) in the case of the two-dimensional algorithm. As the constant hiddenby the big-Oh notation is su�ciently large, this lower order term would dominatethe running time of the algorithm on networks of realistic size. Another source ofine�ciency is the complicated control structure of the algorithm, especially in thecomputation of the matchings. In particular, this makes the algorithm unsuitablefor any implementation in hardware.In the following, we describe an n+O(n2=3) time algorithm for two-dimensionalnetworks that does not require any computation of matchings, and that uses only163

pre�x computations and local sorting as subroutines. Like the algorithm in Subsec-tion 6.2.2, it is based on the o�-line algorithm of Leung and Shende, and assumesthat the network is partitioned into blocks of side length n�, for some �. However,instead of computing an optimal schedule for the usage of the buses, the algorithmcomputes an assignment of the row buses to the columns of blocks (and of the col-umn buses to the rows of blocks) that stays �xed throughout most of the algorithm.In this assignment, each column of blocks receives in each row of blocks a number ofrow buses that is proportional to the number of its packets that have a destination inthis row of blocks. (Alternatively, the algorithm can also be described as computingan approximate solution for a special case of the Open Shop Scheduling Problem.)Let � = 2=3, let si;j denote the number of packets in the ith column of blockswhose destination is in the jth row of blocks, and let bi;j = � si;jn �. We now assignbi;j row buses in the jth row of blocks to the ith column of blocks, and bi;j columnbuses in the ith column of blocks to the jth row of blocks. Note thatn1=3�1Xi=0 bi;j � n2=3holds for all j, 0 � j < n1=3, and n1=3�1Xj=0 bi;j � n2=3holds for all i, 0 � i < n1=3. This assures that the total number of buses assignedin each row of blocks and each column of blocks does not exceed n2=3. Such anassignment of the row buses to the columns of blocks, and of the column buses tothe rows of blocks, can be easily computed from the bi;j using pre�x computations.After the assignment of the buses has been computed, we run the followingprotocol for n+ 1 steps. In each step, bi;j column buses in the ith column of blocksare used to transmit bi;j packets (with destination in the jth row of blocks) to thejth row of blocks. Also, in each step, bi;j row buses in the jth row of blocks are usedto transmit bi;j packets to their destination blocks. Thus, all packets routed along164

the columns in step k are routed along the rows to their destination blocks in stepk + 1. (We assume that the row buses are idle during the �rst step of the protocol,and the column buses are idle during the last step.)After n + 1 steps of the above protocol, there are at most si;j � n � bi;j < nuntransmitted packets in the ith column of blocks that have a destination in the jthrow of blocks. We can now transmit these remaining packets by setting bi;j = n1=3for all i; j, and running the above protocol for another n2=3 + 1 steps. Finally, localrouting inside each block can be used to bring every element to its �nal destination.Altogether, we obtain the following algorithm.Algorithm ROUTE2:(1) Partition the mesh into blocks of side length n2=3. Use local sorting andpre�x computations to compute the assignment of the buses. This takes timeO(n2=3).(2) Run the protocol described above for n+ 1 steps.(3) Set bi;j = n1=3 for all i; j, and run the protocol for another n2=3 + 1 steps.(4) Perform local routing inside each block to bring the packets to their �naldestinations. This takes time O(n2=3).One important detail has been omitted from the description so far. Beforerunning the protocol in Steps (2) and (3), we have to arrange the packets inside theblocks such that, for all i; j, all bi;j row and column buses can be used in any step,and such that no write conicts occur. This can be done in time O(n2=3) using localsorting and pre�x computations. This establishes the following result.Theorem 6.2.3 There exists a deterministic algorithm for permutation routing onthe n � n mesh with buses that runs in time n + O(n2=3) with constant queue sizeand that uses only pre�x computations and local sorting as subroutines.165

The above algorithm achieves a queue size of 4; this can be reduced to 2 by amore careful (but also more involved) implementation. The algorithm can again beimplemented on several di�erent models of meshes with buses. Of course, it needs tobe pointed out that the algorithm is still too complicated to be of immediate practicalinterest. However, we believe that the result is interesting in that it indicates thateven very simple global operations such as pre�x computations might be usefulin the design of e�cient routing algorithms on meshes with buses. In contrast,all previously described algorithms for these networks use the buses only for thetransmission of the packets, and not for the computation of the routing schedule.While such a restriction to local control is appropriate for networks that do notprovide any fast global communication, it may be that some amount of global controlis useful on networks that support fast (but low bandwidth) global primitives suchas pre�x computations.6.3 SortingIn this section we describe two algorithms for sorting on meshes with buses. The�rst algorithm makes use of the routing algorithms given in the previous section,and its running time (nearly) matches that for permutation routing on all modelsof meshes with buses. The second algorithm assumes a mesh with recon�gurablebuses, and its running time matches the bisection lower bound for networks of anydimension d = o(n1=3). Thus, this algorithm also implies an improved bound forpermutation routing on recon�gurable networks.Recall that in the sorting problem we have to move the element of rank i to theprocessor with index i, for all i. Sorting algorithms on meshes and related networksare usually designed with a particular indexing of the processors in mind. In thefollowing we assume a blocked indexing scheme, in which the network is partitionedinto blocks of side length n�, 2=3 � � < 1, and the processors in each block have166

consecutive indices, while the blocks are indexed in snake-like row-major order.6.3.1 Sorting by Deterministic SamplingThe following algorithm uses the deterministic sampling technique described in Sub-section 4.5.2, which computes a set of splitter elements whose ranks are determinedto within an additive lower order term. This essentially reduces the problem ofsorting to that of routing an appropriate permutation, plus some local operations.The structure of the algorithm is as follows:Algorithm SORT:(1) Sort each block of side length n� into row-major order. This takes time O(n�).(2) Route copies of the elements in the �rst column of each block to a block B ofside length n1��=2 in the center of the mesh. This takes time O(n1��=2).(3) Sort the elements in B and select n� elements of equidistant ranks as splitterelements. This takes time O(n1��=2).(4) Use pre�x computations to compute the exact ranks of the splitters, and broad-cast them to all blocks. This takes time O(n�).(5) It was shown in Theorem 4.5.1 that the ith splitter element has a rank between(i� 1) � n2�� and i � n2�� . Hence, every element can now determine its rankto within n2�� = O(n2�). Using pre�x computations, we can assign eachelement a preliminary destination that is at most one block away from its�nal destination.(6) Route every element to its preliminary destination using the routing algorithmin Subsection 6.2.2 (or any other routing algorithm).(7) Perform local sorting between consecutive blocks. This takes time O(n�).167

Apart from Step (6), all steps of the above algorithm take time o(n). Thus,the running time of the algorithm is determined by the running time of the routingalgorithm used in Step (6), up to a lower order term. For � = 2=3, we get thefollowing result.Theorem 6.3.1 For all models of meshes with buses, there exists a sorting algo-rithm whose running time matches that for permutation routing, within O(n2=3)steps.6.3.2 Sorting on Meshes with Recon�gurable BusesOur second algorithm is based on a variation of Leighton's Columnsort algorithm [64]similar to that described in [47, 59]. The algorithm can be e�ciently implemented onseveral classes of meshes with recon�gurable buses, and also on the Mesh of Trees [66]and the Packed Exponential Connections [49], but it does not give improved boundson meshes with �xed buses.We start out by describing how the class of �-way unshu�e permutations canbe e�ciently solved on a linear array with a recon�gurable bus. We then give thesorting algorithm for networks of arbitrary dimension, and explain how it can beimplemented through a sequence of �-way unshu�e permutations on linear arrays.Recall that, for any n; � > 0 with n mod � = 0, the �-way unshu�e permutationon n elements is de�ned as the permutation �� that moves the element in positioni to position �(i) = (i mod �) � n=� + bi=�c, for all i in [n]. We observe that if� = n1�� for some � � 1=2, then a �-way unshu�e permutation on a linear array oflength n has the e�ect of distributing the elements of each block of length n� evenlyover all n1�� blocks of length n� .Due to bisection arguments, at least n=2 steps are required to route an n1��-wayunshu�e permutation on a linear array with a recon�gurable bus. The followingrouting scheme matches this bound, within a lower order term. The routing scheme168

consists of two parts. In the �rst part, we route all packets that have to move to theright; in the second part, we route all packets that have to move to the left. Sincethe two parts are symmetric, we only describe how to route the rightgoing packets.The schedule for the rightgoing packets is divided into n1��=2 phases Pi, 0 �i < n1��=2. Phase Pi of the schedule consists of n1�� � 2i subphases Si;j , and eachsubphase takes n2��1 steps. Thus, the entire schedule has a length of(n1��=2)�1Xi=0 �n1�� � 2i� � n2��1 = n2 � 2n2��1 (n1��=2)�1Xi=0 i = n4 + n�2 :Given a partition of the array into n1�� blocks of length n�, we say that blocki sends to block j if all packets in block i that have a destination in block j aretransmitted to this destination. Note that for all i and j, exactly n2��1 packets inblock i have a destination in block j. Under our schedule, the rightgoing packetsare transmitted according to the following rules:(a) In any subphase Si;0, block i sends to block n1�� � i� 1.(b) In any subphase Si;j with 1 � j < n1�� � 2i, block i sends to block i+ j � 1,while block i+ j sends to block n1�� � i� 1.The following sorting algorithm for d-dimensional networks assumes a blockedindexing scheme with blocks of side length n�, � = 2=3. The algorithm alternateslocal sorting and communication steps. Each communication step performs a to-tal exchange operation among the blocks. The total exchange operation, also oftencalled all-to-all personalized communication, is a well-known communication prob-lem that arises in a number of parallel applications (e.g., see Section 1.3 of [9]).(1) Sort the elements inside each block. This takes time O(d � n�) using, say, thek-k sorting algorithm for the standard mesh described in [47, 59].(2) Perform a total exchange among the blocks, where block i sends the nd(2��1)elements with a local rank of j mod nd(1��) to block j, for all i; j.169

(3) Sort the elements inside each block.(4) Perform a total exchange among the blocks, where block i sends the nd(2��1)elements with a local rank between j � nd(2��1) and (j + 1) � nd(2��1) � 1 toblock j, for all i; j.(5) Perform local sorting between consecutive blocks. This takes time O(d � n�).After Step (4) of the algorithm, every element is at most one block away from its�nal destination (see [47] for a proof of this claim). Thus, the local sorting in Step (5)moves each element to its �nal destination. Steps (2) and (4) can be implemented byperforming an appropriate local permutation in each block, followed by d consecutiven1��-way unshu�e permutations, where the ith unshu�e permutation is appliedto all linear arrays in direction of the ith dimension. However, using this simpleapproach we only get a running time of dn=2 + o(n) for each of Steps (2) and (4),since at any point in time only buses along a single dimension are being used.To overcome this problem, we partition the mesh into d subnetworks, wherethe �th subnetwork consists of all processors with coordinates (x0; : : : ; xd�1) suchthat Pd�1i=0 xi = � mod d. We also partition the set of elements into d subsets, suchthat each subset contains exactly nd(2��1)=d elements that have to be sent from anyblock i to any block j.Each linear array inside a subnetwork has a length of n=d, and can hence performan unshu�e permutation in time n2d+o(n). We can now implement Steps (2) and (4)in n=2+o(n) steps each, by routing each subset within its corresponding subnetwork,where the ith unshu�e permutation is applied to the elements of the jth subset indirection of dimension (i+ j) mod d. This gives the following result.Theorem 6.3.2 For any d = o(n1=3), there exists a deterministic sorting algorithmfor d-dimensional meshes with recon�gurable buses that runs in time n + o(n) withqueue size two. 170

For the Polymorphic Torus, and the mesh with two unidirectional recon�gurablebuses of [19], we can obtain a running time of n=2+o(n), by simultaneously routingthe leftgoing and rightgoing elements in the unshu�e permutation. The same boundcan be achieved on the Mesh of Trees. We can also adapt the algorithm to run intime n2 lgn +o(nlgn) on the Packed Exponential Connections [49] of arbitrary constantdimension. In all of these cases, the algorithm nearly matches the bisection bound.Finally, we point out that it is straightforward to adapt the algorithm to thek{k sorting problem, in which each processor is the source and destination of kpackets. (For k < 1, the k{k sorting problem can be de�ned in a similar way asthe �-approximate �-permutations in Subsection 6.2.2.) The resulting algorithmmatches the bisection lower bound within an additive lower order term for all kwith k =
(1=n1�c) for some c > 0.Theorem 6.3.3 For any constant c > 0, and for any k, d with k =
(1=n1�c) andd = o �(n � k1=d)1=3�, there exists a k{k sorting algorithm for d-dimensional mesheswith recon�gurable buses that runs in time kn+ o(kn) with queue size two.6.4 Summary and Open ProblemsIn this chapter, we have described deterministic algorithms for permutation routingand sorting on several models of meshes with �xed and recon�gurable buses.While the routing algorithms in Section 6.2 are based on fairly simple ideas,they are impractical due to their complicated control structure and the large lowerorder terms in the running times. It is an open question whether the ideas of thischapter can be used in the design of more practical algorithms.Another possible research direction is to �nd e�cient algorithms for routingwith locality, or for the routing of sparse or irregular communication patterns. Inthis context, the buses might be helpful in the design of algorithms that adapt to the171

degree of locality, sparseness, and irregularity of a problem. One possible approachto this problem is to �rst show the existence of a good o�-line solution, and then tryto convert this o�-line solution into an on-line algorithm using the ideas presentedin this chapter.

172

Chapter 7Concluding RemarksIn this thesis we have established lower bounds for several classes of sorting networksand algorithms, and have described techniques and algorithms for packet routingand sorting on meshes and related networks. In the following, we discuss a few openquestions in the context of our work.The results of Chapter 2 are related to two central open questions in the the-ory of parallel sorting. One question asks for the existence of an O(lgn)-time de-terministic sorting algorithm for the hypercube. The other question concerns theexistence of O(lgn)-depth sorting networks that are \more practical" than the AKSnetwork. (By this we mean sorting networks that have a simpler structure or asmaller associated constant, or that can be mapped e�ciently to common classes of�xed-connection networks.) While both of these questions remain open, the resultsin Chapters 2 and 3 provide negative answers for some classes of algorithms andnetworks that have been considered in this context.Another important open question concerns the average-case complexity of Shell-sort algorithms. No general upper and lower bounds for the average case are cur-rently known, and it seems that any progress on this question would require somefundamental new ideas. Even for many of the most common increment sequences,173

no formal analysis of the average case has been done.The study of routing and sorting on meshes has received a lot of attention inrecent years, and signi�cant progress has been achieved. Optimal or nearly optimaldeterministic solutions are now known for a number of problems, and while someopen questions remain, overall there seems to be a fairly good understanding of theworst-case complexity of these problems on theoretical mesh models that place norestrictions on the complexity and structure of the algorithms.However, many important questions remain open for more realistic, and thusmore restricted, models of the mesh, and for dynamic and irregular routing prob-lems that do not �t into the framework of permutation routing. Examples of suchrestricted models are hot-potato routing, oblivious routing, or models that restrictthe adaptivity of the algorithm or require packets to move along paths of minimumlength; see [11, 115] for an overview. We believe that future work on meshes willlikely focus more on these types of problems.

174

Appendix AProof of Lemma 4.5.5Lemma 4.5.5 The greedy routing to destination blocks in Step (9) runs in timen+ o(n) with constant queue size.Proof: The routing in Step (9) is initiated by a Start signal that is broadcast fromthe center of the mesh at time n + o(n). All time bounds stated in the followingare with respect to the moment at which this signal was sent out. In the followinganalysis of the routing, we restrict our attention to the lower right quadrant of themesh.As stated in the algorithm, we assume the same routing scheme as in the optimalrandomized algorithm. In this scheme, every element moves to its destination blockin two phases. In the �rst phase, row elements move inside their current column totheir destination row, while column elements move inside their current row to theirdestination column. In the second phase, the elements move to their destinationblocks. If several packets that are in the same phase contend for an edge, priority isgiven to the element with the farthest distance to travel. In the following, we onlyconsider the routing of the row elements during their �rst phase, and the routing ofthe column elements during their second phase. Thus, we are only oncerned with theproblem of routing inside the columns; a symmetric argument holds for the routing175

inside the rows.Until time 0:5n, we reserve the entire edge capacity of the columns for rowelements that are in their �rst phase. At time 0:5n, we start reserving half of thebandwidth of each column for column elements in their second phase. More precisely,starting at time 0:5n, we reserve half of the capacity of the topmost column edgefor column elements in their second phase. Starting in the next step, we reservehalf of the capacity of the next column edge for the column elements, until at time0:75n all column edges in the center subquadrant T3 have half of their capacityreserved for the column elements. At time 0:75n, we start reserving only a quarterof the capacity for column elements. As before, this change is initially applied onlyin the topmost column, and then propagated downwards. It will be seen that thisguarantees that, once an element has started moving, it is never delayed until itreaches its destination.Assuming the above routing scheme, we establish Lemma 4.5.5 through a seriesof �ve claims. The proof of Claim (5) is based on an informal explanation of thecorresponding proof for the optimal randomized sorting algorithm in [42], given tothe author by Christos Kaklamanis.Claim (1): During the �rst phase of the routing, there are n2 � o(n) row elementsin each of the leftmost n=4 columns of the quadrant, and the destinations of the rowelements in each column are evenly distributed over all destination blocks.Proof: Consider any �xed subquadrant of the mesh after Step (3) of the algorithm.By Lemma 4.5.2, the number of row elements in the subquadrant that are destinedto a particular n��n� destination block di�ers by at most 116n2�2� from the numberof column elements destined to that block. Lemma 4.5.1 then guarantees that, afterthe �n1��4 �-way unshu�e of the row and column elements in Step (4), the number ofelements destined to any particular destination block D di�ers by at most 316n2�2�between the row elements in any column of blocks and the column elements in any176

row of blocks of the subquadrant. After all 16 subquadrants have been overlappedinto a single subquadrant, this becomes 3n2�2� = o(n�). Hence, in each block of sizen��n� , the sorting in Step (8a) has the e�ect of distributing the row elements withdestination block D evenly over the n� columns, and the column elements evenlyover the n� rows, up to a di�erence of one. Since there are 12n1�� such blocks in eachcolumn of blocks in the quadrant, the number of elements destined to any particulardestination block di�ers by at most 12n1�� between the row elements in any columnand the column elements in any row. Since there are only 14n2�2� destination blocksin each quadrant, every column has n2 � O(n3���2�) row elements.2Claim (2): The queue size remains constant during the routing in Step (9).Proof: The proof of this claim is similar to the argument of Subsection 4.4.2.Assume the same assignment of o�set values to the counters as in the routing al-gorithm. It follows from Claim (1) that every column contains � 2n2��1 elementsdestined for any particular destination block. Hence, the counter technique guaran-tees that at most 2 row elements turn into a row in any processor. More precisely,if every column were to contain exactly 2n2��1 elements for each destination block,then exactly one row element would turn in any processor, since no two counterscorresponding to the same column and the same row of destination blocks wouldever have the same value. Due to the low-order variations in the number of elements,we get a bit of overlap between the counters.Next, we have to show that the initial assignment of values to the countersensures that not too many row elements enter their destination block across thesame row. Consider a �xed destination block D, and any set of n� consecutivecolumns. We will show that the values assumed by those 2n� counters in our setof columns that correspond to destination block D are evenly distributed from 0 ton� � 1. Note that the initial values of these counters are evenly distributed from177

0 to n� � 1. Claim (1) can then be used to show that � 2n2��1 elements withdestination block D turn into any particular row. Hence, � 12n� elements enterdestination block D through any particular row. If, after entering D, each elementstops in the �rst processor that has not yet received a row element, then everyprocessor in D receives at most one row element. This proves that the routing stepachieves a constant queue size.2 Note that in the rest of the sorting algorithm the maximum queue size is clearlybounded by some constant � 16. At the beginning of Step (9), some processors canhold up to 16 elements. During the �rst phase of the routing, some processors maytemporarily have to hold up to 18 packets. In addition, up to 2 row elements and upto 2 column elements might have to turn in the processor. Also, a processor couldbecome the destination of at most one row element and one column element in thesecond phase of the routing. Another memory slot is needed for the broadcast of theexact splitter ranks in Step (10) of the algorithm. Thus, the total queue size around25. This bound could probably be slightly improved by a more careful analysis andimplementation.Claim (3): Every column receives � n=4 column elements in the second phase,and the destinations of these elements are evenly distributed among all destinationblocks in that column.Proof: Since the accuracy of the splitters is O(n2��), every destination blockreceives n2� � O(n2��) elements. By Lemma 4.5.2, approximately half of these el-ements are column elements. It was shown in the proof of Claim (2) that in anyblock of n� consecutive rows, � 2n2��1 column elements of any particular destina-tion block turn into any of the n� columns passing through that block. Multiplyingthis by the number of blocks of n� consecutive rows in the subquadrant (which is178

14n1��), we conclude that every column receives � 12n� elements with any partic-ular destination block. Multiplying this term by the number of destination blocksin the same column (which is 12n1��), we can infer that every column receives � n4elements.2Claim (4): If a row element reaches its destination row by time n�r+o(n), wherer is the distance it has to travel inside the destination row, then the element arrivesat its destination block by time n+ o(n).Proof: (Sketch) Consider a routing problem on a linear array with n=2 processorsand n=2 packets, where each processor is the destination of exactly one packet. Itis well known that a greedy routing strategy that gives priority to the packets withfarther distance to travel delivers all packets within time n=2� 1, even if processorsmay initially hold an arbitrary number of packets (see, for example, [66, Section1.7.1]). It can be shown by a simple induction on the number of routing steps thatthis remains true even if we impose the additional constraint that a packet may notmove before time n=2� d, where d is the distance the packet has to travel. We caninterpret the routing of the column elements inside the column as such a routingproblem on a linear array that is started at time n=2 + o(n). In this case, we haven=2 processors, but only n=4 packets. Hence, half of the capacity su�ces to routeall packets. Since the routing problem has the additional properties that all packetsstart in the �rst n=4 processors, and that the destinations of the packets in everylarge block of processors are evenly distributed over the entire array, it can be shownthat the capacity required for this routing problem can be reduced to a quarter afterthe �rst n=4 steps.2 We have now established that the elements reach their destination blocks by179

time n+ o(n), provided that they are not delayed too much in the �rst phase of therouting. The remainder of the proof gives an analysis of this �rst phase, in which therow elements are routed inside their column. The lemma then follows immediatelyfrom Claim (4) and the following result.Claim (5): Every row element reaches its destination row by time n � r + o(n),where r is the distance the element has to travel in the destination row.Proof: (Sketch) Note that the routing of the row elements inside any particularcolumn is independent of the routing in any other column. Thus, we can interpretthis routing phase as a routing problem on a linear array, where the destinations ofthe elements in the array are given by the destination rows, while the priorities of theelements are determined by the total Manhattan distances to the destination blocks.We identify every processor in the lower right quadrant by a pair of coordinates(x; y), where (0; 0) denotes the center of the mesh and (n=2 � 1; 0) denotes theupper right corner of the quadrant. Only the n=4 columns passing through theupper left subquadrant are used in this phase. Note that the routing in column i,0 � i < n=4, is started i steps after the routing in column 0. It can be shown thatthe time for routing the row elements in column n=4� 1 to their destination blocksgives an upper bound for the time it would take to route the same set of elementsin any other column, within a lower order additive term. Hence, in the following welimit our attention to the routing in column n=4� 1.By Claim (1), we know that there are � n=2 row elements in the topmost n=4processors of the column, and that the destinations of these elements are evenlydistributed over all destination blocks in the quadrant. However, we do not knowanything about the distribution of these elements inside the column at the beginningof the routing. Some processors could hold up to 8 row elements, while otherscould have none. In the following, we limit our attention to the following twodistributions of the elements inside the column. In the �rst distribution �1, all180

� n=2 elements are initially located in the topmost processor of the column, withcoordinates (n=4 � 1; 0). In the second distribution �2, all � n=2 elements areinitially located in processor (n=4 � 1; n=4� 1). Note that neither �1 nor �2 canactually occur in the algorithm, since a single processor has at most 8 row elementsat the beginning of the routing. We consider these two distributions here becausethey provide an upper bound for the routing time of all other distributions. Moreprecisely, the following can be shown. Let � be an arbitrary distribution of theelements in the column, and let T (e;�) denote the time to route an element e toits destination row under distribution �. Then it can be shown that the inequalityT (e;�) � maxfT (e;�1); T (e;�2)g holds for all elements e. Thus, if all packetsarrive at their destination rows in time under both �1 and �2, then they also arrivein time under any other distribution.Now consider distribution �1, where initially all � n=2 elements are locatedin the topmost processor of the column. The Start signal arrives at this processorn=4�1 steps after it was broadcast from the center. Now the elements start movingtowards their destination row, where priority is given to those elements that havethe farthest distance to travel. In any step up to time n=2, one row element leavesthe topmost processor and move towards its destination row. Once an elementhas started moving, it is not delayed until it reaches its destination row. Betweentime n=2 and 3n=4, only one row element leaves the topmost processor in any twoconsecutive steps, and from time 3n=4 to the end of the routing, three elements leavethe topmost processor in any four consecutive steps. As before, an element movesto its destination row without being delayed once it has left the topmost processor.Now consider the set of elements that have to travel a total distance of at least3n=8. Due to Claim (1), there are � n=4 such elements in the column. Since theseelements have a higher priority than the rest, all these elements leave the topmostprocessor between time n=4 and n=2. By Claim (1), the destination blocks of theseelements are evenly distributed over the area of the quadrant that is at least 3n=8181

away from the topmost processor. Using simple geometric arguments, it can beshown that all of these elements reach their destination row in time.Next, consider the set of elements that have to travel a distance between n=4and 3n=8. There are � n=8 of these elements, and they leave the topmost processorbetween time n=2 and time 3n=4. It can be shown that these elements also reachtheir destination row in time. Similarly, it can be shown that the set of elementsthat have to travel a distance of less than 3n=16 can be routed to their destinationrows between time 3n=4 and time n. The remaining problem is now to �nd a way toroute those elements that have to travel a distance between 3n=16 and n=4. We cansolve this problem by observing that the capacity reserved for the column elementsbetween time n=2 and 3n=4 is not completely used up by these elements. The reasonis that the rows from which the column elements turn into the column are evenlydistributed over the topmost n=4 rows of the quadrant. Hence, many of the slotsreserved for these elements are not immediately claimed by the column elements,and we can use these empty slots to route row elements that only have to travel ashort distance. It can be shown that all remaining row elements can be routed inthis way, and that they reach their destination row in time.This proves that all packets reach their destination row in time under distribu-tion �1. A similar argument can be given for distribution �2.2
182

Bibliography[1] A. Aggarwal. Optimal bounds for �nding maximum on arrays of processorswith k global buses. IEEE Transactions on Computers, 35:62{64, 1986.[2] M. Ajtai, J. Koml�os, and E. Szemer�edi. Sorting in c logn parallel steps. Com-binatorica, 3:1{19, 1983.[3] George S. Almasi and Allan J. Gottlieb. Highly Parallel Computing. Ben-jamin/Cummings, Menlo Park, CA, 1994. Second Edition.[4] F. Annexstein and M. Baumslag. A uni�ed approach to o�-line permutationrouting on parallel networks. In Proceedings of the 2nd Annual ACM Sympo-sium on Parallel Algorithms and Architectures, pages 398{406, July 1990.[5] S. Assaf and E. Upfal. Fault tolerant sorting networks. SIAM J. DiscreteMath., 4:472{480, 1991.[6] A. Bar-Noy and D. Peleg. Square meshes are not always optimal. In Proceed-ings of the 1st Annual ACM Symposium on Parallel Algorithms and Architec-tures, pages 138{147, July 1989.[7] K. E. Batcher. Sorting networks and their applications. In Proceedings of theAFIPS Spring Joint Computer Conference, vol. 32, pages 307{314, 1968.183

[8] Y. Ben-Asher, D. Peleg, R. Ramaswami, and A. Schuster. The power ofrecon�guration. Journal of Parallel and Distributed Computing, 13:139{153,1991.[9] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation:Numerical Methods. Prentice-Hall, Englewood Cli�s, NJ, 1989.[10] S. H. Bokhari. Finding maximum on an array processor with a global bus.IEEE Transactions on Computers, 33:133{139, 1984.[11] A. Borodin. Towards a better understanding of pure packet routing. In Pro-ceedings of the 3rd Workshop on Algorithms and Data Structures, pages 14{25,1993.[12] Y. C. Chen, W. T. Chen, and G. H. Chen. E�cient median �nding and itsapplication to two-variable linear programming on mesh-connected computerswith multiple broadcasting. Journal of Parallel and Distributed Computing,15:79{84, 1992.[13] Y. C. Chen, W. T. Chen, G. H. Chen, and J. P. Sheu. Designing e�cientparallel algorithms on mesh-connected computers with multiple broadcasting.IEEE Transactions on Parallel and Distributed Systems, 1:241{245, 1990.[14] H. Cherno�. A measure of the asymptotic e�ciency for tests of a hypothesisbased on the sum of observations. Annals of Mathematical Statistics, 23:493{509, 1952.[15] S. Cheung and F. C. M. Lau. Mesh permutation routing with locality. Infor-mation Processing Letters, 43:101{105, 1992.[16] S. Cheung and F. C. M. Lau. A lower bound for permutation routing ontwo-dimensional bused meshes. Information Processing Letters, 45:225{228,1993. 184

[17] B. S. Chlebus, M. Kaufmann, and J. F. Sibeyn. Deterministic permutationrouting on meshes. In Proceedings of the 5th Annual IEEE Symposium onParallel and Distributed Processing, pages 614{621, December 1993.[18] V. Chv�atal. Lecture notes on the new AKS sorting network. Technical ReportDCS{TR{294, Department of Computer Science, Rutgers University, 1992.[19] J. C. Cogolludo and S. Rajasekaran. Permutation routing on recon�gurablemeshes. In Proceedings of the 4th International Symposium on Algorithms andComputation, Lecture Notes in Computer Science, volume 762, pages 157{166.Springer, 1993.[20] R. Cole and C. K. Yap. A parallel median algorithm. IPL, 20:137{139, 1985.[21] A. Condon, R. E. Ladner, J. Lampe, and R. Sinha. Complexity of sub-busmesh computations. Technical Report # 93{10{02, Department of ComputerScience and Engineering, University of Washington, 1993.[22] A. Condon and L. Narayanan. Upper and lower bounds for selection on themesh. In Proceedings of the 6th Annual IEEE Symposium on Parallel andDistributed Processing, October 1994. to appear.[23] P. F. Corbett and I. D. Scherson. Sorting in mesh connected multiprocessors.IEEE Transactions on Parallel and Distributed Systems, 3:626{632, 1992.[24] R. E. Cypher. A lower bound on the size of Shellsort sorting networks. SIAMJ. Comput., 22:62{71, 1993.[25] R. E. Cypher. Theoretical aspects of VLSI pin limitations. SIAM J. Comput.,22:58{63, 1993.[26] R. E. Cypher and C. G. Plaxton. Deterministic sorting in nearly logarithmictime on the hypercube and related computers. JCSS, 47:501{548, 1993.185

[27] W. Dobosiewicz. An e�cient variation of Bubble Sort. Information ProcessingLetters, 11:5{6, 1980.[28] M. Dowd, Y. Perl, L. Rudolph, and M. Saks. The periodic balanced sortingnetwork. JACM, 36:738{757, 1989.[29] T. Gonzalez and S. Sahni. Open shop scheduling to minimize �nish time.Journal of the ACM, 23:665{679, 1976.[30] Z. Guo, R. G. Melhem, R. W. Hall, D. M. Chiarulli, and S. P. Levitan. Arrayprocessors with pipelined optical buses. In Proceedings of the 3rd IEEE Sym-posium on the Frontiers of Massively Parallel Computations, pages 333{342,1990.[31] Y. Han and Y. Igarashi. Time lower bounds for parallel sorting on multidi-mensional mesh-connected processor arrays. Information Processing Letters,33:233{238, 1990.[32] Y. Han, Y. Igarashi, and M. Truszczynski. Indexing functions and time lowerbounds for sorting on a mesh-connected computer. Discrete Applied Mathe-matics, 36:141{152, 1992.[33] E. Hao, P. D. MacKenzie, and Q. F. Stout. Selection on the recon�gurablemesh. In Proceedings of the 4th IEEE Symposium on the Frontiers of MassivelyParallel Computations, pages 38{45, 1992.[34] T. N. Hibbard. An empirical study of minimal storage sorting. Communica-tions of the ACM, 6:206{213, 1963.[35] J. E. Hopcroft and R. M. Karp. An n5=2 algorithm for maximum matchingsin bipartite graphs. SIAM Journal on Computing, 2:225{231, 1973.[36] J. Incerpi and R. Sedgewick. Improved upper bounds on Shellsort. Journal ofComputer and System Sciences, 31:210{224, 1985.186

[37] J. Incerpi and R. Sedgewick. Practical variations of Shellsort. InformationProcessing Letters, 26:37{43, 1987.[38] K. Iwama and Y. Kambayashi. An O(lgn) parallel connectivity algorithm onthe mesh. In Information Processing 89, pages 305{310, 1989.[39] K. Iwama, E. Miyano, and Y. Kambayashi. Routing problems on the mesh ofbuses. In Proceedings of the 3rd International Symposium on Algorithms andComputation, Lecture Notes in Computer Science, volume 650, pages 155{164.Springer, 1992.[40] J. Jang, H. Park, and V. K. Prasanna-Kumar. A fast algorithm for computinghistogram on recon�gurable mesh. Technical Report IRIS 290, Institute forRobotics and Intelligent Systems, University of Southern California, 1992.[41] H. F. Jordan. A special purpose architecture for �nite element analysis. InInternational Conference on Parallel Processing, pages 263{266, 1978.[42] C. Kaklamanis and D. Krizanc. Optimal sorting on mesh-connected proces-sor arrays. In Proceedings of the 4th Annual ACM Symposium on ParallelAlgorithms and Architectures, pages 50{59, July 1992.[43] C. Kaklamanis, D. Krizanc, L. Narayanan, and T. Tsantilas. Randomizedsorting and selection on mesh-connected processor arrays. In Proceedings ofthe 3rd Annual ACM Symposium on Parallel Algorithms and Architectures,pages 17{28, July 1991.[44] C. Kaklamanis, D. Krizanc, and S. Rao. Simple path selection for optimalrouting on processor arrays. In Proceedings of the 4th Annual ACM Symposiumon Parallel Algorithms and Architectures, pages 23{30, July 1992.[45] M. Kaufmann, U. Meyer, and J. F. Sibeyn. Towards practical permutationrouting on meshes. In Proceedings of the 6th Annual IEEE Symposium onParallel and Distributed Processing, October 1994. to appear.187

[46] M. Kaufmann, S. Rajasekaran, and J. F. Sibeyn. Matching the bisectionbound for routing and sorting on the mesh. In Proceedings of the 4th AnnualACM Symposium on Parallel Algorithms and Architectures, pages 31{40, July1992.[47] M. Kaufmann, J. Sibeyn, and T. Suel. Derandomizing algorithms for rout-ing and sorting on meshes. In Proceedings of the Fifth Annual ACM-SIAMSymposium on Discrete Algorithms, pages 669{679, January 1994.[48] M. Kik, M. Kuty lowski, and G. Stachowiak. Periodic constant depth sortingnetworks. In Proceedings of the 11th Symposium on Theoretical Aspects ofComputer Science, pages 201{212, February 1994.[49] W. W. Kirkman and D. Quammen. Packed exponential connections - a hierar-chy of 2-D meshes. In Proceedings of the 5th International Parallel ProcessingSymposium, pages 464{470, 1991.[50] D. E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley,Reading, MA, 1973.[51] C. P. Kruskal and M. Snir. A uni�ed theory of interconnection network struc-ture. Theoretical Computer Science, 48:75{94, 1986.[52] M. Kumar and D. S. Hirschberg. An e�cient implementation of Batcher's odd-even merge algorithm and its application in parallel sorting schemes. IEEETransactions on Computers, 32:254{264, 1983.[53] M. Kunde. Lower bounds for sorting on mesh-connected architectures. ActaInformatica, 24:121{130, 1987.[54] M. Kunde. Bounds for 1-selection and related problems on grids of processors.In Proceedings of the 4th International Workshop on Parallel Processing byCellular Automata and Arrays (PARCELLA), pages 298{307. Springer, 1988.188

[55] M. Kunde. Routing and sorting on mesh-connected arrays. In J. H. Reif,editor, VLSI Algorithms and Architectures: Proceedings of the 3rd AegeanWorkshop on Computing, Lecture Notes in Computer Science, volume 319,pages 423{433. Springer, 1988.[56] M. Kunde. Packet routing on grids of processors. In H. Djidjev, editor,Workshop on Optimal Algorithms, Lecture Notes in Computer Science, volume401, pages 254{265. Springer, 1989.[57] M. Kunde. Balanced routing: Towards the distance bound on grids. In Pro-ceedings of the 3rd Annual ACM Symposium on Parallel Algorithms and Ar-chitectures, pages 260{271, July 1991.[58] M. Kunde. Concentrated regular data streams on grids: Sorting and routingnear to the bisection bound. In Proceedings of the 32nd Annual IEEE Sym-posium on Foundations of Computer Science, pages 141{150, October 1991.[59] M. Kunde. Block gossiping on grids and tori: Deterministic sorting and rout-ing match the bisection bound. In Proceedings of the 1st Annual EuropeanSymposium on Algorithms, pages 272{283, September 1993.[60] M. Kuty lowski, K. Lory�s, B. Oesterdiekho�, and R. Wanka. Fast and feasibleperiodic sorting networks of constant depth. In Proceedings of the 35th AnnualIEEE Symposium on Foundations of Computer Science, November 1994. Toappear.[61] R. E. Ladner, J. Lampe, and R. Rogers. Vector pre�x addition on sub-busmesh computers. In Proceedings of the 5th Annual ACM Symposium on Par-allel Algorithms and Architectures, pages 387{396, June 1993.[62] H. W. Lang, M. Schimmler, H. Schmeck, and H. Schr�oder. Systolic sortingon a mesh-connected network. IEEE Transactions on Computers, 34:652{658,1984. 189

[63] R. Lazarus and R. Frank. A high-speed sorting procedure. Communicationsof the ACM, 3:20{22, 1960.[64] F. T. Leighton. Tight bounds on the complexity of parallel sorting. IEEETransactions on Computers, C{34:344{354, 1985.[65] F. T. Leighton. Average case analysis of greedy routing algorithms on arrays.In Proceedings of the 2nd Annual ACM Symposium on Parallel Algorithmsand Architectures, pages 2{10, July 1990.[66] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,Trees, and Hypercubes. Morgan-Kaufmann, San Mateo, CA, 1991.[67] F. T. Leighton. Methods for message routing in parallel machines. In Pro-ceedings of the 24th Annual ACM Symposium on the Theory of Computing,pages 77{96, May 1992.[68] F. T. Leighton and Y. Ma. Breaking the �(n lg2 n) barrier for sorting withfaults. In Proceedings of the 34th Annual IEEE Symposium on Foundationsof Computer Science, pages 734{743, November 1993.[69] F. T. Leighton, F. Makedon, and I. G. Tollis. A 2n � 2 step algorithm forrouting in an n � n array with constant queue sizes. In Proceedings of the1st Annual ACM Symposium on Parallel Algorithms and Architectures, pages328{335, July 1989.[70] F. T. Leighton and C. G. Plaxton. A (fairly) simple circuit that (usually)sorts. In Proceedings of the 31st Annual IEEE Symposium on Foundations ofComputer Science, pages 264{274, October 1990.[71] F. T. Leighton and C. G. Plaxton. Hypercubic sorting networks. TechnicalReport TR{94{18, University of Texas at Austin, Department of ComputerScience, May 1994. Available via anonymous ftp from ftp.cs.utexas.edu.190

[72] J. Y. Leung and S. Shende. Packet routing on square meshes with row andcolumn buses. In Proceedings of the 3rd Annual IEEE Symposium on Paralleland Distributed Processing, pages 834{837, December 1991.[73] J. Y. Leung and S. M. Shende. On multidimensional packet routing for mesheswith buses. Journal of Parallel and Distributed Computing, 20:187{197, 1994.[74] G. F. Lev, N. Pippenger, and L. G. Valiant. A fast parallel algorithm forrouting in permutation networks. IEEE Transactions on Computers, 30:93{100, 1981.[75] H. Li and Q. F. Stout. Recon�gurable Massively Parallel Computers. PrenticeHall, Englewood Cli�s, New Jersey, 1991.[76] N. Linial and M. Tarsi. Interpolation between bases and the shu�e exchangenetwork. European Journal of Combinatorics, 10:29{39, 1989.[77] M. Luby. A simple parallel algorithm for the maximal independent set prob-lem. SIAM J. Comput., 15:1036{1053, 1986.[78] F. Meyer auf der Heide and H. T. Pham. On the performance of networks withmultiple busses. In Proceedings of the 9th Symposium on Theoretical Aspectsof Computer Science, pages 98{108, 1992.[79] R. Miller, V. K. Prasanna Kumar, D. I. Reisis, and Q. F. Stout. Parallelcomputations on recon�gurable meshes. IEEE Transactions on Computers,42:678{692, June 1993.[80] D. E. Muller and F. P. Preparata. Bounds to complexities of networks forsorting and for switching. Journal of the ACM, 22:195{201, 1975.[81] L. Narayanan. Selection, Sorting, and Routing on Mesh-Connected Proces-sor Arrays. PhD thesis, Department of Computer Science, University ofRochester, Rochester, NY, May 1992.191

[82] D. Nassimi and S. Sahni. Bitonic sort on a mesh-connected parallel computer.IEEE Transactions on Computers, C{28:2{7, 1979.[83] S. E. Orcutt. Computer Organization and Algorithms for Very-High SpeedComputations. PhD thesis, Department of Computer Science, Stanford Uni-versity, September 1974.[84] A. Papernov and G. Stasevich. A method for information sorting in computermemories. Problems of Information Transmission, 1:63{75, 1965.[85] D. Parker. Notes on shu�e/exchange-type switching networks. IEEE Trans-actions on Computers, 29:213{222, 1980.[86] M. S. Paterson. Improved sorting networks with O(logN) depth. Algorithmica,5:75{92, 1990.[87] N. Pippenger. Communication networks. In J. van Leeuwen, editor, Hand-book of Theoretical Computer Science, Volume A: Algorithms and Complexity,pages 805{833. Elsevier/MIT Press, 1990.[88] C. G. Plaxton. A hypercubic sorting network with nearly logarithmic depth.In Proceedings of the 24th Annual ACM Symposium on Theory of Computing,pages 405{416, May 1992.[89] C. G. Plaxton, B. Poonen, and T. Suel. Improved lower bounds for Shellsort. InProceedings of the 33rd Annual IEEE Symposium on Foundations of ComputerScience, pages 226{235, October 1992.[90] C. G. Plaxton and T. Suel. A lower bound for sorting networks based on theshu�e permutation. Mathematical Systems Theory, 27:491{508, 1994.[91] C. G. Plaxton and T. Suel. A super-logarithmic lower bound for hypercu-bic sorting networks. In Proceedings of the 21st International Colloquium onAutomata, Languages, and Programming, pages 618{629, July 1994.192

[92] B. Poonen. The worst case in Shellsort and related algorithms. Journal ofAlgorithms, 15:101{124, 1993.[93] V. K. Prasanna Kumar and C. S. Raghavendra. Image processing on enhancedmesh connected computers. In Computer Architecture for Pattern Analysisand Image Database Management, pages 243{247, 1985.[94] V. K. Prasanna Kumar and C. S. Raghavendra. Array processors with multiplebroadcasting. Journal of Parallel and Distributed Computing, 4:173{190, 1987.[95] V. R. Pratt. Shellsort and Sorting Networks. PhD thesis, Stanford University,Department of Computer Science, December 1971. Also published by Garland,New York, 1979.[96] S. Rajasekaran. Mesh-connected computers with �xed and recon�gurablebuses: Packet routing, sorting, and selection. In Proceedings of the 1st AnnualEuropean Symposium on Algorithms, pages 309{320, September 1993.[97] S. Rajasekaran and T. McKendall. Permutation routing and sorting on the re-con�gurable mesh. Technical Report MS-CIS-92-36, Department of Computerand Information Science, University of Pennsylvania, May 1992.[98] S. Rajasekaran and R. Overholt. Constant queue routing on a mesh. Journalof Parallel and Distributed Computing, 15:160{166, 1992.[99] S. Rajasekaran and T. Tsantilas. Optimal routing algorithms for mesh-connected processor arrays. Algorithmica, 8:21{38, 1992.[100] K. Sado and Y. Igarashi. Some parallel sorts on a mesh-connected processorarray. Journal of Parallel and Distributed Computing, 3:389{410, 1986.[101] I. D. Scherson and S. Sen. Parallel sorting in two-dimensional VLSI modelsof computation. IEEE Transactions on Computers, 38:238{249, 1989.193

[102] C. P. Schnorr and A. Shamir. An optimal sorting algorithm for mesh-connectedcomputers. In Proceedings of the 18th ACM Symposium on Theory of Com-puting, pages 255{263, May 1986.[103] R. Sedgewick. A new upper bound for Shellsort. Journal of Algorithms, 7:159{173, 1986.[104] D. L. Shell. A high-speed sorting procedure. Communications of the ACM,2:30{32, 1959.[105] J. F. Sibeyn. Desnaki�cation of mesh sorting algorithms. In Proceedings of the2nd Annual European Symposium on Algorithms, pages 377{390, September1994.[106] J. F. Sibeyn, B. S. Chlebus, and M. Kaufmann. Shorter queues for permutationrouting on meshes. In Proceedings of the 19th Symposium on the MathematicalFoundations of Computer Science, pages 597{607, August 1994.[107] J. F. Sibeyn, M. Kaufmann, and R. Raman. Randomized routing on mesheswith buses. In Proceedings of the 1st Annual European Symposium on Algo-rithms, pages 333{344, September 1993.[108] H. J. Siegel. Interconnection Networks for Large-Scale Parallel Processing:Theory and Case Studies. Lexington Books, Lexington, MA, 1984.[109] Q. F. Stout. Mesh-connected computers with broadcasting. IEEE Transac-tions on Computers, 32:826{830, 1983.[110] Q. F. Stout. Meshes with multiple buses. In Proceedings of the 27th AnnualIEEE Symposium on Foundations of Computer Science, pages 264{273, 1986.[111] T. Suel. Optimal deterministic routing and sorting on mesh-connected arraysof processors. Technical Report TR{93{18, University of Texas at Austin,194

Department of Computer Science, October 1993. Available via anonymousftp from ftp.cs.utexas.edu.[112] T. Suel. Improved bounds for routing and sorting on multi-dimensionalmeshes. In Proceedings of the 6th Annual ACM Symposium on Parallel Algo-rithms and Architectures, pages 26{35, June 1994.[113] T. Suel. Routing and sorting on meshes with row and column buses. InProceedings of the 8th International Parallel Processing Symposium, pages411{417, April 1994.[114] C. D. Thompson and H. T. Kung. Sorting on a mesh-connected parallelcomputer. Communications of the ACM, 20:263{271, 1977.[115] M. Tompa. Lecture notes on message-routing in parallel machines. Techni-cal Report # 94{06{05, Department of Computer Science and Engineering,University of Washington, 1994.[116] L. G. Valiant. A scheme for fast parallel communication. SIAM Journal onComputing, 11:350{361, 1982.[117] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication.In Proceedings of the 13th Annual ACM Symposium on Theory of Computing,pages 263{277, May 1981.[118] A. Varma and C. S. Raghavendra. Rearrangeability of multistage shuf-e/exchange networks. IEEE Transactions on Communications, 36:1138{1147, 1988.[119] J. S. Vitter and P. Flajolet. Average-case analysis of algorithms and datastructures. In J. van Leeuwen, editor, Handbook of Theoretical ComputerScience, Volume A: Algorithms and Complexity, pages 431{524. Elsevier/MITPress, 1990. 195

[120] B. Wang and G. Chen. Constant time algorithms for the transitive closureand some related graph problems on processor arrays with recon�gurable bussystems. IEEE Transactions on Parallel and Distributed Systems, 1:500{507,1990.[121] R. Wanka. Fast general sorting on meshes of arbitrary dimension withoutrouting. Technical Report TR{RI{91{087, Department of Computer Science,University of Paderborn, August 1991.[122] M. A. Weiss. Lower Bounds for Shellsort. PhD thesis, Princeton University,Department of Computer Science, June 1987.[123] M. A. Weiss. Empirical study of the expected running time of Shellsort. TheComputer Journal, 34:88{91, 1991.[124] M. A. Weiss and R. Sedgewick. Bad cases for Shaker-sort. Information Pro-cessing Letters, 28:133{136, 1988.[125] M. A. Weiss and R. Sedgewick. Tight lower bounds for Shellsort. Journal ofAlgorithms, 11:242{251, 1990.[126] A. C. C. Yao. An analysis of (h; k; 1)-Shellsort. Journal of Algorithms, 1:14{50,1980.
196

VitaTorsten Suel was born in G�ottingen, Germany, on April 7, 1966, the son of Sigrid andAnton Suel. After graduating from Gymnasium Am Fredenberg (High School) inSalzgitter, Germany, in 1985, he entered the Technical University of Braunschweig,Germany. He received the degree of Diplom-Informatiker from the Technical Uni-versity of Braunschweig in August 1990. In August 1990, he entered the GraduateSchool of the University of Texas at Austin, and received the degree of Master ofScience in Computer Science in May 1992.Permanent Address: Otto-Hahn-Ring 7038228 SalzgitterGermanyThis dissertation was typeset with LATEX 2"1 by the author.1LATEX2" is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark ofthe American Mathematical Society. The macros used in formatting this dissertation were writtenby Dinesh Das, Department of Computer Sciences, The University of Texas at Austin.197

