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Abstract

In this paper, we consider a board-level routing problem which is applicable to
FPGA-based logic emulation systems such as the Realizer system [5] and the Enterprise
Emulation System [3] manufactured by Quickturn Systems. For the case where all nets
are two-terminal nets, we present an O(n?)-time optimal algorithm where n is the
number of nets. Qur algorithm guarantees 100% routing completion if the number of
inter-chip signal pins on each FPGA chip in the logic emulation system is less than or
equal to the number of 1/0O pins on the chip. Our algorithm is based on iteratively
finding Euler circuits in graphs. We also prove that the routing problem with multi-

terminal nets is NP-complete.

1 Introduction

Introduced in the mid-1980°s, FPGAs [1,2] combine the programmability of programmable
logic devices and the scalable interconnection structure of traditional gate arrays. This
combination results in programmable devices with much higher logic density. Compared
with traditional ASIC technologies, FPGAs have the advantages of rapid customization,
negligible non-recurring engineering cost, and reprogrammability. Such advantages have
led to increasing interest in the FPGA technology for a wide variety of applications, such
as logic emulation and system prototyping.

Logic simulation is indispensable for the verification of digital system designs. How-
ever, due to the high computational complexity of the problem, logic simulation by software
oftentimes cannot completely verify the behavior of large digital systems. Recently several
logic emulation systems using multiple-FPGAs have been developed {3-7]. These systems

are capable of emulating complex digital system designs several orders of magnitude faster



than software simulators. As a result, FPGA-based logic emulators can verify large designs
that otherwise are not possible by software simulators.

A logic emulator consists of a set of I'PGAs (for implementing the logics) and a set
of FPICs (for interconnections between the FPGAs). For logic emulation, we first partition
the design into parts each of which can fit inside a single FPGA on the logic emulator.
Typical CAD tools (e.g. technology mé.pper, placer, router etc) developed for FPGAs can
then be used to complete the internal design of each individual FPGA. Finally, we need to
perform board-level routing to connect signals between the FPGA chips. The problem of
partitioning a large design into multiple FPGAs is currently an active research area [8,9].
The design of CAD tools for FPGAs is comparatively a more mature subject [1]. On the

other hand, very few results have been reported for the board-level routing problem.
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Figure 1: Interconnect architecture.

In this paper, we address the board-level routing problem using a routing model which
is applicable to logic emulation systems such as the Realizer system [5] and the Enterprise
Emulation System [3] manufactured by Quickturn Systems. In particular, we consider the
case where each FPIC is a small full crossbar and these crossbars only connect to the FPGAs
but not to each other. The I/O pins of each FPGA are evenly divided into proper subsets,
uging the same division on each one. The pins of each crossbar chip are connected to the
same subset of pins from each FPGA chip. Thus crossbar chip z is connected to subset z
of each FPGA’s pins. As many crossbar chips are used as subsets, and each crossbar chip
has as many pins as the number of pins in the subset times the nuﬁlber of FPGA chips.
(See Figure 1 for an illustration of the architecture.) All existing routing algorithms [4,5]
are based on the greedy heuristic and they do not guarantee 100% routing completion even
when such a solution exists.

We present a surprisingly simple result for the case where all nets are two-terminal
nets and each 1/O pin subset size is even. (Note that the architectural requirement of even
1/O pin subset size is a condition that can be easily met. We also note that most of the

nets in a circuit design are two-terminal nets.) We show that as long as the number of net



pins inside each FPGA chip is less than or equal to the number of I/O pins on the chip,
the routing problem is always routable. (In other words, satisfying the 1/O pin capacity
constraint of the FPGA chips is a necessary and sufficient condition for the routing problem
being routable.) Moreover, we also present an efficient polynomial time algorithm, based
on iteratively finding Euler circuits in graphs, to achieve 100% routing completion when
the above conditions are satisfied. Finally, we also prove that the routing problem with
multi-terminal nets is NP-complete.

The rest of this paper is organized as follows. Section 2 gives a more precise description
of the routing problem. Section 3 presents an optimal algorithm for the case where all nets
are two-terminal nets. Finally, in Section 4, we prove some NP-completeness results for the

routing problem with multi-terminal nets.

2 The Board-Level Routing Problem

We will refer to the FPGAs on the logic emulator simply as chips. We assume that all the
chips are identical. Also, we will refer to each 1/O pin subset on each FPGA simply as a pin
subset. Let m be the number of I/O pins in each pin subset. Let K be the total number of
pin subsets in each chip. It follows that the total number of I/O pins on each chip is mK.
Let {ny,na,...,7} be the set of signal nets interconnecting the chips. Let {T},T%, ..., Tk}
be the set of pin subset types.
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Figure 2: A routing solution. All pius belonging to nets ny, ns, ns are assigned to type A 1/0 pins,

and all pins belonging to nets ng, n4, ng are assigned to type B I/O pins.

The board-level routing problem, which will be referred to as BLRP, is the problem of
assigning the net pins in each chip to the 1/O pins on the chip such that all pins belonging
to the same net have to be assigned to I/O pins of the same type. Also, at most one net
pin can be assigned to each I/O pin. Figure 2 shows a routing solution to a problem with
six nets and three chips where m=2 and K=2. Equivalently, BLRP can be viewed as a
problem of assigning the nefs to the set of pin subset types satisfying the condition that

in any chip no more thar m nets are assigned to the same pin subset type. BLRP can be



formally described as follows: Determine a function F : {ni,no,...,m} = {11, T%, ..., Tx}
such that in each chip there are no more than m nets that get mapped to T; for all i.
Clearly, F(n;) = T) means that we assign all pins in net n; to I/O pins of type 7. A
routing problem is feasible if such function F' exists.

All existing algorithms [4,5] for BLRP are based on greedy heuristic. We now give an
example to show that greedy heuristic may not find a routing solution even if one exists.
Consider the following heuristic: the nets are arranged and then processed according to
some order; when a net is processed, it is assigned to the first type of pins that is still
available at all the chips sharing the net.

For the instance of BLRP in Figure 2 we may process the nets in the order ny, n,, na,
T4, Ny, Ng. First, n, and n, are assigned to pin subset type A. Then ns cannot be assigned
to pin subset type A because no type 4 pin is available in chip 1 and it is assigned to pin
subset type B. Similarly n, is assigned to pin subset type B. But when ns is processed,
it cannot be assigned to pin subset type A because all type A pins in chip 3 are used, and
it cannot be assigned to pin subset type B because all type B pins in chip 2 are used.
Similarly, ne cannot assigned to any pin subset type. So the heuristic only routed two-third
of the nets. On the other hand, Figure 2 already shows a feasible solution which routed all
nets by assigning net n; to pin subset type A if 7 is odd, and to pin subset type B if i is

even.

3 Algorithm

In this section, we assume that all nets are two-terminal nets. We also assume m, the pin
subset size, is even. For a routing problem to be feasible, clearly a necessary condition is
that the number of net pins inside each chip is less than or equal to the number of I/O pins
on the chip. (In this case, we say that the routing problem satisfies the I/O pin capacity
constraint.) Surprisingly, we can prove that the above condition is also sufficient, i.e., any
problem satisfying the I/O pin capacity constraint is always feasible. Moreover, we designed
an efficient polynomial-time algorithm to successfully route all nets if the problem satisfies
the I/O pin capacity constraint.

Given an assignment of nets to the pin subset types. We define the degree of imbalance
®(v) at a chip v to be the minimum number of nets that need to be re-assigned so that no
more than m nets in v are assigned to the same pin subset type, i.e., ®(v) = 3 g 0)sm (Ti(v) —
m), where T;(v) denotes the number of nets in chip v that are assigned to pin subset type
T;. When the degree of imbalance at every chip is 0, we have a feasible solution. Qur

strategy is to reduce the degree of imbalance at each chip iteratively until it becomes 0



without increasing the degree of imbalance at other chips.

Suppose we have an assignment of nets to pin subsets for which some chip vy has a
pin subset T; assigned more than m nets, i.e., T;(vy) > m. Then chip v, must also have
a pin subset T} assigned less than m pins, i.e., Tj{(vy) < m. We show how to balance the
number of nets assigned to pin subset types T} and T} to reduce the degree of imbalance at
chip vo.

Consider those nets assigned to pin subset types 7; and T;. We form a graph Gij as
follows. We represent each chip as a distinct vertex. And for each net assiged to pin subset
types T; or T}, we represent it by a distinct edge that connect the two vertices corresponding
to the chips sharing the nets. So G;; is a multigraph and the number of edges between any
two vertices is equal to the number of nets shared by the two corresponding chips that are
assigned to pin subset types T; or Tj. Let Hy; be the connected component of Gy; that
contains vertex vy (the vertex corresponding to chip vg). The idea is to traverse all the
edges of H;; once and label the edges alternately with ¢ and 7. If an edge is labeled i
(7), we re-assign the corresponding nets to pin subset type T; (7). The details are given
in the following two lemmas. When we say “a chip in H;;”, we mean a chip that has a
corresponding vertex in H;;. Similarly, when we say “a net in H;;”, we mean a net that has

a corresponding edge in ;.

Lemma 1 We can label the edges of H;; = (V, E) with 1 and j such that

(i) |i(v) — F(v)]== 0 for all v € V, if |E} is even and all vertices have even degree;
(ii) |i(v}) —7()|< 1 for all v € V, if some vertez has odd degree;

(iii) for an arbitrary vertezu € V, |i(u) — i(u)|= 2, and [i(v) — j(v}|= 0 for allv € V — {u},

if |E| is odd end all vertices have even degree

where i(v) and j(v) denote the number of edges on vertez v labeled i and the number of

edges on vertex v labeled j, respectively.

Proof: First we prove (i) and (iii). If all vertices have even degree, then H;; has an Euler
circuit. We can traverse an Euler circuit starting and ending at an arbitrary vertex » and
label the edges alternately with ¢ and j along the way. It is clear that |i(v) — j(v)|= 0 for
all v € V — {u}. And if {F| is even, the first and the last traversed edges will get different
labels, so |¢{u) — j(u)|= 0. This proves (i). On the other hand, if |E| is odd, the first and
the last traversed edges will get the same label, so |¢(u) — j(u)|= 2. This proves (iii).

Now we prove (ii). If some vertex in H;; has odd degree, the number of odd-degree

vertices must be even (since ), degree(v) = 2|E|). So we can add a new vertex w and



join every odd-degree vertex in Hy; to w by an edge to get a graph Hj; = (V’, E’) whose
vertices are all of even degree. We consider two cases.

Case 1: |E| is even. Then |E'| is also even. So case(i} applies to H}; and we can label the
edges of HJ; so that |i(v) — j(v)}= 0 for all v € V’. Removing all the edges on w, we obtain
an edge-labeling for H;; such that |i(v) — j(v)|= 0 for all even-degree vertex v in Hj;, and
li{v) — j(v)|= 1 for all odd-degree vertex v in Hj;.

Case 2: |E| is odd. Then |E’| is also odd. So case(iii) applies to H}; and we can label the
edges of H}; so that |i(w) — j(w)|= 2 (pick w as the arbitrary vertex) and |i{v) — j(v)}= 0
for all v € V' — {w}. Removing all the edges on w, we obtain an edge-labeling for H;;
such that |i(v) — j(v)|= 0 for all even-degree vertex v in H;;, and |i(v) — j(v})|= 1 for all
odd-degree vertex v in H;;.

In both cases, [i(v) — j(v)[< 1 for all vertex v € V. O

Lemma 2 We can balance the number of nets assigned to pin subset types T; and T} in
any chip v in Hy; = (V, E), so that

(i) Ti(v) £ m and T;(v) < m when T;{v) + T;(v) < 2m;

(i) Ti(v) 2 m and T;(v) > m when Ti(v) + T;(v) > 2m

if m is even.

Proof: If |E|is even or there exists some odd-degree vertex in H;;, then we can label all
the edges of H;; with ¢ and j such that |i(v) — j(v)| < 1 by Lemma 1(i)(i1). Assigning all
the nets in H;; that have a corresponding edge labeled i (J) to pin subset type T; (T}), the
result follows.

Now, consider the case |E| is odd and all vertices in H,; have even degree. Then
there exists a vertex w such that degree(w) < 2m — 2 or degree{w) > 2m + 2. Other-
wise, all vertices must be of degree 2m (since all vertices have even degree); this implies
2|1E) =3, oy degree(v) = 2m|V], Le., |E| = m|V|, which is impossible as m is even but |E|
is odd. So if we pick w with degree(w) < 2m — 2 or degree(w) > 2m + 2 as the arbitrary
vertex in Lemma 1(iii), and assign all the nets in H,; that have a corresponding edge labeled

i (§) to pin subset type T; (}), the result follows. O

Theorem 1 For any BLRP, there ezists a feasible solution using [A/m] pin subset types

if m is even, where A denotes the mazimum number of nets in a chip.

Proof: Assum m is even. We show how to change an arbitrary assignment of nets to pin
subsets that uses { A/m] pin subset types, so that each chip satisfies the condition that no

more than m nets in it are assigned to the same pin subset.



Suppose we have an assignment of nets to pin subsets that uses [A/m] pin subset
types for which some chip vy does not satisfy the condition, i.e., T;(vy) > m for some pin
subset T;. Then we have T;(vy) < m for some other pin subset T; among the [A/m] types
used. Otherwise, each of the [A/m] pin subset types in chip vy has at least m nets assigned
to it, and in particular more than m nets are assigned to Tj; this implies the number of nets
in chip vy is greater than m[A/m] > A, which is impossible.

Consider those nets assigned to pin subset types T; and T;. We form a graph G;; as
follows. We represent each chip as a distinct vertex. And for each net assigned to pin subset
types T; or I, we represent it by a distinct edge that connect the two vertices corresponding
to the chips that share the net. Let H;; be the connected component of ;; that contains
vertex v, (the vertex corresponding to chip v}. By Lemma 2, we can re-assign the nets in
H;; so that for any chip in H;; the number of nets assigned to pin subset type T; and the
number of nets assigned to pin subset type T; are both no more than m or both no less
than m.

We can repeat this balancing process until no more than m nets in chip v, are assigned
to the same pin subset type. (This happens in at most A — m iterations. Since ® =
2 Ti(va)>m (Ti(vo)} — m) decreases each time and this happens when @ is zero).

Now, if all chips satisfy the condition, we are done. Else we can repeat the same argu-
ment for some chip not satisfying the condition. And notice that nets in chip v, may then
be re-assigned but vy will continue to satisfy the condition by Lemma 2(i). So repeating
in this way, we will obtain an assignment which uses [A/m] pin subset types and in every

chip there are no more than m nets assigned to the same pin subset type. m|

Corollary 1 Any BLRP with even subset size m is feasible.

Proof: The /O pin capacity constraint means that the maximum number of nets in a chip
(A) cannot exceed the number of [/O pins in a chip (mK), i.e., A < mK. Hence [A/m] is

no greater than K, the number of pin subset types. So the result follows from Theorem 1. O

Now, we present the algorithm for solving the two-terminal net BLRP when the pin

subset size m is even.
Algorithm 1

1. Assign all the nets to pin subset type T1.
So for any chip v, T1{v) := number of nets in v; and T;(v) :=0for¢ =2,3,...,[A/m]

where A is the maximum number of nets in a chip.



2. Balance the number of nets assigned to each pin subset type in each chip.
For each chip v do
while there exists pin subset types T; and T s.t. Z;(v) > m and T;(v) < m do
Represent each chip as a vertex, and
represent each net assigned to pin subset types T; or T; as a distinct edge
joining the vertices corresponding to the chips that share the net to
obtain a multigraph;
Let H;; be the connected component containing v;
if H;; has some odd-degree vertex then
add a new vertex w to H;; and
join every odd-degree vertex in H;; to w by an edge;
Y= w
else if H;; has an odd number of edges then
u := a vertex in H;; whose degree is not 2m
else « := v;
Find an Euler circuit in Hjj;
Traverse the Euler circuit starting at vertex » and
label the edges alternately with ¢ and 7 along the way;
Re-assign each net that has a corresponding edge in H;;
to pin subset type T; if the edge is labeled i, and to T; otherwise;
Discard w (if it has been added) and all edges on it.
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Figure 3: An instance of BLRP.

Figure 3 shows an instance of the BLRP. We show how our algorithm works on if in
IMigure 4. In this example, m, the pin subset size is 2; and A, the maximum number of nets
in a chip is 6. So [A/m] = 3.

First, we assign all nets to pin subset type A as shown in Figure 4(a) . Then we process
the chips in the order vy, va, vs, 4, Us, Vs, vr. Since A(v;) > 2 > B(v;), we form and label

graph H., as shown in Figure 4(b). Then we re-assign the corresponding nets as in shown



(a) ol n2 o3 nl 05 G n? n3
i n7
T T T T T T T Ll T T T T T T T T T T
A A B B cc AA BB cc AA BB cc
vl v2 v3
n3 n9 M nl0 n5 n6 n7 n% nl0
n8nllni2 niinl2
—T —T —T e T — — — —T —T T —
AA BB cc AA BB cc AA BB c e AA BRE cc
vad v5 v6 v7
(b) © [ imm niné  inS of n8 n2
—T —T —T —T —T — —T 1 —
A A BB cc AA BB cc AA BB cc
vi v2 v3
n3 n? ni0 nd n6 n8niling n7 nl2:

o
a4
5 ]
»
w
]
a
a4

A A BE B A A na [ o
vd v5 vG

Inw all |m9 miz

>
b
w
=
a
o

vT
() () nl io2 3 m oS o7 né i )

— T 1 — — T T i —
AA BB CC AA BB CC AA BB CC
vl v2 v3

9 n3 ™ nlo n8 nll 05 o7 nl2 ns
T T L} T T T T T T T T T T T T T
AA BB <CC AA BB cCC AA BB CC
v4 v5 v6
nil ® nl2 nlo
— — —
AA BB CC¢
v7
) (g) T o3 in2w n2 w6 inS o I | 8 )
AA BB cc A A BB cc AA B3 cc
vl v2 v3
n3 n? nid nd n8 nil né nl2 n§ n7
— et — — — — — Ty
A A BB cc A A BB cc AA BB cc
v4 v5 vh
nil nlOnl2 n?

Figure 4: (a) An initial assignment of nets to pin subsets. (b) Graph H, with Euler circuit
g g p AB
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to the labels in graph HSs. (f) Graph H$, with an Euler circuit e} ngngnrniseheinanangnionael.

(g) A feasible solution otained after re-assigning some nets according to the labels in graph H$ ..



in Figure 4(c). After that, chips vy, v, va, vy, and v all satisfy the condition that no more
than two nets in it are assigned to the same pin subset type. But A(vs) > 2 > C(vg),
so we form and label graph H. as shown in Figure 4(d). And then we re-assign the
corresponding nets as shown in Figure 4(e). Since B(vg) > 2 > ((vg), chip vs requires
further processing, so we form and label graph Hi. as shown in Figure 4(f). Then we
re-assign the corresponding nets as shown in Figure 4(g). Now, chip vg also satisfles the
condition that no more than two nets in it are assigned to the same pin subset type (note
that this property is preserved at chips vy, v, va, ¥4, and vz). Since chip vy already satisfies

the condition, we are done.

Theorem 2 Algorithm 1 finds a feasible solution for any two-terminal net BLRP with even

subset size m in O(n”)-time where n is the total number of nets.

Proof: In each iteration, we can construct graph H,; and find an Euler circuit in it in
O(n)-time. And at most 2n iterations are required because the sum of the degrees of im-

balance at all chips is no more than 2n at the beginning. Hence the result. o

Now, we consider the BLRP with odd pin subset size m. Note that we used only
[A/m](< K) types of pins in our algorithm. So some types of pins may not be used at all.
If m is odd, we may limit ourselves to use at most m — 1 pins of each pin subset type in
every chip and use our algorithm to find a routing that uses [A/(m — 1)] types of pins. So
when m is odd, we can still apply our algorithm in this way to find an optimal solution if
[A/(m—-1)] < K.

Theorem 3 For any two-terminal net BLRP with odd subset size m such that [A/(m — 1)] <
K, we can modify Algorithm 1 to find a feasible solulion.

Proof: We only have to replace m by m — 1 through the entire algorithm. Since m — 1 is

even, all arguments apply as before. O

| ni m | | m m b n3 ni |

T T T T T T

A B A B A B

Figure 5: An instance of BLRP with odd subset size m (=1) which has no feasible solution.

We do not apply our algorithm directly when m is odd because in step 2, if H,; has

an odd number of edges, it is possible that all vertices in H;; have degree 2m when m is

10



odd. Moreover, some instances of the BLRP with odd pin subset size m actually do not
have a feasible solution. For example, it is obvious that the simple instance in Figure 5

with m equals to 1 has no feasible solution.

4 NP-completeness

In this section, we prove that the board-level routing problem with multi-terminal nets
is NP-complete [11,12]. We prove the result in two steps. First, we use polynomial-time
reduction from the Graph K-Colorability problem [11], a known NP-complete problem
described below, to prove that the BLRP with pin subset size of 1 is NP-complete. Then,
we show that the BLRP with pin subset size of 1 is polynomial-time reducible to the BLRP
with pin subset size of m for any m > 1. Hence, for any m > 1, the BLRP with pin subset
size of m is NP-complete.

The Graph K-Colorability problem is as follows. Given a graph G = (V, F) and a
positive integer K < |V, determine whether there is an assignment of colors to the vertices
such that each vertex is assigned one color, and no two adjacent vertices have the same
color, and the total number of color used is no more than K. Such an assignment is called

a K-coloring of G.
Theorem 4 The BLRP with pin subsel size of 1 is NP-complete.

Proof: We first show that the BLRP with pin subset size of 1 belongs to NP. Given an
instance of the problem, our certificate is the assignment of nets to pin subsets. It is easy to
construct a polynomial-time verification algorithm which checks that every net is assigned
to a pin subset and no two nets in the same chip are assigned to the same subset.

We now show that Graph K-colorability is polynomial-time reducible to the BLRP
with pin subset size of 1. Given an instance G = (V, E) of the Graph K-colorability problem,
we construct an instance of the BLRP with pin subset size of 1 such that G has a K-coloring
if and only if there is an assignment of nets to pin subsets such that no two nets in the same
chip is assigned to the same subset.

The routing problem is constructed as follows. For each edge (u,v) in G, we form a
K-pin chip that contains only two nets, n, and n,. There are K size-1 pin subsets per chip.
We call the pin subsets 51, S, ..., Sk.

To complete the proof, we show that the graph GG has a K-coloring if and only if the
corresponding routing problem has a feasible solution. Suppose that G has a K-coloring
with colors o, @, ..., ax. We define an assignment in the corresponding routing problem
by assigning net 7, to pin subset S; if vertex u is colored with color e; for every vertex .

This is a feasible assignment because for any two nets n,, and n, in the same chip, there is

11



a corresponding edge (u,v) in G. So vertices v and v must be colored with different colors,
hence n, and n, are assigned to different subsets.

Conversely, if the constructed routing problem has a feasible solution, we can color
G by coloring vertex u with color o; if net n, is assigned to pin subset 5; for every vertex
#. This constitutes a K-coloring of G because for any two vertices 4 and v which have an
edge between them, there is a corresponding chip that contains nets n, and n,. So n, and
1, must be assigned to different pin subsets since each subset holds only one net, hence u

and v are colored with different colors. Also, we used only K colors, a4, @y, ..., ag. ]

Theorem 5 The BLRP with pin subset size of m is NP-complete for any m > 1.

Proof: We use R(7) to denote the BLRP with pin subset size of 1.

Suppose we have a fixed m > 1.

First we show that R(m) belongs to NP. Given an instance of the problem our cer-
tificate is the assignment of nets to pin subsets. It is easy to construct a polynomial-time
verification algorithm which checks that every net is assigned to a pin subset and nom +1
nets in the same chip are assigned to the same subset.

We now show that (1), which is NP-complete by the previous theorem, is polynomial-
time reducible to B(m). Given an instance I(1) of R(1), we construct and instance /(m) of
R(m) such that I(1) has a feasible solution if and only if I(m) has a feasible solution.

Suppose that every chip in I(1) has K pin subsets, S; to Sk. All chips we form in
I(m) also have K pin subsets, T} to Tk, and of course each has a size of m. We form two
sets of chips as follows.

For each chip X in I(1), we form a chip ¥ in I(m) so that if net n; belongs to chip
X, then nets n;1, iy - . ., Ny Delong to chip Y. So the number of nets in chip Y is m times
that in chip X. See Figure 6(a)(b).

And for each net n; that appears in I(1), we form m chips, Zi1, Zia, - . ., Zim. Chip Z;;
(f =1,...,m) contains nets z;, 23, ..., Zi(mx-1), and n;;. Hence chips Z;;, Z;5, ..., Z;
all contain the maximum possible number of nets. Thus we are forcing 741, s, - . ., Bim 10
be assigned to the same pin subset in any feasible solution. See Figure 6(a)(c).

To complete the proof, we show that I{1) has a feasible solution if and only if I(m)
has a feasible solution.

Suppose that /(1) has a feasible solution. We can obtain a feasible solution for I'(m)
as follows. We assign n;1, nig, - . ., Bim to pin subset T}, if n; is assigned to pin subset S, in
I(1). Then no m+ 1 nets are assigned to the same pin subset for any Y-chip. Since n;, 742,
<+« iy, are all assigned to the same pin subset Ty, we can assign any m — 1 nets from {z;,

Ziny oy Zigmi-1)} 0 T, and assign the remaining m(K — 1) nets evenly among the other
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ABC ABC ABC
@
¥ -chips nil n2 m1 n2 | [ w1 m2 w31 n2 | a1 12 n21 a2 m31 an
T 1 T T T T T T T T T T T 3 T T T T
AA BB CC AA BB cCC AA BB cCC
b
Zohips MU 21l 212 213 214 m15 | 21 221 22 23 w4 25| [n31 231 232 233 234 25 |
T T T T T T T ] T T T T T T T T T T
AA BB CC AA BB cCC AA BB cCC
In12 211 212 213 z14 215 | |m22 21 22 23 24 25| [n32 231 32 233 34 235 |
T T T T T T T T T T T T T T T 3 T T
AA BB CC AA BB CC AA BB CC

©
Figure 6: Reducing a routing problem with subset size 1 to a routing problem with subset size 2.
(a) A problem with subset size 1. (b) ,(c) Construction of two kinds of chips of the corresponding

problem with subset size 2.

K —1 pin subsets (note that there are more than one way to do this) so that no m + 1 nets
are assigned to the same subset for chips Zj1, Zi, ..., Zin-

Conversely, suppose that f(m) has a feasible solution. By the construction of chips
Zi1y Ziny <« oy Zim, We must have nets n;, 1, .., %, all assigned to the same pin sub-
set. We can obtain a feasible solution for I(1) by assigning n; to pin subset Sy if ni1, nia,
...,y are assigned to pin subset 7, in f(m). Then no two nets in the same chip of I{1)
are assigned to the same pin subset, otherwise there must exist nets n; and n; in the same

chip both assigned to some pin subset S,; this implies some Y-chip in I(m) contains n;,

T2y « o+ Nim, and 41, Njg, ..., Ny, and they are all assigned to pin subset 7, , which is
impossible, a
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