
Model Checking for UNITYThe UV SystemRevision 1.10Markus KaltenbachDepartment of Computer SciencesThe University of Texas at AustinMay 9, 1994AbstractWe present a description of our current implementation of a modelchecker for �nite state UNITY programs and propositional UNITY logic.The model checker is capable of dealing with all unconditional propertiesof UNITY logic. Checking safety properties and basic progress propertiescan be done very e�ciently due to the partitioning of the transition rela-tion of a program induced by the program statements. Finding suitableinvariants remains a crucial task in proving properties. The model checkerprovides means for both computing the strongest invariant of a programand for managing established invariants.Contents1 Introduction 22 Concepts and Structures 32.1 Documents : 42.2 Programs : 42.3 Properties and Model Checking : : : : : : : : : : : : : : : : : : : 52.4 The Role of Invariants : 62.5 Debugging Information : 72.6 Aspects of Using OBDDs : 73 Some Examples 83.1 Simple { Properties and Invariants : : : : : : : : : : : : : : : : : 83.2 Cycle { Finite Range Arithmetic : : : : : : : : : : : : : : : : : : 93.3 Mutex { A Mutual Exclusion Algorithm : : : : : : : : : : : : : : 101

4 The Input Language 124.1 Input Structure : 124.2 Expressions and Types : 134.3 Programs : 164.4 Properties : 185 Discussion and Outlook 19A Grammar 20B Implementation Details 22References 231 IntroductionThe UNITY Veri�er (UV) project is aimed at providing automated support forthe veri�cation and the design of distributed programs. As a basic buildingblock for such a support system we have developed the UNITY model checker(UMC), which is a tool for both automatically verifying properties of �nite stateUNITY programs and for supporting the design and analysis of such programsby allowing the interactive exploration and manipulation of programs and theirspeci�cations.In working with UMC the user provides the system with a set of programs(the models) and a set of speci�cations. The system then checks whether thespeci�cations are satis�ed by the programs. The input language in which pro-grams and speci�cations are stated allows the user to write �nite state UNITYprograms and propositional UNITY properties as speci�cations. This includes astrong typing scheme with boolean, �nite range integer and enumeration types,as well as the complete treatment of all unconditional modalities of UNITYlogic to express safety and progress properties.Besides being able to completely automatically check the validity of prop-erties with respect to given programs, the UMC system provides the user withadditional information (such as counterexamples) that greatly help in debuggingprograms and understanding certain veri�cation failures. Moreover the UMCsystem has a carefully designed user interface that supports the user in manag-ing and investigating programs and properties. The goal for designing such aninterface is to both make the system accessible to a wider range of users and toinvite users to use the system to explore and to modify their programs in a waythat would be to di�cult or error prone if done without mechanical help.The UMC system uses Ordered Binary Decision Diagrams (OBDDs) forinternally representing formulae, sets of states, and transition relations. Pro-grams and properties given to the system as input are compiled into OBDDs,thus resulting is a symbolic representation in which the state spaces of programs2

are not enumerated or constructed explicitly. The transformation of programs,properties, and types in particular into OBDDs is transparent to the user.It has to be noted that the UMC system is a prototype and is as such cur-rently still under development. As a consequence of this development processthere are several limitations in e�ect on the current system revision, that we ex-pect to remove in future revisions. Such limitations include the lack of supportfor checkpointing or saving the system state beyond the level of textual descrip-tions in the input language, the limited implementation of tools for inspectingformulae or program execution traces, or the lack of suitable parameterizationof the system in order to adjust its performance to di�erent problems.As the system furthermore is part of our ongoing research, there are manyinteresting extensions still to be investigated. These include the e�ective compo-sition of several programs in a structured way (whil taking advantage of syntacticrestrictions to reduce to size of the resulting state spaces), the introduction ofparameterized unbounded programs and properties and the ability to prove cer-tain formulae about such programs with the help of inductive methods, or theexploitation of symmetry to reduce the size of state spaces. It should be alreadyclear that in the larger context of an automated support system for the designof distributed programs a model checker in the given form is a very useful butstill rather basic tool that needs to be supplemented by more powerful systemcomponents in order to make such a system useful for a larger class of designtasks.The reminder of this paper is structured as follows: in section 1 we �rst recallsome basic concepts of model checking and UNITY, de�ne basic structures ofthe UMC system, and show how they are related to each other. In section 2 wegive a few simple examples of inputs to the system, and of how the system can beused on those inputs. We then proceed with a complete description of the inputlanguage in section 3. We conclude the main part of the paper by discussingsome practical aspects of the UMC system and by stating our objectives for thenext steps in the its future development in section 4. Two appendices contain asummary of the grammar of the input language, and a some information aboutthe actual implementation of the UMC system.2 Concepts and StructuresThe model checking task consists in determining whether a given formula insome logic is satis�ed by a structure over which the formula is interpreted. In theUMC system the formulae considered are the properties of propositional UNITYlogic and the programs are �nite state UNITY programs. We assume that thereader is familiar with UNITY, in particular with the programming notationand the semantics of the properties (for reference see [CM 88], [Mis 93]).The purpose of this section is to summarize the concepts of model checkingfor UNITY, to explain how these concepts are dealt with in the UMC system,3

and how the UMC system can be used for supporting UNITY model checking.2.1 DocumentsThe user interacts with the UMC system on the basis of text documents, thatcontain textual representations of collections of programs and properties to beinvestigated. Such a document is parsed and compiled into an internal represen-tation suitable for invoking the model checking algorithms and for performingrelated computations.After parsing a document the user can access all programs and all propertiesof the document through an easy to use interface, can selectively display statusinformation about each program or property, can selectively check propertieswith respect to di�erent invariants, and can obtain information about thesemodel checker invocations, that often allow to better understand, why a certainproperty fails to be proved valid.2.2 ProgramsUNITY programs de�ne the structures for which properties are veri�ed. TheUMC system is capable of handling �nite state UNITY programs without quan-ti�ed assignments. The �niteness of the state space of an admissible program isguaranteed by the restriction on available data types, which are boolean, �niterange integer, and enumeration types.Theoretically every �nite state program can be represented solely with bool-ean variables, but it is very cumbersome and an additional source of errorsto ask the user to provide a binary encoding herself. Moreover by supportingnon-boolean �nite types the readability of programs is signi�cantly increased.The UMC input language derived from the UNITY programming notationallows a powerful and convenient way of de�ning a state transition system forwhich properties are to be proved. In a declaration part of the program thestate space of the program is de�ned as the cartesian product of the domainsof all declared variables. A second part of the program allows to specify initialstates of the system, whereas the assignment part of a program consists of acollection of guarded multiple assignments de�ning the transition relation ofthe program. The notation allows to easily expresses both synchronous andasynchronous behavior, since all assignments in any multiple assignment areperformed simultaneously, and since an execution of a program consists of anyweakly fair sequence of assignment executions.The UMC system associates with every program an invariant, namely thestrongest invariant proved to hold for the program. This notion is well de�ned,since with any two invariants I and J their conjunction I ^ J is an invariant aswell. Furthermore there is a strongest invariant of any program characterizingthe set of states reachable from initial states by a program execution. The4

signi�cance of these invariants for the model checking task is discussed later inthis section.2.3 Properties and Model CheckingThe UNITY logic is built from eight kinds of (unconditional) modalities calledproperties that allow the concise speci�cation of many interesting aspects ofprograms. UNITY logic is a simple positive logic in the sense that logicaloperations (in particular negation) or nesting of modalities are not part of thelogic. The modalities are applied to nonmodal formulae, in the UMC systemthis nonmodal logic is restricted to full propositional logic. Due to the �nitestate nature of the programs considered, however, every �rst order formula canat least theoretically be expressed by a propositional formula.The properties can be classi�ed as safety and progress properties. Safetyproperties are the basic co properties, and the unless, stable, invariant, andconstant properties which can be expressed in terms of co and boolean connec-tives (the invariant property requires the initial condition of the program aswell). Progress properties are the basic transient properties, the ensures prop-erties which can be expressed in terms of transient, co, and boolean connectives,and the leads-to properties de�ned as the reexive, transitive and disjunctiveclosure of the ensures relation (for �nite state programs disjunctivity is redun-dant, since �nite disjunctivity can be deduced from the laws for ensures andfrom transitivity).The model checking algorithm for most kinds of properties can make di-rect use of the partitioning of the transition relation of a program induced bythe statements of that program. As a consequence, in many model checker in-vocations the entire transition relation never has to be constructed (not evenimplicitly) increasing the performance of the model checker signi�cantly. Allsafety properties and all basic progress properties (with the only exception ofleads-to properties) can be dealt with very e�ciently that way. The algorithmfor checking leads-to properties employs a �xpoint computation based on thepredicate transformer wlt (see [JKR 89]) taking the fairness constraints on pro-gram executions into account.Each property given as input to the UMC system is connected to exactlyone program, that serves as the structure over which the property is to beinterpreted (and hence the local variables of which it can refer to). The systemFurthermore keeps track of the checking status of each property, namely whetherit has not been checked yet, whether it has been proved successfully, whetheran attempted proof failed (but still has the potential to succeed with respect toa stronger invariant), or whether it has been proved invalid for the program.5

2.4 The Role of InvariantsStrictly speaking the satisfaction of a property for a given program is de�nedwith respect to the set of reachable states of the program. A complete way ofchecking a property would be to �rst determine the strongest invariant of theprogram, and then check the property with respect to that strongest invariant.Unfortunately computing the strongest invariant is often very complex, even iftechniques like iterative squaring are used. In particular intermediate results ofthe computation can become too big to be dealt with e�ciently, even thoughthe �nal result may be reasonably small. On the other hand it is often thecase that it is not necessary to known the strongest invariant of a program, aweaker invariant may already su�ce to proof other properties. Sometimes eventhe trivial type invariant (asserting only that all variables take on values fromtheir respective types) does the job, allowing a `proof from the program text'.The UMC system deals with this situation by conceptually associating aninvariant lattice with each property. Such a lattice is determined by the programproviding the context for the property. Lattice elements are invariants of theprogram ordered by logical implication. The top (weakest) element of such alattice is the type invariant of the program, the bottom (strongest) element isthe strongest invariant of the program. The invariant lattice of a program iscomplete, for a �nite state program it is �nite. Furthermore each invariant inthe lattice associated with a property is labeled indicating whether the propertyhas been proved with respect to the invariant, whether a proof has failed, orwhether the result is still unknown.The checking status of a property is uniquely determined by the labelingof the invariant lattice, e.g. a property is proved to be not valid if and onlyif the strongest invariant is labeled with 'fail'. By keeping track of strongestinvariants for which a proof failed, and weakest invariants for which a proofsucceeded (provided they exist), the model checker can manage the checking ofa property and at times even determine, whether a checking attempt succeedsor fails without actually invoking the model checking algorithm.In the current system the user has some limited exibility in choosing invari-ants with respect to which a property is to be checked. The system maintainsup to three invariants for each program the user can choose from: the �rst is thetype invariant (corresponding to directly checking), the second is the strongestinvariant (provided it has been computed successfully), and the third is the socalled current invariant being the conjunction of all successfully proved invari-ants of the program. By choosing the order of model checker invocations oninvariant properties the user can control the current invariant being built.For computing the strongest invariant of a given program the UMC sys-tem furthermore provides three algorithms the user can choose from: forwardchaining, forward chaining with frontier nodes, and iterative squaring. The for-ward chaining algorithms compute the strongest invariant as the set of reachablestates starting with the initial set of states and iteratively adding the (right)6

image under the transition relation until a �xpoint is reached. In the ordinaryforward chaining algorithm, the image of all collected node is computed in eachstep, whereas the frontier node algorithm forward chaining computes the imageof only the states that were added in the previous step. Both algorithms requirea number of iterations equal to the greatest distance of a state from an initialstate (i.e. in the order of the diameter of the state graph). Ordinary forwardchaining requires fewer OBDD operations, but is more likely to produce biggerintermediate results. On the other hand the iterative squaring algorithm com-putes the transitive closure of the transition relation by iterative squaring andfrom this the strongest invariant as the (right) image of the set of initial statesunder the closure relation. It requires only a number of iterations in the orderof the logarithm or the diameter of the reachable state graph, unfortunatelyin most cases it produces intermediate results that are to big to be handledpractically.2.5 Debugging InformationIn addition to a simple indication of whether a check succeeded or not, it is cru-cial for the debugging of programs that the system provide additional diagnosticinformation that helps to track down a problem. Currently the UMC system iscapable of providing the user with some such diagnostic information includingwitnesses for violated conditions (counterexamples).For properties that require a simple implication to hold (co, invariant) a wit-ness state violating the implication is reported. For all properties that requiringsome kind of stability or continuation test on statements to succeed (all butleads-to properties), a violating statement is indicated as well as a witness stateand its successor under the given statement violating the required condition arereported. Properties that require some basic progress in form of helpful transi-tions (transient, ensures) cause the system to report such helpful transitions (orthe lack thereof). Finally diagnostic output for leads-to properties is producedcontaining information about the number of �xpoint iterations performed, andabout whether a �xpoint had been reached, as well as a witness state from whichthere is a fair unful�lled computation is reported (in case the property is notproved valid).2.6 Aspects of Using OBDDsAlthough the input language and the compiler for it make the underlying repre-sentation of programs and properties by OBDDs transparent to the user, thereare some important considerations to followwith respect to system performance.The strong dependence of the size of OBDDs depending on the variable orderingused is well known. In the current revision of the UMC system the user has avery limitedway of inuencing that ordering, namely by rearranging the variabledeclarations in the declare section of programs. All bits needed to represent one7

variable correspond to consecutive OBDD indices, the order in which variablesare mapped to increasing indices coincides with the order they appear in thedeclare section. The next revision of the system will provide a more exible wayof assigning indices to variable bits, some heuristics about promising orderingsneed to be implemented as well.In order to allow the user to evaluate the performance of the system and tocompare the e�ciency of di�erent operations, a range of performance indicatorsis provided. These indicators make it possible to monitor the memory usage, thee�ciency and load of various hash tables and caches, and the sizes of OBDDsrepresenting computed results.3 Some ExamplesBefore we give a detailed description of the input language of the UMC system,we want to present a few simple examples that illustrate several aspects ofwhat can be done with the system, show a few sample inputs and hint at somestrategies to be tried out when facing the task of proving a property for a givenprogram.3.1 Simple { Properties and InvariantsLet us �rst consider a trivial program that still gives us our �rst example ofthe syntax of the input language, shows all di�erent kinds of properties andillustrates the use of di�erent invariants:program Simpledeclarevar x,y: boolean;initiallyx;y;assignx,y := true, x;end;x co x;constant true;x ensures y;y unless x;stable x;invariant x /\ y;true --> y; 8

y co y;y co x;constant x;invariant y;transient y;The program Simple declares two boolean variables x and y, de�nes as theinitial state the state (x = true; y = true), and describes the transition relationby stating that the value of x in a successor state be true, and the value of yin a successor state is the same as the value of x in the current state. Clearlytogether with the initial condition this amounts to the program never leavingthe initial state.After having parsed the program and the properties and checking all prop-erties directly (i.e. with respect to the type invariant which asserts that x andy are boolean variables and hence either true or false), we �nd that the last �veproperties are not proved. For example the property constant x; fails becausethe stability of x =false is violated by the assignment.Of course we know, that this situation can never arise in a program executionsince x ^ y is an invariant of the program (which is con�rmed by the modelchecker). But we need to put this knowledge to use in order to be able toprove some properties. By proving that x ^ y is an invariant, that invariant isconjoined to the current invariant of the program. If we now check the last �veproperties with respect to the current invariant rather with respect to only thetype invariant, we �nd that only the very last property fails to be proved.Concerning this not yet proved property transient y; we have to �ndout whether there is a still stronger invariant which respect to which it couldbe proved. Of course x ^ y is the strongest invariant of the program since itcharacterizes the singleton set of reachable states. Computing the strongestinvariant with the model checker makes this knowledge available to the system,which immediately labels the property as failed without a further check.3.2 Cycle { Finite Range ArithmeticIn our second example we illustrate the use of �nite range integers and pointat some consequences of the de�nition of �nite state arithmetic. The followingprogram declares a �nite range type of 8 elements and two variables of that type.Only variable z is actually used in the program, variable n appears later in someproperties where it is used to express some form of universal quanti�cation.program Cycledeclaretype R = [0..7];var z, n: R; 9

initiallytrue;assignz := z+1;end;z=5 --> z=4;z=n --> z>n;z=n /\ z<7 --> z>n;The initial state of the program is left arbitrary, in any program execution1 is repeatedly added to z. Arithmetic on �nite range integers is essentiallyperformed modulo the number of elements in the range. Therefore in the aboveprogram adding 1 to z is done modulo 8, resulting in a cyclic structure of therange. It is clear from this that the �rst property is satis�ed (adding 1 to 5 seventimes indeed yields 4), which is con�rmed by checking that property directly.Unbounded behavior of programs clearly cannot be expressed in a �nite statesetting, some speci�cations such as 'z is always increased' do simply not hold.Such a property could be expressed in general UNITY logic by using universallyquanti�ed variables. The above property could be expresses as 8n :: z = n 7!z > n. We can achieve something similar in our �nite state setting by declaringan additional variable n in the program, that, however, is not referred to oreven modi�ed in the program itself. As a result there are no constrains on thevalue of that variable, allowing it to take on any value when it appears in aproperty. Such a property can only be proved valid, if it does not depend onn, i.e. if it holds for all values of n. In that sense the second property of ourexample expresses the fact that z always increases, which of course does nothold. (Note that there is no way of de�ning a non-trivial linear order on a cyclicgroup that is monotonic with respect to addition. Since an order relation is stilla useful construct in many speci�cations, we decided to de�ne a linear order byinjecting the cyclic group into the integers and then using the standard at-most(�) relation on integers.)If we take the �nite state nature and with it the boundary case (z = 7) intoaccount and eliminate it from the property, we obtain the third property listed,which then is easily proved.3.3 Mutex { A Mutual Exclusion AlgorithmAs a last example we show a somewhat more complex program implementinga mutual exclusion algorithm for two processes. This example is taken from[Mis 90]: 10

program Mutexdeclaretype PC = (noncritical, requesting, trying, critical, exiting);var m, n: PC;var u, v, p: boolean;var hu, hv: boolean;initially~u;~v;m = noncritical;n = noncritical;assignu, m := true, requesting if hu /\ m = noncritical;p, m := v, trying if m = requesting;m := critical if ~p /\ m = trying;u, m := false, exiting if m = critical;p, m := true, noncritical if m = exiting;v, n := true, requesting if hv /\ n = noncritical;p, n := ~u, trying if n = requesting;n := critical if p /\ n = trying;v, n := false, exiting if n = critical;p, n := false, noncritical if n = exiting;hu := ~hu;hv := ~hv;end;invariant ~(m = critical /\ n = critical);invariant u == (m >= requesting /\ m <= critical);invariant m = critical \/ m = exiting ==> ~p;invariant v == (n >= requesting /\ n <= critical);invariant n = critical \/ n = exiting ==> p;invariant (u == (m >= requesting /\ m <= critical))/\ (m = critical \/ m = exiting ==> ~p);invariant (v == (n >= requesting /\ n <= critical))/\ (n = critical \/ n = exiting ==> p);invariant (u == (m >= requesting /\ m <= critical))/\ (m = critical ==> ~p);invariant (v == (n >= requesting /\ n <= critical))/\ (n = critical ==> p);m = trying unless m = critical;m = requesting --> (p == v) /\ m = trying;11

m = critical --> p;m = requesting --> m = critical;Variables m and n serve as program counter in the two processes, booleanvariables u, v, and p are used to encode operations of a shared queue betweenthe two processes. Variables hu and hv �nally are used to model the nondeter-ministic behavior of the two processes with respect to their remaining in theirnoncritical sections. For a more detailed discussion of the program and of itsproperties we refer to the above mentioned paper.The �rst and the last property are of particular interest, as they expressthe mutual exclusion and the absence of starvation properties. Not surprisinglyneither of these properties can be checked directly, but after having proved thethe second, the fourth, the eighth and the ninth listed invariants, all propertieswith the exception of the third, �fth, sixth and seventh invariants can be provedby invoking the model checker with respect to the current invariant. The re-maining four invariants do not hold, this example was the �rst application ofthe UMC system in which errors in a manual proof were discovered.4 The Input LanguageAfter the examples of inputs to the UMC system given in the previous section wenow proceed to a more rigorous and complete description of the input language.This section can be used as a reference for the abstract syntax and the semanticsof the input language, although our treatment of the semantics is informal. For asummary of the concrete syntax we refer the reader to appendix A. A discussionof the notation used for the syntax de�nitions can be found there as well.Our presentation of the input language consists of four parts. First westate the general form of an input to the UMC system. We then introduce thepervasive construct of expressions and the type system employed for de�ningthem. The presentation of the structure and the meaning of programs and thevarious kinds of properties completes the language description.4.1 Input StructureThe input to the UMC system consists of a sequence of input units being eitherprograms or properties according to the following rules:input ::= unit�unit ::= program ;j property ;j in name : property ; 12

Each program unit introduces a new global name (viz. the program name,see below), it is an error to have programs with same names occurring in aninput �le. Each property unit is associated with exactly one program, in the�rst simple form of a property unit given above the property is associated withthe most recent preceding program in the input �le, in the second form theproperty is associated with the program with the given name. It follows thatthe order of the units in the input �le matters, furthermore it is an error to referto a program name before the program has been de�ned.4.2 Expressions and TypesThe bene�ts of using type systems in programming are well known. In additionto the ability of recognizing certain program errors already at compile-time, inthe context of program veri�cation and model checking in particular a suitabletype system provides the user with a set of invariants that are derivable purelyfrom the program text by simple syntactic operations. These invariants comefree for the programmer in that she has no proof obligations in order to establishthem.We therefore adopt a simple strong type system of �nite types for the UMCinput language. In this type system every expression occurring in a program orin a property has a statically well de�ned type. In the following we introducethe available types, the operations de�ned for elements of the various types, andthe rules for correctly typing expressions.Types There are �ve di�erent kinds of types in the UMC type system. Theseare boolean, �nite range integer, enumeration, program, and unspeci�ed integertype. Type equivalence is structural equivalence of the type de�nitions.Expressions of boolean type can take on one of two values denoted by theglobally prede�ned boolean constants true and false. Operations on booleanexpressions include the boolean connectives and(/\), or(\/), implies (==>), fol-lows from(<==), equivalence (==), antiequivalence (=|=), and negation (~). Fur-thermore the result of applying any of the relational operators (see below) tosuitable expressions is of boolean type. The expressions making up the initiallysections of programs, the guards of assignments, and all properties with theexception of the constant properties are required to have boolean type.A �nite range integer type is determined by two integers, the lower boundand the upper bound of allowed values (with both boundary values included).The range of allowed values must not be empty. Operations on �nite rangeinteger types are the arithmetic operators unary plus (+), unary minus (nega-tion)(-), binary addition (+) and subtraction (-), and the relational operatorsequals (=), unequals (~=), greater(>), at least (>=), less (<), and at most (<=).The type rules for the arithmetic operations are explained below. For the rela-tional operations it is required that both operands be of exactly the same type,the resulting expression is of boolean type. The order relation for a �nite range13

integer type is the projection of the order relation on the integers to the �niterange of the type.Enumeration types are determined by an ordered nonempty sequence of con-stants of that type. A type de�nition of an enumeration type (see declare sectionbelow) de�nes the type and a set of constants of that type. This makes it il-legal to use the same constant name in di�erent enumeration type de�nitions(in the same scope), since this would result in a multiply de�ned name. Onlythe relational operations (as listed above) are de�ned for enumeration types,the underlying ordering is the ordering of the constant names in the type def-inition. The two operands in a relational operation must be of the same type,the resulting expression is of boolean type.Every program in the input text de�nes a global constant of program type,bearing the name of the program. As of now there are no operations de�ned fortype program, however, program constants are used in de�ning the context forproperties.Finally there is an unspeci�ed integer type, although it is rarely used. Onlynumber literals (like 53) and expressions built from only number literals andarithmetic operations (so called number literal expressions, which have a staticvalue) possibly can have that type, and only if they are not in a context in whicha (speci�ed) �nite range type can be inferred for them. The rules for inferring a�nite range type of a number literal expression are as follows: �rst every numberliteral expression is replaced by the uniquely statically determined number literalor boolean obtained by evaluating the expression over the integers. Any numberliteral still occurring as operand in a relational expression then has the sametype as the other operand of that expression (for the value conversion of out ofrange values see below). Only number literals appearing as subexpressions in abinary arithmetic expression or as expression of a constant property retain theunspeci�ed integer type.Arithmetic In de�ning the semantics of arithmetic operations on �nite rangeinteger types it was our design decision to avoid the introduction of unde�nedexpressions that would complicate the language both on the syntactic and onthe semantic level, and to keep many laws we know from integer arithmeticvalid. These goals have been achieved at the price of losing some other laws(especially concerning ordering) and of obtaining a very restrictive type system.We believe, however, that this should not cause any problems to the user, aslong as she is aware of the fact that she is dealing with �nite range integers.On the contrary, we make the limitations explicit rather than implicitly relyingon some inexible assumption about how arithmetic is performed (e.g. such astreating all integer arithmetic modulo the wordsize of the underlying machine).A range type [l..h] contains h� l+1 elements and is augmented with thegroup structure isomorphic to the cyclic group of n = h � l + 1 elements Cn.The unit element is the unique number u in the range such that u � 0 mod n.14

Two numbers a of type [la..ha] and b of type [lb..hb] can be added, ifand only if their types ranges contain the same number of elements, i.e. if andonly if na = nb with na = ha � la + 1 and nb = hb � lb+ 1. The type of theirsum a + b then is [la+lb..ha+lb], its value is the unique number s in thatrange such that a+ b � s mod na.The negation of a has type [-ha..-la], its value is the unique number i inthat range such that i + a � 0 mod na. The di�erence of a and b is de�ned bya� b = a+ (�b), it therefore has type [la-hb..ha-hb].Adding a constant expression with unspeci�ed integer type (see above) andvalue v to an expression of type [l..h] results in an expression of type [l..h],the value of which is obtained by adding 1 to the typed value a total of vtimes (or subtracting 1 a total of �v times if v is negative). Subtraction asusual is addition of the negated second argument. Finally assigning a constantexpression with unspeci�ed integer type and value v to a variable of type [l..h]results in taking the variable on the unique value u in the type range such thatu � v mod (h� l + 1).With these de�nitions the commutativity and associativity as well as thecancellation laws hold, furthermore all arithmetic expression that are well typedare well de�ned.Since relational operations on �nite range integer types are de�ned with re-spect to the linear ordering of the integers, however, laws connecting arithmeticoperations with order relations do not hold in general. For example the expres-sion x < x + 1 is not necessarily true: if x has type [3..7] and value 7, x + 1evaluates to 3, and 7 < 3 is false.It is worth mentioning that such violations all have to do with crossing theboundaries of the �nite range type, they can be avoided implicitly by choos-ing the range such that the boundary values are not reached, or by explicitlyguarding against crossing them, e.g. by using the assignment x := x + 1 ifx<7 rather than x := x+1 for variable x of type [3..7].The typing rules may seem complicated in general, but they simplify consid-erably when dealing only with �nite range types with a lower bound of 0: thetype [0..h] de�nes the cyclic group Ch+1, and the two most frequently usedoperations addition of variables and addition of subtraction of a variables anda constant become ordinary group operations.Scoping The name space of a collection of programs and properties consistsof two levels: global names can be referred to in all programs and properties,local names can be referred to only in the program they are de�ned in and theproperties of that program. Each name refers to either a type, a variable ora constant. Names must be unique within the scope they are de�ned in, localnames hide global names if they are textually the same.There are a few prede�ned global names (see below). The only other globalnames denote constants of type program, they are de�ned as the program names15

whenever a program is de�ned.Local names are de�ned in the declare section (see below) of a program.Prede�ned Symbols There are three prede�ned global names as listed inthe following table:Name Kind Remarkboolean typetrue constant of type booleanfalse constant of type booleanIt is possible to locally hide these names by rede�ning them in the declaresection of a program.4.3 ProgramsA program consists of a program name and three sections as follows:program ::= program name declare initial assign endThe program name de�nes a global variable of type program. The declaresection introduces a local name scope for the program and allows the de�nitionof types, variables, and constants in it. The initial section de�nes the set ofinitial states for the program, and the assign section characterizes the transitionrelation of the program expressed in the form of guarded assignments. Each ofthese sections must be present but can be empty.Declare Section The declare section consists of a sequence of type, variable,or constant declarations:declare ::= declare (ditem ;)�ditem ::= var name�; : typej const name�; : type := expressionj type name�; = typeEach such declaration introduces new local names (namely the names in thelist of names), de�nes them as being either types, variables or constants, statestheir type, and { for constants { de�nes their value; All the names in such adeclaration are de�ned simultaneously, they all share the same types and { forconstants { the same value. Constants have to be typed. The expression givenin a constant de�nition must be a constant expression, i.e. it must not referto any variables; furthermore its type must be equivalent to the type of theconstant (where an unspeci�ed integer type is equivalent to any �nite rangeinteger type). 16

The names introduced in a declaration are added to the name space beforethe next declaration is processed, thus allowing to use local names in de�ningother local names.Type equivalence is determined by structural equivalence, in particular allthe types mentioned in a type declaration are equivalent. Type expressionsdenoting types can take on one of three forms:type ::= namej [expression .. expression]j (name�;)In the �rst form the type of a previously de�ned type is denoted. Thesecond form denotes the �nite range integer type with the bounds determinedby the given expressions in the following way: both expression, which mustbe constant expressions, are evaluated according to the arithmetic laws statedearlier, the unique results are then regarded as integers de�ning the bounds ofthe type. Furthermore the lower bound must not exceed the upper bound. Asan example consider the declarationsconst n: [0..4] := 1;type R = [9+n .. 2];Since the type of 9+n is [0..4] the value of 9+n is 0, resulting in the type R= [0..2].The third form denotes an enumeration type and implicitly de�nes a setof constants of that type (viz. the names listed between parentheses). Twoenumeration types are equivalent if they are made from the same constants inthe same scope.The declare section de�nes the state space of a program as the cartesianproduct of the domains of all variables declared.Initially Section The initially section consists of a (possibly empty) list ofexpressions:initial ::= initially (expression ;)�The expressions are required to have boolean type, their conjunction de�nesthe predicate that characterizes the set of initial states of the program. Anempty initially section corresponds to the predicate true, i.e. to the entiresyntactic state space. 17

Assign Section The assign section consists of a possibly empty set of possiblyguarded multiple assignments:assign ::= assign (name+; := rhs ;)�rhs ::= expression+;j case+;case ::= expression+; if expressionEach assignment speci�es a non empty list of variables on the lefthand sideof the assignment operator. All names in that list have to be distinct. Thereare two forms of the righthand side rhs: the �rst corresponds to an assignmentwith only one case and guard true, the second allows to list several cases witharbitrary boolean guards. The number of righthand side expressions must beequal to the number of lefthand side variables both in the �rst form and in eachcase of the second form. Furthermore the types of corresponding variables andexpressions must be equivalent. There is an additional restriction on the use ofguards in di�erent cases: in every state of the state space in which two guardsof di�erent cases of the same assignment are true, all corresponding righthandside expressions must be equal. This makes an assignment such asx := ~x if y,y if true;for boolean variables x, y illegal, since in the state (x = true, y = true)both guards are true, but the righthand side expressions for x are di�erent(false, true).The transition relation de�ned by the program includes the pair (s; t) ofstates of the state space, if and only if there is an assignment case of one of theassignments, whose guard evaluates to true in s and whose multiple assignmentexecution updates s to t. In particular the empty assign section corresponds tothe empty transition relation.4.4 PropertiesAny property is de�ned in the context of exactly one program, which is eithernamed explicitly or is the most recently de�ned program in the input text (seeabove). As a consequence all global symbols and all local symbols de�ned inthe associated program can be referred to in the property. The syntax for alleight unconditional properties of UNITY logic is as follows:property ::= constant expressionj invariant expression 18

j stable expressionj transient expressionj expression co expressionj expression ensures expressionj expression --> expressionj expression unless expressionWith the exception of the constant properties all expressions are required to beof boolean type, whereas for constant properties any type but program type isallowed.5 Discussion and OutlookThe UMC system is designed to be a building block of a veri�cation and designsupport system. In order to be of practical value to a designer of distributedprograms it must provide an e�cient and complete veri�cation method, sup-port for managing programs and speci�cations, and means for debugging faultyprograms. It moreover should be easy to use both with respect to the logicemployed and to the user interface.These criteria are met by the UMC system in the following ways: it utilizes aOBDD based symbolic representation of programs and speci�cations, it is basedon UNITY logic, its input language is very close to the UNITY notation, andit provides means for managing and debugging programs and properties via agraphical user interface.Thus the UMC system can be considered at least a potentially valuable toolfor the designer of distributed systems, as it allows her to verify properties ofher programs while lowering the risk of introducing errors a more often than nottedious manual proof might carry with it. Moreover the interactive investigationand utilization of various invariants allows the user to put her understanding ofthe program to use for the veri�cation of more di�cult to prove properties.Although the current revision of the UMC system deals with the issuesrelated to model checking of single �nite-state programs in a very satisfactoryway, our current work suggests several improvements to increase the systemperformance and to extend the range of veri�cation problems that can be dealtwith e�ectively. These extensions concern the data types, the exploitation ofprogram composition and the parameterization of programs.In order to increase the expressiveness of the input language we are planningto add structured data types such as records, arrays, and �nite functions, thathave been proved to be extremely useful in programming, as well as to reworkthe type de�nition of �nite range integers to better meet the requirements ofgiven problems (e.g. when using a �nite range integer type user may really askfor a cyclic group, a bounded segment of the integers or a scalar set withoutordering among the elements). 19

Program composition can be achieved both on a syntactic and on a struc-tural level. With syntactic composition the input language provides features forwriting a program as the composition of several constituent parts, internally theprogram is then represented in its entirety as far as model checker invocationsare concerned. This level of compositionality is extremely useful for designingbigger programs, especially if syntactic means for hiding local variables and forcombining program components are provided. However, this approach is likelyto su�er from the state explosion problem when the product state space needsto be built. In our research we therefore focus on structural composition, whichtreats components of programs separatly and attempts to check their composi-tion by reasoning about properties of the components. This approach requirestechniques beyond mere model checking, in particular validity of inference check-ing and compositional reasoning based on the rely/guarantee paradigm seem tobe needed.The purpose of allowing parameterized programs is to represent families ofstructures in a concise way, and to verify possibly unboundedly many structuresin �nite time. A careful use of decision procedures based on inductive methodswill be required to extend the applicability of a model checker to certain classesof parameterized structures. We are currently investigating how such classescan be characterized, how known techniques from automated theorem provingcan be employed, and how our model checking algorithms can be extended todeal with these classes.A GrammarWe summarize the syntax of the input language for the UMC system using anextended BNF. Nonterminals are written in italics, terminals in typewritertype style. The standard metasymbols used are ::= to separate the left- andrighthand sides of grammar rules, j to separate alternative righthand sides,parentheses (and) for grouping, the � operator indicating zero or more repeti-tions of the construct it is applied to and the + operator indicating one or morerepetitions of the construct it is applied to. Furthermore there are two addi-tional post�x operators �; and +; the �rst indicating zero or more repetitionsof the construct it is applied to, with successive repetitions being separated bycommas, the second similarly indicating one or more comma separated repeti-tions.The language of allowable inputs is generated by the nonterminal input, thefollowing grammar rules, and some additional semantic restrictions that areoutlined in the section on the input language.input ::= unit�unit ::= program ; 20

j property ;j in name : property ;property ::= constant expressionj invariant expressionj stable expressionj transient expressionj expression co expressionj expression ensures expressionj expression --> expressionj expression unless expressionprogram ::= program name declare initial assign enddeclare ::= declare (ditem ;)�ditem ::= var name�; : typej const name�; : type := expressionj type name�; = typetype ::= namej [expression .. expression]j (name�;)initial ::= initially (expression ;)�assign ::= assign (name+; := rhs ;)�rhs ::= expression+;j case+;case ::= expression+; if expressionexpression ::= namej numberj (expression)j + expressionj - expressionj expression + expressionj expression - expressionj expression = expressionj expression ~= expressionj expression > expressionj expression < expression21

j expression >= expressionj expression <= expressionj expression /\ expressionj expression \/ expressionj expression ==> expressionj expression <== expressionj expression == expressionj expression =|= expressionj ~ expressionThe input language is case sensitive. The input is made up from a sequenceof tokens and white space (i.e. blanks, tabs, and newline characters). Whitespace only is signi�cant for separating tokens, beyond that it is ignored. Tokensare either terminals as appearing in the grammar rules above, or strings ofcharacters representing the name and number nonterminals.A name is any string of one or more characters made up from letters anddigits starting with a letter. A number is a string of one or more digits. Aname must not be one of the terminal keywords mentioned in the grammarrules above, a number is restricted in its size depending on the implementationof the system.For easy reference we list all keywords of the input language in alphabetic or-der: assign, co, const, constant, declare, end, ensures, if, in, initially,invariant, program, stable, transient, type, unless, and var.Similarly we summarize all operators and their binding powers by listingthem in increasing order of binding power (operators on the same line share thesame binding power). All operators are left associative as far as typing allows:== (boolean equivalence), =|= (boolean antiequivalence, exclusive or)==>, <== (boolean implication, both directions)/\ (boolean conjunction), \/ (boolean disjunction)~ (boolean negation)=, ~=, >, >=, <, <= (nonboolean relational operators)+ (addition), - (subtraction)- (unary arithmetic negation)Finally we list the remaining terminal tokens of the input language whichare used as delimiters: :=, (,), [,], ;, :, ,, .., and one special token denotingthe leads-to operator: -->.B Implementation DetailsThe UMC system started out in 1992 as an experimental model checker forUNITY written in Scheme on a Macintosh computer. After a �rst prototype22

had shown the feasibility of the approach, the system was rewritten in C++ forthe UNIX environment. The current revision (1.10) is implemented using theGNU development tools on a SUN SPARCStation under the X Window Systemwith a user interface based on Motif. The lexical analyzer and the parser for theUMC input language were built with the help of the GNU scanner and parsergenerators ex and bison.The internal representation of programs and properties and the actual modelchecking algorithms are based on our own implementation of an ROBDD pack-age (Reduced Ordered BDDs, many ideas for an e�cient implementation aretaken from [BBR 90]). This allows us to tailor the representation details (inparticular as far as housekeeping and gathering statistical information is con-cerned) to the speci�c needs of the UMC system. A thorough understandingof the details of the representation might become even more important in thefuture when di�erent data structures (e.g. inductive BDDs ([GF 93])) mightsupplement OBDDs.References[BBR 90] K. S. Brace, R. E. Bryant, R. L. Rudell, E�cient Implementationof a BDD package, in Proceedings of the 27th ACM/IEEE DesignAutomation Conference 1990.[CM 88] K. M. Chandy, J. Misra, Parallel Program Design: A Foundation,Addison Wesley 1988.[GF 93] A. Gupta, A. L. Fisher, Parametric Circuit Representation UsingInductive Boolean Functions, in Proceedings of the Conference onComputer Aided Veri�cation 1993, Springer LNCS 697.[JKR 89] C. S. Jutla, E. Knapp, J. R. Rao, A Predicate Transformer Ap-proach to Semantics of parallel Programs, PODC 1989.[Mis 90] J. Misra, A Family of 2-process Mutual Exclusion Algorithms, Noteson UNITY, 13.[Mis 93] J. Misra, Safety, Progress, unpublished manuscripts, August 1993.
23

