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Abstract

We present a description of our current implementation of a model
checker for finite state UNITY programs and propositional UNITY logic.
The model checker is capable of dealing with all unconditional properties
of UNITY logic. Checking safety properties and basic progress properties
can be done very efficiently due to the partitioning of the transition rela-
tion of a program induced by the program statements. Finding suitable
invariants remains a crucial task in proving properties. The model checker
provides means for both computing the strongest invariant of a program
and for managing established invariants.
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1 Introduction

The UNITY Verifier (UV) project is aimed at providing automated support for
the verification and the design of distributed programs. As a basic building
block for such a support system we have developed the UNITY model checker
(UMC), which is a tool for both automatically verifying properties of finite state
UNITY programs and for supporting the design and analysis of such programs
by allowing the interactive exploration and manipulation of programs and their
specifications.

In working with UMC the user provides the system with a set of programs
(the models) and a set of specifications. The system then checks whether the
specifications are satisfied by the programs. The input language in which pro-
grams and specifications are stated allows the user to write finite state UNITY
programs and propositional UNITY properties as specifications. This includes a
strong typing scheme with boolean, finite range integer and enumeration types,
as well as the complete treatment of all unconditional modalities of UNITY
logic to express safety and progress properties.

Besides being able to completely automatically check the validity of prop-
erties with respect to given programs, the UMC system provides the user with
additional information (such as counterexamples) that greatly help in debugging
programs and understanding certain verification failures. Moreover the UMC
system has a carefully designed user interface that supports the user in manag-
ing and investigating programs and properties. The goal for designing such an
interface 1s to both make the system accessible to a wider range of users and to
invite users to use the system to explore and to modify their programs in a way
that would be to difficult or error prone if done without mechanical help.

The UMC system uses Ordered Binary Decision Diagrams (OBDDs) for
internally representing formulae, sets of states, and transition relations. Pro-
grams and properties given to the system as input are compiled into OBDDs,
thus resulting is a symbolic representation in which the state spaces of programs



are not enumerated or constructed explicitly. The transformation of programs,
properties, and types in particular into OBDDs is transparent to the user.

It has to be noted that the UMC system is a prototype and is as such cur-
rently still under development. As a consequence of this development process
there are several limitations in effect on the current system revision, that we ex-
pect to remove in future revisions. Such limitations include the lack of support
for checkpointing or saving the system state beyond the level of textual descrip-
tions in the input language, the limited implementation of tools for inspecting
formulae or program execution traces, or the lack of suitable parameterization
of the system in order to adjust its performance to different problems.

As the system furthermore is part of our ongoing research, there are many
interesting extensions still to be investigated. These include the effective compo-
sition of several programs in a structured way (whil taking advantage of syntactic
restrictions to reduce to size of the resulting state spaces), the introduction of
parameterized unbounded programs and properties and the ability to prove cer-
tain formulae about such programs with the help of inductive methods, or the
exploitation of symmetry to reduce the size of state spaces. It should be already
clear that in the larger context of an automated support system for the design
of distributed programs a model checker in the given form is a very useful but
still rather basic tool that needs to be supplemented by more powerful system
components in order to make such a system useful for a larger class of design
tasks.

The reminder of this paper is structured as follows: in section 1 we first recall
some basic concepts of model checking and UNITY, define basic structures of
the UMC system, and show how they are related to each other. In section 2 we
give a few simple examples of inputs to the system, and of how the system can be
used on those inputs. We then proceed with a complete description of the input
language in section 3. We conclude the main part of the paper by discussing
some practical aspects of the UMC system and by stating our objectives for the
next steps in the its future development in section 4. Two appendices contain a
summary of the grammar of the input language, and a some information about
the actual implementation of the UMC system.

2 Concepts and Structures

The model checking task consists in determining whether a given formula in
some logic is satisfied by a structure over which the formulais interpreted. In the
UMC system the formulae considered are the properties of propositional UNITY
logic and the programs are finite state UNITY programs. We assume that the
reader i1s familiar with UNITY | in particular with the programming notation
and the semantics of the properties (for reference see [CM 88], [Mis 93]).

The purpose of this section is to summarize the concepts of model checking
for UNITY, to explain how these concepts are dealt with in the UMC system,



and how the UMC system can be used for supporting UNITY model checking.

2.1 Documents

The user interacts with the UMC system on the basis of text documents, that
contain textual representations of collections of programs and properties to be
investigated. Such a document is parsed and compiled into an internal represen-
tation suitable for invoking the model checking algorithms and for performing
related computations.

After parsing a document the user can access all programs and all properties
of the document through an easy to use interface, can selectively display status
information about each program or property, can selectively check properties
with respect to different invariants, and can obtain information about these
model checker invocations, that often allow to better understand, why a certain
property fails to be proved valid.

2.2 Programs

UNITY programs define the structures for which properties are verified. The
UMC system is capable of handling finite state UNITY programs without quan-
tified assignments. The finiteness of the state space of an admissible program is
guaranteed by the restriction on available data types, which are boolean, finite
range integer, and enumeration types.

Theoretically every finite state program can be represented solely with bool-
ean variables, but it is very cumbersome and an additional source of errors
to ask the user to provide a binary encoding herself. Moreover by supporting
non-boolean finite types the readability of programs is significantly increased.

The UMC input language derived from the UNITY programming notation
allows a powerful and convenient way of defining a state transition system for
which properties are to be proved. In a declaration part of the program the
state space of the program is defined as the cartesian product of the domains
of all declared variables. A second part of the program allows to specify initial
states of the system, whereas the assignment part of a program consists of a
collection of guarded multiple assignments defining the transition relation of
the program. The notation allows to easily expresses both synchronous and
asynchronous behavior, since all assignments in any multiple assignment are
performed simultaneously, and since an execution of a program consists of any
weakly fair sequence of assignment executions.

The UMC system associates with every program an invariant, namely the
strongest invariant proved to hold for the program. This notion is well defined,
since with any two invariants / and J their conjunction I A J is an invariant as
well. Furthermore there is a strongest invariant of any program characterizing
the set of states reachable from initial states by a program execution. The



significance of these invariants for the model checking task is discussed later in
this section.

2.3 Properties and Model Checking

The UNITY logic is built from eight kinds of (unconditional) modalities called
properties that allow the concise specification of many interesting aspects of
programs. UNITY logic is a simple positive logic in the sense that logical
operations (in particular negation) or nesting of modalities are not part of the
logic. The modalities are applied to nonmodal formulae, in the UMC system
this nonmodal logic is restricted to full propositional logic. Due to the finite
state nature of the programs considered, however, every first order formula can
at least theoretically be expressed by a propositional formula.

The properties can be classified as safety and progress properties. Safety
properties are the basic co properties, and the unless, stable, invariant, and
constant properties which can be expressed in terms of co and boolean connec-
tives (the invariant property requires the initial condition of the program as
well). Progress properties are the basic transient properties, the ensures prop-
erties which can be expressed in terms of transient, co, and boolean connectives,
and the leads-to properties defined as the reflexive, transitive and disjunctive
closure of the ensures relation (for finite state programs disjunctivity is redun-
dant, since finite disjunctivity can be deduced from the laws for ensures and
from transitivity).

The model checking algorithm for most kinds of properties can make di-
rect use of the partitioning of the transition relation of a program induced by
the statements of that program. As a consequence, in many model checker in-
vocations the entire transition relation never has to be constructed (not even
implicitly) increasing the performance of the model checker significantly. All
safety properties and all basic progress properties (with the only exception of
leads-to properties) can be dealt with very efficiently that way. The algorithm
for checking leads-to properties employs a fixpoint computation based on the
predicate transformer wlt (see [JKR 89]) taking the fairness constraints on pro-
gram executions into account.

Each property given as input to the UMC system is connected to exactly
one program, that serves as the structure over which the property is to be
interpreted (and hence the local variables of which it can refer to). The system
Furthermore keeps track of the checking status of each property, namely whether
it has not been checked yet, whether 1t has been proved successfully, whether
an attempted proof failed (but still has the potential to succeed with respect to
a stronger invariant), or whether it has been proved invalid for the program.



2.4 The Role of Invariants

Strictly speaking the satisfaction of a property for a given program is defined
with respect to the set of reachable states of the program. A complete way of
checking a property would be to first determine the strongest invariant of the
program, and then check the property with respect to that strongest invariant.
Unfortunately computing the strongest invariant i1s often very complex, even if
techniques like iterative squaring are used. In particular intermediate results of
the computation can become too big to be dealt with efficiently, even though
the final result may be reasonably small. On the other hand it is often the
case that it is not necessary to known the strongest invariant of a program, a
weaker invariant may already suffice to proof other properties. Sometimes even
the trivial type invariant (asserting only that all variables take on values from
their respective types) does the job, allowing a ‘proof from the program text’.

The UMC system deals with this situation by conceptually associating an
invariant lattice with each property. Such a lattice is determined by the program
providing the context for the property. Lattice elements are invariants of the
program ordered by logical implication. The top (weakest) element of such a
lattice is the type invariant of the program, the bottom (strongest) element is
the strongest invariant of the program. The invariant lattice of a program is
complete, for a finite state program it is finite. Furthermore each invariant in
the lattice associated with a property is labeled indicating whether the property
has been proved with respect to the invariant, whether a proof has failed, or
whether the result is still unknown.

The checking status of a property is uniquely determined by the labeling
of the invariant lattice, e.g. a property is proved to be not valid if and only
if the strongest invariant is labeled with ’fail’. By keeping track of strongest
invariants for which a proof failed, and weakest invariants for which a proof
succeeded (provided they exist), the model checker can manage the checking of
a property and at times even determine, whether a checking attempt succeeds
or fails without actually invoking the model checking algorithm.

In the current system the user has some limited flexibility in choosing invari-
ants with respect to which a property is to be checked. The system maintains
up to three invariants for each program the user can choose from: the first is the
type invariant (corresponding to directly checking), the second is the strongest
invariant (provided it has been computed successfully), and the third is the so
called current invariant being the conjunction of all successfully proved invari-
ants of the program. By choosing the order of model checker invocations on
invariant properties the user can control the current invariant being built.

For computing the strongest invariant of a given program the UMC sys-
tem furthermore provides three algorithms the user can choose from: forward
chaining, forward chaining with frontier nodes, and iterative squaring. The for-
ward chaining algorithms compute the strongest invariant as the set of reachable
states starting with the initial set of states and iteratively adding the (right)



image under the transition relation until a fixpoint is reached. In the ordinary
forward chaining algorithm, the image of all collected node is computed in each
step, whereas the frontier node algorithm forward chaining computes the image
of only the states that were added in the previous step. Both algorithms require
a number of iterations equal to the greatest distance of a state from an initial
state (i.e. in the order of the diameter of the state graph). Ordinary forward
chaining requires fewer OBDD operations, but is more likely to produce bigger
intermediate results. On the other hand the iterative squaring algorithm com-
putes the transitive closure of the transition relation by iterative squaring and
from this the strongest invariant as the (right) image of the set of initial states
under the closure relation. It requires only a number of iterations in the order
of the logarithm or the diameter of the reachable state graph, unfortunately
in most cases it produces intermediate results that are to big to be handled
practically.

2.5 Debugging Information

In addition to a simple indication of whether a check succeeded or not, 1t is cru-
cial for the debugging of programs that the system provide additional diagnostic
information that helps to track down a problem. Currently the UMC system is
capable of providing the user with some such diagnostic information including
witnesses for violated conditions (counterexamples).

For properties that require a simple implication to hold (co, invariant) a wit-
ness state violating the implication is reported. For all properties that requiring
some kind of stability or continuation test on statements to succeed (all but
leads-to properties), a violating statement is indicated as well as a witness state
and 1its successor under the given statement violating the required condition are
reported. Properties that require some basic progress in form of helpful transi-
tions (transient, ensures) cause the system to report such helpful transitions (or
the lack thereof). Finally diagnostic output for leads-to properties is produced
containing information about the number of fixpoint iterations performed, and
about whether a fixpoint had been reached, as well as a witness state from which
there is a fair unfulfilled computation is reported (in case the property is not
proved valid).

2.6 Aspects of Using OBDDs

Although the input language and the compiler for it make the underlying repre-
sentation of programs and properties by OBDDs transparent to the user, there
are some important considerations to follow with respect to system performance.
The strong dependence of the size of OBDDs depending on the variable ordering
used is well known. In the current revision of the UMC system the user has a
very limited way of influencing that ordering, namely by rearranging the variable
declarations in the declare section of programs. All bits needed to represent one



variable correspond to consecutive OBDD indices, the order in which variables
are mapped to increasing indices coincides with the order they appear in the
declare section. The next revision of the system will provide a more flexible way
of assigning indices to variable bits, some heuristics about promising orderings
need to be implemented as well.

In order to allow the user to evaluate the performance of the system and to
compare the efficiency of different operations, a range of performance indicators
is provided. These indicators make it possible to monitor the memory usage, the
efficiency and load of various hash tables and caches, and the sizes of OBDDs
representing computed results.

3 Some Examples

Before we give a detailed description of the input language of the UMC system,
we want to present a few simple examples that illustrate several aspects of
what can be done with the system, show a few sample inputs and hint at some
strategies to be tried out when facing the task of proving a property for a given
program.

3.1 Simple — Properties and Invariants

Let us first consider a trivial program that still gives us our first example of
the syntax of the input language, shows all different kinds of properties and
illustrates the use of different invariants:

program Simple
declare
var x,y: boolean;
initially
X;
Yy
assign
X,y := true, x;
end;

X co X;
constant true;

X ensures y;

y unless x;
stable x;
invariant x /\ y;
true --> y;



y co Vy;
y €O X;

constant x;
invariant y;

transient y;

The program Simple declares two boolean variables  and y, defines as the
initial state the state (# = true, y = true), and describes the transition relation
by stating that the value of z in a successor state be true, and the value of y
in a successor state is the same as the value of x in the current state. Clearly
together with the initial condition this amounts to the program never leaving
the initial state.

After having parsed the program and the properties and checking all prop-
erties directly (i.e. with respect to the type invariant which asserts that x and
y are boolean variables and hence either true or false), we find that the last five
properties are not proved. For example the property constant x; fails because
the stability of x =false is violated by the assignment.

Of course we know, that this situation can never arise in a program execution
since # A y is an invariant of the program (which is confirmed by the model
checker). But we need to put this knowledge to use in order to be able to
prove some properties. By proving that z A y i1s an invariant, that invariant is
conjoined to the current invariant of the program. If we now check the last five
properties with respect to the current invariant rather with respect to only the
type invariant, we find that only the very last property fails to be proved.

Concerning this not yet proved property transient y; we have to find
out whether there is a still stronger invariant which respect to which it could
be proved. Of course z A y is the strongest invariant of the program since it
characterizes the singleton set of reachable states. Computing the strongest
invariant with the model checker makes this knowledge available to the system,
which immediately labels the property as failed without a further check.

3.2 Cycle — Finite Range Arithmetic

In our second example we illustrate the use of finite range integers and point
at some consequences of the definition of finite state arithmetic. The following
program declares a finite range type of 8 elements and two variables of that type.
Only variable z is actually used in the program, variable n appears later in some
properties where it is used to express some form of universal quantification.

program Cycle
declare
type R = [0..7];
var z, n: R;



initially
true;
assign
z = z+l;
end;

z=5 —--> z=4,;

zZ=n —--> z>n;
z=n /\ z<7 --> z>n;

The initial state of the program is left arbitrary, in any program execution
1 is repeatedly added to z. Arithmetic on finite range integers is essentially
performed modulo the number of elements in the range. Therefore in the above
program adding 1 to z is done modulo 8, resulting in a cyclic structure of the
range. It is clear from this that the first property is satisfied (adding 1 to 5 seven
times indeed yields 4), which is confirmed by checking that property directly.

Unbounded behavior of programs clearly cannot be expressed in a finite state
setting, some specifications such as 'z is always increased’ do simply not hold.
Such a property could be expressed in general UNITY logic by using universally
quantified variables. The above property could be expresses as Vn :: z = n —
z > n. We can achieve something similar in our finite state setting by declaring
an additional variable n in the program, that, however, is not referred to or
even modified in the program itself. As a result there are no constrains on the
value of that variable, allowing it to take on any value when it appears in a
property. Such a property can only be proved valid, if it does not depend on
n, 1.e. if it holds for all values of n. In that sense the second property of our
example expresses the fact that z always increases, which of course does not
hold. (Note that there is no way of defining a non-trivial linear order on a cyclic
group that is monotonic with respect to addition. Since an order relation is still
a useful construct in many specifications, we decided to define a linear order by
injecting the cyclic group into the integers and then using the standard at-most
(<) relation on integers.)

If we take the finite state nature and with it the boundary case (z = 7) into
account and eliminate it from the property, we obtain the third property listed,
which then is easily proved.

3.3 Mutex — A Mutual Exclusion Algorithm

As a last example we show a somewhat more complex program implementing
a mutual exclusion algorithm for two processes. This example is taken from

[Mis 90]:
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program Mutex
declare
type PC = (noncritical, requesting, trying, critical, exiting);
var m, n: PC;
var u, v, p: boolean;
var hu, hv: boolean;
initially

m = noncritical;
n = noncritical;

assign
u, m := true, requesting if hu /\ m = noncritical;
p, m := v, trying if m = requesting;
m = critical if "p /\ m = trying;
u, m := false, exiting if m = critical;
P, m := true, noncritical if m = exiting;
v, n := true, requesting if hv /\ n = noncritical;
p, n := "u, trying if n = requesting;
n = critical if p /\ n = trying;
v, n := false, exiting if n = critical;
p, n := false, noncritical if n = exiting;
hu := "hu;
hv := "hv;
end;

invariant “(m = critical /\ n = critical);

invariant u == (m >= requesting /\ m <= critical);
invariant m = critical \/ m = exiting ==> “p;
invariant v == (n >= requesting /\ n <= critical);
invariant n = critical \/ n = exiting ==> p;
invariant (u == (m >= requesting /\ m <= critical))
/\ (m = critical \/ m = exiting ==> “p);
invariant (v == (n >= requesting /\ n <= critical))
/\ (n = critical \/ n = exiting ==> p);
invariant (u == (m >= requesting /\ m <= critical))
/\ (m = critical ==> "p);
invariant (v == (n >= requesting /\ n <= critical))

/\ (n = critical ==> p);

8
|

= trying unless m = critical;
m = requesting ——> (p == v) /\ m = trying;

11



8
1]

critical ——> p;
requesting --> m = critical;

8
1]

Variables m and n serve as program counter in the two processes, boolean
variables u, v, and p are used to encode operations of a shared queue between
the two processes. Variables hu and hv finally are used to model the nondeter-
ministic behavior of the two processes with respect to their remaining in their
noncritical sections. For a more detailed discussion of the program and of its
properties we refer to the above mentioned paper.

The first and the last property are of particular interest, as they express
the mutual exclusion and the absence of starvation properties. Not surprisingly
neither of these properties can be checked directly, but after having proved the
the second, the fourth, the eighth and the ninth listed invariants, all properties
with the exception of the third, fifth, sixth and seventh invariants can be proved
by invoking the model checker with respect to the current invariant. The re-
maining four invariants do not hold, this example was the first application of
the UMC system in which errors in a manual proof were discovered.

4 The Input Language

After the examples of inputs to the UMC system given in the previous section we
now proceed to a more rigorous and complete description of the input language.
This section can be used as a reference for the abstract syntax and the semantics
of the input language, although our treatment of the semantics 1s informal. For a
summary of the concrete syntax we refer the reader to appendix A. A discussion
of the notation used for the syntax definitions can be found there as well.

Our presentation of the input language consists of four parts. First we
state the general form of an input to the UMC system. We then introduce the
pervasive construct of expressions and the type system employed for defining
them. The presentation of the structure and the meaning of programs and the
various kinds of properties completes the language description.

4.1 Input Structure

The input to the UMC system consists of a sequence of input units being either
programs or properties according to the following rules:

mput s= unit*
unit 1= program ;
| property ;

|  in name : property ;

12



Each program unit introduces a new global name (viz. the program name,
see below), it is an error to have programs with same names occurring in an
input file. Each property unit is associated with exactly one program, in the
first simple form of a property unit given above the property is associated with
the most recent preceding program in the input file, in the second form the
property is associated with the program with the given name. It follows that
the order of the units in the input file matters, furthermore it is an error to refer
to a program name before the program has been defined.

4.2 Expressions and Types

The benefits of using type systems in programming are well known. In addition
to the ability of recognizing certain program errors already at compile-time, in
the context of program verification and model checking in particular a suitable
type system provides the user with a set of invariants that are derivable purely
from the program text by simple syntactic operations. These invariants come
free for the programmer in that she has no proof obligations in order to establish
them.

We therefore adopt a simple strong type system of finite types for the UMC
input language. In this type system every expression occurring in a program or
in a property has a statically well defined type. In the following we introduce
the available types, the operations defined for elements of the various types, and
the rules for correctly typing expressions.

Types There are five different kinds of types in the UMC type system. These
are boolean, finite range integer, enumeration, program, and unspecified integer
type. Type equivalence is structural equivalence of the type definitions.

Expressions of boolean type can take on one of two values denoted by the
globally predefined boolean constants true and false. Operations on boolean
expressions include the boolean connectives and(/\), or(\/), implies (==>), fol-
lows from(<==), equivalence (==), antiequivalence (=1=), and negation (~). Fur-
thermore the result of applying any of the relational operators (see below) to
suitable expressions is of boolean type. The expressions making up the initially
sections of programs, the guards of assignments, and all properties with the
exception of the constant properties are required to have boolean type.

A finite range integer type is determined by two integers, the lower bound
and the upper bound of allowed values (with both boundary values included).
The range of allowed values must not be empty. Operations on finite range
integer types are the arithmetic operators unary plus (+), unary minus (nega-
tion)(-), binary addition (+) and subtraction (=), and the relational operators
equals (=), unequals (*=), greater(>), at least (>=), less (<), and at most (<=).
The type rules for the arithmetic operations are explained below. For the rela-
tional operations it is required that both operands be of exactly the same type,
the resulting expression is of boolean type. The order relation for a finite range

13



integer type is the projection of the order relation on the integers to the finite
range of the type.

Enumeration types are determined by an ordered nonempty sequence of con-
stants of that type. A type definition of an enumeration type (see declare section
below) defines the type and a set of constants of that type. This makes it il-
legal to use the same constant name in different enumeration type definitions
(in the same scope), since this would result in a multiply defined name. Only
the relational operations (as listed above) are defined for enumeration types,
the underlying ordering is the ordering of the constant names in the type def-
inition. The two operands in a relational operation must be of the same type,
the resulting expression is of boolean type.

Every program in the input text defines a global constant of program type,
bearing the name of the program. As of now there are no operations defined for
type program, however, program constants are used in defining the context for
properties.

Finally there is an unspecified integer type, although it is rarely used. Only
number literals (like 53) and expressions built from only number literals and
arithmetic operations (so called number literal expressions, which have a static
value) possibly can have that type, and only if they are not in a context in which
a (specified) finite range type can be inferred for them. The rules for inferring a
finite range type of a number literal expression are as follows: first every number
literal expression is replaced by the uniquely statically determined number literal
or boolean obtained by evaluating the expression over the integers. Any number
literal still occurring as operand in a relational expression then has the same
type as the other operand of that expression (for the value conversion of out of
range values see below). Only number literals appearing as subexpressions in a
binary arithmetic expression or as expression of a constant property retain the
unspecified integer type.

Arithmetic In defining the semantics of arithmetic operations on finite range
integer types it was our design decision to avoid the introduction of undefined
expressions that would complicate the language both on the syntactic and on
the semantic level, and to keep many laws we know from integer arithmetic
valid. These goals have been achieved at the price of losing some other laws
(especially concerning ordering) and of obtaining a very restrictive type system.
We believe, however; that this should not cause any problems to the user, as
long as she is aware of the fact that she is dealing with finite range integers.
On the contrary, we make the limitations explicit rather than implicitly relying
on some inflexible assumption about how arithmetic is performed (e.g. such as
treating all integer arithmetic modulo the wordsize of the underlying machine).

A range type [1..h] contains h — [+ 1 elements and is augmented with the
group structure isomorphic to the cyclic group of n = h — [ + 1 elements C,,.
The unit element is the unique number u in the range such that v = 0 mod n.

14



Two numbers a of type [la..hal and b of type [1b..hb] can be added, if
and only if their types ranges contain the same number of elements, 1.e. if and
only if na = nb with na = ha —la + 1 and nb = hb — Ib + 1. The type of their
sum a + b then is [la+lb..ha+1b], its value is the unique number s in that
range such that a + b = s mod na.

The negation of a has type [-ha..-1a], its value is the unique number ¢ in
that range such that ¢ + @ = 0 mod na. The difference of @ and b is defined by
a—b = a+ (=b), it therefore has type [la-hb..ha-hb].

Adding a constant expression with unspecified integer type (see above) and
value v to an expression of type [1..h] results in an expression of type [1..h],
the value of which is obtained by adding 1 to the typed value a total of v
times (or subtracting 1 a total of —v times if v is negative). Subtraction as
usual is addition of the negated second argument. Finally assigning a constant
expression with unspecified integer type and value v to a variable of type [1..h]
results in taking the variable on the unique value u in the type range such that
u=vmod (h—{+1).

With these definitions the commutativity and associativity as well as the
cancellation laws hold, furthermore all arithmetic expression that are well typed
are well defined.

Since relational operations on finite range integer types are defined with re-
spect to the linear ordering of the integers, however, laws connecting arithmetic
operations with order relations do not hold in general. For example the expres-
sion & < x + 1 is not necessarily true: if  has type [3..7] and value 7, « + 1
evaluates to 3, and 7 < 3 is false.

It is worth mentioning that such violations all have to do with crossing the
boundaries of the finite range type, they can be avoided implicitly by choos-
ing the range such that the boundary values are not reached, or by explicitly
guarding against crossing them, e.g. by using the assignment x := x + 1 if
x<7 rather than x := x+1 for variable x of type [3..7].

The typing rules may seem complicated in general, but they simplify consid-
erably when dealing only with finite range types with a lower bound of 0: the
type [0..h] defines the cyclic group Ch41, and the two most frequently used
operations addition of variables and addition of subtraction of a variables and
a constant become ordinary group operations.

Scoping The name space of a collection of programs and properties consists
of two levels: global names can be referred to in all programs and properties,
local names can be referred to only in the program they are defined in and the
properties of that program. Each name refers to either a type, a variable or
a constant. Names must be unique within the scope they are defined in, local
names hide global names if they are textually the same.

There are a few predefined global names (see below). The only other global
names denote constants of type program, they are defined as the program names
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whenever a program is defined.
Local names are defined in the declare section (see below) of a program.

Predefined Symbols There are three predefined global names as listed in
the following table:

Name Kind Remark
boolean type

true constant of type boolean
false constant of type boolean

It is possible to locally hide these names by redefining them in the declare
section of a program.

4.3 Programs

A program consists of a program name and three sections as follows:

program  := program name declare initial assign end

The program name defines a global variable of type program. The declare
section introduces a local name scope for the program and allows the definition
of types, variables, and constants in it. The inifial section defines the set of
initial states for the program, and the assign section characterizes the transition
relation of the program expressed in the form of guarded assignments. Each of
these sections must be present but can be empty.

Declare Section The declare section consists of a sequence of type, variable,
or constant declarations:

declare := declare (ditem ;)*

ditem = var name® : type
| const name™ : type := expression
|  type name™ = lype

Each such declaration introduces new local names (namely the names in the
list of names), defines them as being either types, variables or constants, states
their type, and — for constants — defines their value; All the names in such a
declaration are defined simultaneously, they all share the same types and — for
constants — the same value. Constants have to be typed. The expression given
in a constant definition must be a constant expression, i.e. it must not refer
to any variables; furthermore its type must be equivalent to the type of the
constant (where an unspecified integer type is equivalent to any finite range
integer type).
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The names introduced in a declaration are added to the name space before
the next declaration is processed, thus allowing to use local names in defining
other local names.

Type equivalence is determined by structural equivalence, in particular all
the types mentioned in a type declaration are equivalent. Type expressions
denoting types can take on one of three forms:

type 1= name
| [ expression .. expression ]
| (name® )

In the first form the type of a previously defined type is denoted. The
second form denotes the finite range integer type with the bounds determined
by the given expressions in the following way: both expression, which must
be constant expressions, are evaluated according to the arithmetic laws stated
earlier, the unique results are then regarded as integers defining the bounds of
the type. Furthermore the lower bound must not exceed the upper bound. As
an example consider the declarations

const n: [0..4] := 1;
type R = [9+n .. 2];

Since the type of 9+n is [0..4] the value of 9+n is 0, resulting in the type R
= [0..2].

The third form denotes an enumeration type and implicitly defines a set
of constants of that type (viz. the names listed between parentheses). Two
enumeration types are equivalent if they are made from the same constants in
the same scope.

The declare section defines the state space of a program as the cartesian
product of the domains of all variables declared.

Initially Section The initially section consists of a (possibly empty) list of
expressions:

initial = initially (ezpression ;)*
The expressions are required to have boolean type, their conjunction defines
the predicate that characterizes the set of initial states of the program. An

empty initially section corresponds to the predicate true, i.e. to the entire
syntactic state space.
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Assign Section The assign section consists of a possibly empty set of possibly
guarded multiple assignments:

assign = assign (namet :=rhs ;)*
rhs = expression™

| caset
case = expressiont if expression

Each assignment specifies a non empty list of variables on the lefthand side
of the assignment operator. All names in that list have to be distinct. There
are two forms of the righthand side rhs: the first corresponds to an assignment
with only one case and guard true, the second allows to list several cases with
arbitrary boolean guards. The number of righthand side expressions must be
equal to the number of lefthand side variables both in the first form and in each
case of the second form. Furthermore the types of corresponding variables and
expressions must be equivalent. There 1s an additional restriction on the use of
guards in different cases: in every state of the state space in which two guards
of different cases of the same assignment are true, all corresponding righthand
side expressions must be equal. This makes an assignment such as

x := "x if y,
y if true;

for boolean variables x, y illegal, since in the state (x = true, y = true)
both guards are true, but the righthand side expressions for x are different
(false, true).

The transition relation defined by the program includes the pair (s,t) of
states of the state space, if and only if there i1s an assignment case of one of the
assignments, whose guard evaluates to true in s and whose multiple assignment
execution updates s to ¢. In particular the empty assign section corresponds to
the empty transition relation.

4.4 Properties

Any property is defined in the context of exactly one program, which is either
named explicitly or is the most recently defined program in the input text (see
above). As a consequence all global symbols and all local symbols defined in
the associated program can be referred to in the property. The syntax for all
eight unconditional properties of UNITY logic is as follows:

property ::= constant expression
| invariant expression
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| stable expression

| transient expression

|  expression co expression

|  expression ensures expression
| expression ==> expression

|  expression unless expression

With the exception of the constant properties all expressions are required to be
of boolean type, whereas for constant properties any type but program type is
allowed.

5 Discussion and Outlook

The UMC system is designed to be a building block of a verification and design
support system. In order to be of practical value to a designer of distributed
programs it must provide an efficient and complete verification method, sup-
port for managing programs and specifications, and means for debugging faulty
programs. It moreover should be easy to use both with respect to the logic
employed and to the user interface.

These criteria are met by the UMC system in the following ways: it utilizes a
OBDD based symbolic representation of programs and specifications, it is based
on UNITY logic, its input language 1s very close to the UNITY notation, and
it provides means for managing and debugging programs and properties via a
graphical user interface.

Thus the UMC system can be considered at least a potentially valuable tool
for the designer of distributed systems, as it allows her to verify properties of
her programs while lowering the risk of introducing errors a more often than not
tedious manual proof might carry with it. Moreover the interactive investigation
and utilization of various invariants allows the user to put her understanding of
the program to use for the verification of more difficult to prove properties.

Although the current revision of the UMC system deals with the issues
related to model checking of single finite-state programs in a very satisfactory
way, our current work suggests several improvements to increase the system
performance and to extend the range of verification problems that can be dealt
with effectively. These extensions concern the data types, the exploitation of
program composition and the parameterization of programs.

In order to increase the expressiveness of the input language we are planning
to add structured data types such as records, arrays, and finite functions, that
have been proved to be extremely useful in programming, as well as to rework
the type definition of finite range integers to better meet the requirements of
given problems (e.g. when using a finite range integer type user may really ask
for a cyclic group, a bounded segment of the integers or a scalar set without
ordering among the elements).
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Program composition can be achieved both on a syntactic and on a struc-
tural level. With syntactic composition the input language provides features for
writing a program as the composition of several constituent parts, internally the
program 1s then represented in its entirety as far as model checker invocations
are concerned. This level of compositionality is extremely useful for designing
bigger programs, especially if syntactic means for hiding local variables and for
combining program components are provided. However, this approach is likely
to suffer from the state explosion problem when the product state space needs
to be built. In our research we therefore focus on structural composition, which
treats components of programs separatly and attempts to check their composi-
tion by reasoning about properties of the components. This approach requires
techniques beyond mere model checking, in particular validity of inference check-
ing and compositional reasoning based on the rely /guarantee paradigm seem to
be needed.

The purpose of allowing parameterized programs is to represent families of
structures in a concise way, and to verify possibly unboundedly many structures
in finite time. A careful use of decision procedures based on inductive methods
will be required to extend the applicability of a model checker to certain classes
of parameterized structures. We are currently investigating how such classes
can be characterized, how known techniques from automated theorem proving
can be employed, and how our model checking algorithms can be extended to
deal with these classes.

A  Grammar

We summarize the syntax of the input language for the UMC system using an
extended BNF. Nonterminals are written in italics, terminals in typewriter
type style. The standard metasymbols used are ::= to separate the left- and
righthand sides of grammar rules, | to separate alternative righthand sides,
parentheses ( and ) for grouping, the * operator indicating zero or more repeti-
tions of the construct it is applied to and the * operator indicating one or more
repetitions of the construct it is applied to. Furthermore there are two addi-
tional postfix operators *» and T the first indicating zero or more repetitions
of the construct it is applied to, with successive repetitions being separated by
commas, the second similarly indicating one or more comma separated repeti-
tions.

The language of allowable inputs is generated by the nonterminal input, the
following grammar rules, and some additional semantic restrictions that are
outlined in the section on the input language.

mput s= unit*

unit 1= program ;
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| property ;
|  in name : property ;

property ::= constant expression
| invariant expression
| stable expression
| transient expression
|  expression co expression
|  expression ensures expression
| expression ==> expression
|  expression unless expression

program  := program name declare initial assign end
declare = declare (ditem ;)*
ditem = var name® : type

| const name* : type := expression
|  type name™ = lype

type 1= name

| [ expression .. expression ]

| (name® )
initial = initially (ezpression ;)*
assign = assign (namet :=rhs ;)*
rhs = expression™

| caset
case = expressiont if expression
expression = name

number

( expression )

+ expression

- expression

expresston + expression
ETPreSSION — eTPression
ETPreSSION = eTPression
expresston "= expression
erpression > erpression
erpression < erpression
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| expression >= expression

| expression <= expression

| expression /\ expression
| expression \/ expression
| expression ==> expression
| expression <== expression
|

|

|

ETPreSSIon == exrpression
erpression =|= expression
© expression

The input language is case sensitive. The input is made up from a sequence
of tokens and white space (i.e. blanks, tabs, and newline characters). White
space only is significant for separating tokens, beyond that it is ignored. Tokens
are either terminals as appearing in the grammar rules above, or strings of
characters representing the name and number nonterminals.

A name i1s any string of one or more characters made up from letters and
digits starting with a letter. A number is a string of one or more digits. A
name must not be one of the terminal keywords mentioned in the grammar
rules above, a number is restricted in its size depending on the implementation
of the system.

For easy reference we list all keywords of the input language in alphabetic or-
der: assign, co, const, constant, declare, end, ensures, if, in, initially,
invariant, program, stable, transient, type, unless, and var.

Similarly we summarize all operators and their binding powers by listing
them in increasing order of binding power (operators on the same line share the
same binding power). All operators are left associative as far as typing allows:

== (boolean equivalence), =|= (boolean antiequivalence, exclusive or)
==> <== (boolean implication, both directions)

/\ (boolean conjunction), \/ (boolean disjunction)

~ (boolean negation)

=, “=, >, >=, <, <= (nonboolean relational operators)

+ (addition), = (subtraction)

- (unary arithmetic negation)

Finally we list the remaining terminal tokens of the input language which
are used as delimiters: :=, (, ), [, 1, ;, :, ,, .., and one special token denoting
the leads-to operator: —=>.

B Implementation Details

The UMC system started out in 1992 as an experimental model checker for
UNITY written in Scheme on a Macintosh computer. After a first prototype
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had shown the feasibility of the approach, the system was rewritten in C++ for
the UNIX environment. The current revision (1.10) is implemented using the
GNU development tools on a SUN SPARCStation under the X Window System
with a user interface based on Motif. The lexical analyzer and the parser for the
UMC input language were built with the help of the GNU scanner and parser
generators flex and bison.

The internal representation of programs and properties and the actual model
checking algorithms are based on our own implementation of an ROBDD pack-
age (Reduced Ordered BDDs, many ideas for an efficient implementation are
taken from [BBR 90]). This allows us to tailor the representation details (in
particular as far as housekeeping and gathering statistical information is con-
cerned) to the specific needs of the UMC system. A thorough understanding
of the details of the representation might become even more important in the
future when different data structures (e.g. inductive BDDs ([GF 93])) might
supplement OBDDs.
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