
Experiments in Extraction of Coarse Grain Parallelism fromConstraint ProgramsAjita John and J.C. BrowneDept. of Computer ScienceUniversity of Texas, Austin, TX 78701email: fajohn,browneg@cs.utexas.eduTR95-1 May 1, 1995
AbstractThis paper reports on experimental research on extraction of coarse grain parallelismfrom constraint systems. Constraint speci�cations are compiled into task level proceduralparallel programs in C. Three issues found to be important are: (i) inclusion of operationsover structured types as primitives in the representation, (ii) inclusion of modularity in theconstraint systems, and (iii) use of functions in the constraint representation. The role ofthese issues is described. The compilation process focuses on determining the parallel structurede�ned by the constraints and creates a parallel program in the format of the CODE 2.0 parallelprogramming environment. The compilation algorithm is described. An example compilationof a constraint system de�ning a simple numerical algorithm to a parallel C program is givenand performance results are reported. Directions for future enhancement of the compilationprocess are suggested. 1

1 Introduction and BackgroundInterest in parallel programming has sparked interest in alternative representations for express-ing computations. It is safe to say that there is as yet no widely accepted representation fromwhich e�cient parallel programs can be compiled for substantially di�erent parallel executionenvironments. This paper reports on experiments on compilation of procedural parallel pro-grams from constraint speci�cations of algorithms. The key elements of the approach include:(i) inclusion of modularity in the constraint speci�cations, (ii) allowing functions in constraintsand (iii) extension of the type system to include structured data elements as primitives. Theseextensions to constraint speci�cations, together with recognition that assignment of values toany consistent set of variables in a constraint system induces a data ow graph from whicha parallel program is readily obtained, has made it surprisingly straightforward to compileprocedural parallel programs from constraint speci�cations. The target language is CODE2.0 [14] which represents parallel computation structures as generalized dependence graphs.Performance results from a simple matrix algorithm are given.1.1 Constraint Systems as a Programming LanguageRepresenting an algorithm or computation as a set of constraints upon the state variables de�n-ing the solution is an attractive approach to speci�cation of parallel programs. Previous e�ortsat parallel execution of constraint systems [1] have, to our knowledge focused on partitioningthe constraint systems and applying standard constraint resolution algorithms in parallel. Thisapproach, while interesting conceptually, has little hope of generating programs which will beof competitive e�ciency with programs compiled to procedural representations of the samecomputations. There has also been considerable work in the logic programming communityin concurrent constraint programming [15]. Our programming model is signi�cantly di�erentfrom the ask and tell framework of CCP languages. We adopt the store-as-valuation conceptas in the imperative programming paradigm as opposed to the store-as-constraint [16] notionin concurrent constraint programming.There has been considerable research in compiling constraint systems to sequential proce-dural representations [3, 10, 5]. Our work is similar in that procedural statements are extractedfrom a constraint speci�cation. But the di�erence lies in our focus on extracting parallelism outof constraints. Recent work by Borning [2, 12] and others have integrated constraint and im-perative models of programming with a view towards attaining the advantages of both. Benson[2] gives a useful survey of constraint programming models and their relationships.1.2 Compilation of Parallel Programs from Constraint SystemsThere are both motivation for continuing research in this direction and reasons for some op-timism concerning success. Constraint systems have attractive properties for compilation toparallel computation structures. A constraint system gives the minimum speci�cation (See [6]for an explanation of the bene�ts which derive from postponing imposition of program struc-2

ture.) for a computation and thus o�ers the compiler great freedom of choice for derivation ofcontrol structure. Constraint systems o�er some unique advantages as a representation fromwhich parallel programs are to be derived. Both "OR" and "AND" parallelism can be derived.Either e�ective or complete programs can be derived from constraint systems on demand.The granularity of the data ow graphs derived from the constraint systems dependsupon the granularity of the operations directly represented in the constraint system. Intro-duction of matrix types and operations as primitives in the constraint representation givesnatural units of computation at granularity appropriate for task level parallelism and avoidsthe problem of name ambiguity in the derivation of dependence (data ow) graphs from loopsover scalar representation of arrays. The CODE 2.0 programming system [14], which expressesparallel structure over sequential units of computation declaratively in terms of a generalizeddependence graph, provides a natural target language for compilation of parallel computationstructures from constraint systems. The requirements for a constraint representation which canbe compiled to a CODE 2.0 program which will execute e�ciently include:(i) modularity - The constraint system must have a modular structure which allows identi�ca-tion of reusable modules with which code modules can be identi�ed.(ii) functions - functions must be admissible in the constraint representation.(iii) rich type set - the primitive type set should include structured types so that the unitsof sequential computation are of appropriate granularity and to avoid name ambiguity whichprecludes development of dependence graphs.The next section describes our approach. This is followed by a description of the con-straint representation. Section 4 details the compilation process. An example of a compiledprogram and its execution behavior are then given. The paper concludes with directions forfuture research.2 ApproachA constraint is a relationship between a set of variables. E.g. A + B = C. Encapsulatedwithin this constraint are three procedural assignment statements: A := C �B, B := C � A,C := A+B. Each of these statements can be extracted out of the initial constraint dependingon which two of the three variables are inputs. If all three variables are inputs, the constraintcan be transformed into a conditional which can be checked by a program for satis�ability. Inboth cases we classify the constraint as being resolved. If the number of inputs is less than two,the constraint can be left as unresolved.A program speci�cation in our system expresses a relationship between the variablesof the program. Our approach consists of extracting a dataow graph from the initial set ofconstraints and input set of variables (initial known set). The dataow graph establishes theconstraints by computing values for some or all of the non-input (output) variables. Genera-tion of a dataow graph is attempted by reordering of constraints and their classi�cation asconditionals or computational statements at di�erent points in the dataow graph. Unresolvedconstraints are propagated down the graph in the hope of getting resolved at later points. The3

dataow graph generation is explained in greater detail in Section 4. In a successful generationno constraints are unresolved at the end of some path in the dataow graph. It is not neces-sary that every output variable be computed. Ours is a single-assignment system and multiplesolutions to an output variable could be generated by alternate paths in the dataow graph.All paths with unresolved constraints are pruned from the graph.A constraint speci�cation represents a family of dataow graphs: one for each inputset from which a dataow graph establishing the constraints can be generated. Generationof all possible dataow graphs can result in combinatorial explosion. Hence we concentrateon constructing a dataow graph for a speci�ed input set. The constraint speci�cation canbe reused for generating programs for di�erent sets of inputs. Our translation exploits theAND-OR parallelism in the constraint speci�cation.The dataow graph is mapped to the execution environment of the CODE 2.0 graph-ical parallel programming system [13] and parallel programs in C are generated. CODE 2.0generates programs for the shared memory Sequent machine as well as the distributed memoryPVM system. In addition sequential C programs can also be generated.3 Constraint RepresentationThe initial types supported for the variables includes integers, reals, characters, and arrays. To-wards the goal of supporting a rich typeset, we have implemented matrices and their associatedaddition, subtraction, multiplication and inverse operations. We also support a simple typesystem for matrices that at present includes lower triangular, upper triangular, and generalmatrices.The constraints handled in our system are linear arithmetic constraints connected bythe logical AND, OR and NOT operators. An arithmetic expression appearing in a constraintcan be an integer/real value or variable, or is of one of the following forms: (X1), X1 O X2, orfn call where X1, X2 are arithmetic expressions, O 2 f +, -, *, /, div, mod g, and fn call is afunction call. The constraints can be constructed by the programmer by the application of thefollowing rules.Rule 1 : Relations of the form below are constraints :(a) X1 R X2,R 2 f <, �, >, �, = , 6= g, X1, X2 are arithmetic expressions(b) M1 = M2M1;M2 are linear expressions involving matrices andthe matrix operators +, -, *, and InverseRule 2 : Propositional formulas of the form below are constraints :4

NOT AA AND BandA OR BA and B are constraintsRule 3 : Calls to user-de�ned constraint modules are constraints.Constraints formed from the use of just arithmetic expressions and relational operators(Rule 1) are referred to as simple constraints. These constraints form the building blocksfor non-simple constraints which are formed by connecting simple constraints with logicalAND/OR/NOT operators or by declaring a constraint module (Rules 2,3).A program in our system in consists of the following parts:� Program name.� User-de�ned function signatures: These are the signatures of C functions which maybe called within an arithmetic expression. These functions are de�ned in a separate �le whichis linked during execution.� Global variable declarations: This section contains the name and type declaration ofthe global variables in the program. The scope rules for these variables are similar to those ofa standard C program.� Input variables: This section identi�es the global input variables. All the variables inthis section must be declared in the variable declaration section.� Constraint Module de�nitions: This section contains zero or more de�nitions for con-straint modules. The de�nition of a constraint module includes a name, listing of formalparameters and their types, local variable declarations, and a body. The local variable decla-rations and body are exactly similar in syntax to the global variable declarations and the mainbody, respectively. The Constraint Module de�nitions are described in greater detail in Section3.1. � Main body of the program: The body of the program consists of a set of constraintsconnected with AND/OR/NOT operators.3.1 Constraint ModulesOur system provides for modularity by allowing the user to de�ne constraint modules withformal parameters. This feature allows the development of large systems in a non-tediousmanner. Formal parameters are names with associated types. A Constraint Module de�nitionis semantically similar to a constraint in that it enforces a relationship (between its parameters).In addition, a Constraint Module encapsulates computation and provides a parameter interface.At the point of call to a constraint module, the actual parameters which are in the known setbecome inputs to the module and the rest of the parameters become outputs. A call to aconstraint module is resolved if the compiler generates a non-empty dataow graph from theconstraint module de�nition. 5

3.2 Sample Program Speci�cationWe present a sample program speci�cation in this subsection. The header information con-taining the program name and variable declarations has been omitted. The problem is one of�nding the non-complex roots of a quadratic equation, a� x2 + b� x+ c = 0. 00U 00 denotes anunde�ned value. sqr, sqrt, and abs are the square, squareroot and absolute functions./* de�nition of constraint module */De�nedRoots(a, b, c, r1, r2)t = sqr(b)� 4� a� c AND r = sqrt(abs(t))AND t � 0 AND r1 = (�b+ r)=2 � a AND r2 = (�b� r)=2 � a/* Main*/a = 0 AND r1 = \U 00 AND r2 = \U 00ORa 6= 0 AND De�nedRoots(a, b, c, r1, r2)4 Phases of the CompilerThe compilation algorithm consists of four phases, which are described in greater detail in thissection.Phase 1: The textually expressed constraint system is transformed to an undirectedgraph representation as for example given by Leler [11].Phase 2: A depth-�rst search algorithm is used to transform the undirected graph to adirected graph.Phase 3: A set of input variables is chosen and the directed graph is again traversed bydepth-�rst search to determine a mapping of constraints to �ring rules and computations fornodes of a generalized data ow graph.Phase 4: The data ow graph is mapped to the CODE 2.0 parallel programming envi-ronment [13]. CODE 2.0 accepts generalized dependence graphs of the form generated hereinas source and produces parallel programs in C as executable for di�erent parallel architectures.4.1 Phase 1The textual source program is transformed into a source graph for the compiler. Startingfrom an empty graph, for each application of Rules 1-3, an undirected constraint graph can beconstructed by adding appropriate nodes and edges to the existing graph. For each instanceof a simple constraint, a node is created and the constraint is attached to the node. For6

AND/
OR

for B
Graph

for A
Graph Graph

for A

NOTFigure 1: Rule 2each instance of a constraint formed according to Rule 2, the graph is expanded as shown inFigure 1. For each instance of a constraint formed according to Rule 3, a node is created andthe constraint module call (with the actual parameters) is attached to the node. Hence, thedi�erent kinds of nodes in the constraint graph are (i) X1 R X2 (ii) AND/OR/NOT and (iii)Constraint Module Calls. Nodes of type (i), (ii), and (iii) are referred to as simple constraintnodes, operator nodes, and call nodes, respectively.In the �rst phase, a set of constraint graphs is constructed. The �rst graph correspondsto the constraint speci�cation in the main body of the program. The other graphs correspondto the constraint speci�cations in the body of the constraint module de�nitions. Evidently, eachgraph is constructed in a hierarchical fashion with simple constraint and call nodes at lowerlevels and operator nodes migrating to higher levels to connect one or two subgraphs, simpleconstraint nodes or call nodes. There will be a unique operator node at the highest level. Theconstraint graphs for the quadratic equation solver are shown in Figure 2.4.2 Phase 2A depth-�rst traversal of each of the graphs obtained at the end of phase 1 is done to generatea set of trees. The construction of these trees simpli�es the initial constraint speci�cation asillustrated in Figures 3 and 4, where a, b, c, and d are simple constraints. Nodes are collapsedin the graph such that constraints connected by AND operators are collected at the same nodeand constraints connected by OR operators are collected at nodes on diverging paths. Thisfollows the rule that only one of the constraints needs to be satis�ed for the OR constraintto hold and both the constraints have to be satis�ed for the AND constraint to hold. Thealgorithm dfs is a simple generalization of Figures 3 and 4. Let v1 be the unique node at thehighest level of the graph. Each tree is initialized to one node, v�1. vc and v�c are the nodescurrently being visited in the graph and the tree, respectively. dfs is initially invoked with thecall dfs(v1, v�1).The operator NOT has been omitted from the notation but it is implemented in thesystem. A NOT operator node will have a single subgraph or simple constraint as its child. Ifthe child is a simple constraint, the NOT node is removed by negating the simple constraint. Ifthe child is a NOT node, both NOT nodes are removed from the graph. Otherwise, the NOT7

G for program

r2="U"r1="U"

AND

AND

OR

AND

a=0

AND

r1=(-b+r)/(2*a)

t>=0

AND

ANDAND

r=sqrt(abs(t))t=b*b-4*a*c

r2=-(b+r)/(2*a)

G for DefinedRoots

DefinedRoots(a,b,c,r1,r2)a=0

Figure 2: Constraint Graph for Quadratic Equation Example8

node is moved down the tree by changing nodes in its path till it reaches a simple constraintor another NOT node. The rules for changing the nodes are as follows: AND becomes OR andOR becomes AND.dfs (vc, v�c)begin visited[vc] := true;Case type(vc) ofOR :for each unvisited neighbor u of vc doif type(u) = OR dfs(u, v�c)else create node,u�, in G� as child of v�c ;dfs(u, u�)AND :if there are two unvisited OR neighbors, u1 and u2, of vccreate 4 nodes, u�1, u�2, u�3, and u�4 in G� as children of v�c ;/*let the 2 unvisited neighbors of u1 be u11 & u12 and of u2 be u21 & u22*/visited[u1] := true; visited[u2] := true;dfs(u11, u�1); dfs(u21, u�1);dfs(u11, u�2); dfs(u22, u�2);dfs(u12, u�3); dfs(u21, u�3);dfs(u12, u�4); dfs(u22, u�4);else for each unvisited neighbor, u, of vc do dfs(u, v�c);simple constraint :attach constraint to v�c ;Call Node :attach constraint module call to v�c ;end;4.3 Phase 3An attempt to generate a dataow graph for the initial constraint and input set speci�cationis made in this phase. In the generated dataow graph, nodes are computational elements andarcs between nodes express data dependency. A path from the root of the graph to a leaf is apossible computation path that may be taken during execution as a result of values to variables.The general form of a dataow node is shown in Figure 5.9

G* *G

ANDAND

d
c

b
a

dcba

OR

dcba

OROR

OR

a b c d

G G

Figure 3: Phase 2 for an OR node
G**G

d
a

c
b

OROR

AND

dc
ba

dcba

ANDAND

AND

d
c
b
a

a b c d

G G

Figure 4: Phase 2 for an AND node10

Routing Rule

Function
or

Relation

Firing Rule

OUTPUTS

INPUTS

Figure 5: Generalized Data ow graph nodeA depth-�rst traversal of the tree corresponding to the main program is done startingat the root. The traversal starts with the information that variables in the input set are knownand tries to generate computation paths that assign values to variables in the output set. Eachnode in the tree has a set of constraints associated with it. When a node is visited, eachconstraint is examined for classi�cation as one of the following: (i) Firing Rule: a conditionthat must hold before the current node can �re. To be classi�ed as a �ring rule, a constraintmust have no unknowns when the node is visited. (ii) Computation: To fall into this category,a constraint must involve an equality and have a single unknown. The unknown is added tothe known set and is retained in it for the subtree rooted at the current node. (iii) RoutingRule: a condition that must hold for this node to send out data on its outgoing paths. To bea routing rule a constraint must have no unknowns after the computation at the current nodeis executed.When a constraint is classi�ed as computation, it is reordered using symbolic algebra.If the variables in the computation are simple types the single unknown is moved to the left-hand side of the assignment statement. If the variables in the computation are matrices theassignment statement is replaced by calls to specialized matrix routines in C. For example thestatement A � x+ b1 = b2 with x as the unknown is �rst transformed into A � x = b2� b1 andthen a routine is called to solve for x. If A is lower (upper) triangular, then forward (backward)substitution is used to solve for x. Otherwise x is solved through an LU decomposition of A.Any constraint not falling into one of the above set of categories is retained in an unre-solved set of constraints which gets propagated down the tree. Examination of each constraintat a node and in the unresolved set of constraints loops till a stable state is reached. Anypath that results in a leaf with unresolved constraints is abandoned. If all paths in the tree are11

abandoned the user is informed of the under-speci�cation of the initial input set. Constraintsinvolving inequalities must be resolved as �ring/routing rules.4.3.1 Phase 3 for Constraint Module CallsA constraint module call has the form ModuleName(e1; e2; : : : ; en) where ei, 1 � i � n is anarithmetic expression. Let the corresponding formal parameters be f1; f2; : : : ; fn. Any functioncall within ei must have all known parameters else the constraint module call is unresolved. Ifall the variables in e1; : : : ; en are in the known set the call falls into category (i) or (iii) above.The formal parameters in the body of the constraint module are replaced by the correspondingei and the resulting conditional becomes a �ring/routing rule.If one or more variables in e1; : : : ; en are not in the known set then an attempt is made togenerate a dataow graph from the constraint module de�nition. The graph for the constraintmodule is traversed with a new known set = f all formal parameters whose correspondingactual parameters 2 old known setg. The output parameters are considered to be all formalparameters not in the old known set. The traversal returns "True" if all the constraints inthe constraint module are resolved and every output parameter is computed at the end of atleast one path in the resulting dataow graph (other paths are discarded). This condition isdi�erent in the dataow generation of the main program where all output variables need notbe computed. The reason for imposing this condition is that the actual parameters are boundto the values returned in the output formal parameters at the point of call. If di�erent setsof output variables are computed in di�erent paths of the dataow graph (as in the constrainta = c OR b = c with c known) it is not possible to determine statically which of the actualoutput parameters will be bound to the formal output parameters at runtime.If a successful dataow generation takes places a new set of constraints correspondingto each output parameter are generated as follows:ek1 = Z1, ek2 = Z2, : : :, ekp = Zp, where Zi, 1 � i � p, are new variables generated by thecompiler and ek1 : : : ekp are the output parameters. An attempt is made to resolve this set ofconstraints. It is to be noted that there can be at most one unknown in each of parametersek1 : : : ekp and the set of constraints will have to be resolved as computation for each of theseunknowns. In this case a call node which calls the generated dataow graph is generated. Achild node of the call node receives values computed by the call node and binds them to Z1 : : : Zpand performs the computation generated from the new set of constraints.If the traversal returns "False" (a dataow graph is not generated) then the currentsearch path is discarded. Each constraint module invocation is translated as a separate programmodule. It might seem that many redundant translations would be performed. But a table canbe maintained for each module which contains entries showing the dataow graphs generatedfor combinations of parameter inputs. Redundant translations can be eliminated this way.12

4.3.2 Extraction of AND parallelismThe computational statements that are assigned to a node have the potential for parallel ex-ecution. For instance, the assignments a := b + c and x := b + 2 are independent and canbe done in parallel. If another computation statement accesses the value of a then there is adata dependency between the statement a := b+ c and the current statement. If a is the onlydata dependency, the current statement is assigned to the node which computes a. Else a newnode is created for the current statement and a data arc brings in the value of a. Evidently,the granularity of such a scheme depends on the complexity of the functions called within thestatements and the complexity of the operators.We have further exploited the complexity of the matrix operations by splitting up thespeci�cations, performing computations in parallel and composing them. For example if x :=m � y + b and x, m, y, and b are matrices m � y can be done in parallel. Our system splitsthe above computation into two statements: (i) Z := m � y (ii) x := Z + b in view of the factthat multiplication of matrices is an O(N3) operation. This will be signi�cantly more costlyto compute than addition of matrices. Since m � y is a primitive operation, a procedure whichimplements a parallel algorithm for m � y can be invoked. In a later version of the compilerprovision will be made for user speci�cation of parallelism for operations over structures.Hence data parallelism is exploited by keeping in mind that ours is a single-assignmentsystem and the lone write to a variable (assignment with variable on left-hand side) will appearbefore any reads (variable on right-hand side of assignment statement) to the variable. Com-putations assigned to a node are thus split up as computations to di�erent nodes running inparallel. Results are collected by a merging node.The structures obtained at the end of Phases 2 and 3 from the quadratic equationexample are shown in Figure 6. r1 and r2 are computed in parallel and then merged. Thisexample does not exhibit coarse grained parallelism. It was used to illustrate the compilationalgorithm in a simple manner. The programming example in Section 5 is a good example forcoarse grained parallelism.4.4 Phase 4Our target for executable for constraint programs is the CODE 2.0 parallel programming en-vironment. CODE 2.0 takes a dataow graph as its input. The form of a node in a CODEdataow graph is given in Figure 5. It is seen that there is a natural match between the nodesof the dataow graph developed by the constraint compilation algorithm and the nodes in theCODE graph. The arcs in the dataow graph in CODE are used to bind names from one nodeto another. This is exactly the role played by arcs in the dataow graph generated by thetranslation algorithm.The CODE 2.0 programming interface is drawing and annotating of the directed graphon a workstation. This annotated directed graph is converted to a graph-format �le, which isthen passed through several translations to obtain an executable. The graph-format �le storesan abstract syntax tree (AST) which represents in a hierarchical form the CODE program that13

t >= 0

MAIN

(b)(a)

a=0

a=0

start
start

a = 0

r2=-(b+r)/(2*a)

r1=(-b+r)/(2*a)

r=sqrt(abs(t))
t=b*b-4*a*c

t >= 0 t >= 0

a = 0

DefinedRoots

DefinedRoots(a,b,c,r1,r2)

DefinedRoots(a,b,c,r1,r2)

r1="U"

r2="U" r1:="U"

r2:="U"

r1:=(-b+r)/(2*a) r2:=-(b+r)/(2*a)

t:=b*b-4*a*c
r:=sqrt(abs(t))

call
node

Figure 6: (a) Phase 2 (b) Phase 3 for Exampleis to be translated. The output of the translator for the constraint systems is the AST. ThisAST is passed through the same translations as an AST from a CODE2.0 program. The �naloutput is an executable in the form of a parallel C program. The dataow graphs generatedfrom the constraint modules are stored as separate AST's in CODE2.0. These can be invokedby the corresponding call nodes in the program.5 Programming Example: Block Triangular SolverThe example chosen is the solution of a triangular matrix which is a commonly used examplefor illustration of parallel computations [13]. It solves the Ax = b linear algebra problem for aknown lower triangular matrix A and vector b. The parallel algorithm [9] is quite simple andinvolves dividing the matrix into blocks as shown in Figure 7 (a). Figure 7 (b) shows the dataowof the algorithm. The S's represent lower triangular submatrices that are solved sequentially,and the M's represent submatrices that must be multiplied by the vector from above and theresult subtracted from the vector from the left. The arcs represent the dependencies betweenthese operations. 14

S1

S2

S3

S0

M10

M20

M30

M21

M31 M32

(a) (b)

X3

X2

X1

X0B0

B1

B2

B3

S0

M10 S1

M20 M21 S2

M30 M31 M32 S3Figure 7: (a) Partitioned Lower Triangular Matrix (b) Block Triangular Solver DataFlowThe constraint speci�cation in our program for a problem split into 4 blocks is as follows:(s0*x0 == b0 ANDm10*x0 + s1*x1 == b1 ANDm20*x0 + m21*x1 + s2*x2 == b2 ANDm30*x0 + m31*x1 + m32*x2 + s3*x3 == b3)The input set is given as f s0, s1, s2, s3, b0, b1, b2, b3, m10, m20, m30, m21, m31, m32 g.The output set is detected as fx0, x1, x2, x3g.5.0.1 Performance ResultsThe speedups given in Figure 8 are for a 1200 � 1200 matrix. The executable was run on theshared memory Sequent machine. It is seen that the performance of the constraint generatedcode is comparable to the hand coded performance. The di�erence in speedups is mainly due tothe fact that the hand coded program is optimized for a shared memory execution environment.Architectural optimization can easily be included in later versions of the constraint compiler.6 Conclusions and Directions for Future ResearchThis �rst stage of research has established that constraint systems over structured types canbe compiled to e�cient coarse grained parallel programs for some plausible examples. Thisis, however, only a �rst step in demonstration of a practical compiler for constraint systemsto parallel programs. It is clearly necessary to be able to express constraints on partitionsof matrices if large scale parallelism is to derived from constraint systems without use of thecumbersome techniques derived for array dependence analysis of scalar loop codes over arrays.There are several promising approaches: object- oriented formulations of data structures are15

Block_Triangular_Performance

Ideal

Hand

Constraint-Generated

Speedups

Number_of_Processors
1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

3.60

5.00 10.00Figure 8: Performance Results for the Block Triangular Solver
16

one possibility. A simpler and more algorithmic basis for de�nition of constraints over partitionsof matrices is to utilize the hierarchical type theory for matrices recently published by Collinsand Browne [7]. The hierarchical type model for matrices establishes a compilable semantics forcomputations over hierarchicalmatrices. Collins and Browne [8] have designed and implementeda translator which transforms pseudo-equational representations for computations expressed inthe hierarchical type model for matrices into parallel programs.The next steps in this research are:a) To extend the current compiler to incorporate a richer spectrum of data and constrainttypes (including hierarchical matrices).b) Inclusion of Forall quanti�ers in the constraint representation.c) To formulate constraint systems which integrate search and computation to advantagefor applications such as visualization, image analysis and adaptive computational algorithms.d) To validate the compiler by measurement of performance of the applications on severalparallel architectures.e) Provide compiler optimizations which take advantage of architectural characteristicsof speci�c execution environments.f) To include constraint hierarchies [4].References[1] Doug Baldwin. Consul: A Parallel Constraint Language. IEEE Software 1989.[2] Freeman-Benson, B.N. Constraint Imperative Programming Technical Report 91-07-02 University of Washington, Department of Computer Science and Engineering,August, 1991.[3] Bjorn N. Freeman-Benson. A Module Compiler for Thinglab II. Proc. 1989 ACMConference on Object-Oriented Programming Systems, Languages, and Applications,New Orleans, October 1989. ACM.[4] Alan Borning, Robert Duisberg,Bjorn N. Freeman-Benson, Axel Kramer, and MichaelWoolf. Constraint Hierarchies. Proc. 1987 ACM Conference on Object-Oriented Pro-gramming Systems, Languages, and Applications, October 1987, ACM.[5] Alan Borning. The Programming Language Aspects of ThingLab, a Constraint-Oriented Simulation Laboratory. ACM Transactions on Programming Languages andSystems, Vol. 3, No. 4, October 1981, pp 353-387.[6] Chandy, K.M and Misra, J. Parallel Program Design : A Foundation Addison-Wesley,Reading, 1989. 17

[7] Collins, T.S. and Browne, J.C. MaTrix++; An Object-Oriented Approach to theHierarchical Matrix Algebra In Proceedings of the Second Annual Object-OrientedNumerics Conference , Sun River, OR, April, 1994.[8] Collins, T.S. and Browne J.C. MaTrix++; An Object-Oriented Environment forParallel High-Performance Matrix Computations To appear in the Proceedings of the1995 Hawaii International Conference on Systems and Software[9] J.J. Dongarra and D.C. Sorenson. SCHEDULE: Tools for Developing and AnalyzingParallel Fortran Programs. Argonne National Laboratory MCSD Technical Memo-randum No. 86, Nov. 1986.[10] Dan Ingalls, Scott Wallace, Yu-Ying Chow, Frank Ludolph, Ken Doyle. Fabrik : AVisual Programming Environment. Proc. 1988 ACM Conference on Object-OrientedProgramming Systems, Languages, and Applications, September 1988. ACM.[11] William Leler. Constraint Programming Languages. Addison-Wesley, 1988.[12] Gus Lopez, Bjorn Freeman-Benson, Alan Borning. Kaleidoscope : A ConstraintImperative Programming Language. Constraint Programming, B. Mayoh, E. Tougu,J. Penjam (Eds.), NATO Advanced Science Institute Series, Series F: Computer andSystem Sciences, Springer-Verlag, 1993.[13] P. Newton and J. C. Browne. The Code 2.0 Graphical Parallel Programming Environ-ment. Proceedings of the 1992 International Conference on Supercomputing (Wash-ington, DC, July 1992), pp 167-177.[14] P. Newton and J.C. Browne. A Graphical Retargetable Parallel Programming Environ-ment and its E�cient Implementation. Technical Report TR93-28, Dept. of ComputerSciences, Univ. of Texas at Austin, 1993.[15] Vijay A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis,Carnegie Mellon, Pittsburgh, 1989. School of Computer Science.[16] Vijay A. Saraswat, M. Rinard, and Prakash Panangadan. Semantic foundations ofConcurrent constraint programming. Proc. Principles of Programming LanguagesConf., pages 333-352, 1991.
18

