Fast Scheduling of Periodic Tasks
on Multiple Resources

Sanjoy K. Baruah' Johannes E. Gehrke? C. Greg Plaxton?

Abstract

Given n periodic tasks, each characterized by an execution requirement and a pe-
riod, and m identical copies of a resource, the periodic scheduling problem is concerned
with generating a schedule for the n tasks on the m resources. We present an algorithm
that schedules every feasible instance of the periodic scheduling problem, and runs in
O(min{mlgn,n}) time per slot scheduled.

1 Introduction

Given a set I' of n tasks, where each task x is characterized by two integer parameters x.e
and x.p, and m identical copies of a resource, a periodic schedule is one that allocates a
resource to each task x in I' for exactly x.e time units in each interval [k - x.p,(k+ 1) - 2.p)
for all £ in N, subject to the following constraints:

Constraint 1: A resource can only be allocated to a task for an entire “slot” of time,
where for each 2 in N slot ¢ is the unit interval from time ¢ to time 7 + 1.

Constraint 2: No task may be allocated more than one copy of the resource in any
single slot.

The problem of constructing periodic schedules for such task systems was discussed by Liu
in 1969 [5], and is called the (multiple resource) periodic scheduling problem. It has been
shown [2, 4] that an instance of the periodic scheduling problem is feasible (i.e., has a periodic
schedule) if and only if (3 e z.¢/2.p) < m.

Given a feasible instance of the periodic scheduling problem, a schedule generation al-
gorithm performs a (possibly empty) pre-processing phase followed by an infinite execution
phase. No output is produced during the pre-processing phase. During the execution phase,
the algorithm produces an infinite sequence of outputs (X; : ¢ > 0), where X, is the subset
of up to m tasks scheduled (i.e., assigned one copy of the resource) in slot i. (Note that any
output-free prefix of the computation may be designated as the pre-processing phase.) Let

! Department of Computer Science & Electrical Engineering, and Department of Mathematics & Statistics,
University of Vermont, Burlington, VT 05405.

2Department of Computer Science, University of Texas at Austin, Austin, TX 78712. Supported by the
Texas Advanced Research Program under Grant No. 003658-461.

t; denote the elapsed running time (in the usual RAM model) between the beginning of the
execution phase and the time at which output X, is produced, ¢« > 0. Also, let {_; = 0. Then
for any schedule generation algorithm A, we define the per-slot time complexity of A as the
maximum over all feasible instances and over all 7+ > 0 of t; — ¢;,_;. We further define the pre-
processing time complexity of A as the maximum running time of the pre-processing phase
over all feasible instances. A schedule generation algorithm is polynomial time if and only
if both the per-slot time complexity and the pre-processing time complexity are polynomial
in the input size.

Because all of the scheduling algorithms considered in this paper are schedule generation
algorithms, for the sake of brevity we hereafter use the term “scheduling algorithm” to mean
“schedule generation algorithm”. Furthermore, because all of the scheduling algorithms
that we consider have O(n) pre-processing time complexity, we will focus our attention on
minimizing slot time complexity. Accordingly, throughout the paper, every time bound given
for a scheduling algorithm should be assumed to be a bound on the slot time complexity
unless otherwise specified.

A simple yet powerful idea for solving many scheduling problems involving deadlines is
to give priority to the task with the earliest associated deadline, breaking ties arbitrarily.
For example, the Earliest Deadline algorithm of Liu and Layland [6] schedules any feasible
instance of the single resource (i.e., m = 1) periodic scheduling problem. The same algorithm
can also be used to solve a relaxed version of the (multiple resource) periodic scheduling
problem in which Constraint 2 is eliminated. However, the Earliest Deadline algorithm
does not solve the periodic scheduling problem (i.e., it does not schedule every feasible
instance). Informally, the difficulty is that neglecting a particular task = with a “later”
deadline can eventually lead to a state in which the deadline of & cannot be met without
violating Constraint 2. One might expect that it would be relatively straightforward to
“patch up” the Earliest Deadline algorithm to take care of such difficulties. However, this
turns out to be a non-trivial problem. In fact, prior to the recent work of Baruah et al. [1],
no polynomial time algorithm of any kind was known for the periodic scheduling problem.

In [1], an algorithm is presented for the periodic scheduling problem with a running time
that is linear in the size of the input in bits, that is,

O (> Ng(zp+1)]). (1)
[)

zel

(Note that the preceding sum is at least n, since there are n tasks and the period of each task
is at least 1.) This algorithm is based on a measure of fairness in resource allocation called
“proportionate progress”. Given an instance of the periodic scheduling problem, define the
weight of any task z in ' as z.w = z.e/x.p. Informally, a schedule is said to maintain
proportionate progress if and only if each task is scheduled resources in proportion to its
weight. Formally, at every time ¢ in N, each task x must have been scheduled either |z.w-{|
or [x.w-t] times. This requirement is called proportionate fairness or P-fairness. P-fairness
is a strictly stronger condition than periodic scheduling, in that any P-fair schedule is periodic
while the converse does not hold. It has been shown, however, that every feasible instance
of the periodic scheduling problem has a P-fair schedule [1].

Although Algorithm PF and the Earliest Deadline algorithm bear little obvious resem-
blance to one another (e.g., they tend to produce radically different schedules even in the
case m = 1), there is in fact an interesting relationship between these two algorithms. In
particular, as we now explain, Algorithm PF may be viewed as a generalization of Earliest
Deadline. Under Earliest Deadline, the deadline associated with each allocation to a given
task during a particular period is the same, namely, the last slot in the period. Under Algo-
rithm PF. additional “quasi-deadlines” are introduced, and each allocation of a given task has
a distinct associated quasi-deadline. Furthermore, these quasi-deadlines are roughly evenly-
spaced, where the precise spacing is determined by P-fairness considerations. Algorithm PF
then behaves as an “earliest quasi-deadline” algorithm, with the following important caveats:

e There are two kinds of quasi-deadlines that can occur, which may be thought of as
“sharp” and “fuzzy”. If the ith allocation of a task « has a sharp (resp., fuzzy) quasi-
deadline at slot ¢, then the (7 4+ 1)th allocation to task x is not allowed to occur prior
to slot t + 1 (resp., t). Thus, the slot at which a given allocation can occur is bounded
both from above and below. It turns out that the sharp deadlines are very easy to
deal with, informally because a sharp quasi-deadline decouples the scheduling of the
two adjacent allocations.

o If the earliest quasi-deadlines associated with two tasks x and y are both fuzzy and
occur in the same time slot, we cannot simply break the tie arbitrarily in order to assign
priority to either @ or y. (Feasible instances of the periodic scheduling problem are
known for which this heuristic fails.) Algorithm PF breaks such a tie by comparing the
second earliest quasi-deadlines of the two tasks. If there is still a tie, the third earliest
quasi-deadlines are compared, and so on. (If all future quasi-deadlines are the same
for both tasks, then the tie can be broken arbitrarily.) Algorithm PF uses a GCD-
like procedure to efficiently implement the tie-breaking procedure described above.
(A naive implementation that directly compares successive quasi-deadlines until the
tie is broken would not yield a polynomial-time algorithm for the periodic scheduling
problem.)

While the GCD-like tie-breaking procedure alluded to above is quite fast, it does not
run in constant time. Instead, the running time of this procedure is linear in the number of
bits in the binary representation of the relevant task periods. As a result, the running time
of Algorithm PF (see Equation (1)) can exceed ©(n) by an arbitrarily high multiplicative
factor.

In this paper, we describe and prove correct Algorithm PD, an algorithm for the pe-
riodic scheduling problem with running time O(min{mlgn,n}). (The letters “PD” stand
for “pseudo-deadline”, a term very closely related to the “quasi-deadline” notion discussed
above, and that is formally defined in Section 4.) The most efficient algorithms previously
known for solving the uniprocessor periodic scheduling problem (e.g., efficient implemen-
tations of the Earliest Deadline algorithm) run in O(lgn) time; note that Algorithm PD
matches this time bound for uniprocessor scheduling. Like Algorithm PF, Algorithm PD
solves the periodic scheduling problem by generating a P-fair schedule for every feasible
instance. (To the best of our knowledge, no previously known algorithm generates P-fair
schedules even in the case of a single resource.)

Our work builds on that of [1] by making use of the correctness of Algorithm PF to
exhibit a constant-time tie-breaking procedure that is sufficient to maintain P-fairness. In
essence, our approach is to limit the tie-breaking procedure to look only a constant number
of pseudo-deadlines into the future. Informally, the tie-breaking procedure of Algorithm PF
has a finer “resolution” than that of Algorithm PD and, as a result, the two algorithms do
not always make the same scheduling decisions. In spite of this, we are able to argue that
the schedules generated by Algorithms PD and PF are closely related.

Our main technical contribution is the proof of Theorem 1, which establishes that, like
Algorithm PF, Algorithm PD produces a P-fair schedule for any feasible instance of the
periodic scheduling problem. (The running time analysis of Algorithm PD is, by contrast,
entirely straightforward.) The following new concepts have served to motivate both the
definition of Algorithm PD as well as its proof of correctness:

e We take advantage of the duality that exists between “heavy” tasks (those with weight
greater than or equal to 1/2) and “light” tasks (those with weight less than or equal
to 1/2). Note that a heavy (resp., light) task is scheduled (resp., not scheduled) more
often than it is not scheduled (resp., scheduled). As a consequence, when dealing with
heavy (resp., light) tasks, it seems to be more important to consider the next time
slot by which the task must not be scheduled (resp., be scheduled) than to consider
the next time slot by which the task must be scheduled (resp., not be scheduled).
While Algorithm PF associates a quasi-deadline with each allocation of every task, Al-
gorithm PD associates a pseudo-deadline with each allocation (resp., “non-allocation”)
of every light (resp., heavy) task.

e Within the heavy (resp., light) tasks, we further categorize tasks into distinct weight
classes. More specifically, all heavy (resp., light) tasks = sharing a common value of
|1/(1 — z.w)] (resp., [1/x.w]) form a single weight class. Note that tasks belonging
to the same weight class are scheduled with approximately the same frequency.

o We analyze the state of a schedule generation algorithm in terms of a two-dimensional
tableau of integer counts that specifies, for each weight class and for each future slot,
the number of associated pseudo-deadlines that have been satisfied to this point in
the schedule. We prove that such a tableau provides enough information to maintain
P-fairness, even though it does not encode the exact weight of any particular task.

o We precisely characterize the manner and degree to which the state of Algorithm PD
can deviate from that of Algorithm PF, given that both algorithms have scheduled
exactly the same number of slots. This characterization is expressed in terms of the
tableau of count information mentioned above. We find that the deviation is sufficiently
small to guarantee that Algorithm PD maintains P-fairness as long as Algorithm PF
does. The correctness of Algorithm PD then follows from the fact that Algorithm PF
is known to maintain P-fairness [1].

The remainder of this paper is organized as follows. In Section 2, we review the basic
definitions associated with P-fairness. In Section 3, we review Algorithm PF of [1]. In Sec-
tion 4, we present our new algorithm for the periodic scheduling problem, Algorithm PD,
along with the proof of correctness. A straightforward implementation of Algorithm PD

has a running time of O(n), which already represents a significant improvement over the
performance of Algorithm PF. In Appendix B, we outline a binomial-heap-based implemen-
tation of Algorithm PD with a running time of O(mlgn). Thus, Algorithm PD can be used
to solve any instance of the periodic scheduling problem in O(min{mlgn,n}) time. There
remain, however, several other important multiple resource scheduling problems for which
no efficient solutions are known; in Section 5, we conclude with a general plan for attacking
such problems.

2 P-Fairness

In this section we review some concepts introduced in [1]. We start with some conventions:

e Scheduling decisions occur at integral values of time, numbered from 0. The unit
interval between time ¢ and time ¢ + 1 will be referred to as slot ¢, t € N.

e For integers a and b, let [a,b) = {a,...,b — 1}. Furthermore, let [a,b] = [a,b+ 1),
(¢,0] =[a+1,b+1), (a,b) = [a+1,b), and [a] = [0, a).

e We use the variables m and n to denote the number of resources and tasks, respectively,

in a given instance of the periodic scheduling problem. Specific tasks are denoted by
identifiers x and y, which range over I'; the set of all tasks.

o Each task = has an integer period x.p, z.p > 1, an integer execution requirement z.e,
z.e € (0,2.p), and a rational weight z.w = x.e/x.p. Note that 0 < z.w < 1. Without
loss of generality we assume that > . z.w = m.

o Let o; denote the ith symbol of string o, 1 € N.
Now some definitions:

o A schedule S for an instance of the periodic scheduling problem is a function from I'x N
to {0,1}. We require that 3= cjo.,) S(2,1) < m,t € N. (In view of our assumption that
> wer T.w = m, we in fact require that 3= ,c0) S(x,t) = m.) Informally, S(z,?) =1 if
and only if task x is scheduled in slot t.

A schedule 5 is defined to be periodic if
Vi,e:i € Nyw €I Fieppn S, t) = 1- 2ee.

The lag of a task x at time ¢ with respect to schedule S, denoted lag(S, x,t), is defined
as:

lag (S, z,1) = z.w -t — 3,052, 9).
A schedule S is defined to be P-fair if
Vae,t:ax et € N:—1 < lag(S5,x,t) < 1.

A schedule S is defined to be P-fair at time t if there exists a P-fair schedule S’ such
that

Vo :z €T :lag(S, z,t) = lag(S', z,).

Every instance of the periodic scheduling problem has a P-fair schedule [1, Theorem 1].

5

3 A P-Fair Scheduling Algorithm

We now review Algorithm PF, the algorithm defined in [1] that produces a P-fair schedule
for any feasible instance of the periodic scheduling problem. We start with some definitions:

e The characteristic string of task x, denoted «(x), is an infinite string over {—,0,+}
with
al(x) =sign(zaw-(t+1) = [zw-t] —1), teN.

o The characteristic substring of task = at time ¢ is the finite string

a(2,1) = appr(@)ags(e) - ap(),
where t' = (minz : ¢ >t : oy(2) = 0).
o With respect to P-fair schedule S at time ¢, we say that: task x is ahead if and only if

lag (.S, x,1) < 0; task x is behind if and only if lag(5, x,t) > 0; task x is punctual if and
only if it is neither ahead nor behind.

o With respect to P-fair schedule S at time ¢, we say that: task x is tnegru if and only
if x is ahead and a4(x) # +; task @ is urgent if and only if x is behind and ay(x) # —;
task z is contending if and only if it is neither tnegru nor urgent.

Algorithm PF determines which m-subset of the n tasks to schedule in each slot ¢. As
argued in [1], every urgent (resp., tnegru) task must (resp., must not) be scheduled in the
current slot in order to preserve P-fairness.

We can define a total order > on the set of contending tasks as follows: = = y if and
only if a(x,t) > a(y,t), where the comparison between characteristic substrings a(x,t) and
a(y, 1) is resolved lexicographically with + > 0 > —. (Ties may be broken arbitrarily.)

The behavior of Algorithm PF at each slot ¢ may be summarized as follows:

1. Schedule all urgent tasks.

2. Allocate the remaining resources to the highest-priority contending tasks according to
the total order >.

Let Spr denote the schedule produced by Algorithm PF on a given instance of the periodic
scheduling problem. Schedule Spp is known to be P-fair [1, Theorem 2]. An implemen-
tation of the characteristic substring comparison function required by Algorithm PF was
presented in [1] and proven to execute in time linear in the size of the binary representation
of min{x.p,y.p}. This comparison function can be used as the basis for an implementation
of Algorithm PF that has a running time as given by Equation (1).

4 Algorithm PD

We now present an algorithm for the periodic scheduling problem that is similar to Algo-
rithm PF, but has a significantly lower running time. Given two tasks = and y at time ¢,
determining which task has higher priority according to Algorithm PF (i.e., whether & = y
or y =) takes time linear in the size of the binary representation of min{x.p,y.p}. The new

algorithm, Algorithm PD, will have as its basis a comparison subroutine that determines the
relative priorities of two tasks in constant time.

First, some definitions. The set of tasks is partitioned into light tasks and heavy tasks.
A task x is heavy if x.w > 1/2, and is light if z.w < 1/2. Each task @ with z.w = 1/2 may
be considered either heavy or light, but not both.

For each task x, we define a string () that is closely related to a(x). For light tasks z,
B(x) = a(x). For heavy tasks z, B(x) = a(z’) where 2’ is a task with ’.w =1 — 2.w. The
intuition behind the string (x) for a heavy task x is as follows: We can obtain a schedule
for & from a schedule for &’ by allocating a resource to x in exactly those slots where z’ is
not allocated.

A task z is defined to have a pseudo-deadline at slot t if 5;(x) = 0 or fy(x) = +. For
a light task x, each pseudo-deadline corresponds to a quasi-deadline, i.e., the latest slot by
which « must have been allocated the resource a certain number of times in order to maintain
P-fairness. For a heavy task x, each pseudo-deadline corresponds to a quasi-deadline of a
task z/ with 2’.w = 1 — z.w, i.e., the latest slot by which # must have been denied the
resource a certain number of times. Let d(x,¢) denote the least ¢ > ¢ such that task « has a
pseudo-deadline at slot ¢.

Each task = has an integer field x.k determined from z.e and z.p as follows. If = is a
light task, then set x.k = |x.p/x.e]. If x is a heavy task, then set .k = |z.p/(x.p — x.€)].
It is straightforward to prove that consecutive pseudo-deadlines of any task x are either .k
or x.k + 1 slots apart.

We define a total order J on tuples in {IN, {0, +}, N} as follows:

(dv,s1,k1) D (da, 82, ke) < (d1 < d3)
V (di = dz) A(s1 =+) A
\/ ((dy = da) N (31 = s2

At time ¢, the total order J induces an ordering > on the tasks as follows:

~—
>

~ /C;\
KNS
A

g =

~—

x> y < (5(x7t)7ﬁ5(x,t)(x)7xk) — (5(y7t)7ﬁ5(y,t)(y)7yk)

The relation > is essentially a total order over the set of tasks except that @ > y and y > «
may hold for distinct tasks & and y. Such ties may be broken arbitrarily. Hence, in what
follows, we treat the relation B> as a total order. For every slot ¢, Algorithm PD allocates
the m resources to the m highest-priority tasks, where priorities are determined as follows
(tasks in lower-numbered categories have higher priority):

1. Urgent tasks (all are scheduled).

2. Heavy contending tasks a with ayqq(2) = 4. Within this category, task x is given
priority over task y iff y > .

3. Light contending tasks @ with ay4q(2) = 4. Within this category, task x is given
priority over task y iff x B> y.

4. Heavy contending tasks @ with ayy1(2x) = 0.

5. Light contending tasks « with ayqq(2) = 0.

6. Remaining heavy contending tasks. Within this category, task z is given priority over
task y iff y B> .

7. Remaining light contending tasks. Within this category, task x is given priority over
task y iff > y.

Fix an instance of the periodic scheduling problem, and let Spp denote the set of all
possible schedules that can be produced by Algorithm PD on this instance. In the following,
we refer to an arbitrary schedule drawn from this set as Spp.

Theorem 1 Schedule Spp is P-fair.

In the remainder of this section, we sketch the proof of Theorem 1. A complete proof
appears in Appendix A.

Note that Algorithm PD determines the priority between contending tasks on the basis
of the next pseudo-deadlines. In contrast, Algorithm PF takes into account a potentially
exponential number of pseudo-deadlines in order to resolve priority.

To prove the correctness of Algorithm PD, we relate its behavior to that of Algorithm PF.
We formalize the notion of “good states” in an execution of Algorithm PD in the definition
of Gi(t) below. Informally, a state is good at time ¢ if it is similar to the state reached at time
t in an execution of Algorithm PF. It is not the case that every execution of Algorithm PD is
always in a good state. However, Algorithm PD closely tracks the behavior of Algorithm PF,
in the sense that an execution of Algorithm PD is never in a bad state at two consecutive
times ¢t and ¢ + 1. To prove this, we first show that an execution of Algorithm PD in a
good state at time ¢ has the same number of light urgent tasks and heavy tnegru tasks as
an execution of Algorithm PF would have on the same input at time ¢. Furthermore, even
if this execution of Algorithm PD enters a bad state at time ¢ + 1, it has the same number
of light urgent tasks and heavy tnegru tasks as an execution of Algorithm PF would have
at time ¢t + 1. Since a light task that will miss a pseudo-deadline becomes urgent prior to
doing so, (and a heavy task becomes tnegru prior to being overallocated), it follows from the
correctness of Algorithm PF., and the observation that every execution of Algorithm PD is
initially (i.e., at time ¢ = 0) in a good state, that no execution of Algorithm PD ever misses
a pseudo-deadline.

We now show that Algorithm PF is a “specialization” of Algorithm PD, in the sense
that the scheduling decisions made by PF from a given state are legal decisions by PD from
the same state. In other words, scheduling decisions made by PF are among the possible
outcomes that may result from the arbitrary tie-breaking performed within PD.

Lemma 4.1 The schedule generated by Algorithm PF belongs to Spp.

Now, some definitions and conventions:

o Let urgent, (S,t) denote the set of all urgent heavy tasks at time ¢ under schedule
S contending,(S,t), tnegru,(S,t), urgent,(S,t), contending,(S,t), and tnegru,(S,t)
are defined analogously. Furthermore, let urgent(S,t) = urgent,(S,t) U urgent,(S,t)
(contending(S,t) and tnegru(S,t) are defined analogously).

o Let x be a light task with its ¢th pseudo-deadline at slot d. If schedule S allocates a
resource to x for the ith time at slot ¢, we say that S satisfies x for d at slot t.

o Let = be a heavy task with its ith pseudo-deadline at slot d. If schedule S does not
allocate a resource to x for the 1th time at slot ¢, we say that S satisfies x for d at slot
t.

For the purposes of understanding Algorithm PD, it may be convenient to view all the pseudo-
deadlines of all the light tasks as being arranged in a two-dimensional infinite tableau, with
the columns indexed by (N, {+,0}) pairs, (with the ordering --- < (i — 1,4) < (¢ — 1,0) <
(1i,4) < (4,0) < (1 + 1,4) < (1 +1,0) < --+), and the rows by all integers greater than
or equal to 2. (The pseudo-deadlines of the heavy tasks may be viewed analogously, on a
separate tableau.) If task a has a pseudo-deadline + (resp., 0) at time ¢, then this pseudo-
deadline “appears” in the row indexed x.k, and the column indexed by the ordered pair (¢, +)
(resp., (¢,0)). At time ¢, the priority scheme of Algorithm PD for the light (resp., heavy)
tasks then corresponds to allocating (resp., not allocating) the resources in order to satisfy
the pseudo-deadlines of urgent (resp., tnegru) and contending tasks in order of increasing
column and, within each column, in order of increasing row.

We are now ready to formalize the notion of “good states”. For the following definitions
assume that s € {+,0}.

o L¥(d,k) = {z T |xislight Ax.k=kABy(x)=s}. Also, £2(d, k) = |Lx(d, k).

o L,(S dk,t) = {x € L:(d,k) | S satisfies x for d strictly prior to slot t}. Also,
0(S, d, k)= Ly(S, d, k. 1))

o Hi(d, k), Hs(S,d, k1), hi(d, k) and hs(S,d, k,t) are defined analogously.

o We say that a given integer-valued expression is good if its value is the same for all

Spp € Spp; otherwise, it is bad.

e Define the predicate G () as (Vd, k,s € {0,+} 2 hs(Spp,d, k,t) is good). Define G(t)
similarly, and let G(1) = G,(t) A Ge(t). We say that Algorithm PD is in a good state
at time t if G(t) holds.

e Define the predicate UCT(t) as (|urgent,(Spp,t)|, |contending,(Spp,t)|, and
\tnegru, (Spp,1)| are good). Define UCT,(t) similarly, and let UCT(t) = UCT (1) A
UCT(1).

(Observe that GG(0) and UCT(0) hold trivially, i.e., the initial state is good.)

A “good” state is therefore one in which all PD-generated schedules (i.e., all Spp € Spp,
and specifically, the schedule generated by Algorithm PF) have the same number of not-yet-
satisfied pseudo-deadlines in each cell of the two tableaux referred to above. (Note that we
do not require that these pseudo-deadlines belong to the same tasks in all schedules, but
only that their number be the same.) We prove that all schedules Spp € Spp allocate the
same number of resources to light tasks and to heavy tasks in good states. We then show
that all schedules Spp are in a good state at time (¢ + 1) as well, unless one of a few very
special scenarios is encountered. One such scenario is outlined in the next paragraph; the
remaining scenarios which lead to a bad state are virtually identical in structure.

Assume Algorithm PD is in a “good” state at time ¢. Consider two light (resp., heavy)
tasks x and y such that: (i) 2.k = y.k =k, (ii) Bi(x) = Bi(y) = +, (iii) 6(x,t) =t + k, and
(iv) 0(y,t) =t + k+ 1. Let S; and Sy be two schedules satisfying the following properties
at time ¢: (i) schedule Sy has already satisfied the pseudo-deadline §;(x), but not yet the
pseudo-deadline 3;(y), (ii) schedule Sy has already satisfied the pseudo-deadline 3:(y) of y,
but not yet the pseudo-deadline 3;(x). Thus, in schedule Sy, y is urgent (resp., tnegru) and
x is contending, whereas in schedule Sy, @ is urgent (resp., tnegru) and y is contending. Note
that the given scenario does not violate the assumption that G(¢) holds. At slot ¢, however,
it is now possible that schedules 57 and 5, both satisfy task x and task y, but for different
pseudo-deadlines: Schedule S; may satisfy task y for pseudo-deadline 3;(y) and task = for
pseudo-deadline fi1x(x), while Sy may satisfy task « for pseudo-deadline §;(x) and task y
for pseudo-deadline Biyrt1(y). In Ss, the pseudo-deadline F;1x(x) of & has higher priority
than the pseudo-deadline (i yx41(y) of y, but no task may be allocated multiple copies of the
resource in the same slot. Therefore we have reached a “bad” state; G(t 4 1) does not hold.

In the proof, most of the technical lemmas are devoted to a study of the special case
where G(1) holds, but Gy(t + 1) (resp., Gi(t + 1)) does not. (We prove that at least one of
Ge(t+1) or G(t+ 1) holds whenever Gi(¢) holds.) If this is the case, we show that there are
no light (resp., heavy) urgent (resp., tnegru) tasks at time ¢+ 1. This in turn implies that no
scenario similar to that described in the preceding paragraph can occur at time ¢ + 1; note
that the above scenario requires one of tasks @ and y to be urgent (resp., tnegru) in each of
Sy and S3. We then show that, despite the fact that we have reached a bad state at time
t+ 1, UCT(t+ 1) holds and we return to a good state at time ¢ + 2.

Theorem 2 Algorithm PD can be implemented in O(min(n, mlogn)) time.

Proof: In conjunction with any linear-comparison selection algorithm (e.g., [3]), the con-
stant time priority comparison algorithm described in this section provides an O(n) time
implementation of Algorithm PD. A heap-based implementation that runs in O(mlogn)
time is described in Appendix B. [

5 Conclusions

The techniques presented in this paper build on the results established in [1]. As argued in
the introduction, the tie-breaking procedure of [1] may be viewed as a natural generalization
of an “earliest deadline” strategy. As the earliest deadline paradigm has proven to be useful
for solving a large number of scheduling problems, especially problems involving a single
resource (such as uniprocessor scheduling problems), it seems likely that the P-fairness-
based approach of [1] will be useful for solving an even larger class of scheduling problems,
especially problems involving multiple resources.

The importance of the work in the present paper is that it demonstrates an approach for
obtaining highly efficient scheduling algorithms based on P-fairness. More specifically, our
work suggests the following general plan for attacking a given scheduling problem:

1. Prove that a P-fair solution exists for the problem in question. In the case of the peri-
odic scheduling problem, this step was accomplished using a network flow argument [1,

10

Theorem 1].

2. Find the “canonical” P-fair algorithm for solving the problem. In the case of the peri-

odic scheduling problem, this is Algorithm PF of [1]. Informally, we view Algorithm PF
as the canonical P-fair scheduling algorithm for the periodic scheduling problem be-
cause every scheduling decision that it makes is “locally optimal” with respect to
preserving P-fairness. This local optimality is achieved by looking arbitrarily far into
the future when making current scheduling decisions.

3. Define a “limited lookahead” version of the canonical P-fair algorithm, and prove that

the behavior of this algorithm closely tracks that of the canonical P-fair algorithm. In
the case of the periodic scheduling problem, Algorithm PD plays the role of the limited
lookahead algorithm.

4. Prove that the limited lookahead algorithm can be implemented efficiently. Because

Algorithm PD uses only constant lookahead, this analysis is completely straightforward
in the case of the periodic scheduling problem.

Note that the “canonical” P-fair algorithm of Step 2 above may be extremely slow. For
example, in establishing the correctness of Algorithm PD, we have relied solely on the cor-
rectness of Algorithm PF; we have not relied on the existence of an efficient (e.g., polynomial
time) implementation of Algorithm PF.

References

1]

[6]

7]

S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress: A
notion of fairness in resource allocation. In Proceedings of the 25th Annual ACM Sym-
posium on Theory of Computing, pages 345-354, May 1993. To appear in Algorithmica.

S. K. Baruah, R. R. Howell, and L. E. Rosier. Algorithms and complexity concerning the
preemptive scheduling of periodic, real-time tasks on one processor. Real-Time Systems,

2:301-324, 1990.

M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for
selection. JCSS, 7:448-461, 1973.

W. A. Horn. Some simple scheduling algorithms. Naval Research Logistics Quarterly,
21:177-185, 1974.

C. L. Liu. Scheduling algorithms for multiprocessors in a hard-real-time environment.
JPL Space Programs Summary 37-60, vol. II, Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, CA, pages 28-37, November 1969.

C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. JACM, 20:46-61, 1973.

J. Vuillemin. A data structure for manipulating priority queues. Communications of the

ACM, 21:309-315, 1978.

11

A Proof of Theorem 1

First, some definitions and conventions:

o Let urgent, (S,t) denote the set of all urgent heavy tasks at time ¢ under schedule
S contending,(S,t), tnegru,(S,t), urgent,(S,t), contending,(5,t), and tnegru,(S,t)
are defined analogously. Furthermore, let urgent(S,t) = urgent, (S,t) U urgent (S, t);
contending(S,1) and tnegru(S,t) are defined analogously.

o Let x be a light task with its ¢th pseudo-deadline at slot d. If schedule S allocates a
resource to x for the ith time at slot ¢, we say that S satisfies x for d at slot t.

o Let = be a heavy task with its ith pseudo-deadline at slot d. If schedule S does not
allocate a resource to x for the 1th time at slot ¢, we say that S satisfies x for d at slot
t.

o The set of all possible schedules that could be produced by the pseudo-deadline algo-
rithm is defined to be Spp. We will refer to an arbitrary schedule drawn from this set
as SPD-

e We introduce the following functions, where: (i) d, k, and ¢ are natural numbers with

k>2, (i) S € Spp, and (iii) s € {+,0}.
Hi(dk) = {x el |xisheavy Ax.k=kA By(x)=s},

Lid,k) = {xel'|axislight Ax.k=kABi(x) = s},
Hy(S,d,k, 1) = {x e H(d k)| S satisfies x for d strictly prior to slot ¢},
Lo(S,d, k,t) = {x € Li(d, k)| S satisfies « for d strictly prior to slot ¢},
HI(S,d, k,t) = {z € H(d k)| S satisfies z for d at slot t},
L(S,d k,t) = {x € Li(d k)| S satisfies for d at slot ¢},
hEdR) (R
k) LR
he(S,d, k,t) = |Hy(S,d, k1),
0(S,d k,t) = |Ly(S,d, k1),
RS d k,t) = |H.(S,d, k,t)|, and
(S, d k,t) = LS, d k1)

o We say that a given integer-valued expression is good if its value is the same for all
Spp € Spp; otherwise, it is bad.

e Define the predicate Gy (1) = (V(d, s, k) =2 hy(Spp,d, k,t) is good). Define G(t) simi-
larly, and let G(t) = G (1) A Go(t).
e Define the predicate UCT(t) as (|urgent,(Spp,t)|, |contending,(Spp,t)|, and

\tnegru, (Spp,1)| are good). Define UCT,(t) similarly, and let UCT(t) = UCT (1) A
UCT(1).

To prove that Spp is P-fair iff Spp is, it suffices to prove that UCT(¢) holds for all t € N. To
prove that UCT(t) holds for all ¢, we show (Lemma A.3) that Spr € Spp. From Lemma A.6,

12

we can conclude that UCT(¢) holds for all ¢ for which G/(¢) holds (i.e., if slot ¢ is “good”). If
G/(t) holds but G(t+4 1) does not (i.e., if slot ¢ + 1 is “bad”), we show that either Gy(t+1) or
G'h(t+1) continues to hold (Lemma A.10). We show that the slot following the bad slot ¢ + 1
is again good (Lemmas A.14 and A.15). Thus, if slot ¢ is good and slot ¢ 4+ 1 is bad, then
UCT(t+1) holds (Lemma A.16). Since G(0) holds trivially, we can conclude that UCT(t)
holds for all ¢ € N.

Lemma A.1 Let x be a heavy task. Then for all t > 0, the following itmplications hold:

a(x) =0 = [ia)=0 A oy_q1(a) =+,
afr) =4+ = filz)=—,
afx)=— N ayq(2) #0 = [i(x) =+, and
ax)=— N ap_q(2) =0 = Bi(a) = —

Proof: Straightforward. []

Lemma A.2 For any task x, the following implications hold:

)=0 A 1/zw > 2.k
)=0 A 1/zw=ux.k
Bi(x) =0 A 0(z,t)=t+a.k
Bz =+ A 8z, t)=t—a.k
Bi(x) =0

X

X

Bi(
Bi(

lHHHHl

Proof: Straightforward. []

The next lemma asserts that Algorithm PF is a “specialization” of Algorithm PD, in the
sense that the scheduling decisions made by PF from a given state are legal decisions by
PD from the same state. That is, scheduling decisions made by PF are among the possible
outcomes that may result from the arbitrary tie-breaking done by PD. Algorithms PF and
PD start out from the same initial state at time zero. During its execution, PD breaks ties
arbitrarily; different tie-breaking choices will give rise to different schedules. Using induction,
Lemma A.3 implies that the schedule generated by PF belongs to Spp.

Lemma A.3 If Algorithm PF schedules a task x in preference to another task y at a certain
state, then Algorithm PD may schedule x in preference to y from the same state.

Proof: We will prove this lemma by induction on ¢. Let ¢ be the slot being scheduled by
PF and PD. Since both PF and PD schedule all urgent tasks, and neither schedules tnegru
tasks, it remains to consider the relative priorities accorded to contending tasks = and y in

PF and PD. We consider four cases:
e =, y both light. Note that oy(z) = (i(2) for all light tasks z. If 6(x,t) # 6(y,1),

Algorithms PD and PF make the same scheduling decision on = and y. Now assume that

a = 6(x,t) = d(y,t), and consider the following four subcases: (i) f.(x) = Ba.(y) = 0,

13

(ii) Ba(x) = 4+ and B.(y) =0, (iii) Bu(x) = 0 and B,(y) = +, and (iv) Bu(z) = B.(y) =
+. In subcase (i), Algorithm PD assigns the same priority to « and y; thus, PD may
schedule x in preference to y. In subcase (ii), PD schedules x in preference to y. In
subcase (iii), PF schedules y in preference to x, a contradiction. Only subcase (iv)
remains.

Assume that §,(x) = B,(y) = +, i.e., subcase (iv) holds. If z.k = y.k, PD assigns the
same priority to x and y; thus, as in case (i) above, PD may schedule x in preference
to y. If .k < y.k, PD schedules x in preference to y. If x.k > y.k, observe that
alz,t) is of the form —*=t 4 (=#*14 | —=kpy =k and that a(y,t) is of the form
—at g (—vhHLp | vk vk (. Therefore, a(y,t) is lexicographically greater than
a(x,t), and PF schedules y in preference to x, a contradiction.

e v, y both heavy. This case is similar to the previous one.

e = heavy, y light. We consider three subcases: (i) aupi(2) = +, (ii) awppa(z) = 0,
and (iii) ayq1(x) = — In subcase (i), PD schedules @ in preference to y. Now consider
subcase (ii). If ayy1(y) = +, PF schedules y in preference to x, a contradiction. If
a1(y) = 0, PD assigns the same priority to « and y; thus, PD may schedule z in
preference to y. If ay11(y) = —, PD schedules x in preference to y. Now consider
subcase (iii). If au41(y) € {4, 0}, PF schedules y in preference to x, a contradiction. If
ary1(y) = —, then PD schedules x in preference to y.

e 1 light, y heavy. This case is similar to the previous one.

O

Lemma A.4 Forallt e N
Gg(t) — UCTg(t)

Proof: Note that

lurgent, (S,)| = > _(G5(t. k) + (8, k) — Co(S, 8, ko t) — (4(S, 1, k1)), (2)

k>2

i.e., the number of light urgent tasks is exactly the number of requests by light tasks with
pseudo-deadline at ¢ that have not been satisfied before t.

Similarly,

E>2 \t'>¢

|[tnegru,(S,4)] = > (Z(ﬁo(s, U ko t) + 0,(S, Uk, 1)) +£0(S,t,k,t)) , (3)

i.e., the number of light tnegru tasks is exactly the number of requests by light tasks x
with pseudo-deadline at ¢ > ¢, or with f;(x) = 0, that have been satisfied before ¢t. The
remaining light tasks are all contending. Thus, whenever G/(t) holds, the terms on the
right-hand sides of Equations (2) and (3) are good. Their left-hand sides are therefore good
as well, establishing the lemma. []

14

Lemma A.5 Forallt e N
Gh(t) — UCTh(t)

Proof: Symmetric to the proof of Lemma A.4. []

Lemma A.6 Forallt e N
G(t) = UCT(1).

Proof: Follows from Lemmas A.4 and A.5. []

Let I'(t) (resp., h'(t)) denote the number of light (resp., heavy) tasks satisfied at slot ¢ in
schedule Spp. Formally, we have

l/(t) d:ef Z(ﬁg(SPD,d,k,t)—I-gl_l_(SpD,d,k,t)), and

d.k

h/(t) = Z(hg(SPDvdvkvt)—I_hl-l—(SPDvdvkvt))‘

d.k

Lemmas A.7 to A.14 below will be proved collectively by induction on ¢. That is, in
proving that one of Lemmas A.7 to A.14 holds for a particular ¢ > 0, we may assume that
all of the lemmas hold for all smaller values of t. The base case, ¢t = 0, holds trivially.

Lemma A.7 Forallt e N
G(t) = U'(t),h(t) good.

Proof:

Since G/(t) holds, Lemmas A.4 and A.5 state that the number of heavy urgent and tnegru
tasks and the number of light urgent and tnegru tasks is the same in all schedules generated
by PD. By the definition of G/(t), the number of contending heavy tasks z with ayy1(2) =0
is good. We argue below that the number of heavy contending tasks x with aypq(2) = —
is the same in all schedules generated by PD. These two facts and Lemma A.6 imply the
correctness of the lemma.

Consider a heavy task @ with ay11(2) = —. Since z is heavy, oy(x) # —. If oy(x) = 0,
then x is either urgent or tnegru. If oy(x) = +, then fip1(x) = + by Lemma A.1l and « is
either tnegru or contending. But since G(¢) holds, hy(Spp,t + 1,k,t) is good. Therefore all
schedules Spp € Spp have the same number of contending heavy tasks @ with auyq(2) = —.

O

Lemma A.8 For allt € N, if G(t) AN =~Gy(t + 1) then the following conditions hold:
(a) Iko such that £\ (Spp,t ko t) >0,
(b) I(do, s0) : do =t + ko : (£, (Spp, do, ko, 1) is bad), and
(¢) Y(d,s,k):(d, s, k) D (do, s0, ko) : ((o(Spp,d, k,t) is good).

15

Proof: Assume G/(t) A —=G(t+1) holds. Since G/(t) holds, but not G,(t + 1), there exists a
triple (d, s, k) such that £.(Spp,d, k,t) is bad. Let (dy, so, ko) be the minimum (with respect
to J) among such triples (d,s, k). Let x € L} (do, ko) \ Ls,(Spp,do, ko, 1), and consider the
following five cases: (i) do =t, (ii) t < do <t + ko, (iii) do >t + ko + 1, (iv) do =t + ko + 1,
and (v) dy =1t + ko.

In case (i), @ € wurgent,(Spp,t) and therefore each Spp € Spp satisfies x for ¢ at
t. In case (ii), @ & wurgent,(Spp,t). Furthermore, ¢/ (Spp,d, k,t) is good for all triples
(d, s, k) such that (d,s, k) 2 (do, S0, ko), and the total number of light tasks satisfied at ¢ is
good by Lemma A.7. It follows that (; (Spp,do,ko,t) is good, contradicting the choice of
(do, s0, ko). In case (iii), € tnegru,(Spp,t), a contradiction. In case (iv), [(LL(Z, ko) \
Ly(Spp,t,ko,t)) N (L3 (do, ko) U Lg(do, ko) U L7 (do + 1,ko))| is good. But since I'(t) is
good by Lemma A.7, {{ (Spp,do,ko,) is good, a contradiction. In case (v), |(L3(?, ko) \
Ly(Spp,t ko t)) N (L3 (do, ko) U Li(do, ko))| is bad, implying that ¢, (Spp,t, ko, t) > 0. []

Lemma A.9 For allt € N, if G(t) AN =Gt + 1) then the following conditions hold:
(a) Iko such that h! (Spp,t, ke, 1) >0,
(b) I(do, s0) : do =t + ko : (R, (Spp.do, ko, 1) is bad), and
(c¢) Y(d,s,k):(d,s, k)3 (do, s0,ko) : (h(Spp,d, k1) is good).

Proof: Similar to the proof of Lemma A.8]

Lemma A.10 Forallt € N

G)AN-Ge(t+1) = Gt +1), and
G)AN-Grt+1) = Gt +1).

Proof: This is a straightforward consequence of Lemmas A.8 and A.9. []

Lemma A.11 For all t € N, the following implications hold:
(a) G(t) N =G(t +1) = |tnegru,(Spp,t)| =0,
(b) G(t) N =Gy(t+1) = |urgent,(Spp,t)| =0,
(¢c) G{t)N=Ge(t+1) = |urgent,(Spp,t+1)| =0, and
(d) G(t)N-Gr(t+1) = [tnegru,(Spp,t+1)| = 0.

Proof: To show (a), let us consider a heavy task x € tnegru,(Spp,t). Since x is tnegru,
a(x) =0or ay(x) = —. If ay(x) =0, then Bi(x) = 0 and x is satisfied for ¢ at ¢. But then
x has been scheduled at ¢t — 1 for ¢, since ay_1(x) = + (Lemma A.1). However, at ¢t — 1,
all light tasks y with o;—1y41(y) = + had higher priority than 2 and are satisfied at ¢ — 1.
Therefore urgent,(Spp,t) = 0, which implies G(¢t + 1) by Lemma A.8. This contradicts the
assumption that =Gy(t + 1) holds. The same argument applies if oy(2) = —. The proof for
(b) is symmetric. Claims (c) and (d) follow from Lemmas A.8 and A.9, respectively. []

16

For i > 1 and ¢t € N, define

Zi(t,i) = {(t 4+, +,0), (t+1,0,0)},

Zy(t,1) = Ui (t414,+,7), (L +14,0,5)},
Zs(t,i) = {(t+i+1,+,1—1)},

Za(t,1) E {E+i+1,+,0)},

Z(t,i) = Zi(t,) U Zy(t, 1) U Zs(t,1) U Zy(t,1),
B(t,i) = > KA(Spp,d, k,t),

(d,s,k)EZ(t0)
ZH*(t,1) = {a|v € Ugsmerwnti(d k)},

U(ti) &S O(Spp,d,k,t), and
(d,s,k)EZ(t,7)

ZL*(t,1) = {z|ze Ud,skyezinla(d, k) }

Lemma A.12 Forallt € N
(a) GIt)N -Gyt +1) = Vi
(b) G)N—Gy(t+1) = Vi:

L:(I'(t,7) is good), and

12>
i > 1:(Rh'(t,1) is good).

Proof: We prove (a); the proof for (b) is symmetric. We use induction on ¢. The base
case, 1 = 1, holds by Lemma A.7. For the induction step, it is sufficient to prove that
|ZL*(t,7) N urgent ,(Spp,t)| and |ZL7(t,1) N tnegru,(Spp,t)| are good. Let x € ZL*(¢,1), and
consider the following two cases: (i) @ € wrgent,(Spp,t), and (ii) @ € tnegru,(Spp,t). In
case (i), € (Li(t,7) \ L4(Spp,t,1,1)) U (L§(t,9) \ Lo(Spp,t,i,t)). But since G(t) holds,
Co(t o)+ 05t 0) =L (Spp,t,e,t) =L (Spp,1,i,t) is good. A similar argument can be applied
to case (ii). [J

The following lemma shows that if some light task = with a not-yet-satisfied pseudo-
deadline at time ¢ + z.k is “skipped over” by PD at time ¢ and another light task with a
strictly lower priority is satisfied instead, then x is satisfied for ¢ + x.k at slot ¢ + 1.

Lemma A.13 For any PD-generated schedule S, any s € {0,+}, and any k > 2, if a task
x € L3 (L, k)NLL(t+k, k) is not satisfied fort+k att and 0,(S,d', k', t) # 0 for some (d', ', k')
such that (t + k,s,k) 3 (d',s' k') where (t + k,s, k) # (d',s',K'), then (;(S,;t + k,k,t 4+ 2) =
Li(t+k,k).

Proof: Assume for the sake of contradiction that the claim is false, i.e., that the following

conditions hold: (i) there is a task x € L3 (t,k) N L;(t + k, k) for some s € {0, 4} such that
v F (L (S U+ ko k) UL (S 0+ ko k4 1)),
(ii) at slot ¢ another task z € L5 (t + k', k') where (t + k,s,k) I (d',s', k') and (t + k, s, k) #

(d',s', k") is satisfied for some s" € {0,4+}. It follows that x is urgent at time ¢ and hence
xe L (St k1)

17

Task x € L' (S,t,k,t), but @ & L.(S,t+ k,k,t + 1); therefore, there is a task y such
that y € L%.(9, d” k"t 4 1) for some s” € {0, —I—} but y & L., (S,d", k" t) for any s and
d" such that s € {0 +} and d” € N. Since S schedules y in preference to = at ¢ + 1,
(d",s", k") 3 (t + k, s, k).

At slot t, since y is not satisfied while the task z with lower priority than y is satisfied,
task y is tnegru. Therefore either 3;(y) = — or Bi(y) = 0.

If 5:(y) = — and y is scheduled at slot ¢t + 1 for d”, then y cannot be tnegru at ¢ + 1
and therefore B:41(y) = +. Successive pseudo-deadlines of y are either &” or k" + 1 slots
apart, where £ < k since d” <t + k. But then 6"(y,t+1) > (¢t +1)— (K" +1) =t — k"
and ¢"(x,t) <t — k. Let ty be the slot such that y € L{(S,t 4+ 1,k",ty). Furthermore,
(t,s,k) J(t+1,8" K"). Hence, either: (i) v € LL(S,t, k,to), or (ii) @ € urgent,(5,tp). Case
(i) is a contradiction to x € urgent,(S5,t). In case (ii), t¢ < t — 2 since k > 2. But then
(St k,to+2) = Li(t, k) by the induction hypothesis, a contradiction to « € urgent, (S, 1).

If Bi(y) = 0, then by Lemma A.1, f:41(y) = —. Since S schedules y in preference to
at slot t + 1, (d", 8", k") O (t + k,s, k). Hence K < k. If k" < k then 6"(y,t) > §"(x,t) by
Lemma A.2 and the contradiction arises by the same argument as in the preceding paragraph.
If k¥ = k then by Lemma A.2, 6"(y,t) = t —k and since §;(x) = +, " (x,t) > t—k—1. Let ¢y
be the slot such that @ € L{(S,t,k,to). If to >t —k, then at slot ¢y schedule S satisfies y for ¢
in preference to x for t. This contradicts the fact that G;(y) = 0 and fBy(z) = +. lfto =t —k
then by Lemma A.2, 6"(x,t) = 4+ and to < ¢ — 2. But then (,(S,t,k,to +2) = Li(t, k) by
the induction hypothesis, a contradiction to @ € urgent,(5,1). []

Lemma A.14 For allt € N
G NGt +1) = G(t+2).

Proof: We define the following five predicates:

Py(ti) = (ZZV(2 szt Ls(Spp,d ko t) + 0 (Spp, d, k,t + 1)) is good),
Py(t,i) = (¥ sefo,+1s(Spp,t+1,1,t + 2) is good),

Ps(t,i) = (Y(dsk)ezo(t,iyls(Spp,d, kT + 2) is good),

Py(t,1) et (v sefo,+10s (Spp,t+i+ 1,0 — 1,1+ 2) is good),

Pi(t,i) = (¥ sefo,41s(Spp,t+1+ 1,2, + 2) is good).

We break the lemma down to five claims. For each 1 < 7 <5, define Claim j as follows:
\V/Z) Z 1: (G(t) A _'Gg(t + 1) — P](t,l))
The proof proceeds by induction on z, 2 > 1; the base case, ¢« = 1, holds trivially for all five

claims.

Claim 1: induction step

By Lemma A.12, ['(t,7) is good. Hence, using Claims 2 to 5 of the induction hypothesis,
we find that (s(Spp,d, k,t + 2) is good for all (d,s, k) € Z(t,7) with j < i. Therefore all

schedules have the same number of resources available for Z(¢,:) at time ¢t + 1.

18

Claim 2: induction step

If ls(Spp,t+1,1,t+1)is good then {s(Spp,t+1,i,t+2) is good for all s € {+,0}. Now
assume that (;(Spp,t +1,1,t+ 1) is bad for some s € {+,0}, and consider the following two
cases: (i) s =+, and (ii) s = 0.

In case (i), let © € L3 (t+4,7). Ifx € L3 (t+2,2)N L (t —1,t) for some s" € {0,+}, then
x € contending,(Spp,t) and x can be satisfied for t +4 at ¢. If x € L% (t42,¢) N L7 (,7), then
either « € urgent,(Spp,t) or x € contending,(Spp,t) by Lemma A.2. But for two schedules
Sy and Sy, it could be that [L7 (1 41,¢) Nurgent,(Sy,)| # | L3 (1 +1,4) Nurgent, (S, 1)|. Since
I'(t,7) is good by Lemma A.7, Sy satisfies some task with strictly lower priority than = at
slot £. Lemma A.13 now implies that (4 (Spp,t +¢,1,t + 2) is good.

For case (ii), observe that the same arguments applied in case (i) to tasks in L% (1 +1,7)
can also be applied to tasks @ € L§(t 4 i,¢), unless @ € L§(¢,7). Thus, assume that = €
Ly(t,i)NLy(t+14,1). Then €4(Spp,t,i,t) = (5(t,1). Furthermore, it follows from Lemma A.11
that I'(t) < I'(t 4+ 1). Hence (y(Spp,t + 1,1,t 4+ 2) = (5(t + 1,1).

Claim 3: induction step

For (d,s, k) € Zy(t,i), no task @ € L*(d, k) can be urgent at time t. Hence Claim 3

follows from Claim 2.

Claims 4 and 5: induction step
The proofs of Claims 4 and 5 are similar to the proof of Claim 2.]

Lemma A.15 For allt € N
G)AN-Gr(t+1) = G(t+2).
Proof: Symmetric to the proof of Lemma A.14. []

Lemma A.16 Forallt € N
G)AN-G(t+1) = UCT(t+1).

Proof: Immediate from Lemmas A.11, A.14, and A.15. []

B An O(mlgn) Implementation

Algorithm PD may be efficiently implemented by using the binomial heap data structure of
Vuillemin [7]. The binomial heap supports the operations listed below, as well as certain
others that do not concern us here. (In the table below, H, Hy, and H; are of type binomial
heap, = is a heap element, and S denotes a set of n heap elements.)

Operation ‘ Worst-Case Complexity
H := MakeHeap() O(1)

H := BuildHeap(S5) | O(n)

Insert(H, x) O(lgn)

x := ExtractMin(H) | O(lgn)

H :=Union(Hy, Hy) | O(lgn)

19

For each task x we maintain a record with the following information: (i) x.e, x.p, and
x.k, which contain fixed integer values, (ii) the number of times task 2 has been scheduled
in its current period, and (iii) the number of slots remaining until the end of the current
period. For the sake of efficiency, values (ii) and (iii) are not updated at each time step but
are only generated as necessary. Other important quantities such as the lag of task x, the
number of slots until the next pseudo-deadline of &, or the symbol associated with the next
pseudo-deadline of x (i.e., 4+ or 0), can be easily determined from the aforementioned values
using a constant number of integer operations.

Our implementation uses a number of binomial heaps: (i) H, which stores the task
requests that are currently eligible to be scheduled (i.e., those that are not tnegru), and (ii)
various heaps Hy, for times ¢’ when some currently tnegru task will become contending or
urgent. Since there are n tasks, there will be no more than n + 1 non-empty binomial heaps
at any given time. The relative priorities of the tasks in each heap are determined using the
seven-level scheme given in Section 4.

The pseudo-code for the implementation is given in Figure 1. Each iteration of the main
loop in Lines (2) to (12) corresponds to the scheduling of one time slot. The “pre-processing”
of Line (1) takes O(n) time. (Note that we do not include this pre-processing time in the per
slot time complexity of our algorithm.) Within each iteration of the main loop, the repeat
loop of Lines (3) to (8) is executed m times. Line (4) requires O(lgn) time, and Lines (5)
to (6) require O(1) time. We argue below that Lines (7) and (9) can each be implemented
to run in O(lgn) time. Line (10) also takes O(lgn) time, and so the overall complexity of
Algorithm PD is O(mlgn).

To efficiently execute the test in Line (1) of procedure Requeue, we maintain another
search structure (e.g., any standard dictionary data structure such as a red-black tree) that
contains pointers to each of these binomial heaps (binomial heap H, is indexed by), and that
permits O(lg n)-time implementations of the operations Insert, Delete, and Find. Lines (1)
to (3) of Requeue therefore take O(lgn) time, and Line (5), which is an insertion into a
binomial heap, also takes O(lgn) time. Line (9) of PD is implemented as a Find in the
dictionary, followed by a Delete if necessary; each of these operations runs in O(lgn) time.

20

Algorithm PD

(0) begin

(1) H := BuildHeap(I');

(2) for t:=0,1,2,... do

(3) repeat

(4) x := ExtractMin(H);

(5) “Schedule task z in slot t”

(6) t' := “the earliest future time at
which task z will not be
tnegru”;

(7) Requeue(z, ')

(8) until “m tasks have been scheduled

in slot t7;

(9) if “Heap H,y; exists” then

(10) H := Union(H, Hi4y)

(11) fi

(12) od

(13) end

(0) begin

(1) if “Heap H; does not exist” then

(2) H; := MakeHeap()

(3) fi

(4) “Update fields associated with task x (e.g.,

the number of allocations in the
current period)”;

(5) Insert(H;, x)
(6) end

Figure 1: Algorithm PD.

21

