
Fast Scheduling of Periodic Taskson Multiple ResourcesSanjoy K. Baruah 1 Johannes E. Gehrke 2 C. Greg Plaxton 2AbstractGiven n periodic tasks, each characterized by an execution requirement and a pe-riod, and m identical copies of a resource, the periodic scheduling problem is concernedwith generating a schedule for the n tasks on them resources. We present an algorithmthat schedules every feasible instance of the periodic scheduling problem, and runs inO(minfm lgn; ng) time per slot scheduled.1 IntroductionGiven a set � of n tasks, where each task x is characterized by two integer parameters x:eand x:p, and m identical copies of a resource, a periodic schedule is one that allocates aresource to each task x in � for exactly x:e time units in each interval [k � x:p; (k + 1) � x:p)for all k in N, subject to the following constraints:Constraint 1: A resource can only be allocated to a task for an entire \slot" of time,where for each i in N slot i is the unit interval from time i to time i+ 1.Constraint 2: No task may be allocated more than one copy of the resource in anysingle slot.The problem of constructing periodic schedules for such task systems was discussed by Liuin 1969 [5], and is called the (multiple resource) periodic scheduling problem. It has beenshown [2, 4] that an instance of the periodic scheduling problem is feasible (i.e., has a periodicschedule) if and only if (Px2� x:e=x:p) � m.Given a feasible instance of the periodic scheduling problem, a schedule generation al-gorithm performs a (possibly empty) pre-processing phase followed by an in�nite executionphase. No output is produced during the pre-processing phase. During the execution phase,the algorithm produces an in�nite sequence of outputs hXi : i � 0i, where Xi is the subsetof up to m tasks scheduled (i.e., assigned one copy of the resource) in slot i. (Note that anyoutput-free pre�x of the computation may be designated as the pre-processing phase.) Let1 Department of Computer Science & Electrical Engineering, and Department of Mathematics & Statistics,University of Vermont, Burlington, VT 05405.2Department of Computer Science, University of Texas at Austin, Austin, TX 78712. Supported by theTexas Advanced Research Program under Grant No. 003658{461.



ti denote the elapsed running time (in the usual RAM model) between the beginning of theexecution phase and the time at which output Xi is produced, i � 0. Also, let t�1 = 0. Thenfor any schedule generation algorithm A, we de�ne the per-slot time complexity of A as themaximum over all feasible instances and over all i � 0 of ti� ti�1. We further de�ne the pre-processing time complexity of A as the maximum running time of the pre-processing phaseover all feasible instances. A schedule generation algorithm is polynomial time if and onlyif both the per-slot time complexity and the pre-processing time complexity are polynomialin the input size.Because all of the scheduling algorithms considered in this paper are schedule generationalgorithms, for the sake of brevity we hereafter use the term \scheduling algorithm" to mean\schedule generation algorithm". Furthermore, because all of the scheduling algorithmsthat we consider have O(n) pre-processing time complexity, we will focus our attention onminimizing slot time complexity. Accordingly, throughout the paper, every time bound givenfor a scheduling algorithm should be assumed to be a bound on the slot time complexityunless otherwise speci�ed.A simple yet powerful idea for solving many scheduling problems involving deadlines isto give priority to the task with the earliest associated deadline, breaking ties arbitrarily.For example, the Earliest Deadline algorithm of Liu and Layland [6] schedules any feasibleinstance of the single resource (i.e.,m = 1) periodic scheduling problem. The same algorithmcan also be used to solve a relaxed version of the (multiple resource) periodic schedulingproblem in which Constraint 2 is eliminated. However, the Earliest Deadline algorithmdoes not solve the periodic scheduling problem (i.e., it does not schedule every feasibleinstance). Informally, the di�culty is that neglecting a particular task x with a \later"deadline can eventually lead to a state in which the deadline of x cannot be met withoutviolating Constraint 2. One might expect that it would be relatively straightforward to\patch up" the Earliest Deadline algorithm to take care of such di�culties. However, thisturns out to be a non-trivial problem. In fact, prior to the recent work of Baruah et al. [1],no polynomial time algorithm of any kind was known for the periodic scheduling problem.In [1], an algorithm is presented for the periodic scheduling problem with a running timethat is linear in the size of the input in bits, that is,O  Xx2� dlg(x:p+ 1)e! : (1)(Note that the preceding sum is at least n, since there are n tasks and the period of each taskis at least 1.) This algorithm is based on a measure of fairness in resource allocation called\proportionate progress". Given an instance of the periodic scheduling problem, de�ne theweight of any task x in � as x:w def= x:e=x:p. Informally, a schedule is said to maintainproportionate progress if and only if each task is scheduled resources in proportion to itsweight. Formally, at every time t inN, each task x must have been scheduled either bx:w � tcor dx:w � te times. This requirement is called proportionate fairness or P-fairness. P-fairnessis a strictly stronger condition than periodic scheduling, in that any P-fair schedule is periodicwhile the converse does not hold. It has been shown, however, that every feasible instanceof the periodic scheduling problem has a P-fair schedule [1].2



Although Algorithm PF and the Earliest Deadline algorithm bear little obvious resem-blance to one another (e.g., they tend to produce radically di�erent schedules even in thecase m = 1), there is in fact an interesting relationship between these two algorithms. Inparticular, as we now explain, Algorithm PF may be viewed as a generalization of EarliestDeadline. Under Earliest Deadline, the deadline associated with each allocation to a giventask during a particular period is the same, namely, the last slot in the period. Under Algo-rithm PF, additional \quasi-deadlines" are introduced, and each allocation of a given task hasa distinct associated quasi-deadline. Furthermore, these quasi-deadlines are roughly evenly-spaced, where the precise spacing is determined by P-fairness considerations. Algorithm PFthen behaves as an \earliest quasi-deadline" algorithm, with the following important caveats:� There are two kinds of quasi-deadlines that can occur, which may be thought of as\sharp" and \fuzzy". If the ith allocation of a task x has a sharp (resp., fuzzy) quasi-deadline at slot t, then the (i+ 1)th allocation to task x is not allowed to occur priorto slot t+1 (resp., t). Thus, the slot at which a given allocation can occur is boundedboth from above and below. It turns out that the sharp deadlines are very easy todeal with, informally because a sharp quasi-deadline decouples the scheduling of thetwo adjacent allocations.� If the earliest quasi-deadlines associated with two tasks x and y are both fuzzy andoccur in the same time slot, we cannot simply break the tie arbitrarily in order to assignpriority to either x or y. (Feasible instances of the periodic scheduling problem areknown for which this heuristic fails.) Algorithm PF breaks such a tie by comparing thesecond earliest quasi-deadlines of the two tasks. If there is still a tie, the third earliestquasi-deadlines are compared, and so on. (If all future quasi-deadlines are the samefor both tasks, then the tie can be broken arbitrarily.) Algorithm PF uses a GCD-like procedure to e�ciently implement the tie-breaking procedure described above.(A naive implementation that directly compares successive quasi-deadlines until thetie is broken would not yield a polynomial-time algorithm for the periodic schedulingproblem.)While the GCD-like tie-breaking procedure alluded to above is quite fast, it does notrun in constant time. Instead, the running time of this procedure is linear in the number ofbits in the binary representation of the relevant task periods. As a result, the running timeof Algorithm PF (see Equation (1)) can exceed �(n) by an arbitrarily high multiplicativefactor.In this paper, we describe and prove correct Algorithm PD, an algorithm for the pe-riodic scheduling problem with running time O(minfm lg n; ng). (The letters \PD" standfor \pseudo-deadline", a term very closely related to the \quasi-deadline" notion discussedabove, and that is formally de�ned in Section 4.) The most e�cient algorithms previouslyknown for solving the uniprocessor periodic scheduling problem (e.g., e�cient implemen-tations of the Earliest Deadline algorithm) run in O(lg n) time; note that Algorithm PDmatches this time bound for uniprocessor scheduling. Like Algorithm PF, Algorithm PDsolves the periodic scheduling problem by generating a P-fair schedule for every feasibleinstance. (To the best of our knowledge, no previously known algorithm generates P-fairschedules even in the case of a single resource.)3



Our work builds on that of [1] by making use of the correctness of Algorithm PF toexhibit a constant-time tie-breaking procedure that is su�cient to maintain P-fairness. Inessence, our approach is to limit the tie-breaking procedure to look only a constant numberof pseudo-deadlines into the future. Informally, the tie-breaking procedure of Algorithm PFhas a �ner \resolution" than that of Algorithm PD and, as a result, the two algorithms donot always make the same scheduling decisions. In spite of this, we are able to argue thatthe schedules generated by Algorithms PD and PF are closely related.Our main technical contribution is the proof of Theorem 1, which establishes that, likeAlgorithm PF, Algorithm PD produces a P-fair schedule for any feasible instance of theperiodic scheduling problem. (The running time analysis of Algorithm PD is, by contrast,entirely straightforward.) The following new concepts have served to motivate both thede�nition of Algorithm PD as well as its proof of correctness:� We take advantage of the duality that exists between \heavy" tasks (those with weightgreater than or equal to 1=2) and \light" tasks (those with weight less than or equalto 1=2). Note that a heavy (resp., light) task is scheduled (resp., not scheduled) moreoften than it is not scheduled (resp., scheduled). As a consequence, when dealing withheavy (resp., light) tasks, it seems to be more important to consider the next timeslot by which the task must not be scheduled (resp., be scheduled) than to considerthe next time slot by which the task must be scheduled (resp., not be scheduled).While Algorithm PF associates a quasi-deadline with each allocation of every task, Al-gorithm PD associates a pseudo-deadline with each allocation (resp., \non-allocation")of every light (resp., heavy) task.� Within the heavy (resp., light) tasks, we further categorize tasks into distinct weightclasses. More speci�cally, all heavy (resp., light) tasks x sharing a common value ofb1=(1 � x:w)c (resp., b1=x:wc) form a single weight class. Note that tasks belongingto the same weight class are scheduled with approximately the same frequency.� We analyze the state of a schedule generation algorithm in terms of a two-dimensionaltableau of integer counts that speci�es, for each weight class and for each future slot,the number of associated pseudo-deadlines that have been satis�ed to this point inthe schedule. We prove that such a tableau provides enough information to maintainP-fairness, even though it does not encode the exact weight of any particular task.� We precisely characterize the manner and degree to which the state of Algorithm PDcan deviate from that of Algorithm PF, given that both algorithms have scheduledexactly the same number of slots. This characterization is expressed in terms of thetableau of count information mentioned above. We �nd that the deviation is su�cientlysmall to guarantee that Algorithm PD maintains P-fairness as long as Algorithm PFdoes. The correctness of Algorithm PD then follows from the fact that Algorithm PFis known to maintain P-fairness [1].The remainder of this paper is organized as follows. In Section 2, we review the basicde�nitions associated with P-fairness. In Section 3, we review Algorithm PF of [1]. In Sec-tion 4, we present our new algorithm for the periodic scheduling problem, Algorithm PD,along with the proof of correctness. A straightforward implementation of Algorithm PD4



has a running time of O(n), which already represents a signi�cant improvement over theperformance of Algorithm PF. In Appendix B, we outline a binomial-heap-based implemen-tation of Algorithm PD with a running time of O(m lg n). Thus, Algorithm PD can be usedto solve any instance of the periodic scheduling problem in O(minfm lg n; ng) time. Thereremain, however, several other important multiple resource scheduling problems for whichno e�cient solutions are known; in Section 5, we conclude with a general plan for attackingsuch problems.2 P-FairnessIn this section we review some concepts introduced in [1]. We start with some conventions:� Scheduling decisions occur at integral values of time, numbered from 0. The unitinterval between time t and time t+ 1 will be referred to as slot t, t 2 N.� For integers a and b, let [a; b) = fa; : : : ; b � 1g. Furthermore, let [a; b] = [a; b + 1),(a; b] = [a+ 1; b + 1), (a; b) = [a+ 1; b), and [a] = [0; a).� We use the variablesm and n to denote the number of resources and tasks, respectively,in a given instance of the periodic scheduling problem. Speci�c tasks are denoted byidenti�ers x and y, which range over �, the set of all tasks.� Each task x has an integer period x:p, x:p > 1, an integer execution requirement x:e,x:e 2 (0; x:p), and a rational weight x:w = x:e=x:p. Note that 0 < x:w < 1. Withoutloss of generality we assume that Px2� x:w = m.� Let �i denote the ith symbol of string �, i 2 N.Now some de�nitions:� A schedule S for an instance of the periodic scheduling problem is a function from ��Nto f0; 1g. We require that Px2[0;n) S(x; t) � m, t 2 N. (In view of our assumption thatPx2� x:w = m, we in fact require that Px2[0;n)S(x; t) = m.) Informally, S(x; t) = 1 ifand only if task x is scheduled in slot t.� A schedule S is de�ned to be periodic if8i; x : i 2 N; x 2 � :Pt2[i�x:p]S(x; t) = i � x:e:� The lag of a task x at time t with respect to schedule S, denoted lag(S; x; t), is de�nedas: lag(S; x; t) = x:w � t�Pi2[t]S(x; i):� A schedule S is de�ned to be P-fair if8x; t : x 2 �; t 2 N : �1 < lag(S; x; t) < 1:� A schedule S is de�ned to be P-fair at time t if there exists a P-fair schedule S 0 suchthat 8x : x 2 � : lag(S; x; t) = lag(S0; x; t):Every instance of the periodic scheduling problem has a P-fair schedule [1, Theorem 1].5



3 A P-Fair Scheduling AlgorithmWe now review Algorithm PF, the algorithm de�ned in [1] that produces a P-fair schedulefor any feasible instance of the periodic scheduling problem. We start with some de�nitions:� The characteristic string of task x, denoted �(x), is an in�nite string over f�; 0;+gwith �t(x) = sign(x:w � (t+ 1)� bx:w � tc � 1); t 2 N:� The characteristic substring of task x at time t is the �nite string�(x; t) def= �t+1(x)�t+2(x) � � ��t0(x);where t0 = (min i : i > t : �i(x) = 0).� With respect to P-fair schedule S at time t, we say that: task x is ahead if and only iflag(S; x; t) < 0; task x is behind if and only if lag(S; x; t) > 0; task x is punctual if andonly if it is neither ahead nor behind.� With respect to P-fair schedule S at time t, we say that: task x is tnegru if and onlyif x is ahead and �t(x) 6= +; task x is urgent if and only if x is behind and �t(x) 6= �;task x is contending if and only if it is neither tnegru nor urgent.Algorithm PF determines which m-subset of the n tasks to schedule in each slot t. Asargued in [1], every urgent (resp., tnegru) task must (resp., must not) be scheduled in thecurrent slot in order to preserve P-fairness.We can de�ne a total order � on the set of contending tasks as follows: x � y if andonly if �(x; t) � �(y; t), where the comparison between characteristic substrings �(x; t) and�(y; t) is resolved lexicographically with + > 0 > �. (Ties may be broken arbitrarily.)The behavior of Algorithm PF at each slot t may be summarized as follows:1. Schedule all urgent tasks.2. Allocate the remaining resources to the highest-priority contending tasks according tothe total order �.Let SPF denote the schedule produced by Algorithm PF on a given instance of the periodicscheduling problem. Schedule SPF is known to be P-fair [1, Theorem 2]. An implemen-tation of the characteristic substring comparison function required by Algorithm PF waspresented in [1] and proven to execute in time linear in the size of the binary representationof minfx:p; y:pg. This comparison function can be used as the basis for an implementationof Algorithm PF that has a running time as given by Equation (1).4 Algorithm PDWe now present an algorithm for the periodic scheduling problem that is similar to Algo-rithm PF, but has a signi�cantly lower running time. Given two tasks x and y at time t,determining which task has higher priority according to Algorithm PF (i.e., whether x � yor y � x) takes time linear in the size of the binary representation of minfx:p; y:pg. The new6



algorithm, Algorithm PD, will have as its basis a comparison subroutine that determines therelative priorities of two tasks in constant time.First, some de�nitions. The set of tasks is partitioned into light tasks and heavy tasks.A task x is heavy if x:w > 1=2, and is light if x:w < 1=2. Each task x with x:w = 1=2 maybe considered either heavy or light, but not both.For each task x, we de�ne a string �(x) that is closely related to �(x). For light tasks x,�(x) = �(x). For heavy tasks x, �(x) = �(x0) where x0 is a task with x0:w = 1 � x:w. Theintuition behind the string �(x) for a heavy task x is as follows: We can obtain a schedulefor x from a schedule for x0 by allocating a resource to x in exactly those slots where x0 isnot allocated.A task x is de�ned to have a pseudo-deadline at slot t if �t(x) = 0 or �t(x) = +. Fora light task x, each pseudo-deadline corresponds to a quasi-deadline, i.e., the latest slot bywhich xmust have been allocated the resource a certain number of times in order to maintainP-fairness. For a heavy task x, each pseudo-deadline corresponds to a quasi-deadline of atask x0 with x0:w = 1 � x:w, i.e., the latest slot by which x must have been denied theresource a certain number of times. Let �(x; t) denote the least i > t such that task x has apseudo-deadline at slot i.Each task x has an integer �eld x:k determined from x:e and x:p as follows. If x is alight task, then set x:k = bx:p=x:ec. If x is a heavy task, then set x:k = bx:p=(x:p � x:e)c.It is straightforward to prove that consecutive pseudo-deadlines of any task x are either x:kor x:k + 1 slots apart.We de�ne a total order w on tuples in fN; f0; +g;Ng as follows:(d1; s1; k1) w (d2; s2; k2) () (d1 < d2)_ ((d1 = d2) ^ (s1 = +) ^ (s2 = 0))_ ((d1 = d2) ^ (s1 = s2) ^ (k1 � k2)):At time t, the total order w induces an ordering � on the tasks as follows:x � y () (�(x; t); ��(x;t)(x); x:k) w (�(y; t); ��(y;t)(y); y:k):The relation � is essentially a total order over the set of tasks except that x � y and y � xmay hold for distinct tasks x and y. Such ties may be broken arbitrarily. Hence, in whatfollows, we treat the relation � as a total order. For every slot t, Algorithm PD allocatesthe m resources to the m highest-priority tasks, where priorities are determined as follows(tasks in lower-numbered categories have higher priority):1. Urgent tasks (all are scheduled).2. Heavy contending tasks x with �t+1(x) = +. Within this category, task x is givenpriority over task y i� y � x.3. Light contending tasks x with �t+1(x) = +. Within this category, task x is givenpriority over task y i� x � y.4. Heavy contending tasks x with �t+1(x) = 0.7



5. Light contending tasks x with �t+1(x) = 0.6. Remaining heavy contending tasks. Within this category, task x is given priority overtask y i� y � x.7. Remaining light contending tasks. Within this category, task x is given priority overtask y i� x � y.Fix an instance of the periodic scheduling problem, and let SPD denote the set of allpossible schedules that can be produced by Algorithm PD on this instance. In the following,we refer to an arbitrary schedule drawn from this set as SPD .Theorem 1 Schedule SPD is P-fair.In the remainder of this section, we sketch the proof of Theorem 1. A complete proofappears in Appendix A.Note that Algorithm PD determines the priority between contending tasks on the basisof the next pseudo-deadlines. In contrast, Algorithm PF takes into account a potentiallyexponential number of pseudo-deadlines in order to resolve priority.To prove the correctness of Algorithm PD, we relate its behavior to that of Algorithm PF.We formalize the notion of \good states" in an execution of Algorithm PD in the de�nitionof G(t) below. Informally, a state is good at time t if it is similar to the state reached at timet in an execution of Algorithm PF. It is not the case that every execution of Algorithm PD isalways in a good state. However, Algorithm PD closely tracks the behavior of Algorithm PF,in the sense that an execution of Algorithm PD is never in a bad state at two consecutivetimes t and t + 1. To prove this, we �rst show that an execution of Algorithm PD in agood state at time t has the same number of light urgent tasks and heavy tnegru tasks asan execution of Algorithm PF would have on the same input at time t. Furthermore, evenif this execution of Algorithm PD enters a bad state at time t+ 1, it has the same numberof light urgent tasks and heavy tnegru tasks as an execution of Algorithm PF would haveat time t + 1. Since a light task that will miss a pseudo-deadline becomes urgent prior todoing so, (and a heavy task becomes tnegru prior to being overallocated), it follows from thecorrectness of Algorithm PF, and the observation that every execution of Algorithm PD isinitially (i.e., at time t = 0) in a good state, that no execution of Algorithm PD ever missesa pseudo-deadline.We now show that Algorithm PF is a \specialization" of Algorithm PD, in the sensethat the scheduling decisions made by PF from a given state are legal decisions by PD fromthe same state. In other words, scheduling decisions made by PF are among the possibleoutcomes that may result from the arbitrary tie-breaking performed within PD.Lemma 4.1 The schedule generated by Algorithm PF belongs to SPD .Now, some de�nitions and conventions:� Let urgenth(S; t) denote the set of all urgent heavy tasks at time t under scheduleS; contendingh(S; t), tnegruh(S; t), urgent `(S; t), contending `(S; t), and tnegru`(S; t)are de�ned analogously. Furthermore, let urgent(S; t) = urgenth(S; t) [ urgent `(S; t)(contending (S; t) and tnegru(S; t) are de�ned analogously).8



� Let x be a light task with its ith pseudo-deadline at slot d. If schedule S allocates aresource to x for the ith time at slot t, we say that S satis�es x for d at slot t.� Let x be a heavy task with its ith pseudo-deadline at slot d. If schedule S does notallocate a resource to x for the ith time at slot t, we say that S satis�es x for d at slott.For the purposes of understanding AlgorithmPD, it may be convenient to view all the pseudo-deadlines of all the light tasks as being arranged in a two-dimensional in�nite tableau, withthe columns indexed by (N; f+; 0g) pairs, (with the ordering � � � < (i� 1;+) < (i� 1; 0) <(i;+) < (i; 0) < (i + 1;+) < (i + 1; 0) < � � �), and the rows by all integers greater thanor equal to 2. (The pseudo-deadlines of the heavy tasks may be viewed analogously, on aseparate tableau.) If task x has a pseudo-deadline + (resp., 0) at time t, then this pseudo-deadline \appears" in the row indexed x:k, and the column indexed by the ordered pair (t;+)(resp., (t; 0)). At time t, the priority scheme of Algorithm PD for the light (resp., heavy)tasks then corresponds to allocating (resp., not allocating) the resources in order to satisfythe pseudo-deadlines of urgent (resp., tnegru) and contending tasks in order of increasingcolumn and, within each column, in order of increasing row.We are now ready to formalize the notion of \good states". For the following de�nitionsassume that s 2 f+; 0g.� L�s(d; k) def= fx 2 � j x is light ^ x:k = k ^ �d(x) = sg. Also, `�s(d; k) def= jL�s(d; k)j.� Ls(S; d; k; t) def= fx 2 L�s(d; k) j S satis�es x for d strictly prior to slot tg. Also,`s(S; d; k; t)def=jLs(S; d; k; t)j.� H�s (d; k), Hs(S; d; k; t), h�s(d; k) and hs(S; d; k; t) are de�ned analogously.� We say that a given integer-valued expression is good if its value is the same for allSPD 2 SPD ; otherwise, it is bad.� De�ne the predicate Gh(t) as (8d; k; s 2 f0;+g :: hs(SPD ; d; k; t) is good). De�ne G`(t)similarly, and let G(t) def= Gh(t) ^ G`(t). We say that Algorithm PD is in a good stateat time t if G(t) holds.� De�ne the predicate UCT h(t) as (jurgenth(SPD ; t)j, jcontendingh(SPD ; t)j, andjtnegruh(SPD ; t)j are good). De�ne UCT `(t) similarly, and let UCT (t) def= UCT h(t) ^UCT `(t).(Observe that G(0) and UCT (0) hold trivially, i.e., the initial state is good.)A \good" state is therefore one in which all PD-generated schedules (i.e., all SPD 2 SPD ,and speci�cally, the schedule generated by Algorithm PF) have the same number of not-yet-satis�ed pseudo-deadlines in each cell of the two tableaux referred to above. (Note that wedo not require that these pseudo-deadlines belong to the same tasks in all schedules, butonly that their number be the same.) We prove that all schedules SPD 2 SPD allocate thesame number of resources to light tasks and to heavy tasks in good states. We then showthat all schedules SPD are in a good state at time (t + 1) as well, unless one of a few veryspecial scenarios is encountered. One such scenario is outlined in the next paragraph; theremaining scenarios which lead to a bad state are virtually identical in structure.9



Assume Algorithm PD is in a \good" state at time t. Consider two light (resp., heavy)tasks x and y such that: (i) x:k = y:k = k, (ii) �t(x) = �t(y) = +, (iii) �(x; t) = t+ k, and(iv) �(y; t) = t + k + 1. Let S1 and S2 be two schedules satisfying the following propertiesat time t: (i) schedule S1 has already satis�ed the pseudo-deadline �t(x), but not yet thepseudo-deadline �t(y), (ii) schedule S2 has already satis�ed the pseudo-deadline �t(y) of y,but not yet the pseudo-deadline �t(x). Thus, in schedule S1, y is urgent (resp., tnegru) andx is contending, whereas in schedule S2, x is urgent (resp., tnegru) and y is contending. Notethat the given scenario does not violate the assumption that G(t) holds. At slot t, however,it is now possible that schedules S1 and S2 both satisfy task x and task y, but for di�erentpseudo-deadlines: Schedule S1 may satisfy task y for pseudo-deadline �t(y) and task x forpseudo-deadline �t+k(x), while S2 may satisfy task x for pseudo-deadline �t(x) and task yfor pseudo-deadline �t+k+1(y). In S2, the pseudo-deadline �t+k(x) of x has higher prioritythan the pseudo-deadline �t+k+1(y) of y, but no task may be allocated multiple copies of theresource in the same slot. Therefore we have reached a \bad" state; G(t+ 1) does not hold.In the proof, most of the technical lemmas are devoted to a study of the special casewhere G(t) holds, but G`(t+ 1) (resp., Gh(t + 1)) does not. (We prove that at least one ofG`(t+1) or Gh(t+1) holds whenever G(t) holds.) If this is the case, we show that there areno light (resp., heavy) urgent (resp., tnegru) tasks at time t+1. This in turn implies that noscenario similar to that described in the preceding paragraph can occur at time t+ 1; notethat the above scenario requires one of tasks x and y to be urgent (resp., tnegru) in each ofS1 and S2. We then show that, despite the fact that we have reached a bad state at timet+ 1, UCT (t+ 1) holds and we return to a good state at time t+ 2.Theorem 2 Algorithm PD can be implemented in O(min(n;m log n)) time.Proof: In conjunction with any linear-comparison selection algorithm (e.g., [3]), the con-stant time priority comparison algorithm described in this section provides an O(n) timeimplementation of Algorithm PD. A heap-based implementation that runs in O(m log n)time is described in Appendix B.5 ConclusionsThe techniques presented in this paper build on the results established in [1]. As argued inthe introduction, the tie-breaking procedure of [1] may be viewed as a natural generalizationof an \earliest deadline" strategy. As the earliest deadline paradigm has proven to be usefulfor solving a large number of scheduling problems, especially problems involving a singleresource (such as uniprocessor scheduling problems), it seems likely that the P-fairness-based approach of [1] will be useful for solving an even larger class of scheduling problems,especially problems involving multiple resources.The importance of the work in the present paper is that it demonstrates an approach forobtaining highly e�cient scheduling algorithms based on P-fairness. More speci�cally, ourwork suggests the following general plan for attacking a given scheduling problem:1. Prove that a P-fair solution exists for the problem in question. In the case of the peri-odic scheduling problem, this step was accomplished using a network 
ow argument [1,10



Theorem 1].2. Find the \canonical" P-fair algorithm for solving the problem. In the case of the peri-odic scheduling problem, this is Algorithm PF of [1]. Informally, we view Algorithm PFas the canonical P-fair scheduling algorithm for the periodic scheduling problem be-cause every scheduling decision that it makes is \locally optimal" with respect topreserving P-fairness. This local optimality is achieved by looking arbitrarily far intothe future when making current scheduling decisions.3. De�ne a \limited lookahead" version of the canonical P-fair algorithm, and prove thatthe behavior of this algorithm closely tracks that of the canonical P-fair algorithm. Inthe case of the periodic scheduling problem, Algorithm PD plays the role of the limitedlookahead algorithm.4. Prove that the limited lookahead algorithm can be implemented e�ciently. BecauseAlgorithm PD uses only constant lookahead, this analysis is completely straightforwardin the case of the periodic scheduling problem.Note that the \canonical" P-fair algorithm of Step 2 above may be extremely slow. Forexample, in establishing the correctness of Algorithm PD, we have relied solely on the cor-rectness of Algorithm PF; we have not relied on the existence of an e�cient (e.g., polynomialtime) implementation of Algorithm PF.References[1] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress: Anotion of fairness in resource allocation. In Proceedings of the 25th Annual ACM Sym-posium on Theory of Computing, pages 345{354, May 1993. To appear in Algorithmica.[2] S. K. Baruah, R. R. Howell, and L. E. Rosier. Algorithms and complexity concerning thepreemptive scheduling of periodic, real-time tasks on one processor. Real-Time Systems,2:301{324, 1990.[3] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds forselection. JCSS, 7:448{461, 1973.[4] W. A. Horn. Some simple scheduling algorithms. Naval Research Logistics Quarterly,21:177{185, 1974.[5] C. L. Liu. Scheduling algorithms for multiprocessors in a hard-real-time environment.JPL Space Programs Summary 37{60, vol. II, Jet Propulsion Laboratory, CaliforniaInstitute of Technology, Pasadena, CA, pages 28{37, November 1969.[6] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time environment. JACM, 20:46{61, 1973.[7] J. Vuillemin. A data structure for manipulating priority queues. Communications of theACM, 21:309{315, 1978. 11



A Proof of Theorem 1First, some de�nitions and conventions:� Let urgenth(S; t) denote the set of all urgent heavy tasks at time t under scheduleS; contendingh(S; t), tnegruh(S; t), urgent `(S; t), contending `(S; t), and tnegru`(S; t)are de�ned analogously. Furthermore, let urgent(S; t) = urgenth(S; t) [ urgent `(S; t);contending (S; t) and tnegru(S; t) are de�ned analogously.� Let x be a light task with its ith pseudo-deadline at slot d. If schedule S allocates aresource to x for the ith time at slot t, we say that S satis�es x for d at slot t.� Let x be a heavy task with its ith pseudo-deadline at slot d. If schedule S does notallocate a resource to x for the ith time at slot t, we say that S satis�es x for d at slott.� The set of all possible schedules that could be produced by the pseudo-deadline algo-rithm is de�ned to be SPD . We will refer to an arbitrary schedule drawn from this setas SPD .� We introduce the following functions, where: (i) d, k, and t are natural numbers withk � 2, (ii) S 2 SPD , and (iii) s 2 f+; 0g.H�s (d; k) def= fx 2 � j x is heavy ^ x:k = k ^ �d(x) = sg;L�s(d; k) def= fx 2 � j x is light ^ x:k = k ^ �d(x) = sg;Hs(S; d; k; t) def= fx 2 H�s (d; k) j S satis�es x for d strictly prior to slot tg;Ls(S; d; k; t) def= fx 2 L�s(d; k) j S satis�es x for d strictly prior to slot tg;H 0s(S; d; k; t) def= fx 2 H�s (d; k) j S satis�es x for d at slot tg;L0s(S; d; k; t) def= fx 2 L�s(d; k) j S satis�es x for d at slot tg;h�s(d; k) def= jH�s (d; k)j;`�s(d; k) def= jL�s(d; k)j;hs(S; d; k; t) def= jHs(S; d; k; t)j;`s(S; d; k; t) def= jLs(S; d; k; t)j;h0s(S; d; k; t) def= jH 0s(S; d; k; t)j; and`0s(S; d; k; t) def= jL0s(S; d; k; t)j:� We say that a given integer-valued expression is good if its value is the same for allSPD 2 SPD ; otherwise, it is bad.� De�ne the predicate Gh(t) def= (8(d; s; k) :: hs(SPD ; d; k; t) is good). De�ne G`(t) simi-larly, and let G(t) def= Gh(t) ^ G`(t).� De�ne the predicate UCT h(t) as (jurgenth(SPD ; t)j, jcontendingh(SPD ; t)j, andjtnegruh(SPD ; t)j are good). De�ne UCT `(t) similarly, and let UCT (t) def= UCT h(t) ^UCT `(t).To prove that SPD is P-fair i� SPF is, it su�ces to prove that UCT (t) holds for all t 2 N. Toprove that UCT (t) holds for all t, we show (LemmaA.3) that SPF 2 SPD . From Lemma A.6,12



we can conclude that UCT (t) holds for all t for which G(t) holds (i.e., if slot t is \good"). IfG(t) holds but G(t+1) does not (i.e., if slot t+1 is \bad"), we show that either G`(t+1) orGh(t+1) continues to hold (Lemma A.10). We show that the slot following the bad slot t+1is again good (Lemmas A.14 and A.15). Thus, if slot t is good and slot t + 1 is bad, thenUCT (t+ 1) holds (Lemma A.16). Since G(0) holds trivially, we can conclude that UCT (t)holds for all t 2 N.Lemma A.1 Let x be a heavy task. Then for all t > 0, the following implications hold:�t(x) = 0 =) �t(x) = 0 ^ �t�1(x) = +;�t(x) = + =) �t(x) = �;�t(x) = � ^ �t�1(x) 6= 0 =) �t(x) = +; and�t(x) = � ^ �t�1(x) = 0 =) �t(x) = �:Proof: Straightforward.Lemma A.2 For any task x, the following implications hold:�t(x) = 0 ^ 1=x:w > x:k =) �(x; t) = t+ x:k + 1;�t(x) = 0 ^ 1=x:w = x:k =) �(x; t) = t+ x:k;�t(x) = 0 ^ �(x; t) = t+ x:k =) ��(x;t)(x) = 0;�t(x) = + ^ �00(x; t) = t� x:k =) �t�x:k(x) = +; and�t(x) = 0 =) �00(x; t) = t� x:k:Proof: Straightforward.The next lemma asserts that Algorithm PF is a \specialization" of Algorithm PD, in thesense that the scheduling decisions made by PF from a given state are legal decisions byPD from the same state. That is, scheduling decisions made by PF are among the possibleoutcomes that may result from the arbitrary tie-breaking done by PD. Algorithms PF andPD start out from the same initial state at time zero. During its execution, PD breaks tiesarbitrarily; di�erent tie-breaking choices will give rise to di�erent schedules. Using induction,Lemma A.3 implies that the schedule generated by PF belongs to SPD .Lemma A.3 If Algorithm PF schedules a task x in preference to another task y at a certainstate, then Algorithm PD may schedule x in preference to y from the same state.Proof: We will prove this lemma by induction on t. Let t be the slot being scheduled byPF and PD. Since both PF and PD schedule all urgent tasks, and neither schedules tnegrutasks, it remains to consider the relative priorities accorded to contending tasks x and y inPF and PD. We consider four cases:� x, y both light. Note that �t(z) = �t(z) for all light tasks z. If �(x; t) 6= �(y; t),Algorithms PD and PFmake the same scheduling decision on x and y. Now assume thata = �(x; t) = �(y; t), and consider the following four subcases: (i) �a(x) = �a(y) = 0,13



(ii) �a(x) = + and �a(y) = 0, (iii) �a(x) = 0 and �a(y) = +, and (iv) �a(x) = �a(y) =+. In subcase (i), Algorithm PD assigns the same priority to x and y; thus, PD mayschedule x in preference to y. In subcase (ii), PD schedules x in preference to y. Insubcase (iii), PF schedules y in preference to x, a contradiction. Only subcase (iv)remains.Assume that �a(x) = �a(y) = +, i.e., subcase (iv) holds. If x:k = y:k, PD assigns thesame priority to x and y; thus, as in case (i) above, PD may schedule x in preferenceto y. If x:k < y:k, PD schedules x in preference to y. If x:k > y:k, observe that�(x; t) is of the form �a�t + (�x:k+1+ j �x:k+)� �x:k 0, and that �(y; t) is of the form�a�t + (�y:k+1+ j �y:k+)� �y:k 0. Therefore, �(y; t) is lexicographically greater than�(x; t), and PF schedules y in preference to x, a contradiction.� x, y both heavy. This case is similar to the previous one.� x heavy, y light. We consider three subcases: (i) �t+1(x) = +, (ii) �t+1(x) = 0,and (iii) �t+1(x) = � In subcase (i), PD schedules x in preference to y. Now considersubcase (ii). If �t+1(y) = +, PF schedules y in preference to x, a contradiction. If�t+1(y) = 0, PD assigns the same priority to x and y; thus, PD may schedule x inpreference to y. If �t+1(y) = �, PD schedules x in preference to y. Now considersubcase (iii). If �t+1(y) 2 f+; 0g, PF schedules y in preference to x, a contradiction. If�t+1(y) = �, then PD schedules x in preference to y.� x light, y heavy. This case is similar to the previous one.Lemma A.4 For all t 2 N G`(t) =) UCT `(t):Proof: Note thatjurgent `(S; t)j = Xk�2(`�0(t; k) + `�+(t; k)� `0(S; t; k; t)� `+(S; t; k; t)), (2)i.e., the number of light urgent tasks is exactly the number of requests by light tasks withpseudo-deadline at t that have not been satis�ed before t.Similarly,jtnegru`(S; t)j = Xk�20@Xt0>t(`0(S; t0; k; t) + `+(S; t0; k; t)) + `0(S; t; k; t)1A , (3)i.e., the number of light tnegru tasks is exactly the number of requests by light tasks xwith pseudo-deadline at t0 > t, or with �t(x) = 0, that have been satis�ed before t. Theremaining light tasks are all contending. Thus, whenever G`(t) holds, the terms on theright-hand sides of Equations (2) and (3) are good. Their left-hand sides are therefore goodas well, establishing the lemma. 14



Lemma A.5 For all t 2 N Gh(t) =) UCT h(t):Proof: Symmetric to the proof of Lemma A.4.Lemma A.6 For all t 2 N G(t) =) UCT (t):Proof: Follows from Lemmas A.4 and A.5.Let l0(t) (resp., h0(t)) denote the number of light (resp., heavy) tasks satis�ed at slot t inschedule SPD . Formally, we havel0(t) def= Xd;k (`00(SPD ; d; k; t) + `0+(SPD ; d; k; t)); andh0(t) def= Xd;k (h00(SPD ; d; k; t) + h0+(SPD ; d; k; t)):Lemmas A.7 to A.14 below will be proved collectively by induction on t. That is, inproving that one of Lemmas A.7 to A.14 holds for a particular t > 0, we may assume thatall of the lemmas hold for all smaller values of t. The base case, t = 0, holds trivially.Lemma A.7 For all t 2 N G(t) =) l0(t); h0(t) good:Proof:Since G(t) holds, Lemmas A.4 and A.5 state that the number of heavy urgent and tnegrutasks and the number of light urgent and tnegru tasks is the same in all schedules generatedby PD. By the de�nition of G(t), the number of contending heavy tasks z with �t+1(z) = 0is good. We argue below that the number of heavy contending tasks x with �t+1(x) = �is the same in all schedules generated by PD. These two facts and Lemma A.6 imply thecorrectness of the lemma.Consider a heavy task x with �t+1(x) = �. Since x is heavy, �t(x) 6= �. If �t(x) = 0,then x is either urgent or tnegru. If �t(x) = +, then �t+1(x) = + by Lemma A.1 and x iseither tnegru or contending. But since G(t) holds, h+(SPD ; t+ 1; k; t) is good. Therefore allschedules SPD 2 SPD have the same number of contending heavy tasks x with �t+1(x) = �.Lemma A.8 For all t 2 N, if G(t) ^ :G`(t+ 1) then the following conditions hold:(a) 9k0 such that `0+(SPD ; t; k0; t) > 0,(b) 9(d0; s0) : d0 = t+ k0 : (`0s0(SPD ; d0; k0; t) is bad), and(c) 8(d; s; k) : (d; s; k) w (d0; s0; k0) : (`0s(SPD ; d; k; t) is good).15



Proof: Assume G(t)^:G`(t+1) holds. Since G(t) holds, but not G`(t+1), there exists atriple (d; s; k) such that `0s(SPD ; d; k; t) is bad. Let (d0; s0; k0) be the minimum (with respectto w) among such triples (d; s; k). Let x 2 L�s0(d0; k0) n Ls0(SPD ; d0; k0; t), and consider thefollowing �ve cases: (i) d0 = t, (ii) t < d0 < t+ k0, (iii) d0 > t+ k0 + 1, (iv) d0 = t+ k0 + 1,and (v) d0 = t+ k0.In case (i), x 2 urgent `(SPD ; t) and therefore each SPD 2 SPD satis�es x for t att. In case (ii), x 62 urgent `(SPD ; t). Furthermore, `0s(SPD ; d; k; t) is good for all triples(d; s; k) such that (d; s; k) w (d0; s0; k0), and the total number of light tasks satis�ed at t isgood by Lemma A.7. It follows that `0s0 (SPD ; d0; k0; t) is good, contradicting the choice of(d0; s0; k0). In case (iii), x 2 tnegru`(SPD ; t), a contradiction. In case (iv), j(L�+(t; k0) nL+(SPD ; t; k0; t)) \ (L�+(d0; k0) [ L�0(d0; k0) [ L�+(d0 + 1; k0))j is good. But since l0(t) isgood by Lemma A.7, `0s0 (SPD ; d0; k0;) is good, a contradiction. In case (v), j(L�+(t; k0) nL+(SPD ; t; k0; t)) \ (L�+(d0; k0) [ L�0(d0; k0))j is bad, implying that `0+(SPD ; t; k0; t) > 0.Lemma A.9 For all t 2 N, if G(t) ^ :Gh(t+ 1) then the following conditions hold:(a) 9k0 such that h0+(SPD ; t; k0; t) > 0,(b) 9(d0; s0) : d0 = t+ k0 : (h0s0(SPD ; d0; k0; t) is bad), and(c) 8(d; s; k) : (d; s; k) w (d0; s0; k0) : (h0s(SPD ; d; k; t) is good).Proof: Similar to the proof of Lemma A.8Lemma A.10 For all t 2 NG(t) ^ :G`(t+ 1) =) Gh(t+ 1); andG(t) ^ :Gh(t+ 1) =) G`(t+ 1):Proof: This is a straightforward consequence of Lemmas A.8 and A.9.Lemma A.11 For all t 2 N, the following implications hold:(a) G(t) ^ :G`(t+ 1) =) jtnegruh(SPD ; t)j = 0,(b) G(t) ^ :Gh(t+ 1) =) jurgent `(SPD ; t)j = 0,(c) G(t) ^ :G`(t+ 1) =) jurgent `(SPD ; t+ 1)j = 0, and(d) G(t) ^ :Gh(t+ 1) =) jtnegruh(SPD ; t+ 1)j = 0.Proof: To show (a), let us consider a heavy task x 2 tnegruh(SPD ; t). Since x is tnegru,�t(x) = 0 or �t(x) = �. If �t(x) = 0, then �t(x) = 0 and x is satis�ed for t at t. But thenx has been scheduled at t � 1 for t, since �t�1(x) = + (Lemma A.1). However, at t � 1,all light tasks y with �(t�1)+1(y) = + had higher priority than x and are satis�ed at t� 1.Therefore urgent `(SPD ; t) = 0, which implies G`(t+ 1) by Lemma A.8. This contradicts theassumption that :G`(t+ 1) holds. The same argument applies if �t(x) = �. The proof for(b) is symmetric. Claims (c) and (d) follow from Lemmas A.8 and A.9, respectively.16



For i � 1 and t 2 N, de�neZ1(t; i) def= f(t+ i;+; i); (t+ i; 0; i)g;Z2(t; i) def= [j>if(t+ i;+; j); (t+ i; 0; j)g;Z3(t; i) def= f(t+ i+ 1;+; i� 1)g;Z4(t; i) def= f(t+ i+ 1;+; i)g;Z(t; i) def= Z1(t; i) [ Z2(t; i) [ Z3(t; i) [ Z4(t; i);h0(t; i) def= X(d;s;k)2Z(t;i)h0s(SPD ; d; k; t);ZH �(t; i) def= fx j x 2 [(d;s;k)2Z(t;i)H�s (d; k)g;l0(t; i) def= X(d;s;k)2Z(t;i) `0s(SPD ; d; k; t); andZL�(t; i) def= fx j x 2 [(d;s;k)2Z(t;i)L�s(d; k)g:Lemma A.12 For all t 2 N(a) G(t) ^ :G`(t+ 1) =) 8i : i � 1 : (l0(t; i) is good), and(b) G(t) ^ :Gh(t+ 1) =) 8i : i � 1 : (h0(t; i) is good).Proof: We prove (a); the proof for (b) is symmetric. We use induction on i. The basecase, i = 1, holds by Lemma A.7. For the induction step, it is su�cient to prove thatjZL�(t; i) \ urgent `(SPD ; t)j and jZL�(t; i) \ tnegru`(SPD ; t)j are good. Let x 2 ZL�(t; i), andconsider the following two cases: (i) x 2 urgent `(SPD ; t), and (ii) x 2 tnegru`(SPD ; t). Incase (i), x 2 (L�+(t; i) n L+(SPD ; t; i; t)) [ (L�0(t; i) n L0(SPD ; t; i; t)). But since G(t) holds,`�+(t; i)+ `�0(t; i)� `+(SPD ; t; i; t)� `+(SPD ; t; i; t) is good. A similar argument can be appliedto case (ii).The following lemma shows that if some light task x with a not-yet-satis�ed pseudo-deadline at time t + x:k is \skipped over" by PD at time t and another light task with astrictly lower priority is satis�ed instead, then x is satis�ed for t+ x:k at slot t+ 1.Lemma A.13 For any PD-generated schedule S, any s 2 f0;+g, and any k � 2, if a taskx 2 L�+(t; k)\L�s(t+k; k) is not satis�ed for t+k at t and `0s0(S; d0; k0; t) 6= 0 for some (d0; s0; k0)such that (t+ k; s; k) w (d0; s0; k0) where (t+ k; s; k) 6= (d0; s0; k0), then `s(S; t+ k; k; t+ 2) =L�s(t+ k; k).Proof: Assume for the sake of contradiction that the claim is false, i.e., that the followingconditions hold: (i) there is a task x 2 L�+(t; k) \ L�s(t+ k; k) for some s 2 f0;+g such thatx 62 (L0s(S; t+ k; k; t) [ L0s(S; t+ k; k; t+ 1));(ii) at slot t another task z 2 L�s0(t+ k0; k0) where (t+ k; s; k) w (d0; s0; k0) and (t+ k; s; k) 6=(d0; s0; k0) is satis�ed for some s0 2 f0;+g. It follows that x is urgent at time t and hencex 2 L0+(S; t; k; t). 17



Task x 2 L0+(S; t; k; t), but x 62 L0s(S; t + k; k; t + 1); therefore, there is a task y suchthat y 2 L0s00(S; d00; k00; t+ 1) for some s00 2 f0;+g, but y 62 L0s000(S; d000; k00; t) for any s000 andd000 such that s000 2 f0;+g and d000 2 N. Since S schedules y in preference to x at t + 1,(d00; s00; k00) w (t+ k; s; k).At slot t, since y is not satis�ed while the task z with lower priority than y is satis�ed,task y is tnegru. Therefore either �t(y) = � or �t(y) = 0.If �t(y) = � and y is scheduled at slot t + 1 for d00, then y cannot be tnegru at t + 1and therefore �t+1(y) = +. Successive pseudo-deadlines of y are either k00 or k00 + 1 slotsapart, where k00 < k since d00 � t + k. But then �00(y; t+ 1) � (t + 1) � (k00 + 1) = t � k00and �00(x; t) � t � k. Let t0 be the slot such that y 2 L0s(S; t + 1; k00; t0). Furthermore,(t; s; k) w (t+ 1; s00; k00). Hence, either: (i) x 2 L0s(S; t; k; t0), or (ii) x 2 urgent `(S; t0). Case(i) is a contradiction to x 2 urgent `(S; t). In case (ii), t0 � t � 2 since k � 2. But then`s(S; t; k; t0+2) = L�s(t; k) by the induction hypothesis, a contradiction to x 2 urgent `(S; t).If �t(y) = 0, then by Lemma A.1, �t+1(y) = �. Since S schedules y in preference to xat slot t + 1, (d00; s00; k00) w (t+ k; s; k). Hence k00 � k. If k00 < k then �00(y; t) > �00(x; t) byLemmaA.2 and the contradiction arises by the same argument as in the preceding paragraph.If k00 = k then by Lemma A.2, �00(y; t) = t�k and since �t(x) = +, �00(x; t) � t�k�1. Let t0be the slot such that x 2 L0s(S; t; k; t0). If t0 > t�k, then at slot t0 schedule S satis�es y for tin preference to x for t. This contradicts the fact that �t(y) = 0 and �t(x) = +. If t0 = t� kthen by Lemma A.2, �00(x; t) = + and t0 � t � 2. But then `s(S; t; k; t0 + 2) = L�s(t; k) bythe induction hypothesis, a contradiction to x 2 urgent `(S; t).Lemma A.14 For all t 2 NG(t) ^ :G`(t+ 1) =) G(t+ 2):Proof: We de�ne the following �ve predicates:P1(t; i) def= (Pi�1j=1(P(d;s;k)2Z(t;j) `0s(SPD ; d; k; t) + `0s(SPD ; d; k; t+ 1)) is good),P2(t; i) def= (8s2f0;+g`s(SPD ; t+ i; i; t+ 2) is good),P3(t; i) def= (8(d;s;k)2Z2(t;i)`s(SPD ; d; k; t+ 2) is good),P4(t; i) def= (8s2f0;+g`s(SPD ; t+ i+ 1; i� 1; t+ 2) is good),P5(t; i) def= (8s2f0;+g`s(SPD ; t+ i+ 1; i; t+ 2) is good).We break the lemma down to �ve claims. For each 1 � j � 5, de�ne Claim j as follows:8i : i � 1 : (G(t) ^ :G`(t+ 1) =) Pj(t; i)):The proof proceeds by induction on i, i � 1; the base case, i = 1, holds trivially for all �veclaims.Claim 1: induction stepBy Lemma A.12, l0(t; i) is good. Hence, using Claims 2 to 5 of the induction hypothesis,we �nd that `s(SPD ; d; k; t + 2) is good for all (d; s; k) 2 Z(t; j) with j < i. Therefore allschedules have the same number of resources available for Z(t; i) at time t+ 1.18



Claim 2: induction stepIf `s(SPD ; t+ i; i; t+1) is good then `s(SPD ; t+ i; i; t+2) is good for all s 2 f+; 0g. Nowassume that `s(SPD ; t+ i; i; t+1) is bad for some s 2 f+; 0g, and consider the following twocases: (i) s = +, and (ii) s = 0.In case (i), let x 2 L�+(t+ i; i). If x 2 L�+(t+ i; i)\L�s0(t� 1; t) for some s0 2 f0;+g, thenx 2 contending `(SPD ; t) and x can be satis�ed for t+ i at t. If x 2 L�+(t+ i; i)\L�+(t; i), theneither x 2 urgent `(SPD ; t) or x 2 contending `(SPD ; t) by Lemma A.2. But for two schedulesS1 and S2, it could be that jL�+(t+ i; i)\urgent`(S1; t)j 6= jL�+(t+ i; i)\urgent`(S2; t)j. Sincel0(t; i) is good by Lemma A.7, S2 satis�es some task with strictly lower priority than x atslot t. Lemma A.13 now implies that `+(SPD ; t+ i; i; t+ 2) is good.For case (ii), observe that the same arguments applied in case (i) to tasks in L�+(t+ i; i)can also be applied to tasks x 2 L�0(t + i; i), unless x 2 L�0(t; i). Thus, assume that x 2L�0(t; i)\L�0(t+i; i). Then `00(SPD ; t; i; t) = `�0(t; i). Furthermore, it follows from Lemma A.11that l0(t) � l0(t+ 1). Hence `00(SPD ; t+ i; i; t+ 2) = `�0(t+ i; i).Claim 3: induction stepFor (d; s; k) 2 Z2(t; i), no task x 2 L�s(d; k) can be urgent at time t. Hence Claim 3follows from Claim 2.Claims 4 and 5: induction stepThe proofs of Claims 4 and 5 are similar to the proof of Claim 2.Lemma A.15 For all t 2 NG(t) ^ :Gh(t+ 1) =) G(t+ 2):Proof: Symmetric to the proof of Lemma A.14.Lemma A.16 For all t 2 NG(t) ^ :G(t+ 1) =) UCT (t+ 1).Proof: Immediate from Lemmas A.11, A.14, and A.15.B An O(m lgn) ImplementationAlgorithm PD may be e�ciently implemented by using the binomial heap data structure ofVuillemin [7]. The binomial heap supports the operations listed below, as well as certainothers that do not concern us here. (In the table below, H, H0, and H1 are of type binomialheap, x is a heap element, and S denotes a set of n heap elements.)Operation Worst-Case ComplexityH := MakeHeap() O(1)H := BuildHeap(S) O(n)Insert(H;x) O(lg n)x := ExtractMin(H) O(lg n)H := Union(H0;H1) O(lg n)19



For each task x we maintain a record with the following information: (i) x:e, x:p, andx:k, which contain �xed integer values, (ii) the number of times task x has been scheduledin its current period, and (iii) the number of slots remaining until the end of the currentperiod. For the sake of e�ciency, values (ii) and (iii) are not updated at each time step butare only generated as necessary. Other important quantities such as the lag of task x, thenumber of slots until the next pseudo-deadline of x, or the symbol associated with the nextpseudo-deadline of x (i.e., + or 0), can be easily determined from the aforementioned valuesusing a constant number of integer operations.Our implementation uses a number of binomial heaps: (i) H, which stores the taskrequests that are currently eligible to be scheduled (i.e., those that are not tnegru), and (ii)various heaps Ht0 , for times t0 when some currently tnegru task will become contending orurgent. Since there are n tasks, there will be no more than n+1 non-empty binomial heapsat any given time. The relative priorities of the tasks in each heap are determined using theseven-level scheme given in Section 4.The pseudo-code for the implementation is given in Figure 1. Each iteration of the mainloop in Lines (2) to (12) corresponds to the scheduling of one time slot. The \pre-processing"of Line (1) takes O(n) time. (Note that we do not include this pre-processing time in the perslot time complexity of our algorithm.) Within each iteration of the main loop, the repeatloop of Lines (3) to (8) is executed m times. Line (4) requires O(lg n) time, and Lines (5)to (6) require O(1) time. We argue below that Lines (7) and (9) can each be implementedto run in O(lg n) time. Line (10) also takes O(lg n) time, and so the overall complexity ofAlgorithm PD is O(m lg n).To e�ciently execute the test in Line (1) of procedure Requeue, we maintain anothersearch structure (e.g., any standard dictionary data structure such as a red-black tree) thatcontains pointers to each of these binomial heaps (binomial heapHt is indexed by t), and thatpermits O(lg n)-time implementations of the operations Insert, Delete, and Find. Lines (1)to (3) of Requeue therefore take O(lg n) time, and Line (5), which is an insertion into abinomial heap, also takes O(lg n) time. Line (9) of PD is implemented as a Find in thedictionary, followed by a Delete if necessary; each of these operations runs in O(lg n) time.
20



Algorithm PD(0) begin(1) H := BuildHeap(�);(2) for t := 0; 1; 2; : : : do(3) repeat(4) x := ExtractMin(H);(5) \Schedule task x in slot t"(6) t0 := \the earliest future time atwhich task x will not betnegru";(7) Requeue(x; t0)(8) until \m tasks have been scheduledin slot t";(9) if \Heap Ht+1 exists" then(10) H := Union(H;Ht+1)(11) �(12) od(13) endRequeue(x; t)(0) begin(1) if \Heap Ht does not exist" then(2) Ht := MakeHeap()(3) �;(4) \Update �elds associated with task x (e.g.,the number of allocations in thecurrent period)";(5) Insert(Ht; x)(6) end Figure 1: Algorithm PD.21


