A Solution to the

Generalized Railroad Crossing Problem
IN ESTEREL

Carlos Puchol
Department of Computer Sciences
The University of Texasat Austin
Austin, Texas 78712-1188
cpg@s. ut exas. edu
http://ww. cs. ut exas. edu/ users/ cpg

Abstract

We present a solution to the Generalized Railroad Crossing benchmark problem based on
the ESTEREL programming language. The solution is shown to satisfy the formal statements of
the properties that the system requirements specify by using a verification method for safety
properties of ESTEREL programs recently developed. The solution and verification presented
have been devel oped within the synchronous system modedl, i.e. discretetime, global broadcast
of events and instantaneous reactions.

Keywords: ESTEREL, reactive systems, synchronous systems, system verification, systems
specification, forma methods.

1 TheGeneralized Railroad Crossing Problem

The Generalized Railroad Crossing (GRC) problem is abenchmark problem that has been recently
proposed [4] to compare formal methodsthat exist for specifying, designing and analyzing real-time
systems and to better understand their utility in the development of practical systems. Informally,
it consists of a gate controlling a railroad intersection I within aregion of interest R, where trains
travel through, on multiple tracks, in both directions. A sensor system determines when each train
enters and exits . The problem statement includes two properties that the system must satisfy at
al times. Theformal statement of the GRC problemis asfollows:

The system to be developed operates a gate at a railroad crossing. The railroad
crossing / liesin aregion of interest R, i.e, I C R. A set of trains travel through
R on multiple tracks in both directions. A sensor system determines when each train
enters and exits region R. To describe the system formally, we define a gate function
g(t) € [0,90], where ¢(t) = 0 means the gate is down and ¢(¢) = 90 means the gate
isup. We define a set {\;} of occupancy intervals, where each occupancy interval is
atime interval during which one or more trains are in /. The ith occupancy interval
isrepresented as \; = [r;, v;], where 7; is the time of the ith entry of atrain into the
crossing when no other train is in the crossing and v; is the first time since 7; that no
trainisinthecrossing (i.e., thetrain that entered at 7; has exited as have any trainsthat
entered the crossing after ;).

Given two constants &; and &-, & > 0,&, > 0, the problem isto develop a system
to operate the crossing gate that satisfies the following two properties:

Safety Property: ¢ € U;A; = ¢(t) = 0 (The gate is down during al occupancy
intervals.)

Utility Property: t ¢ U;[; — &1, v + &) = ¢(t) = 90 (Thegateisupwhennotrain
isinthe crossing.)

We present a solution to the GRC problem using the ESTEREL programming language,
which is based on a synchronous execution model (see Appendix A for a brief outline of the
synchronous model and the ESTEREL language itself). We have mechanically verified the two
safety properties using the verification technique and associated tool s presented in [5]. The solution
comprises modeling “reasonable’ behaviors for the gate and the trains; they are run in paralel to
the actual implementation of the controller module.

Thisreport isorganized asfollows. Section 2 presentsthe solution for the controller itsel f
aswell as describing each of the modelsfor the rest of the system. Section 3 outlinesthe process of

verification of safety propertiesof ESTEREL programs and Section 4 describestheformal verification
process for the solution presented and a discussion of the issues faced to achieve it as well as the
performance of the verification itself. We conclude with adiscussionin Section 5.

2 The Solution in ESTEREL

The main ESTEREL module of the solution is shown below. It uses the parale (synchronous)
composition operator to run al the elements of the problem in parallel, namely, the gate, the trains
and the controller:

nmodul e GRC
i nput APPROACH 0, ..., APPROACH N,
output UP, DONW, IN R IN_;
signal RAISE, LONER, GO NG UP, GO NG _DOWN,
ENTER R ENTER I, EXIT in
run Gate

run Track [signal APPROACH 0/ APPROACH]

run Track [signal APPROACH N APPROACH]
N

run Controller
end si gnal
end nodul e

Our solution involves choosing a model of gate and train behaviors. This choice is
essentially due to the fact that it is not possible to specify non-deterministic behaviors in ESTEREL
programs other than by inclusion of external signals. Implementing more sophisticate models of
the gate or trainsis possible (e.g. letting the trains enter and leave the intersection in shorter times
instead of fixed times) but we feel it is unnecessarily cumbersome, since they would not embody
WOrse case scenarios.

Similarly, the number of trainsthat the solution comprises needs to be chosen at compile
time — it is not possibleto provide a solution with the number of trains not being fixed, dueto the
nature of both the ESTEREL programming language and the proof technique. In order to achieve
proofsthis general, techniquesat other levels of abstraction would be necessary. More detailsof the
different parts of the solution are shown in the subsections bel ow.

21 ModdingtheTrains

The presence of signal APPROACH.i denotesatrain entering R intrack «. Thisisan external signal
which can arrive at any instant, thus modeling the non-deterministic nature of a train approaching
on atrack. The systemis only responsive to this signal when thereis no train in the corresponding
track; the signa can be viewed as really modeling a track (thus the name). We pick afixed number
of time units(signal | N.Ris sustained for 6 time units), until thetrain enters /. We then again pick a
number of time unitsfor the train to leave the region (signal | NI sustainedin an interval of 4 time
units), then we emit the EXI T signal and go back to waiting for the approach signal to be present.

Thel N_and ENTER_signalsaswell asthe EXI T signal areloca signalsthat are instanta-
neously broadcast by each of thetrains (in ESTEREL one signal is present in atimeinstant aslong as
itisemitted at least once). The implementation of the train module is shown below:

nodul e Track

i nput APPROACH,
out put ENTER R, ENTER I,

| oop
awai t
emt
emt
emt
em t
emt
emt
emt
emt
emt
emt
em t
emt
emt

end | oop

end nodul e

2.2 Moddingthe Gate

We choose to model the gate as being in one of possiblefour states: UP, DOWN, GO NG.UP, and
GO NG.DOMN. We pick fixed values for the time it takes to go from GO NG_UP to UP (4 time units)
and from GOl NG UP to UP (4 time units). The gateis commanded by the RAI SE and LOAER signal s,

i medi at e APPROACH;

ENTER R

IN_R
IN_R
IN_R
IN_R
IN_R
IN_R

awai t
awai t
awai t
awai t
awai t
awai t

ENTER | ;

INI;
INI;
INI;
INI;
EXIT

awai t
awai t
awai t
awai t

EXIT,

t
t
t
t
t
t

t
t
t
t

ck;
ck;
ck;
ck;
ck;
ck;

ck;
ck;
ck;
ck;

emitted by the controller, which are assumed to never be emitted simultaneously (thusther el at i on
statement). The implementation is shown bel ow:

nodul e Gate:

i nput RAI SE, LONER
out put UP, DOW, GO NG UP, GO NG _DOW;
rel ati on RAI SE # LONER,
signal TIMER_UP, TIMER DOMN in
| oop

do

sustai n DOMWN
wat chi ng i rmedi at e RAI SE;
trap UPPING in

[

[
do

sustai n GO NG_UP;
wat chi ng i mmedi ate [LOAER or TI MER UP];
exit UPPI NG

await tick;
await tick;
await tick;
await tick;
emt TIMER UP;
exit UPPI NG
]
]

end trap;
do
sustain UP
wat chi ng i mmedi ate LOVER;
trap DOMNNI NG i n

[

[
do

sustai n GO NG_DOWN;
wat chi ng i mmedi ate [RAI SE or TI MER DO ;
exit DOANI NG

await tick;
await tick;
await tick;
await tick;

emt TI MER DOV,
exit DOMNNI NG

]

end trap
end | oop
end si gnal
end nodul e

One possibleimprovement to the model of the gate would involve letting the gate show a
more realistic behavior in terms of modeling the fact that it would takelessfor it to get al theway up
if itisnot completely down. Another improvement would beto allow it to arrive up (or down) earlier
than 4 time instants; this would involve the addition of externa signalsto model that. Note that
the implementation above presents a more restricted (or worse) case, thus the improvements would
still not violate the properties, but alow more complicate scenarios to happen, with an obvious
enlargement of the overall state space and compilation times.

2.3 TheGateController

Theimplementation of the gate controller ispretty simple: at every timeinstant, if thereisany train
in the region, emit the LOAER signal, otherwise, emit the RAI SE signal:

nodul e Controller:
i nput ENTER_R, ENTER I, IN.R IN.I, EXIT,
out put RAI SE, LOVER;
every inmediate tick do
present [IN.Ror INI] then

emt LOAER
el se
emt RAISE
end present
end every

end nodul e

Note that the signals LOAER and RAI SE are sustained when they need to be active. This
takes advantage of the features of ESTEREL but if these signals are tied to some physical device such

that repeatedly emitting them can cause damage or malfunction to the gate physical devices, it is
not wise to use thisimplementation. The following alternate implementation would suit the same
purpose (without violating the properties):

nodul e Control |l er:

i nput ENTER_R, ENTER I, IN.R IN.I, EXIT,
out put RAI SE, LOVER;
| oop

present [not (INRor IN1)] then
% 1st pass through the | oop

emt RAISE
end;
await imrediate [INRor INI];
emt LONER;

awai t tick;
await imrediate [not (INRor INI)];
end | oop
end nodul e

3 Verifying Safety Propertiesof ESTEREL Programs

The process of verifying safety properties of ESTEREL programs involves three steps. This process
isfully explained in [5] and is as follows:

1. Translation of the propertiesfrom temporal logic to ESTEREL.
2. Compilation of the given program in parallel with the ESTEREL model of the properties.

3. Check for satisfaction/violation of the properties over the resulting finite state machine.

The translation from temporal logic formulas to ESTEREL programs roughly consists of
recursively tranglating a given safety formula in into an ESTEREL program, which can be viewed
as a finite state acceptor of the computations satisfying the formula. This automata introduces a
special ESTEREL signal SAT_p which is emitted in exactly those reactions satisfying the formula p.
Thisprogramissaid to “model” the property. Thistechniqueis based onwork presentedin [8]. For
practical reasons, the synthetic code emits a signal VI OLATED.p in every state that the formulais
not satisfied. After compiling the formula with the given program, the checking a gorithm consists
of searching for a state where VI OLATED._p is emitted, returning successfully if no such state exists.
Otherwise, it terminates returning a computation path starting in the initia state of the program an
ending in a state that violates p.

The compilation step of the ESTEREL program is performed by the ESTEREL compiler,
availablefrom the ESTEREL development team'. Thefinite state machinesgenerated by the ESTEREL
compiler are such that, by construction, it is guaranteed that for all states s in them there exists at
least a computation such that s is reachable from theinitial state, i.e. thereisno state that cannot be
potentially reached from theinitial state. Thisfeatureiswhat allowsthe compiler to be used towards
constructing afinite state machine of the program and the property; by exhaustively generating all
the reachabl e states of the program and the model of the properties, the ESTEREL compiler in effect
performs model checking [3].

The procedure for checking is thus reduced to a linear search of the generated state
machine. The compiler is exponentia time and space in the worst case since it exhaustively
generates all the state space, but it is reasonable to assume that programs and formulas useful in
practice do not generally blow up the state space.

3.1 Classof propertiessupported for verification

The technique just outlined supports the verification of the class of linear tempora logic safety
formulas over the aphabet of signal identifiers in the given program. Informally, these formulas
stipulatethat “ something bad never happens.” Moreformally, aformulaissaidto beasafety formula
if any sequence violating it contains a prefix al whose infinite extensionsviolateit aswell.

In tempora logic [7], asafety formulais an expression of the form O p, where O isthe
“adways’ operator, which quantifiesover all computation statesand p isa“past” formula. The class
of past formulas is defined to be the aphabet of signa names closed under the boolean operators
and the linear temporal logic past operators (previous, back-to, since, henceforth, and has-always-
been). The technique supports (efficiently) some so-called past response operators as well, namely,
it supportsthe two following useful operators (which can be defined in terms of past operators):

e Bounded responseformulasof theform p— < ,¢, whoseva ueistrueat the current timeinstant
if p wastrue d timesinstantsin the past and ¢ has been true at some point from then up to the
current instant.

e Bounded ensures formulas of theform p~- < ,¢, whoseva ueistrue at the current timeinstant

if p wastrueinthe past d instantsand ¢ istrue in the present instant.

We refer thereader to [7] for further details on temporal logic safety properties and to [5]
for the technique and expressions supported by it.

! Contact by electronic mail to est er el - r equest @ma. cna. fr.

4 Formal Verification of the GRC Solution

The problem consists of showing that the system satisfies the following properties, expressed in
tempora logic[7]:

Safety Property: ¢ € U;\; = ¢(t) = 0. Thegateisdown if thereisany train in the crossing.

It is easy to seethat this property correspondsto the original formulation of the property: the
signal | NI is active when there is some train in some track in the intersection (i.e the union
of al the occupancy intervals) and DOWN correspondsto the gate being down (¢(t) = 0), thus
the expression for thisproperty is: O | NI — DOMN.

Utility Property: t € U;[1; — &1, v + &) = ¢(t) = 90. The gateis up when no trains are in the
crossing.

It ispretty clear that in a physical system like the one described by the problem, not al given
valuesfor & and &, will allow a solution to the problem to be developed. The range of valid
values for the constants are influenced by values such as the speed of the trains, the speed of
the gate or the distance from the approach sensorsto /. Given that we have chosen models
for the physical parts of the system, the property has to capture thevalid valuesin it:

e Thevauefor & cannot be smaller than the time from then system starting lowering the
gate until the train enters 7. In our implementation the gate starts being lowered at the
sametimeinstant that any train enters R thusin our case, regardless of whatever value &,
may have, we cantakethesignal | N.Rtobethe“indicator” of | NI becoming activelater
than &, time units afterwards. We have to rely in this approach because the verification
technique does not support expressions involving “future” events. This approach leads
to astronger property aslong as¢, islonger than what it takesfor atrain to get to 7 once
it enters R and it does not take into account the constant itself. If our implementation
would take time between | N.R becoming active and the gate starting to lower, then the
expression of the utility property would have to be modified to includeit.

e Thevalue of £, must be larger than the time it takes for the gate go all the way up after
all trains have left 7 (in out model of the gate, thisis 4 time instants). In out model of
thetrainsthetimeit takesatrain to leave R would have to be added (zero in our case).
We take &, to be 5 for the utility property.

We thustake the most restrictive val ue of the constant to prove that the system does not violate
the utility property. The choice of ignoring &; in favor of using the sensor system for the

region alowsthe the expression of the utility formulato simplify:

O-(INR V I NI)~ ©5UP.

This property specifies that “if thereis no train in I nor R during any time interval of size
5, then the gate must be up.” In the general case, since we cannot formulate future-tense
formulas, we would have to use the assumption mentioned for £; and the general expression
of the property wouldbe: O —(I NR V | NLI) ~+ €, UP.

This property uses the ~- < (ensures) operator, which isa“response” operator. Its semantics
isasfollows: aformulap~-<,q specifiesthat “for any computation interval of size d where
p holds continuously, ¢ must hold at the end of theinterval.” More formally, this operator can
be defined in terms of past-tense temporal |ogic operators?:

d—1
p~©aq = (/\ O'p) = q.
k=0

These two properties are technically safety properties (since they refer to finiteintervals),
thus they fall into the class of properties that the technique can formally verify, although the nature
of the utility property is dlightly different than the “safety” property —it captures requirements that
anull implementation (e.g. the gate being down continuously) would not satisfy, even if it satisfies
the “safety” property.

We have verified both of the properties using the automated tools associated with the
technique outlined in Section 3. For the system to behave as specified, the trains must take longer to
reach I oncethey enter R than the gate to lower al the way down —the properties cannot be proved
true at all times by the system otherwise.

The main module used for the verification is shown below. The GRC moduleisrunin
parallel with the models of the properties:

nodul e Mai n:
i nput APPROACH 0, ..., APPROACH N,
out put UP, DOWN;
signal INR INI in
run GRC

N
run Safety

N
run Utility

end si gnal

2Note that © is the “previous’ operator and ©*p are k applications of © on expression p. The expression &°p
equivalesto p

Thecompiled state space of theprogramis 1468 states. Wenotethat thissizeisnot affected
by any nor both models of the properties being compiled in paralldl with the implementation. This
isacommon case when propertiesare not violated by theimplementation; theintuitivereason isthat
the actual value of the propertiesis awaystrue at al states, thus there isno need to track different
values of the model of the properties at each point.

Another quality that the ESTEREL-generated state machines exhibit is that each state
actually represents a decision tree which encodes al the internal computations performed within
onereaction. In the synchronous model, the reaction to a set of inputsisinstantaneous, and the next
state of the reaction can be one of several, depending on the state, the inputsand the decisions taken
during the reaction based on those. In most state machine based approaches, each state encodes one
of these decisions, thus that is usually considered to be the actual size of the system. In our case,
the total number of statesfor the 1468-state machine amounts to 2465.

4.1 Performance of the Verification Process

The performance of the different stages in the verification process has been measured in a Sparc10
workstation from Sun Microsystems with 32Mb of core memory and 62Mb of swap space. The
implementation constants picked are as described above, i.e. each train takes 6 time units to enter
the intersection once it enters the region and takes 4 time units to leave the intersection once it has
entered it, the gate takes at most 4 time unitsto go all the way up or al the way down. With this
configuration, the controller itself has 4 stateswhen compiled, the gate has 11 states and each of the
3trains has 12 states.

The verifier tool, called tl2strl, isa program whose input is a (file with a) set of
tempora logic formulas and whose output is (a file with) an ESTEREL program. For the GRC
properties, the execution time of thetranglationis approximately 0.45 seconds. Thisisafairly short
time because the properties are really small. The trandation tool has been developed using the
Standard ML programming language.

The next step is to compile the implementation of the solution with the model of the
properties composed in parallel with it using the ESTEREL V3 compiler. The compilation of the
solution with the model of the safety property takes approximately 10 seconds. The compilation
with the model of the utility property takes approximately 11 seconds. The compilation with the
model's of both properties simultaneously takes approximately 14 seconds.

Thelast stepinthe processisto search theresulting finite state machinefor any stateemit-
ting any of thetwo signalsindicating the violation of the properties. The search takesapproximately
11.2 seconds for each property. At thistime the search engine over the model is implemented by
arather crude and inefficient scripting language (Perl). This search time can be optimized several

10

orders of magnitude by using an efficient language such as C and performing the search in core
memory, or using readily available ESTEREL tools such as AGEL [1].

Thevariousexecution timesof the stages described can bemoreor lessimproved, however,
the theoretical bottleneck liesin the ESTEREL compilation step, since the resulting state space of the
system can be, in the worst case, exponential on the size of the program. We have aso performed
verificationin severa problems (see [6] for amore detail ed description of area-world application),
and it has been found to be highly effective in practice.

5 Discussion

We have presented a solution to the Generalized Railroad Crossing within the environment of
EsTerREL. The solution includes the formal verification of the two properties listed in the problem
statement using a verification technique for safety properties of ESTEREL programs.

Because ESTEREL only alowsthe specification of purely deterministic behaviors, models
for the trains and the gate have had to be chosen so that the verification can be performed against a
concrete system. The verification is limited to safety properties expressed in linear-time temporal
logic, thus no expressions in future tense are allowed. Thisforced us to prove a stronger version of
the utility property.

At one point during the process of verification of the properties, the verification tools
pointed out a (rather subtle) scenario allowed by the implementation which violated one of the
properties, allowing us to locate an error in the implementation which we believe would otherwise
be very difficult to find in other circumstances.

Theadvantage of the approach used for verification of programs based on the synchronous
model of ESTEREL isthat the actual text of the program is verified, eliminating any room for errors
introduced by any possiblemanual or semi-manual translation from averified model to an executable
implementation as it iscommon in other verification methods.

References

[1] AGEL workshop manual version 3.0, 1989. Produced by ILOG.

[2] G.Berry and G. Gonthier. The ESTEREL synchronousprogramming language: design, seman-
tics, implementation. Science of Computer Programming, 19:87-152, 1992.

[3] EMM. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite state concurrent
systems using temporal logic specifications. ACM TOPLAS, 8(2):244—263, 1986.

11

[4] C. Heitmeyer, R.D. Jeffords, and B. Labaw. A benchmark for comparing different approaches
for specifying and verifying real-time systems. In Proceedings 10th International Wor kshop on
Real-Time Operating Systems and Software, May 1993.

[5] L.J. Jagadeesan, C. Puchol, and J.E. Von Olnhausen. Verification of safety propertiesof ESTEREL
programs and a telecommuni cations application.

[6] L.J. Jagadeesan, C. Puchol, and J.E. Von Olnhausen. A forma approach to reactive systems
software: A telecommunications application in ESTEREL. In Workshop on Industrial-strength
Formal Specification Techniques, April 1995.

[7] Z.Mannaand A. Pnueli. The Temporal Logic of Reactiveand Concur rent Systems, Specification.
Springer-Verlag, 1992.

[8] P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about infinite computation paths. In IEEE
Symposium on Foundations of Computer Science, pages 185-194, 1983.

A The ESTEREL programming language

Overview

ESTEREL [2] is a language, with a precisely defined mathematical semantics, for programming
the class of deterministic reactive systems that wait for a set of possibly simultaneous inputs,
react to the inputs by computing and producing outputs, and then quiesce, waiting for new inputs.
ESTEREL is based on the “synchrony hypothesis,” every reaction to a set of inputs is considered
to be instantaneous. The programming model in ESTEREL is the specification of components, or
modules, that run in parallel. Modules communicate with each other and the outside world through
signals, which are broadcast and may carry values of arbitrary types. Consistent with the synchrony
hypothesis, the emission and reception of signasis considered to be instantaneous.

EsTeREL allows only deterministic behaviorsto be specified: theinputsto every reaction
(and the current values of variables) fully determine the outputs emitted in that reaction as well as
the input-output behavior of the rest of the program. Along with the synchrony hypothesis, both
communication and pre-emption preserve determinism. Furthermore, al internal communicationis
compiled away, and a single deterministic finite state machine is generated by the compiler. Thus,
the parallelism in ESTEREL is a structuring tool for programming convenience, and does not incur
any run-time overhead — the compiler automatically performs the complex interleaving between
parallel modules. Furthermore, since this implementation is a finite state machine, the maximum

12

amount of time taken by any reaction can be accurately bounded if the execution times of the
transitions are known.

Language Constructs

Our implementation of the solution and the translation of temporal logic safety formulas uses only
a subset of ESTEREL constructs, which we motivate here. The emit S statement, where S is a
signal, indicatesthat S is present in the current reaction. Thesust ai n S construct isequivalent to
emitting S forever. Theawai t S construct blocksuntil the next reactioninwhich Sispresent. The
awai t i nmedi ate Striggersif Sis present in the current reaction; otherwise, it blocks until the
next reaction in which Sis present.

Thepresent S then BODY1l el se BODY2 end construct checks whether the signal
S is present in the current reaction; if so, BODY1 is executed, otherwise BODY2 is executed. The
every S do BODY end construct restarts BODY in every future reaction in which S is present.
Theevery i medi ate S do BODY end construct restartsBODY in every reaction, including the
current one, in which Sispresent. Thedo BODY wat chi ng S end construct executes BODY until
the next reaction in which S is present. Thedo BODY wat chi ng i mredi ate S end construct
executes BODY until thefirst reaction, including the current one, in which Sis present. Findly, the
| oop BODY end isaninfiniteloop, in which BODY is executed continually.

More generaly, boolean combinations of signals can be used instead of asinglesigna S
in all the constructs above (except for eni t), with the obvious interpretation. The reserved signal
ti ck is by definition present in every reaction. Thus, awai t ti ck blocksuntil the next reaction,
andevery i mmedi ate tick do BODY end restarts BODY in every reaction.

13

