
A Solution to the

Generalized Railroad Crossing Problem
in ESTEREL

Carlos Puchol

Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712-1188

cpg@cs.utexas.edu

http://www.cs.utexas.edu/users/cpg

Abstract

We present a solution to the Generalized Railroad Crossing benchmark problem based on

the ESTEREL programming language. The solution is shown to satisfy the formal statements of

the properties that the system requirements specify by using a verification method for safety

properties of ESTEREL programs recently developed. The solution and verification presented

have been developed within the synchronous system model, i.e. discrete time, global broadcast

of events and instantaneous reactions.

Keywords: ESTEREL, reactive systems, synchronous systems, system verification, systems

specification, formal methods.

1 The Generalized Railroad Crossing Problem

The Generalized Railroad Crossing (GRC) problem is a benchmark problem that has been recently

proposed [4] to compare formal methods that exist for specifying, designing and analyzing real-time

systems and to better understand their utility in the development of practical systems. Informally,

it consists of a gate controlling a railroad intersection I within a region of interest R, where trains

travel through, on multiple tracks, in both directions. A sensor system determines when each train

enters and exits R. The problem statement includes two properties that the system must satisfy at

all times. The formal statement of the GRC problem is as follows:

The system to be developed operates a gate at a railroad crossing. The railroad

crossing I lies in a region of interest R, i.e., I � R. A set of trains travel throughR on multiple tracks in both directions. A sensor system determines when each train

enters and exits region R. To describe the system formally, we define a gate functiong(t) 2 [0; 90], where g(t) = 0 means the gate is down and g(t) = 90 means the gate

is up. We define a set f�ig of occupancy intervals, where each occupancy interval is

a time interval during which one or more trains are in I . The ith occupancy interval

is represented as �i = [�i; �i], where �i is the time of the ith entry of a train into the

crossing when no other train is in the crossing and �i is the first time since �i that no

train is in the crossing (i.e., the train that entered at �i has exited as have any trains that

entered the crossing after �i).
Given two constants �i and �2, �1 > 0; �2 > 0, the problem is to develop a system

to operate the crossing gate that satisfies the following two properties:

Safety Property: t 2 [i�i) g(t) = 0 (The gate is down during all occupancy

intervals.)

Utility Property: t 62 [i[�i� �1; �i + �2]) g(t) = 90 (The gate is up when no train

is in the crossing.)

We present a solution to the GRC problem using the ESTEREL programming language,

which is based on a synchronous execution model (see Appendix A for a brief outline of the

synchronous model and the ESTEREL language itself). We have mechanically verified the two

safety properties using the verification technique and associated tools presented in [5]. The solution

comprises modeling “reasonable” behaviors for the gate and the trains; they are run in parallel to

the actual implementation of the controller module.

This report is organized as follows. Section 2 presents the solution for the controller itself

as well as describing each of the models for the rest of the system. Section 3 outlines the process of

1

verification of safety properties of ESTEREL programs and Section 4 describes the formal verification

process for the solution presented and a discussion of the issues faced to achieve it as well as the

performance of the verification itself. We conclude with a discussion in Section 5.

2 The Solution in ESTEREL

The main ESTEREL module of the solution is shown below. It uses the parallel (synchronous)

composition operator to run all the elements of the problem in parallel, namely, the gate, the trains

and the controller:

module GRC:
input APPROACH_0, ..., APPROACH_N;
output UP, DOWN, IN_R, IN_I;

signal RAISE, LOWER, GOING_UP, GOING_DOWN,
ENTER_R ENTER_I, EXIT in
run Gate

||
run Track [signal APPROACH_0/APPROACH]

||
...

||
run Track [signal APPROACH_N/APPROACH]

||

run Controller
end signal

end module

Our solution involves choosing a model of gate and train behaviors. This choice is

essentially due to the fact that it is not possible to specify non-deterministic behaviors in ESTEREL

programs other than by inclusion of external signals. Implementing more sophisticate models of

the gate or trains is possible (e.g. letting the trains enter and leave the intersection in shorter times

instead of fixed times) but we feel it is unnecessarily cumbersome, since they would not embody

worse case scenarios.

Similarly, the number of trains that the solution comprises needs to be chosen at compile

time — it is not possible to provide a solution with the number of trains not being fixed, due to the

nature of both the ESTEREL programming language and the proof technique. In order to achieve

proofs this general, techniques at other levels of abstraction would be necessary. More details of the

different parts of the solution are shown in the subsections below.

2

2.1 Modeling the Trains

The presence of signal APPROACH i denotes a train entering R in track i. This is an external signal

which can arrive at any instant, thus modeling the non-deterministic nature of a train approaching

on a track. The system is only responsive to this signal when there is no train in the corresponding

track; the signal can be viewed as really modeling a track (thus the name). We pick a fixed number

of time units (signal IN R is sustained for 6 time units), until the train enters I . We then again pick a

number of time units for the train to leave the region (signal IN I sustained in an interval of 4 time

units), then we emit the EXIT signal and go back to waiting for the approach signal to be present.

The IN and ENTER signals as well as the EXIT signal are local signals that are instanta-

neously broadcast by each of the trains (in ESTEREL one signal is present in a time instant as long as

it is emitted at least once). The implementation of the train module is shown below:

module Track:
input APPROACH;

output ENTER_R, ENTER_I, EXIT, IN_R, IN_I;
loop

await immediate APPROACH;
emit ENTER_R;
emit IN_R; await tick;

emit IN_R; await tick;
emit IN_R; await tick;
emit IN_R; await tick;
emit IN_R; await tick;
emit IN_R; await tick;

emit ENTER_I;
emit IN_I; await tick;
emit IN_I; await tick;
emit IN_I; await tick;
emit IN_I; await tick;

emit EXIT
end loop

end module

2.2 Modeling the Gate

We choose to model the gate as being in one of possible four states: UP, DOWN, GOING UP, and

GOING DOWN. We pick fixed values for the time it takes to go from GOING UP to UP (4 time units)

and from GOING UP to UP (4 time units). The gate is commanded by the RAISE and LOWER signals,

3

emitted by the controller, which are assumed to never be emitted simultaneously (thus the relation

statement). The implementation is shown below:

module Gate:
input RAISE, LOWER;
output UP, DOWN, GOING_UP, GOING_DOWN;

relation RAISE # LOWER;
signal TIMER_UP, TIMER_DOWN in
loop

do
sustain DOWN

watching immediate RAISE;
trap UPPING in

[
[

do

sustain GOING_UP;
watching immediate [LOWER or TIMER_UP];
exit UPPING

]
||

[
await tick;
await tick;
await tick;
await tick;

emit TIMER_UP;
exit UPPING

]
]

end trap;

do
sustain UP

watching immediate LOWER;
trap DOWNING in

[

[
do

sustain GOING_DOWN;
watching immediate [RAISE or TIMER_DOWN];
exit DOWNING;

]

||
[

4

await tick;
await tick;

await tick;
await tick;
emit TIMER_DOWN;
exit DOWNING

]

]
end trap

end loop
end signal

end module

One possible improvement to the model of the gate would involve letting the gate show a

more realistic behavior in terms of modeling the fact that it would take less for it to get all the way up

if it is not completely down. Another improvement would be to allow it to arrive up (or down) earlier

than 4 time instants; this would involve the addition of external signals to model that. Note that

the implementation above presents a more restricted (or worse) case, thus the improvements would

still not violate the properties, but allow more complicate scenarios to happen, with an obvious

enlargement of the overall state space and compilation times.

2.3 The Gate Controller

The implementation of the gate controller is pretty simple: at every time instant, if there is any train

in the region, emit the LOWER signal, otherwise, emit the RAISE signal:

module Controller:
input ENTER_R, ENTER_I, IN_R, IN_I, EXIT;

output RAISE, LOWER;
every immediate tick do

present [IN_R or IN_I] then
emit LOWER

else

emit RAISE
end present

end every
end module

Note that the signals LOWER and RAISE are sustained when they need to be active. This

takes advantage of the features of ESTEREL but if these signals are tied to some physical device such

5

that repeatedly emitting them can cause damage or malfunction to the gate physical devices, it is

not wise to use this implementation. The following alternate implementation would suit the same

purpose (without violating the properties):

module Controller:
input ENTER_R, ENTER_I, IN_R, IN_I, EXIT;
output RAISE, LOWER;
loop

present [not (IN_R or IN_I)] then

% 1st pass through the loop
emit RAISE;

end;
await immediate [IN_R or IN_I];
emit LOWER;

await tick;
await immediate [not (IN_R or IN_I)];

end loop
end module

3 Verifying Safety Properties of ESTEREL Programs

The process of verifying safety properties of ESTEREL programs involves three steps. This process

is fully explained in [5] and is as follows:

1. Translation of the properties from temporal logic to ESTEREL.

2. Compilation of the given program in parallel with the ESTEREL model of the properties.

3. Check for satisfaction/violation of the properties over the resulting finite state machine.

The translation from temporal logic formulas to ESTEREL programs roughly consists of

recursively translating a given safety formula in into an ESTEREL program, which can be viewed

as a finite state acceptor of the computations satisfying the formula. This automata introduces a

special ESTEREL signal SAT p which is emitted in exactly those reactions satisfying the formula p.

This program is said to “model” the property. This technique is based on work presented in [8]. For

practical reasons, the synthetic code emits a signal VIOLATED p in every state that the formula is

not satisfied. After compiling the formula with the given program, the checking algorithm consists

of searching for a state where VIOLATED p is emitted, returning successfully if no such state exists.

Otherwise, it terminates returning a computation path starting in the initial state of the program an

ending in a state that violates p.

6

The compilation step of the ESTEREL program is performed by the ESTEREL compiler,

available from the ESTEREL development team1. The finite state machines generated by the ESTEREL

compiler are such that, by construction, it is guaranteed that for all states s in them there exists at

least a computation such that s is reachable from the initial state, i.e. there is no state that cannot be

potentially reached from the initial state. This feature is what allows the compiler to be used towards

constructing a finite state machine of the program and the property; by exhaustively generating all

the reachable states of the program and the model of the properties, the ESTEREL compiler in effect

performs model checking [3].

The procedure for checking is thus reduced to a linear search of the generated state

machine. The compiler is exponential time and space in the worst case since it exhaustively

generates all the state space, but it is reasonable to assume that programs and formulas useful in

practice do not generally blow up the state space.

3.1 Class of properties supported for verification

The technique just outlined supports the verification of the class of linear temporal logic safety

formulas over the alphabet of signal identifiers in the given program. Informally, these formulas

stipulate that “something bad never happens.” More formally, a formula is said to be a safety formula

if any sequence violating it contains a prefix all whose infinite extensions violate it as well.

In temporal logic [7], a safety formula is an expression of the form 2 p, where 2 is the

“always” operator, which quantifies over all computation states and p is a “past” formula. The class

of past formulas is defined to be the alphabet of signal names closed under the boolean operators

and the linear temporal logic past operators (previous, back-to, since, henceforth, and has-always-

been). The technique supports (efficiently) some so-called past response operators as well, namely,

it supports the two following useful operators (which can be defined in terms of past operators):� Bounded response formulas of the form p! -3dq, whose value is true at the current time instant

if p was true d times instants in the past and q has been true at some point from then up to the

current instant.� Bounded ensures formulas of the form p; -3dq, whose value is true at the current time instant

if p was true in the past d instants and q is true in the present instant.

We refer the reader to [7] for further details on temporal logic safety properties and to [5]

for the technique and expressions supported by it.1Contact by electronic mail to esterel-request@cma.cma.fr.

7

4 Formal Verification of the GRC Solution

The problem consists of showing that the system satisfies the following properties, expressed in

temporal logic [7]:

Safety Property: t 2 [i�i) g(t) = 0. The gate is down if there is any train in the crossing.

It is easy to see that this property corresponds to the original formulation of the property: the

signal IN I is active when there is some train in some track in the intersection (i.e the union

of all the occupancy intervals) and DOWN corresponds to the gate being down (g(t) = 0), thus

the expression for this property is: 2 IN I! DOWN.

Utility Property: t 62 [i[�i � �1; �i + �2]) g(t) = 90. The gate is up when no trains are in the

crossing.

It is pretty clear that in a physical system like the one described by the problem, not all given

values for �1 and �2 will allow a solution to the problem to be developed. The range of valid

values for the constants are influenced by values such as the speed of the trains, the speed of

the gate or the distance from the approach sensors to I . Given that we have chosen models

for the physical parts of the system, the property has to capture the valid values in it:� The value for �1 cannot be smaller than the time from then system starting lowering the

gate until the train enters I . In our implementation the gate starts being lowered at the

same time instant that any train enters R thus in our case, regardless of whatever value �1
may have, we can take the signalIN R to be the “indicator” of IN I becoming active later

than �1 time units afterwards. We have to rely in this approach because the verification

technique does not support expressions involving “future” events. This approach leads

to a stronger property as long as �1 is longer than what it takes for a train to get to I once

it enters R and it does not take into account the constant itself. If our implementation

would take time between IN R becoming active and the gate starting to lower, then the

expression of the utility property would have to be modified to include it.� The value of �2 must be larger than the time it takes for the gate go all the way up after

all trains have left I (in out model of the gate, this is 4 time instants). In out model of

the trains the time it takes a train to leave R would have to be added (zero in our case).

We take �2 to be 5 for the utility property.

We thus take the most restrictive value of the constant to prove that the system does not violate

the utility property. The choice of ignoring �1 in favor of using the sensor system for the

8

region allows the the expression of the utility formula to simplify:2 :(IN R _ IN I); -35UP:
This property specifies that “if there is no train in I nor R during any time interval of size

5, then the gate must be up.” In the general case, since we cannot formulate future-tense

formulas, we would have to use the assumption mentioned for �1 and the general expression

of the property would be: 2 :(IN R _ IN I); -3�2UP.

This property uses the ; -3 (ensures) operator, which is a “response” operator. Its semantics

is as follows: a formula p; -3dq specifies that “for any computation interval of size d wherep holds continuously, q must hold at the end of the interval.” More formally, this operator can

be defined in terms of past-tense temporal logic operators2:p; -3dq � (d�1̂k=0 �
kp)! q:
These two properties are technically safety properties (since they refer to finite intervals),

thus they fall into the class of properties that the technique can formally verify, although the nature

of the utility property is slightly different than the “safety” property –it captures requirements that

a null implementation (e.g. the gate being down continuously) would not satisfy, even if it satisfies

the “safety” property.

We have verified both of the properties using the automated tools associated with the

technique outlined in Section 3. For the system to behave as specified, the trains must take longer to

reach I once they enter R than the gate to lower all the way down –the properties cannot be proved

true at all times by the system otherwise.

The main module used for the verification is shown below. The GRC module is run in

parallel with the models of the properties:

module Main:
input APPROACH_0, ..., APPROACH_N;

output UP, DOWN;
signal IN_R, IN_I in

run GRC
||

run Safety

||
run Utility

end signal2Note that �
 is the “previous” operator and �
kp are k applications of �
 on expression p. The expression �
0p
equivales to p

9

The compiled state space of the program is 1468 states. We note that this size is not affected

by any nor both models of the properties being compiled in parallel with the implementation. This

is a common case when properties are not violated by the implementation; the intuitive reason is that

the actual value of the properties is always true at all states, thus there is no need to track different

values of the model of the properties at each point.

Another quality that the ESTEREL-generated state machines exhibit is that each state

actually represents a decision tree which encodes all the internal computations performed within

one reaction. In the synchronous model, the reaction to a set of inputs is instantaneous, and the next

state of the reaction can be one of several, depending on the state, the inputs and the decisions taken

during the reaction based on those. In most state machine based approaches, each state encodes one

of these decisions, thus that is usually considered to be the actual size of the system. In our case,

the total number of states for the 1468-state machine amounts to 2465.

4.1 Performance of the Verification Process

The performance of the different stages in the verification process has been measured in a Sparc10

workstation from Sun Microsystems with 32Mb of core memory and 62Mb of swap space. The

implementation constants picked are as described above, i.e. each train takes 6 time units to enter

the intersection once it enters the region and takes 4 time units to leave the intersection once it has

entered it, the gate takes at most 4 time units to go all the way up or all the way down. With this

configuration, the controller itself has 4 states when compiled, the gate has 11 states and each of the

3 trains has 12 states.

The verifier tool, called tl2strl, is a program whose input is a (file with a) set of

temporal logic formulas and whose output is (a file with) an ESTEREL program. For the GRC

properties, the execution time of the translation is approximately 0.45 seconds. This is a fairly short

time because the properties are really small. The translation tool has been developed using the

Standard ML programming language.

The next step is to compile the implementation of the solution with the model of the

properties composed in parallel with it using the ESTEREL V3 compiler. The compilation of the

solution with the model of the safety property takes approximately 10 seconds. The compilation

with the model of the utility property takes approximately 11 seconds. The compilation with the

models of both properties simultaneously takes approximately 14 seconds.

The last step in the process is to search the resulting finite state machine for any state emit-

ting any of the two signals indicating the violation of the properties. The search takes approximately

11.2 seconds for each property. At this time the search engine over the model is implemented by

a rather crude and inefficient scripting language (Perl). This search time can be optimized several

10

orders of magnitude by using an efficient language such as C and performing the search in core

memory, or using readily available ESTEREL tools such as AGEL [1].

The various execution times of the stages described can be more or less improved,however,

the theoretical bottleneck lies in the ESTEREL compilation step, since the resulting state space of the

system can be, in the worst case, exponential on the size of the program. We have also performed

verification in several problems (see [6] for a more detailed description of a real-world application),

and it has been found to be highly effective in practice.

5 Discussion

We have presented a solution to the Generalized Railroad Crossing within the environment of

ESTEREL. The solution includes the formal verification of the two properties listed in the problem

statement using a verification technique for safety properties of ESTEREL programs.

Because ESTEREL only allows the specification of purely deterministic behaviors, models

for the trains and the gate have had to be chosen so that the verification can be performed against a

concrete system. The verification is limited to safety properties expressed in linear-time temporal

logic, thus no expressions in future tense are allowed. This forced us to prove a stronger version of

the utility property.

At one point during the process of verification of the properties, the verification tools

pointed out a (rather subtle) scenario allowed by the implementation which violated one of the

properties, allowing us to locate an error in the implementation which we believe would otherwise

be very difficult to find in other circumstances.

The advantage of the approach used for verification of programs based on the synchronous

model of ESTEREL is that the actual text of the program is verified, eliminating any room for errors

introduced by any possible manual or semi-manual translation from a verified model to an executable

implementation as it is common in other verification methods.

References

[1] AGEL workshop manual version 3.0, 1989. Produced by ILOG.

[2] G. Berry and G. Gonthier. The ESTEREL synchronous programming language: design, seman-

tics, implementation. Science of Computer Programming, 19:87–152, 1992.

[3] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite state concurrent

systems using temporal logic specifications. ACM TOPLAS, 8(2):244–263, 1986.

11

[4] C. Heitmeyer, R.D. Jeffords, and B. Labaw. A benchmark for comparing different approaches

for specifying and verifying real-time systems. In Proceedings 10th International Workshop on

Real-Time Operating Systems and Software, May 1993.

[5] L.J. Jagadeesan, C. Puchol, and J.E. Von Olnhausen. Verification of safety properties of ESTEREL

programs and a telecommunications application.

[6] L.J. Jagadeesan, C. Puchol, and J.E. Von Olnhausen. A formal approach to reactive systems

software: A telecommunications application in ESTEREL. In Workshop on Industrial-strength

Formal Specification Techniques, April 1995.

[7] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems, Specification.

Springer-Verlag, 1992.

[8] P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about infinite computation paths. In IEEE

Symposium on Foundations of Computer Science, pages 185–194, 1983.

A The ESTEREL programming language

Overview

ESTEREL [2] is a language, with a precisely defined mathematical semantics, for programming

the class of deterministic reactive systems that wait for a set of possibly simultaneous inputs,

react to the inputs by computing and producing outputs, and then quiesce, waiting for new inputs.

ESTEREL is based on the “synchrony hypothesis,” every reaction to a set of inputs is considered

to be instantaneous. The programming model in ESTEREL is the specification of components, or

modules, that run in parallel. Modules communicate with each other and the outside world through

signals, which are broadcast and may carry values of arbitrary types. Consistent with the synchrony

hypothesis, the emission and reception of signals is considered to be instantaneous.

ESTEREL allows only deterministic behaviors to be specified: the inputs to every reaction

(and the current values of variables) fully determine the outputs emitted in that reaction as well as

the input-output behavior of the rest of the program. Along with the synchrony hypothesis, both

communication and pre-emption preserve determinism. Furthermore, all internal communication is

compiled away, and a single deterministic finite state machine is generated by the compiler. Thus,

the parallelism in ESTEREL is a structuring tool for programming convenience, and does not incur

any run-time overhead — the compiler automatically performs the complex interleaving between

parallel modules. Furthermore, since this implementation is a finite state machine, the maximum

12

amount of time taken by any reaction can be accurately bounded if the execution times of the

transitions are known.

Language Constructs

Our implementation of the solution and the translation of temporal logic safety formulas uses only

a subset of ESTEREL constructs, which we motivate here. The emit S statement, where S is a

signal, indicates that S is present in the current reaction. The sustain S construct is equivalent to

emitting S forever. The await S construct blocks until the next reaction in which S is present. The

await immediate S triggers if S is present in the current reaction; otherwise, it blocks until the

next reaction in which S is present.

The present S then BODY1 else BODY2 end construct checks whether the signal

S is present in the current reaction; if so, BODY1 is executed, otherwise BODY2 is executed. The

every S do BODY end construct restarts BODY in every future reaction in which S is present.

The every immediate S do BODY end construct restarts BODY in every reaction, including the

current one, in which S is present. The do BODY watching S end construct executes BODY until

the next reaction in which S is present. The do BODY watching immediate S end construct

executes BODY until the first reaction, including the current one, in which S is present. Finally, the

loop BODY end is an infinite loop, in which BODY is executed continually.

More generally, boolean combinations of signals can be used instead of a single signal S

in all the constructs above (except for emit), with the obvious interpretation. The reserved signal

tick is by definition present in every reaction. Thus, await tick blocks until the next reaction,

and every immediate tick do BODY end restarts BODY in every reaction.

13

