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Asynchronous circuit elements are quiescent whenever they are not actually performing a
computation, and thus they potentially waste less power than synchronous circuits. However,
previous research on asymptotically non-dissipative computation has concentrated exclusively
on synchronous computing models, while researchers on asynchronous circuits have ignored the
issues of conservative, reversible computing inherent in ultra low power systems. We show
that delay insensitive asynchronous systems can be made asymptotically non-dissipating. Our
construction achieves this without the need for explicit uncomputation of results that has char-
acterized previous synchronous approaches.

1 Introduction

Computation is a physical process and hence subject to physical laws. One needs to understand the fundamental
limits imposed by these laws in order to develop asymptotically non-dissipative computers. Some of the basic
work on the limits of computation has been addressed in the pioneering work of Bennet, Landauer, Fredkin,
et al. (see, e.g., [2, 3, 8]). Landauer showed that erasure of information leads to a thermodynamic minimum
heat dissipation of kT'In 2 joules per bit.! Bennet [2] proved that irreversible logic gates and information erasure
i1s not fundamental to computation. Since then various computational techniques have been proposed to avoid
dissipation by “unwriting” information [1, 8, 9, 13, 15, 25] instead of erasing it.

Some of the important facts about physical processes relevant to asymptotically non-dissipative computation
may be summarized as follows.

e The physical state of a closed system is a subset of all allowable physical configurations of the system, 1.e.,
a subvolume of its phase space. Physical states are mapped and abstracted as logical states relevant to
computation.

e Information erasure in a system leads to increase in entropy, hence to energy dissipation.
e Duplication of information (without erasure) implies a smaller phase volume and reduction in entropy.

e Abrupt change of physical state involves thermalization. (For example, slower charging of a physical capacitor
and slower transportation of charge packets in a wire lead to lower dissipation.)

Conventional circuit design paradigm runs counter to both of the last two principles. For example, consider
the computation performed by a Nand gate in isolation. The output of a Nand gate contains 0.811 bits of
information (H) when supplied with two bits of information as input. That is, given that the two logic values
assumed by an input are equally likely, the probability of the output going Low (pg) is 1/4 while that of going
High (p1) is 3/4. By Shannon’s definition of information,

3 3 1 1
H= Zpllogpl_ 4log4 4log4~0.811,

i=0,1

and therefore Landauer’s result indicates that 1.189 x k7T'In2 joules must be dissipated by the Nand gate.
Moreover, in current CMOS circuits, node voltages are abruptly switched to Vs or V4, leading to high dissipation
through thermalization in the parasitic circuit resistances.

1 Present-day computers dissipate upwards of 102kT joules per bit operation — far from the physical limits [23].



Two related approaches to designing asymptotically non-dissipative systems have addressed these issues.

1. Information is treated as “objects” — e.g., ones and zeros in a computer — that are conserved during transfor-
mations as the computational process evolves. This type of conservative logic is exemplified by the Fredkin
gate and the billiard-ball computer in [8].

2. Energy from power sources (usually the clock sources) is used in processing and transferring information
from input ports to the output ports adiabatically [1, 13, 25]. At suitable times; explicitly determined
by synchronizing clocks, this supplied energy is recovered or recycled back to the power source. During a
computation, any intermediate, redundant values generated are eventually “unwritten.”

All of these approaches are based on synchronous computation — they assume lockstep, globally synchronized
control. In this paper we present a model of asynchronous conservative logic. Our model is based on delay
insensitive (DI) circuits, which use local handshaking instead of a global clock for synchronization. DI circuits
are not based on boolean logic gates, which are as unsuited for DI computation as they are for non-dissipative
computation. Our circuits are based on an entirely distinct set of primitive elements, which are more readily
modified to support conservative computing than are boolean circuit elements. An interesting feature of our
conservative delay insensitive (CDI) logic is that it does not require explicit uncomputation or unwriting of
results as do existing synchronous approaches to asymptotically zero-power computation.

In the next section, we briefly review an prominent example of an existing synchronous approach to conservative
logic. We then explain our notation and DI circuit primitives. Finally, we show how to modify the DI primitives
to obtain CDI primitives, and we show how to build conservative state machines from these primitives.

2 Synchronous Conservative Systems

The key characteristics of proposed synchronous conservative systems are illustrated by the “Garbageless” circuit
of Fredkin and Toffoli [8]. Fig. 1 shows the scheme used for designing the “combinational” part of a synchronous
sequential machine. X; through X, are the set of inputs, Cy through C} are the set of constants, and Y7 through
Y, are the set of desired outputs where Y = f(X). F is an extension of the combinational function f such that
F(X,C) when suitably restricted represents the output Y. The intent is that no information be erased and no
“garbage” bits produced during evaluation of f. A bit is garbage if it is neither an output nor a copy of an input.

The circuit is an interconnection of 3 blocks: F, F~! and “Spies”. F takes in C' and X and produces G and
Y. The “Spies”box transforms Y and “reconfigures” a set of constant objects to Y and Y while making another
copy of Y as well. F~! takes in this copy of Y, and the output G from F to produce back the inputs: X and
C. G represents the garbage or intermediate bits/objects that are “uncomputed” by F~!. Each of these three
blocks can be built from the so-called Fredkin Gates (FG) and hence, each is conservative and invertible. The
transformation implied by a FG is indicated in the dotted box of Fig. 1.

For our purposes, a function ¥ = fn(X) with X, Y € {0,1}" is conservative if VX AY such that Y = fn(X),
the number of 1 elements of ¥ equals the number of 1 elements of X. Function fn is invertible if VX A'Y such
that Y = fn(X), X = fn=1(Y). It can be shown that for any function f, there exist functions F, F~! and
“Spies” which are conservative (so that no objects are destroyed or duplicated within the circuit), and invertible
as well (allowing to avoid output of garbage bits).

You may note the following characteristics of this scheme.

e Explicit uncomputation of “garbage” G through F~1! is done to restore the internally used “scratch register”
C and input “register” X.

e Input X is output again even if it is not useful as part of the output.

e A clean output “register” of n 0's and n 1’'s is needed for a subsequent evaluation of f as this clean register
is rearranged by “Spies”to contain the desired output ¥ and Y at the end of an evaluation.

3 Asynchronous Systems

The design of synchronous digital circuitry is based on the discretization of time. A synchronous system changes
from one state to the next at transitions of a system clock. The state is held in a set of registers and the next state
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Figure 1: “Garbageless” circuit of Fredkin and Toffol

and outputs are derived from boolean logic acting on the old state and present inputs. The next state is copied
through the registers on every rising or falling edge of a global clock signal. The system exhibits deterministic
behavior as specified by a global state table as long as certain timing constraints on the inputs are met.

Asynchronous design does not follow this methodology; in general there is no global clock to govern the timing
of state changes. Subsystems exchange information at mutually negotiated times with no external timing regime.
As increasing clock frequencies and circuit densities result in levels of power dissipation that threaten to disrupt
the operation of a chip, asynchronous circuits are the subject of renewed attention due to their potential to achieve
high levels of performance with lower power consumption than synchronous design. Some of the common claimed
potential advantages of asynchronous circuits over synchronous ones are listed below.

e Clock distribution and skew problems disappear with the (global) clock.

e Circuit parts are always quiescent when they are not in use, thus minimizing their consumption of energy.
Unplanned and unnecessary voltage transitions are prevented by design.

e Functional correctness of a circuit i1s independent of variations in element delays caused by the physical
environment or by decreases in feature size (which increases diffusion delay.) As such, layout and routing
become much less daunting. Modular composition allowing interchangeability of functionally equivalent
subsystems is much easier in such conditions.

e Hardware runs as fast as the computational dependencies; input rate, and basic device switching times allow,
rather than at the speed of the slowest path through the system.

e Logic hazards, races, and certain synchronization failures due to metastability become non-problems.

e Asynchronous systems seem particularly amenable to certain mathematical techniques for proving circuit
correctness.

We are concerned with the energy efficiency delay-insensitive asynchronous circuits. A delay-insensitive (DI)
system is one whose specified functional behavior is independent of any finite delays in the subsystems or in the
wires interconnecting the subsystems’ terminals. There are a number of other models of asynchronous circuits.
DI circuits are in a sense the strongest class of asynchronous circuits in that they make weakest assumptions
about the timing behavior of circuit elements.

4 Basic terminology and concepts

A module or system is a hardware process with a well-defined set of external behaviors and with a set of input
and output ports. An external behavior is a sequence of input and output events. An event is an identifiable
physical condition or change at a port such as a voltage level or a pulse. A subsystem is a constituent part of



a system. Input terminals are connected to output terminals via directed “wires” (or channels). A well-formed
system has no input terminal unconnected (“dangling”) and has no two output terminals connected together.

The first step in the functional design of a module is to obtain, from the problem requirements, a formal
specification. A specification consists of the set of all admissible and required interface behaviors of a system
and its external interface. We use Trace Theory ([21, 24, 10]) for such specifications. A trace structure T'S is a
triple < I,0,T > where I and O denote disjoint input and output alphabets, respectively, of the system, and
T C (IUO)* is the trace set. An alphabet is a set of symbols; a trace is a sequence of symbols; a trace set is
a set of traces. In a mechanistic interpretation of T'S, the symbols in input/output alphabets correspond to the
circuit’s input/output ports. Each symbol in a trace is an occurrence of an event at the port corresponding to
the symbol. T corresponds to all the allowable sequences of external events. In other words, a trace is a (possibly
partial) history of a circuit’s computation.

4.1 A formal characterization of DI circuits

A circuit C' is specified as a triple (I,0,Q), where I, O model the (finite, disjoint) input and output port sets,
and @ 1s the non-empty set of quiescent traces of C'. A trace ¢, which represents a particular history of circuit
behavior, of C' is quiescent iff ¢ is not guaranteed to be extended (immediately followed) by an output event.
Quiescent traces are meant to capture liveness properties of a circuit.

A circuit may be viewed as a specification or as an implementation under different circumstances. Consider

two circuits C'1 = (I1,01,Q1) and C2 = (12,02, @Q2).

Definition: C'1 is a tentative implementation of C2 (and vice versa) iff I1 = I2 and O1 = 02.
Let T'1 = pref(Q1) and T2 = pref((2). Note that (71,01, T1) and {I2,02,T2) define trace structures.

Definition: A tentative implementation C'1 is safe with respect to specification C'2 iff
(V teTlacO :t€T2 1 ta €Tl = ta€T2)A
(V teT2,bel :teTl  theT2 = theTl)

Definition: Tentative implementation C'1 is live with respect to C2 iff Q1 C Q2.

Definition: A circuit C1 is an implementation of specification C2, sometimes written C'2 < C1, iff C'1 is safe
and live with respect to C2.

Several authors [16, 22, 6, 5, 11] give equivalent definitions of DI specifications of systems. As in [22], we define
a trace structure 7'S = (I,0,T) to be delay-insensitive iff the following five conditions are satisfied:

Prefix-closure and Non-emptiness

€ € T A (V s,a:s€TANa€elUO :saeT=seT)
An empty trace set represents a circuit with no possible history, and hence 1t i1s ruled out. Prefix-closure
legalizes all prefixes of a trace, reflecting the “real-world” fact that, for a sequence of events to occur, all its
prefixes must occur as well.

Independence From Relative Wire-Delays
(Vs,t,a,b :s,teT Aa,belvabeO
csabt € T = sbat €T)
This captures the fact that if two consecutive inputs arrive at a system in some order without an inter-
vening output, the system cannot tell their time precedence (nor act differently). Note that this and all the other
conditions are symmetric w.r.t. the circuit and its environment.

Absence of Computation Interference
(Vs,t,a,bye s, t €T A((a,bel AeeO)V

(a, b€ OAN cel))

: sactb € T Ascat € T = scath € T)
This specifies that the circuit cannot produce an output for the environment as long as the latter is not
in a state to accept it. Usually the input transitions occur if certain output transitions have occurred and
vice versa in the so-called input-output mode of operation. For example, a circuit output could serve as an
acknowledgment of some previous input transition and/or as a “go-ahead signal” to the environment to produce



the next input. The formula above roughly implies that if we assume no causal relationship between input event
a and output event ¢ then any valid extension of computation sac must also be a valid extension of computation
sca.

Absence of Transmission Interference

V s,a: seT ANa€elUO : seT = (saa €T))

Informally, this property rules out the situation where two consecutive transitions on an input line occur
without any intervening output transitions. This relates to a practical concern, because two transitions in
rapid succession on a wire may interfere with each other electrically and lead to “misreading” by the receiving
component. Two such transitions may interact undesirably — e.g., they may cancel each other without the
sender’s knowledge, or they may produce a “runt” pulse that is interpreted differently by different parts of the
receiving circuit.

Proper Arbitration
(Vs,a,b :s€eTA((ael ANbeO)V

(ae O ANbeET))

csa € TAsbeT = sabeT)
Proper arbitration implies that a DI system cannot choose between an impending input event and an im-
pending output event. This type of arbitration is not allowed because for safety both the circuit and its
environment must agree on the decision independently of each other while communication between them is not
necessarily instantaneous!

Definition: A circuit C' = (1,0, Q) is delay-insensitive if (I, O, pref(T)) is a DI trace structure.

4.2 A specification language

As noted above, symbols represent events and traces represent behaviors. Lower-case letters (subscripted or not)
serve as symbolic names for communication events at similarly named communication ports. An event is an
occurrence of the corresponding action. In circuit physics, signal (voltage) transitions are arguably the simplest
and the most natural events of communication. There is a one-to-one mapping between actions and ports of a
module. Sets of input and output actions — equivalently, their symbol sets — in a specification are implicit and
disjoint: we append ‘7’ or ‘" to a symbol name to denote that the name stands for an input or output action,
respectively. We may leave these suffixes out for internal signals or when no confusion is to be expected.

Symbol names in a trace structure can also be viewed as atomic trace-structures representing simple specifica-
tions. A more complex specification is built recursively from the primitive specifications by applying following op-
erations: ‘pref’ is prefix-closure, ‘;’ is sequential composition, ? ‘||” is parallel composition, ‘|” is non-deterministic
choice, and ‘«” is the Kleene-closure or repetition. A symbol s raised to a (natural) N indicates sequential
composition of N such symbols.

The 1-place pref operation, when applied to a set of behaviors, represents all prefixes of those behaviors. All
module behaviors are prefix-closed; all partial interface behaviors (i.e., communications) that lead to an admissible
behavior are themselves admissible. The sequential composition of v and v, i.e., uv, denotes that behavior
v necessarily follows behavior u. The 1-place ‘x” operation denotes all finite concatenations (i.e., sequential
compositions) of the behaviors in its argument set. The 2-place operation ‘||’ denotes concurrency 2 between
the two argument sets. The parallel composition of two argument sets of behaviors is the set of all behaviors
satisfying the following:

1. Tt has only those symbols that appear in the implicit input or output sets of either argument.

2. When it is restricted (or projected) to the set of implicit input and output symbols of either argument
behavior set, the result must be a legal behavior in that argument set.

2Very often we will use mere juxtaposition to denote sequential composition in order to avoid clutter. For a good introduction to
trace theory for specifying circuits, see [7].

3Concurrency is used to capture the effect of arbitrary delays allowed in a DI model of communication wires carrying possibly
simultaneous events. Therefore, all causally unrelated events are concurrent, and there is no notion of simultaneity unlike in many
synchronous systems.



The 2-place ‘|’ operation denotes the union of the two argument sets of behaviors: e.g., S = a(b | ¢), where all
the symbols are either inputs or outputs, specifies that after a, either b or ¢, but not both, is allowed; thus, the
complete set of valid traces is {ab,ac}. 4

5 Universal DI Primitives

In 1974, Keller [12] gave one of the first and best attempts to characterize the class of delay-insensitive(DI)
circuits, and also provided a universal set of circuit primitives such that any circuit in this class is realizable as a
delay-insensitive network of the primitives, i.e., a DI decomposition into primitives exists. It is well known that
the class of DI circuits that can be implemented using only C-elements and boolean logic gates is quite small [14].
However, this need not be true for circuits constructed from a more robust set of DI primitives, indeed Keller’s
class of DI circuits is essentially equivalent to the class of finite state machines realizable as synchronous circuits.

We have introduced a new set of primitive modules for delay-insensitive circuit design which are in a number
of ways more efficient than Keller’s primitives [20]. These are shown in Table 1. Each primitive’s specification is
shown next to it in the form of a trace-theoretic specification as described above.

A mxmn-Join is operationally described as follows: It has m row inputs, n column inputs, and a matrix of
m x n outputs— one for each pair of row and column inputs. The device and its environment repeat the following
behavior: The device waits to receive exactly one row-input and exactly one column-input; upon receiving the two
inputs it makes a transition on the output corresponding to the input pair. (Joins are equivalent under swapping
of the row and the column inputs.) Joinll is also called a C-element.

Example: We illustrate our trace-theoretic specifications using, as an example, a 1x2-Join (equivalently
2x 1-Join), whose set of traces is given by: pref(((a?]|607)c0!) | ((a?||b17)c1!))*. The symbols with the suffix
‘7?7 represent transition events at the three input ports of this module, namely, a, 0, and #1. Similarly, output
symbols ¢0 and ¢l represent two output actions (and their occurrences). Hence, the input set is (a, b0, b1)
and the output set is { ¢0, c¢l). Examples of valid partial behaviors are: a, a b0, ab0c0, ab0c0b0, b0 a c0,
blaclablel, ablclblacO.

Some invalid traces are: (1) ab001, (2)aa, (3)b0c0, (4) ab0cl. The first two traces represent errors in
the environment, while the last two in the module (refer to the operational description of a Join): (1) The
environment cannot send both column inputs 61 and 50 without an intermediate output from the Join. (2) a
cannot immediately follow itself for the same reason as above. (3) output ¢0 is produced too early. (4) ¢l is the
wrong output, c0 should be produced in stead. O

A Tria outputs an event on a vertex when it has received events on the two edges adjacent to that vertex. A
Fork, represented by branched lines, repeatedly copies each input event to both of its output ports. A Merge,
usually implemented as an Xor gate in CMOS, repeats the following: it can receive exactly one event on either
of the input ports and, upon reception, copies it to the output port. A Toggle device repeatedly copies an input
event to an output before getting ready to receive the next input, but the output events are distributed between
the two output ports alternately. Note that the Toggle can be implemented as a special case of 1x2-Join. The
Mutex and Mem elements provide mutual exclusion and delay insensitive memory, respectively.

A ‘bubble’ at an input terminal of a Join device implies an initialization that corresponds to a state where
a transition at that terminal is assumed to have been received initially. We can alternatively imagine a Merge
gate at the bubbled input that has an input port connected to a ‘START’ signal. For instance, the behavior of a
C-element with a bubble at the a-input is a device with the behavior of a 1x1-Join after receiving a transition
on a first, i.e., pref(b? c!((a?]|b7)e!))* . A heavy dot near a terminal of a device denotes an initialization where
only the thus indicated terminal may produce the first output of the device. We occasionally use a circle labeled
with ‘P’ as a short-hand for a tree of Merges, in our figures.

We have shown [20] that any module in Keller’s class is realizable as a DI network of Mem or alternatively
as a network of Fork, Merge, Mutex, and Tria as primitive modules. That is, the sets {Fork, Merge, Mutex,
2x 1-Join,Mem } and {Fork, Merge, Mutex, Tria } are universal for Keller’s class of DI modules. We have also

4This trace-structure is not delay-insensitive [21], because it does not contain the trace ba, although ab is a valid trace, and both
the symbols are inputs or outputs (hence, not causally related). The prefix-closure of S is {¢, a, a b, a c}, so S also fails to meet the
prefix closure requirement of DI trace structures.



shown that both these universal sets of primitives are minimal in that no proper subet of either set is itself
universal.

The intuition behind our choice of primitivesis to capture the following orthogonal aspects of functional (timing,
area complexity, etc. are ignored) computation:

¢ Initiation of parallel processes

Combining of sequential events (‘Or-causality’)

Arbitration or non-deterministic choice between events

Deterministic choice and synchronization
e Storage of values

Note that the aspect of computation that is sequential is inherent to the ‘“inputs causing outputs’ nature
of primitives and the structural connections among those primitives in a network. Informally, the first three
primitives in our set match the first three notions in the list above. By appropriately hiding a pair of input and
output ports, 2x 1-Join or Tria can be made to achieve synchronization among events. A M x 1-Join can be DI
decomposed into Merges, Forks, and Trias or 2 x 1-Joins, and hence can essentially support deterministic choice
among a set of input events. We found Mem to be the simplest module that can support storage of a boolean
value delay-insensitively.

6 Conservative and invertible DI operators

Consider a model of computation that treats each active signal event or transition or pulse in a circuit as an object
distinguishable only by the associated I/O channel. A “gate” (or circuit operator) functionally transposes/maps a
configuration of input objects into a configuration of output objects, according to its specification, when activated.
A gate is activated when an acceptable set of input channels each receives an object.

During a computation step a standard boolean gate (e.g., Nand, Or, Not) may be thought to map input logic
values to output logic values. Additionally, if we interpret a logic high (low) value as a presence (absence) of an
object, then it is easily shown that all such gates, excepting the Not, are neither conservative nor invertible. In
contrast, we show next that the DI primitives described above satisfy many of the requirments of conservatism
and invertibility. Subsequently we formulate marginal changes to the original DI primitives that enable design of
conservative DI circuits.

The Merge and Mutex are conservative but not invertible — i.e.; the output does not uniquely determine
the corresponding input transition(s). These are conservative in the sense that, for each input event consumed,
eventually exactly one corresponding output event is produced.® The non-deterministic operator Mutex consumes
exactly one input event for every single output event it produces, but for now, we will ignore the fact that it may
be hard to design a physically reversible operation corresponding to a Mutex.

The Toggle 1s clearly conservative, as it puts out exactly one event for each input event it consumes.

The various Join elements, the Fork and the Tria are all invertible operators but not conservative. A Join or a
Tria consumes exactly two input objects (or transitions) at a pair of input ports to produce exactly one output
object at the specified output port. Therefore, it is invertible. On the other hand, a Fork consumes one transition
and generates two output transitions. Note that the DI-property ensures that a signal wire/terminal does not
carry more than one transition at the same time through causal relations, i.e., by a feedback-acknowledgement
mechanism.

7 Building-blocks for conservative DI Circuits

In this section we will define a set of DI primitives and other building-blocks that are later shown sufficient to
realize conservative versions of circuits in Keller’s class.

5We note that DI theory mandates that a Merge receive at most one input event at a time. Therefore, it is perhaps a slight
abuse to represent Merge pictorially by the common “exclusive-or” gate. The standard combinational operator exclusive-or is not
conservative in the sense that it produces a zero output when its input signals are one each.



7.1 Conservative Joins

Earlier we saw that Joins are invertible but not conservative. The conservative version of a Join is called a Cjoin
(or conservative Join), and we define it to have a matched pair of output terminals for each output terminal of the
original (non-conservative) Join. We simply modify the specification of the Cjoin to have two concurrent events on
the corresponding (matched) pair of output terminals if and when the non-conservative version has a single output
event. This ensures that a Cjoin produces two output events for each appropriate pair of input events. In our
pictorial notation, the symbol for a Cjoin differs from that of a Join in that each of the heavy dots representing
an output terminal is additionally circumscribed by a dotted circle. Each such terminal is called a “doubled
terminal”. Interconnection to such a doubled terminal is shown by using two lines — for instance, see Fig. 2.
Whenever two signal wires emanate from such a terminal, they will be understood to carry the two concurrent
transitions when that output terminal is activated — in some sense, this doubling acts like an internalized Fork.

Figure 2: A symbol for Ctria

For an example of specification, consider the Ctria in Fig. 2. This primitive has 3 inputs a, b, c and 3 pairs of
outputs (p,p), (¢,¢’) and (r,7’). The trace-theoretic specification is given as
pref (((a?(|67) (p!lp") | ((B7[le?) (¢!ll¢"))
| ((a?[]e?) (P!]7"1)))*-
A 2x1-Cjoin — with column input a, row inputs 60 and b1, and output port pairs c00,c01 and ¢10,cll —

may be specified as
pref (((a?]|607) (00| cO1) | ((a?]]617) (c10!]] c111)))*.

Merge devices are conservative, but Forks are not. Hence, as a strategy to design conservative DI (CDI) circuits,
explicit Forks should be avoided and the “internalized” forks of Cjoins should be used instead.

7.2 Conservative Sequencers

In Section 8 we will construct an arbitrary finite state machine using conservative DI devices. This forms the
basis for the design of circuits that do not destroy events internally. Hence, there is no irreducible energy loss,
in principle, under the model of physical processes we discussed earlier in this paper. One of the key modules
used there is a multi-way CSequencer— a conservative Sequencer. In the following we develop specifications and
constructions of such conservative arbitration components.

A realization of the  (2-way)  Sequencer  shown in  Fig.  3(b) is  specified as
pref ((r07g0N*||(r17¢1)*||(c? (g0Yg1!))*). A multi-way Sequencer may be constructed as suggested in
Fig. 3(d). The Sequencer can be thought of as serving two clients capable of generating simultaneous service-
requests. (1) After the “clock” event (¢7) arrives, the device non-deterministically grants exactly one from
any pending request(s) by outputting either g0! or g1!. (2) Subsequently, when ¢? arrives again, presumably
indicating that the previously granted requester/client has relinquished a shared resource, it repeats its granting
process from the first step.

Fig. 4 shows a CSequencer implementation which, unlike a Sequencer, emits the extra event out through the
added Merge (¢'!). The specification for CSequencer is thus:



Mutex < Mutex
r@% —<ﬁ : rrr®>
V@l
(a) 2-way resource arbiter (b) 2-way sequencer (Seq)
fo — o o
fh —=r, g <
8 0 A=< | 0, q) m-way
0="| q) r resource
. P"V‘@ée = i arbiter
*ir e oo —= m-1 .
— m1 r résou - % r —
194 = abiter Seq
_=[r , -
0 r! A
—=T 1
0 r—= <
< q) . q) n-way
L] n-way d? ° resource
ol [esnurce = r r arbiter
r _=ln1 m+n-1 =7 8’1 d
m#n-1 d d7<—| o8 = h1 ‘
Ghin-r=-( -1 HHn-1 o
(d) m+n way resource arbiter (e) m+n way sequencer

Figure 3: Realization of larger arbiters and sequencers
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7.8 Conservative Resource arbiters

A multi-way Sequencer can be constructed through the use of the multi-way Resource arbiter drawn in Fig. 3.
Fig. 3(a) depicts a delay-insensitive decomposition of the 2-way resource arbiter specified as
pref ((r0?a p gOO*||(r17 b ¢ g11)*
[1((a [6) »td?)*[|(d? (p | 4))7)-

The Resource arbiter can be thought of as serving two clients capable of generating simultaneous service-
requests. It repeatedly performs the following. (1) Non-deterministically pick up and service exactly one pending
request at a time. (2) “Invoke” the resource (r?). (3) When the resource sends back a “done” signal (d7), the
arbiter lets the correct requester know of completed service by emitting either g0! or g1!.

The Resource arbiter is conservative at its external interface, but it internally uses 2x 1-Join and Forks, which
are active one at a time and are not conservative. Yet on each “cycle” the 2x1-Join consumes one transition
extra while a Fork outputs one extra; there is perhaps hope! The scheme for recursive composition of a multiway
Resource arbiter is shown in Fig. 3(d). The same scheme may be applied to build a multiway CResource arbiter
based on the 2-way CResource arbiters discussed later.

Now, by using Cjoins in place of ordinary Joins and by using the trick of internalizing Forks, one can design a
Resource arbiter that is internally conservative as well. This new decomposition for a CResource arbiter is shown
in Fig. 5.
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Figure 5: A conservative 2-way Resource arbiter

Fig. 3(d) shows how to build a multi-way Sequencer delay-insensitively from a 2-way Sequencer and a multi-way
Resource arbiters. Making them conservative is as simple as replacing the parts by their conservative equivalents.

7.4 Decompositions of larger Cjoins

A 2x2-Join can be decomposed into Trias, Merges and Forks, as shown in Fig. 6. However, we will often use the
2x 2-Join as a basic primitive in constructions for convenience. We will later also see that the 2x 2-Cjoin has a
decomposition in the set {Merge,Ctria } (see Fig. 11).

Figure 6: Decomposition of 2 x2-Join into Trias

In order to see how to decompose large i x n-Cjoinsto basic conservative modules, let us first consider how
one might decompose an ordinary M x N-Join into a set of Fork, Merge, 2x2-Join, 2x1-Join, and 1x1-Join
primitives. Consider Fig. 7 which is a decomposition of M x N-Join into four ‘balanced binary decoders’ (BBD)
and a M x N-Tjoin (dotted box) module, described below.

Column and row inputs of the M x N-Join, to be decomposed into the primitives, are each divided into nearly
equal halves, and the resulting four halves are fed into four BBDs. A BBD is a conventional binary parity tree
of Merges but, all the intermediate as well as input nodes of the parity tree are also made visible as output ports
— 1t decodes an input signal in a special way. So, a BBD with K inputs has 2K — 1 outputs.

A M x N-Tjoin module assimilates exactly 2N — 2 column inputs and 2M — 2 row inputs concurrently from
the BBDs to generate the output that a M x N-Join is supposed to produce. The Tjoin repeats this behavior
to simulate the M x N-Join. A simple strategy is used to determine the ‘quadrant’ of the M x N output matrix
of a M x N-Tjoin to which the output belongs — corresponding to the pair (row and column) of inputs of the
simulated M x N-Join. The structure of the Tjoin is described now.

10
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Figure 7: Optimal decomposition of M x N-Join module

Nominally, the M x N-Tjoin consists of a ‘central’ Join, a 2x | N/2]|-Tjoin, a | M /2] x 2-Tjoin, a 2 x [ N/2]-Tjoin,
a [M/2] x2-Tjoin, two row and two column Tree-Muxes. The four most significant outputs — Cj, Cy, Ry, Ry —
from the four BBDs are fed to the central Join which is usually a 2x2-Join. (If there is only one column or
one row input, then the corresponding central Join is a 2x 1-Join, a 1x2-Join, or a 1x1-Join.) This central Join
steers the decoder outputs to the appropriate quadrant with the help of the Tree-Muxes. The lower column (row)
Tree-Mux steers the decoded signals, Cyy, Ciy, ... (Ru, Riu, -..), to left or right (up or down) quadrant under the
‘control’” of the central Join. A Tree-Mux is a binary (preferably balanced) tree of 2x2-Joins. See the Fig. 7 for
a clearer picture.

Intuitively, you may think of the transitions in a Tjoin to be progressing like a wave. By the time the central
Join generates its output, the 2x2-Joins on its left row Tree-Mux and the column Tree-Mux below should have
their column and row input signal, respectively. The output from the central Join is forked to the appropriate
pair of Tree-Muxes whose partial outputs activate the | N/2] x| M/2|-Tjoin. Thereafter, the Tjoin and the Tree-
Muxes synchronize as suggested and compute concurrently. In Fig. 7, we have shown a shaded region to indicate
the Joins that are producing outputs after the central Join— assuming the inputs to the simulated M x N-Join
occur in the lower halves.

Each Tjoin quadrant is decomposed recursively, as its parent is. The recursive decomposition ‘terminates’ when
the present Tjoin quadrant to be decomposed has only one or two ports in each dimension (row or column). In
this case the Tjoin is just the central Join of appropriate type.

We have log maxz (M, N) sequentially ordered levels of signal flow before an output is produced. The parallelism
between computations of a Tree-Mux and a Tjoin quadrant made possible due to the decoder signals in our
method helps achieve a response-time complexity of ©(logmaz(M, N)), which is optimal. We assume that the
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response-time of each constant-sized device is a constant.®

The (switching) energy expended in a module for a given computation is roughly proportional to the number
of transitions made, during that computation, at the input and output ports of all the primitives constituting
the module. Therefore, energy used for mapping (producing) an output corresponding to a pair of inputs is
O((log N)?) for the N x N-Join, assuming each transition at a primitive’s port consumes constant energy. We
conjecture that this is also asymptotically optimal.

Now consider the special case of the 2x8-Join module. Our asymptotically time-optimal design for this case is
given in Fig. 8. Note the use of two ‘balanced binary decoders’ or BBDs for the column inputs. The unlabelled
arrows with no destination are the output wires of the 2x8-Join. Signal lines with same names are assumed to
be logically connected. The tree-like topological structure at the bottom is a “Row Mux”, the other similar Row
Mux on the left 1s indicated by a labelled box. The subscripts on the signal names indicate pattern — “1” for lower
and “u” for upper half when the left half of the BBD inputs are considered lower, etc.— e.g., Cy; is for signals on
lower half of the lower half of column inputs of the 2x8-Join.

C, G, G, C, Cs G cy G

g L; BED BBD% g
T

!
CU C;.Jl qu

SR,

N
\\%}@*:ﬁ S
R

Figure 8: 2x8-Join as part of Row Tree Mux

Ro

Fig. 9 shows the conservative version, 2x N-Cjoin. Here, we have replaced the Joins by Cjoins, and we have
replaced Forks by 1x1-Cjoins. Furthermore, we use arrows with triangle heads to indicate “doubled” signals, 1.e.,
two concurrent events on two separate signal wires. Note that some 2 x 2-Cjoins receive a doubled row input and
a non-doubled column input. This somewhat unusual 2 x 2-Cjoin generates a corresponding doubled as well as a
non-doubled output — in other words, three concurrent signal transitions (see below). Pairs of these non-doubled
outputs feed the initialized port of an appropriate 1x1-Cjoin through a Merge. Neither the Merges nor the
initialization of these 1x1-Cjoins are shown, to avoid clutter. For example, the two wires labelled C’lll feed the
1 x1-Cjoin from which Cj; emerges.

We next show a simple way to interpret these triangle-head signal arrows in terms of an implementation within
our basic repertoire of primitives — in Fig. 10.

Finally, we are ready to show the decomposition scheme for an arbitrary sized M x N-Join module. Consider
Fig. 7, which is an asymptotically optimal decomposition of M x N-Join into four BBDs and an M x N-Tjoin
(dotted box) module, each decomposable to our basic primitives. It is fairly easy to convert this design to a
conservative equivalent based on ideas described above. All corresponding conservative versions of primitives are
used. The “leaves” of the Row Mux and Col Mux trees feed the appropriate 1x 1-Joins that have replaced Forks
in the BBD subcircuits. The leaves of a tree at the outermost level of decomposition feed the 1x1-Joins at the

6We have ignored delays in interconnects between primitives since delay-insensitivity places no functional requirement on them.
Moreover, this somewhat simplifies our first-order comparison and analysis.
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outermost levels of the BBDs, and so on. Note that, for M = N there is no need for using “doubled” 2 x 2-Cjoins.
With this arrangement, we get two output events (from the 2 x 2-Joins present at the “leaf-level” decomposition)
for each pair of column and row input events to the M x N-Cjoin.
We are now ready to show below a general approach to implementing DI specifications as conservative circuits.

8 Construction of CDI circuits

We have shown that the set { Fork, Merge, Tria, Mutex } is universal (i.e., functionally complete) for the large class
of DI circuits called Keller’s class. Here we will consider construction of conservative circuits for specifications in
Keller’s DI class.

Definition: A DI specification is conservative if, for every allowable trace, the number of input events differs
from the number of output events by no more than a fixed constant.

The specifications pref ((a?[b7) ¢!)*, pref (al;a?)* are conservative, as is the specification of a DI multiplier
with two n-bit unsigned input operands producing a 2n-bit result. Specifications of the Joins are not conservative.

Definition: A DI circuit primitive is called CDI if it is conservative.

Definition: A circuit implementation of a DI specification is conservative DI (CDI) if it is a DI composition
of CDI primitives only.

It follows easily that 1 x 1-Cjoin and 1 x 2-Cjoin are specializations of Ctria by way of hiding appropriate inputs
and outputs. Fig. 11(a) shows a DI decomposition of 2x2-Join (a variation from the design in Fig. 6). In this
figure, signal lines numbered the same are logically connected — we have not drawn the connections to avoid
clutter. A design for the conservative 2x2-Cjoin is diagramed in Fig. 11(b) where several initialized 1x 1-Cjoins
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are used in place of Forks in the non-conservative variation. We denote the “doubled” outputs by triangle-head
arrows as usual. Note the use of conservative primitives only in this construction. Whenever we use a forked
line emerging from a “doubled” terminal of a conservative Join device, we mean the two branches carry the two
concurrent signals separately — an artifact to avoid clutter. The correctness of this decomposition can easily be
verified.

Figure 11: Realization of 2 x 2-Cjoin from Ctria and Merge

The following theorem follows from the fact that any Cjoin device can be decomposed into 2 x 2-Cjoins and
Merges, and the DI decompositions of multi-way sequencers and the 2x2-Cjoin shown above. of CSequencer
above.

Theorem: The set { Merge, Ctria, Mutex } is universal for the class of CDI circuits. O

Recall that in our model each primitive DI element consumes some number of input events and produces some
number of output events during operation. Likewise, a large DI circuit also consumes input events provided by its
external environment and provides output events to the environment. To avoid confusion in the context of large
DI circuits, we may call the input and output events seen by a primitive circuit element local events, and we will
call events seen by the DI circuit as a whole with respect to the external environment external events. Note that
external events are also local events for some circuit primitives.

Definition: A DI circuit is marginally conservative if for every execution of the circuit, the sum of the local
output events produced by all circuit primitives exceeds the sum of the local input events consumed by all circuit
primitives by no more than the number of external output events of the circuit.

Theorem: Any DI specification in Keller’s class can be implemented as a marginally conservative DI circuit.
O
Proof:

Control and environment inputs are allowed to occur concurrently, whereas the environment inputs are still
sequenced serially by means of the multi-way Sequencer. The M x N-Join module simulates a ‘transition relation’
where the columns of the M x N-Join correspond to “internal-states” while the rows serve to provide inputs to the
monolithic state-machine that takes one step at a time — assimilates a pair of events comprising a present-state
input and an input from the environment — to produce any appropriate output signals, to change internal-state,
and to “prime” the input Sequencer for the next external input. We simply extend this idea below and use
conservative primitives.

The column of the Cjoin module with a bubble in Fig. 12 represents the initial state of the circuit. The
top 1x N-Cjoin generates a ‘clock’ signal ¢7 for the M-way CSequencer. We have already demonstrated that
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M x N-Cjoin and M-way CSequencer modules can be decomposed into a conservative network of primitives in
{Merge, Mutex, Ctria }.

4
o o \ 1xN-CJoin
ar?——
R N L —
M-way | \\\ % r!
d? ——= CSeq &\. \\SI .
@ T
7 [ % s!

t!

MxN-CJoin
Figure 12: Marginally Conservative State Machine

One of the two resulting output events from the M x N-Cjoin goes on to activate the correct “next state” of
the Conservative Finite State Machine (CFSM) and the other is steered to the appropriate output channel. At
this level of abstraction, if no output is defined, the signal is “destroyed”, and if more than one output event is
specified, then a number of extra events are generated and steered to the specified output channels. The CFSM
is then ready to consume any input at the newly arrived internal state, repeating its previous actions.

All the sources of event destruction and creation are indicated on the right of the M x N-Cjoin. The Sinks
depicted as short vertical bars indicate sites for destruction of an event while Forks indicate generation of events.
Note that events are generated by Forks only when two or more concurrent external events (e.g., ! and s! in
figure) are output per step of the machine. Events are not generated for any other internal computation, such as
the determination of next state. O

As stated before, Sinks in Fig. 12 indicate destruction of an event in the system. This happens when an input
signal is consumed by the state machine without producing an useful output event. We can minimize this kind
of event destruction, by storing the event internally for later emission as an output event.

Theorem: A conservative DI specification can be implemented as a conservative DI circuit. O
Proof:

It suffices to show how events may be stored for latter emission without ever generating fresh ones or destroying
them. Fig. 13 depicts a “conservative” architecture based on the design in Fig. 12. A “Storage Stack” module is
employed to store and retrieve events during a circuit’s operation. The stack provides several channels for both
“push” and “pop” operations. A push operation involves reception of two events and then transmission of an
acknowledgement. A pop operation similarly involves one input event and two output events. The push and pop
operations are strictly serial. Signals with the same labels are assumed to be connected in the circuit. An event is
pushed into the stack if otherwise it would be destroyed. An event is popped if an extra external output event is
to be generated consistent with the specification. In Fig. 13 we have shown two illustrative situations in relation
to Fig. 12. In one case, the state machine “pushes an event” which gets acknowledged by an event on z. In the
other case, it pops the stack to generate one additional, needed external output event — receives a pair of events
z and y in response to a pop request (event).

Let the maximum difference between the number of input and output events in any trace be d. Then the
capacity of the stack need not be more than 2d. If the number of output events can exceed the input events in a
trace by n, then the stack is initialized with n < d stored events. The stack has a channel for each distinct push
and pop signal.
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We show below that a DI decomposition of such a stack exists. Consider the DI design of a storage stack of
depth 4 in Fig. 14. It has two “push channels” and two “pop channels”. The stack is initialized with one “item”
(i.e., three pushes can initially occur before a pop.) The inputs “store” and “push” always occur concurrently as
a pair. The output of a pop is an (z,y) pair. (Signals are named to be corresponding symbols we have used in
Fig. 13.) Forked signals, as before, are short hand for two concurrent output signals from a doubled terminal. z
signals are acknowledgements to their corresponding push requests. The 2x 5-Cjoin serves as the “stack pointer”.
The four 1 x 1-Cjoins serve to store an event until it is popped. The “shadow register” simply shadows the stack
pointer during a push. We have omitted Merges at the column inputs to the stack-pointer — whenever more than
one input signal feed a single row/column of a Join device, we implicitly assume a Merge of those inputs. The
stack-pointer (the active column input) changes its position in response to push and pop requests. The left most
position corresponds to the stack-empty condition.

It is straightforward to extend this scheme, by an induction argument, to a stack of arbitrary depth & with
any fixed finite number of push and pop channels. We need a 2d-depth stack in general because we are allowing
output events to overtake input events by no more than d and vice versa.

This completes the proof of the theorem. O

Corollary: Any CDI specification can be implemented as a DI network of Mutex, Ctria and Merge primitives.

d

9 Discussion and conclusion

It is interesting to note that it is possible to realize an invertible conservative, delay-insensitive sequential function
even when using clearly non-invertible components such as Merge. This is possible because enough information is
kept around for the function’s implicit inversion despite the local use of Merges. This is in contrast to garbageless
circuits [8] built using only Fredkin gates which are invertible as well as conservative.

Note that our model requires little extra hardware or sequential time to make a delay-insensitive circuit con-
servative as well, for it does not need explicit phases or logic blocks for uncomputing — unlike all the existing
approaches to reversible computing (see, e.g., [8, 1]). Moreover, our circuits can reduce the “garbage bits” that
the existing approaches [3, 8] have to contend with — by transforming some or all input objects into output
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objects. Much if not all of the “overhead of reversibility” in clocked systems is avoided by our DI approach to
ultra low power circuits. While DI circuits admittedly carry some overhead for the necessary extensive local
synchronizations compared to conventional, non-conservative synchronous circuits, it appears that this overhead
also provides the much of the capability for nondissipative computing and that it may be much less overhead than
that required for synchronous circuits to achieve similar power savings.

In the simulation of the state machine of previous section, we have used Sequencers which are inherently
non-deterministic and may be difficult to physically realize in some technologies. However, non-deterministic
behavior appears natural for quantum devices. It is possible, however, to design a delay-insensitive, conservative
circuit without sequencers if the circuit’s DI specification does not imply true (output) arbitration for the circuit.
Concurrency and input non-determinism are still allowed in such specifications. Note also that, although we have
used monolithic state machine simulation for the proofs, these designs can be greatly improved (optimized) for
specific circuits.
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Name Symbol Specification

b!
Fork a0 o pref(a?(b| e))*

a? —
Merge —C! pref((a? [b7) c!)*
b?
a? —
1% 1-Join —C! pref((a?||b?) c!)*
b?
b0? b1?
a?
1x2-Join pref(((a?]|607) c0!)
[((a?]|b17)clt))*
cO! cl!
Toggle a? g! pref(a? el a? d!)*
r!
Tria b? c?  pref(((a?||6?) p))|((a?]|c?)q")
[((67]]e7)rt))*
p! !
a? ‘ q
p! C‘? q!
. a? — o//
2 x 2-Join » o—m pref(((a?||c?) p!)
e | ((a?[|d?)q")
Ny 9 | ((b7]]c?)r!)
| ((67]]d7)s))
02 [ ]
Mutex Mutex pref(r0? g0! »07 gOh)*
7 U [|(r17 g1t 17 g1)*
[1((g0! g01) | (91! g11))*
c? | = C'!
Mem “ Mem | = to! pref((¢7 t01)*c? ¢!
— T (@7 1> e? JI)*

Table 1: A set of representative DI Primitives
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