
A Framework for Conservative andDelay-insensitive ComputingPriyadarsan PatraDonald S. FussellDepartment of Computer SciencesThe University of Texas at AustinAustin, TX 78712-1188, USAAsynchronous circuit elements are quiescent whenever they are not actually performing acomputation, and thus they potentially waste less power than synchronous circuits. However,previous research on asymptotically non-dissipative computation has concentrated exclusivelyon synchronous computing models, while researchers on asynchronous circuits have ignored theissues of conservative, reversible computing inherent in ultra low power systems. We showthat delay insensitive asynchronous systems can be made asymptotically non-dissipating. Ourconstruction achieves this without the need for explicit uncomputation of results that has char-acterized previous synchronous approaches.1 IntroductionComputation is a physical process and hence subject to physical laws. One needs to understand the fundamentallimits imposed by these laws in order to develop asymptotically non-dissipative computers. Some of the basicwork on the limits of computation has been addressed in the pioneering work of Bennet, Landauer, Fredkin,et al. (see, e.g., [2, 3, 8]). Landauer showed that erasure of information leads to a thermodynamic minimumheat dissipation of kT ln 2 joules per bit.1 Bennet [2] proved that irreversible logic gates and information erasureis not fundamental to computation. Since then various computational techniques have been proposed to avoiddissipation by \unwriting" information [1, 8, 9, 13, 15, 25] instead of erasing it.Some of the important facts about physical processes relevant to asymptotically non-dissipative computationmay be summarized as follows.� The physical state of a closed system is a subset of all allowable physical con�gurations of the system, i.e.,a subvolume of its phase space. Physical states are mapped and abstracted as logical states relevant tocomputation.� Information erasure in a system leads to increase in entropy, hence to energy dissipation.� Duplication of information (without erasure) implies a smaller phase volume and reduction in entropy.� Abrupt change of physical state involves thermalization. (For example, slower charging of a physical capacitorand slower transportation of charge packets in a wire lead to lower dissipation.)Conventional circuit design paradigm runs counter to both of the last two principles. For example, considerthe computation performed by a Nand gate in isolation. The output of a Nand gate contains 0:811 bits ofinformation (H) when supplied with two bits of information as input. That is, given that the two logic valuesassumed by an input are equally likely, the probability of the output going Low (p0) is 1=4 while that of goingHigh (p1) is 3=4. By Shannon's de�nition of information,H = �Xi=0;1pi log pi = �34 log 34 � 14 log 14 � 0:811;and therefore Landauer's result indicates that 1:189 � kT ln 2 joules must be dissipated by the Nand gate.Moreover, in current CMOS circuits, node voltages are abruptly switched to Vss or Vdd, leading to high dissipationthrough thermalization in the parasitic circuit resistances.1Present-day computers dissipate upwards of 108kT joules per bit operation { far from the physical limits [23].1

Two related approaches to designing asymptotically non-dissipative systems have addressed these issues.1. Information is treated as \objects" { e.g., ones and zeros in a computer { that are conserved during transfor-mations as the computational process evolves. This type of conservative logic is exempli�ed by the Fredkingate and the billiard-ball computer in [8].2. Energy from power sources (usually the clock sources) is used in processing and transferring informationfrom input ports to the output ports adiabatically [1, 13, 25]. At suitable times, explicitly determinedby synchronizing clocks, this supplied energy is recovered or recycled back to the power source. During acomputation, any intermediate, redundant values generated are eventually \unwritten."All of these approaches are based on synchronous computation { they assume lockstep, globally synchronizedcontrol. In this paper we present a model of asynchronous conservative logic. Our model is based on delayinsensitive (DI) circuits, which use local handshaking instead of a global clock for synchronization. DI circuitsare not based on boolean logic gates, which are as unsuited for DI computation as they are for non-dissipativecomputation. Our circuits are based on an entirely distinct set of primitive elements, which are more readilymodi�ed to support conservative computing than are boolean circuit elements. An interesting feature of ourconservative delay insensitive (CDI) logic is that it does not require explicit uncomputation or unwriting ofresults as do existing synchronous approaches to asymptotically zero-power computation.In the next section, we brie
y review an prominent example of an existing synchronous approach to conservativelogic. We then explain our notation and DI circuit primitives. Finally, we show how to modify the DI primitivesto obtain CDI primitives, and we show how to build conservative state machines from these primitives.2 Synchronous Conservative SystemsThe key characteristics of proposed synchronous conservative systems are illustrated by the \Garbageless" circuitof Fredkin and To�oli [8]. Fig. 1 shows the scheme used for designing the \combinational" part of a synchronoussequential machine. X1 through Xm are the set of inputs, C1 through Ck are the set of constants, and Y1 throughYn are the set of desired outputs where Y = f(X). F is an extension of the combinational function f such thatF (X;C) when suitably restricted represents the output Y . The intent is that no information be erased and no\garbage" bits produced during evaluation of f . A bit is garbage if it is neither an output nor a copy of an input.The circuit is an interconnection of 3 blocks: F , F�1 and \Spies". F takes in C and X and produces G andY . The \Spies"box transforms Y and \recon�gures" a set of constant objects to Y and Y while making anothercopy of Y as well. F�1 takes in this copy of Y , and the output G from F to produce back the inputs: X andC. G represents the garbage or intermediate bits/objects that are \uncomputed" by F�1. Each of these threeblocks can be built from the so-called Fredkin Gates (FG) and hence, each is conservative and invertible. Thetransformation implied by a FG is indicated in the dotted box of Fig. 1.For our purposes, a function Y = fn(X) with X;Y 2 f0; 1gn is conservative if 8X ^ Y such that Y = fn(X),the number of 1 elements of Y equals the number of 1 elements of X. Function fn is invertible if 8X ^ Y suchthat Y = fn(X); X = fn�1(Y). It can be shown that for any function f , there exist functions F , F�1 and\Spies"which are conservative (so that no objects are destroyed or duplicated within the circuit), and invertibleas well (allowing to avoid output of garbage bits).You may note the following characteristics of this scheme.� Explicit uncomputation of \garbage" G through F�1 is done to restore the internally used \scratch register"C and input \register" X.� Input X is output again even if it is not useful as part of the output.� A clean output \register" of n 00s and n 10s is needed for a subsequent evaluation of f as this clean registeris rearranged by \Spies"to contain the desired output Y and Y at the end of an evaluation.3 Asynchronous SystemsThe design of synchronous digital circuitry is based on the discretization of time. A synchronous system changesfrom one state to the next at transitions of a system clock. The state is held in a set of registers and the next state2

y = b^
y = a^else x = b

v = u ^

u v

a x
y

Fredkin Gate

b

G
k+m-n

G
1

Y1

Yn

0

0

Y1

If u then x = a Yn

Y = f(X)
"Spies"

Y1

Yn

Y1

1

1

Yn

F
-1

Xm

X1

C1

Ck

Xm

X1

C1

Ck

F

FGFigure 1: \Garbageless" circuit of Fredkin and To�oliand outputs are derived from boolean logic acting on the old state and present inputs. The next state is copiedthrough the registers on every rising or falling edge of a global clock signal. The system exhibits deterministicbehavior as speci�ed by a global state table as long as certain timing constraints on the inputs are met.Asynchronous design does not follow this methodology; in general there is no global clock to govern the timingof state changes. Subsystems exchange information at mutually negotiated times with no external timing regime.As increasing clock frequencies and circuit densities result in levels of power dissipation that threaten to disruptthe operation of a chip, asynchronous circuits are the subject of renewed attention due to their potential to achievehigh levels of performance with lower power consumption than synchronous design. Some of the common claimedpotential advantages of asynchronous circuits over synchronous ones are listed below.� Clock distribution and skew problems disappear with the (global) clock.� Circuit parts are always quiescent when they are not in use, thus minimizing their consumption of energy.Unplanned and unnecessary voltage transitions are prevented by design.� Functional correctness of a circuit is independent of variations in element delays caused by the physicalenvironment or by decreases in feature size (which increases di�usion delay.) As such, layout and routingbecome much less daunting. Modular composition allowing interchangeability of functionally equivalentsubsystems is much easier in such conditions.� Hardware runs as fast as the computational dependencies, input rate, and basic device switching times allow,rather than at the speed of the slowest path through the system.� Logic hazards, races, and certain synchronization failures due to metastability become non-problems.� Asynchronous systems seem particularly amenable to certain mathematical techniques for proving circuitcorrectness.We are concerned with the energy e�ciency delay-insensitive asynchronous circuits. A delay-insensitive (DI)system is one whose speci�ed functional behavior is independent of any �nite delays in the subsystems or in thewires interconnecting the subsystems' terminals. There are a number of other models of asynchronous circuits.DI circuits are in a sense the strongest class of asynchronous circuits in that they make weakest assumptionsabout the timing behavior of circuit elements.4 Basic terminology and conceptsA module or system is a hardware process with a well-de�ned set of external behaviors and with a set of inputand output ports. An external behavior is a sequence of input and output events. An event is an identi�ablephysical condition or change at a port such as a voltage level or a pulse. A subsystem is a constituent part of3

a system. Input terminals are connected to output terminals via directed \wires" (or channels). A well-formedsystem has no input terminal unconnected (\dangling") and has no two output terminals connected together.The �rst step in the functional design of a module is to obtain, from the problem requirements, a formalspeci�cation. A speci�cation consists of the set of all admissible and required interface behaviors of a systemand its external interface. We use Trace Theory ([21, 24, 10]) for such speci�cations. A trace structure TS is atriple < I;O; T > where I and O denote disjoint input and output alphabets, respectively, of the system, andT � (I [O)� is the trace set. An alphabet is a set of symbols; a trace is a sequence of symbols; a trace set isa set of traces. In a mechanistic interpretation of TS, the symbols in input/output alphabets correspond to thecircuit's input/output ports. Each symbol in a trace is an occurrence of an event at the port corresponding tothe symbol. T corresponds to all the allowable sequences of external events. In other words, a trace is a (possiblypartial) history of a circuit's computation.4.1 A formal characterization of DI circuitsA circuit C is speci�ed as a triple (I;O;Q), where I;O model the (�nite, disjoint) input and output port sets,and Q is the non-empty set of quiescent traces of C. A trace t, which represents a particular history of circuitbehavior, of C is quiescent i� t is not guaranteed to be extended (immediately followed) by an output event.Quiescent traces are meant to capture liveness properties of a circuit.A circuit may be viewed as a speci�cation or as an implementation under di�erent circumstances. Considertwo circuits C1 = (I1; O1; Q1) and C2 = (I2; O2; Q2).De�nition: C1 is a tentative implementation of C2 (and vice versa) i� I1 = I2 and O1 = O2.Let T1 = pref(Q1) and T2 = pref(Q2). Note that hI1; O1; T1i and hI2; O2; T2i de�ne trace structures.De�nition: A tentative implementation C1 is safe with respect to speci�cation C2 i�(8 t 2 T1; a 2 O : t 2 T2 : ta 2 T1 =) ta 2 T2)^(8 t 2 T2; b 2 I : t 2 T1 : tb 2 T2 =) tb 2 T1)De�nition: Tentative implementation C1 is live with respect to C2 i� Q1 � Q2.De�nition: A circuit C1 is an implementation of speci�cation C2, sometimes written C2 � C1, i� C1 is safeand live with respect to C2.Several authors [16, 22, 6, 5, 11] give equivalent de�nitions of DI speci�cations of systems. As in [22], we de�nea trace structure TS = hI;O; T i to be delay-insensitive i� the following �ve conditions are satis�ed:Pre�x-closure and Non-emptiness� 2 T ^ (8 s; a : s 2 T ^ a 2 I [O : sa 2 T) s 2 T)An empty trace set represents a circuit with no possible history, and hence it is ruled out. Pre�x-closurelegalizes all pre�xes of a trace, re
ecting the \real-world" fact that, for a sequence of events to occur, all itspre�xes must occur as well.Independence From Relative Wire-Delays(8 s; t; a; b : s; t 2 T ^ a; b 2 I _ a; b 2 O: sabt 2 T � sbat 2 T)This captures the fact that if two consecutive inputs arrive at a system in some order without an inter-vening output, the system cannot tell their time precedence (nor act di�erently). Note that this and all the otherconditions are symmetric w.r.t. the circuit and its environment.Absence of Computation Interference(8 s; t; a; b; c : s; t 2 T ^ ((a; b 2 I ^ c 2 O)_(a; b 2 O ^ c 2 I)): sactb 2 T ^ scat 2 T) scatb 2 T)This speci�es that the circuit cannot produce an output for the environment as long as the latter is notin a state to accept it. Usually the input transitions occur if certain output transitions have occurred andvice versa in the so-called input-output mode of operation. For example, a circuit output could serve as anacknowledgment of some previous input transition and/or as a \go-ahead signal" to the environment to produce4

the next input. The formula above roughly implies that if we assume no causal relationship between input eventa and output event c then any valid extension of computation sac must also be a valid extension of computationsca.Absence of Transmission Interference(8 s; a : s 2 T ^ a 2 I [O : s 2 T) : (saa 2 T))Informally, this property rules out the situation where two consecutive transitions on an input line occurwithout any intervening output transitions. This relates to a practical concern, because two transitions inrapid succession on a wire may interfere with each other electrically and lead to \misreading" by the receivingcomponent. Two such transitions may interact undesirably { e.g., they may cancel each other without thesender's knowledge, or they may produce a \runt" pulse that is interpreted di�erently by di�erent parts of thereceiving circuit.Proper Arbitration(8 s; a; b : s 2 T ^ ((a 2 I ^ b 2 O)_(a 2 O ^ b 2 I)): sa 2 T ^ sb 2 T) sab 2 T)Proper arbitration implies that a DI system cannot choose between an impending input event and an im-pending output event. This type of arbitration is not allowed because for safety both the circuit and itsenvironment must agree on the decision independently of each other while communication between them is notnecessarily instantaneous!De�nition: A circuit C = (I;O;Q) is delay-insensitive if hI;O;pref(T)i is a DI trace structure.4.2 A speci�cation languageAs noted above, symbols represent events and traces represent behaviors. Lower-case letters (subscripted or not)serve as symbolic names for communication events at similarly named communication ports. An event is anoccurrence of the corresponding action. In circuit physics, signal (voltage) transitions are arguably the simplestand the most natural events of communication. There is a one-to-one mapping between actions and ports of amodule. Sets of input and output actions { equivalently, their symbol sets { in a speci�cation are implicit anddisjoint: we append `?' or `!' to a symbol name to denote that the name stands for an input or output action,respectively. We may leave these su�xes out for internal signals or when no confusion is to be expected.Symbol names in a trace structure can also be viewed as atomic trace-structures representing simple speci�ca-tions. A more complex speci�cation is built recursively from the primitive speci�cations by applying following op-erations: `pref' is pre�x-closure, `;' is sequential composition, 2 `k' is parallel composition, `j' is non-deterministicchoice, and `?' is the Kleene-closure or repetition. A symbol s raised to a (natural) N indicates sequentialcomposition of N such symbols.The 1-place pref operation, when applied to a set of behaviors, represents all pre�xes of those behaviors. Allmodule behaviors are pre�x-closed; all partial interface behaviors (i.e., communications) that lead to an admissiblebehavior are themselves admissible. The sequential composition of u and v, i.e., uv, denotes that behaviorv necessarily follows behavior u. The 1-place `?' operation denotes all �nite concatenations (i.e., sequentialcompositions) of the behaviors in its argument set. The 2-place operation `k' denotes concurrency 3 betweenthe two argument sets. The parallel composition of two argument sets of behaviors is the set of all behaviorssatisfying the following:1. It has only those symbols that appear in the implicit input or output sets of either argument.2. When it is restricted (or projected) to the set of implicit input and output symbols of either argumentbehavior set, the result must be a legal behavior in that argument set.2Very often we will use mere juxtaposition to denote sequential composition in order to avoid clutter. For a good introduction totrace theory for specifying circuits, see [7].3Concurrency is used to capture the e�ect of arbitrary delays allowed in a DI model of communication wires carrying possiblysimultaneous events. Therefore, all causally unrelated events are concurrent, and there is no notion of simultaneity unlike in manysynchronous systems. 5

The 2-place `j' operation denotes the union of the two argument sets of behaviors: e.g., S = a(b j c), where allthe symbols are either inputs or outputs, speci�es that after a, either b or c, but not both, is allowed; thus, thecomplete set of valid traces is f a b, a cg. 45 Universal DI PrimitivesIn 1974, Keller [12] gave one of the �rst and best attempts to characterize the class of delay-insensitive(DI)circuits, and also provided a universal set of circuit primitives such that any circuit in this class is realizable as adelay-insensitive network of the primitives, i.e., a DI decomposition into primitives exists. It is well known thatthe class of DI circuits that can be implemented using only C-elements and boolean logic gates is quite small [14].However, this need not be true for circuits constructed from a more robust set of DI primitives, indeed Keller'sclass of DI circuits is essentially equivalent to the class of �nite state machines realizable as synchronous circuits.We have introduced a new set of primitive modules for delay-insensitive circuit design which are in a numberof ways more e�cient than Keller's primitives [20]. These are shown in Table 1. Each primitive's speci�cation isshown next to it in the form of a trace-theoretic speci�cation as described above.A m�n-Join is operationally described as follows: It has m row inputs, n column inputs, and a matrix ofm�n outputs| one for each pair of row and column inputs. The device and its environment repeat the followingbehavior: The device waits to receive exactly one row-input and exactly one column-input; upon receiving the twoinputs it makes a transition on the output corresponding to the input pair. (Joins are equivalent under swappingof the row and the column inputs.) Join11 is also called a C-element.Example: We illustrate our trace-theoretic speci�cations using, as an example, a 1�2-Join (equivalently2�1-Join), whose set of traces is given by: pref(((a?kb0?) c0!) j ((a?kb1?)c1!))?. The symbols with the su�x`?' represent transition events at the three input ports of this module, namely, a, b0, and b1. Similarly, outputsymbols c0 and c1 represent two output actions (and their occurrences). Hence, the input set is h a, b0, b1iand the output set is h c0, c1i. Examples of valid partial behaviors are: a, a b0, a b0 c0, a b0 c0 b0, b0 a c0,b1 a c1 a b1 c1, a b1 c1 b0 a c0.Some invalid traces are: (1) a b0 b1, (2) a a, (3) b0 c0, (4) a b0 c1. The �rst two traces represent errors inthe environment, while the last two in the module (refer to the operational description of a Join): (1) Theenvironment cannot send both column inputs b1 and b0 without an intermediate output from the Join. (2) acannot immediately follow itself for the same reason as above. (3) output c0 is produced too early. (4) c1 is thewrong output, c0 should be produced in stead. �A Tria outputs an event on a vertex when it has received events on the two edges adjacent to that vertex. AFork, represented by branched lines, repeatedly copies each input event to both of its output ports. A Merge,usually implemented as an Xor gate in CMOS, repeats the following: it can receive exactly one event on eitherof the input ports and, upon reception, copies it to the output port. A Toggle device repeatedly copies an inputevent to an output before getting ready to receive the next input, but the output events are distributed betweenthe two output ports alternately. Note that the Toggle can be implemented as a special case of 1�2-Join. TheMutex and Mem elements provide mutual exclusion and delay insensitive memory, respectively.A `bubble' at an input terminal of a Join device implies an initialization that corresponds to a state wherea transition at that terminal is assumed to have been received initially. We can alternatively imagine a Mergegate at the bubbled input that has an input port connected to a `START' signal. For instance, the behavior of aC-element with a bubble at the a-input is a device with the behavior of a 1�1-Join after receiving a transitionon a �rst, i.e., pref(b? c!((a?kb?)c!))? . A heavy dot near a terminal of a device denotes an initialization whereonly the thus indicated terminal may produce the �rst output of the device. We occasionally use a circle labeledwith `P' as a short-hand for a tree of Merges, in our �gures.We have shown [20] that any module in Keller's class is realizable as a DI network of Mem or alternativelyas a network of Fork, Merge, Mutex, and Tria as primitive modules. That is, the sets fFork, Merge, Mutex,2�1-Join,Mem g and fFork, Merge, Mutex, Tria g are universal for Keller's class of DI modules. We have also4This trace-structure is not delay-insensitive [21], because it does not contain the trace ba, although ab is a valid trace, and boththe symbols are inputs or outputs (hence, not causally related). The pre�x-closure of S is f�; a; a b; a cg, so S also fails to meet thepre�x closure requirement of DI trace structures. 6

shown that both these universal sets of primitives are minimal in that no proper subet of either set is itselfuniversal.The intuition behind our choice of primitives is to capture the following orthogonal aspects of functional (timing,area complexity, etc. are ignored) computation:� Initiation of parallel processes� Combining of sequential events (`Or-causality')� Arbitration or non-deterministic choice between events� Deterministic choice and synchronization� Storage of valuesNote that the aspect of computation that is sequential is inherent to the `inputs causing outputs' natureof primitives and the structural connections among those primitives in a network. Informally, the �rst threeprimitives in our set match the �rst three notions in the list above. By appropriately hiding a pair of input andoutput ports, 2�1-Join or Tria can be made to achieve synchronization among events. A M�1-Join can be DIdecomposed into Merges, Forks, and Trias or 2�1-Joins, and hence can essentially support deterministic choiceamong a set of input events. We found Mem to be the simplest module that can support storage of a booleanvalue delay-insensitively.6 Conservative and invertible DI operatorsConsider a model of computation that treats each active signal event or transition or pulse in a circuit as an objectdistinguishable only by the associated I/O channel. A \gate" (or circuit operator) functionally transposes/maps acon�guration of input objects into a con�guration of output objects, according to its speci�cation, when activated.A gate is activated when an acceptable set of input channels each receives an object.During a computation step a standard boolean gate (e.g., Nand, Or, Not) may be thought to map input logicvalues to output logic values. Additionally, if we interpret a logic high (low) value as a presence (absence) of anobject, then it is easily shown that all such gates, excepting the Not, are neither conservative nor invertible. Incontrast, we show next that the DI primitives described above satisfy many of the requirments of conservatismand invertibility. Subsequently we formulate marginal changes to the original DI primitives that enable design ofconservative DI circuits.The Merge and Mutex are conservative but not invertible | i.e., the output does not uniquely determinethe corresponding input transition(s). These are conservative in the sense that, for each input event consumed,eventually exactly one corresponding output event is produced.5 The non-deterministic operator Mutex consumesexactly one input event for every single output event it produces, but for now, we will ignore the fact that it maybe hard to design a physically reversible operation corresponding to a Mutex.The Toggle is clearly conservative, as it puts out exactly one event for each input event it consumes.The various Join elements, the Fork and the Tria are all invertible operators but not conservative. A Join or aTria consumes exactly two input objects (or transitions) at a pair of input ports to produce exactly one outputobject at the speci�ed output port. Therefore, it is invertible. On the other hand, a Fork consumes one transitionand generates two output transitions. Note that the DI-property ensures that a signal wire/terminal does notcarry more than one transition at the same time through causal relations, i.e., by a feedback-acknowledgementmechanism.7 Building-blocks for conservative DI CircuitsIn this section we will de�ne a set of DI primitives and other building-blocks that are later shown su�cient torealize conservative versions of circuits in Keller's class.5We note that DI theory mandates that a Merge receive at most one input event at a time. Therefore, it is perhaps a slightabuse to represent Merge pictorially by the common \exclusive-or" gate. The standard combinational operator exclusive-or is notconservative in the sense that it produces a zero output when its input signals are one each.7

7.1 Conservative JoinsEarlier we saw that Joins are invertible but not conservative. The conservative version of a Join is called a Cjoin(or conservative Join), and we de�ne it to have a matched pair of output terminals for each output terminal of theoriginal (non-conservative) Join. We simplymodify the speci�cation of the Cjoin to have two concurrent events onthe corresponding (matched) pair of output terminals if and when the non-conservative version has a single outputevent. This ensures that a Cjoin produces two output events for each appropriate pair of input events. In ourpictorial notation, the symbol for a Cjoin di�ers from that of a Join in that each of the heavy dots representingan output terminal is additionally circumscribed by a dotted circle. Each such terminal is called a \doubledterminal". Interconnection to such a doubled terminal is shown by using two lines | for instance, see Fig. 2.Whenever two signal wires emanate from such a terminal, they will be understood to carry the two concurrenttransitions when that output terminal is activated | in some sense, this doubling acts like an internalized Fork.
a b

c

p p’

q

q’
r

r’Figure 2: A symbol for CtriaFor an example of speci�cation, consider the Ctria in Fig. 2. This primitive has 3 inputs a; b; c and 3 pairs ofoutputs (p; p0), (q; q0) and (r; r0). The trace-theoretic speci�cation is given aspref (((a?kb?) (p!kp0!)) j ((b?kc?) (q!kq0!))j ((a?kc?) (r!kr0!)))?.A 2�1-Cjoin | with column input a, row inputs b0 and b1, and output port pairs c00; c01 and c10; c11 |may be speci�ed aspref (((a?kb0?) (c00!k c01!)) j ((a?kb1?) (c10!k c11!)))?.Merge devices are conservative, but Forks are not. Hence, as a strategy to design conservative DI (CDI) circuits,explicit Forks should be avoided and the \internalized" forks of Cjoins should be used instead.7.2 Conservative SequencersIn Section 8 we will construct an arbitrary �nite state machine using conservative DI devices. This forms thebasis for the design of circuits that do not destroy events internally. Hence, there is no irreducible energy loss,in principle, under the model of physical processes we discussed earlier in this paper. One of the key modulesused there is a multi-way CSequencer| a conservative Sequencer. In the following we develop speci�cations andconstructions of such conservative arbitration components.A realization of the (2-way) Sequencer shown in Fig. 3(b) is speci�ed aspref ((r0?g0!)?k(r1?g1!)?k(c? (g0!jg1!))?). A multi-way Sequencer may be constructed as suggested inFig. 3(d). The Sequencer can be thought of as serving two clients capable of generating simultaneous service-requests. (1) After the \clock" event (c?) arrives, the device non-deterministically grants exactly one fromany pending request(s) by outputting either g0! or g1!. (2) Subsequently, when c? arrives again, presumablyindicating that the previously granted requester/client has relinquished a shared resource, it repeats its grantingprocess from the �rst step.Fig. 4 shows a CSequencer implementation which, unlike a Sequencer, emits the extra event out through theadded Merge (c0!). The speci�cation for CSequencer is thus:8

P

P

Mutex

g1!

g0!

r1?

r0?

c?

P

P

Pr0?

r1?

g0!

g1!

r!

d?

Mutex r
1

0
r

P

P r!

d?

Seq

g0!

g1!

m+n-1g
m+n-1
r

m-way
resource
arbiterr

m-1

0r

n-way
resource
arbiter

r0

g
0

n-1
r

0d

0d

d
n-1

r0
0r

n-1
d

d
0

d
0

r
n-1

0
g

0r

arbiter
resource
n-way

r0

m-1
r arbiter

resource
m-way

r
m+n-1
gm+n-1

g
m-1

r!

d?

r!

d?

2-way

arbiter
resource

r!

d?

d?

r!

d?

r!
m-1
g

Seq

c?

(d) m+n way resource arbiter (e) m+n way sequencer

(a) 2-way resource arbiter (c) 2-way resource arbiter(b) 2-way sequencer (Seq)

Figure 3: Realization of larger arbiters and sequencers
P

P

P

r0?

r1?

g1! c?

c’!
Mutex

g0!

Figure 4: A 2-way CSequencerpref ((r0?g0!)? k (r1?g1!)? k (c?c0!)? k (c? (g0!jg1!))?) .7.3 Conservative Resource arbitersA multi-way Sequencer can be constructed through the use of the multi-way Resource arbiter drawn in Fig. 3.Fig. 3(a) depicts a delay-insensitive decomposition of the 2-way resource arbiter speci�ed aspref ((r0? a p g0!)?k(r1? b q g1!)?k((a j b) r! d?)?k(d? (p j q))?).The Resource arbiter can be thought of as serving two clients capable of generating simultaneous service-requests. It repeatedly performs the following. (1) Non-deterministically pick up and service exactly one pendingrequest at a time. (2) \Invoke" the resource (r?). (3) When the resource sends back a \done" signal (d?), thearbiter lets the correct requester know of completed service by emitting either g0! or g1!.The Resource arbiter is conservative at its external interface, but it internally uses 2�1-Join and Forks, whichare active one at a time and are not conservative. Yet on each \cycle" the 2�1-Join consumes one transitionextra while a Fork outputs one extra; there is perhaps hope! The scheme for recursive composition of a multiwayResource arbiter is shown in Fig. 3(d). The same scheme may be applied to build a multiway CResource arbiterbased on the 2-way CResource arbiters discussed later.Now, by using Cjoins in place of ordinary Joins and by using the trick of internalizing Forks, one can design aResource arbiter that is internally conservative as well. This new decomposition for a CResource arbiter is shownin Fig. 5. 9

P

d?

r!

P

Pr0?

r1?
Mutex

g1!

g0!Figure 5: A conservative 2-way Resource arbiterFig. 3(d) shows how to build a multi-way Sequencer delay-insensitively from a 2-way Sequencer and a multi-wayResource arbiters. Making them conservative is as simple as replacing the parts by their conservative equivalents.7.4 Decompositions of larger CjoinsA 2�2-Join can be decomposed into Trias, Merges and Forks, as shown in Fig. 6. However, we will often use the2�2-Join as a basic primitive in constructions for convenience. We will later also see that the 2�2-Cjoin has adecomposition in the set fMerge,Ctria g (see Fig. 11).
P

PP

P

s!

d?

p!

c?

b?a?

r!

q!

Figure 6: Decomposition of 2�2-Join into TriasIn order to see how to decompose large i�n-Cjoinsto basic conservative modules, let us �rst consider howone might decompose an ordinary M�N -Join into a set of Fork, Merge, 2�2-Join, 2�1-Join, and 1�1-Joinprimitives. Consider Fig. 7 which is a decomposition of M�N -Join into four `balanced binary decoders' (BBD)and a M�N -Tjoin (dotted box) module, described below.Column and row inputs of the M�N -Join, to be decomposed into the primitives, are each divided into nearlyequal halves, and the resulting four halves are fed into four BBDs. A BBD is a conventional binary parity treeof Merges but, all the intermediate as well as input nodes of the parity tree are also made visible as output ports{ it decodes an input signal in a special way. So, a BBD with K inputs has 2K � 1 outputs.A M�N -Tjoin module assimilates exactly 2N � 2 column inputs and 2M � 2 row inputs concurrently fromthe BBDs to generate the output that a M�N -Join is supposed to produce. The Tjoin repeats this behaviorto simulate the M�N -Join. A simple strategy is used to determine the `quadrant' of the M �N output matrixof a M�N -Tjoin to which the output belongs { corresponding to the pair (row and column) of inputs of thesimulated M�N -Join. The structure of the Tjoin is described now.10

lul

C
luu

C
lul

Col

Mux
Tree

C’l

Cll

R’l

R’u

C’ll

R
M-1

CN-1

luR

llR

R
lll

Rllu

luuR

Clu

Cllllll

Cllu

Ru

Cu
Cl

lR

R
0

0C

M/2 x N/2

M/2 x N/2

M/2 x N/2M/2 x N/2

ulC’ uuC’ uC’

luR’

llR’

uuR’

ulR’

C’lu
R

l

Rlu

Rll

Ru

Rul

Ruu

CuluClluClllClll luC lC uuCCll

BBD

BBD

BBDBBD

Row Tree Mux

Tjoin

TjoinTjoin

Tjoin

MxN Tjoin

RFigure 7: Optimal decomposition of M�N -Join moduleNominally, theM�N -Tjoin consists of a `central' Join, a 2�bN=2c-Tjoin, a bM=2c�2-Tjoin, a 2�dN=2e-Tjoin,a dM=2e�2-Tjoin, two row and two column Tree-Muxes. The four most signi�cant outputs { Cl; Cu; Rl; Ru {from the four BBDs are fed to the central Join which is usually a 2�2-Join. (If there is only one column orone row input, then the corresponding central Join is a 2�1-Join, a 1�2-Join, or a 1�1-Join.) This central Joinsteers the decoder outputs to the appropriate quadrant with the help of the Tree-Muxes. The lower column (row)Tree-Mux steers the decoded signals, Cll ; Clu, ... (Rll; Rlu, ...), to left or right (up or down) quadrant under the`control' of the central Join. A Tree-Mux is a binary (preferably balanced) tree of 2�2-Joins. See the Fig. 7 fora clearer picture.Intuitively, you may think of the transitions in a Tjoin to be progressing like a wave. By the time the centralJoin generates its output, the 2�2-Joins on its left row Tree-Mux and the column Tree-Mux below should havetheir column and row input signal, respectively. The output from the central Join is forked to the appropriatepair of Tree-Muxes whose partial outputs activate the bN=2c�bM=2c-Tjoin. Thereafter, the Tjoin and the Tree-Muxes synchronize as suggested and compute concurrently. In Fig. 7, we have shown a shaded region to indicatethe Joins that are producing outputs after the central Join{ assuming the inputs to the simulated M�N -Joinoccur in the lower halves.Each Tjoin quadrant is decomposed recursively, as its parent is. The recursive decomposition `terminates' whenthe present Tjoin quadrant to be decomposed has only one or two ports in each dimension (row or column). Inthis case the Tjoin is just the central Join of appropriate type.We have logmax(M;N) sequentially ordered levels of signal
ow before an output is produced. The parallelismbetween computations of a Tree-Mux and a Tjoin quadrant made possible due to the decoder signals in ourmethod helps achieve a response-time complexity of �(logmax(M;N)), which is optimal. We assume that the11

response-time of each constant-sized device is a constant.6The (switching) energy expended in a module for a given computation is roughly proportional to the numberof transitions made, during that computation, at the input and output ports of all the primitives constitutingthe module. Therefore, energy used for mapping (producing) an output corresponding to a pair of inputs isO((logN)2) for the N�N -Join, assuming each transition at a primitive's port consumes constant energy. Weconjecture that this is also asymptotically optimal.Now consider the special case of the 2�8-Join module. Our asymptotically time-optimal design for this case isgiven in Fig. 8. Note the use of two `balanced binary decoders' or BBDs for the column inputs. The unlabelledarrows with no destination are the output wires of the 2�8-Join. Signal lines with same names are assumed tobe logically connected. The tree-like topological structure at the bottom is a \Row Mux", the other similar RowMux on the left is indicated by a labelled box. The subscripts on the signal names indicate pattern { \l" for lowerand \u" for upper half when the left half of the BBD inputs are considered lower, etc.{ e.g., Cll is for signals onlower half of the lower half of column inputs of the 2�8-Join.
0C

P

P P

lllClll
Cll luC lC

lluC

CC C1 2 3

BBD

C
luu

C
lul

P

P P

uC Cul uuC

C
luu

C
lul llC

Clu

lllClll

Cllu

0R

Cu
Cl

lR

Ru R1

Row Tree Mux

C7C C C64 5

BBD

Figure 8: 2�8-Join as part of Row Tree MuxFig. 9 shows the conservative version, 2�N -Cjoin. Here, we have replaced the Joins by Cjoins, and we havereplaced Forks by 1�1-Cjoins. Furthermore, we use arrows with triangle heads to indicate \doubled" signals, i.e.,two concurrent events on two separate signal wires. Note that some 2�2-Cjoins receive a doubled row input anda non-doubled column input. This somewhat unusual 2�2-Cjoin generates a corresponding doubled as well as anon-doubled output | in other words, three concurrent signal transitions (see below). Pairs of these non-doubledoutputs feed the initialized port of an appropriate 1�1-Cjoin through a Merge. Neither the Merges nor theinitialization of these 1�1-Cjoins are shown, to avoid clutter. For example, the two wires labelled C 0ll feed the1�1-Cjoin from which Cll emerges.We next show a simple way to interpret these triangle-head signal arrows in terms of an implementation withinour basic repertoire of primitives | in Fig. 10.Finally, we are ready to show the decomposition scheme for an arbitrary sized M�N -Join module. ConsiderFig. 7, which is an asymptotically optimal decomposition of M�N -Join into four BBDs and an M�N -Tjoin(dotted box) module, each decomposable to our basic primitives. It is fairly easy to convert this design to aconservative equivalent based on ideas described above. All corresponding conservative versions of primitives areused. The \leaves" of the Row Mux and Col Mux trees feed the appropriate 1�1-Joins that have replaced Forksin the BBD subcircuits. The leaves of a tree at the outermost level of decomposition feed the 1�1-Joins at the6We have ignored delays in interconnects between primitives since delay-insensitivity places no functional requirement on them.Moreover, this somewhat simpli�es our �rst-order comparison and analysis.12

P

P P

uC

C7C C C64 5

cBBD

’Cll

C
lul

C
lul

P

luC

0C

Cll

lluC

P

lllClll C
luu

lC

P

C C2 3C1

cBBD

Cllu

Row Tree Mux

C
lul Cu

Cl
lllClll

C
luu

0R

Ru R
1

lR

Clu

llC

’Cll

’CllFigure 9: Decomposition of a 2�8-Cjoin
(a) (b)Figure 10: 2�2-Cjoin with \doubled" inputsoutermost levels of the BBDs, and so on. Note that, for M = N , there is no need for using \doubled" 2�2-Cjoins.With this arrangement, we get two output events (from the 2�2-Joins present at the \leaf-level" decomposition)for each pair of column and row input events to the M�N -Cjoin.We are now ready to show below a general approach to implementing DI speci�cations as conservative circuits.8 Construction of CDI circuitsWe have shown that the set fFork,Merge, Tria,Mutex g is universal (i.e., functionally complete) for the large classof DI circuits called Keller's class. Here we will consider construction of conservative circuits for speci�cations inKeller's DI class.De�nition: A DI speci�cation is conservative if, for every allowable trace, the number of input events di�ersfrom the number of output events by no more than a �xed constant.The speci�cations pref ((a?jb?) c!)?, pref (a!; a?)? are conservative, as is the speci�cation of a DI multiplierwith two n-bit unsigned input operands producing a 2n-bit result. Speci�cations of the Joins are not conservative.De�nition: A DI circuit primitive is called CDI if it is conservative.De�nition: A circuit implementation of a DI speci�cation is conservative DI (CDI) if it is a DI compositionof CDI primitives only.It follows easily that 1�1-Cjoin and 1�2-Cjoin are specializations of Ctria by way of hiding appropriate inputsand outputs. Fig. 11(a) shows a DI decomposition of 2�2-Join (a variation from the design in Fig. 6). In this�gure, signal lines numbered the same are logically connected | we have not drawn the connections to avoidclutter. A design for the conservative 2�2-Cjoin is diagramed in Fig. 11(b) where several initialized 1�1-Cjoins13

are used in place of Forks in the non-conservative variation. We denote the \doubled" outputs by triangle-headarrows as usual. Note the use of conservative primitives only in this construction. Whenever we use a forkedline emerging from a \doubled" terminal of a conservative Join device, we mean the two branches carry the twoconcurrent signals separately | an artifact to avoid clutter. The correctness of this decomposition can easily beveri�ed.
P

(a)

P P

Pa? b?

1 2

4 56

3

c?

d?

4

q!

s!
3

5

6

p!

r!

2

1

P

6

P P

(b)

P P

P
1 2

4 56

3

c?

d?

a? b?

2 1

r!
s! q!

54

3

p!Figure 11: Realization of 2�2-Cjoin from Ctria and MergeThe following theorem follows from the fact that any Cjoin device can be decomposed into 2�2-Cjoins andMerges, and the DI decompositions of multi-way sequencers and the 2�2-Cjoin shown above. of CSequencerabove.Theorem: The set f Merge, Ctria, Mutex g is universal for the class of CDI circuits. �Recall that in our model each primitive DI element consumes some number of input events and produces somenumber of output events during operation. Likewise, a large DI circuit also consumes input events provided by itsexternal environment and provides output events to the environment. To avoid confusion in the context of largeDI circuits, we may call the input and output events seen by a primitive circuit element local events, and we willcall events seen by the DI circuit as a whole with respect to the external environment external events. Note thatexternal events are also local events for some circuit primitives.De�nition: A DI circuit is marginally conservative if for every execution of the circuit, the sum of the localoutput events produced by all circuit primitives exceeds the sum of the local input events consumed by all circuitprimitives by no more than the number of external output events of the circuit.Theorem: Any DI speci�cation in Keller's class can be implemented as a marginally conservative DI circuit.�Proof :Control and environment inputs are allowed to occur concurrently, whereas the environment inputs are stillsequenced serially by means of the multi-way Sequencer. The M�N -Join module simulates a `transition relation'where the columns of the M�N -Join correspond to \internal-states" while the rows serve to provide inputs to themonolithic state-machine that takes one step at a time { assimilates a pair of events comprising a present-stateinput and an input from the environment { to produce any appropriate output signals, to change internal-state,and to \prime" the input Sequencer for the next external input. We simply extend this idea below and useconservative primitives.The column of the Cjoin module with a bubble in Fig. 12 represents the initial state of the circuit. Thetop 1�N -Cjoin generates a `clock' signal c? for the M -way CSequencer. We have already demonstrated that14

M�N -Cjoin and M -way CSequencer modules can be decomposed into a conservative network of primitives infMerge, Mutex, Ctria g.
M-way

CSeq

b?

a?

d?

c’!

P

MxN-CJoin

s!

r!

P

P

t!

P
P

1xN-CJoin

Figure 12: Marginally Conservative State MachineOne of the two resulting output events from the M�N -Cjoin goes on to activate the correct \next state" ofthe Conservative Finite State Machine (CFSM) and the other is steered to the appropriate output channel. Atthis level of abstraction, if no output is de�ned, the signal is \destroyed", and if more than one output event isspeci�ed, then a number of extra events are generated and steered to the speci�ed output channels. The CFSMis then ready to consume any input at the newly arrived internal state, repeating its previous actions.All the sources of event destruction and creation are indicated on the right of the M�N -Cjoin. The Sinksdepicted as short vertical bars indicate sites for destruction of an event while Forks indicate generation of events.Note that events are generated by Forks only when two or more concurrent external events (e.g., r! and s! in�gure) are output per step of the machine. Events are not generated for any other internal computation, such asthe determination of next state. �As stated before, Sinks in Fig. 12 indicate destruction of an event in the system. This happens when an inputsignal is consumed by the state machine without producing an useful output event. We can minimize this kindof event destruction, by storing the event internally for later emission as an output event.Theorem: A conservative DI speci�cation can be implemented as a conservative DI circuit. �Proof :It su�ces to show how events may be stored for latter emission without ever generating fresh ones or destroyingthem. Fig. 13 depicts a \conservative" architecture based on the design in Fig. 12. A \Storage Stack" module isemployed to store and retrieve events during a circuit's operation. The stack provides several channels for both\push" and \pop" operations. A push operation involves reception of two events and then transmission of anacknowledgement. A pop operation similarly involves one input event and two output events. The push and popoperations are strictly serial. Signals with the same labels are assumed to be connected in the circuit. An event ispushed into the stack if otherwise it would be destroyed. An event is popped if an extra external output event isto be generated consistent with the speci�cation. In Fig. 13 we have shown two illustrative situations in relationto Fig. 12. In one case, the state machine \pushes an event" which gets acknowledged by an event on z. In theother case, it pops the stack to generate one additional, needed external output event { receives a pair of eventsx and y in response to a pop request (event).Let the maximum di�erence between the number of input and output events in any trace be d. Then thecapacity of the stack need not be more than 2d. If the number of output events can exceed the input events in atrace by n, then the stack is initialized with n � d stored events. The stack has a channel for each distinct pushand pop signal. 15

M-way

CSeq

b?

a?

d?

c’!

P

P

P

P
P

t!

Storage-stack

port2

z

port1

pop push
x y

s!

r!

1xN-CJoin

MxN-CJoin

y

x

z

Figure 13: Conservative State MachineWe show below that a DI decomposition of such a stack exists. Consider the DI design of a storage stack ofdepth 4 in Fig. 14. It has two \push channels" and two \pop channels". The stack is initialized with one \item"(i.e., three pushes can initially occur before a pop.) The inputs \store" and \push" always occur concurrently asa pair. The output of a pop is an (x; y) pair. (Signals are named to be corresponding symbols we have used inFig. 13.) Forked signals, as before, are short hand for two concurrent output signals from a doubled terminal. zsignals are acknowledgements to their corresponding push requests. The 2�5-Cjoin serves as the \stack pointer".The four 1�1-Cjoins serve to store an event until it is popped. The \shadow register" simply shadows the stackpointer during a push. We have omittedMerges at the column inputs to the stack-pointer { whenever more thanone input signal feed a single row/column of a Join device, we implicitly assume a Merge of those inputs. Thestack-pointer (the active column input) changes its position in response to push and pop requests. The left mostposition corresponds to the stack-empty condition.It is straightforward to extend this scheme, by an induction argument, to a stack of arbitrary depth k withany �xed �nite number of push and pop channels. We need a 2d-depth stack in general because we are allowingoutput events to overtake input events by no more than d and vice versa.This completes the proof of the theorem. �Corollary: Any CDI speci�cation can be implemented as a DI network of Mutex, Ctria and Merge primitives.�9 Discussion and conclusionIt is interesting to note that it is possible to realize an invertible conservative, delay-insensitive sequential functioneven when using clearly non-invertible components such as Merge. This is possible because enough information iskept around for the function's implicit inversion despite the local use ofMerges. This is in contrast to garbagelesscircuits [8] built using only Fredkin gates which are invertible as well as conservative.Note that our model requires little extra hardware or sequential time to make a delay-insensitive circuit con-servative as well, for it does not need explicit phases or logic blocks for uncomputing { unlike all the existingapproaches to reversible computing (see, e.g., [8, 1]). Moreover, our circuits can reduce the \garbage bits" thatthe existing approaches [3, 8] have to contend with | by transforming some or all input objects into output16

P

P

P

P

P

P

Shadow-register

pop1

push1
push2

store2

1

1 2 3

x1

x2

y1

y2

z1

z2

pop2

store1

2 3 4

4

Storage bank

Stack-pointer

Figure 14: Storage stack of depth 4objects. Much if not all of the \overhead of reversibility" in clocked systems is avoided by our DI approach toultra low power circuits. While DI circuits admittedly carry some overhead for the necessary extensive localsynchronizations compared to conventional, non-conservative synchronous circuits, it appears that this overheadalso provides the much of the capability for nondissipative computing and that it may be much less overhead thanthat required for synchronous circuits to achieve similar power savings.In the simulation of the state machine of previous section, we have used Sequencers which are inherentlynon-deterministic and may be di�cult to physically realize in some technologies. However, non-deterministicbehavior appears natural for quantum devices. It is possible, however, to design a delay-insensitive, conservativecircuit without sequencers if the circuit's DI speci�cation does not imply true (output) arbitration for the circuit.Concurrency and input non-determinism are still allowed in such speci�cations. Note also that, although we haveused monolithic state machine simulation for the proofs, these designs can be greatly improved (optimized) forspeci�c circuits.References[1] W. C. Athas, L. J. Svensson, J. G. Koller, N. Tzartzanis, and E. Chou. Low-power digital systems based onadiabatic-switching principles. IEEE Transactions on VLSI Systems, 2(4):398{407, 1994.[2] C. H. Bennet. Logical reversibility of computation. IBM J. of Res. Dev., 17:525{32, 1973.[3] C. H. Bennet and R. Landauer. The fundamental physical limits of computation. Scienti�c American, pages38{46, July 1985.[4] Janusz A. Brzozowski and Jo C. Ebergen. On the delay-sensitivity of gate networks. IEEE Transactions onComputers, 41(11):1349{1360, November 1992.[5] David L. Dill. Trace Theory for Automatic Hierachical Veri�cation of Speed-Independent Circuits. ACMDistinguished Dissertations. MIT Press, 1989.[6] Jo C. Ebergen. Translating Programs into Delay-Insensitive Circuits, volume 56 of CWI Tract. Centre forMathematics and Computer Science, 1989. 17

[7] Jo C. Ebergen. A formal approach to designing delay-insensitive circuits. Distributed Computing, 5(3):107{119, 1991.[8] E. Fredkin and T. To�oli. Conservative logic. International Journal of Theoretical Physics, 21(3/4):219{53,1982.[9] J. S. Hall. An electroid switching model for reversible computer architectures. In Proc. of the Workshop onPhysics and Computation. IEEE Press, 1993. PhysComp '93.[10] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.[11] Mark B. Josephs. Receptive process theory. Acta Informatica, 29(1):17{31, 1992.[12] Robert M. Keller. Towards a theory of universal speed-independent modules. IEEE Transactions on Com-puters, C-23(1):21{33, January 1974.[13] J. G. Koller and W. C. Athas. Adiabatic switching, low energy computing, and the physics of storing anderasing information. In Proc. of the Workshop on Physics and Computation. IEEE Press, 1992. PhysComp'92.[14] Alain J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In William J. Dally, editor,Sixth MIT Conference on Advanced Research in VLSI, pages 263{278. MIT Press, 1990.[15] Ralph C. Merkle. Reversible electronic logic using switches. In Nanotechnology, volume 4, pages 21{40.(incomplete), 1993.[16] Charles E. Molnar, Ting-Pien Fang, and Frederick U. Rosenberger. Synthesis of delay-insensitive modules. InHenry Fuchs, editor, 1985 Chapel Hill Conference on Very Large Scale Integration, pages 67{86. ComputerScience Press, 1985.[17] Priyadarsan Patra and Donald S. Fussell. Building-blocks for designing DI circuits. Technical report tr93-23,Dept. of Computer Sciences, The Univ of Texas at Austin, November 1993.[18] Priyadarsan Patra and Donald S. Fussell. E�cient building blocks for delay insensitive circuits. In Proc. ofInternational Symposium on Advanced Research in Asynchronous Circuits and Systems, November 1994.[19] Priyadarsan Patra. Asymptotically zero power in reversible sequential machines. Technical report, Dept. ofComputer Sciences, Univ of Texas at Austin, 1995. CS Tech Report CS-TR-95-14.[20] Priyadarsan Patra. Approaches to Design of Circuits for Low-Power Computation. PhD Dissertation, De-partment of Computer Sciences, The University of Texas at Austin, December, 1995.[21] Jan Tijmen Udding. Classi�cation and Composition of Delay-Insensitive Circuits. PhD thesis, Dept. ofMath. and C.S., Eindhoven Univ. of Technology, 1984.[22] Jan Tijmen Udding. A formal model for de�ning and classifying delay-insensitive circuits. DistributedComputing, 1(4):197{204, 1986.[23] Jan L. A. van de Snepscheut. Reversible Computations. What computing is all about. Springer-Verlag, 1993.[24] Jan L. A. van de Snepscheut. Trace Theory and VLSI Design, volume 200 of Lecture Notes in ComputerScience. Springer-Verlag, 1985.[25] S. G. Younis and T. F. Knight. Practical implementation of charge recovering asymptotically zero powercmos. In Proc. of the 1993 symp. on Integrated Systems. MIT Press, 1993.18

Name Symbol Speci�cationFork
c!
b!

a? pref(a?(b!k c!))?Merge a?
c!

b?
P pref((a? jb?) c!)?1�1-Join C

a?
c!

b?
pref((a?kb?) c!)?1�2-Join a?

b0? b1?

c0! c1!

pref(((a?kb0?) c0!)j((a?kb1?)c1!))?Toggle a? c!
d! pref(a? c! a? d!)?Tria

p! q!

r!

a?

b? c? pref(((a?kb?) p!)j((a?kc?)q!)j((b?kc?)r!))?2�2-Join
d?

c?

b?

a?

s!r!

q!p! pref(((a?kc?) p!)j ((a?kd?)q!)j ((b?kc?)r!)j ((b?kd?)s!))?Mutex r0?

r1?

g0!

g1!
Mutex pref(r0? g0! r0? g0!)?k(r1? g1! r1? g1!)?k((g0! g0!) j (g1! g1!))?Mem c? c’!

t?
t0!

t1!

Mem pref((t? t0!)?c? c0!(t? t1!)?c? c0!)?Table 1: A set of representative DI Primitives19

