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The problem with this equivalence is that it is not tight. For a random d-regular graph, small sets S haveroughly (d�1)jSj neighbors, yet bounding the second eigenvalue can only be used to show the existence of roughly(d=2)jSj neighbors [Kah].The situation gets much worse for larger degree and stronger expansion. A de�nition that captures such strongexpansion is:De�nition 1.1 [Pip3] An undirected graph is a-expanding if any two disjoint sets of vertices, each containing atleast a vertices, are joined by an edge. Equivalently, every set with a vertices has more than n� a neighbors.It is easy to see that every a-expanding graph must have d � na , and it is not too hard to show that randomna logn-regular graphs are a-expanding. To see the best upper bound on d that can be obtained using theeigenvalue method, let � be the second largest eigenvalue of A, and E(S; T ) denote the number of edges betweenS; T � V . The basic inequality is E(S; T ) � djSjjT jn � �pjSjjT j (1)Thus if jSj = jT j = a, to ensure E(S; T ) > 0 we must have da � �n.1 But it is known that if d � n=2 then� � pd=2, which forces d � 12 (na )2. This is useless when a < pn, and even when a � pn, it forces roughly aquadratic loss compared to the probabilistic existence bound d = na logn.In this paper, we show how to construct graphs that come within an no(1) factor of optimal:Theorem 1.2 There is a Logspace algorithm that, on input n (in unary) and �, where 0 < � = �(n) < 1,constructs n�-expanding graphs on n nodes with maximum degree n1��+o(1).Remark: In fact, our no(1) factors will be bounded by exp((logn)2=3+o(1)).2Our result is obtained by improving the extractor construction of [NZ]. The motivation for extractors is thatthere are many fast and useful randomized algorithms. The extractor allows us to compute e�ciently if therandom source is defective, as long as we have a small number of truly random bits available. (In fact, even if wedon't have any truly random bits, we can cycle through all possibilities { see [NZ, Zuc2] for more details.) Ourmodel for defective random source will essentially be the most general:De�nition 1.3 [Zuc1] A distribution D on f0; 1gn is called a �-source if for all x 2 f0; 1gn, D(x) � 2��n.Note that a particular type of �-source is the uniform distribution on a subset A � f0; 1gn, jAj � 2�n. We cannow de�ne:De�nition 1.4 [NZ] E : f0; 1gn � f0; 1gt ! f0; 1gm is called an (n; �; t;m; �)-extractor if for every �-sourceD, the distribution of E(x; y) � y induced by choosing x from D and y uniformly in f0; 1gt is within statisticaldistance � of the uniform distribution.For now, think of � � 1=2 as a �xed constant and � = 1=nc for some constant c. In [NZ] an e�cient extractorwas described requiring t = (logn)O(1) additional random bits and outputtingm = 
(n) nearly-random bits. Herewe show how to improve the output length to asymptotically the right value: our construction gives t = (logn)O(1)and m = (��o(1))n. This near-optimal output length is necessary for our graphs to have near-optimal expansion.We do pay a price, however, in that our t is larger than in [NZ].The only tools we use are hash functions and k-wise independence. Our construction builds heavily on the onein [NZ], which in turn builds upon ideas in [Zuc1, Zuc2]. Indeed, the explicit construction of expanders that beatthe eigenvalue bound in a di�erent scenario were �rst obtained in [Zuc1].1Actually, using Tanner's inequality [Tan], it su�ces to have the degree slightly less: da � �n=(1 + �=d).2The recent improved extractor construction of [SZ] improves these factors to exp((logn)1=2+o(1)).2



1.2 ApplicationsOur graphs improve many explicit constructions. In all cases, our results improve upon previous constructionsby factors of n
(1), and are optimal to within factors of no(1). Therefore, it will be convenient to ignore no(1)factors using the following notation.De�nition 1.5 O�(f(n)) denotes f(n)no(1).Still, we stress that in our bounds the no(1) factor is really exp((logn)2=3+o(1)). In the probabilistic and optimalbounds they are at most log2 n, so there is still a gap to close.Sorting and Selecting in RoundsSorting and selecting in rounds has been an area of intensive study. This is the worst-case complexity in Valiant'scomparison-tree model [Val1] using a constant number k of rounds. For sorting, 
(n1+1=k(logn)1=k) compar-isons are necessary [AA], and O(n1+1=k logn) comparisons are su�cient [BT]. This last result, however, isnon-constructive. Pippenger [Pip3] showed a slightly worse non-explicit construction of O(n1+1=k(logn)2�2=k),but his construction depends only on the existence of n�-expanding graphs with an optimal number of edges.Thus, applying our construction, we obtain a near-optimal explicit algorithm using O�(n1+1=k) comparisons. Thebest known previously was O�(n1+2=(k+1)) [Pip3].The situation for selecting is very similar. The non-constructive upper bound of O(n1+1=(2k�1)(logn)2� 22k�1 )comparisons [Pip3] is close to the lower bound of 
(n1+1=(2k�1)(logn) 22k�1 ) [AA]. Again we obtain a nearlyoptimal constructive upper bound of O�(n1+1=(2k�1)), improving the previous best of O�(n1+2k�2=(3k�1�2k�2))[Pip3].A related problem is \almost-sorting" in 1 round: how many comparisons are necessary to �nd the relationsof all but r of the pairs of elements. Several papers have analyzed the case r = o(n2) (e.g. [AKSS, AA]), but it isnatural to study the question for general r, such as r = n2��, 0 < � < 1. For such r, the non-constructive upperbound of O(n1+� log2 n) comparisons [AKSS, AA] is close to the lower bound of 
(n1+� logn) [AA]. Here wegive the �rst nearly optimal constructive upper bound of O�(n1+�), improving the previous best of O(n1+2� logn)[AKSS, AA].Superconcentrators and Nonblocking NetworksOur graphs are also useful in explicitly constructing various networks. An (n;m)-network is a directed acyclicgraph with n distinguished vertices called inputs and m other distinguished nodes called outputs. An (n; n)-network is also called an n-network. The size of a network is the number of edges, and the depth is the length ofthe longest path from an input to an output.One important example is a superconcentrator. An n-superconcentrator is an n-network such that for everysubset A of the inputs and B of the outputs such that jAj = jBj, there exist vertex-disjoint paths joiningthe vertices in A to the vertices in B. Superconcentrators have proved very useful in complexity theory (e.g[Tom, Val2]). Indeed, superconcentrators were the original motivation for constructing expander graphs.While linear-sized superconcentrators have been explicitly constructed (e.g. [GG]), these all have logarithmicdepth. The best known explicit constructions for depth 2 is O(n3=2) [Mes], and for depth 2k + 1 are of sizeO(n(k+3)=(k+2)) [Alo1]. On the other hand, non-explicit constructions were known of size O(n log2 n) for depth2 [Pip2], and O(n�(k; n)) for depth 2k, k � 2, for an extremely slowly growing �(k; n) (e.g. �(2; n) = log� n)[DDPW]. Here, we give an explicit construction for depth 2 of size O�(n). This is our biggest improvement: afactor of O�(pn).We use this construction of a depth 2 superconcentrator to give the �rst explicit construction of a linear-sizedsuperconcentrator with sublogarithmic depth (namely, depth (logn)2=3+o(1), or (logn)1=2+o(1) using the recentimproved extractor construction in [SZ]). We also give non-explicit constructions of linear-sized superconcentratorswith depth log�(k; n).The main tool in most superconcentrator constructions is the concentrator, which is interesting in its own right(e.g. [Mor]). An (n;m; l)-concentrator is an (n;m)-network such that every set of at most l inputs is connected by3



vertex-disjoint paths to outputs. Concentrators of depth 1 are usually built with expanders, with the exception of[Mor]. The best previous construction of depth 1 (n; n�;
(n�)) concentrators has size O(n1+minf�=2;(1��)g) (seee.g. [FFP]). Here we construct a generalization of these concentrators with size O�(n).We use this generalized construction to give a construction of wide-sense nonblocking generalized connectors.To motivate this, think of routing telephone calls from inputs to outputs: any input-output pair can be requestedat any time and the callers may \hang up" at any time, at which time these new inputs and outputs are free tobe requested. A wide-sense nonblocking generalized connector, roughly speaking, is one where the router neednever be stuck (we de�ne it precisely later). Feldman, et.al. [FFP] gave non-explicit constructions for depth kwide-sense nonblocking generalized connectors of size O(n1+1=k(logn)1�1=k), essentially matching the 
(n1+1=k)lower bound [PY]. They also gave explicit constructions for depth 2 of size O(n5=3), for depth 3 of size O(n11=7),and for depth k of size O(n1+2=k). Here we give an explicit construction for depth k of size O�(n1+1=k).2 The ConstructionFor ease of reading, we ignore round-o� errors, assuming when needed that a number is an integer. It is nothard to see that this does not a�ect the validity of our arguments. We start by clarifying what we mean by\within statistical distance � of the uniform distribution" in the de�nition of extractor.De�nition 2.1 A probability distributionD on a set S is quasi-randomwithin � if for allX � S, jD(X) � jXj=jSjj � �.Here D(X) denotes the probability of the set X according to distribution D.From the de�nition of extractor, it is clear that the smaller � and � are, the harder it is to de�ne an extractor. In[NZ] (see the �nal version for slightly improved parameter dependence), an extractor is constructed for essentiallyall reasonable � and � (although upper bounds are placed to make the expressions simpler):Lemma 2.2 [NZ] For any parameters � = �(n) and � = �(n) with 1=n � � � 1=2 and 2��n � � � 1=n, there existsa polynomial-time, linear-space computable (and explicitly given) (n; �; t;m; �)-extractor E : f0; 1gn � f0; 1gt !f0; 1gm, where t = O(log ��1 log2 n log ��1=�) and m = 
(�2n= log ��1).The idea for constructing our graphs is fairly simple, and described by the following lemma:Lemma 2.3 If there is an (n; �; t;m; 1=4)-extractor computable in linear space, then there is an N �-expandinggraph on N = 2n nodes with maximum degree N21+2t�m constructible in Logspace.Proof: An extractor E naturally de�nes a bipartite graph H on V �W , where V = f0; 1gn and W = f0; 1gm.Namely, connect x 2 f0; 1gn to z 2 f0; 1gm if and only if there is a y 2 f0; 1gt such that E(x; y) = z. LetN = jV j = 2n and M = jW j = 2m. Then E being an extractor implies that a subset A of V of size at least N �has at least (1� �)M = 3M=4 neighbors. Otherwise, if more than �m vertices in W have probability 0 of beinghit, then E(x; y) cannot be quasi-random within �, for x chosen uniformly from A and y from f0; 1gt. Thus, anytwo sets of size N � have a common neighbor (in fact, at least M=2 common neighbors). In other words, the graphH2, with vertex set V and edges corresponding to paths of length 2 in H, is N �-expanding.We must be somewhat careful, however. Nothing in the de�nition of extractor prevents every vertex in V fromhaving the neighbor 0m (say) in H, making H2 a clique. We therefore form the graph G from H by deletingvertices in W that have degree more than twice the average for nodes in W , i.e. more than 2N2t=M . In thisway, we retain a set of undeleted nodes W 0, which has size M 0 � (1� �)M = 3M=4 (if more than �M nodes hadtwice the average probability of being hit, then E(x; y) could not be quasi-random within �). Moreover, any twosubsets of V of size N � have at least M=4 common neighbors. Thus the graph G2 is the one we seek. 2Substituting in the extractor of [NZ] gives a construction which beats the eigenvalue bound, but is not near-optimal. To get a near-optimal construction, we need to make m close to �n, while keeping t small. The followingis a method for doing this.Lemma 2.4 Given an e�cient (n; �; t1;m1; �1)-extractor E1and an e�cient (n; ��(m1+k)=n; t2;m2; �2)-extractorE2, we can construct an e�cient (n; �; t1 + t2;m1 +m2; �1 + �2 + 2�k)-extractor E.Proof: We de�ne E(x; y1 � y2) = E1(x; y1) �E2(x; y2). Suppose X is output according to a �-source on n bits,and Y1 � Y2 is chosen uniformly from f0; 1gt1+t2 . Let D denote the distribution of the random variable W1 =4



E1(X;Y1) � Y1, which is quasi-random within �1. Then Pr[D(W1) � 2�(m1+t1+k)] � 2m1+t1 � 2�(m1+t1+k) = 2�k.If D(w) � 2�(m1+t1+k), then conditional on E1(X;Y1)�Y1 = w, the distribution of X is a (��(m1+k)=n)-source,so W2 = E2(X;Y2) � Y2 is quasi-random within �2. Removing the conditioning, we conclude that W1 �W2 isquasi-random within �1 + 2�k + �2, as required. 2This allows us to recurse as in the following lemma:Lemma 2.5 Fix positive integers n and k. Suppose that for each � 2 [�; 1] we are given an e�cient (n; �; t(�);m(�); �(�))-extractor, where t and � are non-increasing functions of �. Let f(�) = m(�)=(�n), and suppose f is non-decreasing.Let r = ln(�=�)=f(�) or, if f grows at least linearly (i.e. f(c�) � cf(�) for c > 1), let r = 2=f(�). Then we canconstruct an e�cient (n; �; r � t(�); (� � �)n� k; r(�(�) + 2�k))-extractor.Proof: We recurse using Lemma 2.4 with parameter k. We show that we only recurse r times, from which thelemma follows. If after recursing i times we have an (n; �; t;m; �)-extractor, then set �i = �� (m+ k)=n. If �i < �then m > (���)n�k, and we are done recursing. Otherwise, we use an e�cient (n; �i; t(�i);m(�i); �(�i)-extractor.At the next level we will need an extractor corresponding to �i+1 = �i �m(�i)=n = �i(1� f(�i)).To see how many times we recurse, we need to �nd the least s such that �s < �. To see s � ln(�=�)=f(�),we use f(�i) � f(�), so �(1 � f(�))s � �. If f grows at least linearly, we write s � Plog(�=�)j=0 sj , where2j+1�(1� f(2j�))sj � 2j�. Thus sj < 1=f(2j�), and s <Plog(�=�)j=0 1=f(2j�) < 2=f(�). 2We can now prove our main theorem, which we restate:Theorem 1.2: There is a Logspace algorithm that, on input N (in unary) and �, where 0 < � = �(N ) < 1,constructs an N �-expanding graph on N nodes with maximum degree O�(N1��).Proof: Assume without loss of generality that N is a power of 2, so N = 2n. Set � = (log5 n=n)1=3, � =1=n, and k = logn. If � < �, then the complete graph satis�es the theorem. Otherwise, apply Lemma 2.5to the extractor given by Lemma 2.2 to build an (n; �; t = O(log3 n log2 ��1=�2;m = (� � �)n � logn; � =O((log ��1)=(�n))-extractor. Then Lemma 2.3 gives an N �-expanding graph with maximumdegree N1��+O(�) =N1��+(logN)�1=3+o(1) . 2We remark that the paper [SZ] improves the extractor of [NZ], giving a somewhat better N o(1) factor ofexp((logN )1=2+o(1)).3 Sorting and Selecting in RoundsThe following is implicit in Pippenger's work:Lemma 3.1 [Pip3] Suppose that for all 1=2 � � < 1 there are explicitly-constructible n�-expanding graphs withmaximum degree n1��f(n). Then there are explicit algorithms for sorting and selecting in k rounds usingO(n1+1=kf(n) logn) and O(n1+1=(2k�1)f(n) logn) comparisons, respectively.Proof: Use a = n1�1=k= logn and a = n1�1=(2k�1) in Pippenger's proofs of Theorems 2 and 1, respectively. 2This immediately yields:Theorem 3.2 There are explicit algorithms for sorting and selecting in k rounds using O�(n1+1=k) and O�(n1+1=(2k�1))comparisons, respectively.Proof: Use Lemma 3.1 with the graphs constructed in Theorem 1.2. 2The following lemma about almost-sorting in 1 round appears in [AKSS]:Lemma 3.3 [AKSS] If G is an a-expanding graph, then after performing the comparisons according to G, allrelations will be known except for O(an logn).This immediately gives:Theorem 3.4 There are explicit algorithms to �nd all relations except n2�� in one round using O�(n1+�) com-parisons.Proof: Perform comparisons according to a cn1��= logn-expanding graph constructed via Theorem 1.2. 25



4 SuperconcentratorsIn this section, we explicitly construct superconcentrators of depth 2 and size O�(n). In order to construct ournetworks, we use as building blocks n�-expanding weak concentrators:De�nition 4.1 An a-expanding weak (n;m)-concentrator is an (n;m)-network of depth 1 in which every subsetof the inputs of size a expands to more than m � a outputs.Note that these are not concentrators in the usual sense.Lemma 4.2 For all n, 0 < � = �(n) < 1, 2 � r = r(n) � O(n1��), there are explicitly-constructible n�-expandingweak (n; rn�)-concentrators of size O�(rn)Proof: By Theorem 1.2, we can construct an n�-expanding graph G on n + rn� nodes with maximum degreeO�(n1��). Form an (n; rn�)-network H = (V [W;E) by letting the outputs W be any rn� vertices, and V therest. Remove all edges not between V and W . Since G is n� expanding, H is an n�-expanding weak (n; rn�)-concentrator. Moreover, jEj � rn�O�(n1��) = O�(rn). 2It is convenient to use the following characterization of depth 2 superconcentrators, due to [Mes]. Let N =(I [M [O;F ) be an n-network of depth 2 with inputs I, middle layerM , and outputs O. For X � I and Y � O,de�ne �+(X) = fz 2M : (x; z) 2 F for some x 2 Xg;��(Y ) = fz 2M : (z; y) 2 F for some y 2 Y g:Lemma 4.3 [Mes] N is a superconcentrator if and only if for any 1 � k � n and X � I, Y � O such thatjXj = jY j = k, j�+(X) \ ��(Y )j � k.This motivates the following de�nition.De�nition 4.4 An (a; b)-partial n-superconcentrator of depth 2 is an n-network N = (I [M [O;F ) of depth 2,such that for any a � k � b and X � I, Y � O with jXj = jY j = k, j�+(X) \ ��(Y )j � k.Lemma 4.5 For all n, 0 < � = �(n) < 1, 2 � r = r(n) � O(n1��), there are explicitly-constructible (n� ; rn�)-partial n-superconcentrators of depth 2 having size O�(rn).Proof: By Lemma 4.2, we can construct H, an n�=2-expanding weak (n; (r+ 1)n�)-concentrator of size O�(rn).The network N = (I [M [O;F ) satisfying the conditions of the lemma will have a copy of H between I and Mand a copy of the reverse of H between M and O. Suppose X � I, Y � O with jXj = jY j = k, n� � k � rn�.Then both j�+(X)j and j��(Y )j are at least (r + 1)n� � n�=2. Thus j�+(X) \ ��(Y )j � rn� � k. 2Theorem 4.6 For all n, there are explicitly-constructible n-superconcentrators of depth 2 and size O�(n).Proof: Construct the union of (2i�1; 2i)-partial n-superconcentrators of depth 2, i = 1; : : : lgn. Lemma 4.3implies that this is a superconcentrator. 2We now show how this construction can be used to achieve linear-sized superconcentrators with sublogarithmicdepth.Lemma 4.7 If there are explicitly-constructible n-superconcentrators of size an and depth k, then there areexplicitly-constructible n-superconcentrators of linear size and depth k +O(log a).Proof: (Sketch) Use the recursive superconcentrator construction developed by Pippenger [Pip1]. After O(log a)levels, we need an n=a-superconcentrator. Assuming a = a(n) is a non-decreasing function of n, we use then=a-superconcentrator of size at most n. 2Theorem 4.8 For all n, there are explicitly-constructible n-superconcentrators of linear size and depth (logn)2=3+o(1).Proof: Use Lemma 4.7 and Theorem 4.6. 2Remark: The depth can be improved to (logn)1=2+o(1) by using improved extractor of [SZ].Our construction also improves the best known non-explicit constructions:Theorem 4.9 There exist linear-sized n-superconcentrators with depth log�(k; n) for any constant k, where�(k; n) is the inverse of Ackermann's function (so e.g. �(2; n) = log� n).Proof: Use the non-explicit analog of Lemma 4.7 and the superconcentrators given in [DDPW]. 26



5 Concentrators and Non-Blocking NetworksIn this section we show how similar ideas can be used to explicitly construct non-blocking networks. Beforewe do this, we de�ne wide-sense nonblocking generalized connectors, following [FFP].A route in a network is a directed path from an input to an output. A state of a network is a set of vertex-disjoint routes. The states of a network are partially ordered by inclusion; above and below refer to this partialorder. A connection request is an input-output pair. A connection request (v; w) is legal with respect to a states if v and w are not in any route contained in s. A connection request (v; w) is satis�ed by a route if the routebegins at v and ends at w.Finally, a wide-sense nonblocking generalized n-connector is an n-network for which there exists a set of dis-tinguished states, called safe states, with the following properties:1. the empty set is safe;2. any state below a safe state is safe;3. given any safe state s and any legal connection request (v; w) with respect to s, there exists a safe stateabove s containing a route satisfying (v; w).The key to our result is to construct a certain generalization of concentrators, and then apply a lemma of[FFP].De�nition 5.1 An (n;m; l)-concentrator with expansion e is an (n;m)-network such that every set of t � linputs expands to at least et outputs.Note that a concentrator with expansion 1 is a concentrator in the usual sense.Theorem 5.2 For all n, 0 < � = �(n) < 1, 1 � e = e(n) � n1��=2, there are explicitly-constructible (n; 2en�; n�)-concentrators with expansion e of size O�(en) and depth 1.Proof: The concentrator C we seek is the union of 2i-expanding weak (n; 4e2i)-concentrators Ci, i = 0; : : : ; lg(n�=2);the outputs of Ci are, say, the �rst 4e2i outputs of C. Suppose we have a set of t inputs, and say t 2 [2i; 2i+1].Then in Ci this set must expand to (4e� 1)2i > et. 2The following lemma is implicit in [FFP]:Lemma 5.3 [FFP] If for all 1=2 � � < 1 there are explicitly-constructible (n; 4n�; n�)-concentrators with expan-sion 2 and size O�(n), then there are e�ciently constructible wide-sense nonblocking generalized n-connectors ofsize O�(n1+1=k) and depth k.Thus, the following theorem is immediate.Theorem 5.4 For all k and n, there are e�ciently constructible wide-sense nonblocking generalized n-connectorsof size O�(n1+1=k) and depth k.AcknowledgementsWe thank Noga Alon, Nabil Kahale, and Nick Pippenger for helpful discussions.References[AKS1] M. Ajtai, J. Komlos, and E. Szemeredi, \Sorting in c logn Parallel Steps," Combinatorica 3 (1983), pp.1-19.[AKS2] M. Ajtai, J. Komlos, and E. Szemeredi, \Deterministic Simulation of Logspace," 19th STOC, 1987, pp.132-140. 7
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