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1 IntroductionE�cient communication is crucial for obtaininggood applications performance on distributed-memorymulticomputers like the Intel Paragon, the Cray T3D,the IBM SP-2, and the Thinking Machines CM-5. Formany applications, the required communication is col-lective in nature. By this we mean that a group of(possibly all) processing nodes cooperate in a commu-nication. Examples of this include broadcasting of amessage, collecting of messages from all nodes, scat-tering a vector from one node to other nodes, andforming a vector that is the result of the element-wisesummation of vectors that reside on di�erent nodes.Over the last few years, we have written a numberof papers that showed how to e�ciently implementindividual collective communications on hypercubesand multidimensional meshes. More recently, as partof the Interprocessor Collective Communication (In-terCom) project, we showed how essentially all majorcollective communications can be implemented using acomprehensive approach, yielding highly e�cient im-plementations of an entire library of such communi-cations. This work was motivated by the fact thatinterfaces to such libraries had been standardized aspart of the Message Passing Interface (MPI) and therewas a need for developing strategies for implementa-



tions of this standard.In this paper, we show that highly optimized imple-mentations of collective communication libraries canbe attained using simple methods, yielding consider-able payo�.2 MotivationTo understand how many algorithms can be formu-lated in terms of collective communications, we startby describing a typical algorithm that bene�ts fromthese decisions.2.1 LAPACK LU factorizationThe LU factorization is the well-known operationthat factors a given matrixA into the product of lowerand upper triangular matrices:A = LUwhere L is lower triangular and U is upper triangular.The LAPACK implementation of this operation canbe formulated as follows: PartitionA = � A11 A12A21 A22 �= � L11 0L21 L22 �� U11 U120 U22 � = LUThe above equation shows that the following equalitiesmust hold:� A11A21 � = � L11L21 �� U110 � (1)A12 = L11U12 (2)A22 = L21U12 + L22U22 (3)This formulation allows the bulk of the computationto be cast in terms of \matrix-matrix" operations, orLevel-3 BLAS, which generally perform much betteron architectures with hierarchical memories: First, thepanel of the matrix consisting of A11 and A21 is fac-tored, overwriting these submatrices. This itself re-quires a sequence of Level-1 and Level-2 BLAS calls,but is of lower order time. Next, submatrix A12 isoverwritten with U12 = L�111 A12, a call to the Level-3 BLAS routine DTRSM. After this, submatrix A22 isoverwritten with A22 � L21U12, a call to the Level-3BLAS routine DGEMM. Finally, this updated submatrixA22 itself is factored similarly, in a recursive manner.

2.2 ScaLAPACK LU factorizationTo describe the approach that ScaLAPACK takestowards parallelizing algorithms like the LU factoriza-tion, consider the case of a parallel computer with sixprocessing nodes, which are logically viewed as a 2�3mesh of nodes. Nodes are now indexed by row and col-umn indices as Pij. Next, the matrix is blocked intonb� nb submatrices, which are assigned to the logicalmesh in a block-cyclic fashion as indicated below:P?0 P?1 P?2 P?0 P?1 � � �P0? A00 A01 A02 A03 A04 � � � A0(N�1)P1? A10 A11 A12 A13 A14 � � � A1(N�1)P0? A20 A21 A22 A23 A24 � � � A2(N�1)... ... ... ... ... ... . . . ...A(N�1)0 A(N�1)1 A(N�1)2 A(N�1)3 A(N�1)4 � � � A(N�1)(N�1)Here Pi? and P?j denote the ith row and jth columnof the node mesh, respectively.The LAPACK LU factorization can now proceedas follows: Factor the submatrix of A consisting ofthe �rst panel (column of blocks) in the above �gure.This operation is performed cooperatively by the �rstcolumn of nodes. Next, the resulting lower trapezoidalfactor is distributed to all other nodes. Then, the �rstrow of nodes update A0j  L�100 A0j , j = 1; : : : ; (N�1)in parallel. Finally, this updated submatrix of A isdistributed to the other nodes, and the update of theremainder of the matrix is performed in parallel by allnodes, after which the process proceeds similarly in arecursive fashion.A few important observations can be made fromthis simple example:� If partial pivoting is added to this algorithm, thecolumn of nodes that performs the factorizationof the panel must be able to determine the pivotrows within that column of nodes. This suggestthe need for a \MAX" operation to be performedwith columns of nodes.� Pivoting of the rows require messages to be ex-changed between nodes that reside in the samecolumn of nodes.� Li0 is only needed in the row of nodes that holdsthe ith row of blocks. Hence the distribution ofthe factored panel becomes a broadcast withinrows.� Similarly, U0j is only needed within columns ofnodes that hold the jth column of blocks. Thissuggests a broadcast within rows.



� Both of the above mentioned broadcasts involvesubmatrices of the original matrix. In some cases,the shape of these submatrices is trapezoidal.The above example clearly shows the need for collec-tive communication, as well as the need to performsuch communication within groups of nodes, motivat-ing both the iCC library and the BLACS interface.3 Interprocessor Collective Communi-cation (iCC) LibraryIn this section, we brie
y describe the approaches toimplementing collective communications on mesh ar-chitectures developed as part of the InterCom project.Our current implementation assumes a two-dimensional physical mesh of processing nodes, withbidirectional links between nodes and worm-hole (cut-through) routing. Furthermore, we assume that itis possible to model the time required for sending amessage of length n bytes between any two nodes by�+ n�, where � is the latency for sending a message,and � is the communication time per item, in the ab-sence of network con
icts. In our discussions below,we assume a processor can both send and receive at thesame time. But it can only send to, or receive from,one other node at a given time. When two messagestraverse the same physical link on the communicationinterconnect, we assume they share the bandwidth ofthat link. In addition, we assume that the time forperforming an arithmetic operation is denoted by 
.3.1 Building blocksWe start by presenting building blocks for the iCClibrary. All the building blocks have the propertythat they are simple to implement, do not requirepower-of-two size partitions, and incur no networkcon
icts. The resulting implementations of the shortvector primitives can be shown to have optimal la-tency (minimal startup overhead). The implementa-tion of the long vector primitives can be shown to beasymptotically optimal on linear arrays as vector sizeincreases.We discuss the implementation of the buildingblocks in the setting of linear arrays, which due toworm-hole routing can be considered unidirectionalrings, when convenient. (For example, if all messagesare sent to the right nearest neighbor, only the right-most processor in the linear array sends to the left.Hence, there are no message con
icts.) We later dis-cuss how these techniques are generalized to meshes.

3.1.1 Short vector primitivesAlgorithms for implementing collective communica-tions for short vectors must minimize startup cost,i.e. the number of messages sent. On hypercubes,this can be easily accomplished by staging the algo-rithms as log p steps during which communication isperformed in each hypercube dimension. For meshes,this idea can be utilized as well, provided some care istaken at each stage [4].All our target short vector collective communica-tion operations can be built from four primitives.These are broadcast, combine-to-one, scatter,and gather.Consider the broadcast. For short vectors, this op-eration can be implemented on a linear array of nodesin the following way: Start by assuming a given rootnode has the message of length n. The broadcast canproceed by dividing the linear array in two (approxi-mately) equal parts and choosing a receiving node inthe part that does not contain the root. The broadcastproceeds recursively by treating each of the involvednodes as a new root for a broadcast within its ownhalf of the previous array. It is easy to see that nonetwork con
icts occur and the total time required isdlog pe(�+ n�):The combine-to-one can be implemented sim-ilarly by running the broadcast communications inreverse order and interleaving communication withthe combine operation. This requires a total timeof dlog pe(� + n� + n
): The scatter can be imple-mented like the broadcast, except at each stage onlythe data that eventually resides in the other part ofthe network is sent. If each node receives an equalshare of the initial vector, the cost is approximatelydlog pe� + [(p � 1)=p]n�: The gather can be imple-mented as the scatter in reverse and incurs the samecost.3.1.2 Long vector primitivesFor long vectors, a strategy that minimizes overheaddue to vector length, in addition to avoiding networkcon
icts, is necessary. It should be noted that theabove mentioned scatter and gather operations havethis property, and they also act as long vector prim-itives. In addition, we propose two more long vec-tor primitives, the bucket collect and bucket dis-tributed combine. These four primitives constitutethe set from which all our target long vector collectivecommunication operations can be built.The bucket collect is a special implementationof the collect, which views the linear array as a ring.



Buckets are passed between the nodes that move thesubvectors to be collected, leaving the result on allnodes. Note that no network con
icts occur. Cost:(p� 1)�+ [(p� 1)=p]n�:The bucket distributed global combine is simi-lar to the bucket collect, executed in reverse, where thebuckets are used to accumulate contributions. Cost:(p� 1)�+ [(p� 1)=p]n� + [(p� 1)=p]n
:3.2 Using the building blocksIn this section, we describe how the short and longvector primitives can be used to generate short andlong vector implementations for all collective commu-nications.3.2.1 Short vector algorithmsFor short vectors, the broadcast, combine-to-one, scat-ter and gather primitives are, of course, implemen-tations of the operations themselves. The otherthree collective communications can be generated us-ing these primitives as follows:Collect: Gather followed by broadcast. Cost:2dlogpe� +�p� 1p + dlog pe�n�:Distributed global combine: Combine-to-one fol-lowed by scatter. Cost:2dlogpe� +�p� 1p + dlog pe�n� + dlog pen
:Global combine-to-all: Combine-to-one followedby broadcast. Cost:2dlog pe�+ 2dlog pen� + dlog pen
:For all these implementations, the startup cost iswithin a factor two of optimal. On both the Touch-stone Delta and the Paragon, due to machine speci�cissues, the startup is actually optimal.3.2.2 Long vector algorithmsFor long vectors, the collect, distributed combine,scatter and gather primitives are once again the im-plementations themselves. The other three collectivecommunications can be generated using these primi-tives as follows:

Broadcast: Scatter followed by collect. Cost:(dlog pe + p � 1)�+ 2p� 1p n�:Combine-to-one: Distributed combine followed bygather. Cost:(dlog pe + p� 1)�+ 2p� 1p n� + p� 1p n
:Global combine-to-all: Distributed combine fol-lowed by collect. Cost:2(p� 1)�+ 2p� 1p n� + p� 1p n
:For the broadcast and combine-to-one, it can be ar-gued that the � term is asymptotically within a factortwo of optimal, while for the combine-to-all it can beargued that the � term is asymptotically optimal.3.3 Extension to meshesThe above techniques can be easily extended tophysical meshes. We will concentrate on the two di-mensional case in our descriptions. All of the oper-ations can be implemented on meshes by performingthe communication �rst within rows and next withincolumns, or visa versa. Both rows and columns aresimply linear arrays.3.3.1 Short vector caseFor short vectors, the minimum spanning tree broad-cast can be implemented by broadcasting within theroot's column �rst, followed by simultaneous broad-casts within all rows, with the node in the original col-umn as roots of their respective rows. A scatter canbe accomplished by scattering within the root's col-umn, followed by simultaneous scatters within rows.The resulting costs are given by:Broadcast/Combine-to-one:(dlog re+ dlog ce)�+ (dlog re + dlog ce) n�which equals the familiar log p� + logpn� whenp is a power of two. For the combine-to-one, theterm (dlog re + dlog ce) n
 must be added.Scatter/Gather:dlog re�+ r � 1r n� + dlog ce� + c� 1c nr � =(dlog re + dlog ce)�+ p�1p n�which equals the familiar logp�+ p�1p n� when pis a power of two.



Notice that the cost essentially does not change fromthe linear array case.To implement the algorithms that are built fromthese primitives, we merely use the mesh implementa-tions of the building blocks, given above. E.g. a col-lect is implemented as a gather within rows to a speci-�ed column, followed by a gather of the results withinthat column. Next, the result is broadcast within thatcolumn and broadcast within all rows. Costs for thedi�erent operations are given byCollect/Distributed combine:2 (dlog re + dlog ce)�+�p�1p + dlog re + dlog ce�n�:For the distribed combine the term(dlog re + dlog ce) n�must be added.Global combine-to-all:2 (dlog re+ dlog ce)�+ 2 (dlog re+ dlog ce)n�+(dlog re+ dlog ce)n
:3.3.2 Long vector primitivesThe same holds for long vector primitives. A collectcan be implemented by simultaneous collects withinrows, followed by simultaneous collects of the resultswithin columns. The distributed combine is imple-mented by reversing this process. The approach forthe scatter and gather is the same as for short mes-sages. The new costs are given byCollect/Distributed combine:(c� 1)�+ c� 1c nr � + (r � 1)�+ r � 1r n� =(c+ r � 2)�+ p�1p n�For the distributed combine, the term p�1p n
must be added.Notice that the net result is that the � term is reducedfrom (p � 1) for the linear array to (c+ r � 2) on themesh.Again, to implement the algorithms that are builtfrom these primitives, we merely use the mesh imple-mentations of the building blocks, given above. E.g.a broadcast is implemented as a scatter within thecolumn that owns the root, followed by simultaneousscatters within the rows. Next, collects of the resultsare performed within rows, followed by collects withinall columns. Costs for the di�erent operations aregiven by

Broadcast/Combine-to-one:(dlog re + dlog ce + c+ r � 2)�+ 2p� 1p n�:For the combine-to-one, the term p�1p n
 must beadded.Global combine-to-all:2(c+ r � 2)�+ 2p� 1p n� + p� 1p n
:3.4 Hybrid algorithmsSince a range of vector lengths are encounteredin communication required for parallel algorithms, itdoes not su�ce to implement only the short vectoror the long vector approach. Indeed, our researchshows that high performance implementations mustuse hybrid collective communications algorithms: forshort and long vectors, the short and long vector algo-rithms must be respectively employed. However, forthe range of lengths in between, hybrids can be em-ployed to achieve better performance then either theshort or the long vector algorithm. The idea is to usea long vector approach in subgroups. This has thee�ect of shortening the vector length until it pays toperform a short vector approach to complete the col-lective communication. More details of this can befound in our paper [2].4 Basic Linear Algebra Communica-tion SubprogramsThe BLACS (Basic Linear Algebra CommunicationSubprograms) project arose as part of a larger projectcalled ScaLAPACK (Scalable Linear Algebra PACK-age) [5]. The goal of the ScaLAPACK project is toimplement a core set of the linear algebra routinesprovided in the sequential library LAPACK (LinearAlgebra PACKage)[10] on distributed memory plat-forms. The BLACS are meant to be the communica-tion kernels much like the BLAS are the computationkernels for LAPACK and ScaLAPACK.A reference implementation of the BLACS de-veloped at the University of Tennessee allowed theresearchers involved in the ScaLAPACK project tospecify a reasonable interface and start building theScaLAPACK library. The implementation is essen-tially based on algorithms similar to the short vectoralgorithms discussed in the previous section. As a re-sult, a considerable performance penalty is incurred.



The calling sequences for the collective communica-tions incorporated into the BLACS include the abilityto send submatrices and the ability to communicatewithin rows and columns, hence providing some abil-ity to communicate within groups.The approach chosen for the reference implemen-tation was constrained by the fact that it neededto be reasonably e�cient for a wide variety of par-allel architectures, including the Intel iPSC, Touch-stone Delta, and Paragon systems, the Cray T3D, theIBM SP1 and SP2, and the Thinking Machines CM-5. As a result, algorithms that are inherently treebased were chosen. These have the advantage thatthey are easy to implement and can be easily stagedto avoid communication network con
icts. Moreover,they incur (near) minimal messages, thereby reducingthe overhead due to message latency. However, thetotal volume of data communicated is non-optimal,which greatly reduces their e�ectiveness for long vec-tor lengths. It should be noted that in [13] it is shownthat this approach to implementation is competitivewith the implementations of similar collective commu-nication libraries by all the major vendors.5 MPI Collective Communication In-terfaceWe quote from Using MPI [6]:During 1993, a broadly based group of par-allel computer vendors, software writers andapplication scientists collaborated on the de-velopment of a standard portable message-passing library de�nition called MPI, forMessage-Passing Interface. As of mid-1994,a number of implementations are in progress,and applications are already being ported.We fully endorse MPI as the interface that should bebroadly adopted by application developers.6 Performance ComparisonIn this section, we compare the achieved perfor-mance on the Intel Paragon to those of three widelyavailable libraries: Intel's NX collective communica-tion library, the MPICH Message Passing Interface(MPI) implementation developed at Argonne andMis-sissippi State University and a Basic Linear AlgebraCommunication Subprograms (BLACS) implementa-tion, developed at the University of Tennessee. Since

the BLACS were favorably compared to those of mostmajor vendors, we argue that a comparison to theBLACS is in e�ect a comparison to all major vendors'library implementations.We concentrated on two operations: broadcast andglobal sum-to-all. The primary reason is that theseare the only operations that all four libraries have incommon. However, our description of how good im-plementations of all collective operations are based onthe same simple ideas allows us to argue that compar-isons of these two operations are actually representa-tive. The calls used are summarized in Table 1.Broadcast Sum-to-alliCC iCC bcast iCC gdsumNX csend(``-1'') gdsumMPI MPI Bcast MPI AllreduceBLACS dgebs2d dgsum2dTable 1: Routines used for experiments.Figures 1 and 2 report the results of our experi-ments. We also summarize our �ndings in Table 2.Notice that the iCC results are substantially superiorto all the other library implementations, especially forvery long messages. It should be noted that the NXtimings for the broadcast did not use \forced messagetypes". Had we done so, the results would be more inline with MPI and BLACS.In Figure 3 we show a comparison of the di�erentlibraries when the operations are only within a row orcolumn, as would be necessary for the example in Sec-tion 2. Notice that for long vectors, iCC continues tobe superior, although the improvement is less. This isnot supprising, since the ratio between the short vec-tor approaches used by NX, BLACS, and MPI and thelong vector approaches used by iCC is proportional tologp. Somewhat disturbing is the fact that for shortvectors, iCC is no longer the fastest implementation.We contribute this to the cost of the hybrid mecha-nism, which appears to need further tuning for thecase where few nodes are involved in the communica-tion.It is important to realize that both theMPI and BLACS implementations areintended to be reference implementa-tions of useful speci�cations, not highperformance implementations. Our�ndings are intended to draw attentionto what can be achieved, so that high



performance implementations of theselibraries will become available in thefuture. Broadcastbytes NX/iCC BLACS/iCC MPI/iCC16 1.4 1.0 1.61024 1.5 1.0 2.565536 5.5 2.9 2.81048576 11.3 6.1 7.5Sum-to-allbytes NX/iCC BLACS/iCC MPI/iCC16 1.0 1.2 2.11024 1.0 1.0 2.065536 21.1 4.1 6.91048576 34.6 5.9 11.8Table 2: Comparison of the various library implemen-tations on a 16x32 mesh Paragon7 StatusA beta version of the iCC library was released inSpring 1994. The �rst release (R1.0) followed in Sum-mer 1994. Release R2.0 was completed in March1995. This current release includes a limited, MPI-like, group interface. A version of the library existsthat automatically changes all NX collective commu-nication calls, except broadcasts, to iCC calls. As ofthis date, no iCC bugs have been reported, despitewide use at all major Paragon sites.Current information on the library can be found atthe following web site:http://www.cs.utexas.edu/users/rvdg/intercom8 ConclusionIn this paper, we have described simple techniquesthat can be used to build highly e�cient collectivecommunication library. The experiments show themto be highly competitive, outperforming all librarieson the Intel Paragon that are widely available andused. Moreover, the techniques are such that the li-brary is highly robust and can be easily maintained.While we only perform comparisons on theParagon, we mentioned that the BLACS were com-
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Figure 1: Performance of the various libraries for the broadcast on a 16x32 mesh Paragon (OSF R1.3).
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Figure 2: Performance of the various libraries for the combine-to-all on a 16x32 mesh Paragon (OSF R1.3).
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Figure 3: Performance of the various libraries for the broadcast on a 16x32 mesh Paragon (OSF R1.3) whenbroadcasting within a row of 32 nodes only (top) and a column of 16 nodes only (bottom).
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