Fast Collective Communication Libraries, Please®

Prasenjit Mitra
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

Lance Shuler

Parallel Computing Sciences Department, 1424

Sandia National Laboratory
Albuquerque, New Mexico 87185-1109

David G. Payne
Scalable Systems Division
Intel Corporation
15201 N.W. Greenbrier Pkwy
Beaverton, Oregon 97006

Robert van de Geijn
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

Jerrell Watts
Scalable Concurrent Programming Laboratory
California Institute of Technology
Pasadena, California 91125

Abstract

It has been recognized that many parallel numerical
algorithms can be effectively implemented by formu-
lating the required communication as collective com-
munications. Nonetheless, the efficiency of such com-
munications has been suboptimal in many communi-
cation library tmplementations. In this paper, we give
a brief overview of techniques that can be used to im-
plement a high performance collective communication
library, the 1CC library, developed for the Intel fam-
Wy of parallel supercomputers as part of the InterCom
project at the Unwversity of Texas at Austin. We com-
pare the achieved performance on the Intel Paragon to
those of three widely available libraries: Intel’s NX
collective communication library, the MPICH Mes-
sage Passing Interface (MPI) implementation devel-
oped at Argonne and Mississippt State Unwversity and
a Basic Linear Algebra Communication Subprograms
(BLACS) implementation, developed at the University
of Tennessee.

*This work was partially supported by the Intel Research
Council and Intel Scalable Systems Division. Jerrell Watts is
being supported by an NSF Graduate Research Fellowship.

1 Introduction

Efficient communication is crucial for obtaining
good applications performance on distributed-memory
multicomputers like the Intel Paragon, the Cray T3D,
the IBM SP-2; and the Thinking Machines CM-5. For
many applications, the required communication is col-
lective in nature. By this we mean that a group of
(possibly all) processing nodes cooperate in a commu-
nication. Examples of this include broadcasting of a
message, collecting of messages from all nodes, scat-
tering a vector from one node to other nodes, and
forming a vector that is the result of the element-wise
summation of vectors that reside on different nodes.

Over the last few years, we have written a number
of papers that showed how to efficiently implement
individual collective communications on hypercubes
and multidimensional meshes. More recently, as part
of the Interprocessor Collective Communication (In-
terCom) project, we showed how essentially all major
collective communications can be implemented using a
comprehensive approach, yielding highly efficient im-
plementations of an entire library of such communi-
cations. This work was motivated by the fact that
interfaces to such libraries had been standardized as
part of the Message Passing Interface (MPI) and there
was a need for developing strategies for implementa-

tions of this standard.

In this paper, we show that highly optimized imple-
mentations of collective communication libraries can
be attained using simple methods, yielding consider-
able payoft.

2 Motivation

To understand how many algorithms can be formu-
lated in terms of collective communications, we start
by describing a typical algorithm that benefits from
these decisions.

2.1 LAPACK LU factorization

The LU factorization is the well-known operation
that factors a given matrix A into the product of lower
and upper triangular matrices:

A=LU
where L is lower triangular and U is upper triangular.

The LAPACK implementation of this operation can
be formulated as follows: Partition

(A1 | Aie)
A1 | Ao
Ly 0
= = LU
(Loy | Lo) ()

The above equation shows that the following equalities

A =

Ui | Urs
0 [T

must hold:
Al Ly Un
= 1
(Aoy) (Loy) (0) @
A12 = L11U12 (2)
Ass = LogUps+ LooUss (3)

This formulation allows the bulk of the computation
to be cast in terms of “matrix-matrix” operations, or
Level-3 BLAS, which generally performm much better
on architectures with hierarchical memories: First, the
panel of the matrix consisting of A;; and As; is fac-
tored, overwriting these submatrices. This itself re-
quires a sequence of Level-1 and Level-2 BLAS calls,
but 1s of lower order time. Next, submatrix A5 is
overwritten with Uiy = Ll_llAlz, a call to the Level-
3 BLAS routine DTRSM. After this, submatrix Ass is
overwritten with Ags — Lo1U7s, a call to the Level-3
BLAS routine DGEMM. Finally, this updated submatrix
Asgq itself is factored similarly, in a recursive manner.

2.2 ScaLAPACK LU factorization

To describe the approach that ScaLAPACK takes
towards parallelizing algorithms like the LU factoriza-
tion, consider the case of a parallel computer with six
processing nodes, which are logically viewed as a 2 x 3
mesh of nodes. Nodes are now indexed by row and col-
umn indices as P;;. Next, the matrix is blocked into
nb x nb submatrices, which are assigned to the logical
mesh in a block-cyclic fashion as indicated below:

| Pwo | Pa | P | Py | Py

Py, Aoo Aot Aoa Aos Aoa

Py, Arg Aty Ara A1z Ara

Py, Asq A Asa Aaz Asa
An-tyo | Av-nn | Av—2 | Av-1)s | Av-1)a

Here P;, and P,; denote the 7th row and jth column
of the node mesh, respectively.

The LAPACK LU factorization can now proceed
as follows: Factor the submatrix of A consisting of
the first panel (column of blocks) in the above figure.
This operation is performed cooperatively by the first
column of nodes. Next, the resulting lower trapezoidal
factor is distributed to all other nodes. Then, the first
row of nodes update Ag; + Laolej, J=1,...,(N=-1)
in parallel. Finally, this updated submatrix of A is
distributed to the other nodes, and the update of the
remainder of the matrix is performed in parallel by all
nodes, after which the process proceeds similarly in a
recursive fashion.

A few important observations can be made from
this simple example:

e If partial pivoting is added to this algorithm, the
column of nodes that performs the factorization
of the panel must be able to determine the pivot
rows within that column of nodes. This suggest
the need for a “MAX” operation to be performed
with columns of nodes.

e Pivoting of the rows require messages to be ex-
changed between nodes that reside in the same
column of nodes.

e L;o is only needed in the row of nodes that holds
the ith row of blocks. Hence the distribution of
the factored panel becomes a broadcast within
TOWS.

o Similarly, Up; is only needed within columns of
nodes that hold the jth column of blocks. This
suggests a broadcast within rows.

e Both of the above mentioned broadcasts involve
submatrices of the original matrix. In some cases,
the shape of these submatrices is trapezoidal.

The above example clearly shows the need for collec-
tive communication, as well as the need to perform
such communication within groups of nodes, motivat-

ing both the i1CC library and the BLACS interface.

3 Interprocessor Collective Communi-
cation (iCC) Library

In this section, we briefly describe the approaches to
implementing collective communications on mesh ar-
chitectures developed as part of the InterCom project.

Our current implementation assumes a two-
dimensional physical mesh of processing nodes; with
bidirectional links between nodes and worm-hole (cut-
through) routing. Furthermore, we assume that it
is possible to model the time required for sending a
message of length n bytes between any two nodes by
a4+ nf3, where «a 1s the latency for sending a message,
and [is the communication time per item, in the ab-
sence of network conflicts. In our discussions below,
we assume a processor can both send and receive at the
same time. But it can only send to, or receive from,
one other node at a given time. When two messages
traverse the same physical link on the communication
interconnect, we assume they share the bandwidth of
that link. In addition, we assume that the time for
performing an arithmetic operation is denoted by ~.

3.1 Building blocks

We start by presenting building blocks for the i1CC
library. All the building blocks have the property
that they are simple to implement, do not require
power-of-two size partitions, and incur no network
conflicts. The resulting implementations of the short
vector primitives can be shown to have optimal la-
tency (minimal startup overhead). The implementa-
tion of the long vector primitives can be shown to be
asymptotically optimal on linear arrays as vector size
increases.

We discuss the implementation of the building
blocks in the setting of linear arrays, which due to
worm-hole routing can be considered unidirectional
rings, when convenient. (For example, if all messages
are sent to the right nearest neighbor, only the right-
most processor in the linear array sends to the left.
Hence, there are no message conflicts.) We later dis-
cuss how these techniques are generalized to meshes.

3.1.1 Short vector primitives

Algorithms for implementing collective communica-
tions for short vectors must minimize startup cost,
i.e. the number of messages sent. On hypercubes,
this can be easily accomplished by staging the algo-
rithms as log p steps during which communication is
performed in each hypercube dimension. For meshes,
this idea can be utilized as well, provided some care is
taken at each stage [4].

All our target short vector collective communica-
tion operations can be built from four primitives.
These are broadcast, combine-to-one, scatter,
and gather.

Consider the broadcast. For short vectors, this op-
eration can be implemented on a linear array of nodes
in the following way: Start by assuming a given root
node has the message of length n. The broadcast can
proceed by dividing the linear array in two (approxi-
mately) equal parts and choosing a receiving node in
the part that does not contain the root. The broadcast
proceeds recursively by treating each of the involved
nodes as a new root for a broadcast within its own
half of the previous array. It is easy to see that no
network conflicts occur and the total time required is
[log p](e + nj).

The combine-to-one can be implemented sim-
ilarly by running the broadcast communications in
reverse order and interleaving communication with
the combine operation. This requires a total time
of [logpl(er + nf + ny). The scatter can be imple-
mented like the broadcast, except at each stage only
the data that eventually resides in the other part of
the network is sent. If each node receives an equal
share of the initial vector, the cost is approximately
[logpla + [(p — 1)/p]nB. The gather can be imple-
mented as the scatter in reverse and incurs the same
cost.

3.1.2 Long vector primitives

For long vectors, a strategy that minimizes overhead
due to vector length, in addition to avoiding network
conflicts, is necessary. It should be noted that the
above mentioned scatter and gather operations have
this property, and they also act as long vector prim-
itives. In addition, we propose two more long vec-
tor primitives, the bucket collect and bucket dis-
tributed combine. These four primitives constitute
the set from which all our target long vector collective
communication operations can be built.

The bucket collect is a special implementation
of the collect, which views the linear array as a ring.

Buckets are passed between the nodes that move the
subvectors to be collected, leaving the result on all
nodes. Note that no network conflicts occur. Cost:
(p— Da+[(p—1)/pInp.

The bucket distributed global combine is simi-
lar to the bucket collect, executed in reverse, where the
buckets are used to accumulate contributions. Cost:

(p—Dea+I[(p—1)/plns +[(p—1)/plny.
3.2 Using the building blocks

In this section, we describe how the short and long
vector primitives can be used to generate short and
long vector implementations for all collective commu-
nications.

3.2.1 Short vector algorithms

For short vectors, the broadcast, combine-to-one, scat-
ter and gather primitives are, of course, implemen-
tations of the operations themselves. The other
three collective communications can be generated us-
ing these primitives as follows:

Collect: Gather followed by broadcast. Cost:
p—1
2flogpla + | ==+ [logp] | nf.

Distributed global combine: Combine-to-one fol-
lowed by scatter. Cost:

2ftogla+ (2oL + flogl) n+ flog .

Global combine-to-all: Combine-to-one followed
by broadcast. Cost:

2[log pla + 2[log p|n3 + [log p|ny.

For all these implementations, the startup cost is
within a factor two of optimal. On both the Touch-
stone Delta and the Paragon, due to machine specific
issues, the startup is actually optimal.

3.2.2 Long vector algorithms

For long vectors, the collect, distributed combine,
scatter and gather primitives are once again the im-
plementations themselves. The other three collective
communications can be generated using these primi-
tives as follows:

Broadcast: Scatter followed by collect. Cost:

([logp] +p — Lo+ 21%1716.

Combine-to-one: Distributed combine followed by
gather. Cost:

p—1 p—1

([logp] +p—1La +2

ng+

ny.

Global combine-to-all: Distributed combine fol-
lowed by collect. Cost:

p—1

-1
2(p — 1)0[—1—21)7716—1— ny.
For the broadcast and combine-to-one, it can be ar-
gued that the § term is asymptotically within a factor
two of optimal, while for the combine-to-all it can be
argued that the § term is asymptotically optimal.

3.3 Extension to meshes

The above techniques can be easily extended to
physical meshes. We will concentrate on the two di-
mensional case in our descriptions. All of the oper-
ations can be implemented on meshes by performing
the communication first within rows and next within
columns, or visa versa. Both rows and columns are
simply linear arrays.

3.3.1 Short vector case

For short vectors, the minimum spanning tree broad-
cast can be implemented by broadcasting within the
root’s column first, followed by simultaneous broad-
casts within all rows, with the node in the original col-
umn as roots of their respective rows. A scatter can
be accomplished by scattering within the root’s col-
umn, followed by simultaneous scatters within rows.
The resulting costs are given by:

Broadcast/Combine-to-one:
(Nogr] + [loge]) a + ([log r] + [log c]) nf

which equals the familiar log par + log png when
p is a power of two. For the combine-to-one, the
term ([logr] + [loge]) ny must be added.

Scatter/Gather:

1 -1
[log r]e + nﬁ—i—[logc]a—i—%%ﬁ:

r—
r

([logr] + [loge]) o + ’%nﬁ

which equals the familiar log pa + ’%nﬁ when p

is a power of two.

Notice that the cost essentially does not change from
the linear array case.

To implement the algorithms that are built from
these primitives, we merely use the mesh implementa-
tions of the building blocks, given above. E.g. a col-
lect is implemented as a gather within rows to a speci-
fied column, followed by a gather of the results within
that column. Next, the result is broadcast within that
column and broadcast within all rows. Costs for the
different operations are given by

Collect /Distributed combine:
2 ([logr] + [loge]) &
+(%%4—W%r1+[bgd)nﬂ
For the distribed combine the term

([log r] + [logc]) nB
must be added.

Global combine-to-all:

2 ([logr] + [logel) a+ 2 ([logr] + [loge]) nB
+ ([log 7] + [log c]) ny.

3.3.2 Long vector primitives

The same holds for long vector primitives. A collect
can be implemented by simultaneous collects within
rows, followed by simultaneous collects of the results
within columns. The distributed combine is 1imple-
mented by reversing this process. The approach for
the scatter and gather is the same as for short mes-
sages. The new costs are given by

Collect /Distributed combine:
c—1

C

r—1

ng =
"
(c—i—r—?)a—l—’%nﬁ

(c— Do+

%6+w—na+

For the distributed combine, the term ’%n'y
must be added.

Notice that the net result is that the o term 1s reduced
from (p — 1) for the linear array to (¢ 4+ r — 2) on the
mesh.

Again, to implement the algorithms that are built
from these primitives, we merely use the mesh imple-
mentations of the building blocks, given above. E.g.
a broadcast is implemented as a scatter within the
column that owns the root, followed by simultaneous
scatters within the rows. Next, collects of the results
are performed within rows, followed by collects within
all columns. Costs for the different operations are
given by

Broadcast/Combine-to-one:

([log r] + [log ¢] —|—c—|—r—2)a—|—2p_1

For the combine-to-one, the term ’%n'y must be

added.

Global combine-to-all:

p—1

-1
2(c+r—2)a+2Lnﬁ+ ny.
p

3.4 Hybrid algorithms

Since a range of vector lengths are encountered
in communication required for parallel algorithms, it
does not suffice to implement only the short vector
or the long vector approach. Indeed, our research
shows that high performance implementations must
use hybrid collective communications algorithms: for
short and long vectors, the short and long vector algo-
rithms must be respectively employed. However, for
the range of lengths in between, hybrids can be em-
ployed to achieve better performance then either the
short or the long vector algorithm. The idea is to use
a long vector approach in subgroups. This has the
effect of shortening the vector length until it pays to
perform a short vector approach to complete the col-
lective communication. More details of this can be
found in our paper [2].

4 Basic Linear Algebra Communica-
tion Subprograms

The BLACS (Basic Linear Algebra Communication
Subprograms) project arose as part of a larger project
called ScaLAPACK (Scalable Linear Algebra PACK-
age) [5]. The goal of the ScaLAPACK project is to
implement a core set of the linear algebra routines
provided in the sequential library LAPACK (Linear
Algebra PACKage)[10] on distributed memory plat-
forms. The BLACS are meant to be the communica-
tion kernels much like the BLAS are the computation
kernels for LAPACK and ScaLAPACK.

A reference implementation of the BLACS de-
veloped at the University of Tennessee allowed the
researchers involved in the ScaLAPACK project to
specify a reasonable interface and start building the
ScaLAPACK library. The implementation is essen-
tially based on algorithms similar to the short vector
algorithms discussed in the previous section. As a re-
sult, a considerable performance penalty is incurred.

The calling sequences for the collective communica-
tions incorporated into the BLACS include the ability
to send submatrices and the ability to communicate
within rows and columns, hence providing some abil-
ity to communicate within groups.

The approach chosen for the reference implemen-
tation was constrained by the fact that it needed
to be reasonably efficient for a wide variety of par-
allel architectures, including the Intel 1PSC, Touch-
stone Delta, and Paragon systems, the Cray T3D, the
IBM SP1 and SP2, and the Thinking Machines CM-
5. As a result, algorithms that are inherently tree
based were chosen. These have the advantage that
they are easy to implement and can be easily staged
to avoid communication network conflicts. Moreover,
they incur (near) minimal messages, thereby reducing
the overhead due to message latency. However, the
total volume of data communicated is non-optimal,
which greatly reduces their effectiveness for long vec-
tor lengths. Tt should be noted that in [13] it is shown
that this approach to implementation is competitive
with the implementations of similar collective commu-
nication libraries by all the major vendors.

5 MPI Collective Communication In-
terface

We quote from Using MPI [6]:

During 1993, a broadly based group of par-
allel computer vendors, software writers and
application scientists collaborated on the de-
velopment of a standard portable message-
passing library definition called MPI, for
Message-Passing Interface. As of mid-1994,
a number of implementations are in progress,
and applications are already being ported.

We fully endorse MPI as the interface that should be
broadly adopted by application developers.

6 Performance Comparison

In this section, we compare the achieved perfor-
mance on the Intel Paragon to those of three widely
available libraries: Intel’s NX collective communica-
tion library, the MPICH Message Passing Interface
(MPI) implementation developed at Argonne and Mis-
sissippi State University and a Basic Linear Algebra
Communication Subprograms (BLACS) implementa-
tion, developed at the University of Tennessee. Since

the BLACS were favorably compared to those of most
major vendors, we argue that a comparison to the
BLACS is in effect a comparison to all major vendors’
library implementations.

We concentrated on two operations: broadcast and
global sum-to-all. The primary reason is that these
are the only operations that all four libraries have in
common. However, our description of how good im-
plementations of all collective operations are based on
the same simple ideas allows us to argue that compar-
isons of these two operations are actually representa-
tive. The calls used are summarized in Table 1.

| || Broadcast | Sum-to-all |
1CC iCC bcast iCC_gdsum
NX csend(‘‘-1’’) | gdsum
MPI MPI Bcast MPI_Allreduce
BLACS || dgebs2d dgsum2d

Table 1: Routines used for experiments.

Figures 1 and 2 report the results of our experi-
ments. We also summarize our findings in Table 2.
Notice that the iCC results are substantially superior
to all the other library implementations, especially for
very long messages. It should be noted that the NX
timings for the broadcast did not use “forced message
types”. Had we done so, the results would be more in
line with MPI and BLACS.

In Figure 3 we show a comparison of the different
libraries when the operations are only within a row or
column, as would be necessary for the example in Sec-
tion 2. Notice that for long vectors, iCC continues to
be superior, although the improvement is less. This is
not supprising, since the ratio between the short vec-
tor approaches used by NX, BLACS, and MPI and the
long vector approaches used by iCC is proportional to
logp. Somewhat disturbing is the fact that for short
vectors, iCC is no longer the fastest implementation.
We contribute this to the cost of the hybrid mecha-
nism, which appears to need further tuning for the
case where few nodes are involved in the communica-
tion.

It is important to realize that both the
MPI and BLACS implementations are
intended to be reference implementa-
tions of useful specifications, not high
performance implementations. Our
findings are intended to draw attention
to what can be achieved, so that high

performance implementations of these
libraries will become available in the

future.
Broadcast
bytes | NX/iCC | BLACS/iCC | MPI/iCC
16 1.4 1.0 1.6
1024 1.5 1.0 2.5
65536 5.5 2.9 2.8
1048576 11.3 6.1 7.5
Sum-to-all
bytes | NX/iCC | BLACS/iCC | MPI/iCC
16 1.0 1.2 2.1
1024 1.0 1.0 2.0
65536 21.1 4.1 6.9
1048576 34.6 5.9 11.8

Table 2: Comparison of the various library implemen-
tations on a 16x32 mesh Paragon

7 Status

A beta version of the 1CC library was released in
Spring 1994. The first release (R1.0) followed in Sum-
mer 1994. Release R2.0 was completed in March
1995. This current release includes a limited, MPI-
like, group interface. A version of the library exists
that automatically changes all NX collective commu-
nication calls, except broadcasts, to 1CC calls. As of
this date, no 1CC bugs have been reported, despite
wide use at all major Paragon sites.

Current information on the library can be found at
the following web site:

http://wuw.cs.utexas.edu/users/rvdg/intercom

8 Conclusion

In this paper, we have described simple techniques
that can be used to build highly efficient collective
communication library. The experiments show them
to be highly competitive, outperforming all libraries
on the Intel Paragon that are widely available and
used. Moreover, the techniques are such that the li-
brary is highly robust and can be easily maintained.

While we only perform comparisons on the
Paragon, we mentioned that the BLACS were com-

pared to vendor libraries on a number of different plat-
forms, showing them to be highly competitive. Since
our techniques can be easily extended to those plat-
forms, we believe our techniques would provide a ba-
sis for efficient collective communication libraries on
all platforms. As mentioned, we fully endorse MPI
as the interface that should be broadly adopted by
application developers. It is through efficient imple-
mentations that MPI will attain wide acceptance.

Acknowledgements

This research was performed in part using the Intel
Paragon System and the Intel Touchstone Delta Sys-
tem operated by the California Institute of Technology
on behalf of the Concurrent Supercomputing Consor-
tium. Access to this facility was provided by Intel
Supercomputer Systems Division and the California
Institute of Technology. Funding for this project was
provided in part by the Intel Research Council, Intel
Supercomputer Systems Division, and the University
of Texas Center for High Performance Computing.

A number of other researchers need to be cred-
ited with having contributed to this work in the past.
These include Mike Barnett (University of Idaho),
Satya Gupta (Intel SSD), and Rik Littlefield (PNL).

Finally, we are grateful to the folks at Argonne and
Mississippi State University, who make the reference
MPI implementation available, and the folks at the
University of Tennessee, who bring us the reference
BLACS implementation.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel,
J. Dongarra, J. DuCroz, A. Greenbaum, S.
Hammarling, A. McKenney, D. Sorensen. “LA-
PACK: A Portable Linear Algebra Library for
High-Performance Computers,” LAPACK Work-
ing Note 20, University of Tennessee, CS-90-105,
May 1990.

[2] M. Barnett, S. Gupta, D. Payne, L. Shuler,
R. van de Geijn and J. Watts. “Interprocessor
Collective Communication Library (InterCom).”
Proceedings of Supercomputing 94, Nov. 1994.

[3] M. Barnett, R. Littlefield, D.G. Payne and
R. van de Geijn. “On the Efficiency of Global
Combine Algorithms for 2-D Meshes With Worm-
hole Routing,” Journal of Parallel and Dis-
tributed Computing, 24, pp. 191-201 (1995).

0. 500 —
_~'BLACS x
- i CC =-—
0.450 - s MPI -8]
L NX -o---
0. 400 | -
0.350 | E
P .o
2 o300 ,
c =
2 0.250 | o P i
& 020} i
= .
0.150 §
,Qr o
0.100 | -
0. 050 _
0. 000 - 1 1 1 1
0. 0e+00 2. 0e+05 4. 0e+05 6. 0e+05 8. 0e+05 1. 0e+06 1. 2e+06

Message Length (bytes)

1. 000
0.100 } g
0
he]
c
[«]
o
o 0.010 | e
g
=
0.001 | g
0. 000 Il Il Il Il Il Il

1. 0e+00 1. 0e+01 1. 0e+02 1. 0e+03 1. 0e+04 1. 0e+05 1. 0e+06 1. 0e+07
Message Length (bytes)

Figure 1: Performance of the various libraries for the broadcast on a 16x32 mesh Paragon (OSF R1.3).

5. 000

Time (seconds)

Time (seconds)

10.

. 000

. 500

. 000

. 500

. 000

. 500

000

500

. 000
0. 0e+00

000

. 000

100

. 010

. 001
1. 0e+00

- S

-

.500 - A

2. 0e+05

4. 0e+05 6. 0e+05
Message Length (bytes)

8. 0e+05

1. Oe+06

1. 2e+06

BLACS -

1. 0e+01

1. 0e+02

1. 0e+03 1. 0e+04
Message Length (bytes)

1. 0e+05

1. 0e+06

1. 0e+07

Figure 2: Performance of the various libraries for the combine-to-all on a 16x32 mesh Paragon (OSF R1.3).

1. 000 T
BLACS -
i CC -—
MPI -8
0.100 E
w
=}
c
o
]
b 0.010 E
g
=
0.001 E
0. 000 L L L L L L

1. 0e+00 1. 0e+01 1. 0e+02 1. 0e+03 1. 0e+04 1. 0e+05 1. 0e+06 1. 0e+07
Message Length (bytes)

1. 000 T
BLACS -
i CC =-—
MPl -8
B
0.100 | Es 4
w
he]
c
[«]
3
2 0.010 | 4
g
=
0.001 | E
X e T
0000 Il Il Il Il Il Il

1. 0e+00 1. 0e+01 1. 0e+02 1. 0e+03 1. 0e+04 1. 0e+05 1. 0e+06 1. 0e+07
Message Length (bytes)

Figure 3: Performance of the various libraries for the broadcast on a 16x32 mesh Paragon (OSF R1.3) when
broadcasting within a row of 32 nodes only (top) and a column of 16 nodes only (bottom).

[4]

[13]

M. Barnett, D.G. Payne, R. van de Geijn and
J. Watts. “Broadcasting on Meshes with Worm-
Hole Routing,” University of Texas, Department

of Computer Sciences, TR-93-24 (1993).

J. Choi, J. Dongarra, R. Pozo, and D. Walker.
“ScalLAPACK: A Scalable Linear Algebra for Dis-
tributed Memory Concurrent Computers,” LA-
PACK Working Note 55, University of Tennessee,
(CS-92-181, November 1992.

William Gropp, Ewing Lusk, and Anthony Skjel-
lum. Using MPI: Portable Parallel Programming
with the Message-Passing Interface, MIT Press,
1994.

C.-T. Ho and S. L. Johnsson. Distributed Rout-
ing Algorithms for Broadcasting and Personal-
ized Communication in Hypercubes. Proceedings
of the 1986 International Conference on Parallel
Processing, pg. 640-648, IEEE Computer Society
Press, 1986.

L. M. Ni and P. K McKinley. A Survey of
Wormhole Routing Techniques in Direct Net-
works. IEEE Computer, 26(2):62-76, Feb. 1993.

Y. Saad and M. H. Schultz. Data Communica-
tion in Parallel Architectures. Parallel Comput-

ing, 11(2):131-150, Aug. 1989.
Robert van de Geijn. “On Global Combine Oper-

ations,” Journal of Parallel and Distributed Com-
puting, 22 | pp. 324-328 (1994).

R. van de Geijn and J. Watts. A Pipelined Broad-
cast for Multidimensional Meshes. Parallel Pro-
cessing Letters, to appear.

D. W. Walker. The Design of a Standard
Message Passing Interface for Distributed Mem-
ory Concurrent Computers. Parallel Computing,
Apr. 1994. (Up to date information about the
MPI standard is available from netlib, directory

mpi.)

R. Clint Whaley, “Basic Linear Algebra Commu-
nication Subprograms: Analysis and Implemen-
tation Across Multiple Parallel Architectures,”
LAPACK Working Note 73, University of Ten-
nessee, CS-94-234, May 1994.

