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claim to be known as \qualitative". One of the key questions confronting AItoday is that of �nding \adequate" models for representing tasks, and also oftransferring information between di�erent levels of granularity adequate fordi�erent problem domains.The question of granularity crops up implicitly in a wide range of problems.Consider, e.g., a robot that needs to open a door based on this instruction:\There is a lock on the door in your front, on the upper right sideof your hand. The key to the lock is on a shelf built in the wall, tothe left of the lock and a little above it."This is typical of the type of information humans use to communicatespatial information. There are two objects in the scene: the key and thekeyhole. The shape of the objects (key, keyhole) need to be known to helplocate these. The task is clearly to open the door which may be part of alarger task. This information can be called \qualitative" in the sense that(a). reference frames are local,(b). the relative position is speci�ed non-quantitatively,(c). the description is under-determined, i.e. there may be many con�gura-tions in practice that would match this description, and(d). descriptions are intrinsic to the task.These are some of the attributes typically associated with qualitative rea-soning, hence it is proper to seek a qualitative framework for representing thisinformation. However, as of now, little work has been done to relate 3D-spatialframes in qualitative reasoning, and even less in the matter of modeling shape.Indeed it would be a foolish robot that tried to control all motions based onpurely qualitative information. Part of the reason lies in what Forbus, Nielsenand Faltings call the \Poverty conjecture":\Without some metric information as to the relative sizes and posi-tions of the parts of a compound surface, the rolling problem cannotbe solved. Consider for example two wheels, one with a bump onit and the other with a notch carved out of it. Without more de-tail, we cannot say how smoothly they will travel across each other:Both perturbations of the shape could be trivial, or the notch mightinclude sharp corners that cause the bump to catch." { ([3])In other words, too much information is lost in the purely qualitative,non-metric model. If the problem is still useful for single variables or in onedimension, it gets much worse when we enter two, and then three dimensions.The solution proposed traditionally involves a type of \hybrid" model, wherequantitative and qualitative data co-exist ([3],[9]). However, this requires thatdi�erent sets of data be maintained and updated continuously. Moreover, itdefeats the objective of trying to �nd representations that are just \adequate",since the user has to either use a purely qualitative model or a purely quanti-tative one. 2



We propose in this work an alternative approach based on hybrid qualitative-quantitative reasoning: that of subdividing the qualitative regions, where thedesired discretization is determined by the needs of the application. For ex-ample, in a relation like \between A and B" one would be interested in saying\closer to A than to B": clearly this type of query is well-served by a subdivi-sion of the interval between A and B, into two parts \closer-to-A" and \closer-to-B". Gapp [6], for example, investigates cognitive models for the closer-todiscretizations in multi-dimensional space. The principal bene�t of our modelis that the �ner-grained subdivisions allow us to talk about issues that werepreviously not accessible to qualitative reasoners, such as shapes (section 5),and it lets us reason about 3D space with more powerful transitive inference.We start with point-interval algebra: in the qualitative version, a point dividesthe real-line into three regions. \�", \0", and \+". Qualitative SubdivisionAlgebra (QSA) suggests that we subdivide the \�" and \+" regions into �nercategories, the nature of which it is the purpose of this paper to explore. Thistype of a discretization also helps another important aspect; it makes explicita weakness of the traditional (�,0,+) formalism: the \0" relation, tradition-ally taken to be an ideal point, is in practice invariably a toleranced interval(��; �). This results in improper results when adding regions, e.g. \�" and\0" can now add up to \0" as well as \�" (for a way out in such tolerancedmodels, see [11]).We �rst develop QSA and show how some desirable properties can beachieved, e.g. that the results of operations (such as addition and multiplica-tion) be restricted to at most k discretization intervals. Next, we see how thisalgebra can be used in spatial reasoning to reduce the uncertainties obtainedby composing relations in the traditional qualitative algebra. Finally, we alsoshow some results from the modeling of two-dimensional shapes using thisalgebra, a problem that is entirely beyond the reach of qualitative modelers.2 Qualitative models and discretizationsThe question we must address now is: How to decide on a \good" hybrid dis-cretization? What constitutes somemeasures of a good vs a bad discretization?Let us look at this issue through a case study.2.1 Case study: Modeling 2D AnglesAngles are a measure of 2D orientation, and are also important in most mod-els of 3D orientations. Typically, this constitutes a cyclic space, � + 2� = �.The discretizations with two orthogonal lines divides up this space into fourdirections (exact) and four quadrants (qualitative): The lines have three dis-cretizations each: f�,0,+g, and the plane has a total of nine discretizations,of which one is a point1, four are exact (the four directions), and four are1Note that the discretization 00 represents a point and not a direction.3



qualitative (the quadrants): +0 (0�), ++ (quad. I), 0+ (90�), �+ (quad. II),�0 (180�), �� (quad. III), 0� (270�), and +� (quad. IV). This is the samemodel as adopted by [3] and several others, but it is by no means the onlylogical model; for example, [8] uses eight half-quadrants of 45 degrees, anddoes not model exact directions.Now, in constructing a hybrid qualitative-quantitative model, we shall bedividing up the non-exact zones into smaller regions. In order to decide ona good modality for doing this, we must �rst decide on a set of operationsthat are to be performed in the space. For example, in the angular domain,typically one adds or subtracts angles, therefore the operations may be thoughtof as the unary negative operation and the binary addition (�gure 1).
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-+Figure 1: The tables for unary negation (a), addition (b), and multiplication(c) in traditional point-interval algebra.One of the criteria which can be used to evaluate a hybrid discretizationis the extent to which the result of a given operation spreads over severaldiscretization intervals. i.e. is the result a single interval (as is possible fornegation, in general), or in case spreads over several zones, can the numberof such zones be bounded? In section 4.2 we quantify a measure called k-properness for this and show that uniform discretization results in exact 2-properness for addition, and that furthermore, discretizations better than 2-proper cannot be constructed for additions in a cyclic space. Thus, for angles,in order to create a hybrid model, we need to choose a suitable resolution 1nand use n equal zones for each qualitative region.3 Qualitative Subdivision AlgebraAn alternate Hybrid ApproachDi�erent hybrid models di�er in the degree of coarseness and the uniform/non-uniform character of the zones of discretization. Thus the issue in developingany hybrid model is the discretization of the domain into various zones.To address this issue more clearly, let us consider the problem of discretemodels in general. All such models are a mapping from a continuous domainto a discrete domain. Clearly, no such model can be one-to-one, but certainly,the mapping can be unique in the sense that a given element of the continuousmodel should correspond to a single element of the discrete model.\Uniqueness" requires the following property for any discretization:Property (1a): A discretization should comprise of non-overlapping zones.4



[real world]
Continuous model Discrete modelFigure 2: Mapping from a continuous to discrete domain should be unique.This is necessary for the mapping to be unique. For example, in one di-mension, if we have two overlapping zones, z1 = [2,5) and z2 = [3,7), then thezone by which the number 4 should be represented is ambiguous. Representingit by the intersection of the two zones would imply redundancy.In addition to uniqueness, we require that a mapping exist for all points inthe continuous domain:Property (1b): A discretization must span each element of the domain.We call a discretization that satis�es both the above properties, a UniqueDiscretization. From properties (1a) and (1b), it follows that the zones of aunique discretization � have common boundaries. Figure 3 shows an exampleof a unique discretization of the real line.

20-2 -1 1Figure 3: An example of a unique discretization of the real line.Other desirable properties include that the endpoints form a group overthe operations:Property 2: Exactness: A discretization should be closed with respect to itsendpoints. In other words, any permissible operation on one or more zones inthe model should result in one or more number of zones belonging to the samediscretization.This property is desirable since it ensures that there is no loss of informationwhile using any of the operators (permitted in the model) on �. For example,consider the discretization � = f [1,3), [3,5), [5,7), ... g of the space of realnumbers � 1. If we de�ne the operator � as [a,b) � [c,d) = [a+b,c+d) where+ is the addition operator on real numbers, then � is not closed w.r.t. �,since [1,3) � [3,5) = [4,8) 62 �. Note that representing [4,8) by the union ofthe zones [3,5), [5,7) and [7,9) would mean a loss of information since by doingso, we are losing the information that the result of the operation � 4 and < 8.Property 3: Scaling: A discretization over an in�nite or semi-in�nite domainis well� scaled if the length of the interval is proportional to the mean valuein the interval.
3 4210Figure 4: A well-scaled discretization over a linear space.5



De�nition: k � Properness: A discretization � on a given domain is k �Proper on a set of operations � i� for all operations � 2 � on discretizationintervals �i 2 �, the result of the operation �(�1; :::�n) can be expressed as theunion of at most k contiguous intervals in �.De�nition: Exact k � Properness: A discretization � is exactly proper ona set of operations � if the result of any operation � is exactly equal to theunion of k contiguous intervals.De�nition: Disjoint k � Properness: A discretization � is exactly properon a set of operations � if the result of any operation � is the the union of atmost k intervals, which need not be contiguous.In general, a k-proper discretization seeks to minimize losses in compositionby restricting the results of each operation to at most k intervals. Exact k-properness is desirable in the sense of the previous paragraph; we avoid theinformation loss associated with partial intervals. Disjoint k-properness is aproperty that comes up not too frequently, and causes computational problemsin identifying the consistency of a set of relations; in this paper however, werestrict ourselves to the simpler cases of contiguous proper operations; thedisjoint k-proper relation, which is needed to model operations such as A 6=B, is the subject of ongoing work on the theoretical properties of this algebra.The following example would make the distinction between exact and in-exact properness clearer: consider two discretizations of the space of positivereals greater than 1, i.e., the space [1,1) - �1 = f [1,2), [2,3), [3,4), [4,5), ...g, and �2 = f [1,3), [3,5), [5,7), [7,9), ... g. De�ne the operation � on a pairon intervals as: [i1; i2) � [j1; j2) = [i1 + j1; i2 + j2), where + is the standardaddition operation on reals. �1 is exactly (2-)proper on � whereas �2 is not.This is because for any two intervals, [i,i+1) and [j,j+1) 2 �1, [i,i+1)� [j,j+1)= [i+j,i+j+1) [ [i+j+1,i+j+2) = z1 [ z2, where z1 and z2 are intervals 2 �1.However, in case of �2, for example, [1,3) � [3,5) = [4,8), cannot be exactlyequal to the union of any number of intervals in �2 since 4 is not the startingpoint (as also 8 is not the end point) of any interval 2 �2.Recalling Property 2 in light of the above de�nition, we can immediatelysee that it states that \exact"-properness is a desirable property of any dis-cretization.3.1 Operations on intervalsIn the following discussion, the domain of interest is that of real numbers (R).By symmetry, we can simplify the task of discretizing the whole real line to thespace of positive reals (R+). Moreover, from a discretization for [0,1), we canobtain a corresponding discretization for [1,1), and vice-versa, by invertingthe endpoints of each interval (note that while inverting, we keep the intervals`closed' at the left (smaller) end point and `open' at the right end point, sothat the point \1" is not repeated, and we have an open interval at1). Hence,we concentrate on discretizing the domain [1,1) only. Also, we consider onlyunique discretizations. 6



We consider two operations on intervals, the Addition operation (�) whichhas already been described above, and the Multiplication (
) operation, whichis de�ned as follows: [i1; i2) 
 [j1; j2) = [i1 � j1; i2 � j2), where � is the standardmultiplication operation on reals.Lemma 1: No unique discretization, �, of [1,1), is exactly 1-Proper on 
.Proof: Let the �rst interval of � be [1,e) (e > 1). Since [1,e) � [1,e) = [1,e2) 62� (two discretization intervals do not overlap as per the uniqueness property),the lemma follows. 2Lemma 2: A unique discretization � of [1,1) is exactly 2-Proper on 
 i�the sizes of the intervals are in geometric proportion.Proof: Let Delta be a unique discretization of [1,1) which is 2-Proper on(
). Let the �rst two intervals of � be [1,e1) and [e1,e2). [1,e1) � [1,e1) =[1,e21) = [1,e1) [ [e1,e21). Since � is 2-Proper, we must have [e1,e21) 2 �. But[e1,e2) 2 �. Hence, e2 = e21 (since � is unique). It can easily be shown byinduction that � must be - f [1,e), [e,e2), [e2,e3), [e3,e4), ... g. The converse,that this discretization is indeed exactly 2-Proper, is simple. 2Lemma 3: No unique discretization, �, of [1,1), is exactly 1-Proper on �.Proof: Let such a � exist, and let the �rst interval of � be [1,e). Since thisinterval may be added to itself any number of times, � must contain, in orderto be 1-Proper, all of the following intervals: [1,e), [2,2e), [3,3e), [4,4e), ...Since � is unique, e � nn�1 _ n. As n !1, nn�1 ! 1, hence e � 1, which isabsurd. Hence, the assumption is contradicted. 2Lemma 4: A unique discretization, �, of [1,1), is exactly 2-Proper on � i�the set of the end-points of the intervals in � is f i + k� j i 2 N, � = 1n forsome n 2 N, 0 � k � min(i,n-1) g.Proof: `only if ': (proof by contradiction) Consider such a discretization �.Claim: � must include the set of points f n, n + �, n + 2�, ... , n + n� j n2 N, and � is some real number satisfying 0 < � � 1g. (Note that there mightbe repetition of points in this list.)Proof: Let the �rst interval of � be [1,e). Since [1; e) + [1;e) = [2; 2e), and� is unique, we must have 1 < e � 2. Therefore, let e be 1 + � for some0 < � � 1. For exact-properness, the addition operation on any two end-pointsmust result in a third end-point belonging to �. From this condition, it followsthat � must (at least) have all points of the form: 1, 2, 3, ... , 1+�, 2+�, 3+�,... , 2+2�, 3+2�, 4+2�, ... , 3+3�, 4+3�, 5+3�, ... , ... Hence the claim.Now suppose � = pn , where 1 < p < n, and gcd(p; n) = 1. Let m = bnp c.Consider the result of the addition operation on the following two intervals: z1= (i, i + pn ), and z2 = (i + k pn , i + (k + 1) pn ), where 0 < k < min(i,m) (Thiscondition on k ensures that z1 and z2 are indeed zones 2 � in accordancewith the above claim). For exact 2-properness, the sum z1 � z2 = (2i + k pn ,i + (k+2) pn ), call it s, must be exactly equal to the union of two intervals 2 �.Now consider an i such that i > m so that min(i,m) = m. Then 0 < k < m.Choose k to be (m� 1). Then (k+2) pn = (bnpc+1) pn > 1. Hence, s � P [Q,7



where P = (2i + (m � 1) pn , 2i + m pn) and Q = (2i + m pn , 2i + 1) are zones2 � (by the above claim). This contradicts the assumption that � is exactly2-Proper.`if ': Classify the intervals in � into the following three kinds: (i) (i, i + 1n),(ii) (i + kn , i + k+1n ), and (iii) (i + kn , i + 1). Then, by exhaustively �ndingthe result of the addition operation on each of the six possible kinds of pairs ofintervals in �, it can be shown that the addition operation is indeed exactly2-Proper on �. 2Note that although lemma 4 gives states that many di�erent discretizationsare possible (each with a di�erent value of � (or n)), only the discretizationswith � = 1=2 or 1 are useful, since in the rest, the intervals become �ner and�ner as we move toward 1, whereas the converse is desirable.Multiple OperationsLemma 5: A unique discretization, �, of [1,1) (or equivalently, of [1,1)),which is exactly 2-Proper on both 
 and � does not exist.Proof: The proof simply follows from lemmas 2 and 4, which state that sucha �, if it exists, must either (a) be f [1,2), [2,3), [3,4), [4,5), ... g, with thesizes of intervals in geometric progression, which is impossible, or (b) have 1,2, 3, ... , 1+ �, 2+ �, 3+ �, ... , 2+2�, 3+2�, 4+2�, ... , 3+3�, 4+3�, 5+3�,... , ... (where 0 < � < 1) as the end-points of its intervals, which must alsobe in geometric progression, which is again impossible for any choice of �. 23.2 The domainThe domain in which these operations are carried out can be one of the fol-lowing two types: (a) linear/in�nite, and (b) cyclic/�nite. By linear spaces werefer to a topology homomorphic to the real line. An example of linear space is\the domain of object dimensions". An example of cyclic space is the angulardomain, i.e., the domain of angles on a plane (�+2� = �), or cos� where � cantake any real value. Obviously, any discretization of a linear space will have anin�nite number of zones (since the continuum model is uncountably in�nite,whereas any discretization, by de�nition, is countable). On the other hand,any discretization of a cyclic space will consist of a �nite number of zones.4 A hybrid model for 3D spatial reasoningA recent synthesis of spatial reasoning models [15] claims that all spatialmodels can ultimately be shown to be based on multiple instances of one-dimensional interval logic. However, the loss of information in higher dimen-sions is so critical that the qualitative information becomes much less useful(the poverty conjecture cited above came up in trying to do spatial reasoning).Thus QSA, which is an approximation model for point-interval logic, can beuseful in the spatial reasoning domain, which appears to be subject to veryhigh levels of uncertainty. 8



4.1 The homogeneous coordinates modelVarious qualitative models have been proposed for 3D spatial reasoning. Oneof the popular ones is based on homogeneous coordinates in which a frameof reference is associated with each object. The spatial relation between twoobjects, represented by a 4�4 matrix, describes the frame of one object w.r.t.that of the other. The numbers in the matrices are replaced by the com-mon f�,0,+g discretization. `Qualitative' multiplication of two values in thisdiscretization results in `0' if either value is `0', `+' if both are either `+' or`�', and `�' if one is `+' and the other `�'. Thus, multiplication `preserves'information in the sense that the the product is as �ne as the �ner of the val-ues being multiplied. Addition, however, results in complete uncertainty (`?')whenever we add a `+' and a `�'. Even otherwise, the sum is as coarse as thecoarser of the values being added, since the addition of a `0' with `+' resultsin a `+'. Since the composition of two relations in this model corresponds tomatrix multiplication, which involves three scalar additions per element, theresulting relation matrix has a lot of uncertainties (i.e., many elements are `?'s).To overcome these drawbacks, we propose a hybrid qualitative-quantitativemodel. Since the elements of the relational matrix are either the directioncosines of the axes, or the (x-, y-, z-) components of the displacement of oneframe w.r.t. the other, our task is to discretize the following two domains:(a). Dc = the range of the function cos� (for discretizing the direction cosinesof the axes of a frame w.r.t. another frame), which is a cyclic space.(b). Dl = the space of non-negative reals (for discretizing the components ofthe displacement vector of one frame w.r.t. another) which is a linearspace, andThe operations that we need to perform on these domains are Addition(�) and Multiplication (
) (as de�ned previously).For Dc, we need to discretize the region [0,1), and for Dl, the space ofpositive reals, R+ (since the discns. for (-1,0] and R� are symmetric). In lightof lemma 5, we cannot hope to �nd 2-proper discretizations for these domainsw.r.t. the operations � and 
. Hence, we look for suitable approximations.4.2 Discretization of the Cyclic DomainMost qualitative models have orientations that are indicated by the qualitativevectors (0+, ++, +0 ...) which results in exact alignment at the axes, and a90� quadrant in between. Here the discretization is in 90� quadrants. In 3Dsolid angle discretizations, a similar octant solid angle of 4�/8 or �/2 appears.In de�ning this qualitative discretization then, our aim is to discretize the[0,�/2) (since this dscretization can be replicated onto each of the other threequadrants) range of angles (�) in such a way that (a) the angular zones are�ner near � = 0� and 90�, in conformity with the qualitative discretizations(the four zones and the four directions) used by us, and (b) the discretization,9



say �, implies a corresponding discretization of cos� (call it �c) which is agood approximation to a 2-Proper discretization of [0,1) on both � and 
.
-1-0.8-0.6-0.4-0.200.20.40.60.81 -1 -0.5 0 0.5 1Figure 5: The zones of the discn. �c must be �ner near � = 0� and 90�.Finer angular zones in � near � = 0� and � = 90� necessiate �ner intervalsin �c near 0 and 1. In addition, we must try to make sure that �c is a goodapproximation. Keeping these requirements in mind, we propose the followingdiscretization of [0,1) as �c:0; 1srl ; 1srl�1 ; ::: ; 1sr ; 1s; 1 � 1srf ; 1 � 1srf+1 ; ::: ; 1 � 1srm�1 ; 1� 1srm ; 1where s; r > 1. The values of s, r and f should be judiciously decided, asdescribed ahead. The values of m and l are chosen depending on the precisionor the number of zones wanted for the particular application. In addition, �chas the two precise points, 0 and 1. With proper choice of s, r and f , thisdiscretization is �ner near both 0 and 1, and is coarser in the middle. Thecoarseness increases from either end upto 1s . Further, for a majority of pairs ofintervals in this discretization, both the operations, 
 and �, yield only two(contiguous) intervals as the resultant.� can then be derived from �c by taking the inverse of the cosine.4.2.1 Constraints on s, r and fBelow we mention some of the constraints, which if satis�ed, result in a \good"approximation to a 2-Proper discretization of [0,1) on both � and 
:1� 1srf > 1s � 1 � 1srf�1) rf�1 � 1s� 1 < rf (1)1sri + 1sri+1 � 1sri�1 _ i � 1) r2 � r � 1 � 0) r � p5 + 12 (2)10



1s + 1sr � 1 � 1srf) (s� 1)rf � rf�1 + 1 (3)Constraints (1) and (2) can be combined together asrf�2 + 1r � (s� 1)rf�1 � 1Constraint (1) ensures that we do not omit a possible candidate for an end-point between 1s and 1� 1srf . Constraints (2) and (3) ensure that �c is 2-Properon � for a fairly large number of interval pairs.If we choose s = 2, then r must be � 4. This is because only thenwill the intervals of �, the corresponding discretization for �, be such thatthe last interval, (1; 1 � 1srm ) is smaller than the interval previous to it, (1 �1srm ; 1� 1srm�1 ), which is essential else the zones for the angular domain won'tbe progressively �ner toward 0�, starting from 60� (= cos�1(12)). On the otherhand, a smaller r implies �ner intervals and hence, greater precision. Therefore,we choose (with s = , r = 4). With s = 2 and r = 4, eqn.(1) ) f = 1.4.3 Discretization of the Linear DomainWe have seen earlier how linear space can be divided into three regions basedon a point of reference - f�, 0, +g. This treats 0 as a special point, but givesequal importance to all other points on the number line. However, there mightbe other points of qualitative interest: for example, while representing relativesizes of objects, the point `1' (signifying \equal" sizes of objects) might beimportant. Thus, an aspect ratio of 1, representing a square, separates \tall"rectangles from \squat" ones. Also, as per Property 3 (section 3), since thelinear space is often in�nite, it is desirable that its discretization be well-scaled.Considering the operations of addition and multiplication, we see that auniform discretization is 2-proper w.r.t. addition, but is undesirable owing topoor scaling of the discretization. On the other hand, 2-properness propertyfor multiplication guarantees well-scaledness, i.e. if the interval endpoints arein a geometric series, then the discretization is 2-proper and also well-scaled,and is usually recommended for linear spaces (�gure 4). However, a problemwith such a discretization is that near zero, it has in�nite density. Also, ittreats only one point, viz. `0', as a special point.Any discretization of a linear space must satisfy two conditions: (a) thezones should be �ner near points of interest (such as `0' or `1'), and (b) thezone size should scale up along with the quantities being modeled. If we invertthe discretization �c (de�ned in the previous section) of [0,1), we indeed getsuch a discretization for [1,1). Combining these two discretizations, we geta discretization �l of R+, which not only satis�es both the above conditions,but is also a good approximation to a 2-Proper discretization on � and 
.An algorithm for composing two relational matrices using the above dis-cretizations has been implemented. In the next section, we apply this hybrid11



model to an example and illustrate the di�erence in the uncertainty in infor-mation between this and the pure qualitative model.4.4 Example: Robot's taskConsider the problem posed in the introduction. A robot assistant is to locatea key and open a door based on qualitative instructions regarding the poseof the key w.r.t. the lock, and the pose of the lock w.r.t. itself. From thesetwo pairs of spatial relations, viz., the frame of the key w.r.t. that of the lock,F(K,L), and the frame of the lock w.r.t. that of the robot, F(L,R), the robotmust infer the frame of the key w.r.t. its own frame, F(L,R) (�gure 6). Ifthis knowledge is entirely qualitative, then the information obtained throughtransitivity is much weaker than through a QSA approach; furthermore, byselecting the resolution of the QSA discretization used, the model can attemptto match the resulting accuracy to functional determinants such as the view-angle of its sensors.
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Key (K)Figure 6: A situation depicting the frames of the robot, the lock and the key.First we illustrate the qualitative model. Following are the matrices de-scribing the relations F(L,R), F(K,L) and F(K,R) respectively, where F(K,R)is obtained by the matrix multiplication, F(L,R) � F(K,L),26664 + + + �� + 0 +� � + +0 0 0 + 37775 26664 0 + � �0 + + ++ 0 0 +0 0 0 + 37775 26664 + + ? ?0 ? + ++ � ? ?0 0 0 + 37775Note that there is complete loss of information in �ve of the twelve (sincethe entries in the last row are not parameters) elements of the resulting matrixF(K,R). The `?' entries imply that there is an uncertainty of two octants in theorientation of the y-axis and an uncertainty of four octants in the orientationof the z-axis and the position of K w.r.t. the frame of R.Now suppose that we are provided with more information, so that we canuse the hybrid model. Speci�cally, let the frames F(L,R) and F(K,L) be given12



as follows: 2F (L;R) = 26664 4 5 6 �22�7 5 1 245 �6 6 230� 0� 0� 1� 37775 F (K;L) = 26664 1 8 �4 �91 4 8 2213 1 1 210� 0� 0� 1� 37775where the numbers denote the zone numbers of the discretization �l mentionedin the previous section. The zone numbers increase from 1 for the interval(0; 1=(2� 44)] to 13 for (1� 1=(2� 47); 1), and from 14 for (1; 11�1=(2�47)] to 26for (512;1). The negative zone numbers are the counterparts of these for theregion (�1;�1) [ (�1; 0). Note that the entries 0� and 1�, in the last rows,denote the exact numbers 0 and 1, and are part not of the the discretizationbut of the homogeneous coordinates model. The hybrid model then gives:F (K;R) = 26664 (5; 7) (3; 6) (1; 6) (�22; 22)(�1; 2) (�7;�4) (4; 7) (24; 25)(4; 6) (�13;�3) (�6; 1) (22; 24)0� 0� 0� 1� 37775where (i,j) represents union of all zones starting from the ith to the jth.Observe that in place of the `?' entries in the composed matrix obtainedfrom the qualitative model, we have here, disjunctions of zones. Also, wherethe qualitative model predicted a `+' (or `�'), the hybrid model predicts theunion of some number of zones which spans a much smaller region of thenumber line than does the `+' (or `�').In order to judge the relative merit of the two models, we need some metricthat characterizes the degree of uncertainty in the results obtained. We de�nethe uncertainty metric (UM) 3 as 1/[the extent of the resulting region]. Thus, a`?' in the pure qualitative model would correspond to a UM of 0.5 for the cyclicspace (since cos� ranges from �1 to +1), and 0 for the linear space. An exactvalue (such as 0 or 1) would correspond to a UM of1. The larger the UM theless is the uncertainty, and hence the better is the result. Using this metric,we can see that UMhybrid for F(K,R)22 � 1:0667, for F(K,R)13 � 1:1429, andfor F(K,R)31 � 1:1403 (where subscript ij denotes ith row and jth column).On the other hand, UMqual = 0:5 for any of these. Similarly, for F(K,R)14,UMhybrid = 0:0625, and for F(K,R)34, UMhybrid � 0:0079, whereas UMqual = 0for both of these.Thus, the hybrid model results in much less uncertainty than the qualitativemodel, which is only to be expected, as it involves less degree of abstractionand hence, can preserve more information.2One can verify that the zones allow the sum of the squares of the cosines to be 1.3We do not claim that this is the best metric. The issue of deciding on the best metricis in itself an important issue, but is beyond the scope of this paper.13



5 Shape modelsConsider once again the task outlined in section 1. The robot is required tolocate the items mentioned, e.g. the key, or the lock, by imprecise informationabout their 3D position. This is to be combined with some notion of their 3Dgeometry. Now, a full-blown geometric model of the average key may containover a hundred 3D vertex coordinates. Such detailed knowledge may well provea hindrance at this level of performance, and is certainly not an \adequate"model. On the other hand, using a purely qualitative model, one is unable toinfer any shape aspect at all. One of the poverties of qualitative reasoning isits inability to provide abstractions for shape.On the other hand, even what direction can be provided by shape is of-ten underutilized. [12] provides some simple aspect ratio models of shapes,built up by comparing the x and y dimensions of objects. This provides anextremely rudimentary model of shape. More accuracy in shape may be pos-sible by coding vertex information, in which case one faces questions such as\which vertices to omit?", and \what grid size to use for representing vertexcoordinates?" Using other boundary based models such as chain code leadsto possible non-closure of closed contours etc. Also, other methods of propa-gating the closure constraint (e.g. distributing the error evenly) result in poormodels of shape that lose the essential characteristics of the geometry, suchas parallel edges or perpendicularity, sharpness at the corners, etc. This isalso true of rectangular decomposition models, such as the spatial occupancyarrays [7]. We feel that a better model for shape abstraction may be basedon the medial axis transform or the line-site voronoi diagram [5]. Figure 7 (b)and (c) highlights this model for a keyhole shape. In the medial axis model,information loss is accommodated by dropping axis segments that correspondto short segment length, shallow changes of angle, and low angles betweenthe forming boundaries (velocities). The angles between successive axes in thediagram, and the lengths of these axis segments as well as radius informationalong the axes are modeled in the QSA paradigm, by choosing suitable levelsof subdivision appropriate to the accuracies one desires to maintain. See [13]for an application of this paradigm in visualizing design shapes at the conceptlevel. Using this model, shape data can be preserved from coarse to �ne res-olutions, thus providing a range of approximations over which to choose an\adequate" value.6 ConclusionIn this work, we have developed an alternative paradigm for building hybridqualitative-quantitative models based on the notion of subdividing the quali-tative zones in a model further. The principal advantage of this paradigm overthe traditional approach of resorting to purely quantitative data when neededis that it is capable of providing a graded level of approximations, at somepoint on which an \adequate" model may be determined. This paper presents14
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