
A High Performance Parallel Strassen Implementation �Brian GraysonDepartment of Electrical and Computer EngineeringThe University of Texas at AustinAustin, TX 78712bgrayson@pine.ece.utexas.eduAjay Pankaj ShahDepartment of Computer SciencesThe University of Texas at AustinAustin, TX 78712ajay@cs.utexas.eduRobert A. van de GeijnDepartment of Computer SciencesThe University of Texas at AustinAustin, TX 78712rvdg@cs.utexas.eduJune 13, 1995AbstractIn this paper, we give what we believe to be the �rst high performance parallel implementation of Strassen'salgorithm for matrix multiplication. We show how under restricted conditions, this algorithm can be implementedplug compatible with standard parallel matrix multiplication algorithms. Results obtained on a large Intel Paragonsystem show a 10-20% reduction in execution time compared to what we believe to be the fastest standard parallelmatrix multiplication implementation available at this time.1 IntroductionIn Strassen's algorithm, the total time complexity of the matrix multiplication is reduced by replacing it withsmaller matrix multiplications together with a number of matrix additions, thereby reducing the operation count.A net reduction in execution time is attained only if the reduction in multiplications o�sets the increase inadditions. This requires the matrices to be relatively large before a net gain is observed. The advantage of usingparallel architectures is that much larger problems can be stored in the aggregate memory of a parallel computer.This is o�set by the added complexity that when smaller matrix multiplications are performed, communicationoverhead is more signi�cant, reducing the performance of the matrix multiply. Thus, for parallel implementations�This work is partially supported by the NASA High Performance Computing and Communications Program's Earth and SpaceSciences Project under NRA Grant NAG5-2497. Additional support came from the Intel Research Council. Brian Grayson issupported by a National Science Foundation Graduate Fellowship.



it is relatively easy to grow the problem to the point where the additional additions are insigni�cant, however, it isdi�cult to make sure that the net gain is not o�set by an overall reduction in performance due to communicationoverhead.This research was started when a paper by Luo and Drake [15] on the scalable implementation of Strassen'smatrix multiply algorithm came to our attention. While the algorithm in that paper has attributes that arerequired to obtain e�cient implementations of the method, the performance data in that paper was less thanconvincing, leading us to believe that a high performance implementation had not yet been achieved.There are two developments that made us realize that we were in a position to duplicate and improve uponthe results by Luo and Drake: �rst, with the advent of the Paragon, communication overhead was considerablyless that that encountered on the iPSC/860 used by Luo and Drake. Second, we had just developed a moree�cient standard parallel matrix multiply routine (SUMMA) [17] than the library routine used by Luo and Drake(PUMMA) [3]. Our SUMMA implementation has the added bene�t that it requires much less work space thanPUMMA, allowing us to run larger problems. Thus, while Luo and Drake concluded that the best approach wasto use sequential Strassen implementations on each node, but use a standard parallel matrix multiply for theparallelization, we will show that under these new circumstances, the best approach is to parallelize Strassen,using standard parallel matrix multiplication at a lower level.2 BackgroundWe start by considering the formation of the matrix productC = ABwhere C 2 Rm�n, A 2 Rm�k and B 2 Rk�n. We will assume that m, n, and k are all even integers. Bypartitioning A = � A11 A12A21 A22 � , B = � B11 B12B21 B22 � , and C = � C11 C12C21 C22 �where Ckl 2 Rm2 �n2 , Akl 2 Rm2 � k2 , and Bij 2 R k2�n2 , it can be shown [9, 16] that the following computationscompute C = AB: P1 = (A11 + A22)(B11 + B22) P2 = (A21 + A22)B11P3 = A11(B12 � B22) P4 = A22(B21 �B11)P5 = (A11 + A12)B22 P6 = (A21 � A11)(B11 + B12)P7 = (A12 � A22)(B21 + B22)C11 = P1 + P4 � P5 + P7 C12 = P3 + P5C21 = P2 + P4 C22 = P1 + P3 � P2 + P6 (1)While the cost of the original multiplication is ordinarily about mnk multiplies and mnk adds, this reformulationhas a cost of 78mnk multiplies and 78mnk adds, plus the cost of performing the matrix adds in 1. Moreover, ifeach of the multiplies in 1 are themselves recursively performed in the same way, one can bring down the orderof the computation from O(n3) to O(n2:807) for square matrices [16].Restriction: In the rest of this paper, we will assume that n = m = k. Moreover, every time a levelof Strassen is applied, we will assume the dimension is even.3 Parallel implementation of Strassen's algorithmIn general, one can use Strassen's algorithm in a multicomputer environment in several di�erent ways, withdi�erent advantages and disadvantages. For example, one can use the Strassen algorithm only on each processor,for the local matrix multiplies. The advantage to this is that no interprocessor communication is required during2



the Strassen matrix multiplication stage. However, the relative cost of the extra additions is greatly reduced whenthe matrix size is large. This leads to the observation that the Strassen algorithm should give better speedup whenit is used across all processors, with some other matrix multiply method used for multiplying smaller submatrices.We chose this second method for this research due to its higher potential for speedup.3.1 Parallel algorithmThe following observation will become important in our parallel implementation: Consider the alternativeblocking of the matricesPAP T = � A11 A12A21 A22 � , PBP T = � B11 B12B21 B22 � , and PCP T = � C11 C12C21 C22 �where P and is a permutation matrix. ThenC = PT � C11 C12C21 C22 �P = PT � A11 B12A21 B22 �� B11 A12B21 A22 �P (2)= PT � A11 A12A21 A22 �PP T � B11 B12B21 B22 �P = AB (3)We will use this to derive a supprisingly straight forward parallel implementation for Strassen's algorithm in thespecial case where the mesh of nodes is square.Restriction: We will only consider the case where the logical mesh of nodes is square. I.e. if thereare p nodes, they will be viewed as forming an r � r logical mesh, with r = pp.We will use the following partitioning of the matrices to distribute the data to nodes:C = 0BBBB@ C0;0 C0;1 C0;2 � � � C0;r�1C1;0 C1;1 C1;2 � � � C1;r�1... ... ... ...Cr�1;0 Cr�1;1 Cr�1;2 � � � Cr�1;r�1 1CCCCAMatrices A and B are partitioned conformally. The assumption will be that Ci;j, Ai;j, and Bi;j are all assignedto node (i; j). Hence, the double lines in the equation can be interpreted as borders between nodes.Next, let us subdivide further:C = 0BBBBBBBBBBBBBBBBBBB@
C0;011 C0;012C0;021 C0;022 C0;111 C0;112C0;121 C0;122 C0;211 C0;212C0;221 C0;222 � � � C0;r�111 C0;r�112C0;r�121 C0;r�122C1;011 C1;012C1;021 C1;022 C1;111 C1;112C1;121 C1;122 C1;211 C1;212C1;221 C1;222 � � � C1;r�111 C1;r�112C1;r�121 C1;r�122... ... ... ...Cr�1;011 Cr�1;012Cr�1;021 Cr�1;022 Cr�1;111 Cr�1;112Cr�1;121 Cr�1;122 Cr�1;211 Cr�1;212Cr�1;221 Cr�1;222 � � � Cr�1;r�111 Cr�1;r�112Cr�1;r�121 Cr�1;r�122

1CCCCCCCCCCCCCCCCCCCAwhere now Ci;jkl are n2r � n2r . Again, A and B are subdivided conformally.3



We can �nd a permutation P so thatPCPT = 0BBBBBBBBBBBBBBB@ C0;01;1 � � � C0;r�11;1... ...Cr�1;01;1 � � � Cr�1;r�11;1 C0;01;2 � � � C0;r�11;2... ...Cr�1;01;2 � � � Cr�1;r�11;2C0;02;1 � � � C0;r�12;1... ...Cr�1;02;1 � � � Cr�1;r�12;1 C0;02;2 � � � C0;r�12;2... ...Cr�1;02;2 � � � Cr�1;r�12;2
1CCCCCCCCCCCCCCCA = � C11 C12C21 C22 �Let matrices A and B be permuted using the same permutation matrix. The double lines continue to denoteborders between nodes, except that now Ckl, k; l 2 f1; 2g are each partitioned and distributed to nodes.If we now look at a typical operation that is part of Strassen's algorithmT1 = (A11 +A22)T2 = (B11 + B22)P1 = T1T2we notice that forming T1 is equivalent to performing the operations T i;j1 = Ai;j1;1 + Ai;j2;2, whereT1 = 0BBBBB@ T 0;01 T 0;11 T 0;21 � � � T 0;r�11T 1;01 T 1;11 T 1;21 � � � T 1;r�11... ... ... ...T r�1;01 T r�1;11 T r�1;21 � � � T r�1;r�11 1CCCCCAis partitioned and distributed like Ckl. Similarly, T2 can be formed in parallel from B11 and B22. Next, themultiplication P1 = T1T2 requires a parallel matrix multiply, leaving P1 distributed like Ckl. The same can beshown for the formation of Pk, i = 1; : : : ; 7.A second typical computation, C22 = P1 + P3 � P2 + P6is also perfectly parallel, without requiring communication, since Ckl, k; l 2 f1; 2g, and Pi, i = 1; : : : ; 7 all havecorresponding elements assigned to the same nodes. Notice that now each matrix block Ckl must have evendimensions.Restriction: Matrix dimension n must be an even multiple of r = pp.Thus, our implementation does the following:1. Partition the matrices such that each processor has an equal part of each quadrant of the original matrices.2. Calculate each contibution to the �nal matrix by performing local matrix additions and parallel matrixmultiplications.3. For very large matrices, it may be appropriate to apply this method recursively, using the standard matrixmultiplication at the lowest level.Notice this approach allows many levels of Strassen's method to be performed without the requirement of rear-ranging the matrix. This means we have derived a parallel implementation of Strassen's algorithm that can bemade plug-compatible with a standard parallel matrix multiplication routine.Using the Strassen method for all levels is not necessarily the most e�cient method for matrix multiply. In ourimplementation, which uses Strassen for large cross-processor matrix multiplies, the Scalable Universal MatrixMultiplication Algorithm (SUMMA) (see appendix) for smaller cross-processor matrix multiplies, and level 3BLAS calls [5] for local matrix multiplies. The choice of how many levels of Strassen to perform is dependent onthe matrix size, as is shown in the next section. 4



3.2 Performance ResultsOur Strassen implementation di�ers from those attempted before in two ways: As shown in the previous section,we can avoid expensive and complicated data rearrangements by taking advantage of implicit permutations.Second, we actually achieve high performance, as will be shown in this section.High performance dense linear algebra algorithm implementations are best measured by how many millions ofoating point computations per second (MFLOPS) they achieve. To compute this, the operations count, 2n3 forstandard matrix multiplication, is divided by the time required for the operation to complete. By comparing thisperformance to the peak performance of the computer, we gain insight into how e�ciently the algorithm utilizesthe architecture.The platform we used for our experiments in a 512 node Intel Paragon system. This system is physicallya 16 � 32 mesh of nodes. Each node consists of an Intel i860/XP computation processor and second i860/XPcommunication processor. On the system we used, the nodes have 32 Mbytes of primary memory each. All testswere performed using the OSF (release R1.3) operating system.We based our Strassen implementation on an implementation of the SUMMA matrix multiplication algorithm,implemented using double-precision and NX point-to-point calls. In [17] we show that this algorithm achieves aperformance of around 45 MFLOPS/node for large matrices. This is essentially the theoretical peak for standardmatrix multiplication on a single node.The MFLOPS performance reported for Strassen's algorithm also used the 2n3 operation count of the standardalgorithm. Of course, Stassen's algorithm doesn't perform all these operations. Nonetheless, we believe this tobe the best way to highlight the performance improvement attained.In Figure 1 we show the performance attained by Strassen's algorithm on a single node. This gives an ideaof what could be achieved if Strassen's algorithm was only used to accelerate the matrix multiplication on anindividual node, on top of which a standard parallel matrix multiplication is implemented. The limiting factoris the trade-o� between the reduction in multiplications vs. the increase in additions. Our SUMMA algorithmcannot take advantage of this approach, since it is not based on large square matrix multiplications on each node(see [17] for details).In Fig. 2, we show the performance of implementations that use a varying number of levels of Strassen's algo-rithm. The standard matrix multiplication algorithm is given by level = 0. Notice a performance improvementis observed for level=1,2,3. SUMMA is shown to be scalable in [17], in the sense that when memory useper node is kept constant, e�ciency (MFLOPS/node) remains essentially constant. An analysis of our Strassenimplementation would show that its scalability is directly connected to the scalability of the standard parallelmatrix multiplication algorithm used for the lowest level multiplication. This is observed in practice, as shown inFigs. 3 and 6.Although our implementation has achieved speedup over SUMMA, there are more improvements that we arecurrently investigating. These include:� A more e�ent broadcast in the SUMMA procedure using non-blocking calls.� Overlapping computation and communication through the use of loop unrolling.� Optimizing the matrix addition and subtraction subroutines.These optimizations may a�ect the threshold of where SUMMA becomes just as e�cient as Strassen's algorithmas well as how many levels of Strassen's algorithm can be used. Observe that if the standard parallel matrixmultiplication algorithm is optimized so it achieves high performance for smaller matrices, the parallel Strassen'salgorithm bene�ts, since potentially more levels of Strassen's algorithm can be e�ectively used.4 ConclusionThe presented parallel algorithm for matrix multiplication is considerably simpler than those previously pre-sented, all of which have been based on generalizations of the broadcast-multiply-roll algorithm. Nonetheless,performance is impressive, as is its exibility. 5



0

10

20

30

40

50

0 200 400 600 800 1000

m
flo

ps
 p

er
 n

od
e

matrix dimension n

Performance on 1 node

0 levels of recursion (SUMMA)
1 level
2 level
3 level
4 levelFigure 1: Performance of SUMMA and Strassen using NX on 1 node.

0

10

20

30

40

50

0 2000 4000 6000 8000 10000 12000

m
flo

ps
 p

er
 n

od
e

matrix dimension n

Performance on 256 nodes

0 levels of recursion (SUMMA)
1 level

2 levels
3 levels
4 levelsFigure 2: Performance of SUMMA and Strassen using NX on 256 nodes.6



0

10

20

30

40

50

0 50 100 150 200 250

m
flo

ps
 p

er
 n

od
e

number of processors

Scalability for SUMMA

704x704
576x576
448x448
320x320
192x192

64x64Figure 3: Scalability of the parallel SUMMA implementation. A line joins data points with equal per nodememory usage. For example, on a 1� 1 mesh, a matrix size of 512� 512 is equivalent to a 1024� 1024 problemon a 2� 2 mesh, because in both cases, each node contains 512� 512 matrices.
0

10

20

30

40

50

0 50 100 150 200 250

m
flo

ps
 p

er
 n

od
e

number of processors

Scalability for Strassen-SUMMA (1 level)

704x704
576x576
448x448
320x320
192x192

64x64Figure 4: Scalability of the parallel Strassen implementation using one level of recursion.7



0

10

20

30

40

50

0 50 100 150 200 250

m
flo

ps
 p

er
 n

od
e

number of processors

Scalability for Strassen-SUMMA (2 level)

704x704
576x576
448x448
320x320
192x192Figure 5: Scalability of the parallel Strassen implementation using two levels of recursion.

0

10

20

30

40

50

0 50 100 150 200 250

m
flo

ps
 p

er
 n

od
e

number of processors

Scalability for Strassen-SUMMA (3 level)

704x704
576x576
448x448
320x320
192x192Figure 6: Scalability of the parallel Strassen implementation using three levels of recursion.8



We are working on generalizing our results so that the approach will work for arbitrary matrix dimensionsand arbitrary (non-square) mesh sizes. Preliminary results show that this can again be done with implicitpermutations.Our implementation can be easily adjusted to use other parallel matrix multiplication implementations for thelowest level multiplication. A number of implementations based on the \broadcast-multiply-role" method [7, 8]have been developed. For details see [3, 11, 12].AcknowledgementsThis research was performed in part using the Intel Paragon System operated by the California Institute ofTechnology on behalf of the Concurrent Supercomputing Consortium. Access to this facility was provided by IntelSupercomputer Systems Division and the California Institute of Technology. This project started as a discussionin a graduate special topics class at UT-Austin. Thus a number of students who did not become coauthors madecontributions. We apologize for not being able to acknowledge the speci�c contributions from these students. Asmentioned, our implementation was based on a NX based implementation of SUMMA. This implementation wasthe result of a collaboration between Robert van de Geijn and Jerrell Watts.References[1] Cannon, L.E., A Cellular Computer to Implement the Kalman Filter Algorithm, Ph.D. Thesis (1969), Mon-tana State University.[2] Choi, J., Dongarra, J. J., and Walker, D. W., \Level 3 BLAS for distributed memory concurrent computers",CNRS-NSF Workshop on Environments and Tools for Parallel Scienti�c Computing, Saint Hilaire du Touvet,France, Sept. 7-8, 1992. Elsevier Science Publishers, 1992.[3] Choi, J., Dongarra, J. J., and Walker, D. W., \PUMMA: Parallel Universal Matrix Multiplication Algorithmson distributed memory concurrent computers," Concurrency: Practice and Experience, Vol 6(7), 543-570,1994.[4] Coppersmith, D., and Winograd, S., Matrix Multiplication via Arithmetic Progressions," in Proceedings ofthe Nineteenth Annual ACM Symposium on Theory of Computing, pp. 1{6, 1987.[5] Dongarra, J. J., Du Croz, J., Hammarling, S., and Du�, I., \A Set of Level 3 Basic Linear Algebra Subpro-grams," TOMS, Vol. 16, No. 1, pp. 1{16, 1990.[6] Douglas, C., Heroux, M., and Slishman, G., \GEMMW: A Portable Level 3 BLAS Winograd Variant ofStrassen's Matrix-Matrix Multiply Algorithm," Journal of Computational Physics 110, pp. 1-10, 1994.[7] Fox, G. C., Johnson, M. A., Lyzenga, G. A., Otto, S. W., Salmon, J. K. and Walker, D. W., Solving Problemson Concurrent Processors, Vol. 1, Prentice Hall, Englewood Cli�s, N.J., 1988.[8] Fox, G., Otto, S., and Hey, A., \Matrix algorithms on a hypercube I: matrix multiplication," ParallelComputing 3 (1987), pp 17-31.[9] Golub, G. H. , and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, 2nd ed., 1989.[10] Gropp, W., Lusk, E., and Skjellum, A., Using MPI: Portable Programming with the Message-Passing Inter-face, The MIT Press, 1994.[11] Huss-Lederman, S., Jacobson E., and Tsao, A., "Comparison of Scalable Parallel Matrix MultiplicationLibraries," in Proceedings of the Scalable Parallel Libraries Conference, Starksville, MS, Oct. 1993.[12] Huss-Lederman, S., Jacobson, E., Tsao A., and Zhang, G., "Matrix Multiplication on the Intel TouchstoneDELTA," Concurrency: Practice and Experience, Vol. 6 (7), Oct. 1994, pp. 571-594.9



[13] Laderman, J., Pan, V., and Sha, X., \On Practical Algorithms for Accelerated Matrix Multiplication," LinearAlgebra and Its Applications, pp. 557{588, 1992.[14] Lin, C., and Snyder, L., \A Matrix Product Algorithm and its Comparative Performance on Hypercubes,"in Proceedings of Scalable High Performance Computing Conference, (Stout, Q, and M. Wolfe, eds.), IEEEPress, Los Alamitos, CA, 1992, pp. 190{3.[15] Luo, Q, and Drake, J. B., \A Scalable Parallel Strassen's Matrix Multiply Algorithm for Distributed MemoryComputers",[16] Strassen, V., \Gaussian Elimination is not optimal," Numer. Math. 13, pp 354{356, 1969.[17] van de Geijn, R. and Watts, J., "SUMMA: Scalable Universal Matrix Multiplication Algorithm," TR-95-13,Department of Computer Sciences, University of Texas, April 1995. Also: LAPACK Working Note #96,University of Tennessee, CS-95-286, April 1995.

10


