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Abstract

In this paper, we defineaclassof generalized Guaranteed Rate (GR) scheduling algorithmsthat includesalgorithms
which allocate variablerateto packets of aflow. We demonstrate that several work conserving and non-work conserving
algorithmsthat either only allocaterate or separaterate and delay allocation belong to GR. We definework conserving
generalized Virtual Clock, Packet-by-Packet Generalized Processor Sharing and Self Clocked Fair Queuing scheduling
algorithms that can allocate variable rate to the packets of a flow. We also define scheduling algorithms suitable for
servers where packet fragmentation may occur. We demonstrate that if a class of rate controllers is employed for
aflow in conjunction with any scheduling algorithm in GR, then the resulting non-work conserving algorithm also
belongsto GR. This leadsto the definition of several non-work conserving algorithms.

We then present a method for deriving the delay guarantee of a network of servers when: (1) different rates are
allocated to packets of a flow at different servers along the path and the bottleneck server for each packet may be
different, and (2) packet fragmentation and/or reassembly may occur. This delay guarantee enables a network to
provide various service guarantees to flows conforming to any specification. We illustrate this by utilizing delay
guarantee to derive delay bounds for flows conforming to Leaky Bucket, Exponentially Bounded Burstiness and
Flow Specification. Our method for determining these boundsis not only simple and valid in internetworks, but also
leadsto tighter results. We finally present architectural principles for the design of networks that employ scheduling
algorithmsin GR class. We demonstrate that GR class not only simplifies the design of networks, but also provides
support for application with different characteristics and requirements.

1 Introduction

1.1 Motivation

Dueto the inherent characteristics of audio and video, many multimediaapplications (e.g., audio and video conferenc-
ing, multimediainformation retrieval, etc.) require the network to provide a wide range of Quality of Service (QoS)
guarantees (with respect to bandwidth, packet delay, delay jitter and loss). Whereas the guaranteed bandwidth must
be large enough to accommodate motion video and audio streams at acceptable resolutions, the end-to-end delay must
be small enough for interactive communication. In order to avoid breaks in continuity of audio and video playback,
delay jitter and loss must be sufficiently small. To enable a network to provide such guarantees, sources specify
their traffic characteristics. The network, on the other hand, provides QoS guarantees by reserving and scheduling
network resources in accordance with the specifications. The traffic specification and the QoS guarantees congtitute a
‘contract’ between the network and a source: the network guarantees that, as long as the source conformsto itstraffic
specification, its QoS requirements would be met. Mechanisms for providing these guarantees must address:

o Heterogeneity in source traffic characteristics: The traffic characteristics of multimedia sources differ signifi-
cantly. For example, whereas audio applications require constant bit rate, resource requirement of applications
transmitting Variable Bit Rate (VBR) compressed video sequences varies significantly over time (Figure 1 shows
theshort-term aswell asthelong-termvariationsin thebit rate variation of aM PEG compressed video sequence).



T T T
Twin Peaks Source — Starwars ——

Bit Rate Mb/s

Bit Rate Mb/s

e

L L L L L L L L
12 14 16 18 2 0 2 4 6 8 10

. . .
0 0.2 0.4 0.6 1
Time(s) Time(s)

Figure 1 : Short-term and long-term bit rate variationsin a MPEG compressed video sequence

¢ Heterogeneity in the network characteristics: Current networks are, and future networks will remain, heteroge-
neous along several dimensions. For example, in alarge network consisting of several autonomous domains,
switches may employ different scheduling algorithms (e.g., work conserving, non-work conserving, ones that
separate delay and rate alocation, and the onesthat only allocate rate). Furthermore, dueto the variation in the
size of data transmission unit in internetwork environments (e.g., an internetwork consisting of ATM, FDDI,
ethernet, and token ring), packet fragmentation and/or reassembly may aso occur in the network.

In such heterogeneous environments, the techniques for providing QoS guarantees should be flexible enough to
accommodate: (1) a wide range of traffic specifications, (2) variable rate alocations for a channdl, (3) a variety of
scheduling algorithms at the switches, and (4) internetworking environments (in which fragmentation and reassembly
may occur). A framework for meeting these requirementsis the subject matter of this paper.

1.2 Relation to Previous Work

Each unit of data transmission at the network level is a packet. We refer to the sequence of packets transmitted by a
source as a flow [25]. Each packet within a flow is serviced by a sequence of servers (or switching elements) along
the path from the source to the destination in the network. To provide guaranteed QoS to flows, several rate-based
scheduling a gorithms have been proposed in theliterature[9, 10, 12, 18, 22, 24, 25, 26]. Most of these algorithmscan
be classified along two dimensions (see Table 1):

o Wbrk conserving vs. non-work conserving: Work conserving algorithms schedul e a packet whenever a packet is
present inthe system, and thereby yield better average delay performance[23]. Non-work conserving algorithms,
on the other hand, reduce the buffer requirement in the network by keeping the link idle even when a packet is
waiting to be served [23].

¢ Rate-onlyvs. rate-and-delay all ocation algorithms: Whereas scheduling a gorithmslike Virtua Clock [25] only
allocaterate, algorithmslike Delay Earliest Due Date (Delay EDD) [14] separate the allocation of delay and rate.
Such a separation is desirable for low throughput, low delay applications (e.g., interactive voi ce conferencing).

A fundamental characteristic of most of these scheduling agorithmsisthat they do not permit theratesall ocated to
flowsto vary over time. The ability to vary rate alocation of aflow, however, ishighly desirableto efficiently transmit
VBR video streams. To address this requirement, a non-work conserving scheduling algorithm (referred to as Burst
Scheduling), that combines the Virtual Clock scheduling algorithm with the concept of an active flow, was proposed
in [15]. Work conserving a gorithmsthat achieve the same objective, however, have not received much attention.

In additionto avariety of scheduling algorithms, to provide QoS guarantees, awide range of traffic specifications
have al so been proposed intheliterature[6, 15, 18, 21]. However, most of the techniquesfor providing QoS guarantees
have only investigated specific combinations of traffic specification and scheduling algorithms [2, 3, 15, 18, 21].
Recently, some efforts have partially addressed this limitation. For example, [8, 23] demonstrate that non-work
conserving scheduling a gorithms can interoperate to provide QoS guarantees to flows conforming to restricted traffic



Rate Allocation Delay Allocation
Work Virtual Clock Delay EDD
Conserving Packet-by-packet GPS (PGPS)
Self Clocked Fair Queuing (SCFQ)
Non-work Hierarchical Round Robin Jitter EDD
Conserving Stop and Go Queuing Rate Controlled
Static Priority Queuing

Table 1 : Classification of scheduling algorithms

specifications. Similarly, a genera framework which enables a network employing work conserving or non-work
conserving scheduling agorithmsto provide QoS guarantees to flows conforming to any specification wasintroduced
in[11]. However, none of these approaches provide QoS guarantees when variabl e rate may be all ocated to the packets
of aflow and packet fragmentation and/or reassembly may occur in the network.

1.3 Research Contributions of This Paper

In this paper, we develop a comprehensive framework for providing QoS guarantees by: (1) defining a class of
generalized Guaranteed Rate (GR) scheduling agorithms that includes scheduling algorithms which may allocate
variable rate to the packets of a flow, and (2) developing a general method for providing QoS guarantees in a
heterogeneous networking environment.

The class of GR scheduling algorithms guarantee a deadline (referred to as delay guarantee) to a packet based
on its expected arrival time. The delay guarantee of these algorithms is independent of a traffic specification and
the behavior of other flows at the server. This enables a single server employing a scheduling algorithm in GR to
isolate flows as well as provide service guarantees to flows conforming to any specification. We demonstrate that
the class of GR scheduling agorithmsis broad, and includes work conserving and non-work conserving scheduling
algorithms as well as agorithmsthat only allocate rate and those that separate rate and delay allocation (e.g. Virtua
Clock, Packet-by-Packet Generalized Processor Sharing (PGPS), Self Clocked Fair Queuing (SCFQ), Delay Earliest
Due Date (EDD), Jitter EDD, and Rate Controlled Static Priority Queuing). We define work conserving generalized
Virtual Clock, PGPS, and SCFQ scheduling a gorithmsthat can allocate variablerate to the packets of aflow, and show
that they also belong to GR. To prove that a scheduling algorithm belongs to GR, we employ a proof methodology
in which we first show that a preemptive equivaent of the algorithm belongs to GR, and then utilize a relationship
(also derived in this paper) between a broad class of preemptive and non-preemptive scheduling agorithms to show
that the non-preemptive algorithm belongsto GR. This methodology not only simplifies the proofs, but also leads to
new resultsfor real-time scheduling algorithms. Moreover, it leads to the definition of several scheduling algorithms
in GR that are suitable for servers at which packet fragmentation may occur. The algorithms that we define for such
servers reduce computational complexity as well as delay incurred by packets. Finally, we demonstrate that if arate
control element is employed in conjunction with any scheduling agorithm in GR, the resulting non-work conserving
algorithm also belongs to GR (this leads to the definition of several scheduling agorithms). Furthermore, such rate
control e ements do not change the delay guarantee of the scheduling a gorithm.

The delay guarantee of the GR class enables a single server to provide service guarantees to flows conforming
to any specification. To enable a sequence of servers to provide similar service guarantees, we present a method for
deriving the delay guarantee of a network of servers each of which employs a scheduling algorithmin the GR class.
This method enables the derivation of delay guarantee for a network of servers even when: (1) different rates are
allocated to packets of a flow at different servers along the path and the bottleneck server for each packet may be
different, and (2) packet fragmentation and/or reassembly may occur in the network. We utilize the delay guarantee
of a network of servers to obtain an upper bound on end-to-end delay. We demonstrate that our method of deriving
delay guarantee for anetwork of servers reduces the problem of determining end-to-end delay bound to asingle server
problem. We illustrate the end-to-end delay bound computation for flows conforming to Leaky Bucket, Exponentially
Bounded Burstinessand Flow Specification [15]. We demonstrate that our method for determining these boundsis not
only simple, but aso leads to tighter results (e.g., it significantly improves upon the delay bound presented in [17] for
flows conforming to Leaky Bucket in PGPS networks).



Finally, based on the properties of GR class, we present architectural principles for designing networks that
provide guaranteed deterministic QoS. We demonstrate that GR class simplifiesthe design of anetwork while enabling
it to support application with different characteristics and requirements.

The rest of the paper isorganized as follows: In Section 2, we define the class of GR scheduling a gorithms. The
method for deriving delay guarantee for a network of serversis presented in Section 3. We utilizethe delay guarantee
to derive end-to-end delay bounds in Section 4, and then present the architectural principlesfor designing networks
that provide guaranteed servicein Section 5. Finally, Section 6 summarizes our results.

2 Generalized Guaranteed Rate Scheduling Algorithms

Many of the scheduling algorithms proposed in the literature guarantee a deadline (referred to as delay guarantee
[20]) to a packet of aflow based on its expected arrival time. In [11], we defined the delay guarantee of a packet by
associating aguaranteed rate clock value with each packet. Moreover, we defined a class of guaranteed rate scheduling
algorithmsto consist of algorithmsthat guarantee that a packet would be transmitted by its guaranteed rate clock value
plus some constant. However, since the guaranteed rate clock value was defined based on the constant rate associated
with aflow, the guaranteed rate class did not include scheduling a gorithmsthat assign variablerate to the packets of a
flow. We generalize the definition of the GR class to include such scheduling algorithms.

The generalized guaranteed rate class (hereafter referred to as GR) isdefined based on the generalized guaranteed
rate clock value (hereafter referred to as guaranteed rate clock (GRC) value) of a packet. To define the guaranteed
rate clock values, let p’ and [} denote the jt" packet of flow f and itslength, respectively, and let 7" (bits/s) bethe

rate associated with p‘} at server i (observe that each packet may be associated with a different rate). Additionally, let
Al (p‘j;) denote the arrival time of packet p‘} at server i. Then, guaranteed rate clock value for packet p‘} at server i,
denoted by G RC" (p‘}, r‘}’i), isgiven as:
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GRC"! (p‘} , r‘}’i) = max{Ai (p‘}), GRC'i(p‘}_l, r‘}_l’i)} +

j>1 (1)

where G RC (p?, r?’i) = (. Observe that thefirst term in the right hand side of (1) can beinterpreted as the expected
arrival time and the second term as the deadline of a packet. We use the guaranteed rate clock value of a packet to
define the class of GR scheduling algorithms as follows.

Definition 1 A scheduling algorithmat server ¢ belongsto class GR for flow f if it guarantees that packet p‘} will be
transmitted by G RC? (p‘}, r‘}’i) + 3* where 3 isa constant which depends on the scheduling algorithmand the server.

Asisevident from the definition, two key propertiesof the class of GR scheduling algorithmsare: (1) they provide
a delay guarantee for a source independent of the behavior of other sources in the network, and thereby isolate the
sources; and (2) the delay guarantee isindependent of atraffic characterization. Whereas isolation of sources enables
a network to provide stronger guarantees and is highly desirable, especially in large heterogeneous networks where
sources may bemalicious|[1, 4, 15, 19], independence of delay guarantee from traffic characterization enables a server
to provide various QoS guarantees to flows conforming to any specification.

Inthefollowing subsections, we show that many of thework conserving aswell asnon-work conserving scheduling
algorithmsthat either allocate only rate or separate rate and delay allocation belong to GR. To show that a scheduling
algorithm bel ongsto GR, we would be required to prove abound on the departuretime of apacket. Itistypically easier
to bound the departure time of a packet in preemptive scheduling algorithms. Hence, even though packet scheduling
algorithmsare inherently non-preemptivein nature, in the proof methodol ogy that we employ to show that a scheduling
algorithm belongsto GR, we first prove abound on the departure time of a packet in preemptive scheduling a gorithm,
and then use a relationship between the departure times of a packet in equivalent preemptive and non-preemptive
scheduling algorithm to show that the scheduling algorithm belongsto GR. In what follows, we establish the general
rel ationship between a broad class of preemptive and non-preemptive scheduling algorithms.



2.1 Preemptive and Non-Preemptive Scheduling

Many of the scheduling algorithmsthat we will consider, assign a priority to a packet on itsarrival and then schedule
the packetsin the priority order. 1n these scheduling algorithms, a packet with higher priority may arrive after a packet
with lower priority has been scheduled. In non-preemptive scheduling agorithms, transmission of a lower priority
packet is not preempted even after a higher priority packet arrives. Consequently, such agorithms ensure that the
packet in service is the packet with the highest priority only after the transmission of every packet. On the other hand,
a preemptive scheduling algorithm always ensures that the packet in service is the packet with the highest priority by
possibly preempting the transmission of a packet with lower priority. In contrast to preemptive and non-preemptive
algorithms, a partially preemptive scheduling a gorithm ensures that the packet in serviceisthe packet with the highest
priority after the transmission of every fragment of a packet (referred to as a cell).

Observe that non-preemptive algorithms are a subset of partially preemptive algorithms. Moreover, partially
preemptive algorithms would be helpful to define scheduling algorithms suitable for servers where fragmentation
may occur. Hence, in Theorem 1 we establish a relationship between equivalent preemptive and partially preemptive
scheduling algorithms. A partially-preemptivescheduling al gorithmis considered equival ent to apreemptive algorithm
if the priority assigned to all the packets isthe same in both the a gorithms.

Theorem 1 If PS5 isawork conserving preemptive scheduling algorithm, P P.S its equivalent partially-preemptive
scheduling algorithmand the priority assignment of a packet is not changed dynamically, then

o~

Lpps(p’) — Lps(p’) <

max 2
. (2)
where Lpg(p’) and Lpps (p’) denote the time a packet leaves the server when P.S and P P S scheduling algorithms
are employed, respectively. Also, /., isthe maximumlength of a cell and the C' is the capacity of the server.

Proof: Observethat sincethe PS and itsequivalent PPS are work conserving, their busy periods are the same. Hence,
it is sufficient to show that (2) holds for al the packets served in abusy period. Let a busy period begin at time ¢,
and the packets be indexed by the order in which they complete service in the PPS, that isthe i'# packet to complete
servicein PPSis packet p'.

The proof isby contradiction (the structure of the proof is similar to the proof of Theorem 1 of [16] and Theorem
1 of [18]). Let (2) not hold for packet /. There are two cases to consider:

o A cell of packet p” suchthat Lpg(p™) > Lps(p?) isserved intheinterval [to, Lpps(p?)]: Let ¢, bethelargest
time at which such acell isscheduled. Also, let ¢, betheleast time greater than ¢, suchthat if acell of packet p*
isscheduled in the interval [, Lppg(pf)]? then Lps(p*) < Lps(p’). Let S be the set of packets which have

at least one cell scheduled in [t2, Lpps(p?)]. Since PP.S schedules cells based on the priority of the packets
and the priority is not changed dynamically, all the packetsin S must have arrived after ¢4, i.e,

: k
min{A(p")} > 1

Hence, all the cells of packetsin S are scheduled after ¢, by PS and PPS. Therefore,

k
Lest)) > i+ Y &

kes

Sincet, — t; < lmer

Sincets + 3 s % = Lpps(p/)

which isacontradiction.



o Nocel of packet p™ suchthat Lpg(p”) > Lps(p’) isserved intheinterva [ty, Lpps(p?)]: Since set of cells

served by PPSisasubset of cellsserved by PS, Lpps (p?) < Lps(p?) which isacontradiction.

|
Since the only restriction on the scheduling algorithm is that it should not change the priority assignment of a
packet dynamically, Theorem 1 can be employed for a wide variety of scheduling algorithms. In particular, it can be
employed for Virtua Clock, PGPS, Delay EDD, Earliest Deadline First, Rate monotonic a gorithm, and Rate controlled
static priority queuing. The Theorem when applied to these algorithms, leads to several new results. Specificaly, it
leads to new results for Earliest Deadline First and Rate monotonic scheduling a gorithms which are widely used for
real-time scheduling of processes. Partialy preemptive and non-preemptive equivalents of these algorithms enable a
scheduler to reduce the context switch overhead.
We now use the relationship between preemptive and non-preemptive scheduling algorithms, to show that most
of the work conserving and non-work conserving scheduling algorithmsthat either only allocate rate or separate rate
and delay alocation belong to GR.

2.2 Work Conserving Algorithms
2.2.1 Variable Rate Allocation Algorithms

Inthissection, we definework conserving generalized Virtua Clock, PGPS, and SCFQ a gorithmsthat all ocatevariable
rate to packets of aflow and show that all of these scheduling algorithmsbel ong to GR. These algorithmshave different
delay and fairness properties as well as implementation complexity, and hence demonstrate that the GR class is broad
(an exposition of these algorithms a ong these dimensions can befound in [10, 18]).

2.2.1.1 Virtual Clock

We define generalized Virtual Clock (VC) scheduling a gorithm analogous to the Virtual Clock algorithm [25]. The
generalized VC algorithm is defined as follows:

1. On arrival a server i, packet p‘} associated with rate r‘}l is stamped with virtual clock value, denoted by

vl (p‘}, r‘}’i), computed as:

o~
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VCtr) i) = maxl A7), VO ) +

j>1 (3)

where VO (p5, 73") = 0.
2. Packets are serviced inincreasing order of the virtual clock value.

We show that generalized VC belongs to GR by first proving a bound on the departure time of a packet in
preemptive VC. To do so, let usfirst define R;} (t) for flow f asfollows:

) VR . i(. i, d—1 Jg—13 (] 0t
Ri(t) = rpt df 3]?(%1 (pf)gt)/\(VC (pp oy ) <t SV (py, 1y )) 4)
0 otherwise

Let S bethe set of flows served by server i. Then server i with capacity C is defined to have exceeded its capacity at
timetif) . ¢ R! () > C*. Thefollowing theorem bounds the departure time of a packet in preemptive VC.

Theorem 2 If aserver’s capacity is not exceeded, then the time at which the transmission of packet p‘} is completed
in preemptive VC, denoted by Ly, (p‘j;) is:

Lp_ye (p}) < Ve (P, 77"



Proof: It iseasily observed from (3) and (4) that the cumulative length of al flow f packets that arrive in interval
[t1,t2] and have virtual clock value no greater than ¢, denoted by APy (¢1,12), isgivenas.

to )
APf(tl,tz) < / R}(t)dt
t1

We now prove the theorem by contradiction. Let for packet p‘}, Lﬁ;_vc(p‘}) > VCi(p‘} , r‘}’i). Also, let t, bethe

beginning of the busy period in which p‘} isserved and t, = V(* (p‘}). Let ¢; betheleast time smaller thant¢, during
the busy period such that no packet with virtual clock value grester than ¢, is served in theinterva [t1,¢2] (such at,
exists). Clearly, al the packets served intheinterval [¢,, ¢-] arrivein thisinterval and have virtual clock valuelessthan
or equal to¢,. Sincethe server isbusy intheinterval [¢,,¢5] and packet p‘} isnot serviced by -, we have:

ZAPn(tlatZ) > CZ(tZ _tl)

nes

t2
Z/ Ri(t)ydt > Cl(ty — 1)
nes t1
t2 . .
/ STORL(dt > City — 1)
t1 nes

Since the server capacity isnot exceeded, Y_,, . 5 R, (t) < C*. Hence, fff Y ones RL(t)dt < Ci(ty —t1). This
contradicts (5), and hence the theorem follows. |

Since preemptive VC algorithm is work conserving and does not dynamically change the priority of a packet,
Coroallary 1 immediately followsfrom Theorems 1 and 2.

Corollary 1 If aserver’s capacity is not exceeded, then the time at which the transmission of packet p‘} is completed
in generalized Mirtual Clock, denoted by Li/c(p‘}) is:

li

max

Lye(p)) < VO (0, rh) + o

where (' isthe capacity of the server and /i isthe maximum length of a packet serviced by server i.

max

Since the equations for virtua clock and guaranteed rate clock are the same, it is easily observed that generalized

Virtual Clock scheduling algorithm belongsto GR for flow f with 57 = lmT%

Observe that generalized Virtual Clock iswork conserving and permits variable rates to be allocated to packets
of aflow aslong as servers capacity isnot exceeded. Thisisin contrast to the non-work conserving Burst Scheduling
algorithm [15] in which Virtual Clock scheduling algorithm has been employed to allocate variable rate by defining
the notion of an active flow. A flow has a constant rate allocated to it aslong asit is active. Rate assignment of a flow
ischanged only after it makes atransition from active to inactive state. Hence, to alocate variable rate a flow regulator
which enforces such transitions is required to be implemented at each server. Additionally, a server is required to
timestamp a packet with the difference between the packets deadline and actual departure time. Generaized Virtual
Clock does not have any such requirements, and hence reduces the implementation complexity.

2.2.1.2 Packet-by-Packet Generalized Processor Sharing

The Packet-by-Packet Generalized Processor Sharing scheduling algorithm is a practical realization of Generalized
Processor Sharing(GPS) servicediscipline[18]. Wefirst show that GPS belongsto GR and then show that ageneralized
virtual timeimplementation of PGPS belongsto GR.

In GPS, each flow f isassociated with a constant ¢>3} at server i. To allocate variable rate to packets of aflow, we

associate a constant (/r}l with packet p‘}. From the definition of GPS we know that at time, packet p‘} will be serviced
¢;,zcz

a theraeof ———
Zkeb’(t) ¢k)

where packet p¢ of flow k isin service at timet, b’ (t) isthe set of backlogged flows at GPS



server i at timet, and C* is the capacity of the server. Hence, we define a GPS server to have assigned rate r‘}l to

packet p‘} if % > er as long as the packet isin service. Therefore, if packet p‘} is assigned rate r‘}l itis
kebi(t) Tk
served at least at rate rf’l. Since GPS serves packets of a flow in FCFS order, we get:

. . o - b
Lgps(v}) <max{A'(p}), Laps (P} )} + e j=1 (5)

!

Let Lips(p}) = GRCY(pY,r}") = 0. From (5) and (1), it can be shown that
Lips (P‘jc) < GRCi(P‘j;,T‘}’i) jz1 (6)

Hence, GPS belongs to GR. We now define a virtual time implementation of packet-by-packet GPS which is a
generalization of the implementation in [18]. Let v*(¢) be the virtual time associated with server i at time¢. Let
v*(0) = 0 and v’ (¢) not change when no packet is backlogged. Otherwise, define v (¢) as.

dv'(t) B !
dt Zkeb’(t) QJ’ZJ

Define finish time of packet p‘}, denoted by Fi(p‘j; , (/rj;’i) as.

(7)
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Fi(p}, ¢%") = max{v'(A'(p})), F* (P}~ &) )} + i>1 (8)
where Fi(p? , ¢>?’i) = 0. If finish time of apacket is defined as above and ¢ isthe time at which packet p‘} departs, then
vi(t) = Fi(p‘},¢‘}’i). To observe this, consider packet p‘} of flow f. Let ij’i(t) be the amount of service that packet
p‘} has received withintimeinterval ¢ after it begins service. From the definition of GPS, we get:

dwi'e)  Cig} o)
dt Zkeb’(t) ¢Zyl
Hence from (7) and (9), we get:
dv'(t) 1

dwiiey ¢ 1)

From (10) we conclude, if packet p‘} begins service at virtual time o, it will depart at virtua time v + ¢—ljf— Since GPS
f .
serves packets of aflow in FCFS order, it is easy to observe from (8) that if ¢ is the time a which packet p‘} departs,
thenvi(¢) = F* (p‘j; , (/rj;i). Since v (t) ismonotonically increasing, packets leave a GPS server in the increasing order
of finishtime. Hence, a scheduling a gorithmthat schedules packetsinincreasing order of thefinishtimewill simulate
GPS. However, as PGPS is non-preemptive, from (6) and Theorem 1 (or alternatively, Theorem 1 of [18]), we get
i j I j,g linax .
Lpaps(r}) < GRC'(p}, ry") + o iz

Hence, PGPS scheduling algorithm belongsto GR for flow f with 37 = l’g#

2.2.1.3 Self Clocked Fair Queuing

The Sdf Clocked Fair Queuing scheme, proposed in [10], was designed to facilitate the implementation of a fair
gueuing scheme in broadband networks. We define a generalized SCFQ a gorithm which can alocate variable rate to
packets of a flow analogousto SCFQ as follows:



1. On arriva, a packet p‘} is stamped with service tag Fi(p‘j; , r‘}’i), computed as;

l]

Pt
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Fi(p‘j‘ar?i) = maX{vi(Ai(p?‘))a Fi(p?‘_l )

jz1

where F* (p§, r} %) = 0.

2. Theserver virtua timeat timet, v (¢), is defined to be equal to the service tag of the packet in service at timet.
v'(t) = t when the server isidle.

3. Packets are serviced inincreasing order of their service tags.
Define R (v) for flow f asfollows:

. [T I i e o
Riwy=1 7 3;9_(v (A (ph) <o) A (Fi) ) <o < Pl r)
0 otherwise

Let S bethe set of flows served by server i. Then server i with capacity C is defined to have exceeded its capacity at
virtud timewv if 3 s R! (v) > C'. Thefollowing theorem proves that SCFQ algorithm also belongs to the class of
GR scheduling a gorithms.

Theorem 3 If the server’s capacity is not exceeded, then the departure time of packet p‘} in SCFQ, denoted by
Lscpo(p}), isgiven by

. , i [mar
scrq(P}) < GRC(ph,ry') + Z C
nNESANES

where [7** isthe maximum length for packetsin flow n.
Proof: Let set B} be defined asfollows.
B} = {nln > 0AF (pj="r} 1) < vi(Ai(p"))}
Let k < j belargest integer in B}. Also, let v; = vi(Ai(p’;)) and vy = FZ( "i). The set of packets served by the
server in the virtua timeinterval vy, v2] can be partitioned into two sets:

e Thisset consists of packets p7* such that F(p, s 1) < wg and max{v’ (A*(p7)), Fi(pP=1 rm= b} > vy,

Then, fromthe definitionof R’ (v) and F*(p*, r r"), weknow that thecumul ative length of such flow n packets
served by the server in thevirtual timeinterval [v;, v2], denoted by AP, (v1, v2), isgiven as:

APf(vl,vz)g/ R (v)dv

Hence, aggregate length of packetsin thisset, Pp(v1,v2),isgiven as:

nES
Z APn(Ul, Uz) S Z / RZ
nes nes vl
< / > R
Ui nes
< / Cldv
< vy — 1)

. et
_ n=j—k

But Vg — V1 = ano ka_‘_—n)l Hmce,

!

n=j—k lk-|—n

Z AP, (v1,v9) < ol Z lf—|—n,i

nes n=0 rf
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e Thisset consists of packets p™ such that Fi(p, v} > vy and max{v’ (A (p™)), Fi(pm~1, rm=1H} < vy,
At most one packet of al flows other than f can belong to this set. Consequently, the maximum aggregate of
packetsinthissetis ) cop,zp 77 -

Hence, the aggregate length of packets served by the server intheinterva [vy, vo], isless than or equdl to:

n=j—k lk‘-l—n
7 mae
¢ Z k+n 1 + Z l
n=0 f nNESANES

Since packet p‘} departs at system virtual time v-, we get:

lkn

. c' Yoz _] g W + 2 nesangs ' ,
A'(p}) + o i > Lscpo(p})
, n=izk l?"’” jmazx , .
A (Plf‘) + Z JETK + Z sz > Lscrq(py)
n=0 f nNESANES

From (1) we get

c [mas . ,
GRC'(p},ry") + Z i 2 Lscrq(p})
nNESANES

lmaa:

Hence, SCFQ scheduling algorithm belongsto GR for flow f with 3° = Y onesangf o

2.2.2 Delay Allocation Algorithms

Though severa agorithmswhich allocate rate have been proposed, Delay Earliest Due Date (Delay EDD) isthe only
work conserving scheduling algorithm that separates delay and rate allocation in a networking environment !. Inthis
section, we show that Delay EDD & so belongsto GR.

It isnot known whether Delay EDD can separate delay and rate all ocation while assigning variabl e rate to packets
of aflow. Hence, we assume that rate r;} isassigned to al packets of aflow. Furthermore, in Delay-EDD, the length

of the packets is assumed to bethe same, i.e., [ = l‘}. Then Delay-EDD is defined as follows:

1. If d;} isthe delay bound for flow f at server i, then on arrival packet p‘} is stamped with a deadline, denoted by
Di (p‘j;), which is computed as follows:

D (p}) = max{A'(p}), GRC (¢}, 7))} + dj (11)

2. Packets are served in theincreasing order of deadline.

It was shown in [5, 26] that if certain schedulability conditions are met and the minimum inter-arrival time of
packets is at least l—f then a packet would depart by D' (p‘}) However, in a networking environment even if the

minimum inter- arnval timeisat least lf at the network entry point, it may become smaller than lf at a server which

is downstream on the path of aflow. Th|s problem was addressed in [13, 26] by requiring the cl ocks of the serversto
be synchronized. We demonstrate that thisis an unnecessary restriction by proving that regardiess of the inter-arrival
time of packets, preemptive Delay EDD guarantees that packet p‘} will be transmitted by D' (p‘}). We then use this
property to show that Delay EDD belongsto GR.

I Consistent Relative Session Treatment (CRST) rate assignment has been used in PGPS networks to separate rate and delay
allocation. However, this rate assignment requires all the flows to conform to Leaky Bucket specification. Furthermore, it hasbeen
shownin [8] that Delay EDD hasalarger schedulability region than CRST PGPS. Hence, we do not consider CRST rate assignment
of PGPS.
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Theorem 4 If S isthe set of flows serviced by the server and

t—d)rn | ln
Vt>0: Zmax{o, ’7(17")70-‘@ <t (12)

nes

then thetime at which the transmission of packet p‘} iscompleted in preemptive Delay EDD, denoted by Lt 1, (p‘j;)
is:

Lp_gpp(r}) < D'(p})

Proof: From (11) and (1), we conclude that the cumulative length of packets of flow f that arriveintheinterval [¢;, ¢5]
and have deadline less than or equal to ¢, denoted by AP (t1,12), isgiven as:

tz — tl — dl T
APy (t1,15) < {%w 3 (13)

We now prove thetheorem by contradiction. Let for packetp‘j; Ly mpp (p‘j;) > D (p‘j,). Also, let ¢y bethebeginning

of the busy period in which p‘} isserved and ¢, = D' (p‘}). Let t; betheleast timelessthan ¢, during the busy period
such that no packet with deadline greater than ¢, isserved intheinterval [i1, ¢2] (such ¢, exists). Clearly, dl the packets
served intheinterval [ty ¢,] arrivein thisinterval and have deadline less than or equal to ¢». Since the server isbusy
intheinterval [t1,¢5] and packet p‘} is not serviced by ¢, from (13) we have:

to—t1 —di)r,] L
Y max{0, [Mw Y S (ts — ) (14)
Iy C?
nes
Substitutingt = (2 — ¢1) in (14) contradicts (12) and hence theorem follows. |

Due to high computational complexity, it may not be feasible to employ (12) as schedulability test. Hence,
conditions stronger than (12) which have lower computational complexity have been developed in [26]. Clearly, the
theorem holds under the stronger conditions devel oped in [26] as well.

Since Delay EDD does not dynamically change the priority assignment of packets, the following corrollary is
immediate from Theorem 1 and Theorem 4.

Corollary 2 If (12) issatisfied, then the time at which transmission of packet p‘} iscompleted in Delay-EDD, denoted
bijEDD(p‘j;), isgiven as.

7

7 j I lmax
Epp(P}) < D' (p}) + 5

Ci
where C* isthe capacity of the server and [, .. isthe maximum length of a packet serviced by server .
To observe that Delay EDD belongsto GR, rewrite (11) as:
ifj i 7 i, d—1 3 ! ! i
Dip)) = max{A'(p}), GRC (r}" v} + - — (- —d))

I li
= GRC'(p}.ry) = (4 —d))

!

Hence, Delay EDD belongsto GRwith 51 = lmT% — (i—{ — djt). If schedulability conditionsfor non-preemptive Delay
ki
EDD are used, then one can similarly show that ' isgivenas ' = — (4 — dy).
ki
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Figure 2 : Rate Controlled Service Disciplines

2.3 Non-Work Conserving Algorithms

A general framework for reasoning about the end-to-end performance guarantee of a class of non-work conserving
algorithms termed Rate Controlled Service Disciplines has been presented in [23]. In this section, we show that rate
controlled service disciplines also belong to the GR class.

Rate controlled service disciplines consist of a rate regulator and a scheduler (see Figure 2). The rate regulator
ensures that the traffic entering the schedul er conformsto anegotiated traffic specification and the schedul er guarantees
that each packet of flow f would experience a maximum delay of d;}. In such disciplines, different types of rate
regulators may be employed. Since these disciplines have been studied predominantly for constant rate allocation (see
section 2.4.2 for non-work conserving disciplinesthat allocate variable rate), a common characteristic of most of the
rate controllersis that they do not delay packets more than necessary to enforce the average rate. Hence, if rj} isthe

rate associated with flow f and {; thelength of packets, then the time at which a packet p‘} departsthe rate controller,
denoted by L%, . (pjc ,7%), isgiven as.

%C(p‘j;,r;) < max{Ai(p‘}),GRCi(p‘j;_l,rjc)}—I—’yi (15)

where ' is a constant for a rate controller. Since the scheduler guarantees a maximum delay of d;} to each packet,
the time that packet p‘} departs server i which employsarate controlled service discipline, denoted by Lt~ <, (pjc ),is

given as.
Lpcsp(ph) < max{A'(p}), GRC' (¢} ri)} + 4" + df

o S l l i i
< max{A"(p}), GRC"(p} l,rf)}-l-ii—(i'—'Y —dy)

Ty

From (1) we get:
Lrcsp(py) < GRC(p},r}) — (r_{ — A —dh)
!
Therefore, rate controlled service disciplineswhich employ rate regul ators consi stent with (15) a so belong to the

GR class. The rate regulators for Jitter EDD and Rate controlled static priority queuing are consistent with (15) and
hence they belong to GR.

2.4 Packet Fragmentation and Rate Control

In heterogeneous networks, packets may be fragmented. Furthermore, to reduce the buffer requirement in the network,
some flows may require rate controllers to be employed on the path. We now consider: (1) scheduling agorithms
suitable for servers where packet fragmentation may occur, and (2) the effect of employing rate controller for a flow
on the delay guarantee.
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Figure 3 : Rate controller employed for a subset of flows

2.4.1 Scheduling in Presence of Fragmentation

Consider aserver that can receive packets of larger sizethan it can transmit. In such acase, the server hasto fragment
a packet before transmitting. Let a packet be fragmented into cells. A packet fragmented into cells can be scheduled
for transmission by the server in various ways:

e The server can compute a priority for each cell and hence schedule each cell individually.
o The server can compute a priority for each packet and schedule each packet.

Whereas scheduling each cell increases the computation overhead, from Theorem 1 we know that scheduling
packets and disabling preemption of apacket transmission increases the maximum delay incurred. Hence, ascheduling
algorithm that minimizes computati onal overhead whileminimizing delay incurred dueto non-preemptionisdesirable.
Observe that since the transmission unit is a cell, even if a server schedules packet, it can allow packet preemption
to occur after the transmission of every cell, i.e., it can schedule the packetsin a partially preemptive manner. This
would simultaneoudly reduce the computationa overhead and the delay incurred by the packets. Partially preemptive
equivaents of the generalized Virtual Clock, PGPS, and Delay EDD can be defined using the definition of partially
preemptive scheduling algorithms. Also using Theorem 1, Theorem 2, (6), and Theorem 4, we know that partially
preemptive generalized Virtual Clock, PGPS and Delay EDD also belong to GR with 3' being derived by substituting
%ﬂ,ﬁ with lmT% where I is the maximum length of a cell served by server i. Self Clocked Fair Queuing is a
non-preemptive al gorithm by its definition and hence does not have an equivalent partialy preemptive a gorithm.

2.4.2 Effect of Rate Control

Rate controllershave conventional ly been empl oyed to enabl e anon-work conserving scheduling algorithm to guarantee
bounded delay for packets [23]. In such scheduling algorithms, a rate controller is required to be employed for all
the flows serviced by a server. Though rate control e ements reduce the burstiness of a flow and consequently delay
jitter and the buffer requirement of a flow, they increase the average delay of a flow as well as the implementation
complexity. Whereas reduced buffer requirement and delay jitter would be desirablefor some flows, low average delay
may be desirable for other flows. Hence, it is desirableto be able to employ arate controller for only a subset of the
flows that may be serviced by a server (see Figure 3). In this section, we consider the effect of rate controllersin such
scenarios.

Though a number of rate controllers which utilize the average rate have been studied [18, 23], rate controllers
for flows which have variable rate have not received much attention. We define rate controllersfor variable rate flows
anal ogous to average rate controllers. Let L (p}, ") denote the time a which packet p} associated with rate 17"
leaves arate controller. Then:

e (Phrf) < max{A'(p}), GRC (p ™" ™)) (16)

In the special case of rj} = r‘}l this definition captures the characteristics of rate control elements like leaky bucket.
Let such arate control element be employed at server ¢ for flow f. Since arate controller is not employed for all the
flows, unlike rate controlled service disciplines, a scheduler may not be able to guarantee an upper bound on delay
for al packets. However, Theorem 5 demonstrates that such arate control e ement does not change the bound on the
departure time of a packet when the scheduling algorithm employed isin GR.
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Theorem 5 If arate control element that satisfies (16) is employed at server i for flow f , then:
GRC'(p},14") = GRC (9}, ")

where GRC' (pf Yy ) isthe guaranteed rate clock value at the scheduler when no rate controller is employed for the

flow and GRC' (pf " ") isthe value when a rate controller is employed.

Proof: The proof isby inductionon j and is presented in Appendix A.1. |

Theorem 5 demonstrates that if a scheduling agorithm belongs to GR for a flow, then the equivalent non-work
conserving a gorithm obtained by employing any rate controller element satisfying (16) also belongsto GR. Observe
that this defines non-work conserving equivaents of generalized Virtual Clock, PGPS, and SCFQ agorithms. It also
defines a scheduling a gorithm that combines Delay EDD and Jitter EDD.

2.5 Summary

Inthe previoussections, we have defined the class of GR scheduling algorithmsand shown that several work conserving
and non-work conserving algorithmsthat either allocate only rate or separate rate and delay allocation belong to GR.
We defined generalized Virtual Clock, PGPS, and SCFQ scheduling algorithms that can allocate variable rate to the
packets of a flow. These algorithms are work conserving and do not require a flow regulator. We also defined
scheduling algorithms suitable for servers where packet fragmentation may occur. We demonstrated that if a class of
rate controllersisemployed for aflow in conjunction with any scheduling algorithmin GR, then the resulting non-work
conserving algorithmalso belongsto GR. Thislead to the definition of non-work conserving equival ents of generalized
Virtua Clock, PGPS and SCFQ algorithms as well as combination of Delay EDD and Jitter EDD.

If aserver employsany of these scheduling algorithmin GR, then it guaranteesthat packet p‘} will betransmitted by

GRC? (p‘j; , r‘}’i) + 3. SinceGRC! (p‘j; , r‘}’i), and hencethe del ay guarantee, isindependent of atraffic characterization,
a server employing a scheduling algorithmin GR can provide various service guarantees to flows conforming to any
traffic specification. For example, it enables aserver to guarantee an upper bound on delay and tail distributionof delay
to packets of a flow conforming to leaky bucket and Exponentially Bounded Burstiness (EBB) process, respectively
[11]. In a network environment, however, packets of a flow are serviced by a sequence of servers. In what follows,
we present a method for deriving the delay guarantee of a network of servers each of which employs a scheduling
algorithmin the GR class.

3 Delay Guarantee of a Network of Servers

To derivethe delay guarantee for anetwork of servers, each of which employsa scheduling agorithmin GR, consider
flow f that is serviced by K servers. Let the i'" server on the path be denoted by i. Then, the network guarantees
that packet pf will depart from the network by G RCK (pf, ) + 3%, Thisdelay guarantee depends on the arrival
process at the K" server, i.e., AX (p/, ) Though A® (p}) depends onthearrival process of aflow, i.e., A (p’ ) dueto
thevariability inthedelay e<per|enced by the packets of aflow, it may not always be possibleto determine rel ationship
between AK(pf) and Al(pf) Since, Al(pf) and not AK(pf) is dways known, it is desirable to characterize the
delay guarantee of the network of server such that it is determined by A! (pf)

Observe that GRCK(pf " X dependson A% (pf) whichin turn dependson G RC% - 1(pf, ‘}K_l) Applying
this argument recursively, GRCK(pf ‘}K 1) can be related to GRCl(pf, 19:1). Consequently, the delay guarantee
of a network of servers can be characterized based on G RC™ (p7}, ‘}1) Wh|ch is completely determined by Al(pf)
(i.e., the arrival process of aflow), and the rate assigned to the packets. This enables a network of servers, asin the
case of asingle server, to provide service guarantee to flows conforming to any specification.

To derive the delay guarantee of a network of servers, we will first relate the guaranteed rate clock value of a
packet at two adjacent servers. Henceforth we will alwaysrefer to asingle flow f and hence, for ease of presentation,
we would drop the subscript f from al the variables.
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3.1 Two Server Case

In large networks, due to the variability in load at different servers, different rates may be allocated to packets at
different servers. Since throughput of a network for a flow is governed by throughput of the bottleneck server, instead
of relating GRC 1 (p/, r9i+1) and GRC (p?, r9%), we will establish a relationship between GRC L (p?, 77%) and
GRCH(p?,77%) where GRC* (p?, 7%) denotes the guaranteed rate clock value computed using 7*1; & < j, and 77!
represents the bottleneck rate for p/ which is defined as’:

Pt < min{rh", r“"’l}

Observe that this definition captures the scenario where different servers may be the bottleneck server for different
packets of the same flow. Although we relate the guaranteed rate clock values computed using bottleneck rate, our
analysis will demonstrate that allocating different rates at different servers leads to smaller end-to-end delay than
allocating bottleneck rate at each server.

We would find the following inequality useful in establishing the relationship between guaranteed rate clock
values at adjacent nodes. Since the guaranteed rate clock value of a packet computed using a smaller rate is larger,
GRCH(p?,ri¥) < GRCH(p?,79"). Hence,

L L L Lo 17
GRC' (Y, r7") = max{A'(p"), GRC' (P!~ W/ =1+ — j> 1
rdH

17
j>1 (17)

rjyi -

< max{ A (p), GRO'(p = 771) ) 4

In heterogeneous networks, the data transmission unit may vary and hence packet fragmentation and reassembly
may occur. Such a scenario, for example, would occur in an internetwork consisting of ATM, ethernet, and FDDI
subnetworks. The relationship between G RC'*! (p4, r‘}’“’l) and GRC'(p}, ") depends on the occurrence of such
a scenario. Hence, in the following subsections, we first establish the relationship when packet fragmentation and
reassembly do not occur and then consider their effects.

3.1.1 No Fragmentation and No Reassembly
Theorem 6 If the scheduling algorithmat server i belongsto GR for flow f , then

I o ro
GROH 7)< GRO (4, F) + mmax ——+at > 1 s
kefl..4] rRt

where o’ = #' + 7"+1 and 7%**+* isan upper bound on the propagation delay between servers: and i + 1.

Proof: The proof isby inductionon j.
Base Case: j =1
ll

L

GRC™H(p', 717) = A% (p') + (19)

Since scheduling agorithm at server i belongsto GR for flow f, A1 (p!) < GRCY(pt, r?) + o', From (19) and
(17) we get:

GRC™(p!, 7)< max{AT(p"), GRCY(p', P} + 5 + = + o

, : , I I ;
< (max{AZ(pl), GRC'(p", 7"} + E) + Y +a
. . I ;
< GRC'(p', 7V + max —— +af
ke[l..1] 77

2To facilitate the proof of multiple server case, we have chosen an inequality, rather than an equality.
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Therefore (18) holdsfor j = 1
Induction Hypothesis: Assume (18) holdsfor 1 < j < m.
Induction: Weneed to show (18) holdsfor 1 < j < m + 1. From (1) ( definition of G R('), we get:

. . . . . Jm+l
GRC™ (pmtt 7L = max{ A (p™t) GRCT (™, 7)) + i (20)

There are two cases to consider:

1 AL (pmthy > GROU (p™, Pmot): Smceschedulmg algorithmat server ¢ belongsto GR for flow f, we know
AT (pmH1) < GR(]Z’(pmH rm+L8) 4+ ot Hence, from (20) we get:

. . . {m+1
i+1/. m+1 +1,¢ (. m—+1 m+1,¢
GRC (p ’?'rn )SGRC(]) T )+a +%+1z
Using (17) we get:
i+l m+1 m+14 i/ m+1 7 m /\'m K lm+1 1 lm+1
GRC*™(p T M) < max{A'(p ), GRC"(p MY+ e +ao' + ST

i/ m+1 g m /\‘m K lm+1 lm+1 1
< (max '), GRO G ) 4 A )
. +1 +1i [k .
7 m -=m ,2 _ 2 21
GRC*(p T )+ ke[Ilr.l.%i(H] T +a (21)

IN

2. AT (prH) < GRO™ (™, 74): From (20) we get:

. . . . jmt1
i+1/ m+1 ~-m+1l i+l m ~m,
GRC'™™ (pm™ 7 )< GRC™H(p™, ™) + ST
Using induction hypothesiswe get,
. . k ) Jmtl
GRCZ-I_l(pm-I_l,?m-I_l’Z) S GRCZ( m Nmz) 4+ max 7 4

ke[l..m] 7F7

T(pym pmi lm+1 lk g
< (GRC( )+m)+kén[1a§1]r’“+a
. . [k .
< GRCZ m+1 —~m+1,¢ i g 29
< (Pt )+ ke[Ifl.%i(H] o +a (22)

From (21), (22) and theinduction hypothesis, we concludethat (18) holdsfor 1 < j < m+ 1. Hencethetheorem
follows. |

Observe that even though we have related guaranteed clock values computed based on the bottleneck rate, the
denominator in the second term of the right hand side of (18) is /-’ instead of #7*. This would enable us to derive
tighter end-to-end delay bounds in section 4.

3.1.2 Packet Fragmentation

Let server ¢ fragment a packet into cells. Aswe had mentioned in Section 2.4.1, server ¢ may schedule packets or cells
(i.e., packet fragments). Let us consider the two cases:

o If server i schedules packets (see Figure (4)), it may or may not allow packet transmission to be preempted
after transmission of every cell. In either case, GRC*(p?, 7i~1) can be rdated to G RC'~1(p/, 7i~1) using
Theorem 6. However, we need to relate the guaranteed rate clock value of packet at server i and 7 + 1.

o If server ¢ schedules cells (see Figure (5)), then guaranteed rate clock values of cellsat server i and i + 1 can be
related using Theorem 6. However, we need to relate the guaranteed rate clock value of packet at server i — 1
and :.
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Figure 5 : Cell scheduling at the switch where fragmentation occurs

Fromthetwo cases, we can infer that, in the presence of fragmentation, we need to rel ate the guaranteed rate clock
values of packets between two adjacent servers that have different scheduling units, i.e, packets and cells. Let packet
p/ be fragmented into 4(;) cells, p** denote the k' cell of p and let {/* denote the length of cell p/*. Since the
delay guarantee of apacket is determined by the delay guarantee of the last cell of a packet, we relate the guaranteed
rate clock value of thelast cell of apacket at adjacent serversin Theorem 7.

Theorem 7 If the scheduling algorithmat server ¢ schedules packets and belongsto GR for flow f, and server ¢ + 1
schedules cells, then
lk

GRC™H (ph? W) 70y < GRC (), 77) + max +al j>1 (23)

kell..4]
where o’ = 5 + 7%"+1 and r**+* isan upper bound on the propagation delay between servers: and i + 1.

Proof: The proof is presented in Appendix A.2. |

3.1.3 Packet Reassembly

Let server i 4+ 1 perform reassembly of cells. Theorem 8 relates the guaranteed rate clock value of the last cell of a
packet at server i and i + 1.

Theorem 8 If the scheduling algorithm at server ¢ belongs to GR for flow f and server i + 1 performs reassembly,
then

GRCZ-H(])],?‘“) < GRCz(p],G(J)’W,Z) + max — +af i>1 (24)
ke[l.5] rF?

where o’ = 5 + 7%"+1 and r%**+* isan upper bound on the propagation delay between servers: and i + 1.

Proof: The proof is presented in Appendix A.3. |
Observe that the second term in the right hand side of (24) is max¢[1. j) ;’% which is different from the

L, in(18) and (23).

corresponding term, maxye[; . ;]

r
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Figure 6 : The path configuration

3.2 Multiple Server Case

In Theorems 6, 7, and 8, we have related the guaranteed rate clock values of a packet at adjacent servers under various
scenarios. These relationships can be employed to rel ate the guaranteed rate clock value of the packet at X'” server to
that at thefirst server. Clearly, such arelationship depends on the configuration of the path of aflow. Weillustratethe
rel ationship between the guaranteed rate clock value of the packet at the K" server and itsvalue at thefirst server for
the path configuration shown in Figure 6. In Figure 6 packet fragmentation occurs at server [ and packet reassembly
occurs at server R. Let server O be the first server on the path of the flow that schedules cells. If server I schedules
packets, then the next server schedules cellsand hence O = F + 1; otherwise O = F'.

Theorem 9 If the scheduling algorithmat each of the servers on the path of a flow belongsto GR for flow f, then

i=0—-1 » i=R-2 An
GRCE(p! 7y < GRCY(p
(") ) + ZZ_:nrenfw; T”Z—i—lz:n[ [y
n i=K—-1 I n=K-1
+ max_ — + max _ o’
nell.j]r nell..j] rit

where o” = 37 + 7"+ K isthe number of servers on the path of the flow, I" isthelength of the biggest fragment
of p”, and 77 isthe bottleneck rate for packet p/, i.e, 7 = mine[ k) P,

Proof: Since# < 7 for each server on the path of the flow and the scheduling algorithm at each server belongsto
GR, Theorem 6 can be employed. By repeated application of Theorem 6:

i=K—-1
GRCE(p? 7)) < GRCE(p/ 7)) + max

Since server R does packet reassembly, using Theorem 8 we get:
GRCE(pI #) < GRCE-1(p/*0) 7)) + max §+QR—1

Using Theorem 6 again, we get:

GROF=1(ph?0) 7y < GRCOC (ph*V) 77y 4

||M{|:Ig

177 )
i=0

Since server O schedules cellsand server O — 1 schedules packets, from Theorem 7 we get:
GRCO(pH?9) 79y < GRCO™Y(p? ,77) + max L0
neft.j] 01
Using Theorem 6 again , we get:

i=0-2 » n 2

=0—
o-1 9 < )
GRCOMp!,#) < GRCH(p' ,#) + Z: max W+ > an

n=1

The theorem follows from the above steps.
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|
It can be similarly shown that if packet fragmentation does not occur, then:
) ) ) ) i=K—1 I n=K-1
GRCE(p?,#) < GRC(p7,7) + max oyt a” (25)
=1 el n=1

Observe that even though we have derived the delay guarantee based on the bottleneck rate, the denominator in
Zzzf_l max,e[i..j] rar Tn - istheactual rate allocation at each server. Clearly, thisterm issmaller than the similar term
that would have been derived assuming bottleneck rate allocation at each server.

The delay guarantee of a network of servers enables a network to provide various service guarantees to flows
conforming to any specification. For example, asweillustratein the next section, the delay guarantee can be employed
to guarantee an upper bound on end-to-end delay of packets of aflow.

4 End-to-End Delay Bound

To determine an upper bound on the end-to-end delay of packets of a flow, consider a flow which is served by K
servers. Also, let server () be the source and server K + 1 bethe destination. Let ¢’ be the delay experienced by the
packets of aflow. Since server K guarantees that packet p/ will be transmitted by time G RCE (p/ | #9K) 4 8% and
the packet arrives at the first node at time A (p?), we get:

&7 < GROE (/715 4 oF — Al (p/)

where o = & 4 rEE+L Observethat GRCE (p/,77) — GRCE (p?, v 5) > ;’%

. . J J
dngRC%ﬁ,?f)—(L l

rJ rij

) +ak - i)
If each server on the path of the flow employs a scheduling algorithm in GR, then given the path configuration,

GRCE(p? ,77) can be related to GRC* (p/,77). For instance, when packet fragmentation and reassembly does not
occur aong the path, then using (25) we get:

' < (GRCY(p',77) — ( nglftﬂm—(;—i—rﬂ() (Za) (26)

Hence, the end-to-end delay of a packet consists of three components:

. Zn L a": Sincea™ = " + r"+ thisterm is completely characterized by the scheduling algorithm and
the propagat| ondelay inthe network.
. ijf_l max,e[i. ;] T’n—n — (% — N e ) Thisterm depends on thelength of the packets transmitted by a source

and therate allocated to it at various servers. Hence, thisterm isknown if the length of the packets transmitted
by a source and the rate assignments are known.

e GRCY(p?,77) — AY(p?): Thisisthe only term that depends on arrival process characteristics of a flow. This
term can be interpreted as the queuing delay experienced by a packet at a single server with variable capacity;
the capacity being the bottleneck rate for the packet in service. Hence, the network can be abstracted asasingle
server with variable capacity and consequently the problem of determining end-to-end delay is reduced to the
problem of determining delay at asingle node. Therefore, a single server queuing analysis can be employed to
determine an upper bound on the delay or thetail distribution of delays experienced by packets of aflow for any
traffic specification. For example:

— If aflow conforms to Leaky Bucket with parameters (¢, r) and 7 is the minimum rate allocated to the
packets of the flow such that » < 7, then from [11] we get:

GRC'(p',7) = AY(Y) <

Substituting (27) in (26) gives an upper bound on the end-to-end del ay.

(27)

=) Q
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— If aflow conformsto Exponentially Bounded Burstiness (EBB) process with parameters (r, A, ) [21], and
7 isthe minimum rate allocated to the packets of the flow such that » < 7, then from [11] we get:

Pr(GRCW 7 A W) 2 £) SATTY y20 (28)
r

An upper bound on the tail distribution of the end-to-end delay is derived by substituting (28) in (26). An

upper bound on tail distribution of end-to-end delay of a markovian process can be similarly derived.

— If aflow conformsto the variable rate Flow Specification introduced in [15], then for the first packet of a

burst of aflow: )
7
7
Substituting (29) in (26) gives an upper bound on end-to-end delay which isa generalization of the bound
for constant length packetsin [15]. Thisgeneralization can be exploited to design al gorithmswhich reduce
thejitter of VBR video.

GRCH(p',#) — A'(p)) < (29)

Observe that in the above analysis, 7/*! isan upper bound on the propagation delay. Hence, the delay bounds
also hold in networks where the propagation delay may be variable but is bounded. This property is highly desirable
in internetworks[23].

The above method not only determines an upper bound on end-to-end delay for any source specification in an
internetwork in a conceptually simple manner but also |leads to tighter results. Observe that if /% = 7/ (assumed for
ease of exposition) then the only variable term in (26), that depends on network and not flow characterigticsis:

i=K—1 I

nefl..j] vt

(30)

i=1
This term is smaller than other similar analysis in the literature in several ways. We illustrate the differences by
comparing it with the analysis presented in [17] for Rate Proportional Processor Sharing (RPPS) rate assignment of
PGPS networks. The delay bound in [17] for a flow that conforms to Leaky Bucket with parameters (o, ») and has
minimum rate 7 > r assigned to the packets (7 > r) is.

i=K—1 jmaz n=K

dj§%+2 Z_; = +> an

n=1

where ["™** isthe maximum length of a packet of the flow. Hence, the term corresponding to (30) is:

i=K—1 jmazx

B
(31) islarger than (30) in severa ways:
o Thefactor 2 makes (31) significantly larger than (30).
o Even when different rates may be alocated at different servers, the denominator in (31) is7. In contrast, the
denominator in (30) is+™ ¢ wherer™? > 7. Toillustratethe differences numerically, consider aflow with packets
of length 100 bytesthat isbeing served by two servers such that therate allocations at server 1 and 2 are 64Kb/s

and 32Kb/s, respectively. Then, even after neglecting factor 2, (31) evaluates to 24.4 ms which is significantly
larger than the 12.2 ms computed from (30).

o Whereas (31) does not quantify the effect of variable rate allocation to packets of aflow, (30) does.

e The numerator in (31) is [”*" which is larger than the numerator, max,¢;. ;1{" (assuming a constant rate
allocation for packets of aflow), in (30).

Thisdifference can bemadelarger by defining anetwork busy period. For ease of exposition, et no fragmentation
and reassembly occur. Then, anetwork is considered busy for flow f at timet if

i=K—1 n n=K-1

GRCY(p,7) + max -+ Z a” <t
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where p/ isthelast packet to have arrived beforet. Let the packets be renumbered such that packet p/ isthe j¢*
packet to arrive in a network busy period. From the proofs of Theorems 6, 7 and 8, we know that Theorem 9
gtill continuesto hold. Consequently, in (30), the maximum is over a subsequence of packets rather than all the
previous packets.

Toillustratethedifference numerically, consider aflow that has5 servers onthe path and has 1IMb/srate all ocated
to its packets. Consider two busy periods 1 and 2 such that the maximum packet length during the periodsis
1000 bytes and 100 bytes, respectively. Then, (30) evaluates to 30.5 ms and 3.05 ms for busy periods 1 and 2,
respectively. If the maximum packet length the flow ever transmitsis 1500 bytes, then (31) will awaysyield
45.7 ms.

Since (30) isthe only variable term that depends on the network, these improvements are significant.

5 Architectural Principles

The class of GR scheduling algorithms has severa desirable properties which simplifies the design of a network
that provide guaranteed deterministic QoS while enabling it to support application with different characteristics and
requirements. We now present a few important architectural principles, based on the properties of GR, for the design
of networks employing scheduling algorithmsin GR class.

e Asourceisnot required to specify the shape of the traffic to the network: 1t has been argued in theliterature that
a network provides QoS guarantees such as packet delay and throughput based on the traffic specification of a
source. However, asisevident from Theorem 9, a network employing scheduling algorithmsin GR can provide
adelay guarantee without requiring the source to specify the shape of thetraffic. Furthermore, by keeping track
of guaranteed rate clock values associated with its flow at the first server, a source can determine end-to-end
delays without specifying the shape of the traffic to the network. Hence, a network can provide QoS guarantees
without requiring a traffic specification. Such a network architecture is desirable as a source may not have a
good characterization of the traffic or the characterization may not be known a priori. Moreover, even if the
characterization isknown, it may not conform to the set of characterizations supported by a network.

o Policing of the traffic is not required: Observe that the guaranteed rate clock values of a packet of a flow
are independent of the behaviour of the other flows in the network. Consequently, the guarantees offered by
a network employing scheduling algorithms in GR are independent of the behaviour of other flows, i.e, the
network providesisolation between sources. Hence, in such networks, policing of traffic is not required.

If a network employs scheduling algorithm which does not provide isolation between sources, then it may have
to employ policing devices to guard against greedy sources. However, as the probability of failure of one of the
numerous pieces of enforcement hardware that may be employed may not be negligible, the guarantees provided
by such networkswould be weak. Hence, a network which does not employ policing devicesis not only smple
but also provides stronger guarantees.

o A source should be ableto request buffer reservation inthe network: 1f a source does not specify the shape of the
traffic to the network, then anetwork may not know the buffer space that should be reserved for aflow in order to
providethe desired packet loss. A network, rather than requiring a source traffic specification and then deriving
the buffer requirements, should allow a source to explicitly request buffer space. Thiswould keep the design of
the network simple and enable it to support applications with different characteristics and requirements.

o A source should be able to request a network to employ rate controllers: As Theorem 5 illustrates, in GR
networkstheworst case delay of packet does not change when one or more servers on the path of aflow employ a
rate controller. Though rate controllersdo not change the worst case end-to-end delay, they increase the average
case delay while reducing the buffer requirement in the network. Instead of a network deciding the tradeoff
between the buffer requirement and the average case delay for all the sources, a source should be provided with
the flexibility of deciding the tradeoff. A source would have the flexibility if it can request a network to employ
arate controller.

¢ GR networks should provide good average case performance aswell: Asisevident from the end-to-end delay
bound determination method, a GR network which is designed to provide only worst case guarantee, can do so
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by buffering all the data at the network periphery and serving it at the rate desired by the packets. However, such
amethod would increase the average case delay significantly and may be undesirable for applications requiring
good average case performance. Hence, even though anetwork may not provide any guarantees, itisdesirableto
designitto provide good average case performance as well. If asource doesnot require good average case delay,
it can reduce its buffer requirement by buffering the data or requesting a network to employ rate controllerson
itspath. Hence, if GR networks provide good average performance, they can support applicationswith different
requirements.

6 Concluding Remarks

In this paper, we have defined the class of GR scheduling a gorithms and demonstrated that several work conserving
and non-work conserving algorithmsthat either allocate only rate or separate rate and delay allocation belong to GR.
We defined work conserving generalized Virtua Clock, Packet-by-Packet Generalized Processor Sharing and Self
Clocked Fair Queuing scheduling algorithmsthat can alocate variable rate to the packets of aflow. We also defined
scheduling algorithms suitable for servers where packet fragmentation may occur. We demonstrated that if a class of
rate controllersisemployed for aflow in conjunction with any scheduling algorithmin GR, then the resulting non-work
conserving algorithmalso belongsto GR. Thislead to the definition of non-work conserving equival ents of generalized
Virtual Clock, PGPS and SCFQ algorithmsand a combination of Delay EDD and Jitter EDD.

We presented a method for deriving the delay guarantee of a network of servers when: (1) different rates are
allocated to packets of aflow at different servers on the path and the bottleneck server for each packet may be different,
and (2) packet fragmentation and/or reassembly may occur. The delay guarantee enables a network to provide various
service guarantees to flows conforming to any specification. The delay guarantee was then employed to illustrate
the derivation of delay bounds for flows conforming to Leaky Bucket, Exponentially Bounded Burstiness and Flow
Specification. Our method for determining these boundsis not only ssimple and valid in internetworks but also leads
to tighter results. We finally presented architectural principles for the design of networks that employ scheduling
algorithmsin GR class. GR class not only simplifies the design of networks but aso enables support for application
with different characteristics and requirements.

The variable rate allocation a gorithms that we have introduced in this paper, are suitable not only for supporting
variable rate video but also for achieving dynamic link sharing objectives [7]. Such agorithmscan also be employed
for reducing the maximum delay incurred by bursty flows in a controlled manner in networks providing guarantees
weaker than deterministic or statistical guarantees [1]. We expect to explore these benefits in our future work.
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A Appendix
A.1 Proof of Theorem 5

Proof: Let A° (p‘j;) bethearrival timeof p‘} at therate controller when arate controller isemployed and at the schedul er

whenitisnot. Also, let A (p‘}) bethe arrival time of the packet at the scheduler (or equivalently, departure time at the
rate controller) when arate control element is employed. The proof isby inductionon j.
Base Case: j = 1. AsGRC"(p}) = 0, from (16) we know A’ (p};) = A’ (p}). Hence we conclude:

o ; ~ 1!
GRC (pf,ry") = A'p)+
f

. I

= Al(pjl‘)"i' 1f’i

Ty

GRC'(p}, 7"

Therefore the theorem holdsfor j = 1.
Induction Hypothesis: Let usassume that the theorem holdsfor 1 < j < m.
Induction: We now show that the theorem holdsfor 1 < j < m + 1. From the definition of GRC"

e . — L g . [l
GRC (p?wl’rf i) = max{A" (p} L GRC (¥ )+ rTQT (32)
f
There are two cases to consider:
1. ﬁi(pTH) < GRC' (p?@,r}”’i): From (32) we get:
i - — , l}n-"l
m+1 m N m m,1
GRC (p7*!, w7+ = GRC (pf', ] )+W
Using induction hypothesiswe get:
S 1 mtl ; j l;‘nH
GRO (pf ™ o7™) = GROGF, ™) + Sy
f
= GRC(pp™' ot (33)

2. ﬁi(pTH) > GRC' (7, r}”’i): From induction hypothesis, GRC' (7, r}”’i) = GRC'(p}, r}’”) . Hence, we
concludeﬁi(p?”“) > GRC'(p}, r}”’i). But from (16) thisimpli%ﬁi(p?”“) = A'(p*). Hence, from (32)
we get:

i » ~ o

GRO (pp ) = A0+ + o
!

lm+1

i !

= Al(p?ﬂ—l)"i' mt1,
s

' , . rptt
= max{A4’ (p?“'l), GRC'(p}, r}n’l)} + rT{QT’Z
f
_ GRCi(pT+1’r}71+1,i) (34)

From (33), (34) and the induction hypothesis, we conclude that the theorem holds for 1 < j < m + 1. Hence the
theorem follows. |
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A.2 Proof of Theorem 7

Proof: The proof isby inductionon j.
Base Case: j = 1. Letp"° bethelast cell tohavearrived beforep’-? (1) suchthat A+ (p'°) > GRC™H! (pho—t, 7).
Then, from (1) (definition of G RC') we get:

( ) k:e(l) ll’k

i1 1,0(1) ~l,iy _ aitls 10 v

GRC'""(p 70t = AT (ph?) + Z SR
k=o

Since scheduling algorithm at server i belongsto GR for flow f, A*+1(pt°) < GRC(pt, i) + of. Hence

| ' ' ' k=6(1) ll,k
GRC™!(pH* MW7) < GRCG e+ Y o+ af
k=o
ll k::G(l) ll’k
i1 '
S A(p)—i—rl,l—i_ /\172—1—0[
k=o
Since 1= illi S o weget
i+101,8(1) ~l,i (! a . '
GR!0 7)< A + 2+ o+
~ ll i
< GRCY(p', 7Y 4+ 45+ o
rds
Lo
< GRCZ(]) 7“’)-1- max — + o
kefl..1] Phi

Therefore (23) holdsfor j = 1
Induction Hypothesis: Assume (23) holdsfor 1 < j < m.
Induction: We need to show (23) holdsfor1 < j < m + 1.

lm+1,€(m+1)

Fmtl
(35)

GRCi+1(pm+1,€(m+1)’?m+1,i) — maX{Ai+1(pm+1,€(m+1))’ GRCi+1(pm+1,€(m+1)—1’5:m+1,i)} +

Thus, there are two cases to consider:
1. A (pmALemtl)) 5 GRCH (prth0imth) =1 mmtLi) - From (35) we get:

lm+1,€(m+1)

GRCZ»H(pmH,e(mH)’?m+1,i) SAz’+1(pm+1,9(m+1))—i— [

Since scheduling algorithmat server i belongsto GRfor flow f, A*+! (p+h0(m+l)y < GRC (pmt!  rmt i) 4
O[i.

lm+1,€(m+1)

GRCi+1(pm+1,€(m+1)’?m+1,i) S GRCi(pm+1’rm+1,i) + o

+af
Hence, using (17) we get:

lm+1 lm+1,€(m+1)

GRCMH (prAbfimtl) gmtli - < max{A(p™), GRC (p™, 7™")} + e B MW I +a'
. (L0 (m+1) [t .
< (max{Al( ™), GRC (p™, 7™} + T ) + T +al
< GRCI(pm+! i E i
- p v ) T pmtl +a
< GRCHp™T! #mHLY) 4 max lk. +al (36)

k€[l..m+1] 7R



26

2. AL (prtho(mtl)y < RO (prmtlfimtl) =1 pmtliy - From (35) we get:
lm+1,€(m+1)

GRCZ»+1(pm+179(m+1)’?m+1,i) < GRci+1(pm+1,€(m+1)—1’?m-l'l,i) + W

Let p+1.0 refer to p™ (™), There are two cases to consider:

(@ Yk €[1..0(m+1)] : A+L(pr+LEy < GROHFL(pmtLE=1 pm+Li): From (37) we get:

GRCi+1(pm+1’€(m+1),?m-l_l’i) S GRCi+1(pm’€(m),W’i)+

rm+1,i
k=1
Using induction hypothesis, we get:
i+1(pm+1,6(m+1) m+li L m8(m) ami k ot
(3 m s m “—m )2 (3 m, m =m,t 2
GRC'™(p NG ) < GRC'(p NG )‘i‘kgl[l&%] mor T
i om,0(m) om,i At lk 7
< (GRC(P L ’)-I——?,HHJ)—I-kéIl[la}};ﬂm—i—a
. . [k .
< GRC'(p™TH 7 4 max +a' (38)

k€[l..m+1] R

(b) Fk € [1..0(m + 1)] : AHL(pm+LE) > GROFL(pmtLE=1 7m+Li): | et o be the greatest integer less
than or equal to 6(m + 1) such that A*+!(pm+1o) > GRCHL (pmtLe-1 pm+Liy Then, from (37) we

Qget:
i+1 1,8(m+1 1,i i+1 1 R bk
GROM (prrldmF1) pmtliy < AT (pmthe) 4 T
k=o
i+l m+1,0 lm+1
< AT+ s
Since scheduling agorithm at server ¢ belongsto GR for flow f, we get:
i+1¢, m+1,68(m+1) sm+1i i m+1 i.om om,i lm+1 g lm+1
GRC*™(p ' T M) < max{A'(p ), GRC"(p™, 7 ’)}+m+0z +W
i, m+1 i.m m,i lm+1 lm+1 1
< (max{A (p ), GRC'(p™, 7 ’)}—i—m_l_u) —|—rm+17i + a
i(omtl ameli it i
< GRCYp T 7)+rm+1,i+a
. . [k .
< GRC'(p™TH Pt 4 ma +a' (39)

X T
ke[l.m+41] ri?

From (36), (38), (39), and the induction hypothesis, we conclude that (23) holds for 1 < j < m + 1. Hence the
theorem follows. |

A.3 Proof of Theorem 8

Proof: The proof isby inductionon j.

Base Case: j =1
1

i i i !
GRO™H(p! 7) = A () + o

Since scheduling algorithm at server i belongsto GR for flow f, A'*!(p') < GRC (p"?(D) #19) 4+ of. Hence,

1

+a'
lk

< GRCi(pl,G(l)’?l,i)_i_ max ——
ke[t.1]rh?

GRcvi-I—l(pl’?l,i) S GRCi(pl’e(l),?l’i) + l

L

+ o



Therefore (24) holdsfor j = 1

Induction Hypothesis: Assume (24) holdsfor 1 < j < m.
Induction: We need to show (24) holdsfor1 < j < m + 1.

lm+1

GRCH (! bl )} + T

— max Ai+1 m-+1 GRCi+1 m ?'rn,i
) { P, ",
There are two cases to consider:

1. A (pmthy > GRCHH (p™, 7™7): From (40) we get:

. . . m+1
GRCz+1(pm+1’m+1,z) §A2+1(pm+1)+ l

Fmtle

Since scheduling algorithm at server ¢ belongsto GR for flow f, we get:

lm+1

+a'+ —

GRCi+1(pm+1,?m+1’i) S GRCi(pm+1,€(m+1)’?m+1,i) e

k
< GROHpmHH8m+) pmiliy | pay l i

k€[l..m+1] 751

2. AL (pmth) < GRC™ (p™, 7™%): From (40) we get:

. . . . {m+1
GRCZ-I_l(pm-I_l,?m-I_l’Z) S GRCZ-H(pm,?m’Z) 4 %\rn+17i
Using induction hypothesiswe get,
GRch-l m+1 om+13 < GRCZ m,f(m) ~mi lk lm+1 )
(P < (p )+ max St St
= . PALE ) T el mag]
1k ,
S 2

GRC (prdtfmdl) mthi) 4 max  ——
ke[l.m+1] 77°
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(41)

(42)

From (41), (42), and the induction hypothesis, we conclude that (24) holdsfor 1 < j < m + 1. Hence the theorem

follows.



