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Abstract
In this paper, we definea class of generalizedGuaranteed Rate (GR) schedulingalgorithms that includesalgorithms

which allocate variable rate to packets of a flow. We demonstrate that several work conserving and non-work conserving
algorithms that either only allocate rate or separate rate and delay allocation belong to GR. We define work conserving
generalizedVirtual Clock, Packet-by-PacketGeneralized ProcessorSharing and Self ClockedFair Queuing scheduling
algorithms that can allocate variable rate to the packets of a flow. We also define scheduling algorithms suitable for
servers where packet fragmentation may occur. We demonstrate that if a class of rate controllers is employed for
a flow in conjunction with any scheduling algorithm in GR, then the resulting non-work conserving algorithm also
belongs to GR. This leads to the definition of several non-work conserving algorithms.

We then present a method for deriving the delay guarantee of a network of servers when: (1) different rates are
allocated to packets of a flow at different servers along the path and the bottleneck server for each packet may be
different, and (2) packet fragmentation and/or reassembly may occur. This delay guarantee enables a network to
provide various service guarantees to flows conforming to any specification. We illustrate this by utilizing delay
guarantee to derive delay bounds for flows conforming to Leaky Bucket, Exponentially Bounded Burstiness and
Flow Specification. Our method for determining these bounds is not only simple and valid in internetworks, but also
leads to tighter results. We finally present architectural principles for the design of networks that employ scheduling
algorithms in GR class. We demonstrate that GR class not only simplifies the design of networks, but also provides
support for application with different characteristics and requirements.

1 Introduction

1.1 Motivation

Due to the inherent characteristics of audio and video, many multimedia applications (e.g., audio and video conferenc-
ing, multimedia information retrieval, etc.) require the network to provide a wide range of Quality of Service (QoS)
guarantees (with respect to bandwidth, packet delay, delay jitter and loss). Whereas the guaranteed bandwidth must
be large enough to accommodate motion video and audio streams at acceptable resolutions, the end-to-end delay must
be small enough for interactive communication. In order to avoid breaks in continuity of audio and video playback,
delay jitter and loss must be sufficiently small. To enable a network to provide such guarantees, sources specify
their traffic characteristics. The network, on the other hand, provides QoS guarantees by reserving and scheduling
network resources in accordance with the specifications. The traffic specification and the QoS guarantees constitute a
‘contract’ between the network and a source: the network guarantees that, as long as the source conforms to its traffic
specification, its QoS requirements would be met. Mechanisms for providing these guarantees must address:� Heterogeneity in source traffic characteristics: The traffic characteristics of multimedia sources differ signifi-

cantly. For example, whereas audio applications require constant bit rate, resource requirement of applications
transmitting Variable Bit Rate (VBR) compressed video sequences varies significantly over time (Figure 1 shows
the short-term as well as the long-term variations in the bit rate variation of a MPEG compressed video sequence).1
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Figure 1 : Short-term and long-term bit rate variations in a MPEG compressed video sequence� Heterogeneity in the network characteristics: Current networks are, and future networks will remain, heteroge-
neous along several dimensions. For example, in a large network consisting of several autonomous domains,
switches may employ different scheduling algorithms (e.g., work conserving, non-work conserving, ones that
separate delay and rate allocation, and the ones that only allocate rate). Furthermore, due to the variation in the
size of data transmission unit in internetwork environments (e.g., an internetwork consisting of ATM, FDDI,
ethernet, and token ring), packet fragmentation and/or reassembly may also occur in the network.

In such heterogeneous environments, the techniques for providing QoS guarantees should be flexible enough to
accommodate: (1) a wide range of traffic specifications, (2) variable rate allocations for a channel, (3) a variety of
scheduling algorithms at the switches, and (4) internetworking environments (in which fragmentation and reassembly
may occur). A framework for meeting these requirements is the subject matter of this paper.

1.2 Relation to Previous Work

Each unit of data transmission at the network level is a packet. We refer to the sequence of packets transmitted by a
source as a flow [25]. Each packet within a flow is serviced by a sequence of servers (or switching elements) along
the path from the source to the destination in the network. To provide guaranteed QoS to flows, several rate-based
scheduling algorithms have been proposed in the literature [9, 10, 12, 18, 22, 24, 25, 26]. Most of these algorithms can
be classified along two dimensions (see Table 1):� Work conserving vs. non-work conserving: Work conserving algorithms schedule a packet whenever a packet is

present in the system, and thereby yield better average delay performance [23]. Non-work conserving algorithms,
on the other hand, reduce the buffer requirement in the network by keeping the link idle even when a packet is
waiting to be served [23].� Rate-only vs. rate-and-delay allocation algorithms: Whereas scheduling algorithms like Virtual Clock [25] only
allocate rate, algorithms like Delay Earliest Due Date (Delay EDD) [14] separate the allocation of delay and rate.
Such a separation is desirable for low throughput, low delay applications (e.g., interactive voice conferencing).

A fundamental characteristic of most of these scheduling algorithms is that they do not permit the rates allocated to
flows to vary over time. The ability to vary rate allocation of a flow, however, is highly desirable to efficiently transmit
VBR video streams. To address this requirement, a non-work conserving scheduling algorithm (referred to as Burst
Scheduling), that combines the Virtual Clock scheduling algorithm with the concept of an active flow, was proposed
in [15]. Work conserving algorithms that achieve the same objective, however, have not received much attention.

In addition to a variety of scheduling algorithms, to provide QoS guarantees, a wide range of traffic specifications
have also been proposed in the literature [6, 15, 18, 21]. However, most of the techniques for providing QoS guarantees
have only investigated specific combinations of traffic specification and scheduling algorithms [2, 3, 15, 18, 21].
Recently, some efforts have partially addressed this limitation. For example, [8, 23] demonstrate that non-work
conserving scheduling algorithms can interoperate to provide QoS guarantees to flows conforming to restricted traffic
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Rate Allocation Delay Allocation

Work Virtual Clock Delay EDD
Conserving Packet-by-packet GPS (PGPS)

Self Clocked Fair Queuing (SCFQ)
Non-work Hierarchical Round Robin Jitter EDD

Conserving Stop and Go Queuing Rate Controlled
Static Priority Queuing

Table 1 : Classification of scheduling algorithms

specifications. Similarly, a general framework which enables a network employing work conserving or non-work
conserving scheduling algorithms to provide QoS guarantees to flows conforming to any specification was introduced
in [11]. However, none of these approaches provide QoS guarantees when variable rate may be allocated to the packets
of a flow and packet fragmentation and/or reassembly may occur in the network.

1.3 Research Contributions of This Paper

In this paper, we develop a comprehensive framework for providing QoS guarantees by: (1) defining a class of
generalized Guaranteed Rate (GR) scheduling algorithms that includes scheduling algorithms which may allocate
variable rate to the packets of a flow, and (2) developing a general method for providing QoS guarantees in a
heterogeneous networking environment.

The class of GR scheduling algorithms guarantee a deadline (referred to as delay guarantee) to a packet based
on its expected arrival time. The delay guarantee of these algorithms is independent of a traffic specification and
the behavior of other flows at the server. This enables a single server employing a scheduling algorithm in GR to
isolate flows as well as provide service guarantees to flows conforming to any specification. We demonstrate that
the class of GR scheduling algorithms is broad, and includes work conserving and non-work conserving scheduling
algorithms as well as algorithms that only allocate rate and those that separate rate and delay allocation (e.g. Virtual
Clock, Packet-by-Packet Generalized Processor Sharing (PGPS), Self Clocked Fair Queuing (SCFQ), Delay Earliest
Due Date (EDD), Jitter EDD, and Rate Controlled Static Priority Queuing). We define work conserving generalized
Virtual Clock, PGPS, and SCFQ scheduling algorithms that can allocate variable rate to the packets of a flow, and show
that they also belong to GR. To prove that a scheduling algorithm belongs to GR, we employ a proof methodology
in which we first show that a preemptive equivalent of the algorithm belongs to GR, and then utilize a relationship
(also derived in this paper) between a broad class of preemptive and non-preemptive scheduling algorithms to show
that the non-preemptive algorithm belongs to GR. This methodology not only simplifies the proofs, but also leads to
new results for real-time scheduling algorithms. Moreover, it leads to the definition of several scheduling algorithms
in GR that are suitable for servers at which packet fragmentation may occur. The algorithms that we define for such
servers reduce computational complexity as well as delay incurred by packets. Finally, we demonstrate that if a rate
control element is employed in conjunction with any scheduling algorithm in GR, the resulting non-work conserving
algorithm also belongs to GR (this leads to the definition of several scheduling algorithms). Furthermore, such rate
control elements do not change the delay guarantee of the scheduling algorithm.

The delay guarantee of the GR class enables a single server to provide service guarantees to flows conforming
to any specification. To enable a sequence of servers to provide similar service guarantees, we present a method for
deriving the delay guarantee of a network of servers each of which employs a scheduling algorithm in the GR class.
This method enables the derivation of delay guarantee for a network of servers even when: (1) different rates are
allocated to packets of a flow at different servers along the path and the bottleneck server for each packet may be
different, and (2) packet fragmentation and/or reassembly may occur in the network. We utilize the delay guarantee
of a network of servers to obtain an upper bound on end-to-end delay. We demonstrate that our method of deriving
delay guarantee for a network of servers reduces the problem of determining end-to-end delay bound to a single server
problem. We illustrate the end-to-end delay bound computation for flows conforming to Leaky Bucket, Exponentially
Bounded Burstiness and Flow Specification [15]. We demonstrate that our method for determining these bounds is not
only simple, but also leads to tighter results (e.g., it significantly improves upon the delay bound presented in [17] for
flows conforming to Leaky Bucket in PGPS networks).
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Finally, based on the properties of GR class, we present architectural principles for designing networks that

provide guaranteed deterministic QoS. We demonstrate that GR class simplifies the design of a network while enabling
it to support application with different characteristics and requirements.

The rest of the paper is organized as follows: In Section 2, we define the class of GR scheduling algorithms. The
method for deriving delay guarantee for a network of servers is presented in Section 3. We utilize the delay guarantee
to derive end-to-end delay bounds in Section 4, and then present the architectural principles for designing networks
that provide guaranteed service in Section 5. Finally, Section 6 summarizes our results.

2 Generalized Guaranteed Rate Scheduling Algorithms

Many of the scheduling algorithms proposed in the literature guarantee a deadline (referred to as delay guarantee
[20]) to a packet of a flow based on its expected arrival time. In [11], we defined the delay guarantee of a packet by
associating a guaranteed rate clock value with each packet. Moreover, we defined a class of guaranteed rate scheduling
algorithms to consist of algorithms that guarantee that a packet would be transmitted by its guaranteed rate clock value
plus some constant. However, since the guaranteed rate clock value was defined based on the constant rate associated
with a flow, the guaranteed rate class did not include scheduling algorithms that assign variable rate to the packets of a
flow. We generalize the definition of the GR class to include such scheduling algorithms.

The generalized guaranteed rate class (hereafter referred to as GR) is defined based on the generalized guaranteed
rate clock value (hereafter referred to as guaranteed rate clock (GRC) value) of a packet. To define the guaranteed
rate clock values, let pjf and ljf denote the jth packet of flow f and its length, respectively, and let rj;if (bits/s) be the

rate associated with pjf at server i (observe that each packet may be associated with a different rate). Additionally, letAi(pjf ) denote the arrival time of packet pjf at server i. Then, guaranteed rate clock value for packet pjf at server i,
denoted by GRCi(pjf ; rj;if ), is given as:GRCi(pjf ; rj;if ) = maxfAi(pjf ); GRCi(pj�1f ; rj�1;if )g+ ljfrj;if j � 1 (1)
where GRCi(p0f ; r0;if ) = 0. Observe that the first term in the right hand side of (1) can be interpreted as the expected
arrival time and the second term as the deadline of a packet. We use the guaranteed rate clock value of a packet to
define the class of GR scheduling algorithms as follows.

Definition 1 A scheduling algorithm at server i belongs to class GR for flow f if it guarantees that packet pjf will be

transmitted by GRCi(pjf ; rj;if ) + �i where �i is a constant which depends on the scheduling algorithm and the server.

As is evident from the definition, two key properties of the class of GR scheduling algorithms are: (1) they provide
a delay guarantee for a source independent of the behavior of other sources in the network, and thereby isolate the
sources; and (2) the delay guarantee is independent of a traffic characterization. Whereas isolation of sources enables
a network to provide stronger guarantees and is highly desirable, especially in large heterogeneous networks where
sources may be malicious [1, 4, 15, 19], independence of delay guarantee from traffic characterization enables a server
to provide various QoS guarantees to flows conforming to any specification.

In the following subsections,we show that many of the work conserving as well as non-work conserving scheduling
algorithms that either allocate only rate or separate rate and delay allocation belong to GR. To show that a scheduling
algorithm belongs to GR, we would be required to prove a bound on the departure time of a packet. It is typically easier
to bound the departure time of a packet in preemptive scheduling algorithms. Hence, even though packet scheduling
algorithms are inherently non-preemptive in nature, in the proof methodology that we employ to show that a scheduling
algorithm belongs to GR, we first prove a bound on the departure time of a packet in preemptive scheduling algorithm,
and then use a relationship between the departure times of a packet in equivalent preemptive and non-preemptive
scheduling algorithm to show that the scheduling algorithm belongs to GR. In what follows, we establish the general
relationship between a broad class of preemptive and non-preemptive scheduling algorithms.
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2.1 Preemptive and Non-Preemptive Scheduling

Many of the scheduling algorithms that we will consider, assign a priority to a packet on its arrival and then schedule
the packets in the priority order. In these scheduling algorithms, a packet with higher priority may arrive after a packet
with lower priority has been scheduled. In non-preemptive scheduling algorithms, transmission of a lower priority
packet is not preempted even after a higher priority packet arrives. Consequently, such algorithms ensure that the
packet in service is the packet with the highest priority only after the transmission of every packet. On the other hand,
a preemptive scheduling algorithm always ensures that the packet in service is the packet with the highest priority by
possibly preempting the transmission of a packet with lower priority. In contrast to preemptive and non-preemptive
algorithms, a partially preemptive scheduling algorithm ensures that the packet in service is the packet with the highest
priority after the transmission of every fragment of a packet (referred to as a cell).

Observe that non-preemptive algorithms are a subset of partially preemptive algorithms. Moreover, partially
preemptive algorithms would be helpful to define scheduling algorithms suitable for servers where fragmentation
may occur. Hence, in Theorem 1 we establish a relationship between equivalent preemptive and partially preemptive
scheduling algorithms. A partially-preemptivescheduling algorithm is considered equivalent to a preemptive algorithm
if the priority assigned to all the packets is the same in both the algorithms.

Theorem 1 If PS is a work conserving preemptive scheduling algorithm, PPS its equivalent partially-preemptive
scheduling algorithm and the priority assignment of a packet is not changed dynamically, thenLPPS (pj) � LPS (pj) � l̂maxC (2)
where LPS (pj) and LPPS (pj) denote the time a packet leaves the server when PS and PPS scheduling algorithms
are employed, respectively. Also, l̂max is the maximum length of a cell and the C is the capacity of the server.

Proof: Observe that since the PS and its equivalent PPS are work conserving, their busy periods are the same. Hence,
it is sufficient to show that (2) holds for all the packets served in a busy period. Let a busy period begin at time t0
and the packets be indexed by the order in which they complete service in the PPS, that is the ith packet to complete
service in PPS is packet pi.

The proof is by contradiction (the structure of the proof is similar to the proof of Theorem 1 of [16] and Theorem
1 of [18]). Let (2) not hold for packet pj. There are two cases to consider:� A cell of packet pn such that LPS (pn) > LPS (pj) is served in the interval [t0; LPPS (pj)]: Let t1 be the largest

time at which such a cell is scheduled. Also, let t2 be the least time greater than t1 such that if a cell of packet pk
is scheduled in the interval [t2; LPPS (pj)], then LPS (pk) � LPS (pj). Let S be the set of packets which have
at least one cell scheduled in [t2; LPPS (pj)]. Since PPS schedules cells based on the priority of the packets
and the priority is not changed dynamically, all the packets in S must have arrived after t1, i.e.,mink2SfA(pk)g > t1
Hence, all the cells of packets in S are scheduled after t1 by PS and PPS. Therefore,LPS (pj) > t1 +Xk2S lkC
Since t2 � t1 � l̂maxC , LPS (pj) > t2 � l̂maxC +Xk2S lkC
Since t2 +Pk2S lkC = LPPS (pj) LPS (pj) > LPPS (pj)� l̂maxCl̂maxC > LPPS (pj)� LPS (pj)
which is a contradiction.



6� No cell of packet pn such that LPS (pn) > LPS (pj) is served in the interval [t0; LPPS (pj)]: Since set of cells
served by PPS is a subset of cells served by PS, LPPS (pj) � LPS (pj) which is a contradiction.

Since the only restriction on the scheduling algorithm is that it should not change the priority assignment of a
packet dynamically, Theorem 1 can be employed for a wide variety of scheduling algorithms. In particular, it can be
employed for Virtual Clock, PGPS, Delay EDD, Earliest Deadline First, Rate monotonic algorithm, and Rate controlled
static priority queuing. The Theorem when applied to these algorithms, leads to several new results. Specifically, it
leads to new results for Earliest Deadline First and Rate monotonic scheduling algorithms which are widely used for
real-time scheduling of processes. Partially preemptive and non-preemptive equivalents of these algorithms enable a
scheduler to reduce the context switch overhead.

We now use the relationship between preemptive and non-preemptive scheduling algorithms, to show that most
of the work conserving and non-work conserving scheduling algorithms that either only allocate rate or separate rate
and delay allocation belong to GR.

2.2 Work Conserving Algorithms

2.2.1 Variable Rate Allocation Algorithms

In this section, we define work conserving generalized Virtual Clock, PGPS, and SCFQ algorithms that allocate variable
rate to packets of a flow and show that all of these scheduling algorithms belong to GR. These algorithms have different
delay and fairness properties as well as implementation complexity, and hence demonstrate that the GR class is broad
(an exposition of these algorithms along these dimensions can be found in [10, 18]).

2.2.1.1 Virtual Clock

We define generalized Virtual Clock (VC) scheduling algorithm analogous to the Virtual Clock algorithm [25]. The
generalized VC algorithm is defined as follows:

1. On arrival at server i, packet pjf associated with rate rj;if is stamped with virtual clock value, denoted byV Ci(pjf ; rj;if ), computed as:V Ci(pjf ; rj;if ) = maxfAi(pjf ); V Ci(pj�1f ; rj�1;if )g+ ljfrj;if j � 1 (3)
where V Ci(p0f ; r0;if ) = 0.

2. Packets are serviced in increasing order of the virtual clock value.

We show that generalized VC belongs to GR by first proving a bound on the departure time of a packet in
preemptive VC. To do so, let us first define Rif (t) for flow f as follows:Rif (t) = ( rj;if if 9j 3 �Ai(pjf ) � t� ^ �V Ci(pj�1f ; rj�1;if ) < t � V Ci(pjf ; rj;if )�0 otherwise

(4)
Let S be the set of flows served by server i. Then server i with capacity Ci is defined to have exceeded its capacity at
time t if

Pn2S Rin(t) > Ci. The following theorem bounds the departure time of a packet in preemptive VC.

Theorem 2 If a server’s capacity is not exceeded, then the time at which the transmission of packet pjf is completed

in preemptive VC, denoted by LiP�V C(pjf ) is:LiP�V C(pjf ) � V Ci(pjf ; rj;if )
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Proof: It is easily observed from (3) and (4) that the cumulative length of all flow f packets that arrive in interval[t1; t2] and have virtual clock value no greater than t2, denoted by APf (t1; t2), is given as:APf (t1; t2) � Z t2t1 Rif (t)dt

We now prove the theorem by contradiction. Let for packet pjf , LiP�V C(pjf ) > V Ci(pjf ; rj;if ). Also, let t0 be the

beginning of the busy period in which pjf is served and t2 = V Ci(pjf ). Let t1 be the least time smaller than t2 during
the busy period such that no packet with virtual clock value greater than t2 is served in the interval [t1; t2] (such a t1
exists). Clearly, all the packets served in the interval [t1; t2] arrive in this interval and have virtual clock value less than
or equal to t2. Since the server is busy in the interval [t1; t2] and packet pjf is not serviced by t2, we have:Xn2SAPn(t1; t2) > Ci(t2 � t1)Xn2S Z t2t1 Rin(t)dt > Ci(t2 � t1)Z t2t1 Xn2SRin(t)dt > Ci(t2 � t1)

Since the server capacity is not exceeded,
Pn2S Rin(t) � Ci. Hence,

R t2t1 Pn2S Rin(t)dt � Ci(t2 � t1). This
contradicts (5), and hence the theorem follows.

Since preemptive VC algorithm is work conserving and does not dynamically change the priority of a packet,
Corollary 1 immediately follows from Theorems 1 and 2.

Corollary 1 If a server’s capacity is not exceeded, then the time at which the transmission of packet pjf is completed

in generalized Virtual Clock, denoted by LiV C(pjf ) is:LiV C(pjf ) � V Ci(pjf ; rj;if ) + limaxCi
where Ci is the capacity of the server and limax is the maximum length of a packet serviced by server i.
Since the equations for virtual clock and guaranteed rate clock are the same, it is easily observed that generalized

Virtual Clock scheduling algorithm belongs to GR for flow f with �i = limaxCi .
Observe that generalized Virtual Clock is work conserving and permits variable rates to be allocated to packets

of a flow as long as servers capacity is not exceeded. This is in contrast to the non-work conserving Burst Scheduling
algorithm [15] in which Virtual Clock scheduling algorithm has been employed to allocate variable rate by defining
the notion of an active flow. A flow has a constant rate allocated to it as long as it is active. Rate assignment of a flow
is changed only after it makes a transition from active to inactive state. Hence, to allocate variable rate a flow regulator
which enforces such transitions is required to be implemented at each server. Additionally, a server is required to
timestamp a packet with the difference between the packets deadline and actual departure time. Generalized Virtual
Clock does not have any such requirements, and hence reduces the implementation complexity.

2.2.1.2 Packet-by-Packet Generalized Processor Sharing

The Packet-by-Packet Generalized Processor Sharing scheduling algorithm is a practical realization of Generalized
Processor Sharing(GPS) service discipline [18]. We first show that GPS belongs to GR and then show that a generalized
virtual time implementation of PGPS belongs to GR.

In GPS, each flow f is associated with a constant �if at server i. To allocate variable rate to packets of a flow, we

associate a constant �j;if with packet pjf . From the definition of GPS we know that at time t, packet pjf will be serviced

at the rate of
�j;if CiPk2bi(t) �a;ik where packet pak of flow k is in service at time t, bi(t) is the set of backlogged flows at GPS
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server i at time t, and Ci is the capacity of the server. Hence, we define a GPS server to have assigned rate rj;if to

packet pjf if
�j;if CiPk2bi(t) �a;ik � rj;if as long as the packet is in service. Therefore, if packet pjf is assigned rate rj;if , it is

served at least at rate rj;if . Since GPS serves packets of a flow in FCFS order, we get:LiGPS (pjf ) � maxfAi(pjf ); LiGPS (pj�1f )g+ ljfrj;if j � 1 (5)
Let LiGPS(p0f ) = GRCi(p0f ; r0;if ) = 0. From (5) and (1), it can be shown thatLiGPS (pjf ) � GRCi(pjf ; rj;if ) j � 1 (6)

Hence, GPS belongs to GR. We now define a virtual time implementation of packet-by-packet GPS which is a
generalization of the implementation in [18]. Let vi(t) be the virtual time associated with server i at time t. Letvi(0) = 0 and vi(t) not change when no packet is backlogged. Otherwise, define vi(t) as:dvi(t)dt = CiPk2bi(t) �a;ik (7)
Define finish time of packet pjf , denoted by F i(pjf ; �j;if ) as:F i(pjf ; �j;if ) = maxfvi(Ai(pjf )); F i(pj�1f ; �j�1;if )g+ ljf�j;if j � 1 (8)
where F i(p0f ; �0;if ) = 0. If finish time of a packet is defined as above and t̂ is the time at which packet pjf departs, thenvi(t̂) = F i(pjf ; �j;if ). To observe this, consider packet pjf of flow f . Let W j;if (t) be the amount of service that packetpjf has received within time interval t after it begins service. From the definition of GPS, we get:dW j;if (t)dt = Ci�j;ifPk2bi(t) �a;ik (9)
Hence from (7) and (9), we get: dvi(t)dW j;if (t) = 1�j;if (10)
From (10) we conclude, if packet pjf begins service at virtual time v̂, it will depart at virtual time v̂ + ljf�j;if . Since GPS

serves packets of a flow in FCFS order, it is easy to observe from (8) that if t̂ is the time at which packet pjf departs,

then vi(t̂) = F i(pjf ; �j;if ). Since vi(t) is monotonically increasing, packets leave a GPS server in the increasing order
of finish time. Hence, a scheduling algorithm that schedules packets in increasing order of the finish time will simulate
GPS. However, as PGPS is non-preemptive, from (6) and Theorem 1 (or alternatively, Theorem 1 of [18]), we getLiPGPS (pjf ) � GRCi(pjf ; rj;if ) + limaxCi j � 1

Hence, PGPS scheduling algorithm belongs to GR for flow f with �i = limaxCi .

2.2.1.3 Self Clocked Fair Queuing

The Self Clocked Fair Queuing scheme, proposed in [10], was designed to facilitate the implementation of a fair
queuing scheme in broadband networks. We define a generalized SCFQ algorithm which can allocate variable rate to
packets of a flow analogous to SCFQ as follows:
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1. On arrival, a packet pjf is stamped with service tag F i(pjf ; rj;if ), computed as:F i(pjf ; rj;if ) = maxfvi(Ai(pjf )); F i(pj�1f ; rj�1;if )g+ ljfrj;if j � 1

where F i(p0f ; rj;0f ) = 0.

2. The server virtual time at time t, vi(t), is defined to be equal to the service tag of the packet in service at time t.vi(t) = t when the server is idle.

3. Packets are serviced in increasing order of their service tags.

Define Rif (v) for flow f as follows:Rif (v) = ( rj;if if 9j 3 �vi(Ai(pjf )) � v� ^ �F i(pj�1f ; rj�1;if ) < v � F i(pjf ; rj;if )�0 otherwise

Let S be the set of flows served by server i. Then server i with capacity Ci is defined to have exceeded its capacity at
virtual time v if

Pn2S Rin(v) > Ci. The following theorem proves that SCFQ algorithm also belongs to the class of
GR scheduling algorithms.

Theorem 3 If the server’s capacity is not exceeded, then the departure time of packet pjf in SCFQ, denoted byLiSCFQ(pjf ), is given by LiSCFQ(pjf ) � GRCi(pjf ; rj;if ) + Xn2S^n6=f lmaxnCi
where lmaxn is the maximum length for packets in flow n.

Proof: Let set Bif be defined as follows.Bif = fnjn > 0 ^ F i(pn�1f ; rn�1;if ) < vi(Ai(pnf ))g
Let k � j be largest integer in Bif . Also, let v1 = vi(Ai(pkf )) and v2 = F i(pjf ; rj;if ). The set of packets served by the
server in the virtual time interval [v1; v2] can be partitioned into two sets:� This set consists of packets pmn such that F i(pmn ; rm;in ) � v2 and maxfvi(Ai(pmn )); F i(pm�1n ; rm�1;in )g � v1.

Then, from the definition ofRin(v) and F i(pmn ; rm;if ), we know that the cumulative length of such flow n packets
served by the server in the virtual time interval [v1; v2], denoted by APn(v1; v2), is given as:APf (v1; v2) � Z v2v1 Rin(v)dv
Hence, aggregate length of packets in this set,

Pn2S APn(v1; v2), is given as:Xn2SAPn(v1; v2) � Xn2S Z v2v1 Rin(v)dv� Z v2v1 Xn2SRin(v)dv� Z v2v1 Cidv� Ci(v2 � v1)
But v2 � v1 =Pn=j�kn=0 lk+nfrk+n;if . Hence,Xn2SAPn(v1; v2) � Ci n=j�kXn=0 lk+nfrk+n;if



10� This set consists of packets pmn such that F i(pmn ; rm;in ) � v1 and maxfvi(Ai(pmn )); F i(pm�1n ; rm�1;in )g < v1.
At most one packet of all flows other than f can belong to this set. Consequently, the maximum aggregate of
packets in this set is

Pn2S^n6=f lmaxn .

Hence, the aggregate length of packets served by the server in the interval [v1; v2], is less than or equal to:Ci n=j�kXn=0 lk+nfrk+n;if + Xn2S^n6=f lmaxn
Since packet pjf departs at system virtual time v2, we get:Ai(pkf ) + CiPn=j�kn=0 lk+nfrk+n;if +Pn2S^n6=f lmaxnCi � LiSCFQ(pjf )Ai(pkf ) + n=j�kXn=0 lk+nfrk+n;if + Xn2S^n6=f lmaxnCi � LiSCFQ(pjf )
From (1) we get GRCi(pjf ; rj;if ) + Xn2S^n6=f lmaxnCi � LiSCFQ(pjf )

Hence, SCFQ scheduling algorithm belongs to GR for flow f with �i =Pn2S^n6=f lmaxnCi .

2.2.2 Delay Allocation Algorithms

Though several algorithms which allocate rate have been proposed, Delay Earliest Due Date (Delay EDD) is the only
work conserving scheduling algorithm that separates delay and rate allocation in a networking environment 1. In this
section, we show that Delay EDD also belongs to GR.

It is not known whether Delay EDD can separate delay and rate allocation while assigning variable rate to packets
of a flow. Hence, we assume that rate rif is assigned to all packets of a flow. Furthermore, in Delay-EDD, the length

of the packets is assumed to be the same, i.e., lf = ljf . Then Delay-EDD is defined as follows:

1. If dif is the delay bound for flow f at server i, then on arrival packet pjf is stamped with a deadline, denoted byDi(pjf ), which is computed as follows:Di(pjf ) = maxfAi(pjf ); GRCi(pj�1f ; rif )g+ dif (11)
2. Packets are served in the increasing order of deadline.

It was shown in [5, 26] that if certain schedulability conditions are met and the minimum inter-arrival time of
packets is at least lfrif , then a packet would depart by Di(pjf ). However, in a networking environment even if the

minimum inter-arrival time is at least lfrif at the network entry point, it may become smaller than lfrif at a server which

is downstream on the path of a flow. This problem was addressed in [13, 26] by requiring the clocks of the servers to
be synchronized. We demonstrate that this is an unnecessary restriction by proving that regardless of the inter-arrival
time of packets, preemptive Delay EDD guarantees that packet pjf will be transmitted by Di(pjf ). We then use this
property to show that Delay EDD belongs to GR.1Consistent Relative Session Treatment (CRST) rate assignment has been used in PGPS networks to separate rate and delay
allocation. However, this rate assignment requires all the flows to conform to Leaky Bucket specification. Furthermore, it has been
shown in [8] that Delay EDD has a larger schedulability region than CRST PGPS. Hence, we do not consider CRST rate assignment
of PGPS.
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Theorem 4 If S is the set of flows serviced by the server and8t > 0 : Xn2Smaxf0;�(t � din)rnln � lnCig � t (12)
then the time at which the transmission of packet pjf is completed in preemptive Delay EDD, denoted by LiP�EDD(pjf )
is: LiP�EDD(pjf ) � Di(pjf )
Proof: From (11) and (1), we conclude that the cumulative length of packets of flow f that arrive in the interval [t1; t2]
and have deadline less than or equal to t2, denoted by APf (t1; t2), is given as:APf (t1; t2) � & (t2 � t1 � dif )rflf ' lf (13)
We now prove the theorem by contradiction. Let for packet pjf , LiP�EDD(pjf ) > Di(pjf ). Also, let t0 be the beginning

of the busy period in which pjf is served and t2 = Di(pjf ). Let t1 be the least time less than t2 during the busy period
such that no packet with deadline greater than t2 is served in the interval [t1; t2] (such t1 exists). Clearly, all the packets
served in the interval [t1; t2] arrive in this interval and have deadline less than or equal to t2. Since the server is busy
in the interval [t1; t2] and packet pjf is not serviced by t2, from (13) we have:Xn2Smaxf0;�(t2 � t1 � din)rnln � lnCi g > (t2 � t1) (14)
Substituting t = (t2 � t1) in (14) contradicts (12) and hence theorem follows.

Due to high computational complexity, it may not be feasible to employ (12) as schedulability test. Hence,
conditions stronger than (12) which have lower computational complexity have been developed in [26]. Clearly, the
theorem holds under the stronger conditions developed in [26] as well.

Since Delay EDD does not dynamically change the priority assignment of packets, the following corrollary is
immediate from Theorem 1 and Theorem 4.

Corollary 2 If (12) is satisfied, then the time at which transmission of packet pjf is completed in Delay-EDD, denoted

by LiEDD(pjf ), is given as: LiEDD(pjf ) � Di(pjf ) + limaxCi
where Ci is the capacity of the server and limax is the maximum length of a packet serviced by server i.

To observe that Delay EDD belongs to GR, rewrite (11) as:Di(pjf ) = maxfAi(pjf ); GRCi(pj�1f ; rif )g+ lfrif � ( lfrif � dif )= GRCi(pjf ; rif )� ( lfrif � dif )
Hence, Delay EDD belongs to GR with �i = limaxCi � ( lfrif �dif ). If schedulability conditions for non-preemptive Delay

EDD are used, then one can similarly show that �i is given as �i = �( lfrif � dif ).
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Figure 2 : Rate Controlled Service Disciplines

2.3 Non-Work Conserving Algorithms

A general framework for reasoning about the end-to-end performance guarantee of a class of non-work conserving
algorithms termed Rate Controlled Service Disciplines has been presented in [23]. In this section, we show that rate
controlled service disciplines also belong to the GR class.

Rate controlled service disciplines consist of a rate regulator and a scheduler (see Figure 2). The rate regulator
ensures that the traffic entering the scheduler conforms to a negotiated traffic specification and the scheduler guarantees
that each packet of flow f would experience a maximum delay of dif . In such disciplines, different types of rate
regulators may be employed. Since these disciplines have been studied predominantly for constant rate allocation (see
section 2.4.2 for non-work conserving disciplines that allocate variable rate), a common characteristic of most of the
rate controllers is that they do not delay packets more than necessary to enforce the average rate. Hence, if rif is the

rate associated with flow f and lf the length of packets, then the time at which a packet pjf departs the rate controller,

denoted by LiRC(pjf ; rif), is given as:LiRC(pjf ; rif ) � maxfAi(pjf ); GRCi(pj�1f ; rif )g+ 
i (15)
where 
i is a constant for a rate controller. Since the scheduler guarantees a maximum delay of dif to each packet,

the time that packet pjf departs server i which employs a rate controlled service discipline, denoted by LiRCSD(pjf ), is
given as: LiRCSD(pjf ) � maxfAi(pjf ); GRCi(pj�1f ; rif)g + 
i + dif� maxfAi(pjf ); GRCi(pj�1f ; rif)g + lfrif � ( lfrif � 
i � dif )
From (1) we get: LiRCSD(pjf ) � GRCi(pjf ; rif )� ( lfrif � 
i � dif )

Therefore, rate controlled service disciplines which employ rate regulators consistent with (15) also belong to the
GR class. The rate regulators for Jitter EDD and Rate controlled static priority queuing are consistent with (15) and
hence they belong to GR.

2.4 Packet Fragmentation and Rate Control

In heterogeneous networks, packets may be fragmented. Furthermore, to reduce the buffer requirement in the network,
some flows may require rate controllers to be employed on the path. We now consider: (1) scheduling algorithms
suitable for servers where packet fragmentation may occur, and (2) the effect of employing rate controller for a flow
on the delay guarantee.
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2.4.1 Scheduling in Presence of Fragmentation

Consider a server that can receive packets of larger size than it can transmit. In such a case, the server has to fragment
a packet before transmitting. Let a packet be fragmented into cells. A packet fragmented into cells can be scheduled
for transmission by the server in various ways:� The server can compute a priority for each cell and hence schedule each cell individually.� The server can compute a priority for each packet and schedule each packet.

Whereas scheduling each cell increases the computation overhead, from Theorem 1 we know that scheduling
packets and disabling preemption of a packet transmission increases the maximum delay incurred. Hence, a scheduling
algorithm that minimizes computational overhead while minimizing delay incurred due to non-preemption is desirable.
Observe that since the transmission unit is a cell, even if a server schedules packet, it can allow packet preemption
to occur after the transmission of every cell, i.e., it can schedule the packets in a partially preemptive manner. This
would simultaneously reduce the computational overhead and the delay incurred by the packets. Partially preemptive
equivalents of the generalized Virtual Clock, PGPS, and Delay EDD can be defined using the definition of partially
preemptive scheduling algorithms. Also using Theorem 1, Theorem 2, (6), and Theorem 4, we know that partially
preemptive generalized Virtual Clock, PGPS and Delay EDD also belong to GR with �i being derived by substitutinglimaxCi with l̂imaxCi where l̂imax is the maximum length of a cell served by server i. Self Clocked Fair Queuing is a
non-preemptive algorithm by its definition and hence does not have an equivalent partially preemptive algorithm.

2.4.2 Effect of Rate Control

Rate controllers have conventionally been employed to enable a non-work conserving scheduling algorithm to guarantee
bounded delay for packets [23]. In such scheduling algorithms, a rate controller is required to be employed for all
the flows serviced by a server. Though rate control elements reduce the burstiness of a flow and consequently delay
jitter and the buffer requirement of a flow, they increase the average delay of a flow as well as the implementation
complexity. Whereas reduced buffer requirement and delay jitter would be desirable for some flows, low average delay
may be desirable for other flows. Hence, it is desirable to be able to employ a rate controller for only a subset of the
flows that may be serviced by a server (see Figure 3). In this section, we consider the effect of rate controllers in such
scenarios.

Though a number of rate controllers which utilize the average rate have been studied [18, 23], rate controllers
for flows which have variable rate have not received much attention. We define rate controllers for variable rate flows
analogous to average rate controllers. Let LiRC (pjf ; rj;if ) denote the time at which packet pjf associated with rate rj;if
leaves a rate controller. Then: LiRC(pjf ; rj;if ) � maxfAi(pjf ); GRCi(pj�1f ; rj�1;if )g (16)
In the special case of rif = rj;if , this definition captures the characteristics of rate control elements like leaky bucket.
Let such a rate control element be employed at server i for flow f . Since a rate controller is not employed for all the
flows, unlike rate controlled service disciplines, a scheduler may not be able to guarantee an upper bound on delay
for all packets. However, Theorem 5 demonstrates that such a rate control element does not change the bound on the
departure time of a packet when the scheduling algorithm employed is in GR.
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Theorem 5 If a rate control element that satisfies (16) is employed at server i for flow f , then:GRCi(pjf ; rj;if ) = dGRCi(pjf ; rj;if )
where GRCi(pjf ; rj;if ) is the guaranteed rate clock value at the scheduler when no rate controller is employed for the

flow and dGRCi(pjf ; rj;if ) is the value when a rate controller is employed.

Proof: The proof is by induction on j and is presented in Appendix A.1.
Theorem 5 demonstrates that if a scheduling algorithm belongs to GR for a flow, then the equivalent non-work

conserving algorithm obtained by employing any rate controller element satisfying (16) also belongs to GR. Observe
that this defines non-work conserving equivalents of generalized Virtual Clock, PGPS, and SCFQ algorithms. It also
defines a scheduling algorithm that combines Delay EDD and Jitter EDD.

2.5 Summary

In the previous sections, we have defined the class of GR scheduling algorithms and shown that several work conserving
and non-work conserving algorithms that either allocate only rate or separate rate and delay allocation belong to GR.
We defined generalized Virtual Clock, PGPS, and SCFQ scheduling algorithms that can allocate variable rate to the
packets of a flow. These algorithms are work conserving and do not require a flow regulator. We also defined
scheduling algorithms suitable for servers where packet fragmentation may occur. We demonstrated that if a class of
rate controllers is employed for a flow in conjunction with any scheduling algorithm in GR, then the resulting non-work
conserving algorithm also belongs to GR. This lead to the definition of non-work conserving equivalents of generalized
Virtual Clock, PGPS and SCFQ algorithms as well as combination of Delay EDD and Jitter EDD.

If a server employs any of these scheduling algorithm in GR, then it guarantees that packet pjf will be transmittedbyGRCi(pjf ; rj;if )+�i. SinceGRCi(pjf ; rj;if ), and hence the delay guarantee, is independent of a traffic characterization,
a server employing a scheduling algorithm in GR can provide various service guarantees to flows conforming to any
traffic specification. For example, it enables a server to guarantee an upper bound on delay and tail distributionof delay
to packets of a flow conforming to leaky bucket and Exponentially Bounded Burstiness (EBB) process, respectively
[11]. In a network environment, however, packets of a flow are serviced by a sequence of servers. In what follows,
we present a method for deriving the delay guarantee of a network of servers each of which employs a scheduling
algorithm in the GR class.

3 Delay Guarantee of a Network of Servers

To derive the delay guarantee for a network of servers, each of which employs a scheduling algorithm in GR, consider
flow f that is serviced by K servers. Let the ith server on the path be denoted by i. Then, the network guarantees
that packet pjf will depart from the network by GRCK(pjf ; rj;Kf ) + �K . This delay guarantee depends on the arrival

process at theKth server, i.e., AK (pjf ). Though AK(pjf ) depends on the arrival process of a flow, i.e., A1(pjf ), due to
the variability in the delay experienced by the packets of a flow, it may not always be possible to determine relationship
between AK(pjf ) and A1(pjf ). Since, A1(pjf ), and not AK(pjf ), is always known, it is desirable to characterize the

delay guarantee of the network of server such that it is determined by A1(pjf ).
Observe thatGRCK(pjf ; rj;Kf ) depends on AK(pjf ), which in turn depends on GRCK�1(pjf ; rj;K�1f ). Applying

this argument recursively, GRCK(pjf ; rj;K�1f ) can be related to GRC1(pjf ; rj;1f ). Consequently, the delay guarantee

of a network of servers can be characterized based on GRC1(pjf ; rj;1f ) which is completely determined by A1(pjf )
(i.e., the arrival process of a flow), and the rate assigned to the packets. This enables a network of servers, as in the
case of a single server, to provide service guarantee to flows conforming to any specification.

To derive the delay guarantee of a network of servers, we will first relate the guaranteed rate clock value of a
packet at two adjacent servers. Henceforth we will always refer to a single flow f and hence, for ease of presentation,
we would drop the subscript f from all the variables.



15
3.1 Two Server Case

In large networks, due to the variability in load at different servers, different rates may be allocated to packets at
different servers. Since throughput of a network for a flow is governed by throughput of the bottleneck server, instead
of relating GRCi+1(pj ; rj;i+1) and GRCi(pj ; rj;i), we will establish a relationship between GRCi+1(pj ; brj;i) andGRCi(pj; brj;i) where GRCi(pj ; brj;i) denotes the guaranteed rate clock value computed using brk;i; k � j, and brj;i
represents the bottleneck rate for pj which is defined as2:brj;i � minfrj;i; rj;i+1g
Observe that this definition captures the scenario where different servers may be the bottleneck server for different
packets of the same flow. Although we relate the guaranteed rate clock values computed using bottleneck rate, our
analysis will demonstrate that allocating different rates at different servers leads to smaller end-to-end delay than
allocating bottleneck rate at each server.

We would find the following inequality useful in establishing the relationship between guaranteed rate clock
values at adjacent nodes. Since the guaranteed rate clock value of a packet computed using a smaller rate is larger,GRCi(pj; rj;i) � GRCi(pj; brj;i). Hence,GRCi(pj ; rj;i) = maxfAi(pj); GRCi(pj�1; rj�1;i)g+ ljrj;i j � 1� maxfAi(pj); GRCi(pj�1; brj�1;i)g+ ljrj;i j � 1 (17)

In heterogeneous networks, the data transmission unit may vary and hence packet fragmentation and reassembly
may occur. Such a scenario, for example, would occur in an internetwork consisting of ATM, ethernet, and FDDI
subnetworks. The relationship between GRCi+1(pjf ; rj;i+1f ) and GRCi(pjf ; rj;if ) depends on the occurrence of such
a scenario. Hence, in the following subsections, we first establish the relationship when packet fragmentation and
reassembly do not occur and then consider their effects.

3.1.1 No Fragmentation and No Reassembly

Theorem 6 If the scheduling algorithm at server i belongs to GR for flow f , thenGRCi+1(pj; brj;i) � GRCi(pj; brj;i) + maxk2[1::j] lkrk;i + �i j � 1 (18)
where �i = �i + � i;i+1 and � i;i+1 is an upper bound on the propagation delay between servers i and i+ 1.

Proof: The proof is by induction on j.
Base Case: j = 1 GRCi+1(p1; br1;i) = Ai+1(p1) + l1br1;i (19)
Since scheduling algorithm at server i belongs to GR for flow f , Ai+1(p1) � GRCi(p1; r1;i) + �i. From (19) and
(17) we get: GRCi+1(p1; br1;i) � maxfAi(p1); GRCi(p0; br0;i)g+ l1r1;i + l1br1;i + �i� �maxfAi(p1); GRCi(p0; br0;i)g+ l1br1;i�+ l1r1;i + �i� GRCi(p1; br1;i) + maxk2[1::1] lkrk;i + �i2To facilitate the proof of multiple server case, we have chosen an inequality, rather than an equality.
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Therefore (18) holds for j = 1
Induction Hypothesis: Assume (18) holds for 1 � j � m.
Induction: We need to show (18) holds for 1 � j � m + 1. From (1) ( definition of GRC), we get:GRCi+1(pm+1; brm+1;i) = maxfAi+1(pm+1); GRCi+1(pm; brm;i)g+ lm+1brm+1;i (20)
There are two cases to consider:

1. Ai+1(pm+1) > GRCi+1(pm; brm;i): Since scheduling algorithm at server i belongs to GR for flow f , we knowAi+1(pm+1) � GRCi(pm+1; rm+1;i) + �i. Hence, from (20) we get:GRCi+1(pm+1; brm+1;i) � GRCi(pm+1; rm+1;i) + �i + lm+1brm+1;i
Using (17) we get:GRCi+1(pm+1; brm+1;i) � maxfAi(pm+1); GRCi(pm; brm;i)g+ lm+1rm+1;i + �i + lm+1brm+1;i� �maxfAi(pm+1); GRCi(pm; brm;i)g+ lm+1brm+1;i�+ lm+1rm+1;i + �i� GRCi(pm+1; brm+1;i) + maxk2[1::m+1] lkrk;i + �i (21)

2. Ai+1(pm+1) � GRCi+1(pm; brm;i): From (20) we get:GRCi+1(pm+1; brm+1;i) � GRCi+1(pm; brm;i) + lm+1brm+1;i
Using induction hypothesis we get,GRCi+1(pm+1; brm+1;i) � GRCi(pm; brm;i) + maxk2[1::m] lkrk;i + �i + lm+1brm+1;i� �GRCi(pm; brm;i) + lm+1brm+1;i�+ maxk2[1::m] lkrk;i + �i� GRCi(pm+1; brm+1;i) + maxk2[1::m+1] lkrk;i + �i (22)

From (21), (22) and the induction hypothesis, we conclude that (18) holds for 1 � j � m+1. Hence the theorem
follows.

Observe that even though we have related guaranteed clock values computed based on the bottleneck rate, the
denominator in the second term of the right hand side of (18) is rj;i instead of brj;i. This would enable us to derive
tighter end-to-end delay bounds in section 4.

3.1.2 Packet Fragmentation

Let server i fragment a packet into cells. As we had mentioned in Section 2.4.1, server i may schedule packets or cells
(i.e., packet fragments). Let us consider the two cases:� If server i schedules packets (see Figure (4)), it may or may not allow packet transmission to be preempted

after transmission of every cell. In either case, GRCi(pj; brj;i�1) can be related to GRCi�1(pj ; brj;i�1) using
Theorem 6. However, we need to relate the guaranteed rate clock value of packet at server i and i+ 1.� If server i schedules cells (see Figure (5)), then guaranteed rate clock values of cells at server i and i+ 1 can be
related using Theorem 6. However, we need to relate the guaranteed rate clock value of packet at server i � 1
and i.
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From the two cases, we can infer that, in the presence of fragmentation, we need to relate the guaranteed rate clock
values of packets between two adjacent servers that have different scheduling units, i.e, packets and cells. Let packetpj be fragmented into �(j) cells, pj;k denote the kth cell of pj and let lj;k denote the length of cell pj;k. Since the
delay guarantee of a packet is determined by the delay guarantee of the last cell of a packet, we relate the guaranteed
rate clock value of the last cell of a packet at adjacent servers in Theorem 7.

Theorem 7 If the scheduling algorithm at server i schedules packets and belongs to GR for flow f , and server i+ 1
schedules cells, then GRCi+1(pj;�(j); brj;i) � GRCi(pj; brj;i) + maxk2[1::j] lkrk;i + �i j � 1 (23)
where �i = �i + � i;i+1 and � i;i+1 is an upper bound on the propagation delay between servers i and i+ 1.

Proof: The proof is presented in Appendix A.2.

3.1.3 Packet Reassembly

Let server i + 1 perform reassembly of cells. Theorem 8 relates the guaranteed rate clock value of the last cell of a
packet at server i and i+ 1.

Theorem 8 If the scheduling algorithm at server i belongs to GR for flow f and server i + 1 performs reassembly,
then GRCi+1(pj; brj;i) � GRCi(pj;�(j); brj;i) + maxk2[1::j] lkbrk;i + �i j � 1 (24)
where �i = �i + � i;i+1 and � i;i+1 is an upper bound on the propagation delay between servers i and i+ 1.

Proof: The proof is presented in Appendix A.3.
Observe that the second term in the right hand side of (24) is maxk2[1::j] lkbrk;i which is different from the

corresponding term, maxk2[1::j] lkrk;i , in (18) and (23).



18
Server FSource Server 1

Packet 

Fragmentation

Packet

Reassembly

Server R Server K   Sink

O= F

 or

O= F+1

Figure 6 : The path configuration

3.2 Multiple Server Case

In Theorems 6, 7, and 8, we have related the guaranteed rate clock values of a packet at adjacent servers under various
scenarios. These relationships can be employed to relate the guaranteed rate clock value of the packet at Kth server to
that at the first server. Clearly, such a relationship depends on the configuration of the path of a flow. We illustrate the
relationship between the guaranteed rate clock value of the packet at theKth server and its value at the first server for
the path configuration shown in Figure 6. In Figure 6 packet fragmentation occurs at server F and packet reassembly
occurs at server R. Let server O be the first server on the path of the flow that schedules cells. If server F schedules
packets, then the next server schedules cells and hence O = F + 1; otherwise O = F .

Theorem 9 If the scheduling algorithm at each of the servers on the path of a flow belongs to GR for flow f , thenGRCK(pj ; brj) � GRC1(pj; brj) + i=O�1Xi=1 maxn2[1::j] lnrn;i + i=R�2Xi=O maxn2[1::j] l̂nrn;i+ maxn2[1::j] lnbrn + i=K�1Xi=R maxn2[1::j] lnrn;i + n=K�1Xn=1 �n
where �n = �n + �n;n+1, K is the number of servers on the path of the flow, l̂n is the length of the biggest fragment
of pn, and brj is the bottleneck rate for packet pj, i.e., brj = mini2[1::K] rj;i.
Proof: Since brj � brj;i for each server on the path of the flow and the scheduling algorithm at each server belongs to
GR, Theorem 6 can be employed. By repeated application of Theorem 6:GRCK(pj; brj) � GRCR(pj; brj) + i=K�1Xi=R maxn2[1::j] lnrn;i + n=K�1Xn=R �n
Since server R does packet reassembly, using Theorem 8 we get:GRCR(pj ; brj) � GRCR�1(pj;�(j);; brj) + maxn2[1::j] lnbrn + �R�1
Using Theorem 6 again, we get:GRCR�1(pj;�(j); brj) � GRCO(pj;�(j); brj) + i=R�2Xi=O maxn2[1::j] l̂nrn;i + n=R�2Xn=O �n
Since server O schedules cells and server O � 1 schedules packets, from Theorem 7 we get:GRCO(pj;�(j); brj) � GRCO�1(pj ; brj) + maxn2[1::j] lnrn;O�1 + �O�1
Using Theorem 6 again , we get:GRCO�1(pj ; brj) � GRC1(pj; brj) + i=O�2Xi=1 maxn2[1::j] lnrn;i + n=O�2Xn=1 �n
The theorem follows from the above steps.
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It can be similarly shown that if packet fragmentation does not occur, then:GRCK(pj ; brj) � GRC1(pj; brj) + i=K�1Xi=1 maxn2[1::j] lnrn;i + n=K�1Xn=1 �n (25)

Observe that even though we have derived the delay guarantee based on the bottleneck rate, the denominator inPi=K�1i=1 maxn2[1::j] lnrn;i is the actual rate allocation at each server. Clearly, this term is smaller than the similar term
that would have been derived assuming bottleneck rate allocation at each server.

The delay guarantee of a network of servers enables a network to provide various service guarantees to flows
conforming to any specification. For example, as we illustrate in the next section, the delay guarantee can be employed
to guarantee an upper bound on end-to-end delay of packets of a flow.

4 End-to-End Delay Bound

To determine an upper bound on the end-to-end delay of packets of a flow, consider a flow which is served by K
servers. Also, let server 0 be the source and server K + 1 be the destination. Let dj be the delay experienced by the
packets of a flow. Since server K guarantees that packet pj will be transmitted by time GRCK(pj ; rj;K) + �K and
the packet arrives at the first node at time A1(pj), we get:dj � GRCK(pj ; rj;K) + �K � A1(pj)
where �K = �K + �K;K+1. Observe that GRCK(pj ; brj)� GRCK(pj; rj;K) � ljbrj � ljrj;K . Hence,dj � GRCK(pj; brj)� � ljbrj � ljrj;K�+ �K � A1(pj)
If each server on the path of the flow employs a scheduling algorithm in GR, then given the path configuration,GRCK(pj ; brj) can be related to GRC1(pj; brj). For instance, when packet fragmentation and reassembly does not
occur along the path, then using (25) we get:dj � �GRC1(pj; brj)� A1(pj)� + i=K�1Xi=1 maxn2[1::j] lnrn;i � ( ljbrj � ljrj;K )!+  n=KXn=1 �n! (26)
Hence, the end-to-end delay of a packet consists of three components:� Pn=Kn=1 �n : Since �n = �n + �n;n+1, this term is completely characterized by the scheduling algorithm and

the propagation delay in the network.� Pi=K�1i=1 maxn2[1::j] lnrn;i � ( ljbrj � ljrj;K ): This term depends on the length of the packets transmitted by a source
and the rate allocated to it at various servers. Hence, this term is known if the length of the packets transmitted
by a source and the rate assignments are known.� GRC1(pj; brj) � A1(pj): This is the only term that depends on arrival process characteristics of a flow. This
term can be interpreted as the queuing delay experienced by a packet at a single server with variable capacity;
the capacity being the bottleneck rate for the packet in service. Hence, the network can be abstracted as a single
server with variable capacity and consequently the problem of determining end-to-end delay is reduced to the
problem of determining delay at a single node. Therefore, a single server queuing analysis can be employed to
determine an upper bound on the delay or the tail distribution of delays experienced by packets of a flow for any
traffic specification. For example:

– If a flow conforms to Leaky Bucket with parameters (�; r) and br is the minimum rate allocated to the
packets of the flow such that r � br, then from [11] we get:GRC1(pj ; br)� A1(pj) � �br (27)
Substituting (27) in (26) gives an upper bound on the end-to-end delay.
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– If a flow conforms to Exponentially Bounded Burstiness (EBB) process with parameters (r;�; 
) [21], andbr is the minimum rate allocated to the packets of the flow such that r � br, then from [11] we get:Pr�GRC1(pj ; br) �A1(pj) � ybr� � � e�
 y y � 0 (28)

An upper bound on the tail distribution of the end-to-end delay is derived by substituting (28) in (26). An
upper bound on tail distribution of end-to-end delay of a markovian process can be similarly derived.

– If a flow conforms to the variable rate Flow Specification introduced in [15], then for the first packet of a
burst of a flow: GRC1(pj ; brj)�A1(pj) � ljbrj (29)
Substituting (29) in (26) gives an upper bound on end-to-end delay which is a generalization of the bound
for constant length packets in [15]. This generalization can be exploited to design algorithms which reduce
the jitter of VBR video.

Observe that in the above analysis, � i;i+1 is an upper bound on the propagation delay. Hence, the delay bounds
also hold in networks where the propagation delay may be variable but is bounded. This property is highly desirable
in internetworks [23].

The above method not only determines an upper bound on end-to-end delay for any source specification in an
internetwork in a conceptually simple manner but also leads to tighter results. Observe that if rj;K = brj (assumed for
ease of exposition) then the only variable term in (26), that depends on network and not flow characteristics is:i=K�1Xi=1 maxn2[1::j] lnrn;i (30)
This term is smaller than other similar analysis in the literature in several ways. We illustrate the differences by
comparing it with the analysis presented in [17] for Rate Proportional Processor Sharing (RPPS) rate assignment of
PGPS networks. The delay bound in [17] for a flow that conforms to Leaky Bucket with parameters (�; r) and has
minimum rate br � r assigned to the packets (br � r) is:dj � �br + 2 i=K�1Xi=1 lmaxbr + n=KXn=1 �n
where lmax is the maximum length of a packet of the flow. Hence, the term corresponding to (30) is:2 i=K�1Xi=1 lmaxbr (31)
(31) is larger than (30) in several ways:� The factor 2 makes (31) significantly larger than (30).� Even when different rates may be allocated at different servers, the denominator in (31) is br. In contrast, the

denominator in (30) is rn;i where rn;i � br. To illustrate the differences numerically, consider a flow with packets
of length 100 bytes that is being served by two servers such that the rate allocations at server 1 and 2 are 64Kb/s
and 32Kb/s, respectively. Then, even after neglecting factor 2, (31) evaluates to 24.4 ms which is significantly
larger than the 12.2 ms computed from (30).� Whereas (31) does not quantify the effect of variable rate allocation to packets of a flow, (30) does.� The numerator in (31) is lmax which is larger than the numerator, maxn2[1::j] ln (assuming a constant rate
allocation for packets of a flow), in (30).

This difference can be made larger by defining a network busy period. For ease of exposition, let no fragmentation
and reassembly occur. Then, a network is considered busy for flow f at time t ifGRC1(pj; brj) + i=K�1Xi=1 maxn2[1::j] lnrn;i + n=K�1Xn=1 �n � t
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where pj is the last packet to have arrived before t. Let the packets be renumbered such that packet pj is the jth
packet to arrive in a network busy period. From the proofs of Theorems 6, 7 and 8, we know that Theorem 9
still continues to hold. Consequently, in (30), the maximum is over a subsequence of packets rather than all the
previous packets.

To illustrate the difference numerically, consider a flow that has 5 servers on the path and has 1Mb/s rate allocated
to its packets. Consider two busy periods 1 and 2 such that the maximum packet length during the periods is
1000 bytes and 100 bytes, respectively. Then, (30) evaluates to 30.5 ms and 3.05 ms for busy periods 1 and 2,
respectively. If the maximum packet length the flow ever transmits is 1500 bytes, then (31) will always yield
45.7 ms.

Since (30) is the only variable term that depends on the network, these improvements are significant.

5 Architectural Principles

The class of GR scheduling algorithms has several desirable properties which simplifies the design of a network
that provide guaranteed deterministic QoS while enabling it to support application with different characteristics and
requirements. We now present a few important architectural principles, based on the properties of GR, for the design
of networks employing scheduling algorithms in GR class.� A source is not required to specify the shape of the traffic to the network: It has been argued in the literature that

a network provides QoS guarantees such as packet delay and throughput based on the traffic specification of a
source. However, as is evident from Theorem 9, a network employing scheduling algorithms in GR can provide
a delay guarantee without requiring the source to specify the shape of the traffic. Furthermore, by keeping track
of guaranteed rate clock values associated with its flow at the first server, a source can determine end-to-end
delays without specifying the shape of the traffic to the network. Hence, a network can provide QoS guarantees
without requiring a traffic specification. Such a network architecture is desirable as a source may not have a
good characterization of the traffic or the characterization may not be known a priori. Moreover, even if the
characterization is known, it may not conform to the set of characterizations supported by a network.� Policing of the traffic is not required: Observe that the guaranteed rate clock values of a packet of a flow
are independent of the behaviour of the other flows in the network. Consequently, the guarantees offered by
a network employing scheduling algorithms in GR are independent of the behaviour of other flows, i.e., the
network provides isolation between sources. Hence, in such networks, policing of traffic is not required.

If a network employs scheduling algorithm which does not provide isolation between sources, then it may have
to employ policing devices to guard against greedy sources. However, as the probability of failure of one of the
numerous pieces of enforcement hardware that may be employed may not be negligible, the guarantees provided
by such networks would be weak. Hence, a network which does not employ policing devices is not only simple
but also provides stronger guarantees.� A source should be able to request buffer reservation in the network: If a source does not specify the shape of the
traffic to the network, then a network may not know the buffer space that should be reserved for a flow in order to
provide the desired packet loss. A network, rather than requiring a source traffic specification and then deriving
the buffer requirements, should allow a source to explicitly request buffer space. This would keep the design of
the network simple and enable it to support applications with different characteristics and requirements.� A source should be able to request a network to employ rate controllers: As Theorem 5 illustrates, in GR
networks the worst case delay of packet does not change when one or more servers on the path of a flow employ a
rate controller. Though rate controllers do not change the worst case end-to-end delay, they increase the average
case delay while reducing the buffer requirement in the network. Instead of a network deciding the tradeoff
between the buffer requirement and the average case delay for all the sources, a source should be provided with
the flexibility of deciding the tradeoff. A source would have the flexibility if it can request a network to employ
a rate controller.� GR networks should provide good average case performance as well: As is evident from the end-to-end delay
bound determination method, a GR network which is designed to provide only worst case guarantee, can do so
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by buffering all the data at the network periphery and serving it at the rate desired by the packets. However, such
a method would increase the average case delay significantly and may be undesirable for applications requiring
good average case performance. Hence, even though a network may not provide any guarantees, it is desirable to
design it to provide good average case performance as well. If a source does not require good average case delay,
it can reduce its buffer requirement by buffering the data or requesting a network to employ rate controllers on
its path. Hence, if GR networks provide good average performance, they can support applications with different
requirements.

6 Concluding Remarks

In this paper, we have defined the class of GR scheduling algorithms and demonstrated that several work conserving
and non-work conserving algorithms that either allocate only rate or separate rate and delay allocation belong to GR.
We defined work conserving generalized Virtual Clock, Packet-by-Packet Generalized Processor Sharing and Self
Clocked Fair Queuing scheduling algorithms that can allocate variable rate to the packets of a flow. We also defined
scheduling algorithms suitable for servers where packet fragmentation may occur. We demonstrated that if a class of
rate controllers is employed for a flow in conjunction with any scheduling algorithm in GR, then the resulting non-work
conserving algorithm also belongs to GR. This lead to the definition of non-work conserving equivalents of generalized
Virtual Clock, PGPS and SCFQ algorithms and a combination of Delay EDD and Jitter EDD.

We presented a method for deriving the delay guarantee of a network of servers when: (1) different rates are
allocated to packets of a flow at different servers on the path and the bottleneck server for each packet may be different,
and (2) packet fragmentation and/or reassembly may occur. The delay guarantee enables a network to provide various
service guarantees to flows conforming to any specification. The delay guarantee was then employed to illustrate
the derivation of delay bounds for flows conforming to Leaky Bucket, Exponentially Bounded Burstiness and Flow
Specification. Our method for determining these bounds is not only simple and valid in internetworks but also leads
to tighter results. We finally presented architectural principles for the design of networks that employ scheduling
algorithms in GR class. GR class not only simplifies the design of networks but also enables support for application
with different characteristics and requirements.

The variable rate allocation algorithms that we have introduced in this paper, are suitable not only for supporting
variable rate video but also for achieving dynamic link sharing objectives [7]. Such algorithms can also be employed
for reducing the maximum delay incurred by bursty flows in a controlled manner in networks providing guarantees
weaker than deterministic or statistical guarantees [1]. We expect to explore these benefits in our future work.
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A Appendix

A.1 Proof of Theorem 5

Proof: LetAi(pjf ) be the arrival time of pjf at the rate controller when a rate controller is employed and at the scheduler

when it is not. Also, let bAi(pjf ) be the arrival time of the packet at the scheduler (or equivalently, departure time at the
rate controller) when a rate control element is employed. The proof is by induction on j.
Base Case: j = 1. As GRCi(p0f ) = 0, from (16) we know Ai(pjf ) = bAi(pjf ). Hence we conclude:dGRCi(p1f ; r1;if ) = bAi(p1f ) + l1fr1;if= Ai(p1f ) + l1fr1;if= GRCi(p1f ; r1;if )
Therefore the theorem holds for j = 1.
Induction Hypothesis: Let us assume that the theorem holds for 1 � j � m.
Induction: We now show that the theorem holds for 1 � j � m + 1. From the definition of GRC:dGRCi(pm+1f ; rm+1;if ) = maxf bAi(pm+1;if ); dGRCi(pmf ; rm;if )g+ lm+1frm+1;if (32)
There are two cases to consider:

1. bAi(pm+1f ) � dGRCi(pmf ; rm;if ): From (32) we get:dGRCi(pm+1f ; rm+1;if ) = dGRCi(pmf ; rm;if ) + lm+1frm+1;if
Using induction hypothesis we get:dGRCi(pm+1f ; rm+1;if ) = GRCi(pmf ; rm;if ) + lm+1frm+1;if= GRCi(pm+1f ; rm+1;if ) (33)

2. bAi(pm+1f ) > dGRCi(pmf ; rm;if ): From induction hypothesis, dGRCi(pmf ; rm;if ) = GRCi(pmf ; rm;if ) . Hence, we

conclude bAi(pm+1f ) > GRCi(pmf ; rm;if ). But from (16) this implies bAi(pm+1f ) = Ai(pm+1f ). Hence, from (32)
we get: dGRCi(pm+1f ; rm+1;if ) = bAi(pm+1f ) + lm+1frm+1;if= Ai(pm+1f ) + lm+1frm+1;if= maxfAi(pm+1f ); GRCi(pmf ; rm;if )g+ lm+1frm+1;if= GRCi(pm+1f ; rm+1;if ) (34)

From (33), (34) and the induction hypothesis, we conclude that the theorem holds for 1 � j � m + 1. Hence the
theorem follows.
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A.2 Proof of Theorem 7

Proof: The proof is by induction on j.
Base Case: j = 1. Let p1;o be the last cell to have arrived beforep1;�(1) such thatAi+1(p1;o) > GRCi+1(p1;o�1; br1;i).
Then, from (1) (definition of GRC) we get:GRCi+1(p1;�(1); br1;i) = Ai+1(p1;o) + k=�(1)Xk=o l1;kbr1;i
Since scheduling algorithm at server i belongs to GR for flow f , Ai+1(p1;o) � GRCi(p1; r1;i) + �i. HenceGRCi+1(p1;�(1); br1;i) � GRCi(p1; r1;i) + k=�(1)Xk=o l1;kbr1;i + �i� Ai(p1) + l1r1;i + k=�(1)Xk=o l1;kbr1;i + �i
Since

Pk=�(1)k=o l1;kbr1;i � l1br1;i , we getGRCi+1(p1;�(1); br1;i) � Ai(p1) + l1br1;i + l1r1;i + �i� GRCi(p1; br1;i) + l1r1;i + �i� GRCi(p1; br1;i) + maxk2[1::1] l1r1;i + �i
Therefore (23) holds for j = 1
Induction Hypothesis: Assume (23) holds for 1 � j � m.
Induction: We need to show (23) holds for 1 � j � m + 1.GRCi+1(pm+1;�(m+1); brm+1;i) = maxfAi+1(pm+1;�(m+1)); GRCi+1(pm+1;�(m+1)�1; brm+1;i)g+ lm+1;�(m+1)brm+1;i(35)
Thus, there are two cases to consider:

1. Ai+1(pm+1;�(m+1)) > GRCi+1(pm+1;�(m+1)�1; brm+1;i) : From (35) we get:GRCi+1(pm+1;�(m+1); brm+1;i) � Ai+1(pm+1;�(m+1)) + lm+1;�(m+1)brm+1;i
Since scheduling algorithm at server i belongs to GR for flow f ,Ai+1(pm+1;�(m+1)) � GRCi(pm+1; rm+1;i)+�i. GRCi+1(pm+1;�(m+1); brm+1;i) � GRCi(pm+1; rm+1;i) + lm+1;�(m+1)brm+1;i + �i
Hence, using (17) we get:GRCi+1(pm+1;�(m+1); brm+1;i � maxfAi(pm); GRCi(pm; brm;i)g+ lm+1rm+1;i + lm+1;�(m+1)brm+1;i + �i� �maxfAi(pm); GRCi(pm; brm;i)g+ lm+1;�(m+1)brm+1;i �+ lm+1rm+1;i + �i� GRCi(pm+1; brm+1;i) + lm+1rm+1;i + �i� GRCi(pm+1; brm+1;i) + maxk2[1::m+1] lkrk;i + �i (36)
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2. Ai+1(pm+1;�(m+1)) � GRCi+1(pm+1;�(m+1)�1; brm+1;i) : From (35) we get:GRCi+1(pm+1;�(m+1); brm+1;i) � GRCi+1(pm+1;�(m+1)�1; brm+1;i) + lm+1;�(m+1)brm+1;i (37)

Let pm+1;0 refer to pm;�(m). There are two cases to consider:

(a) 8k 2 [1::�(m+ 1)] : Ai+1(pm+1;k) � GRCi+1(pm+1;k�1; brm+1;i): From (37) we get:GRCi+1(pm+1;�(m+1); brm+1;i) � GRCi+1(pm;�(m); brm;i) + k=�(m+1)Xk=1 lm+1;kbrm+1;i
Using induction hypothesis, we get:GRCi+1(pm+1;�(m+1); brm+1;i) � GRCi(pm;�(m); brm;i) + maxk2[1::m] lkrk;i + �i + lm+1brm+1;i� �GRCi(pm;�(m); brm;i) + lm+1brm+1;i�+ maxk2[1::m] lkrk;i + �i� GRCi(pm+1; brm+1;i) + maxk2[1::m+1] lkrk;i + �i (38)

(b) 9k 2 [1::�(m + 1)] : Ai+1(pm+1;k) > GRCi+1(pm+1;k�1; brm+1;i): Let o be the greatest integer less
than or equal to �(m + 1) such that Ai+1(pm+1;o) > GRCi+1(pm+1;o�1; brm+1;i). Then, from (37) we
get: GRCi+1(pm+1;�(m+1); brm+1;i) � Ai+1(pm+1;o) + k=�(m+1)Xk=o lm+1;kbrm+1;i� Ai+1(pm+1;o) + lm+1brm+1;i
Since scheduling algorithm at server i belongs to GR for flow f , we get:GRCi+1(pm+1;�(m+1); brm+1;i) � maxfAi(pm+1); GRCi(pm; brm;i)g+ lm+1rm+1;i + �i + lm+1brm+1;i� �maxfAi(pm+1); GRCi(pm; brm;i)g+ lm+1brm+1;i�+ lm+1rm+1;i + �i� GRCi(pm+1; brm+1;i) + lm+1rm+1;i + �i� GRCi(pm+1; brm+1;i) + maxk2[1::m+1] lkrk;i + �i (39)

From (36), (38), (39), and the induction hypothesis, we conclude that (23) holds for 1 � j � m + 1. Hence the
theorem follows.

A.3 Proof of Theorem 8

Proof: The proof is by induction on j.
Base Case: j = 1 GRCi+1(p1; br1;i) = Ai+1(p1) + l1br1;i
Since scheduling algorithm at server i belongs to GR for flow f , Ai+1(p1) � GRCi(p1;�(1); br1;i) + �i. Hence,GRCi+1(p1; br1;i) � GRCi(p1;�(1); br1;i) + l1br1;i + �i� GRCi(p1;�(1); br1;i) + maxk2[1::1] lkbr1;i + �i
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Therefore (24) holds for j = 1
Induction Hypothesis: Assume (24) holds for 1 � j � m.
Induction: We need to show (24) holds for 1 � j � m + 1.GRCi+1(pm+1; brm+1;i) = maxfAi+1(pm+1); GRCi+1(pm; brm;i)g+ lm+1brm+1;i (40)
There are two cases to consider:

1. Ai+1(pm+1) > GRCi+1(pm; brm;i): From (40) we get:GRCi+1(pm+1; brm+1;i) � Ai+1(pm+1) + lm+1brm+1;i
Since scheduling algorithm at server i belongs to GR for flow f , we get:GRCi+1(pm+1; brm+1;i) � GRCi(pm+1;�(m+1); brm+1;i) + �i + lm+1brm+1;i� GRCi(pm+1;�(m+1); brm+1;i) + maxk2[1::m+1] lkbrk;i + �i (41)

2. Ai+1(pm+1) � GRCi+1(pm; brm;i): From (40) we get:GRCi+1(pm+1; brm+1;i) � GRCi+1(pm; brm;i) + lm+1brm+1;i
Using induction hypothesis we get,GRCi+1(pm+1; brm+1;i) � GRCi(pm;�(m); brm;i) + maxk2[1::m] lkbrk;i + lm+1brm+1;i + �i� �GRCi(pm;�(m); brm;i) + lm+1brm+1;i�+ maxk2[1::m+1] lkbrk;i + �i� GRCi(pm+1;�(m+1); brm+1;i) + maxk2[1::m+1] lkbrk;i + �i (42)

From (41), (42), and the induction hypothesis, we conclude that (24) holds for 1 � j � m + 1. Hence the theorem
follows.


