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As the applications of production systems expand from traditional artificial in-
telligence domains into the data intensive and real-time arenas, program com-
plexity and the volume of data also increase dramatically. Over a decade of
efforts to exploit this opportunity, the previous approaches of employing par-
allel match and/or syntactic based multiple-rule-firing have failed to raise the
performance to a satisfactory level. Based on the observations made in a pi-
lot study, we found that by incorporating application semantics, it is possible
to achieve a much higher level of concurrency than what can be achieved by
traditional techniques. This dissertation presents a new approach called de-
composition abstraction that aims at the exploration of application parallelism
in production systems.

Decomposition abstraction is the process of organizing and specifying
parallel decomposition strategies. We propose a general object-based frame-
work and present the formal semantics of a set of decomposition abstraction
mechanisms that are applicable to any rule language. A semantic-based de-
pendency analysis technique that uncovers hidden concurrency based on a new
notion of functional dependency successfully derives parallelism that is very dif-
ficult, if not impossible, to discover by traditional syntactic analysis techniques.

The effectiveness of our approach is validated both by simulation and
implementation on Sequent Symmetry multiprocessor. The performance results
demonstrate the potential of the decomposition abstraction approach to achieve
linear and scalable speedup.
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Chapter 1

Introduction

Production systems, also known as rule-based systems or simply rule
systems, have been shown to be a powertul architecture for intelligent systems,
especially expert systems such as Prospector [37], R1 [94], and MYCIN [20].
Initial implementations of production systems suffered from poor performance
which prohibited their use in large scale applications [45]. Nevertheless, appli-
cations of rule-based programming have continued to expand. Recent interest
in data intensive rule-based applications [121] has further fueled the need for
high performance execution environments for production systems.

Intuition suggests that languages based on the production system
model admit a high degree of parallelism [55]. Efforts to exploit parallel pro-
cessing to increase production system performance have been ongoing for over
a decade [85, 98, 136]. However, the maximum speedup achieved by actual
implementation rarely exceeds tenfold and has never done so over a general
suite of applications no matter how many processors are used.

Most of the existing techniques for parallel production systems are,
from a methodology point of view, similar to the techniques used in the par-
allelization of sequential imperative languages (mostly FORTRAN) [9, 115,
116, 162, 167]. Critical part(s) of the sequential execution is(are) parallelized,
or optimizing compilation and transformations are applied to automatically
transform a sequential program into a parallel program. This approach has
the obvious benefit of its general applicability to existing sequential programs.
However, the experiences show that these techniques have met with limited
success, both on imperative languages [5] and rule languages [56, 98].

In this research, we took an unusual approach to the problem of par-
allelizing production systems. We promote the change of direction toward
semantic-based parallelism. We believe that to significantly improve the per-
formance of rule-based programs, programmers should share part of the respon-
sibility for exposing parallelism. This is achieved by enable the programmers
to provide semantic information, in the forms of data and function decom-
positions, to the language systems. In other words, we suggest the design of

1



parallel rule languages and the development of techniques for parallel rule-based
programming. The challenges are:

e to provide proper mechanisms for expressing application semantics with-
out asking programmers to be an experts in parallel programming, and

o to effectively exploit the semantic information supplied by the program-
mers.

This chapter highlights our approach, contributions, and research results.

1.1 Production System Paradigm

We review the structure and operation of production systems. This
serves both as an introduction to the terminology used throughout this thesis
and as a characterization of essential features of production system that must
be accounted for when we develop our framework. More information about
production systems in general and about OPS5, a popular sequential rule lan-
guage, in particular can be found in [19, 26].

As depicted in Figure 1.1, a typical production system is composed of
three components: a data store called working memory, a set of rules, and an in-
ference engine. Working memory is a global database composed of data objects
called working memory elements (WME’s) representing the state of the system.
A rule is essentially a conditions-actions pair. The inference engine stands for
the three-phase cyclic execution model of matching, conflict-resolution and fir-
ing, which is also known as the recognize-act cycle. In a cycle, the conditions of
each rule are matched against the working memory. A rule with a set of WME’s
matching the conditions is called an instantiation. The set of all instantiations
constitutes the conflict set. In a sequential environment, conflict-resolution
aims to select one instantiation from the conflict set for firing. In a parallel en-
vironment, multiple rule instantiations can be selected for firing simultaneously
subject to proper correctness constraints such as serializability [123]. Firing an
instantiation simply means to execute the actions which may add, delete, or
modify WME’s in the working memory.! The cycle repeats until no rule can
be fired, i.e. no instantiations are computed by the match.

!The actions may include changes to the rules as indicated by the dash arrow. That
constitutes the so called learning production systems such as Soar [86]. Learning is not in
the scope of this thesis.



Working
Memory

r A

| |

| |

| |

| |

| |

1 I Inference
| | 1
. RESOLVE | ,  Engine
| |

| |

| |

| |

| |

| |

L -

(Changes)

Figure 1.1: Production System Model.

1.2 Motivating Examples

Analysis of the parallelism in production systems [55, 79, 113, 136]
has focused on the parallelism in the production system model and syntactic
structure of the production system programs. Chapter 2 details the research
that explores this type of parallelism, which we will call syntactic-level par-
allelism or application independent parallelism. Most of the techniques em-
ployed were built upon the parallelization of the production system execution
engine. The extraction of parallelism relied only on the syntactic structure
of the rule programs. This approach has the advantage that the techniques
developed can be applied on any rule programs without further information
from the programmer besides the program text. However, limited by similar
(perhaps more) obstacles as the automatic parallelization of imperative lan-
guages, namely, name ambiguity, non-statically resolvable dependencies, large
space of possible transformations, sequential semantics of the languages, highly
dynamic and nondeterministic run-time behavior, this approach have met with
little success.

We begin this research by analyzing a set of common benchmark
problems and the rule-based programs written in OPS5 to realize them for po-
tential parallelism. These programs have been widely used in previous studies



Program No. Rules Description

LIFE 16 A simulation program implements Conway’s
LIFE.

WALTZ 33 A constraint satisfaction problem using Waltz’s
algorithm for scene labeling [158].

MANNERS 8 A combinatorial search problem for seat
assignment.

Table 1.1: Benchmark programs.

to evaluate the effectiveness of language extensions and compilation techniques
[80, 84, 103, 123]. While the amount of parallelism found in previous work has
typically been modest and not necessarily scalable, we found, contrary to previ-
ous expectations, that several of these programs had the potential for massive
and scalable parallelism. In this section, we give the results of preliminary
simulated parallel execution of three of the benchmark programs and identify
the sources of parallelism in the algorithms which leads to our semantic-based

approach toward parallel production systems.

The programs are LIFE, WALTZ, and MANNERS as listed in Ta-
ble 1.1. All results are obtained by going through the following steps:

o First, OPS5 benchmark programs and their sequential execution traces
are carefully studied and analyzed to identify the potential parallelism in
the problems and the algorithms.

e Then, all programs are reformulated such that inherent parallelism can

be effectively exploited.

e Both the results of sequential and parallel executions are collected in

terms of number of execution cycles.

The speedup is measured by comparing the number of cycles between sequen-
tial and parallel executions. Sequential cycles are obtained by actually running
the OPS5 programs using OPS5c [103] on SUN SPARCs and HP 9000 worksta-
tions. Parallel cycles are calculated by hand with the assumption of unlimited
resources, no overhead and no contention. To see whether our approach scales
up, the performance results of increasing problem size are collected for each

program.
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1.2.1 LIFE

There are three sets of results on the LIFE program. The original
program contains a sequential print context to print out intermediate and final
results. Since this process is inherently sequential, according to Amdahl’s law
[2],? the speedup is limited by the sequential part. The result on this version
of the program is given in Figure 1.2. Because of the limit imposed by the
sequential printing, the potential speedup is quite small but close to the theo-
retical maximum speedup calculated following Amdahl’s law. To measure the
actual speedup in the computation part, we have obtained the results on two
slightly modified versions of the program. The first one is the version without
printing intermediate results. This is presented in Figure 1.3 together with the
theoretical speedup limits. The second set of results, which is in Figure 1.4, is
to measure the computation part alone without any printing.

The key reason for such impressive results resides in the identification
of the following sources of inherent parallelism in the LIFE program:

o All live cells can generate neighbors at the same time.

ZAmdahl’s law says that if f is the fraction of a computation that must be performed
sequentially, where 0 < f < 1, then the maximum speedup S achievable by a parallel
computer with p processors is S < 1/(f + (1= f)/p).
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Figure 1.3: LIFE Speedup (without printing intermediate results).

o All cells can compute their neighbors simultaneously.

o The generation update of all cells can be executed in parallel.

The consequence is that it takes a constant number of parallel cycles to do the
computation part while sequential cycles increase dramatically with the prob-
lem size. These sources of parallelism are quite difficult, sometimes impossible,
to detect at compile-time using syntactic-based techniques developed in previ-
ous research. This suggests the need for a new approach that could capture

the semantic parallelism described above.

1.2.2 WALTZ

Because of the time taken to simulate large data sets, we only per-
formed simulations on small data sets for the WALTZ program. Nevertheless,
the results are still quite inspiring as depicted in Figure 1.5.

The potential parallelism in the WALTZ program rests on the impor-
tant semantic information in the problem and the organization of the data:

e Each line is associated with exactly two edges with opposite end points.

e The type of a junction is unique and each junction is associated with a

unique set of edges.
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From this information, we can identify the following additional parallelism in
the program:

o All junctions can be made concurrently without interfering with one an-
other.

e Since each labeling rule matches a single junction and its associated edges,
all enabled labeling rules with disjoint matching working memory ele-
ments can be fired in parallel.

This is clearly scalable parallelism because the larger the problem (in terms of
number of line segments in the input drawing), the more junctions and edges a
drawing has, which results in more rules being eligible for firing in parallel. Like
the case for the LIFE program, the additional parallelism is a characteristic of
the problem and is derived from the implicit design decisions of the WALTZ
program. Without this level of information available, a general dependency
analysis technique can only detect problem independent parallelism which is
quite modest and not necessarily scalable.

1.2.3 MANNERS

The MANNERS program contains a hot-spot rule which fires repeat-
edly during the execution of the program. The number of repetitions increases
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dramatically with the problem size. After carefully analyzing the program and
traces, it turns out that all instantiations of this rule can be fired in parallel.
An impressive linear speedup as shown in Figure 1.6 should be obtainable if
this important piece of semantic information can be exploited.

1.2.4 Remarks

The three examples above indicate that application specific informa-
tion is the key to the effective exploitation of inherent parallelism in the prob-
lems and the rule-based programs. In this research, we have made an effort
to systematically explore the potential and sources of this level of parallelism
beyond that of compile-time dependency analysis techniques developed by pre-
vious research. Because of the use of application specific knowledge and the
semantic nature of this approach, we call it application parallelism or semantic
level parallelism in production systems.

1.3 Decomposition Abstraction: A Semantic Approach

The more experience we gain from programming parallel machines,
the more we learn that run-time success more often associated with explicit
decomposition. This is why most parallel programming languages, both im-
perative and declarative, provide constructs for parallel decomposition. The
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PARTITION statement in Refined Fortran [77], the DECOMPOSITION and
related statements in Fortran D [64], the Ada tasking mechanism [107], the
process type in Concurrent C [50], the pcall and future in Multilisp [60], and
the notions of blackboard and theoryin Shared Prolog [17], just to name a few,
are all examples of language mechanisms for data or function decomposition
to facilitate the expression of parallelism. The models of parallel structuring
used in these languages (particularly data partitioning [64, 77] and data par-
allel [63] models of parallel structuring) suggested analogies for rule languages
to capture the application parallelism.

We propose a new approach called decomposition abstraction (DA)
toward the expression and organization of semantic level parallelism in produc-
tion systems. Decomposition abstraction is the process by which programmers
specify decomposition strategies for the exploitation of parallelism embodied
by an application. We provide the programmers with abstraction mechanisms,
programming constructs, programming methodology, and compiler assistant to
expose the application parallelism through data and function decompositions.
It is our belief that, just like the roles played by procedure abstraction, control
abstraction, and data abstraction in sequential programming, decomposition
abstraction is the key to scalable and portable parallelism not only in rule-
based languages, but also in other parallel languages as well. The scope of this
thesis, however, is focused on rule languages.
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Figure 1.7 depicts the comprehensive approach we propose that com-
bine semantic-based and syntactic-based techniques to achieve high speed ex-
ecution of parallel production system programs. All components except the
syntactic-based techniques (i.e. syntactic-based interference analysis [70, 123]
and cluster analysis [80, 101]) will be discussed in later chapters.

1.4 Summary of Results

The main results in this research can be summarized as follows.

e A new general formulation of production systems in an object-based
framework together with a rule notation that abstracts away unneces-
sary details while characterizing all essential features of production sys-
tems. This formulation greatly simplifies our discussion. The framework
provides a solid basis for specifying the formal semantics of the DA mech-

anisms.

o A set of DA mechanisms for rule languages, including set selection con-
ditions (to match a qualified set of objects), aggregate operators (to op-
erate on a selected set of objects as a whole), an ALL combinator (to
combine several conditions into a specification of data decomposition), a
DISJOINT combinator (to specify disjoint partitioning), and contexts
(for grouping relevant rules and for the specification of causal dependen-
cies between different groups of rules). By providing this set of minimal
but semantically rich constructs and their formal semantics, we greatly
clarify and formalize the essential elements of the so called set-oriented
constructs [34, 52, 142, 156] in production systems.

e A semantic-based interference analysis technique for rule systems based
on data relationship specifications. This technique determines parallel ex-
ecutable rules based on user-supplied semantic information in the form of
functional dependency. Our notion of functional dependency is analogous
to the corresponding notion in database systems but used in a completely
different way. Specifically, it is used to characterize data relationship that
implies disjoint decompositions. The recognition of this important prop-
erty leads to useful theorems that forms the basis of our semantic-based
interference analysis techniques.

o Methodologies for decomposition abstraction to transform sequential pro-
grams into parallel programs and to write parallel programs from scratch.
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Figure 1.7: Decomposition Abstraction: A Comprehensive Approach toward
Parallel Production Systems.
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Sequential programs are converted by following a set of heuristic rules
that identify and transform the parts that can be parallelized. Parallel
programs are developed by following a sequence of steps that facilitate
the effective use of DA mechanisms.

A new technique for rapid system development and evaluation without
the high cost of full-fledged system implementation or possible inaccu-
racy of simulation. This technique includes a parallel rule execution en-
gine that fires multiple rules in parallel on the Sequent Symmetry multi-
processor and a work load generator that generates rule firing sequence
from sequential execution trace file to feed into the parallel rule execu-
tion engine. The technique accurately reflects the system performance
because all rule instantiations are faithfully executed and all scheduling
and synchronization operations for correct parallel execution are actually
performed. It also has the nice feature that, given the same rule program
and the same data set, the simulator terminates with exactly the same
results as the sequential execution it is based upon. This makes it trivial
to tell the correctness of the parallel execution.

Simulation results of applying the proposed DA mechanisms on three
commonly used benchmark programs. A variety of experiments target-
ing factors that affects system performance are conducted on the parallel
rule execution engine. Near linear speedup observed on all three bench-
mark programs provides a strong evidence that the DA approach and the
proposed mechanisms are effective and scalable. The analysis of the sim-
ulation results suggests effective implementation strategies on the target
machine.

Implementation of a DA language called Venus/DA on Sequent Symme-
try multiprocessor. The implementation demonstrates both the effec-
tiveness of the DA approach and the process of converting a sequential
rule language (Venus [18] in this case) into a parallel rule language sup-
porting decomposition abstraction. The core of the implementation is a
LEAPS-based [99, 100] parallel inference algorithm and an asynchronous
rule execution engine. User-supplied semantic information are used in the
algorithm for pruning the search space and for intelligent backtracking.
Concurrently executable instantiations are generated in parallel without
the need for conflict resolution or run-time interference analysis. The
rule execution engine executes the instantiations asynchronously and en-
forces barrier synchronization whenever necessary. The integration of
these techniques results in linear speedup on the benchmark programs.
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1.5 Dissertation Outline

Chapter 2 surveys related works on parallel production systems as
well as rule languages in database systems. Chapter 3 lays the groundwork of
this research by formalize production systems under a general object model and
provide an abstract rule notation for ease of discussion. Chapter 4, Chapter 5,
and Chapter 6 constitute the main theorems and core technologies of this re-
search. More specifically, Chapter 4 presents the set of decomposition abstrac-
tion mechanisms with illustrative examples and formal semantics. Chapter 5
introduces the notions of functional dependency and the semantic-based inter-
ference analysis techniques that determines the semantic compatibility between
rules. And Chapter 6 describes the methodologies of transforming sequential
programs and of writing parallel programs. A performance assessment on the
parallel rule execution engine done before the real implementation is included
as Chapter 7. The simulation leads to the implementation of Venus/DA, which
is detailed in Chapter 8. Chapter 9 includes a good variety of experiments
and performance results on the Venus/DA implementation. Finally, we con-
clude with the experience we gained from this research and point out the future
directions of this work in Chapter 10.



Chapter 2

Related Works

The scope of this dissertation intersects with various research areas
that are different in technical appearance but contain a nonobvious common
in an underlying central issue — decomposition. This chapter presents a brief
survey of the research in parallel production systems and relates other work
within the theme of decomposition abstraction.

2.1 Parallel Production Systems

Parallelization of production rule systems has been a significant re-
search topic for over a decade [85, 136]. Production systems have been as-
sumed to encompass a high degree of parallelism [55]. Operations within all
three phases can potentially be processed in parallel. Pipeline parallelism can
be explored between phases or even across cycles. Driven by this expecta-
tion, a burst of research started in the early 1980s aiming at applying parallel
processing techniques to address the performance issue [98]. Based on the tar-
get phase(s) or approach of parallelization, parallel production systems can be
roughly classified into:

e systems that parallelize the match phase only,

e systems that fire multiple rules in a cycle or asynchronously (also known

as multiple-rule-firing systems), and

e systems that employ other approaches such as specialized hardware ar-
chitectures and connectionist production systems.

We go through parallel matching and other approaches briefly while discuss
multiple-rule-firing systems in more details for their close relationship with our
work.

14
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2.1.1 Parallel Matching Sequential Rule Firing Systems

Early focus of research on parallel production systems were almost
exclusively on parallel matching. These systems parallelize only the match
phase of the recognize-act cycle. Conflict resolution and rule firing are still
executed sequentially. The rationale behind this approach is the early report
that production systems spent more over 90% of their execution time in the
match phase [43, 54]. Just to name a few, Gupta and others [55, 56] explored
parallelism in the Rete match algorithm [44], which is the match algorithm
used in OPS5. The TREAT match algorithm by Miranker [96, 97] and other
algorithms by Gupta [53] and Stolfo [137] were developed for DADO, a tree-
structured massively parallel machine [140, 142]. DRete is a distributed version
of the Rete algorithm proposed by Kelly and Seviora [73] for a special machine
called CUPID [72].

The improvement in sequential match algorithms and advances in
compilation techniques [62, 87, 100, 103, 126] drastically reduce the proportion
of time spent in the matching to less than 50% as reported in [101]. From
Amdahl’s law, systems that parallelize only the match phase can not have
significant speedup over the optimized sequential version. Parallelism in other
phases of the recognize-act cycle must also be exploited.

2.1.2 Multiple Rule Firing Systems

Multiple rule firing systems parallelize not only the match phase, but
also the act phase (actually, all phases) of the recognize-act cycle. Some sys-
tems even brake the barrier synchronization boundary between cycles by firing
rules asynchronously. In this approach, maintaining the correct execution of a
program becomes as important as the performance issue. This type of system
is of particular interest to us since our decomposition abstraction mechanisms
are designed for languages capable of firing multiple rules either synchronously
or asynchronously. We described in more details several important work that
have significant impact on the research of parallel production systems.

2.1.2.1 Ishida and Stolfo’s Work The work done by Ishida and Stolfo
[70] is both important and influential. Much work done by other researchers
are either inspired by their work or using the same or similar analysis method
proposed in their paper.

Two essential problems are discussed to realize parallel rule firings:
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e Synchronization Problem: Rules may interfere with each others. It is

necessary to identify the rules that must be synchronized.

e Decomposition Problem: Efficient decomposition algorithms are re-
quired to partition or distribute the rules so that multiple rules can be

fired as often as possible.

They identified the possible interference between parallel execution of rules in
OPS5-like language and proposed an important tool — data dependency graph
— as the basis for synchronization analysis. By using this tool, they were able
to produce a synchronization set for each rule, which contains all rules that
must be synchronized with the rule in question. Rules that do not need to
synchronize can be fired in parallel. For dependencies that can not be resolved
at compile-time, run-time analysis is applied to increase the parallelism. This
graph based analysis method has been widely used in many other works for
similar analysis problems [80, 102, 118, 123, 125].

A less important result is their decomposition algorithm based on the
so called parallel executability between each pair of rules which measures the
number of production cycles that can be reduced by allocating the two rules
in the same partition. The algorithm given is quite ad hoc and no method of

computing parallel executability is given.

Though influential, 1&S’s method has been identified as overly re-
stricted and in many cases, may cause unnecessary synchronizations [122, 123].
Two rules can be fired in parallel, under 1&S’s requirements, if they are com-
mutative [112]. It has been demonstrated in other research such as [102, 122]
that commutativity is too strong for efficient parallel rule execution.

2.1.2.2 IRIS IRIS [118] is claimed to be a production system programming
methodology rather than a language. Motivated by an attempt to solve the
problems of parallelizing production systems reported by Gupta [55], Pasik de-
veloped several techniques for reducing the software complexity and improving
the parallelism in production systems.

Pasik proposed to partition a program into rulesets consisting of in-
dependent rules that can be fired in parallel. An external control mechanism
is employed to invoke rulesets explicitly. A sequence of rules that always fire
in serial are rewritten into a macrorule. Table-driven rules are used to provide

knowledge representational and system maintenance advantage.
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The most interesting technique, which is probably the one contributes
the most to the effectiveness of the IRIS programs, is the technique called copy-
and-constrain (C&C). Under this technique, a rule is called a culprit rule if it
takes substantially more computation time to match and generate instantia-
tions. This type of rules cause severe load balance problem in a multiple rule
firing environment. The C&C technique is to replace culprit rule with an equiv-
alent set of smaller independent rules which require less computation time. This
technique proved to be quite effective not only in the IRIS production systems
but also in other languages like CREL [80, 102] as well.

2.1.2.3 Ishida’s Work Ishida has provided implementation methods and a
parallel programming environment for multiple rule firing production systems
[67, 68, 69]. The proposed methods combine compile-time and run-time depen-
dency analysis and form the set of parallel executable instantiations using an
incremental algorithm. Both paired-rule conditions and all-rule conditions (i.e.
cyclic conditions) are used whenever appropriate for detecting interference.

The parallel programming environment provides language constructs
and a simulation environment which in turn consists of an analyzer and a sim-
ulator. The construct of ruleset is introduced to form group of rules such that
different conflict resolution strategies can be defined. A new conflict resolution
strategy called DON’T-CARFE is added to declare that rules in a ruleset are
to be fired in parallel. A focusing mechanism is then provided for ordering the
priority between rulesets. The simulation environment is used to obtain the
performance results of the proposed methods. The compile-time interference
analysis results, generated by the analyzer, are used in the simulator together
with run-time analysis to achieve the most effective results.

2.1.2.4 Schmolze’s Work Schmolze has conducted a series of research on
multiple-rule execution systems in both synchronous and asynchronous envi-
ronment [122, 123, 124, 125]. Their framework is generally taken from [70]
and improve upon 1&S’s method. The basic approach is based on serializabil-
ity. The parallel execution of multiple rule instantiations is serializable if there
exists some serial execution of the same set of rule instantiations that would
produce the same result. They called the problem of guaranteeing that each
execution in a multiple-rule execution system is serializable the serialization
problem.

Two causes of non-serializability are identified:
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e Disabling: A set of instantiations, if executed in parallel, may disable
each other. In such a case, the execution is not serializable.

e Clashing: If the order of the execution of the actions of multiple rules
is not carefully controlled, two types of non-serializable effects may occur
which is collectively called clashing.

The first type can occur if one rule can add a WME that the other rule
can delete and one rule can disable the other. If both rules are executed
simultaneously, non-serializable result may occur.

The second type can occur if one rule can add a WME that the other rule
can delete and the actions from two rules are executed in an intermingled
order. Again, the result of parallel execution may not be producible by
any serial execution.

Examples are provided in the paper for both cases and it is instructive to read
through them and try to provide additional examples.

The possible non-serializable effects due to disabling can be avoided
by preventing the parallel execution of certain pairs of instantiations. The
SELECT phase of the production system cycle is modified to prohibit the co-
execution of any pair of instantiations that is critical to a cycle of disabling
relations among instantiations.

Clashing is avoided by either prohibiting certain rule instantiations
from co-executing as in the approach for disabling, or by imposing a partial
order on the execution of actions of selected instantiations in the ACT phase.

The model is extended to asynchronous execution environment [125]
where rules and WME’s are physically distributed among several processors.
The possible causes of non-serializability are still the same and the solutions are
based on the same principles as in synchronous environment. A new problem
which is unique in distributed environment is the WME inconsistency problem.
Since the working memory is distributed, temporary inconsistency may occur
which can lead to non-serializable effects. The inconsistency problem is solved
by a simple protocol similar to the two-phase locking protocol [11, 40].

2.1.2.5 Kuo and Moldovan’s Work Kuo, Moldovan, and their colleague
have developed a parallel inference environment under the RUBIC project at
USC for the analysis, simulation, and execution of parallel production programs
[82, 81, 83, 84, 105, 106].

Two problems that must be solved by a multiple rule firing system
are identified:
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e Compatibility Problem To avoid interference between concurrently
executing rule instantiations, a system must determine which rule in-
stantiations are compatible, i.e. they do not interfere with each other.

e Convergence Problem Firing only compatible rule instantiations does
not guarantee the correctness of the final solution because the system
may search down a wrong path. The convergence problem is concerned
with the control of multiple rule firing such that correct results are always
guaranteed.

The multiple-contexts-multiple-rules (MCMR) model is proposed to address the
problems at both context and program levels. At the context level, contexts
are divided into sequential and converging contexts by using a set of UNITY-
style [22] proof logics. Rule instantiations in a sequential context must be fired
serially while those in a converging context can be executed in parallel without
error. At the program level, only compatible contexts are activated in parallel
such that the control flow of the program is not violated. Simulation results on
the RUBIC simulator [106] show that the MCMR model performs better than

both the rule dependence model and the single-context-multiple-rules model.

2.1.2.6 CREL It has been reported that the semantics of OPS5 production
system language is not suitable for parallel execution [102, 124]. A natural way
to cope with this problem is then to modify the OPS5H language so that the
language is suitable for parallel execution. Design a completely new language

also suffices. CREL [80, 102] is the result of an effort taking the first approach.

The syntax of CREL is identical to OPS5 but the semantics is differ-
ent. Rules are executed asynchronously. CREL programs that run correctly
in a sequential environment are guaranteed to run correctly in a parallel envi-
ronment. The correctness of parallel execution is also based on serializability.
A bipartite data dependency graph adopted from [70] is used in dependency
analysis of rules. Two types of interference between rules are identified as spe-
cial properties of the dependency graph. An algorithm is provided to find the
mutual exclusion sets in a program, which are defined to be sets of rules that
cannot be statically determined to be executable in parallel and thus require
synchronization. Parallel execution is then guaranteed to be serializable if mul-
tiple rules selected from the same mutual exclusion set for parallel firing do not
form a cycle with conflicting interferences. For running in an asynchronous en-
vironment, the synchronization set is defined to be a set of rules where global
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synchronization is needed to ensure serializability. It is shown that a synchro-
nization set is actually the maximum cycle among mutual exclusion sets where
all synchronization is needed. The partition of rules by synchronization sets
is then having the desired property that global synchronization is no longer
needed among different partitions for correct execution. A program can thus
be executed completely asynchronously.

Another contribution of this research is the optimizing transforma-
tions performed on programs to further increase the available parallelism. Sev-
eral transformation techniques are developed and proved to be quite effective.

2.1.2.7 SPAM/PSM SPAM/PSM [61, 95] is not a production system lan-
guage. Instead, it is a high-level vision system implemented as a production
system. The reason why we want to discuss it here is that the concept of
task-level parallelism promoted by SPAM/PSM is actually a form of semantic
level parallelism. Task-level parallelism refers to parallelism inherent in the
given task. It is certainly application specific and requires the programmers to
provide the necessary knowledge for the exploration of the parallelism.

Three dimensions for task-level parallelism are identified:

o Implicit vs. Explicit The parallelism can be implicit such that the
system or the compiler must extract parallelism out of the program code.
On the other hand, explicit parallelism refers to providing explicit infor-
mation for the system to explore task-level parallelism.

e Synchronous vs. Asynchronous A rule system can be executed either
synchronously following the recognize-act cycle, or asynchronously if no
global synchronization in the resolve phase across processors.

e Distribution of Rules and WME’s Either rules or WME’s can be

distributed across processors. Or, there can be no distribution at all.

SPAM/PSM is a explicit and asynchronous system with WME distribution.
The task-level parallelism is achieved by following a design methodology which
systematically decomposes the given task into levels of subtasks for parallel
execution.

The SPAM/PSM architecture and methodology proved to be quite
effective in the vision domain and was able to achieve a 12-fold speedup on 14
processors [61]. It was also reported that the framework seems most suitable
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for parallelizing knowledge-intensive systems that exhibit weak interaction be-
tween the individual subtasks of the task for which vision problem is a perfect
example. However, it is not clear whether this approach is equally effective on
other domains as well.

2.1.2.8 PARULEL Among all the multiple rule firing production systems,
PARULEL [139, 143] is probably the only one that makes use of meta-level
knowledge in forming parallel executable rule instantiations. Like SPAM/PSM,
it is another example of using semantic level knowledge in multiple rule firing
production systems. However, the approach taken is completely different from

ours.

The most distinctive feature of PARULEL is that it is a two level
system. Domain rules are for encoding domain knowledge while meta-rules
(or redaction rules), on the other hand, are used to select parallel executable
rule instantiations. The way meta-rules are used in PARULEL is quite unique
in the literature. Programs are executed through the following cycles until a
fixpoint if reached:

Match All domain rules are matched to form the conflict set.
Redact Incompatible rule instantiations are redacted by the meta-rules.

Fire All remaining rule instantiations are fired in parallel.

In other words, meta-rules are used to eliminate incompatible rule instantia-
tions from the conflict set so that the resulting set of instantiations can be fired
in parallel without error.

Naturally, the use of meta-rules is the most important feature in
PARULEL. Programmers provide application specific control knowledge in a
similar way as domain knowledge, i.e. by way of using rules. This results in a
both uniform and flexible system. However, the responsibility of writing correct
meta-rules to guarantee the correctness of the final result is completely on the
programmers. The run-time overhead of matching and executing meta-rules
can be substantial.

2.1.2.9 Neiman’s Work UMass Parallel OPS5 [109, 110] is a Lisp-based
OPS5 that support both parallel matching and multiple-rule-firing. Neiman
points out the significant effect of scheduling overhead and the cost of guar-
anteeing serializability on the performance of parallel rule-firing production
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systems. It is reported that run-time interference detection can impose an
approximately 10% serial overhead on the execution. Synchronous rule firing
results in even more serial bottleneck.

To reduce the scheduling and synchronization overhead, as well as the
cost of guaranteeing serializability, Neiman combines a task-based scheduler
and an asynchronous rule-firing policy with a weaker notion of serializability
[111]. Rule instantiations may be associated with high-level tasks which can be
executed asynchronously with one another. The asynchronous rule-firing policy
executes rule instantiations as soon as they are generated. Correctness is en-
sured with language mechanisms in the design phase and a locking mechanism
at run time.

In comparison with Neiman’s work, we completely eliminate the need
for run-time interference detection. Locking is minimized by generating inde-
pendent and parallel executable rule instantiations directly. The decomposition
abstraction mechanisms are among the first to provide general constructs for
programming in parallel.

2.1.3 Hardware Approaches

When software approaches fail to deliver satisfactory results, hard-
ware approach is an immediate alternative. Many architectures and machines
for production systems have been proposed over the past decade. Only a small
portion of it have been actually implemented. As early as 1980, Forgy has stud-
ied the possibility of implementing production systems on Illiac-1V [42]. The
Concurrent Inference System (CIS) developed at MIT [15] is a forward- and
backward- chaining system implemented on the Connection Machine. DADO
[140] is a tree-structured machine architecture that employs the TREAT al-
gorithm for parallel matching. Hardware prototypes for both DADO and the
subsequent DADO2 [138] have been actually constructed. PESA-I, proposed
by Schreiner and Zimmermann [128], is a distributed pipelined architecture
implementing the Rete algorithm but without the need for any central sched-
uler or task queue. Simulation results show that 8000 rule-firings per second
can be achieved. The Production System Machine (PSM) project at CMU is
probably the most extensive research that studies the implementation of pro-
duction system on both shared-memory [57] and message-passing architectures
[1]. Based on the hardware available at that time, a shared-memory archi-
tecture is suggested to explore fine-grained parallelism in the Rete algorithm
[56]. For executing the DRete algorithm discussed earlier, a special machine
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architecture called CUPID [73] is designed to maximize the performance. The
machine is designed to parallelize only the match phase while leaving a host
computer to perform the conflict resolution and act phases. On the other hand,
the RUBIC architecture and environment developed at USC [106] exploits the
MCMR model of parallel production system mentioned earlier which is capa-
ble of activating multiple contexts and multiple rule instantiations in parallel.
Finally, a parallel processing scheme called DYNAMIC-JOIN with associated
parallel architecture is proposed by Oflazer [114]. The main idea behind the
scheme is to reduce the variance in processing time of different rules. The
reduction is made possible by a new state representation of rules and WMEs
such that all possible partial matching information is included and be evenly
distributed across processors. Again, the proposed architecture has not been
actually implemented so far.

As a summary, hardware approaches have not offered a convincing
success over software approaches. This may explain the reason why only a
small portion of it has been actually implemented.

2.1.4 Other Approaches

In search for new approaches of implementing production systems,
some other methods have also been investigated. Gaudiot and Sohn employ the
so-called macro data-flow approach to implement the Rete algorithm [49, 135].
A data-flow approach is actually quite natural since Rete algorithm is basically
a data-flow algorithm. A 17-fold speedup is reported on a macro data-flow mul-
tiprocessor simulator with 32 PEs. Another completely different approach is
the so-called connectionist production systems which employ the connectionist
architecture (i.e. neural network) to implement production systems. Galant
[48] and Sohn and Gaudiot [134] both adopt local representation as the basic
system architecture. Touretzky and Hinton introduce a different architecture
called distributed connectionist production systems (DCPS) [153]. Sohn and
Gaudio later on introduce a scheme, called hierarchical representation [133],
that combines the local and distributed representation techniques.

2.1.5 Remarks

Even with such an extensive research effort, to effectively exploit the
parallelism in production systems has been known to be very difficult. The re-
sults have not been quite to the expectation. The speedup achieved by systems
with real implementation is quite limited, only about 10-fold, no matter how
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many processors are used. The key reason is that the most valuable source
of parallelism — the parallelism exhibited in the application domain — has
been almost completely overlooked. This level of parallelism, which resides in
the semantic characteristics of applications, is exactly the unexploited area of
parallel production systems we intend to investigate in this dissertation.

2.2 Rule Languages in Database Systems

Rule languages also appear in database context. It is fair to say
that the development of database production system languages is driven by
the demand of integrating database and expert system technology. In general,
there are two approaches toward a solution to this problem:

e augmenting a database system with rule constructs, or

o extending a production system with interface to databases.

Even though our research is targeted on main memory production systems,
this line of research is still interesting to us because many problems that need
to be solved are quite similar in these two contexts. In this section, we review
some of the systems and languages with emphasis on the semantics of the rule
languages and how the problem of concurrency control is addressed.

2.2.1 RPL

RPL (Relational Production Language) [33] is a proposed language
for the integration of production system language and relational database. It
was motivated by the similarity of the LHS of production rules to relational
queries observed by Woods [163]. The goal is to enable a production system
to directly access any conventional database that support a relational query
language interface. The use of relational data model also provides a formal basis
which is not usually seen in other conventional production system languages.

The syntax of RPL is based on SQL. OPS5 is used as a representative
production system language for comparison. The data structures for an RPL
program are defined using a relational DDL as in most relational database
systems. What makes RPL different from other relational database systems is
its addition of production rules for the manipulation of tuples. The LHS of a
RPL rule is any valid SQL query which is relational complete. The RHS is then
a collection of insert, modify, and delete tuple commands which correspond
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directly to the make, modify, and remove actions of OPS5. It is the power
of the relational complete LHS that makes RPL strictly more expressive than
OPS5. The relational basis also makes it quite suitable for integration with
relational databases.

Even though, as far as we know, RPL has never been fully imple-
mented, the language proposal is quite influential. It demonstrates the poten-
tial benefits and feasibility of integrating database and expert system technol-
ogy. It is also a good example of showing the advantage of having a formal
model underlying a language design.

2.2.2 DIPS

Like RPL, the DIPS system [120, 130, 131] represents another example
of using database technology in supporting production rules functionality. Two
special data structures are used for the processing of OPSH rules in a database
environment: the Working Memory Relations (WM) and the Condition Rela-
tions (COND). Each class of WME’s is stored as a WM relation. All condition
elements in rules that refer to the same class of WME’s, say C, are represented
as tuples in a corresponding COND-C relation. In this way, both matching
and instantiation generation can be done using database techniques. In partic-
ular, for the matching of variable-free condition elements, a simple selection of
the corresponding COND-C relation is sufficient. For condition elements with
variables, the necessary join of related WM relations is performed incremen-
tally with intermediate results stored as tuples called matching patterns in the
COND relations. From the parallel processing point of view, this approach is
better than the RETE approach [44] since the propagation of changes can be
performed in parallel to all the COND relations. More important, the conflict
set 1s updated first in contrast to the RETE approach where conflict set is up-
dated after the propagation is completed. Rules can thus be executed earlier

than the RETE approach.

For the processing of applicable rules, since the matching patterns do
not include identifiers to corresponding WME’s, an additional selection of the
corresponding tuples from the WM relations must be performed. The matching
patterns provide necessary information for the selection criteria. The execution
of applicable rules is then proceeded by treating the RHS actions of each rule
as a database transaction. The concurrency control mechanism is then used to
manage the execution of multiple transactions (i.e. rules) simultaneously. The
correctness of concurrent execution is, as usual, based on serializability. Serial-
izable execution is enforced by specialized locking mechanism. The conditions
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under which relations must be locked are specified and a logical commit point
is defined after which the execution of a rule is no longer affected by other
rules.

2.2.3 The HiPAC Project

The HiPAC project [28, 29, 66, 93] is a representative research of
the so-called active database systems. In here, we will concentrate only on the
FEvent-Condition-Action (ECA) rules proposed by the project. In particular, we
will discuss the knowledge model and the execution model of HIPAC designed
to support the ECA rules.

The concept of ECA rules is central to the HIPAC knowledge model.
A rule in the model is represented as an object with the following attributes:

[93]

Event The event that triggers the rule.
Condition A collection of queries to be evaluated when the rule is triggered.
Action A sequence of operations to be executed when the condition is satisfied.

E-C Coupling A coupling mode that specifies when the condition is evaluated
relative to the transaction that signals the triggering event.

C-A Coupling A coupling mode that specifies when the action is executed
relative to the transaction in which the condition is evaluated.

The semantics is quite straightforward: when the event occurs (is signalled),
evaluate the condition; and if the condition is satisfied, execute the action.

The event that triggers a rule can be a primitive event such as a
database operation, a temporal event, or an external event. Primitive events
can be combined to form composite events using disjunction and sequence op-
erators. In the HiPAC execution model, rules are fired as nested transactions.
When a rule is triggered, a transaction is created to evaluate the rule’s con-
dition. If the condition is satisfied, another transaction is created to execute
the rule’s action. The coupling modes control the time when the condition or
action is scheduled to be executed.

If more than one rule is triggered, a condition evaluation transaction
is created for each rule. For the set of rules with the same E-C coupling
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mode, the evaluation of conditions will be executed concurrently. Similarly for
the execution of actions. In this way, rules are fired concurrently as sibling
transactions and the HiPAC transaction manager is responsible for insuring
serializability. Since the action of a rule may contain operations that trigger
other rules, cascading rule firings are possible and produce a tree of nested
transactions.

The HiPAC rule system is interesting in the use of an object-oriented
knowledge model to represent rules. However, it is a passive objects passive
rules(POPR) model in the sense that both data and rules are passive entities
to be interpreted by the HiIPAC system. Since the database transaction mech-
anism is used to evaluate and execute the rules, serializability is still the sole
correctness criteria.

2.2.4 The POSTGRES Rule System
POSTGRES [39, 145, 151] is one of the so-called next-generation

database systems [21] designed to support non-traditional applications such
as CAD/CAM, CASE, office automation, and engineering applications. The
fundamental goal of POSTGRES is to provide data, object, and knowledge
management services for such applications. Instead of giving a complete de-
scription of POSTGRES, we will again focus on the POSTGRES rule system
[146, 147, 148, 149, 150].

The POSTGRES rule system is designed to be a general-purpose
rule system in the sense that all the functions of view management, triggers,
integrity constraints, referential integrity, protection, and version control, can
be achieved using the rule system. Therefore, it is tightly integrated with the
POSTGRES query language POSTQUEL.

Similar to the HIPAC rule, a POSTGRES rule is triggered by event
which may be retrieve, replace, delete, append, new (i.e., replace or append) or
old (i.e., delete or replace) to a data object. The condition to be evaluated after
arule is triggered is an arbitrary POSTQUEL qualification with no additions or
changes. The action part is a set of POSTQUEL commands. In general, rules
are for specifying additional actions to be taken as a result of user updates.
These actions may activate other rules and result in forward chaining style of
reasoning. On the other hand, POSTGRES allows backward chaining style
of rule firing for deriving information from existing data. The programmers
must determine and specify whether forward chaining or backward chaining is
desired.
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For the implementation of POSTGRES rules, two complementary
methods are provided. The first is through record level processing which is
called when individual records are accessed, deleted, inserted or modified. The
second one is through a query rewrite module that converts a user command
to an equivalent form which is suitable for optimization and efficient execution.
The record level processing method is especially efficient when there are a
large number of rules each of which covers only a few data instances. On the
other hand, the query rewrite method works better if there are a small number
of rules with large-scope. A rule chooser is planned for suggesting the best
implementation for any given rule. Different policies to determine when the
rules are actually activated similar to the coupling modes of HiPAC rules are
also being explored.

2.2.5 Set-Oriented Rules in Starburst

The goal of the Starburst project [58, 59, 88, 89, 91, 129] at IBM
Almaden Research Center is to build from scratch an extensible DBMS that
supports new applications as addressed by the next-generation database sys-
tems [21] and, at the same time, provide a testbed for the research and ex-
periments of new DBMS technologies. In contrast to other next-generation
database systems that are object-oriented, functional, or based on nested re-
lational model, Starburst is based on relational model and extensions to SQL.
This allows Starburst to take advantages of proven relational database tech-
nology and facilitates porting existing applications to Starburst. A distinctive
feature of the Starburst project is the effort to make it extensible at every level.
In here, we will discuss the extension of Starburst to include user-defined rules

[159, 160, 161].
Similar to HIPAC and POSTGRES rules, a Starburst rule has a trig-

ger clause, a condition clause, and an action clause. A rule is triggered by
one or more SQL operations (INSERT, DELETE, or UPDATE) on a relation
which is called the rule’s trigger table. The condition is evaluated at the end of
the transaction that triggers the rule. The rule’s condition clause is any SQL
query on the database state or on a special type of relations called transition
tables. Transition tables maintain records of the most recently updates to the
rule’s trigger table so that the rule can reference the data that are changed by
the triggering operation. When the result of the query in the condition clause
is nonempty, the action clause, which is a sequence of database commands, is
executed. The actions may abort the transaction or perform further modifica-
tions to the database, which may in turn trigger the same or other rules. Any
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modifications made by the actions are part of a transaction and can be rolled
back. In case that more than one rules are triggered and satisfied, one rule is
selected for execution after which other rules are reevaluated for eligibility. The
process continues until no rules are satisfied. A partial order may be specified
on the rules with the precedes and follows clauses to assign relative priority.

In addition to the user-defined rule which can only be triggered by
built-in operations on a stored table, the Starburst’s Alert trigger system [127]
extends the rules system a step further to allow user-defined Alert rule to be
triggered by any event(s) which may be an invocation of a user-defined method
that may update many tables.

Even though the Starburst rules system is not a multiple rules firing
system, it is still quite relevant to our work because Starburst rules are inher-
ently set-oriented in the sense that they can be triggered by arbitrary sets of
changes to the database and may perform sets of changes. The Starburst expe-
rience also pointed out that to achieve extensibility, it must be a fundamental
goal and involve every aspect of the system design.

2.2.6 LDL
LDL (Logic Data Language) [24, 25, 108, 154] is a Datalog-like lan-

guage extended with constructs such as negation, updates, control structures,
and type constructors for developing intelligent data-intensive applications.
The goal is to design a logic-based query language that combines the bene-
fits of logic programming languages such as PROLOG, with the ease of use,
the suitability for parallel processing, and secondary storage management of the
relational systems. The LDL system is probably the first efficient realization
of the concept of deductive databases [47].

Instead of describing the language in details, we will highlight the
most important features of LDL, especially those that are related to our work.

e Unlike PROLOG, LDL is based on pure Horn clause logic. The depen-
dence of order of rules in a program or subgoals within a rule has been
removed. All extra-logical constructs (such as the cut) are discarded and
the sequential execution-control model of PROLOG is no longer assumed.
This results in a pure declarative language with clean semantics.

o Complex terms can be used in both facts and rules. This allows data to
be structured and inferenced upon in a more natural and organized way.
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e In order to integrate with relational database systems, sets data objects
are introduced which can be used directly in the facts or rules. Sets
can be explicitly enumerated or generated by rules. The response to a
query is the set of all possible answers that can be deduced from the base
relations. Aggregate operations such as cardinality can be used on the
set objects.

o A negation with set-difference semantics is used instead of the negation

by failure semantics of PROLOG [90].

e Definition and update facilities are provided for database schema, base
relations, as well as derived relations.

As a related research to our work, the most interesting part of the
LDL approach is its compilation techniques. The compilation process consists
of the phase for compiling the rule program and the phase for the compila-
tion and optimization of queries. The rule program is first transformed into
a predicate connection graph [71] which is for storing the relationship between
terms and the clause-heads that can potentially be unified. The structure is
also used to maintain the entry points for queries. Recursive rules are com-
piled by means of naive evaluation and magic sets methods [7, 8]. Then for a
given query, the system generates all possible proof plans in the form of proof
schema and compiles a single relational algebra program (RAP) which, when
executed, produces the set of all possible answers to the query. The RAP is
further optimized using relational database techniques before execution. The
final answers may be combined with intermediate results and proof schema
to provide explanations about how the answers are derived. While other de-
ductive database systems usually need a considerable amount of query-time
deductive search to derive the answers, the LDL approach transfers much of
this rule manipulation cost from query-time to compile-time. Together with
the additional optimization phase, this approach has been proved to be quite
effective [25].

Other techniques that are also important to LDL include the unifica-
tion of complex terms, the compile-time analysis to detect unsafe queries, and
the compiling of safe queries. These are discussed in [165, 166].

2.2.7 RDL1 and RDL/C

Unlike LDL [108, 154] or other deductive database systems [155],
RDL1 [32, 76] rules are not in clausal form in the style of PROLOG or DAT-
ALOG, but closer to forward chaining rule based languages like OPS5. Again,
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the design goal is to integrate production rule language with a relational DBMS.
A rule consists of a condition part which is any tuple relational calculus expres-
sion with the constrain of being range restricted, and an action part which is a
sequence of insertions and deletions of tuples in the database relations. The se-
mantics of a RDL1 rule is defined as a mapping over database states. First, the
valuation of a condition is an assignment to the constants, functions and free
variables in the condition. A free variable x over a relation R is assigned with a
tuple in the domain of R. Then the condition is interpreted under the current
database state to determine whether the condition is satisfied. Similarly, the
valuation of an action is the replacement of tuple variables with tuples from
the proper domains. When the condition is evaluated to true, the tuples val-
uated in the action are inserted or deleted to the corresponding relations. An
important feature of RDL1 rules is the atomic semantics of rule execution. The
action part is not performed as a sequential execution of insertions and dele-
tions. The whole action is considered as an atomic database update. Therefore
the order of insertions and deletions are irrelevant. Only net effect is actually
materialized. A finite set of rules defines a rule program which is executed
in interpret-select-execute cycles similar to OPS5. Only one rule whose inter-
preted condition is true is selected for execution. This process repeats until a
stable state is reached which is a state in which either every interpretation of
every condition is false or no new database state can be produced using any
action.

The most interesting feature of RDL1 is the modeling of rules using a
special type of Predicate Transition Nets (PrTN) called Production Compila-
tion Network (PCN) [31]. Structurally, a PCN represents the interrelationship
between rules and relational predicates as specified by a rule program. It is
also a pre-compiled form of the rules and allows incremental updates to the
rule base. Dynamically, a PCN is also an execution model for the program it
represents. The process of valuations and cyclic execution are actually done
on the PCN. The net-based approach not only provides an efficient way of ex-
ecuting rule programs, it also means that all available techniques and tools for
the analysis, transformation, and optimization of Pr'TN can be used on PCN.
The reader interested in the details of PCN, including how to transform a rule
program into and execute it on a PCN, is referred to [31, 32]. Another facility
provided by RDL1 is a control language for annotating PCN with information
of flow of control and the sequence of rule firing. For a complete and formal

description of the language, see [30].
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In summary, RDL1 is a powerful rule language that supports nega-
tions in conditions and allows sequence of insertions and deletions in the ac-
tions. It has been proved to be more expressive than DATALOG" [132]. The
PCN model and the compilation technique provide a good basis for rule/query
optimization and efficient execution. Though primitive, the control language
offers programmers a way of specifying the order of execution of the rules and
is also a tool for describing and developing query processing strategies and
transformations over the PCN.

Even though the RDL1 rule programs and the associated PCNs are
potentially parallelizable, it is not a multiple rule firing system since only one
rule is selected for execution in each cycle. Furthermore, two main limitations
of the RDL1 approach are reported [75]:

o The rule interface is DBMS-dependent.

e The rule language does not provide programming features usually found
in expert system shells such as control structures, main memory variables,
connections with a procedural language, and user interaction.

In response to these deficiencies of the RDL1 approach, a new rule language
compiler called RDL/C [23, 74, 75] is developed which not only supports proce-
dural constructs and C language interface, but also enable a program to run on
top of any relational DBMS because the interface between the rule language
and the DBMS is SQL. More importantly, RDL/C provides language con-
structs, execution model, and run-time environment for supporting rule-level
parallelism. We now briefly describe the RDL/C approach.

RDL/C is derived from RDL1. The language supports both declara-
tive programming in the form of production rules, and procedural programming
based on C code. The original design of RDL/C does not include constructs
for parallelism. Similar to RDLI, the condition part of a RDL/C rule is a
tuple relational calculus expression with the declaration of range variables in
front. The expression is to qualifies the tuples for participating in the rule’s
firing. The actions can be insertions, deletions, C-like variable assignment and
external procedural calls. The semantics of RDL/C rules is set-oriented in
the sense that when a condition is evaluated against the database, the set of
instances satisfying the condition is returned. Similarly, when an action is ex-
ecuted against the database, it is executed for all the values which appear as
arguments in the action. In this respect, RDL/C rules are similar to a con-
struct we provide called ALL combinator. For the execution of a rule program,
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one rule is randomly selected for execution among all firable rules in each cycle.
Program execution terminates when no rule is firable. A control sub-language
is also provided as in RDL1 for explicit control over the rule execution. Two
particular expressions BLOCK and SEQ specify non-deterministic or sequential
execution.

As already mentioned earlier, the original design of RDL/C does not
include constructs for supporting parallelism. In [23] the basic design is ex-
tended to include constructs for supporting parallelism. First, on the PCN
model, which is the execution model for RDL/C language, sufficient conditions
are identified for parallelizable transitions which correspond to rules in the pro-
gram. To inform the compiler that the rule module is to be run in parallel,
the ON statement is provided to specify the servers on which the module is to
be executed. Then the PAR structure is added to the control sub-language to
specify how rules are to be run in parallel. A run-time library is provided to
actually manipulate parallelism during execution.

Though primitive, the RDL/C approach to parallelism is actually a
rudimentary form of semantic level parallelism. However, the parallelism is only
supported at the rule level and the programmer must transform application
specific knowledge into an explicit specification of partial order among rules
using the control sub-language. On the contrary, our approach is intended to be
a much more general and comprehensive one that exploits semantic parallelism
at every level of production system. The application specific knowledge is also
expressed and used in a much more natural way.

2.2.8 Gordin and Pasik’s Work

In [51, 52], Gordin and Pasik have developed several set-oriented con-
structs and showed how these constructs can be added to a DBMS implemen-
tation of OPS5. The new constructs are implemented by an extended version
of the Rete algorithm [44].

A condition element (CE) is set-oriented if it is enclosed in square
brackets. The semantics of a set-oriented CE is to match with all consistent
WME’s to be associated with a single rule instantiation. From the database
point of view, if a rule contains only set-oriented CEs, then the entire relation
with tuples satisfying the CEs is generated with the instantiation when the
rule is matched against the database. However, a LHS can contain both set-
oriented and regular CEs. In this case, the regular CEs can be considered as
partitioning the relation into smaller relations, or equivalently, the set-oriented
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CEs can be seen as combining the tuples forming the regular instantiations into
aggregated instantiations.

Similarly, a pattern variable (PV) is set-oriented if it occurs within a
set-oriented CE. The domain of values of a set-oriented PV is the set of values
occurring in the WME’s satisfying the corresponding CE. When a set-oriented
PV occurs in more than one CEs, a join is performed. When a PV occurs in
both a set-oriented CE and a regular CE, it is bound to the value in the WME
matching the regular CE. A PV in a set-oriented CE can be forced to be non-
set-oriented by listing it in the :scalar clause. The effect is to partition the
relation induced by the LHS into separate instantiations. Aggregate operators
such as count, min, maz, sum, and avg are provided for more expressive LHS.

For the RHS actions, two types of capabilities are provided for access-
ing set-oriented PVs or CEs. First, aggregate operations such as set-remove
and set-modify are added to operate on an entire set. Then a foreach iterator
construct is provided to execute its body on each subset of the instantiation,
having a distinct value for a specified set-oriented PV. The partitioning is sim-
ilar to the SQL group-by and the iterator can access the items in ascending,
descending, or default order. By matching on a set of values and iterating over
them, subinstantiations correspond to distinct values of the set-oriented PV
can be access in a single rule firing. The foreach operator can be nested to
have compositional effect. The operator can also be applied on set-oriented
CEs with the semantics of iterating through the matching WME’s rather than
values.

For the implementation, an extended version of the Rete algorithm
is developed for processing set-oriented constructs. A discussion of how to
integrate this work to the DIPS system [131] is also given to show that OPS5
with the proposed constructs can be used as the language basis for expert
database systems.

As a comparison, our approach differs in that we take an object-based
approach rather than a relational database approach. Our design is to have a
more expressive LHS and a SPMD semantics for RHS instead of the iterator
approach which is contrary to the declarative nature of production systems. As
an example of more expressive LHS, the semantics of DISJOINT construct can
not be expressed by their corresponding LHS set-oriented constructs. Most
importantly, our major concern is concurrency which is not the design goal
of Gordin and Pasik’s work. No discussion was given about the interference
analysis of rule and multiple rule firing.
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2.3 Chapter Summary

We discussed rule systems for traditional and data base applications.
The key to successful parallelism is the independence of parallel activities.
This in turn manifests itself on the disjointness of data objects accessed by the
parallel activities. We therefore conclude that the lack of mechanism for the
specification of decomposition is the main reason for the limited speedup in
previous work. A general approach toward data and functional decomposition
is required to have significant performance improvement on production system
programs. The main contributions of this research are to provide a general
framework and proper abstraction mechanisms for such purpose. Another goal
of this research is also to demonstrate that decomposition abstraction is the
missing layer which needs to be superimposed upon the familiar procedural,
control, and data abstractions to achieve truly portable parallel programming
using any language.



Chapter 3

A General Object-Based Framework

The principles of decomposition abstraction are language indepen-
dent. It is best to discuss it under a general framework rather than under
the context of any specific rule language. Such a framework must cover all
essential features of production systems. In this chapter, we propose a gen-
eral object-based framework and a generic rule notation. The intention is to
provide a language independent context for our discussion and to facilitate the

applicability of our results to any rule language.

3.1 Object Model and the Abstract Rule Notation

We have built our framework on top of a unified object model which
can be used to characterize all entities in a rule system. The basic object model
is inspired by [6, 14] and is comprised of the following sets of symbols:

A : attribute names,
C : class names,

. identifiers,

: method names,

: rule names,

<?\)§l\\

: variable names.

Definition 1 (Methods) A method definition is a triple (M, P, B) where M
is a method name, P is a set of parameter specifications, and B is the definition
of operations performed by the method (usually called the body or implemen-
tation of the method). A method invocation is a method name with necessary

parameters fully supplied. O
36
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We have deliberately left out the details of how a parameter or body
of a method is actually specified. No restriction is placed on the way actual
arguments are passed in a method invocation. These issues are not essential
to our discussion and thus our results are independent of any specific method
definition or invocation mechanism.

Definition 2 (Classes) A class defines a set of objects with similar structure
and behavior.

e INT, FLOAT, and STRING are primitive classes representing the set
of integers, floats, and character strings, respectively.

e An attribute definition is a pair (a,C') where a is an attribute name and
C is a class name.

o A set-valued attribute can be defined by adding a “«7 at the end of an
attribute name.

o A class is a triple (C,A, M) where C is a class name, A is a set of
attribute definitions, and M is a set of method definitions. O

In terms of our abstract rule notation, a class €' with attribute det-
initions (a1,C4), ..., (as, C,) and method definitions My, ..., My is defined as
follows.

class C {
attributes ((ay : C1,...,a, : Cy )
methods ( My,..., M} )

}

The sets of attributes and methods of C' are denoted by A(C) and M(C)

respectively.

Definition 3 (Objects and WME’s) Objects are defined to model WME’s.
They are the basic units of information and behavior encapsulation. Inheritance

is not considered since it is not an essential part of the production system
model.!

!However, our formalization is general enough to be extended later to include inheritance.
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o [ntegers, floats, and character strings are primitive objects.

o If ay,aq,...,a, are the attribute names of a class C' and O1,0,,...,0,
are objects, then:

O=(a1:01, a3: 0, ..., a,:0, )

is a structural object. The object is an instance of the class C.

o Objects are the generalization of WME’s. Fach object has a unique tden-
tifier associated with it. Working memory is a set of objects.

o If O1,0,,...,0, are objects of a class C, then
{01,04,...,0, }

is a set object. O;’s are elements of the set object. Note that elements of
a set object must be instances of the same class. O

Definition 4 (Rules) A rule has a triggering condition and an action com-
ponent. Conditions may be positive or negative.

o An expression is a quantifier-free first order formula.

o [fv is a variable name, C is a class name and F is an expression, then
(v : C = E) is a positive condition and —(v : C = E) is a negative
condition.

o [f P is a condition, then v(P), C(P), and E(P) denote the variable,

class, and expression components, respectively, of the condition.

o A rule is a triple (P, N, M) where P is a set of positive conditions, N is
a set (possibly empty) of negative conditions, and M is a set of method
invocations.

o A positive or negative condition is termed a condition element. The set
of all condition elements is called the antecedent. The set of method

invocations is called the consequent. O
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Apparently a rule with empty consequent has no effect, therefore M is usually
non-empty. Since methods can only be invoked on objects selected by the
positive conditions, P must be non-empty as well.

In the rule notation, if r is a rule name, P, Py,..., P, (n > 1)
are positive conditions, N1, Ny, ..., N, (m > 0) are negative conditions, and
My, My, ..., My (k> 1) are method invocations, then a rule is defined as fol-
lows with — delimiting the antecedent and consequent.

rule r {
PP, .. P,
Ny, Na,... N,
N
My, My, ..., M,

Definition 5 (Program and System) A program is a pair (C, R) where
C is a set of class definitions and R is a set of rule definitions. A rule system
is also a pair (O, P) where O is a set of objects and P is a rule program. O

3.2 Execution Model and Semantics

We specify the semantics of rules by considering rule antecedents as
queries to the working memory for selecting a consistent set of objects. The
execution of a rule system is defined in terms of state transitions between
working memory states.

Definition 6 (State) The state of a rule system is the set of objects in work-
ing memory. O

Definition 7 (Selection and Instantiation) Pattern matching is modeled
by object selection. The following definitions are defined assuming a given state

S.

o A positive condition element (v : C :: E) is satisfied in S if there exists
an object of class C such that F is evaluated to true. The object (which
can be referenced by the variable v) is said to be selected by the condition
element.
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e A negative condition —(v : C :: E) is satisfied in S if there does not exist
any object of class C' such that E is evaluated to true.

o A rule is satisfied in S if there exists at least one set of objects in S such
that all condition elements in the antecedent are satisfied. The set of 0b-
jects selected by the positive condition elements is called an instantiation
of the rule. O

Formally, a rule as defined in Definition 4 is satisfied if the following
formula is true.
Jo(P),...,0(F,) (
v(P)eC(P) N oo N o(P) eC(P,) A
E(P) N ... N E(P) A
Av(Ny),...,v(Ny) (E(Ny) V ...V E(Ng)))

Each set of n objects satisfying the formula is an instantiation of the rule.

Operationally, a rule can be considered as a query to the working
memory. The result of the query is a class whose instances are instantiations
of the rule. In other words, the set of all instantiations of a rule r, denoted
Inst(r), can be formally characterized as the set

Inst(r)={1t|t € Inst_of_-r N A0}
where Inst_of_r is the class

class Inst_of_r {
attributes (v(P): C(Py), ... ,o(P,): C(P,))

methods ( Q M(C(FP)) )
}

and 6 is the variable substitutions and A is a formula representing the tests in
the antecedent. That is,

0 = {v(P)/to(P),...,v(P,)/tv(P,) }
A = EP) N ... NEP,) A
Av(Ny),....,o(Ny) (E(Ny) V ... V E(N,)).
Note that the value of each attribute in the class is an object selected by the

corresponding positive condition element, and the methods are the union of all
methods that can be invoked on the selected objects.
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Definition 8 (Rule Firing) Let S be a state, r be a rule which is satisfied
in the state, and @ be an instantiation of r. The result of firing the rule in-
stantiation is a new state S" obtained from S by invoking the methods in the
consequent of r on the set of objects in 1. We denote such a rule firing by

S'=S5(). O

Definition 9 (Execution) An execution of a rule system is a sequence of
rule firings that transforms the system from a state to another state. A state
is a terminal state if no rule is satisfied under that state. An execution is a
terminal execution if the last state in the sequence of rule firings is a terminal
state. U

Note that an execution is not required to be a terminal execution.
This is to allow systems that do not terminate. It is also important to note
that in the definitions of rule firing and execution, no restriction is placed on
how objects are selected or on which rule instantiation to pick. In other words,
no matching technique or conflict resolution strategy is assumed.?

The framework and execution model above characterize the core con-
cepts and essential features of a sequential production system. We extend the
model to allow simultaneous firing of multiple rule instantiations.

Definition 10 (Interference) If i1 and iy are instantiations of two (possibly
the same) rules that are satisfied in a state S, then ¢y interferes with iy if any
one of the following conditions is true:

1. The execution of 11 prevents 13 from being an instantiation in the new
state resulting from i1 ’s execution, or vice versa.

2. There exist methods invoked by 11 and 15 that modify the same object. O

Since a newly created object is always assigned a unique identifier,
object creations do not contribute to any interference except when Condition 1

?In fact, our language model to be discussed later does not even have a conflict resolution
phase. The idea of generating a bunch of instantiations and then resolving the conflict
is considered a waste of computation resource. Qur approach is to generate only those
instantiation(s) that is(are) actually fired.
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is true. Identical objects with different identifiers are allowed to coexist in our
model, which is consistent with most rule languages.

We note that it is possible to weaken Condition 2 above since we
need only to avoid conflicting methods to be invoked on the same object. How-
ever, such fine-grained parallelism can be easily overwhelmed by the potential
complexity. We reserve this issue for future research.

Definition 11 (Compatibility) Two instantiations are said to be compati-
ble if they do not interfere with each other. A set of instantiations is compatible

if the instantiations are pair-wise compatible. O

Since compatible instantiations do not interfere with each other, they
can be executed in parallel. Our definitions of interference and compatibility
are similar to the corresponding definitions in [70, 80, 84, 123] which are all es-
sentially originated from Bernstein’s conditions [10] and database concurrency
control theory [11, 117]. However, we formalize it to a general object-based
context which allows any type of method instead of just the add, delete, and
modify operations as in most previous work on parallel production systems.

Definition 12 (Parallel Rule Firing) The result of parallel firing of two
compatible instantiations in a state is a new state obtained by invoking all
methods on corresponding objects of the two instantiations. Likewise, the par-
allel firing of a set of compatible instantiations I in a state S is to invoke all
methods on corresponding objects of all instantiations. The parallel firing is

denoted by 5" = S(I). O

Because of the non-interference requirement between parallel exe-
cutable instantiations, the resulting state of the parallel firing is the same as
the result of execution of the set of instantiations in sequence following any or-
der. To state it more precisely, if I = {¢1,...,4,} is a set of parallel executable
instantiations in a state S, then

SU) = S0)(,) - (15,)

where j1,2,...,7, i1s any permutation of n.
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3.3 Chapter Summary

In this chapter, we presented a general formalization of production
system on top of an object model. An abstract rule notation is introduced
to facilitate the coming discussion of language mechanisms in a language in-
dependent way. The greatest benefits of this approach are the simplification
of discussion and the general applicability of results. It will be clear in later
chapters that our framework and rule notation greatly simplify the presenta-
tion of semantics of our language mechanisms. We will also demonstrate the
generality of our results by showing how to adopt our mechanisms to convert
sequential rule languages into parallel rule languages.



Chapter 4

Decomposition Abstraction Mechanisms

Decomposition abstraction mechanisms are language mechanisms that
assist the programmers in the abstraction process for parallel decomposition.
Even though language constructs for parallel decomposition have been in ex-
istence for quite a while, none of them seem to fit under the context of pro-
duction system. This is primarily due to the fundamental differences in com-
putation model. The design of decomposition abstraction mechanisms for pro-
duction system must be in harmony with the essence of production system
and its distinctive computation module. In this chapter, we first present a
systematic analysis of the types of parallelism in production systems to de-
rive a set of design criteria. We then introduce a small but powerful set of
language-independent abstract mechanisms for parallel decomposition. Actual
constructs for parallel decomposition in any rule language can be easily de-
signed by adopting these mechanisms.

4.1 Parallelism in Multiple Rule Firing Systems

When rule instantiations are allowed to fire in parallel, various oppor-
tunities for parallelism arise at different levels of the production system model.
This analysis of parallelism is different from Gupta’s analysis [55] in that we
examine this issue from a semantic point of view. In particular, we focus on
the patterns of computation and programming style that naturally map to
the familiar notions of data and function decomposition. Unlike such notions
like node parallelism from Gupta’s analysis, our analysis is independent of any
match or rule evaluation scheme.

4.1.1 Data Level Parallelism

In a sequential environment, WME’s are processed one at a time. By
data level parallelism we mean that different sets of WME’s can be processed
in parallel similar to the SPMD or data parallel systems [27, 63]. However,
unlike other languages where data resides in regular data structures, this type

44
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of parallelism in the context of production systems usually manifests in the form
of multiple (either all or subset of) instantiations of the same rule. Specifying
this type of parallelism with data declarations is not likely to work since the
same set of WME’s may need to be processed sequentially for some rules while
they may be fully decomposable for some other rules. We will show in later
sections that declarations on a per rule basis turn out to be the most natural
way for covering this level of parallelism.

4.1.2 Rule Level Parallelism

This is the concurrency observed when instantiations of multiple rules
are fired in parallel. It can be the result of both data and function decom-
position depending on whether the rules are designed for similar or different
functionalities. For exploiting this level of parallelism, the main issues are the
possible interference between different instantiations and the correctness of par-
allel execution. Straightforward specification is clearly inappropriate because
the complexity of reasoning about concurrency and interference is likely to be
too heavy a burden for the programmers. The preferred way is to have the
language system derive the concurrency, possibly with the help of a minimum
amount of semantic information provided by the programmers, and maintain
the correctness of parallel execution. We will show that relationships between
data objects provide the key gateway to the exploitation of rule level parallelism
in production systems.

4.1.3 Program Level Parallelism

Finally, a problem can often be decomposed into subproblems such
that part or all of them may be processed in parallel. This corresponds to
the program level parallelism where the structuring of program provides valu-
able hints for function decomposition. However, the basic production system
model does not have any notion of modules or rule groups, which is certainly
a disadvantage from this point of view. Mechanisms for rule structuring would
certainly help the programmers in program development and the system in
uncovering this type of parallelism.

4.2 Design Criteria

From the analysis of the types of parallelism presented in the previous
section, we derive a set of criteria that must be met by any proper decomposi-
tion abstraction mechanism for a parallel rule language.
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What vs. How The mechanisms must be declarative in nature. Specify
what type of decomposition naturally exhibits the parallelism in the application
independent of how the decomposition is actually achieved.

Consistent with Pattern Matching Paradigm The whole idea of produc-
tion system is centered around pattern matching. The mechanisms for parallel
decomposition must also be expressed under the pattern matching paradigm.

Conciseness As simple as possible, but no simpler. The mechanisms must be
conceptually simple and intuitively appealing. The burden of reasoning about
concurrency placed on the programmers should be minimized to the extent
that only natural parallelism in the application semantics need be considered.

Versatility The set of mechanisms must be semantically rich and powerful
enough to express as many types of parallelism as possible.

Compatibility The mechanisms should be compatible with sequential se-
mantics. All sequential programs should still run correctly. Parallel programs
should be able to run correctly even if executed sequentially.

Effective Implementation Any set of mechanisms for parallel decomposi-
tion should be feasible.

4.3 Parallel Structuring Mechanisms

Following the design criteria, we propose a set of abstract mechanisms
for expressing decomposition strategies. The formal semantics of the mecha-
nisms are specified under our object-based model with illustrative examples
using the abstract rule notation.

4.3.1 Set Selection Conditions

In most (if not all) sequential rule languages, each positive condition
element matches a single data object from a specified class. Then actions in
the consequent are applied on the instantiation composed of selected objects,
one from each positive condition element. This implies that only one object
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from each class can be processed at a time. On the other hand, it is quite nat-
ural for an application to adopt a basic problem solving strategy such that all
objects satistying certain conditions in a specified class need to be processed.
This apparent mismatch between the language model and the application se-
mantics is almost always circumvented by firing the same rule repeatedly until
all qualified objects have been processed. For example, the rule

rule Raise_Poor_ Employee {
( d: Department ),
(e: Employee :: e.dept == d.name A e.salary < 10000 )

e.salary = e.salary + e.salary /10

}

will fire repeatedly on each “poor” employee in all departments to raise his/her
salary by 10%. This type of rule can be found in almost all rule programs. If
each employee belongs to exactly one department, the rule actually represents
a perfect case of DOALL loop [167] in which parallelism can be fully exploited.
On the other hand, this is not at all obvious for many parallelizing compilers of
sequential rule languages since the possibility of interference can not be ruled
out at compile-time. If the application semantics implies that no interference
can occur, then there is no reason to be so conservative. What we need here is
a mechanism for specifying the exact semantics of the application as to whether
a rule is to be applied on all or just the selected object one at a time.

For achieving the purpose above, we found that enriching the seman-
tics of the rule antecedent to allow a positive condition element to match not
just one but all satistying objects solves the problem naturally and elegantly.
Using the abstract notation and the example above, the rule below specifies

that for a department d, select all poor employees and raise the salary of each
one of them by 10%.

rule Raise_All_Poor_ Employees {
( d: Department ),
[ e: Employee :: e.dept == d.name A e.salary < 10000 ]

e.salary = e.salary + e.salary /10
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A positive condition element enclosed in square brackets is a set se-
lection condition denoting that all qualified objects should be processed by the
consequent and that they can be processed independently. In other words,
the selected set of data objects is fully decomposable and can be processed in
parallel.

The square bracket notation is adopted from [52] for its conciseness.
However, the semantics is rather different. A relational semantics was taken in
their set-oriented constructs to facilitate the integration with database systems.
Our set selection condition is a mechanism for expressing parallelism. The
implication that objects in the selected set can be processed in parallel is not
in their relational semantics.

Formally, a rule r with positive conditions Py,..., FP;, set selection
conditions Piiq, ..., FP,, and negative conditions Ny,..., N, defines the fol-
lowing class.

class Inst_of_r {
attributes ( v(FP): C(P), ... ,v(5) : C(P),
V(Piy1)* : C(Pig1), -.. yo(P)x: C(F,))

n

methods ( | J M(C(P)))

} i

Each instance of the class represents a set instantiation composed of objects
(one from each regular condition) and set objects (one for each set selection
condition). Set instantiations are, as the name suggests, representations of
sets of ground instantiations, which are instantiations of the ground rule of r
obtained by treating all set selection conditions as regular conditions. The set
of all ground instantiations can be characterized by the set

{ (g1 590) [ 31
teInst_of _r A

gk:t.v(Pk), 1§k§l A
gr €to(Pr)*x, i+ 1 <k<n A
A0) }

in which

0 = {v()/gr,.-..0(L)/gn }
(P1) A ... N E(P,) A
Ao(Ny),...,0(Ny) (E(N1) V ...V E(Ny,)).

o
I
o
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We note that when more than one set selection condition coexists in a
rule, a join semantics similar to a relational join is implied. This is consistent
with sequential semantics in that the set of ground instantiations is exactly
the same as that of the rule with set selection conditions treated as regular
conditions. The difference is that the former is fully parallel decomposable
while the later can only be processed one at a time.

Among previous work on parallel production systems, van Biema et
al. [156] were probably the first to point out the issue and provide constructs for
set-oriented processing in rule-based programming. Our set selection condition
is similar to their universal quantification. However, the exact semantics of the
universal quantification has not been formally specified as we have done here.
This can easily result in ambiguous and complicate rules.

4.3.2 Aggregate Operators

The set of objects selected by a set selection condition can also be
processed as a whole by aggregate operators such as count, sum, max, min,
and avg. This provides a new dimension of language constructs that greatly
simplify rule-based programming. The fact that efficient parallel algorithms
can be used to implement these operators further increase the value of set
selection mechanism in rule languages.

Using our abstract rule notation, in a set selection condition [ v :
C :: E ], v denotes an individual and v the whole set of selected objects,
respectively. For example, if the number of poor employees in a department is
desired, the following rule does exactly what we want.

rule Count_Poor_Employees {
( d: Department ),
[ e: Employee :: e.dept == d.name N e.salary < 10000 ]

d.poor_emps = Count(ex)

}

Without set selection conditions and aggregate operators, the same effect would
require two rules, where one rule fires repeatedly on each poor employee to
increment a counter and another semantically redundant rule is used purely
for testing whether all poor employees have been counted.
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4.3.3 ALL Combinators

Examining the Count_ Poor_ Employees rule above reveals an addi-
tional, unexploited level of parallelism. Using only the set selection condition
and aggregate operators, all poor employees in a department can be processed
as a whole using an efficient parallel algorithm. However, different departments
are still processed sequentially. To specify that both conditions are set selec-
tion conditions does not work since the join semantics would mean that the
total number of poor employees in the company, not any department, is set
to the poor_emps attribute of each department. Instead, a new mechanism is
needed here to specify the intended patterns of decomposition among selected
sets of objects. In the example above, we want to specify that not only poor
employees in a department need to be considered, but that the same thing can
be applied on all departments independent of each other. In other words, as
long as the selected employees are decomposed or grouped by the department,
different groups of objects can be processed in parallel since no interference can

occur.

For the purpose above, we found that a natural way to specify the
desired semantics is to group several condition elements together which charac-
terizes the desired patterns of decomposition. To illustrate this, the following
rule specifies that the number of poor employees of each departments can be
computed in parallel.

rule Count_All_Poor_ Employees {

ALL ( ( d: Department ),
[ e: Employee :: e.dept == d.name A e.salary < 10000 | )

d.poor_emps = Count(ex)

The ALL combinator groups together several condition elements into
an ALL condition to denote that any consistent collection of objects and set ob-
jects (for set selection conditions) can be considered independent, and therefore
all of them can be processed in parallel without worrying about interference.

Formally, a rule r with positive conditions Py,..., FP;, set selection
conditions Piiq, ..., P,, negative conditions Ny,..., N, and an ALL condi-
tion consisting of positive conditions AP, ..., AP;, set selection conditions
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AP, ..., AP, and negative conditions ANy, ..., AN, defines a class:

class Inst_of_r {
attributes ( v(P) : C(FP), ... ,v(F): C(F),
V(Pip1)* : C(Pig1), -.. ,uo(Py)*x: C(Fy,),
allx: AllClass_of -1 )
n k
methods ( | J M(C(P)) U |JM(C(AP)))
=1 =1
}
where AllClass_of_r is the class

class AllClass_of -1 {

attributes ( v(AP) : C(AP), ... ,v(AP;): C(AP)),
V(APjj1)% : C(APj11), ... ,u(APy)*: C(AP))
methods ( 6 M(C(AF)))

}

The set of all ground instantiations can be characterized by the set

{ (g1 s Gnyar, ..o ap) | Ftu(
telInst_of . r N ué€tallx A

gp=tw(Py), 1 <h <o A

grn Etu(Py)x, t+1<h<n A
apb =uv(AP,), 1 <h<j A

ap, € uv(AP)*, j+1<h<k A
A0) }

where

0 = {v(P)/g1, ..., 0(P)/gn, vV(AP)]a1,...,v(APs)/ay }
A = EP) N ... NEP) N EAP) AN ... N E(AP) A
Av(Ny),...,0(Np), v(AN1),...,0(AN;) (
E(N1) V ...V E(N,) V E(ANy) V ... V E(AN))).
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We note that there is no need to have more than one ALL condition in
a rule. It is not difficult to prove that for a rule with multiple ALL conditions,
the set of ground instantiations is exactly the same as the rule with all condition
elements in each combinator placed under one ALL condition. In other words,
if C1,...,C, are sets of condition elements, then

ALL(CY) A ... NALL(C,) = ALL(Cy A ... NC).

On the other hand, while nested ALL conditions may seem to provide
more expressive power than a single level one, they unnecessarily complicate
the semantics. This is certainly against our conciseness criterion. We will show
in later sections that the combination of set selection conditions, aggregate
operators, and combinators (including the DISJOINT combinator to be intro-
duced next) is versatile enough to express all sources of data level parallelism
discussed in Section 4.1.

4.3.4 DISJOINT Combinators

The semantics of both set selection conditions and the ALL combina-
tor imply that any consistent set of objects satistying the conditions is a valid
unit of decomposition and all such units can be processed in parallel. This is
desirable when there is no worry about the repetition of selected objects be-
tween different sets as in all example rules above. However, when it is possible
to have the same object selected to different units, the semantics above may
not be exactly what we want as demonstrated in the following rule.

rule Team_Employees {

(el : Employee :: el.dept == “research” A
el.team == unknown ),
(€2: Employee :: e2# el A
e2.dept == “research” A
e2.team == unknown ),
(€3 : Employee:: e3#e2 N e3#el A
e3.dept == “research” A
e3.team == unknown )

el.team = new Team(el,e2,e3),
e2.team = el.team,

e3.tecam = el.team
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The purpose of the rule is to team up all employees in the research department
such that each employee is in only one team and each team has exactly three
employees. We can not use set selection conditions or the ALL combinator
here since the same employee could be assigned to multiple teams. The key to
the decomposition in this case is the disjointness of selected employees between
different sets. Indeed, selecting disjoint sets of data objects for processing is
a commonly used strategy in rule-based problem solving. This entitles a new
mechanism for specifying the disjoint decomposition, which we call DISJOINT
combinator. For the example above, the rule below specifies that all teams can
be formed at the same time as long as the selected employees are mutually
disjoint (i.e., no two sets of selected objects have employees in common).

rule Team_All_Employees {
DISJOINT ( ( el : Employee :: el.dept == “research” A

el.teamm == unknown ),
(€2: Employee :: e2# el A

e2.dept == “research” A

e2.team == unknown ),
(€3 : Employee:: e3# €2 N e3#el A

e3.dept == “research” A

e3.team == unknown ) )

el.team = new Team(el,e2,e3),
e2.team = el.team,

e3.tecam = el.team

Similar to the ALL combinator, the DISJOINT combinator is used
to combine several condition elements into a DISJOINT condition for denot-
ing that objects matching the enclosed conditions are to be decomposed in
a disjoint pattern. In other words, for any two instantiations of a rule with
DISJOINT combinator, as long as the selected set of objects for the enclosed
conditions are disjoint (i.e., no object in common), they are parallel executable.
The true power of this mechanism is to reduce combinatorial explosive number
of possibly interfering and mostly redundant instantiations into an exact set of
all necessary and parallel executable instantiations. As an example, for a rule
with n condition elements similar to the rule above, traditional methods will
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generate n! instantiations as opposed to only one instantiation using the DIS-
JOINT combinator. The n! — 1 redundant instantiations will either have to be
detected by interference analysis or removed by meta rules as in the PARULEL
[143] approach, both at the cost of excessive run-time overhead.

The formal semantics of the DISJOINT combinator can be defined
in a similar way as the ALL combinator except that the disjointness property
must be clearly specified. For this purpose, we define an additional notation
Objs(a), for an object a, to denote the set of objects which are values of non-
set attributes of a or elements of set-valued attributes of a. The semantics
of the DISJOINT combinator can now be defined as follows. A rule r with
positive conditions Py, ..., P;, set selection conditions Pii4,...,FP,, negative
conditions Ny,..., N, and a DISJOINT condition combining positive con-
ditions D Py, ..., DP;, set selection conditions DPjyq,..., DPy, and negative
conditions DNy, ..., DN;, defines a class:

class Inst_of_r {
attributes ( v(FP): C(P), ... ,v(5) : C(P),
V(Pig1)* : C(Pig1), «.. ,o(Py)*x: C(Py,),
disjointx : DisjointClass_of _r )
n k
methods ( | J M(C(F)) U | JM(C(DP)))
i=1

=1

}

where DisjointClass_of _r is the class

class DisjointClass_of _r {
attributes ( v(DP): C(DP,), ... ,o(DP;): C(DP;),
V(DPji1)* : C(DPjy1), ... ,o(DP)x: C(DP) )
k
methods ( | | M(C(DP)))
i=1

}

The set of all ground instantiations can be characterized by the set

{ (g1 s Gnydr, ..o di) | Tt u (
telInst_of . r N u € tdisjointx A

Va € t.disjoint* (x #u = Objs(z) N Objs(u) =0) A



)

dy € uv(DPy)*, j+1
A0}

where

0 = {v(P)/g1, ..., 0(P)/gn,v(DP)/d1,...,0(DPy)/dy }
A = B(P) A ... A EP) A EDP) A ... N E(DP) A
Av(Ny),...,0(Np),v(DNy),...,0(DNy) (
E(N) V ...V E(N,) V E(DN)) V ...V E(DN)).

Analogous to the ALL combinator, a single DISJOINT combinator is
enough since

DISJOINT(Cy) A ... A DISJOINT(C,,)
= DISJOINT(Cy A ... ACL).

Nesting is not recommended either because of the conciseness criterion. We
can also have both ALL and DISJOINT combinators in the same rule with
well-defined semantics. However, the resulting decomposition patterns seem
to be too complex and not at all intuitively appealing for a programmer to
conceive and use.

4.3.5 Contexts

Rules are not designed completely independently of each other. A
common programming style for rule programs is to decompose the problem
solving process into contexts. A set of rules is then written for each context
to serve the functionality of that context. Opportunities for parallelism are
presented when this level of application semantics is taken into consideration
[82, 84]. In particular, causally independent contexts can often be processed in
parallel. There is a catch if we are to be consistent with our goals. We should
avoid providing any procedural-oriented or control-oriented mechanism. Thus,
we provide mechanisms that designate the context for which a rule is intended
and that specify the causal dependency between different contexts. The actual
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control dependency implied by the semantic information above should be left
for the language system to derive.

A rule of the form
rule r in context 7' { ... }

denotes that the rule r is designed for context T'. All rules designated to the
same context are for solving the same subproblem. A context rule of the form

T v T0,To..., T,

specifies that context T'is causally dependent on contexts 17,715, ..., T, which
means, to solve the problem for which T is designed, all the subproblems for
which T1,7T5,...,T, are designed must be solved first. Note that a context
rule specifies a causal dependency rather than an implication. The subproblem
represented by context T' must still be solved after solving all dependent con-
texts. The following example denotes that the rule Raise_ All_Poor_ Employee
belongs to the context Salary_Adjustment which is a collection of rules for ad-

justing salary.

rule Raise_All_Poor_ Employees in context Salary_Adjustment {
( d: Department ),
[ e: Employee :: e.dept == d.name A e.salary < 10000 ]

e.salary = e.salary + e.salary /10

The context rule below specifies that before working on salary adjustment, we
must perform profit evaluation and salary survey.

Salary_Adjustment = Profit_ Evaluation, Salary_Survey

The context mechanisms proposed above provide a simple way to
specify function decomposition of a problem into subproblems. A set of context
rules specifies a partial order that must be observed between subproblems to
correctly solve the entire problem. Parallelism at the problem solving level can
then be exploited by processing independent contexts in parallel.
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4.4 Chapter Summary

The parallel structuring mechanisms presented in this chapter are
designed centered around the semantics of applications and the characteristics
of production system. They are much more powerful than the examples can
demonstrate when it comes to real programming. Programmers can easily pick
up the ideas and use them effectively. In later chapters, we will show that
just this simple set of mechanisms can significantly improve the performance
of parallel rule programs.



Chapter 5

Semantic-Based Interference Analysis

An equally important technique in our decomposition abstraction ap-
proach is a semantic-based interference analysis technique which derives infor-
mation about run-time parallel structure from associative relationships among
data objects. We present the technique in this chapter.

5.1 A Motivating Example

More often than not, class relationships provide valuable hints on data
decomposition patterns that actually happen at run time but are not necessarily
clear at design or compile time. In particular, this information can often be
used in determining the semantic compatibility (i.e., parallel executability) of
instantiations of the same rule or between different rules.

As an intuitive example, consider the following rule from the corpora-
tion application domain which is to raise the salary of all under-paid employees
in a team.

rule Team_Fairness {
(t:Team ),

[ e: Employee :: e.team == t.name N e.salary < t.min_wage |

e.salary = t.min_wage

}

In general, different instantiations of this rule can not be executed in paral-
lel because the same employee may be a member of different teams. On the
other hand, if each team is associated with a unique and disjoint set of employ-
ees, then different instantiations will select different teams with disjoint set of
employees. Apparently, all such instantiations can be fired in parallel.

In fact, many rule programs are written with similar implicit assump-
tions but lack of any mechanism to specify them. In the example above, the key

38
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point is on the relationship between instances of the Team and the Employee
class. We call this relationship a functional dependency which turns out to be
the vital part of our semantic-based dependency analysis technique.

5.2 Functional Dependency

We characterize the idea of functional dependency by defining rela-
tions among classes. It helps in understanding the following definitions by
comparing the class names, classes, and schemes with the attribute names,
domains, and relation schemes in relational database.

Definition 13 (Class Relations and Schemes) A class relation scheme or
simply scheme, is an ordered set of class names. A class relation on a class
relation scheme with n class names is an n-ary relation among instances of the
corresponding classes. O

For a class relation A, we denote the scheme on which A is defined
by Sch(A). A class relation can be considered as a collection of classes with
a certain relationship. Note that an element of an n-ary class relation is an
ordered set of n objects, one from each corresponding class in the scheme. An
object here can be either a structural object or a set object. For an element
a € A and a scheme X C Sch(A), the notation a(X) denotes the ordered
collection of objects in @ which are from classes in X. We note that from the

definition above, a(X) C a and a(Sch(A)) = a.

Definition 14 (Functional Dependency) Let X and Y be the schemes of
two class relations R, and R,. The functional dependency

X =Y
holds on R, and R, if

1. Fach element in R, ts assoctated with a unique element in R,,.

2. For all ay, ay in R, and the associated by, by in R,

al%agjblﬂbgzﬂ
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As an example from the corporation application domain discussed
earlier, the functional dependency {Team} — {FEmployee} holds when each
team is associated with a unique and disjoint set of employees.

Since an instantiation can also be considered as an ordered set of
objects (one for each positive or set selection condition), a rule r actually
defines a class relation whose elements are exactly the set of instantiations of
the rule, i.e., Inst(r). The scheme of Inst(r), denoted by Scheme(r), is the
ordered set of class name components of positive and set selection conditions
of r. For example,

Scheme(Team_Fairness) = {Team, Employee}.

Definition 15 (Rule Specific Functional Dependency) Let X and Y be
two class relation schemes, and r be a rule. The rule specific functional depen-
dency

X—=Yanr
holds if both X C Scheme(r) and Y C Scheme(r) and for all i,j in Inst(r),
(X)) #5(X) = (V) 0y (Y) = 0.

It is rule specific because the dependency only needs to hold on all
instantiations of r. It may or may not hold on collections of objects that are
not instantiations of r.

Definition 16 Let R be a set of rules, X and Y be two class relation schemes,
then

X—=Y R
holds if X — Y wn r holds for each rule r in R. O

Except for borrowing the terminology, functional dependency as de-
fined here is quite different than in databases [92]. In database systems, the
notion of functional dependency is defined at the attribute level and is used
primarily in the normalization process. We generalize the concept to the class
level and use it to identify the parallelism in rule systems. Functional de-
pendencies are considered as specifications of data decomposition across class
boundaries, which are shown below to play a crucial role in determining the
compatibility between instantiations of the same or different rules.
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5.3 Interference Analysis with Functional Dependency

To prove that two distinct instantiations can be fired in parallel, we
need to show two things, from Definition 10:

1. The execution of one does not affect the satisfiability of the other, and

vice versa.

2. They do not modify the same object.

One of the biggest obstacles in proving validity of these conditions
at compile time is the nondeterministic nature of matching. By merely look-
ing at the syntactic structure of rules, it is often the case that we can not
completely rule out the possibility of self-interference or interference between
different rules. This is the place where functional dependency provide us with
the greatest help we need — decomposition. The idea is that if we can deter-
mine the disjointness of objects modified by different instantiations, it is very
likely that they can be executed in parallel. This section presents the insight
and techniques of how this could be accomplished.

Definition 17 Let r be a rule. The access set of r, denoted by Access(r), is
the set of all class names referenced in the antecedent of r. The write set of r,
denoted by Write(r), is the set of class names with objects that are modified
(including creation and deletion) in the rule. O

Definition 18 (Dominant Set) Let r be a rule and C be a class relation
scheme. C is ¢ dominant set of r if:

1. C C Scheme(r),
2. forall i,y € Inst(r) (1 #j = (C) # 3(C)). O

A dominant set of a rule is simply a set of class names sufficient to
discriminate between different instantiations of the rule.

Theorem 1 (Self Compatibility) Letr be a rule and A, B, C be three class
relation schemes that are subsets of Scheme(r) satisfying the following condi-
tions:
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1. C is a dominant set of r and C' C A
2.A—-BorA—Binr

3. Ve € Write(r)(c € BV ¢ € Access(r))

then all instantiations of r are compatible (i.e., parallel executable).

Proof: In any given state, let ¢z and j be instantiations of r such that ¢ # j.

= (C) #5(CO) (* Condition 1 *)
= i(A) £ (4] (O C A%

= «(B)Nj(B)=10 (+ Condition 2 )
= ¢(Write(r)) N j(Write(r)) = 0 (+* Condition 3 *)
= ¢ and j do not interfere with each other (+ Condition 3 )
= ¢ and j are compatible (* Definition 10 ). O

The central idea of this theorem is that functional dependency im-
plies disjoint decomposition of objects selected by the instantiations of a rule.
As long as the objects modified in the consequent belong either to the de-
composition or to classes which do not affect the satisfiability of the rule, no
instantiations will interfere with each other. There will be examples later in
this section. We first generalize this idea to the analysis of interference between
multiple rules.

Definition 19 (Partially Mutual Exclusion) Let p, ¢ be rules and C be a
class relation scheme. We say that p and ¢ are partially mutual exclusive on
C', denoted by p><cq, if

1. C C Scheme(p) and C' C Scheme(q)

2. For any two instantiations i, j of p and q respectively, «(C') # 5(C). O

Partially mutual exclusion simply means that p and ¢ can not have
instantiations containing the same set of objects of classes in C'. The simplest
and most common case is when C' contains a single class referenced in both
p and ¢ but tested on disjoint values of the same set of attributes. Since the
values are disjoint, p and ¢ can not select the same object in C'.
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Note that no requirement is placed on selected objects that are not of
the classes in (. Therefore, partially mutual exclusive rules may still interfere
with each other. However, in many cases, partially mutual exclusive rules can
be determined to be parallel executable with the help of functional dependencies
as indicated by the following theorem.

Theorem 2 (Pair-Wise Compatibility) If p, ¢ are two distinct rules, and
A, B, C are class relation schemes that are subsets of both Scheme(p) and
Scheme (q) such that the following conditions are satisfied:

1. p><cq

2.CCA

3. A— B orA— B in{p,q}

4. Ve € Write(p)(c € BV ¢ ¢ Access(q))

5. Ve € Write(¢)(c € BV ¢ ¢ Access(p))

then p and q are compatible and therefore parallel executable.

Proof: In any given state, let 2 be an instantiation of p and j be an instantiation
of ¢.

P><cq
= () # (C) (* Definition 19 *)
= 1(A) # j(A) (+ C C Ax)
= (B)Nj(B)=10 (+ Condition 3 *)
= i(Write(p)) N j(Write(q)) =0 (* Condition 4 and 5 )
= p and ¢ are compatible (* Definition 10 ). O

Again, the central idea of this theorem is that as long as objects
modified in p and ¢ can be determined as non-overlapping with the help of
functional dependency, instantiations of p and ¢ do not interfere with each
other.

Even with their general applicability to many cases, the two theo-
rems above are less complicated than they appear. Continuing with our ex-
amples in the corporation application domain, if a team is associated with a
set of disjoint employees as team members, then the functional dependency
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{Team} — {FEmployee} holds. We note that this semantic information can
be easily supplied by the programmer (similar to the identification of key at-
tributes in database systems). With functional dependency and the fact that
a team can be uniquely identified by its name, we can immediately determine
that all instantiations of the Team_ Fairness rule can be fired in parallel using
Theorem 1.

As another example, the following two rules can be determined to be
parallel executable by Theorem 2.

rule Facilities_ Research {
(t:Team :: t.dept == “research”)

[ e: Employee :: e.team == t.name |

e.equipment = “AX P500X (Alpha)”

rule Facilities_Sales {

(t:Team :: t.dept == “sales”)

[ e: Employee :: e.team == t.name |
.

e.equipment = “Power Book”

}

In this case, the two rules are partially mutual exclusive on T'eam. With the
help of functional dependency, they can be statically determined to be parallel
executable.

As simple and natural as it may seem to be, without the knowledge
of functional dependency between the T'eam and the Employee classes, it is
very difficult, if not impossible, for a parallelizing compiler or any other static
transformation technique to identify the parallelism underlying these rules.

In general, any type of class relationship which implies certain pat-
terns of association or partitioning in the application domain is of great help
in the determination of proper decomposition for parallel processing. Mech-
anisms for expressing these relationships are therefore of great value to the
decomposition abstraction process in program development.
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We can now refine the definition of program in our framework to in-
clude semantic specifications expressed by the decomposition abstraction mech-

anisms.

Definition 20 (Program) A program is a quadruple (C,R,D,T) where C
and R are class and rule definitions, respectively. D is a set of class relationship
definitions which specify how objects are related to each other between different
classes. T is a set of context rules that specify the causal dependencies between
different contexts. O

5.4 Chapter Summary

To the best of our knowledge, this chapter presents the first use of
functional dependency in the derivation of parallelism. We emphasize that
functional dependencies are the direct result of application semantics and pro-
gram design. They are not artificially made up just for the sake of parallelism.
It is therefore very easy and natural for the programmers to supply such in-
formation. Actually, from all the benchmarks and our own experience, when
functional dependency implies parallel executability, programmers indeed want
to fire all the parallel executable instantiations in the first place.

The mechanisms proposed in previous chapter and the semantic-based
inference analysis technique presented in this chapter constitute a powerful set
of tools for the programmers to exploit application parallelism in production
systems. In next chapter, we will show how they can be easily applied on exist-
ing sequential rule programs and how to write efficient parallel rule programs
from scratch.



Chapter 6

Programming with Decomposition Abstraction

From the programming point of view, the decomposition abstraction
approach strongly suggests a declarative programming methodology that signif-
icantly simplifies the resulting rules and reduces the need to emulate imperative
constructs. In this chapter, we evaluate the quality of the proposed mechanisms
and present our experiences on programming with decomposition abstraction.

6.1 The Power of Decomposition Abstraction

To assess the quality of the abstract mechanisms, we evaluate them
against the design criteria listed in Section 4.2. The expressive power of the
mechanisms is judged by evaluating how well they cover different types of
parallelism discussed in Section 4.1.

What vs. How All proposed mechanisms are purely declarative. They char-
acterize core decomposition concepts that can be used to specify various types
of parallelism. How they are actually implemented is independent of the de-
composition strategies they represent. Programmers can use them entirely at
the conceptual and problem level without worrying about any implementation
details.

Consistent with Pattern Matching Paradigm A set selection condition
element selects objects in exactly the same way as a normal condition element
except that all matching objects are selected. An aggregate operator derives
information on a set of objects selected by pattern matching. Both ALL and
DISJOINT combinators simply group together several condition elements to
partition the objects selected by pattern matching in the enclosed condition
elements. The pattern matching paradigm is left completely intact. The addi-
tional power added by the decomposition abstraction mechanisms includes the
abilities to partition the objects selected by pattern matching and to organize
the program at the problem solving level.

66
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Conciseness The set of mechanisms is conceptually simple and easy to use in
the sense that all of them correspond naturally to the patterns of decomposition
commonly used in rule-based systems. When specified using our mechanisms,
the decomposition patterns map naturally to parallelization strategies which
are then exploited by the system. Programmers are not required to specify any
synchronization or communication constraints explicitly. There is no need to
worry about interference beyond the level of application semantics.

Versatility This criterion is about the expressive power of the mechanisms.
Under the context of rule languages, it can be evaluated by considering how
well these mechanisms support the different types of parallelism discussed in
Section 4.1. The combination of set selection conditions, aggregate operators,
ALL and DISJOINT combinators is capable enough to specify all sources of
data level parallelism we found. As indicated by the example rules in previous
chapters, they are much richer than many corresponding constructs, such as
DOALL loop, DECOMPOSITION, or PARTITION statements in other ex-
plicit parallel languages. We conclude that using pattern matching to specity
decomposition is much more flexible and powerful than partitioning merely on
array index.

For rule level parallelism, the use of class relationships to discover
semantic compatibility between rules is very effective, especially when used
in conjunction with the existing techniques on syntactic dependency analysis
[70, 80, 84, 101, 123]. In particular, most of the parallel executable rules in our
benchmark programs can be successfully identified.

For program level parallelism, the context mechanism provides a con-
venient way to specify any causal relationship or partial order among the prob-
lem solving stages. Independent contexts representing independent subprob-
lems can then be identified easily by a topological sort on the partial order.

The set of mechanisms covers all three levels of parallelism found in
production systems, and is certainly versatile and expressive enough for our
purpose.

Compatibility The mechanisms are designed in such a way that programs
not using any of these mechanisms are still perfectly correct programs. In par-
ticular, all sequential programs are legal programs. Many sequential programs
can be transformed directly into parallel programs as indicated by the examples
in Section 4.3 and in [164]. Above all, by simply removing the mechanisms in
a parallel program, we return the program to its original sequential form. The
set of mechanisms is therefore fully compatibility with sequential semantics.
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Effective Implementation The set of mechanisms can indeed be effectively
implemented on shared memory multiprocessors. Several alternative imple-
mentation strategies and their effectiveness are discussed in Chapter 8 with
performance results.

6.2 From Sequential to Parallel

One of the major design goal for the DA mechanisms is to minimize
the effort it takes to transform a sequential rule program into a parallel pro-
gram. From the experience we gained in transforming sequential benchmark
programs, we learned that this is a fairly strait forward and natural thing to
do if the problem and the design decisions of the sequential programs are well
understood. We have collected a set of heuristics to assist the programmer in
making the transformation. In this section, we present the set of heuristics
with illustrative examples. They are gathered from identifying common pro-
gramming styles and idioms that exhibit the opportunity for parallel execution.
They can also be used in automatic transformation systems such as STAR [46].

6.2.1 Repeatedly Firing Rules

Commonly, rules that fire repeatedly in a sequential program can
actually be fired in parallel. This is quite normal under the production system
paradigm since there is no notion of loop in sequential rule languages. The
only way to transform a collection of data objects by the same process is to
fire the same set of rules repeatedly until all the data have been transformed.
If the transformation of different data objects do not interfere with each other,
all transformations can be performed in parallel. For example, the following
rule calculates the GPA for all students.

rule Calculate_GPA {
( s : Student :: s.GPA_calculated == NO )
-->
5.GPA = calculate_GPA(s),
s.GPA_calculated = YES

Note that there is a flag to indicate whether the GPA of a student has been
calculated. This is probably the most common way to do the same operation
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on a set of data objects. The flag is used to prevent the same object from being
processed more than once.

This type of rules can be easily transformed into DA rules using set
selection condition. For the example above, this yields

rule DA_Calculate_GPA A
[ s : Student :: s.GPA_calculated == NO ]
-->
5.GPA = calculate_GPA(s),
s.GPA_calculated = YES

Sometimes it takes more than one rule to do the job. One rule ini-
tializes the loop. One or more rules constitute the loop body and the last one
detects the end of the loop. For example, the following three rules do the GPA
calculation under a task control.

rule Calculate_GPA_Loop_Init {

( ¢ : CurrentTask == PREVIOUS_TASK )

( s : Student :: s.GPA_calculated == NO )
-=>

c.task = CALCULATE_GPA

rule Calculate_GPA_Loop_Body {
( ¢ : CurrentTask :: c.task == CALCULATE_GPA ),
( s : Student :: s.GPA_calculated == NO )
-=>
5.GPA = calculate_GPA(s),
s.GPA_calculated = YES

rule Calculate_GPA_Loop_End {
( ¢ : CurrentTask :: c.task == CALCULATE_GPA ),
-( s : Student :: s.GPA_calculated == NO )

-=>
c.task = NEXT_TASK
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This type of simulated loop can also be easily transformed into DA rules using

set selection conditions. For the example about, the rules can be transformed
into a single DA rule as follows.

rule DA_Calculate_GPA A

( ¢ : CurrentTask :: c.task == CALCULATE_GPA ),
[ s : Student :: s.GPA_calculated == NO ]
-->
5.GPA = calculate_GPA(s),
s.GPA_calculated = YES,

c.task = NEXT_TASK

Heuristic 1 If a rule fires repeatedly on a class of objects, try to transform
the rule by changing the condition that matches the class into a set selection

condition.

6.2.2 Accumulation Rules

Even though rule languages are primarily for symbolic computation,
number crunching is still frequently needed. The most commonly used numer-
ical computation are the aggregation operations such as counting, computing
the sum, maximal, minimal, average, etc. Once again, there is no construct in
sequential rule languages to do this type of computation directly. Instead, they
are “simulated” by a set of rules similar to the simulated loop in last section.
For example, to compute the number of strait A students after finishing the

calculation of GPA, we can use a counter and a loop.

rule Count_Straight_A_Students_Init {
( ¢ : CurrentTask :: c.task == CALCULATE_GPA ),
-( s : Student :: s.GPA_calculated == NO )
-->
c.task = COUNT_STRAIGHT_A,
count = 0

rule Count_Straight_A_Students_Body {
( ¢ : CurrentTask :: c.task == COUNT_STRAIGHT_A ),
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( s : Student :: s.GPA == 4.0 && s.counted == NO )
-->

count = count + 1,

s.counted = YES

rule Count_Straight_A_Students_End {
( ¢ : CurrentTask :: c.task == COUNT_STRAIGHT_A ),
-( s : Student :: s.counted == NO )
-=>
print_count (count),
c.task = NEXT_TASK

This is the standard way of doing accumulation in sequential rule languages. A
set of rules for accumulation similar to the example above can be transformed
into a single DA rule using the set selection conditions and aggregate operators.
For the counting rules above, we can use the Count operator as the following
rule.

rule DA_Count_Straight_A {
( ¢ : CurrentTask :: c.task == COUNT_STRAIGHT_A ),
[ s : Student :: s.GPA == 4.0 ]
-
count = Count(s*),
print_count (count),
c.task = NEXT_TASK

Note that the DA rule is clearly much more intuitively appealing and concise.
Other types of accumulation, such as sum, maximal, minimal, average, etc.
can be transformed in similar way.

Heuristic 2 Transform a set of rules for accumulation into a single DA rule
by a combination of set selection conditions and aggregate operators. More
specifically, change the condition that matches the class of objects to be accu-
mulated into a set selection condition and use appropriate aggregate operators
on the selected set in the consequent.
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By nested rules we means rules that simulate the nested loop in im-

perative languages.

This type of rule is often used when objects of several

related classes need to be processed repeatedly. Sometimes the set selection

conditions along may not express the exact semantics of the rules. This is

where the ALL combinator comes into place. The following example should

make the point clear. Suppose we want to count the number of students in all

departments.

rule

Count_Students_Init {

( d : Department ::

d.count = 0

d.students_counted == NO )

Count_Students_Body {

( d : Department ::
( s : Student ::

d.count = d.count + 1,

s.counted =

Count_Students_End {
d.students_counted == NO ),
s.dept

( d : Department ::
( s : Student ::

YES

d.students_counted == NO ),
s.dept == d.name && s.counted == NO )

== d.name && s.counted == NO )

d.students_counted = YES

This is a standard nested loop over two classes of objects. They can be trans-

formed into a single DA rule as follows. Note that the DA rule does not even

need a flag to record whether a student has been counted or not.

rule

DA_Count_Students <

ALL ( ( 4
[ s

: Department ::

Student ::

d.students_counted == NO ),
s.dept == d.name ] )
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d.count = Count(s*),
d.students_counted == YES,

Heuristic 3 Transform rules that simulate a nested loop into a single DA
rule using the ALL combinator. Enclose all conditions that match the target
objects into the combinator and see if set selection conditions and/or aggregate
operators need to be used.

6.2.4 Disjointness Rules

Rules that fire repeatedly on disjoint partitions of data objects are also
frequently used in rule-based programs. Using sequential rule languages, the
disjointness property must be specified explicitly with some types of inequality
tests in the antecedent. As an example, the following rule assigns projects to
groups of three students.

rule Assign_Projects {
(p : Project :: p.assigned == NO ),
( s1 : Student :: sl.assigned == NO ),
( s2 : Student :: s2.assigned == NO && s2 !'= s1 ),
( 83 : Student :: s3.assigned == NO && s3 !'= sl

&& s3 !'= 82 )
-

p.assigned = YES,

sl.project = s2.project = s3.project = p.name,

sl.assigned = s2.assigned = s2.assigned = YES

This type of rule is inefficient, hard to read and counter intuitive. With DIS-
JOINT combinator, the rule above can be transformed into a much better DA
rule.

rule DA_Assign_Projects {
DISJOINT ( ( p : Project :: p.assigned == NO ),

( s1 : Student :: sl.assigned == NO ),
( s2 : Student :: s2.assigned == NO ),
( s3 : Student :: s3.assigned == NO ) )
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p.assigned = YES,
sl.project = s2.project = s3.project = p.name,
sl.assigned = s2.assigned = s2.assigned = YES

Heuristic 4 Transform rules that fires repeatedly on disjoint partitions of data
objects using DISJOINT combinator. Enclose all conditions involving the dis-
jointness test and remove the test.

6.2.5 From Secrete Messages to Explicit Contexts

The use of so-called "secret-messages” [118] is a common technique in
sequential rule-based programming to emulate procedural control. This tech-
nique employs a designated WME (usually called the goal element or context)
to control the phases of execution. By matching different values of the goal
element, rules are effectively partitioned into functional components. The flow
of execution is controlled by phase changing rules that change the value of the
goal element.

This programming style can be easily mapped into DA context mech-
anism. For example, the following two rules perform the computation and
phase change, respectively.

rule Calculate_GPA {
(g : Goal :: g.current_task == CALCULATE_GPA ),
( s : Student :: s.GPA_calculated == NO )
-->
5.GPA = calculate_GPA(s),
s.GPA_calculated = YES

rule Calculate_GPA_to_Print_Results {
(g : Goal :: g.current_task == CALCULATE_GPA ),
-( s : Student :: s.GPA_calculated == NO )
-=>
g.current_task = PRINT_RESULTS

They can be transformed into a single DA rule and a context rule as follows.
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rule DA_Calculate_GPA in_context CALCULATE_GPA <
[ s : Student :: s.GPA_calculated == NO ]

-->
5.GPA = calculate_GPA(s),
s.GPA_calculated = YES

PRINT_RESULTS |- CALCULATE_GPA

Heuristic 5 Transform rules that match goal elements into DA rules that use
explicit contexts. Replace phase changing rules with context rules. With DA
mechanisms at hand, there should be no need for goal element.

6.2.6 Remarks

As the examples demonstrated, the DA rules are much more intu-
itively appealing and efficient than the corresponding sequential rules. The
transformation is straightforward and requires only minor changes to the se-
quential rules. Transforming a sequential program into a DA program is there-
fore a smooth and painless process. The most important things are to un-
derstand the problem domain and the program design. Once the application
semantics and the program structure are fully understood, the transformation
can be done very quickly.

6.3 Programming in Parallel

Even though the transformation of sequential rules into DA rules is
relatively easy, decomposition abstraction is really for parallel structuring and
program design. In this section, we discuss issues about programming parallel
rule systems using decomposition abstraction. We suggest several steps that
leads programmers to the effective use of decomposition abstraction mecha-

nisms.

6.3.1 A Simple Course Scheduling System

We use a course scheduling application as an example for our discus-
sion. The problem is to schedule courses of several departments by assigning in-
structors, time, and classrooms. Each instructor can teach a number of courses.
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An instructor should be assigned no more than three courses. A student is reg-
istered in a unique department but can take a number of courses that may or
may not be offered by the same department. Each course is two hours long and
to be assigned to the time slot of 8:00am, 10:00am, 1:00pm, or 3:00pm during
weekdays. Each department building has a number of classrooms. A class-
room has a fix capacity. Some classrooms have special equipments that other
classrooms may not have. Courses should be scheduled without any conflict on

instructor and classroom.

6.3.2 Identify Application Objects

Just as the design of object-oriented software systems, the very first
step 1s to analyze the problem and identify application objects. Any object-
oriented analysis and design techniques can be applied here. The key is to think
in terms of application objects. No implementation issue need to be worried
about at this stage.

In our course scheduling application, any noun that is mentioned more
than once in the problem statement is probably a good candidate. We identify
the following application objects:

departments Where courses are offered.
courses The targets to be scheduled.
instructors Those who teach.

students Those who learn.

time slots When.

classrooms Where.

Each type of objects should be defined by a proper class definition.

Note that some nouns are better represented as attributes of applica-
tion objects. For example, the special equipment should be an attribute of the

classroom objects rather than a stand along object by itself.
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6.3.3 Identify Functional Dependency

The next thing to do is to identify the relationships between ap-
plication objects. For the purpose of DA programming, we are particularly
interested in the functional dependencies between objects of different classes.
In general, this is less complicated than it seems. A good starting point is
to examine the relationships between each pair of classes. More dependencies
may be identified along the way, especially when we start writing rules. Some
dependencies may turn out to be less useful but that’s not to be worried about
at this point. Just list all dependencies that can be identified.

For the sample application, we can identify the following function
dependencies.

o A department has a unique set of classrooms in the department building.
o A department is offering a unique set of courses.
e Departments have disjoint sets of students.

As demonstrated here, functional dependencies are easily identifiable in most
cases. The dependencies can be specified as follows.

{ Department } --> { Classroom }
{ Department } --> { Course }
{ Department } --> { Student }

6.3.4 Identify Tasks

With data objects and their relationships clearly identified, the next
step is to figure out a solution plan to solve the problem. Dividing a complex
problem into subproblems is a powerful technique in both sequential and par-
allel programming. This can be done by identifying the transformations that
need to be applied on the data objects to produce the desired results. Each
transformation corresponds to a task that need to be performed to solve the
whole problem. A task can be further decomposed into subtasks by identifying
the transformations within the task. This process can proceed repeatedly until
a subtask is manageable.

In the process of decomposition abstraction, we provide the context
mechanism for designing the solution plan as described above. Each task can
be represented by a context. Each context can be designed separately. For
the purpose of illustration, we adopt a simple solution plan for our example
problem. We identify the following possible tasks:
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Gather Information: To gather/derive any information that are needed for
scheduling courses.

Schedule Special Courses: Some courses need special equipments that are
available only in certain classrooms. These courses can be scheduled
directly.

Schedule Senior: Schedule courses for senior faculty first.

Schedule Popular Courses: Popular courses should be given higher priority
too.

Schedule Regular Courses: Other courses still need to be scheduled, of

course.

Print Results: Print the schedule.

Each task can be represented by a context.

The process of task identification normally involves the identification
of task structure as well. The task structure should be constructed with par-
allelism in mind. We discuss the related issues in next section.

6.3.5 Identify Parallelism through Decomposition

The arguably most important step, as performance is concerned, is
to identify potential parallelism in the applications. An effective technique is
to analyze the problem alone two dimensions: function decomposition and data
decomposition.

Function Decomposition Function decomposition involves the partitioning
of the solution plan into subtasks as we did in last section, and the identification
of task structure. Task structure is represented by the causal dependencies
between tasks. By causal dependencies we mean the natural restrictions on
the order of execution between tasks. They can be identified by examining
the intended functionality of each individual task and analyzing the necessary
conditions for a task to apply correctly.

In the process of decomposition abstraction, the causal dependencies
between tasks can be specified by the context rules. For the example problem,
it is fairly straight forward to identify the following rules:
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GET_INFO SPECTIAL
Y Y
SENIOR POPULAR
Y
REGULAR
Y
PRINT

Figure 6.1: Partial Order Derived from the Causal Dependencies between Con-
texts of the Course Scheduling Problem

SINOR |- SPECIAL

POPULAR |- GET_INFO, SPECIAL

REGULAR |- GET_INFO, SPECIAL, SINOR, POPULAR
PRINT |- SPECIAL, SINOR, POPULAR, REGULAR

Note that some of the dependencies may be redundant. We suggest to list
all dependencies that correspond naturally to the application semantics. For
example, we can only print the schedule when all types of courses have been
scheduled. We therefore specify all of them in the last context rule even though
only the REGULAR context is required.

The set of context rules specifies a partial order that must be satis-
fied when solving the tasks. This is a valuable information since independent
contexts (i.e. contexts that are not related to each other in the partial order)
can be executed in parallel. Figure 6.1 shows the partial derived from the
causal dependencies between contexts of the example problem. Clearly, the
GET_INFO and SPECIAL contexts can be executed in parallel. So does the
SENIOR and POPULAR contexts.
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Data Decomposition Data decomposition involves the partitioning of data
objects for data-parallel or SPMD style computation. When rule languages
are used in data intensive applications such as expert database systems or
data/knowledge based systems, this is usually the most effective way of de-
composition.

Data partitioning for SPMD style computation in rule languages is
achieved through pattern matching in the antecedents and concurrent execu-
tion of multiple instantiations. Rather than trying to decompose data objects
directly, it is easier to consider the transformations that need to applied on the
data. By identifying the:

o types of objects to be transformed,
o the exact conditions and constraints for selecting the objects, and

e the actions to be performed on the selected objects.

Then each transformation can be represented as a rule. The pattern matching
will dynamically decompose the data into desired partitions for processing in
parallel. This is much more general as well as adhered to the application se-
mantics (thus easier to specify) than the explicit partitioning of arrays or tables
(which is at the implementation level) in most imperative parallel languages.
We discuss the design of rules in next section.

6.3.6 Writing DA Rules

After all the steps in previous sections have been performed, writing
DA rules is more a specification process than a design process. The rules
simply specify the application semantics and identified transformations. There
are some guidelines to follow though:

1. Write a set of rules for each context.

2. Within each context, write a rule for each transformation identified in
the data decomposition process.

3. Within a rule (or transformation), add a positive condition element for
each type of objects to be transformed. Add negative condition elements
as required to specify the conditions and constraints for selecting the
objects to be transformed.
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4. Spell out the actions to be performed in the consequent.

5. According to the application semantics, determine whether a transforma-
tion is a SPMD style transformation.

6. Use DA mechanisms to specify the SPMD rules.

We present some rules for the sample application to illustrate the process of
writing DA rules. See Appendix A for a complete listing of the course schedul-
ing system.

In the GET_INFO context, we want to gather information for used in
the course scheduling process. In particular, we need the number of registrants
for each course. This can be considered as transformations on the courses.
When computing the number of registrants of a course, the transformation
obviously involves two types of objects: Course and Student. The condition for
a particular transformation to apply is that the course has not been counted
yet. The constraint for a student to be counted is that he/she must have
registered for the course. This is represented by an attribute of the student
object. Since we want all the students, the corresponding condition element is
designated as a set selection condition. The number is counted with aggregate
operator in the consequent. A closer look at the transformation suggests that
all courses can be transformed at the same time. We therefore use the ALL
combinator to specify the SPMD rule as follows. Note that we use <| instead
of € as the set membership operator for the latter does not have corresponding
key on the keyboard.

rule Count_Registrants 1in_context GET_INFO {
ALL ( ( ¢ : Course :: c.registrants_counted == NO ),
[ s : Student :: c.name <| s.take* ] )
-->
c.registrants = Count(s*),
c.registrants_counted = Yes

The SPECIAL context is special in that some courses need special
equipments that are available only in certain classrooms. For example, chem-
istry lab courses can only be scheduled in the chemistry lab. These courses can
be scheduled directly, as in the following rule.
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rule Schedule_Special 1in_context SPECIAL {
(t : Time ),
DISJOINT ( ( ¢ : Course :: c.scheduled == NO
&& c.special_equip '= NULL ),
( 1 : Instructor :: c.name <| i.teachesx*
&% i.assigned < 3 ),
( r : Classroom :: t.time <| r.slots*
&& c.special_equip <| r.equip* ) )

-=>
c.instructor = i.name, c.classroom = r.number,
c.time = t.time, c¢.scheduled = YES,
1.assigned = 1.assigned + 1,
r.empty_slots* = r.empty_slots* - t.time

b

Yes. A single rule is enough. For each special course, we select an instructor
who teaches that course and not yet assigned more than 3 courses, a classroom
with proper equipment, and a time slot that the classroom is still not occupied.
Note that it is not necessary to enclose the time object in the DISJOINT
condition since two courses can be assigned to the same time slot as long as
the instructor and classroom are not the same. We also assume that none of
the senior instructors teach special courses since these are mostly lab courses.

For the SENIOR context, we schedule just one course for whatever a
senior instructor wants to teach. The number of registrants must not exceed a

fixed limit called LIMIT.

rule Schedule_Senior in_context SENIOR {
(t : Time ),
DISJOINT ( ( ¢ : Course :: c.scheduled == NO
&& c.registrants < LIMIT ),
( i : Instructor :: i.is_senior == YES
&% c.name <| i.teaches*
&% i.assigned < 1 ),

( r : Classroom :: t.time <| r.slots* ) )
-->
c.instructor = i.name, c.classroom = r.number,
c.time = t.time, c¢.scheduled = YES,
1.assigned = 1.assigned + 1,
r.slots* = r.slots* - t.time
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The POPULAR context schedules courses with number of registrants
exceeding a threshold named THRESHOLD. This can be designed similar to
the SENIOR context. Note that LIMIT is always smaller than THRESHOLD.

So there is no worry about assigning a senior instructor to a popular course.

rule Schedule_Popular 1in_context POPULAR {
(t : Time ),
DISJOINT ( ( ¢ : Course :: c.scheduled == NO
&% c.registrants > THRESHOLD ),
( i : Instructor :: i.is_senior == NO
&% c.name <| i.teaches*
&% i.assigned < 3 ),

( r : Classroom :: t.time <| r.slots* ) )
-->
c.instructor = i.name, c.classroom = r.number,
c.time = t.time, c¢.scheduled = YES,
1.assigned = 1.assigned + 1,
r.slots* = r.slots* - t.time

Now rest of the courses can be assigned simply by pattern matching.
Again, we need only one rule for the REGULAR context.

rule Schedule_Regular in_context REGULAR {
(t : Time ),
DISJOINT ( ( ¢ : Course :: c.scheduled == NO ),
( i : Instructor :: i.is_senior == NO
&% c.name <| i.teaches*
&% i.assigned < 3 ),

( r : Classroom :: t.time <| r.slots* ) )
-->
c.instructor = i.name, c.classroom = r.number,
c.time = t.time, c¢.scheduled = YES,
1.assigned = 1.assigned + 1,
r.slots*x = r.slots* - t.time

Finally, we print the result of the course scheduling. The printing
must be done sequentially. Otherwise the output would be unreadable.
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rule Print_Result in_context PRINT <

( ¢ : Course :: c.scheduled == YES && c.printed == NO )
-->

print_schedule(c),

c.printed == YES

6.4 Chapter Summary

Decomposition abstraction and the mechanisms we proposed raise the
level of abstraction from implementation level to application level. Rules are
much easier to write since they are closer to application semantics. The number
of rules tend to be significantly less than corresponding sequential program.
In writing the rules, however, it is still the programmer’s responsibility to
ensure the correctness of the specified semantics. For example, if a functional
dependency is specified, it must hold throughout the entire execution of the
whole program. If an execution of a rule may violate the dependency, any
parallel structure derived form the dependency may no longer hold. These
type of errors can be treated as programming errors.

On the other hand, it is possible to detect violation of specified se-
mantics before the program execution. One of our primary future research
directions is to develop theories and techniques for consistency checking and
correctness validation of DA programs. This is a necessary component for the
decomposition abstraction approach to be a complete parallel programming
paradigm.

In this chapter, we have demonstrated how decomposition abstraction
can be used in both the transformation of sequential programs and the develop-
ment of parallel programs. All the transformation and development processes
are the direct results of our experiences in dealing with sequential benchmark
programs and writing parallel programs from scratch. Another direction of our
future research is to formally compare the programmability, complexity, and
effectiveness of different approaches including static transformation [101], meta-
rule programming [143], source-to-source transformation [119], rule rewriting
[46], and decomposition abstraction.



Chapter 7

Performance Assessment

With decomposition abstraction, programmers can specify the paral-
lelism inherent in the problem domain, thereby increasing the concurrency that
can be exploited by the language system. However, just like any explicit parallel
language, the actual performance gain depends heavily on the implementation
strategy. This is especially the case in rule systems because rules tend to have
large variation of processing requirements [56] and irregular patterns of decom-
position. Systems that fire multiple instantiations in parallel tend to incur large
run-time overhead [111]. Granularity control and proper scheduling strategy
are therefore of crucial importance to a multiple rule firing production sys-
tem with decomposition abstraction mechanisms. In this chapter, we employ
a unique software engineering technique to evaluate the performance of several
alternative implementation strategies on a parallel rule execution engine. The
technique is unique in that it enables rapid system development and assessment
without the possible inaccuracy of traditional simulation as well as the high
cost of full-fledged system implementation.

7.1 A Parallel Rule Execution Engine

The central idea of our performance assessment technique is to be
as close as possible to the real execution environment. For such purpose, we
developed a parallel rule execution engine that actually executes multiple rule
instantiations in parallel on our target machine, the Sequent Symmetry shared
memory multiprocessor. A work load generator generates work from sequential
execution trace files. This approach is different from traditional simulation
technique in several respects.

e WME’s are actually added, removed and modified. All rule actions are
executed as they would be in a real parallel environment. In other words,
the time accumulated is the actual execution time.

e All communication and synchronization operations needed to maintain
the correct parallel execution are actually performed when firing multiple
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rule instantiations. This provides us with accurate measurement of the
scheduling overhead.

o With the same set of data, the parallel rule execution engine will termi-
nate with exactly the same result as in a sequential execution except, of
course, the execution time. With this, we can be sure that the parallel
execution is correct.

The only important factor which is not accounted for is the time spent on
matching. To include matching would make it a real parallel inference machine,
which will take much longer to develop before any experiment can be done on
it.  With the already existing good results on both sequential and parallel
algorithms for matching [87, 97, 100], the performance of the real system may
be even better with parallel matching since the effect is at least additive, if not
multiplicative.

Figure 7.1 depicts the simulation method we developed. The parallel
rule execution engine is a set of programs built on top of a C4++ based object-
oriented light weight thread package called PRESTO [13, 41]. A sequential rule
program® and its execution trace are translated into a PRESTO program which
is the parallel version of the program integrated with the PRESTO run-time
libraries. More specifically, each data definition? is translated into a C++ class
definition which is called a WME' class. Each rule definition is translated in
to a C++ function which is termed a rule function. The work load generator
generates a call to a rule function (with the WME’s accessed by the rule as
arguments) for each rule firing in the execution trace. Successive rule firings are
translated into a sequence of asynchronous thread invocations to execute the
corresponding rule functions if the rules are compatible as determined by the
decomposition abstraction specification. Synchronization points are inserted
whenever it is necessary to synchronize incompatible rules. With different
scheduling strategies to be discussed later, one or more rule function calls can
be assigned to a thread for executing sequentially within the thread.

To experiment with the effect of granularity of rules on system per-
formance, a controllable dummy loop (a FOR loop with empty body and a

! At this moment, the parallel rule execution engine takes only OPS5 programs. However,
the same approach can be applied to any sequential rule language.
?In the case of OPS5, it is an element class defined by the literalize command.
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parameter controlling the number of iterations) is added to the action part of
each parallel rule in the PRESTO program. The time to execute the action
part of a rule can then be controlled by varying the number of iterations for the
dummy loop. Also, by varying the number of threads created for processing
parallel instantiations and the granularity of work (number of instantiations)
assigned to each thread, we have measured the performance of four alternative
scheduling strategies.

e Strategy 1: Maximal Parallelism Create a new thread for each par-
allel instantiation.

e Strategy 2: Fixed Granularity Create as many threads as required
except that each thread is assigned a fixed number of instantiations to
execute sequentially. This is to increase the granularity of work assigned
to each thread so as to reduce the total number of threads in comparison
with Strategy 1.

e Strategy 3: Supervisor/Worker Create a fixed number of worker
threads and a scheduler thread. The scheduler thread keeps dispatching
instantiations, one instantiation for each worker, as long as there are idle
workers. If no idle worker exists, the scheduler executes the instantiation
itself.

e Strategy 4: Supervisor/Worker with Packing Same as Strategy 3
except that each time an idle worker is given a fixed number of instanti-
ations to work on sequentially. The number is called the grain size [78]
whose purpose is to increase the granularity of work assigned to a worker
thereby reducing thread management and scheduling overhead.

Even though previous work on task scheduling shows that the performance of
the supervisor/worker model can be significantly affected by the communica-
tion cost [38], this model can still benefit from parallel execution when the
computation cost is high enough. We have demonstrated this in the set of
experiments on rule granularity.

To evaluate the effectiveness of different scheduling strategies, we col-
lect the performance results from the execution of three benchmark programs
drawn from the Texas OPS5 Benchmark Suite [16] and listed in Table 7.1. All
three programs are executed with increasing numbers of processors on different
problem sizes and different grain sizes. We also compare their relative perfor-
mance, scalability, as well as sensitivity to granularity change. The actual time
to execute the dummy loop for various number of iterations are also measured

and listed in Table 7.2.
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Program No. Rules Description

LIFE 16 A simulation program implements Conway’s
LIFE.

WALTZ 33 A constraint satisfaction problem using Waltz’s
algorithm for scene labeling [158].

MANNERS 8 A combinatorial search problem for seat
assignment.

Table 7.1: Benchmark programs used in the simulation.

No. Iterations | Time (ms)
0 0.00

1000 2.57

3000 7.64

5000 12.71

7000 17.78

10000 25.38

20000 50.75

Table 7.2: Time to execute the dummy loop for specified number of iterations.

7.2 The Benchmark Programs

Identifying the characteristics of an application is of crucial impor-
tance in the process of decomposition abstraction. In this section, we analyze
the concurrent behavior of each benchmark program and point out key issues
to the successful application of proposed mechanisms.

7.2.1 MANNERS

MANNERS was derived from an example program in [76] which em-
ployed a combinatorial search for solving a seat assignment problem among
a number of guests. The seats must be assigned such that neighbors are of
opposite sex and share at least one common hobby. This simple program, con-
taining just 8 rules, is a very good test program for evaluating the effectiveness
of a parallel production system. It consists of a hot spot rule that fires repeat-
edly and consumes over 90% of sequential execution time for problem size of
64 guests or more. The larger the problem size, proportionally more time is
consumed by this rule, which is used to maintain partial solutions. Although
all instantiations of this rule can be fired in parallel, it is very difficult to recog-
nize this opportunity by pure syntactic techniques at compile-time without the
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Figure 7.2: MANNERS16 Concurrency Profile.

information provided by our mechanisms. The concurrency exhibited is also
exceptional. It is regular but not evenly distributed. The execution starts with
a very low degree of parallelism which then gradually increases toward the end.
More specifically, the program starts with only 2 instantiations that can be
executed in parallel, then 3 instantiations, then 4, 5, ... etc. Figure 7.2 is the
concurrency profile of MANNERS with 16 guests. This is highly challenging
since a parallel production system must not only detect the hot spot rule, but
also exploit effectively a rather peculiar pattern of parallelism.

7.2.2 LIFE

LIFE is a simulation program that simulates the existence of bacteria
in a rectangular grid of cells for a specified number of generations. Whether a
cell stays alive across a generation is determined by the number of neighbors it
has. A living cell is born in an empty cell if it has exactly 3 neighbors. Since
all decisions can be made locally, LIFE exhibits a high degree of data level
parallelism. However, the available concurrency has not been effectively ex-
ploited in previous research. The difficulty of detecting it by syntactic analysis
alone is again the key reason. Another probably even more important reason is
that a parallel production system must have the ability to perform set-oriented
and aggregate operations to exploit the available concurrency. Figure 7.3 is
the concurrency profile of a 10x10 LIFE execution trace without showing the
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Figure 7.3: LIFE10 Concurrency Profile (with Sequential Printing at the End
trimmed by the zigzag line).

sequential printing at the end of execution. Because of the rather evenly dis-
tributed pattern of parallelism, keeping processors busy doing useful work at
all time is the primary issue.

7.2.3 WALTZ

The frequently studied WALTYZ program is also selected here to serve
both as a test program to evaluate the effectiveness of our mechanisms and as
a benchmark program to compare our results with others. This is a constraint
satisfaction problem that implements Waltz’s algorithm for labeling of line
drawing scenes. The algorithm propagates labels based on local decisions and
therefore exhibits both SPMD- and MIMD-style of parallelism (i.e., parallel
instantiations of the same or different rules working on different parts of the
scene). The available parallelism is again quite high as depicted in Figure 7.4,
which is the concurrency profile of a 10 regions execution trace with sequential
printing of results at the end excluded.

Because, syntactically, a number of similar constraints appear in many
rules, the rules are highly interfering with themselves. Most of the existing par-
allel production systems can only handle this at run-time resulting in excessive
overhead. However, the constraints are disjoint, most of the run-time over-
head is superfluous. The functional dependency declaration and DISJOINT
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combinators express this to reveal a compile-time parallel structure. A system
capable of forming disjoint partitions of consistent data objects can then ef-
fectively exploit this available concurrency without the overhead of run-time

interference detection.

7.3 Results

In this section, we demonstrate and analyze the performance results
of three OPS5 benchmark programs on our parallel rule execution engine. Ex-
periments were conducted on various dimensions affecting the selection of im-
plementation strategies. The speedup is measured against the execution time
of the execution engine with a single processor instead of an optimized unipro-
cessor OPS5H compiler such as OPS5c¢ [103] because the former is two to three
orders of magnitude faster than the latter. The difference is primarily due to
the additional matching performed by the uniprocessor compiler. As a remedy
to this lack of match phase, we artificially increase the per rule processing time

using dummy loop as described earlier.
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7.3.1 The Effect of Rule Granularity

To understand the effect of rule granularity (i.e., the time to process a
rule) on the system performance, we select the supervisor/worker with packing
scheduling strategy while varying the granularity of a rule by changing the
number of iterations in the dummy loop. Figure 7.5 shows the results on
MANNERS512 (i.e., 512 guests). The performance improves significantly with
larger granularity. Nearly ideal speedup is achieved when the granularity per
rule is increased to 20000 (i.e., 50.75ms). As a comparison, the average cycle
time of the same program and data set running under OPS5¢ on a much faster
CPU (SUN4 workstation vs. the Intel 80386 on Sequent Symmetry) is about
210ms. This implies that the overhead of scheduling and thread management
is very low, and as long as we can keep it low in a real implementation it is
very likely to get even better results since the granularity per rule is expected
to be much higher than 50ms when matching is included.

Figure 7.6 and Figure 7.7 are the results of similar experiments on
LIFE (40x40) and WALTZ (30 regions), respectively. In both cases, perfor-

mance improvement is observed with increasing granularity.

Among all three test cases, LIFE achieves the highest speedup with
granularity 20000. This is plausible because the run-time behavior of LIFE
exhibits the highest and the most regular pattern of concurrency as depicted
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earlier in Figure 7.3. On the other hand, WALTYZ requires larger granularity
to achieve the same level of performance. We were puzzled by this unexpected
result at first since from the characteristics of the Waltz’s algorithm, there
should not be that much difference. Later on we found that the available
parallelism of a WALTZ program execution depends heavily on the data set
(i.e., the scene to be label). The data generator we use (and used by other
researchers as well) introduces a sequential factor that severely restricts the
available parallelism. The generated scene consists of two arrays of rectangular
blocks growing linearly according to the given problem size parameter. This
linear factor contributes to the performance difference between WALTZ and the
other two programs. We plan to develop a new data generator that generates
scenes without this linear factor.

7.3.2 Scalability: The Effect of Problem Size

An important criterion when evaluating the effectiveness of a parallel
system is its scalability. When the available parallelism increases, a parallel
processing system must be able to effectively exploit it and achieve better
performance. For the three benchmark programs, a common characteristic is
that available parallelism increases with the problem size. Therefore, we tested
our mechanisms and system on three programs with increasing problem sizes

where the problem size to MANNERS, LIFE and WALTYZ are the number of

guests to be assigned, the grid size, and the number of regions®

, respectively.
All programs were tested under the supervisor/worker with packing scheduling
strategy. The grain size was set to 5 with rule granularity fixed at 20000 (i.e.,

50.75ms).

Figure 7.8 illustrates the performance results of MANNERS on dif-
ferent problem sizes and graphically displays scalable speedup of our scheme.
Figure 7.9 and Figure 7.10 are the results of similar experiments on LIFE and
WALT?Z. For all three programs, we achieved near linear speedup when prob-
lem size was large enough. The speedup achieved on smaller problems is lower
because the available parallelism is not enough to keep all processors busy.
When problem size becomes larger, processor utilization increases and so does
the speedup achieved. The trends also indicate that the system can achieve
even better results with problem size larger than the largest size conducted in
the simulation.

3In the scene generated by the data generator for WALTZ, a region consists of 72 line
segments.
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7.3.3 Controlled vs. Unrestricted Parallelism

Too much water drowned the miller. If the available parallelism is not
exploited appropriately, the benefit of parallel processing can easily be over-
whelmed by the scheduling and synchronization overhead. In our case, since
the embedded parallelism in the application is fully expressed, the key issue
comes down to efficiently processing the collection of parallel instantiations on
available computation resources. For a thread-based implementation like ours,
this issue manifests itself in a tradeoff between parallel processing of as many
instantiations as possible and controlling the number of concurrent threads. If
a new thread is created for each parallel instantiation (i.e., Strategy 1), we get
maximal parallelism on the one hand but highest thread management over-
head on the other hand. Using the supervisor/worker scheduling strategy, the
number of threads is fixed but the communication and synchronization cost
increase because of the need to partition and dispatch parallel instantiations
to the worker threads.

To understand the effect of thread management overhead on system
performance, we compare the results between applying Strategy 1 (maximal
parallelism) and Strategy 4 (supervisor/worker with packing). Figure 7.11 is a
3-D display of two sets of experiments on WALTZ10. The timing curves on the
base plane are the execution time while the B-spline surfaces are to demonstrate
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Figure 7.11: 3-D Display of Controlled vs. Maximal Parallelism on WALTZ10.

the performance differences. It is quite evident that supervisor/worker with
packing outperforms maximal parallelism by a substantial margin. Figure 7.12
presents the results of similar experiments on LIFE30. The difference is smaller
but still perceptible. This suggests that throttled parallelism is much better
than unrestricted parallelism.

Just when we expect to observe a similar type of performance differ-
ence on MANNERS program, it does not happen to be the case. Figure 7.13 is
the 3-D graph of the similar experiments as above. The performance of maximal
parallelism is not only comparable to that of supervisor/worker with packing,
it actually performs better when the granularity of rules and the number of
processors increases. To more clearly show this phenomenon, we demonstrate
the timing curves on a 2-D diagram in Figure 7.14. A closer look at the problem
reveals a peculiar pattern of concurrent behavior of the MANNERS program.
As depicted in Figure 7.2, the number of parallel executable instantiations is
quite small in the early stage of the execution. When packing is applied, the
available parallelism is left unexploited while under the maximal parallelism
strategy these instantiations are always processed in parallel.

As a summary, the supervisor/worker strategy which creates only a
limited number of threads is, in general, better than the maximal parallelism
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strategy which creates as many threads as the number of parallel instantiations.
However, the actual performance gain still depends on the characteristics of the
underlying program. When the degree of concurrency in an application is low,
the maximal parallelism strategy is likely to be better.

7.3.4 The Effect of Grain Size

In last section, supervisor/worker with packing appeared to be the
winner in overall performance. The question of determining appropriate grain
size follows. It is unlikely that a single grain size is optimal for every program.
We need, at a minimum, to determine if performance as a function of grain
size is well behaved enough to offer a system default. We test the benchmark
programs with grain sizes of 1 (i.e., no packing), 5, 10, and 20. Fach one of them
is tested with a fixed level of rule granularity. To understand the correlation
of packing with respect to rule processing time, the same set of experiments is
carried out with different levels of rule granularity.

Figure 7.15 is the results on MANNERSH12 with rule granularity
set to 1000. We can observe quite clearly that packing is always better than
no packing at this level of granularity. A grain size of 5 provides the best
performance. On the other hand, with the granularity of a rule raised to
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20000, the best performance is obtained when packing is not applied as shown
in Figure 7.16. Similar results can be observed on both LIFE (Figure 7.17,
Figure 7.18) and WALTZ (Figure 7.19, Figure 7.20) except that grain size of 5

is not necessarily a clear winner over other grain sizes.

7.4 Summary and Analysis

In summary, reducing the granularity of rules improves the results
we get from packing. This is primarily because of the reduction in thread
management, communication, and synchronization overhead. However, when
the average granularity of the rules or the grain size becomes larger, the loss
of parallelism offsets the benefit of packing. In general, packing with grain
size b provides the best performance when the rule granularity is smaller than
5000. When the granularity is larger than 5000, it is better to do without
packing. In other words, packing is good for cases where the per rule scheduling
overhead is comparable or larger than that of the granularity of rule. This result
suggests a dynamic scheduling strategy with either user-specified granularity
assignment to each rule or an automatic estimation done by the system. We are
investigating this issue in our real implementation of an object-based parallel
rule language equipped with decomposition abstraction mechanisms.
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Chapter 8

Implementation

No matter how good a simulation is, it is still a simulation. Only a
real implementation tells the real story. Based on the experiences gained from
the simulation discussed in last chapter, we develop Venus/DA | an object-based
parallel rule language with decomposition abstraction mechanisms, on Sequent
Symmetry shared memory multiprocessors. In this chapter, we discuss the
design and implementation of Venus/DA.

8.1 Form Venus to Venus/DA

To demonstrate that the idea of decomposition abstraction is univer-
sally applicable to any sequential rule language, we extend a sequential rule
language with DA constructs rather than build a new parallel rule language
from scratch. This is also to give an example of how to turn a sequential rule
language into parallel rule language encompassing constructs for decomposition
abstraction. The sequential rule language we choose is Venus, a C/C++-based
modular rule language [18]. Venus is probably the first sequential rule-based
programming language to provide both a declarative syntactic and semantic
mechanism to support top-down modular design of rule-based programs. The
ability to inference upon both primitive and complex C+4++ objects is partic-
ularly attractive to us. In stead of going into details of the Venus language
which can be found in the cited paper, we show how straightforward it is to
turn Venus into Venus/DA. It only takes minor changes to the syntax while
results in substantial enrichment of the semantics. We present the differences
between Venus and Venus/DA by listing the grammar rules of Venus/DA that
are different from Venus. All other rules are exactly the same.

When specifying the Venus/DA grammar rules, we use the following
conventions similar to those used in Stroustrup’s C++ book [152]. That is,

e Things in italic are nonterminals.

o Everything else are terminals.
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e Alternatives are listed on separate lines.

e Optional items are indicated by the subscript “opt”.

8.1.1 Functional Dependency Declarations

Global declarations in Venus consist of #include directives, constant
declarations, enumerated type declarations, and type declarations. All of them
are retained in Venus/DA. The only new global declaration syntactic construct
in Venus/DA is the functional dependency declarations. In other words, global
declarations in Venus/DA are exactly the same as in Venus with the addition
of functional dependency specifications. This implies that, when transforming
a Venus program into a Venus/DA program, all data declarations can stay the
same. The only thing we need to do is to figure out and specify functional
dependencies between different types of working memory objects.

A functional dependency is specified as follows.

functional_dependency

funcdep { identifier_list } — { identifier_list };
vdenti frer_list

vdenti frer

vdenti frer_list , identifier

The identifiers must be names declared in the type declarations (i.e. class
names). The following functional dependency declaration specifies that the
class Department functionally determines the classes 0ffice and Classroom.

funedep — Department ™ — — Of fice, Classroom " ;

The declaration tells the system that different departments have disjoint set of
offices and classrooms.

8.1.2 Rule Definitions

A rule definition in Venus consists of a rule header, an alias declaration
section, a left-hand-side (LHS) expression, and a sequence of right-hand-side
(RHS) actions. Continuing with the approach in last section to keep all data
declarations of Venus intact, all rule definition constructs are retained with
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two additions — an optional DA expression in the LHS and a set of aggregate
actions. We list only those grammar rules that have DA constructs.

The LHS of a Venus/DA rule has the DA expression as an additional
construct for specifying decomposition abstraction. The followings are the
grammar rules involving the DA expression.

rule_de finition :

rule_header alvas,, condilions actions ;
conditions :

if ( expression and_DA_expression,,: )
and_DA_expression :

&& DA_expression
DA_expression :

select_op ( select_arg_list :: expression )
select_op

Select ALL

Select DISJOINT
select _arg_list :

select _arg

select_arg_list , select_arg
select _arg

set_variable

vartable
set_variable :

vartable x
vartable :

vdenti frer

eq_pattern_variable

uq_pattern_vartable

The RHS of a Venus rule is a list of actions enclosed in braces. All
types of actions in Venus are retained in Venus/DA with an additional type of

action called aggregate operation. This type of operation operates on a set of
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objects rather than a single objects. The only aggregate operation supported
right now is Remove which is to remove all objects in a set of objects selected
in the LHS. Other operations are certainly possible. They are left as future
extensions.

action

aggregate_op_call
aggregate_op_call :

aggregate_op ( identifier )
aggregate_op :

Remove

The primitive element of an expression is called a factor. Similar to
the discussion above, all factors in Venus are retained in Venus/DA with the
addition of a new type of factor called aggregate function call, which is simply
to call an aggregate function with arguments properly supplied. An aggregate
function computes a value based on a set of values passed as arguments. The
aggregate functions are Count, Avg, and Sum with usual meanings.

factor :

aggregate_ function_call
aggregate_ function_call

aggregate_ function ( arg_list )
aggregate_ function :

Count

Avg

Sum

As an example to the DA constructs above, the following rule is a
slightly modified, Venus/DA version of the rule DA_Count_Students presented
in Chapter 6.
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rule DA_Count_Students;
from CurrentTask[?] t;
Department[?] d;
Student [7] 53
if ( t.task == COUNTING &&
SelectALL ( d, s* ::
d.students_counted == NO &&
s.dept == d.name ) )

d.count = Count(s*),
d.students_counted == YES,

8.1.3 Remark

The key point we want to emphasize is that it is relatively straightfor-
ward to transform a sequential rule language into a DA language. It only takes a
minimal syntactic changes. We actually have a syntax for adding DA constructs
to OPS5, which can be called OPS5/DA. One can easily have CLIPS/DA or
AnyLang/DA where AnyLang is any sequential language. Because of this con-
sistency with sequential rule languages, it is possible to have a single run-time
system for all the extensions. We will discuss more about this in later sections.

8.2 A Thread-Based Execution Environment

We select the Sequent Symmetry multiprocessor as our target ma-
chine because the shared-memory model of parallel computation is closer to the
production system model than distributed memory machines and Symmetry
was the only shared-memory machine we had at the time we started program-
ming. The implementation is based upon an object-based thread package called
PRESTO [13, 41]. This C++-based package provides C++ objects to server as
our underlying object system. It also includes a variety of thread management
primitives and synchronization objects such as condition variables, monitors
[65], and locks. Because of the object-oriented nature of the package, it is easy
to build more complex synchronization objects for various purposes such as
barrier synchronization. Even though it is not as effective as another very effi-
cient C-based thread package called FastThreads [3, 4] developed by the same
research group, PRESTO is still nearly two orders of magnitude faster than the
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process-based parallelism provided by Sequent’s Dynix operating systems [41].
Its flexibility and extensibility also make it a better choice than FastThreads.

Another system issue that has significantly impact on our implemen-
tation is that Venus/DA is based upon a GNU G4+ implementation of the
Venus language. The run-time system is therefore written partially in Sequent
C++ and partially in GNU G+4+. This took us tremendous amount of efforts
in making things work together, especially because Sequent C++ does not sup-
port templates which are used heavily in Venus implementation. Details of the
software system related issues such as this one, however, will not be discussed
any further.

8.3 Implementation Framework

The implementation techniques developed from OPS5c¢ [103, 104] and
Venus [18] provide a general and effective framework for the implementation
of rule-based languages. As depicted in Figure 8.1, the framework suggests a
common intermediate form as the interface between front end parser and back
end code generator. Using this approach, the same code generator and run-time
libraries (RTL) can be used to implement different rule languages. All we need
to write for a new language is a new parser for the specific language syntax.
This claim is supported by the existing parsers for OPS5, CLIPS, and Venus
as presented in the figure. The intermediate form is designed in such a way
that it is easily extensible to incorporate new features of new languages. The
code generator and RTL can also be extended to handle these features. This
is the original approach we intended to take which is delineated in Figure 8.2.

When working on the real implementation, we actually started from
the RTL since all parallel execution related codes are in the RTL. For testing
the RTL implementation and to gather performance results, we developed an
alternative approach toward the Venus/DA implementation. Since all of the
test programs are directly translated from Venus programs for performance
comparison, we developed a code translator to translate the C+4 code gener-
ated by the Venus compiler into corresponding code that are supposed to be
generated by the Venus/DA compiler. This is done with the help of a simple
configuration file that can be either hand edited or directly generated from the
Venus/DA source code. The translator is implemented by a set of Perl scripts
[157]. Figure 8.3 presents this code translation approach. It has the advantage
of fast implementation and evaluation. Performance results can be gathered
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Figure 8.3: Venus/DA Implementation: An Alternative Approach.

while other parts (such as parser and code generator) are still being imple-
mented. This is also facilitated by our DA approach being a natural extension

to sequential rule languages.

8.4 Run-Time System

It is fair to say that the run-time system (RTS) is the most important
part of our Venus/DA implementation. The effectiveness of the DA approach
can only be materialized with an efficient RTS implementation. In particular,
the algorithms used in the parallel match and parallel execution have decisive
impacts on whether the parallelism expressed by the programmers can be ef-
fectively exploited. In this section, we discuss the design and implementation

of the Venus/DA run-time system.
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8.4.1 Implementation Strategies

We highlight the main strategies used for the Venus/DA implemen-
tation. The general goals are to simplify the implementation and to reduce
the synchronization cost as much as possible. The details and rationales for

adopting these strategies are described in later sections.

e Shared-memory model of computation. All working memory objects re-
side in shared memory. Communications and synchronizations are done

through shared variables.!

e SPMD style execution [27, 144]. A number of inference engines capable
of matching and rule execution are working asynchronously under the
shared working memory. Inference engines are synchronized only at the

barriers or when accessing shared objects.

e Parallel match and asynchronous execution within parallel cycles. Barrier

synchronizations are enforced only between parallel cycles.

e Eliminate the entire phase of conflict-resolution and run-time interference

detection.

e Based on working technologies and existing sequential implementation.
This includes the use of Lazy Match algorithm [99, 100] and the Venus

implementation.

e Static work load distribution and prescheduling by copy-and-constrain

(C&C) [118, 119, 141].

o The nondeterministic safe assumption, i.e. firing rules nondeterministi-
cally should not affect the correctness of the program execution. In other
words, the input source program should not depend on rule priority or

any implicit conflict resolution strategy for its correctness.

!By using Sequent Symmetry and shared memory, we avoid the problems such as working
memory partitioning and localities. While these issues are as important as other issues we
studied, they are not within the scope of this thesis. They are, however, certainly in our
plan for future works which is discussed in Chapter 10.
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8.4.2 System Architecture

Figure 8.4 is the system architecture of the Venus/DA RTS which
is essentially an integration of the Venus/DA run-time structure with the
PRESTO system components [12]. A number of identical LEAPS engines
(LE’s) are allocated during the initialization phase. Each LE is run on a sep-
arate PRESTO thread which can be in either ready, run, or wait state. All
LE’s are initially in ready state. When there are idle processors available, the
PRESTO scheduler assigns a processor to run on a ready thread. A thread is
in run state when running on a processor. Each LE is a full fledged inference
engine that can match, execute rule instantiations and synchronize with other
LE’s. LE’s run asynchronously except when waiting for a lock, a condition vari-
able (normally associated with a monitor), or in a barrier. A waiting thread
becomes ready when the lock is successtully acquired, or the condition variable
is signaled, or the barrier is complete (i.e. all participating threads arrive at
the barrier). Rules are disjoint partitioned and assigned to the LE’s. Working
memory objects are kept in shared memory. Synchronization objects also reside
in shared memory. They are special objects such as locks, condition variables,
monitors, and barriers, which are used exclusively for synchronization.

There are several advantages for this architecture:

o First of all, it simplifies implementation considerably. With the imple-
mentation of a single LE, we automatically have parallel match and paral-
lel execution. The parallel implementation can base on the sequential im-
plementation. In other words, the parallel implementation needs mostly
to handle the synchronization issues rather than the match and execution
which are already available from the sequential implementation.

e This architecture can easily support various rule partitioning strategies.
In particular, it support CREL-style clustering [101]. This is because
each LE is a full-fledged inference engine. It can be assigned any number
of rules for match and execution.

e Potential contention on the stack for a LEAPS-based parallel implementa-
tion is greatly reduced because each LE has its own stack. Even though
each LE may need to process some extra stack entries for the sake of
parallelism, this architecture effectively partitions the sequential LEAPS
stack into a number of smaller stacks equal to the number of LE’s. We
will discuss the stack issues in more detail when describing our parallel
LEAPS-based inference system in next section.
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e This approach also facilitates scheduling and load balancing as well.
Static load balancing can be done by partitioning of rules into different

LE’s. Run-time scheduling is straightforward since all LE’s are identical.

e Asynchronous execution follows automatically with this approach since
when each LE is running on a separate thread, all LE’s are running
asynchronously.

e Synchronization is also simplified since all LE’s are the same and therefore

follow the same synchronization patterns.

e With each LE capable of both match and execution, each can fire the
instantiations found by itself, and therefore reduce the potential over-

head of having separate matchers and executors such as the architecture
adopted by Neiman [111].

In the following sections, we discuss our LEAPS-based parallel infer-
ence system and other components of the Venus/DA RTS.

8.4.3 A LEAPS-Based Parallel Inference System

The Venus/DA RTS consists of a number of identical LE’s that are
capable of match, firing, and synchronization. The kernel of the RTS is a
LEAPS-based parallel inference system that coordinate these LE’s to perform
the parallel match and multiple rule firings. Each LE runs a modified version
of the sequential LEAPS algorithm, which we call LEAPS/DA. By static par-
titioning, each LE is assigned a number of rules for processing. Each LE is
responsible for keeping all stack entries generated for the rules assigned to it.

The execution proceeds in parallel cycles. During a cycle, LE’s match
and fire instantiations asynchronously until a point where barrier synchroniza-
tion is needed to maintain correctness. When all LE’s arrive at the barrier, a
new parallel cycle begins. The execution continues until:

e an explicit halt statement is encountered, or
e when none of the LE’s can find any instantiations to fire, or

e when the stacks of all LE’s are empty.
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Figure 8.5: The LEAPS/DA Stack Organization.

8.4.3.1 The LEAPS/DA Stack Organization The central data struc-
ture of the LEAPS algorithm is a stack called LEAPS stack for maintaining
the search states. The LEAPS stack in Venus is actually a priority queue since
entries are sorted in predefined order. The stack organization of LEAPS/DA is
essentially the same as LEAPS stack except that, for the purpose of parallel ex-
ecution, a pair of alternating delay queues is associated with each LEAPS/DA
stack. Figure 8.5 depicts the organization of a LEAPS/DA stack. The delay
queues are for keeping stack entries that should not be processed during the
current parallel cycle. In other words, all new stack entries pushed during the
current parallel cycle are placed in the delay queues rather than pushed into the
stack. This is to prevent new entries from interfering with the current search.
Entries in the delay queues are actually pushed into the stack after the barrier
synchronization is completed. All LE’s resume by doing a stack adjustment
before the search for new instantiations. Since stack adjustment of different
LE’s are performed asynchronously, some faster LE’s may interfere with the
stack adjustment of slower LE’s. This is where the alternating design comes
into play. The design ensures that, for each LE, all new entries are placed in a
different delay queue than new entries of the last cycle. Since stack adjustment
is performed only once for each cycle, a pair of alternating delay queues suffices.

There are several advantages to this design:

e First and foremost, it helps maintain the correct execution of the parallel
rule programs.
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o The alternating design also reduces contention considerably since the
stack adjustment can be performed completely locally within each LE
with no worry of any possible interference.

e [t simplifies the inference algorithm (to be discussed in the next section)
since it rules out a significant portion of the potential interference between
rule firing and instantiation search within the same parallel cycle.

The design merely results in minor overhead since for each entry to be pushed
into the stack, only an additional append operation is needed. The cost is
comparatively much smaller than the cost of stack push which requires a search
down the stack to find the proper place to insert the new entry.

8.4.3.2 The LEAPS/DA Inference Algorithm One thing that can be
easily overlooked when designing parallel algorithms or writing parallel pro-
grams is that doing less work, and therefore less time, to achieve the same
results is as efficient, and sometimes more efficient, than trying to find the best
way to do things in parallel. In the design of the LEAPS/DA inference algo-
rithm, one of the most important criteria is to eliminate as much as possible
any unnecessary or redundant work. As an example, in the design of match
algorithm, our primary focus is not to do the match work faster but rather
to do much less match and achieve the same results, i.e. finding the same set
of instantiations. By doing less work in parallel, even a simple parallelization
strategy may achieve the same or superior performance than complex parallel
match algorithms. In this section, we detail the LEAPS/DA inference algo-
rithm.

Figure 8.6 presents the LEAPS/DA inference algorithm. The same
algorithm is run by each LE in the RTS. After initialization, each LE that passes
the context test (we will discuss more about the context mechanism later) starts
by popping a stack entry from its own stack and applies the LEAPS best-first
search to find an instantiation. A found instantiation is fired immediately if:

e no instantiation has ever been fired during the current cycle, or

e the instantiation is compatible with all other instantiations that are fired
in the current cycle.

To test the conditions above, especially the second condition, it is
not necessary to resort to expensive run-time interference detection as done by
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most previous research. We can use a rule compatibility matriz which is part of
the results of the compile-time semantic and syntactic interference analysis. To
further reduce the run-time overhead, the Venus/DA implementation adopts an
even simpler approach. Instead of the rule compatibility matrix, we introduce
the notion of compatibility graph and compatibility set.

The compatibility graph of a rule program P is an undirected graph
G' = (V, E) such that each vertex ¢ in V corresponds to a rule r; in P and there
is an edge between vertex ¢ and j if and only if r; and r; are compatible. A com-
patibility set of G is a complete subgraph of G. In other words, a compatibility
set is a set of rules that are pair-wise compatible. The compatibility graph is
just another representation of the rule compatibility matrix and therefore can
be obtained from compile-time interference analysis.

For testing the conditions above, we identify the disjoint partitioning
of GG into a set of maximally complete subgraphs. Each subgraph is a com-
patibility set and is assigned an unique ID number. Each rule is assigned a
compatibility ID (CID) which is the ID number of the compatibility set the
rule resides. The RTS maintains a shared variable called current compatibility
ID which is reset to null at the start of each parallel cycle. It is atomically set
to the CID of the first instantiation fired and remains the same throughout the
current cycle. Subsequent instantiations must have the same CID to be eligible
for parallel execution. With this approach, the test of the second condition is
simplified into just a simple comparison between the CID’s.

When a compatible instantiations is found, it is fired immediately.
On the other hand, if an instantiation is conflict with the current compatibility
set, the LE that generates the instantiation stops immediately and waits at
the barrier. After firing an instantiation, an LE keeps on searching for more
instantiations if the rule just fired is a parallel rule. That is, if

e compile-time interference analysis shows that all instantiations of the rule
can be fired in parallel,
e the rule’s antecedent includes one or more set selection conditions, or
o the rule’s antecedent includes an ALL or DISJOINT combinator.
Such LE’s keep searching and firing until no more instantiations can be found.

When there is nothing more to do, an LE stops and waits at the barrier. When
all LE’s arrive at the barrier, a new parallel cycle begins.
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Figure 8.7 presents the LEAPS/DA inference algorithm in pseudo
code. The subroutines used in the algorithm are explained in Figure 8.8. For
readability, we use identation to denote block structures and only use braces
for long while loop. In the algorithm, halt is a shared variable which is set to
true when an explicit halt statement is encountered or when no instantiation
is found during the entire cycle. The details of the implementation of DA
constructs are discussed in the forthcoming sections.

8.4.4 Implementing Set Selection Conditions

We discuss the implementation of set selection conditions that are
used purely for data parallel computation (i.e. not used with aggregate opera-
tions), Aggregate operations are discussed in later section.

With the LEAPS-based implementation, set selection conditions can
be accomplished through cursor management. For each rule with set selection
conditions, we record the indices of those condition elements. The search for
instantiations proceeds as if all set selection conditions were regular condition
elements. When the first instantiation is found and fired, it is used as a seed
to find other instantiations. This is done by advancing only the cursors corre-
spond to the set selection conditions. All instantiations thus found can be fired
immediately without checking the CID’s. When no more instantiation can be
found from the seed, the LE stops and wait at the barrier.

This approach employs no additional data structure and incurs little
overhead since it tries to find all executable instantiations directly by advancing
the right set of cursors. The efficiency is gained not only from parallel execution,
but also from the saving of not doing useless work.

8.4.5 Implementing ALL Combinator

The implementation of the ALL combinator is similar to that of the
set selection conditions. For each rule with an ALL condition, the index of
the first condition element in the ALL combinator is recorded as the ALL
combinator index or ACindex. The search for instantiations proceeds in a way
similar to the implementation of set selection conditions, i.e. by treating all
condition elements as regular condition elements. When the first instantiation
is found, it is fired and used as a seed to find other instantiations. This is done
by advancing only the cursors of the condition elements with indices larger
than or equal to the ACindex. In other words, advance only those cursors
correspond to the condition elements enclosed in the ALL combinator.
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algorithm leaps da inference;
while 'halt {
while context active() and stacknot_empty() {
entry = pop();
instantiation = leaps bfs(entry);
while instantiation != null {
if cid check(entry.cid) then
fire(instantiation);
if halt then
terminate();
else if entry.rule type == REGULAR
sync_barrier check in();
break;
else
instantiation = leaps_ bfs(entry);
continue;
else
sync_barrier check in();

break;
1
if parallel instantiations fired then
continue;
else
stack adjustment () ;
1
sync_barrier check in();
stack adjustment () ;

Figure 8.7: The LEAPS/DA Inference Algorithm in Pseudo Code.
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function context_active();
// Probe the top of the stack and check if the context of
// the top entry is active.

function stack not_empty();
// Check if the local stack is empty.

function popQ);
// Pop an entry out of the local stack.

function leaps bfs(stack entry);
// Apply LEAPS best-first-search on the given stack entry.
// Return an instantiation if found, null otherwise.

function cid_check(cid);

// Compare the given cid with current CID for equality.
// If current CID has not been set yet, set its value to
// cid and return true.

procedure fire(instantiation);
// Fire the given instantiation.

procedure terminate();
// Terminate the inference algorithm.

procedure sync barrier check_ in();
// Report arrival at the synchronization barrier.

procedure stack_adjustment() ;
// Adjust the local stack for the next cycle.

Figure 8.8: Subroutines Used in the LEAPS/DA Inference Algorithm.
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We note that before firing the seed instantiation, a check of the CID
must be made. It can only be fired when it has the same CID. Subsequent
instantiations found can be fired directly without checking the CID’s.

8.4.6 Implementing DISJOINT Combinator

Because of the disjointness requirement, the implementation of DIS-
JOINT combinators is not as straight forward as the set selection conditions
and ALL combinators. However, the work is still accomplished through cursor
management.

For each rule with a DISJOINT condition, the index of the first con-
dition element in the DISJOINT combinator is recorded as the DISJOINT
combinator index or DCindex. A set called disjoint timestamps set is main-
tained to keep track of the time stamps of working memory objects in the
disjoint condition of any instantiation of the rule that is actually fired.

The first instantiation (i.e. the seed) is searched in the same way as
the ALL combinator. If the CID is checked and the seed instantiation fired,
the other instantiations are found by an intelligent backtracking technique:

e The cursor that corresponds to a condition element in the DISJOINT
combinator and has the highest position in the LEAPS search tree is
located and advanced. The node in the tree is called the disjoint root,
i.e. the root of the disjoint subtree.

o All other cursors correspond to the condition elements in the DISJOINT
combinator are reset. The search for instantiations proceeds by advancing
only these cursors.

e When doing the search, all working memory objects with time stamps
appear in the disjoint timestamps set are simply skipped.

e Once an instantiation is found, it is fired immediately without the need

to check CID.

o When all the cursors have been exhausted, the cursor pointing to the dis-
joint root is advanced again and the rest of the cursors in the DISJOINT
combinator reset as above.

e The whole process repeats until no more instantiation can be found, i.e.
until all cursors in the DISJOINT combinator (including the disjoint root)
have been exhausted.



126

Seed

>\

36, 58 . Disjoint Subtrees

Disjoint Timestamps Set
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The technique above is not as complex as it appears. We essentially
explore the disjoint property by skipping all unnecessary joins. The advancing
of the disjoint root cursor effectively skips the whole disjoint subtree under
that root and starts with a new disjoint subtree. The test against the disjoint
timestamps set reduces further the join work that must be performed otherwise.
Figure 8.9 should help illustrate the technique and the significant saving we
obtained from reducing the join work.

8.4.7 Implementing Aggregate Operations

Since aggregate operations are always used in conjunction with set
selection conditions, the implementation of the two are closely related. Same
as the implementation of set selection conditions, we record the indices of all set
selection conditions. The seed instantiation is again found in the same way. An
important difference, however, is that for a rule employing aggregate operations
in its consequence, the seed is not fired when the CID check is passed. In stead,
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we maintain a set of executable instantiations and an accumulation variable for
each aggregate operation in the consequence. For example, if the operation is
Count, we keep a counter to count the number of working memory objects
satisfying the set selection condition and are part of an executable instantia-
tion. The saved instantiations are fired when the cursors advancement leads
to no more instantiations under the seed. When firing these instantiations, all
aggregate operations are replaced with the values of the proper accumulation
variables.

The aggregate operations have not been actually implemented yet.
We have decided not to implement them in the current environment. The pri-
mary reason is that the platform and softwares we used to build the Venus/DA
system is out of date. It serves our purpose well enough to build a prototype
that demonstrate the effectiveness of the decomposition abstraction approach.
Our plan is to rewrite the whole thing on advanced platforms (including dis-

tributed memory machines) with modern software environments.

8.4.8 Implementing Contexts

We have implemented a less general version of the proposed context
mechanism for the purpose of evaluation. More specifically, we assume the
existence of a designated starting context which is to read in all the data. The
relationships between contexts are represented by an n xn matrix where n is the
total number of contexts in the program. For each context, the matrix records
the next set of contexts that should be activated when a context is finished.
The termination of a context is determined by an explicit End_of _Context call,
a Switch_Context call, or when no rule is eligible for firing in the current cycle.
A call to End_of_Context simply indicates the end of the current context. The
Switch_Context call specifies a new context to activate which also terminates
the context that makes the call. The RTS maintains a set of active contexts.
During each cycle, a search for instantiation(s) is only initiated for a rule whose
context is active.

This simple technique results in significant reduction in the excess
work done by the RTS due to parallelism. Without the context mechanism, the
search of instantiations for those rules whose contexts are not active may waste
a significant portion of the computation resource. For Venus and Venus/DA,
however, the ideal mechanism for similar purpose should probably exploit the

modularity of the language. This is one of our future direction for this research.
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8.5 The Venus/DA Translator and Compiler

As discussed earlier, the “right” way to implement the Venus/DA lan-
guage is the traditional parser and code generator approach. This will consti-
tute the Venus/DA compiler presented in Figure 8.2. We select the translation
approach depicted in Figure 8.3 since our primary goal is to understand the
effectiveness of the decomposition abstraction approach; besides, the platform
and software environment we used are out of date. In the future rewrite of the
entire system, we will certainly take the parser and code generator approach.
In this section, we describe the Venus to Venus/DA translator and discuss how

to implement the actual compiler.

The translator is a set of Perl scripts that handles any Venus program
consisting of a single main module. In other words, the modular feature of
the Venus language has not been incorporated into the DA system yet. The
interplay between parallelism and modularity, the relationship between context
mechanism and modularity are good topics for future research. We, however,
concentrate on our implementation goal which is to demonstrate and evaluate
the effectiveness of the DA approach.

The translator takes input from the C++ source code generated by
the Venus compiler and a configuration file. The configuration file is a simple
table consists of entries of rule information, one entry per rule. Each entry is
composed of five fields:

e rule name,

e context id,

rule type (REGULAR, ALL, or DISJOINT),

the rule’s CID, and

the ACindex or DCindex (for REGULAR rule, this field is not used)

As discussed earlier, all information above can be obtained at compile-time,
through parsing, code generation, as well as interference analysis. The con-
figuration file is actually an extension to the Venus rule configuration process.
The process records important feature of rules on run-time data structures. We
add information related to parallel execution to the run-time data structures

so that the Venus/DA RTS can use them.
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The main part of the translator is to partition the rules among LE’s
such that the join code and the execution code of the same rule are always
handled by the same LE. Other parts of the translator are primarily to augment
the code for parallel execution. Most of the parallel execution related code are
separated from the C+4++ source code such that the same parallel code can
be used on different rule programs. Rest of the translator simply copies the
input source code line by line into output file, possibly with some substitutions
applied. The translator also breaks large input source into separate compilation
units for parallel compilation on the Sequent.

For static load balancing with C&C, selected rules from the Venus
source code are copied and constrained by hand. The resulting Venus source
is then compiled by the Venus compiler to generate the C++ source code for
the input of the translator. It is certainly possible to build a subsystem to do
the job. We decided not to do so since this is not our primary concern. Similar
issues have been studies elsewhere [35, 36].

8.6 Chapter Summary

This chapter presents in details how we implement the Venus/DA
run-time system and the constructs for decomposition abstraction. We demon-
strate how to convert a sequential rule language (Venus in our case) into a
parallel rule language with DA constructs (Venus/DA). The core of the im-
plementation technologies is the LEAPS/DA inference algorithm that employs
multiple LEAPS engines for SPMD style parallel matching and rule execu-
tion. We must emphasize that the techniques developed here can be easily
adopted to implement other DA language systems. By developing the system
on Sequent Symmetry, however, we avoid an important issue that is almost
certain to have significant impact on other systems, namely locality issue. On
distributed memory machines, for example, we not only need to partition the
rules but also the working memory objects to different processing nodes. The
communication cost would certainly be much higher. These issues are among
our primary directions for future research.



Chapter 9

Experimentation and Performance Results

For performance evaluation, we have conducted a variety of experi-
ment on the three bench mark programs. The experimentation plan is designed
with the following objectives:

e To evaluate the effectiveness of the DA mechanisms.

o To discover the strength and weakness of the DA mechanisms.

To understand the behavior of the Venus/DA RTS. In particular, we want
to test how well the system scale with respect to computation resources

and problem size.

To find out the reasons for the success or failure of the DA approach.

In this chapter, we document our experimentation on the Venus/DA RTS and
analyze the performance results. We note that, since the purpose of this im-
plementation is to build a prototype with the aim of future rewrite on modern
platform and software environment, we emphasize on the variety of the exper-
iments rather than the number of test programs we run.

9.1 The Benchmark Programs

We use the same MANNERS and WALTZ programs as we did in
Chapter 7. The LIFE program is dropped because of the decision of not to
implement aggregate operations in the current prototype. It is replaced by a
much larger program called ARP which is a route planning program employing
the A* algorithm. We list the programs in Table 9.1 for reference.

9.1.1 From Venus to Venus/DA

The following steps are taken to prepare a Venus program for our

experimentation:
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Program No. Rules Description

MANNERS 8 A combinatorial search program for seat
assignment.

WALTZ 33 A constraint satisfaction program using Waltz’s
algorithm for scene labeling [158].

ARP 111 A route planning program using A* algorithm.

Table 9.1: Benchmark programs used in the experiments.

. Nondeterministic safe transformation.

Transform the Venus program into a nondeterministic safe program. This
is usually done by strengthening rule antecedents such that each rule
matches exactly the state it is designed to fire. Sometimes it is neces-
sary to replace a less specific rule with more specific rules, or add some
new rules. The transformed program must run correctly without relying
on any explicit or implicit conflict resolution strategies such as priority,

recency, specificity, or rule order.

. Copy-and-constrain parallel rules if necessary.

All parallel rules (i.e. rules containing set selection conditions, ALL com-
binator, or DISJOINT combinator) are candidates for C&C.

. Replace stage changing rules with the DA context mechanism
whenever possible.

In most cases, this should reduce the number of rules in the program.

. Compilation using the Venus Compiler.

The nondeterministic safe and C&C version of the Venus program is
compiled using the Venus compiler. This can be done on any platform
where the Venus compiler is available.

. Construct the configuration file.

As discussed in last chapter (Section 8.5), this is currently done by hand.

. Venus to Venus/DA Translation.

Translate the C++ code generated by the Venus compiler into Venus/DA
C++ code. Simply run the translator.
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7. Compile the Venus/DA C++4 code.
This should be done with C4++ compiler on the target machine.

Surprisingly enough, the most time consuming step is the first step
that transform the original Venus code into a nondeterministic safe program.
The reason is that all three programs (actually most sequential rule programs)
rely on explicit or implicit conflict resolution strategies for their correct execu-
tion. Some rules can be retained without change while some other rules may
require the recognition of the exact state for those rules to fire. We also need to
prevent some rules from firing earlier than then they should. Note however that
these problems occur only because the original programs were written to take
advantage of the built-in conflict resolution strategies of Venus. If we were to
start from scratch with the Venus/DA language, things should be much better.

We summarize the changes made to the test programs with emphasis
placed on how various sources of parallelism in the programs are expressed
using DA mechanisms.

MANNERS

Compare to the other two programs, MANNERS is a relatively easy
one. It consists of 8 rules and only one of them, namely the make_path rule, is
a parallel rule. Since all instantiations of the rule can be fired in parallel, we
simply transform it into an ALL rule.

WALTZ

One type of rules that are most difficult to do the nondeterministic
safe transformation are the rules that are designed to fire only when no other
rules can fire in the same context. In many cases, these rules stay satisfiable
throughout the execution of the context but not fired because of some implicit
conflict resolution strategies until the end of the context. Most of the context
changing rules are this type of rules. It is particularly difficult to characterize
exactly the states that these rules should fire such that they don’t fire otherwise.
In many cases, we not only need to transform the rules in questions, we may
also need to change all other rules in the same context as well. A practical (but
not necessarily elegant) technique is to add boolean attributes to data objects
that are processed in the context such that they are checked when processed.
The context changing rules can be transformed by adding the test that all such
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attributes have been successfully checked (i.e. all processing has been done
successfully).

We highlight the transformation done on the WALTZ program:

e The reverse_edgerule (or all its copies) is transformed into an ALL rule
since the rule is intended to duplicate all line segments.

o Alljunction making rules are transformed into DISJOINT rules since each
rule matches disjoint set of edges to form a junction. These rules are also
pair-wise compatible because of the functional dependency between the
junctions and the edges.

e The match_edge rule (or all its copies) is transformed into an ALL rule
since all pairs of opposite edges (such that one is labeled and the other
is not) must be matched.

o All labeling rules are transformed into DISJOINT rules since each rule
match a junction and the set of edges associated with it for labeling. For
the same reason as the junction making rules, these rules are pair-wise
compatible.

e The rule that label the remaining unlabeled edges as boundaries is a
perfect ALL rule. However, in the original Waltz program, the rule labels
an edge and also print its label. The output will be unreadable if multiple
instantiations of this rule are fired in parallel. We therefore split the
labeling and printing into two rules. The rule that labels the remaining
edges is transformed into an ALL rule.

e All other rules remain the same (i.e. stay as regular rules).

ARP

The central part of the ARP program is a route planner that employs
the A* algorithm [112] to search for an optimal route between the start and
the finish points. The target for parallelization is also the rules for the route
planner. The well-known A* algorithm is basically a best-first search algo-
rithm that keeps on expanding the current best node until a solution is found.
Apparently, there are two simple strategies to parallelize the algorithm:

1. We can parallelize the calculation for the best node but still expand only
the single best node.
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2. In addition to the calculation, we can also expand more than one node,
say n best nodes, in parallel.

The first one can be implemented simply by using the set selection conditions,
ALL, or DISJOINT combinators to transform the cost calculation rules. The
second one is less obvious since it needs to select n best nodes for expanding
which is not as straightforward to specify as the former one. However, there
is an alternative strategy similar to the second one that can be implemented
directly. We can simply expand all best nodes instead of just one. In other
words, all nodes with the same best f value (i.e. value of the heuristic function)
are expanded. If there is only one such node, then only that node is expanded.
If there exists more than one such node, all of them are expanded. This can
be implemented simply by transforming the node expanding rule into an ALL
rule.

The biggest problem in parallelizing the ARP program is the set of
agenda and task control rules. These rules are strictly sequential unless we
completely change the control mechanism. The latter is not desirable either
since we want to have fair performance comparison between the sequential and
the parallel programs. The good news is that the sequential effect reduces when
the problem size increases. We therefore chose not to parallelize the control
rules.

9.2 Experimentation Methodology

All programs, sequential and parallel, are running in three stages —
input, computation, and output. Since parallel I/O is out of the scope of
this research, we compare the performance of the computation part for both
sequential and parallel execution. Furthermore, all experiments are conducted
under the following guidelines which are equally applicable to both sequential
and parallel execution.

e To minimize the cache effect, all data are collected after the caches have
stabilized.

o Use the nondeterministic safe version of the sequential programs for the
sequential time base.

e Measure the elapsed time of the computation part (i.e. right after the
input of the last data and immediately before the output of the first
result).
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o Measure the mean and variance of at least 10 runs for each data point.

o Measure each program on at least 4 data sets of increasing size.
The following sets of experiments are repeated on each program:

e Speedup Experiment

With fixed problem size, increase the number of processors from 1 to 12
L. Measure the speedup by comparing the execution time against the
sequential execution time. This will demonstrate the overall speedup of

the Venus/DA system.

e Scaling Experiment

Repeat the speedup experiment on all 4 data sets. The purpose is to
understand how well the system scales with respect to problem size.

e Processor Utilization Measurement

With fixed problem size, 12 processors, keep track of the processor uti-
lization throughout the execution. This complements the speedup experi-
ment since we don’t usually achieve good speedup without high processor
utilization.

On separate runs, we also perform the following measurement in order
to understand the behavior of the DA system:

e Barrier Synchronization Overhead Measurement

With fixed problem size, 12 processors, measure the time spent exclusively
on the barrier, i.e. the time when all processors are at the barrier. We
want to understand if the barrier synchronization constitutes a sequential
bottleneck.

¢ CPU Time Distribution Measurement

With fixed problem size, 1 to 12 processors, measure the percentage of
time each LE spent on join operations, fire instantiations, stack opera-
tions, synchronization, and others. Also average the numbers over all

1This is the number of actually usable processors on our Sequent Symmetry
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LE’s to obtain the average percentage of time the system spent on each
type of computation. Both the individual measurement and the aver-
age tell us about how much time the system is doing real work and how
much of the execution time is spent on overhead that does not occur on

sequential version.

e Stack Measurement

Over 4 data sets, on 1 to 12 processors, measure the number of stack
operations (i.e. push and pop) done on each LE and the total number of
stack entries on all LE over time. The LEAPS stack is the most important
data structure in both the original LEAPS algorithm and the LEAPS/DA
algorithm. This measurement will tell how much more entries and stack
operations are performed by the DA system. It is another account for

the overhead due to parallelism.

e Join Measurement

Over 4 data sets, on 1 to 12 processors, measure the total number of join
operations performed on each LE. This is intended to show the effective-
ness of our intelligent backtracking scheme. Compare the sum of these
measurement with the sequential number will demonstrate home much
saving is obtained by the scheme. The result should reflect the speedup

obtained.

e Overhead Ratio Measurement

Over 4 data sets, on 1 to 12 processors, measure the number of key oper-
ations performed by the parallel and sequential systems. By measuring
the ratio of these numbers, we should have a good picture of how much
extra work is done by the parallel system and whether the extra work

increases with data size.

9.3 Performance Results and Analysis

We present and analyze various performance results on three bench-
mark programs. We also compare the performance with simulation results

whenever possible.
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#PE’s 16 32 64 128 256

Seq || 0.776 | 5.491 | 58.101 | 771.751 | 11356.580
1] 2.517 | 11.190 | 89.246 | 761.020 | 10697.210

2| 1.576 | 6.488 | 48.500 | 397.595 | 5513.295

3| 1.376 | 5.098 | 34.568 | 280.415 | 3831.823

40 1.244 | 4.482 | 28.572 | 222.555 | 2982.035

5| 1.206 | 4.104 | 24.590 | 186.270 | 2500.277

6 || 1.272 | 3.994 | 22.320 | 162.066 | 2128.965

7 1.248 | 3.856 | 20.276 | 145.835 | 1897.205

8 || 1.340 | 3.850 | 19.092 | 131.701 | 1702.175

9| 1.442 | 3.925 | 18.258 | 121.070 | 1512.250
10 || 1.516 | 3.978 | 17.208 | 111.280 | 1360.665
11 || 1.552 | 4.200 | 16.678 | 102.068 | 1213.335
12 ] 1.755 | 4.272 | 16.100 | 91.575 | 1035.840

Table 9.2: MANNERS execution time(seconds) on increasing problem size.

9.3.1 Overall Speedup and Scaling Results
MANNERS

Table 9.2 and Figure 9.1 show the execution time and overall speedup
results of the MANNERS program on problem size of 16, 32, 64, 128, and 256
guests. The first row denoted by Seq is the sequential execution time on each
problem set. The second row is the execution time of the parallel program
running on a single processor. Each execution time is the mean of at least 10

rumns.

This set of experiments is a good indication of the effectiveness and
scalability of the DA mechanism. First of all, the system exhibits good speedup
behavior. For the 256 guests problem, we achieve 11-fold speedup over 12
processors. We also have the desired behavior of scalable speedup, both in
terms of number of processors and problem size. When the problem size gets
larger, which usually means more available parallelism, the system is capable
of exploiting those parallelism to achieve higher level of concurrency. We note
that when problem size gets larger than 128 guests, the speedup trend seems
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Figure 9.1: MANNERS overall speedup on different problem size.

to go up rather than down, suggesting that the system has the potential to

achieve even higher speedup with more processors available.

WALTZ and ARP

To our surprise, we were unable to get comparable results on both
WALTYZ and ARP program. Since the reasons for failure are similar, we discuss

them together.
Figure 9.2 is the results on WALTZ program. The problem size is

the number of line segments in the input drawing to be labeled. We were only
able to collect data for small problem sizes because the machine we worked on
kept failing. Judging from the data we already have, there is no speedup what
so ever. We face the similar situation on the ARP program as well which is
depicted in Figure 9.3. The problem size in the ARP program is the number

of possible points of the space that the route planner travels.

The reasons for the poor performance could be that the problem sizes
are simply too small to allow the effect of parallel processing. When the prob-
lem size increases, we may have the similar results as the MANNERS program.
However, detail analysis reveals several additional reasons that teach us impor-

tant lessons about this research.
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Figure 9.3: ARP overall speedup on different problem size.
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e First and foremost, it is not that the DA approach fails to expose enough
concurrency, but that there exists an unexpected search interference dur-
ing the match phase in our implementation. This also explains why the
effect doesn’t show up in simulation since the simulation does not account
for match cost. Take WALTYZ for example, the program uses only three
types of WME’s. Since the LEAPS-based algorithm uses cursors to scan
through working memory during the search for instantiations, all cursors
are searching through the same three WME classes. What’s worse is
that in a critical phase, all active rules are accessing only a single class
of WME’s. Even though, from the decomposition specification, we know
that these rules will eventually fire on disjoint sets of WME’s and can
fire in parallel without interference, they do interfere during the match.
The asynchronous execution model makes the situation even worse since
it is possible that some instantiation is removing a WME which happens
to be scanning through by one or more concurrent search processes.

We learn from this set of experiments that the nature of interference must
be carefully studied, analyzed, characterized, and classified. Syntactic in-
terference does not necessarily imply semantic interference, which is one
of the main point of this thesis. On the other hand, semantic compati-
bility (i.e. non-interference) does not necessarily imply implementation
compatibility. There is no free lunch in the world. As long as the con-
current processes have the potential of accessing the same set of data
structures, they are still likely to interfere with each other.

Nevertheless, this is not a problem that can’t be solved. We have think
of at least two possible solutions. The first one is to adopt a synchronous
execution model such that the search and the firing proceed in two phases.
That is, all parallel instantiations are found before firing any of them. We
will certainly loss come efficiency but the interference discussed above is
avoided since finding instantiations are read-only process. The second one
is to use a delay update technique such that all updates are delayed until
cycle synchronization point. This prevents the updates from interfering
with the search. Some other techniques are certainly possible such as
replication of WME’s. The implementation techniques to fully exploit
the available parallelism specified by decomposition abstraction are one
of the immediate future work for this research.

e The second point is that the C&C technique has its limitation. The
most significant drawback is that the copies increase the code size con-
siderably. Large code size often results in heavy memory usage and poor
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performance. The problem gets worse when the data size gets larger.
This is one of the main reason why we can’t run on large data sets for
the WALTZ and ARP programs. A possible solution is to use parallel
search instead of C&C. We already have ideas on how to do this which is
part of our future work.

e Finally, the duplication of stack entries on multiple LEAPS engines is
another important factor to explain the poor performance. This can be
solved by better selection code and better partitioning of the rules.

As discussed earlier in this chapter, the ARP program has two fac-
tors that affect the performance considerably. The program has an agenda-
task-subtask control mechanism which is strictly sequential. The program also
expands one node at a time. Both of these constitute part of the reasons for
the poor performance of the ARP program.

Since we can not obtain enough data from the execution of WALTZ
and ARP for the problems discussed above, we measure various aspects of the
MANNERS program to demonstrate the potential and to find possible solutions
for the problems as well.

9.3.2 Processor Utilization Measurement

This set of measurement is to understand how well the RT'S manages
the computation resources. Because of the cycle execution model, we expect
the utilization to be up and down frequently, especially when the concurrency is
low. When the available concurrency is high, then the system should stay close
to 100% utilization much longer than the synchronization point. We should
see good performance in such case.

Figure 9.4 demonstrate the processor utilization graph of the system
running with 12 processors on MANNERS program with 256 quests as input
data size. The figure reflects the cycle execution of the run-time system. Note
how the utilization graph corresponds closely to the concurrency profile of
MANNERS, i.e. Figure 7.2. At the early stage of the execution, the available
concurrency is low and so is the CPU utilization. This is evident by the dense
area that begins the plot. When the available parallelism gradually increases
toward the end, the utilization also increases since more and more parallel
instantiations are available for execution. Since it does not take long to pass
the period of low concurrency, we achieve good speedup on this benchmark
program.
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Figure 9.4: MANNERS256 processor utilization.

9.3.3 Behavior Measurement

We collect and present rest of the measurement in this section. The
main purpose is to understand what exactly each LEAPS engine is working
on during the course of execution. This will show us why we are getting good
results or where the performance bottleneck is.

The following tables present the number and time statistics of the
MANNERS program on different problem sets. In the tables, S stands for the
sequential version and P stands for the parallel version. Performance figures
on the same problem size are grouped into the same segment. For parallel
version, we present the minimal, mean, maximal, and total numbers of all the
LE’s. Since the sum of execution time of all LE’s is of little meaning, they are
not listed in the time statistics table. Note that the execution time is a little
higher than the speedup experiment presented in previous section because of
the instrumentation added to collect these data. Also note that the LE’s that
run regular rules are in sleep state most of the time and therefore consume only
a small portion of the computational resources. The mean values in the table
that count the sleep time in do not represent the system behavior well. We
therefore collect the mean values among those LE’s that run parallel rules and
listed as the ppmean.

In sequential execution, the number of stack entries popped is about
the same and always smaller than the number of entries pushed. In parallel
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Problem || #Push | #Pop | #Join | #Fire
S16 618 501 517 184
P16min 2 1 1 1
Pl6mean 46 93 47 8
Pl6max 75 358 98 18
Pl6total 886 1770 895 169
532 2254 2022 2054 624
P32min 2 1 1 1
P32mean 169 392 187 31
P32max 269 1666 321 57
P32total 3229 7462 3564 593
S64 8604 8148 8212 | 2272
P64min 2 1 1 1
P64mean 703 1720 795 116
P64max 1102 7130 1297 198
P64total 13370 | 32686 | 15120 | 2209
5128 33404 | 32506 | 32634 | 8640
P128min 2 1 1 1
P128mean 2304 5850 2708 448
P128max 3609 | 25770 4337 737
P128total 43790 | 111157 | 51469 | 8513
5256 132410 | 130610 | 130866 | 33664
P256min 2 1 1 1
P256mean 9098 | 23482 | 10770 | 1758
P256max 14297 | 105905 | 17126 | 2838
P256total | 172585 | 446167 | 204641 | 33409

Table 9.3: Number statistics of the MANNERS program.



Size Join Fire Sync | Stack Exec
S16 0.35 0.70 n/a| 0.16 1.49
P16min 0.01 0.01 1.85 | 0.01 2.92
Pl6max 0.10 0.41 247 1 0.30 2.95
P16mean 0.03 0.08 2.08 | 0.09 2.91
P16ppmean 0.05 0.06 2.04 | 0.11 2.90
532 3.67 2.23 n/a | 0.64 7.60
P32min 0.01 0.01 3.52 | 0.01 5.57
P32max 0.50 0.70 5.10 | 0.74 5.64
P32mean 0.27 0.26 4171 0.21 5.60
P32ppmean 0.41 0.29 3.87 | 0.27 5.60
S64 48.54 | 10.92 n/a | 2.53 66.01
P64min 0.00 0.01 9.89 | 0.05 19.37
P64max 5.66 1.51 18.76 | 1.73 19.45
P64mean 3.47 0.91 12.88 | 0.71 19.40
P64ppmean 5.39 1.24 10.15 | 0.94 19.40
S128 714.59 | 58.94 n/a | 11.69 805.62
P128min 0.01 0.01 32.27 | 0.06 101.69
P128max 56.20 4.81 | 101.19 | 6.04 101.76
P128mean 35.49 3.08 56.71 | 2.26 101.72
P128ppmean 55.56 4.48 33.23 | 2.62 101.72
5256 10980.69 | 379.30 n/a | 48.86 | 11502.00
P256min 0.01 0.01 | 141.53 | 0.16 | 1088.55
P256max 876.49 | 26.58 | 1087.41 | 22.66 | 1088.63
P256mean 554.03 | 16.45 | 486.38 | 9.04 | 1088.59
P256ppmean 872.95 | 25.18 | 145.90 | 12.19 | 1088.58

Table 9.4: Time statistics of the MANNERS program.
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Figure 9.5: Parallel vs. sequential execution of MANNERS.

execution, however, we almost always have to do more popping than pushing.
This is due to our asynchronous parallel execution model. At the start of each
cycle, there is no way to know which rule will fire. All processors are therefore
devoted to the search for instantiations. When some instantiations are found
and fired, other concurrent search processes for incompatible rules have no
reason to proceed. In the current implementation of the RTS, these LEAPS
engines stop immediately and report at the barrier. The entries that have
already been popped are restored in the stack adjustment process. Those extra
search that are interrupted constitute the source of the extra pop’s in the table.
Nevertheless, the extra work due to parallelism is within a constant factor of the
sequential execution work. The constant does not increase with the problem
size, as depicted in Figure 9.5. This is a good indication of the scalability of
our approach and implementation. Also note that the total number of rule
firing of the parallel version is smaller than the sequential version because of
the context mechanism employed which eliminates the context switching rules.

In both sequential and parallel executions, join time still constitutes
a large portion of the total execution time. Good speedup results show that
the RTS is spreading the load quite well. The existence of a perfect hash
function for copy-and-constrain the only parallel rule in the program is also an
important factor. We note that for smaller problem size, the synchronization
time dominates all other items. This is because the concurrency is so low
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Figure 9.6: MANNERS CPU Time Distribution (Percentage).

that processors are synchronize with each other most of the time. But when
problem size gets larger, we observe a significant shift of time distribution from
synchronization to real work (i.e. join, fire, and stack operations). The speedup
is also improved dramatically. In other words, when the concurrency is high
enough, the RTS can indeed effectively exploit the parallelism to achieve good
speedup. We demonstrate this shift of computational work load in Figure 9.6,
which is the average percentage of time an LE spends on each type of work

(i.e. join, fire, stack operations, synchronization, and the rest).

For a LEAPS-based implementation, one may think that the cost on
the stack operations (i.e. push and pop) should dominate. This used to be
the case in our early implementation. This is no longer the case because of
the implementation of the context mechanism. The mechanism successfully
focuses the search on only the active rules (i.e. rules belong to the current

active contexts).

9.4 Remark

The numbers on MANNERS experiments are so good that it is hard to
believe the system failed on the other two programs. However, we understand
why it is the case and know how we may solve the problem. In general, this

prototype implementation still demonstrates the potential of our approach.
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The results presented in this chapter are both encouraging and dis-
appointing. They are encouraging because decomposition abstraction can in-
deed reveal significantly higher degree of concurrency than pure syntactic ap-
proaches. They are disappointing because the implementation interference off-
set the available parallelism expressed by our mechanisms. However, the later
problem can be solved by better software environment and implementation. A
rewrite of the entire system should give us much better performance than what

we have presented in this chapter.



Chapter 10

Conclusions and Future Work

In this research, we have identified and demonstrated that applica-
tion semantics constitute the most critical source of parallelism in production
systems. We established the decomposition abstraction approach as the foun-
dation toward the organization and specification of semantic level parallelism
in production systems. The set of decomposition abstraction mechanisms have
been shown to be both effective in expressing application parallelism and easy
to use. The use of functional dependency in the derivation of parallelism sug-
gests the potential of a new direction which employs semantic analysis on data
relationship specifications to extract application parallelism that may other-
wise difficult to identify or specify. Both simulation and implementation results
show that the combination of explicit specification and semantic analysis has
the great potential of achieving the goal of massive and scalable speedup. Bet-
ter implementation environment and techniques are necessary to fully exploit
the parallelism expressed through decomposition abstraction.

The approaches and techniques developed in this research have appli-
cations in other areas besides parallelization of production rule systems. The
decomposition abstraction is the missing layer which needs to be superimposed
upon the familiar procedural and data abstractions to achieve truly portable
parallel programming. We believe that it will be a necessary ingredient for
data/knowledge based systems demanding high performance on large bodies of
data and knowledge.

10.1 Future Work

Based on the experiences we gained from this research, further re-
search in the following directions are promising both in terms of expressive
power of the decomposition abstraction mechanisms and the performance of
the implementation.

o Aggregate operators in both antecedent and consequent.
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Aggregate operators should be allowed in both antecedent and conse-
quent. This will provide the expressive power of specifying aggregate
constraints in the antecedent.

Modularity instead of flat contexts.

The context mechanism should be generalized to introduce modularity
into the decomposition abstraction process. The interplay between mod-
ularity and parallelism should be an exciting topic for further investiga-
tion.

Parallel search vs. copy and constrain.

Copy and constrain is effective but also has the problem of increasing
code and image size. The subtlety of selecting rules and attributes for
making the copies is another drawback of applying this technique. To
facilitate parallel match in the LEAPS-based execution environment, a
parallel search algorithm may be better.

Static partitioning and dynamic scheduling for load balancing.

Load balancing is critical to any parallel system. Effective exploitation
of the available parallelism expressed by decomposition abstraction still
require careful management of granularity and scheduling strategy. Stat-
ically partitioning of rules and dynamically scheduling of parallel exe-
cutable instantiations based on the decomposition specification is a must
addressed issue in any follow up research.

Functional dependency theory.

The notion of functional dependency introduced in this research is just
a beginning. It captures a very familiar type of decomposition which
is, in most cases, easy to specify. Other notions of dependency that
characterize different types of decomposition are certainly possible. We
expect a through investigation alone this line of research to establish a
unify dependency theory that links the relationships between data objects
to parallel decomposition.

Fine-grained parallelism in the object base.

We did not explore the potential parallelism of allowing multiple threads
of execution within an object and other forms of type-specific concur-
rency. When application objects are large and complex as required by
modern database applications, this level of parallelism may have signifi-
cant impact on the system performance.
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o [ntegration of syntactic and semantic based techniques.

The semantic specification provided by decomposition abstraction should
improve the CREL transformation and clustering results. The concur-
rency within each cluster should also increase. The integration of syn-
tactic and semantic based techniques has the great potential of achieving
better results with less help from the programmer.

o [Implementation strategies for distributed memory machines.

We avoid most of the locality issues with implementation on the Sequent
Symmetry shared memory multiprocessor. When moved onto distributed
memory machines and message passing paradigm, the implementation
strategies are expected to be considerably different. It is a good research
direction to see how semantic decomposition can be mapped onto dis-
tributed machine for efficient processing.

o Software engineering issues.

The programming implication of decomposition abstraction is worthy of
much attention. Decomposition abstraction is a natural successor of the
familiar notions of procedural, control, and data abstractions. A good
software engineering process that integrates all the abstraction mecha-
nisms would be a significant contribution to the parallel programming

research.

o Fundamental issues.

Last, but certainly not the least, are a few fundamental issues that need
to be looked into to have a better understanding of the nature of parallel
processing both in production systems and in general.

First of all, while syntactic non-interference may be overly conservative
in the pursue of parallelism, semantic compatibility does not give us con-
currency for free. For example, when syntactically interfering rules can
be determined to be semantically compatible by our mechanisms, in the
search for instantiations, we may still have the potential of interference
on what ever data structures we search. Unless we replicate the data ob-
jects, we will always have the problem of accessing the same data object
by multiple processes and the potential need for expensive locking. The
replication is not necessary a good solution either because of the need to
maintain consistency. A fundamental research is required to understand
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the nature of interference. A classification of the degree of interference
and the implication on implementation should provide a good foundation
of efficient processing of shared data objects.

For this research, we also have the issue of adopting the LEAPS-based
inference algorithm for the rule processing engines. A fundamental revi-
sion of the LEAPS/DA algorithm and an optimized selection mechanism
are required to reduce the stack maintenance cost. In particular, the new
algorithm should result in disjoint partitioning of the LEAPS stack rather
than duplication of the stack entries as in the current implementation.

Finally, an effort should be made to classify and extract the core ingre-
dients of decomposition abstraction mechanisms in all explicit parallel
programming languages. Theoretical study on the expressive power of
these mechanisms must be conducted. The results will bring us closer
to, if not right on, the goal of easy to use and architectural independent
parallel programming.



Appendix A

A Simple Course Scheduling System

A.1 Class Definitions

class Course {
string name,
boolean registrants_counted,
int registrants,
boolean scheduled,
string special_equip,
string instructor,
string <classroom,
string time,
boolean printed

A.2 Functional Dependency Declarations

{ Department } --> { Classroom }
{ Department } --> { Course }
{ Department } --> { Student }

A.3 Context Declarations

SENIOR |- SPECIAL

POPULAR |- GET_INFO, SPECIAL

REGULAR |- GET_INFO, SPECIAL, SENIOR, POPULAR
PRINT |- SPECIAL, SENIOR, POPULAR, REGULAR

A.4 Rule Definitions

rule Count_Registrants 1in_context GET_INFO {
ALL ( ( ¢ : Course :: c.registrants_counted == NO ),
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-->

C.

C.

rule

(

[ s : Student :: c.name <| s.take* ] )
registrants = Count(s*),

registrants_counted = Yes

Schedule_Special 1in_context SPECIAL {
t : Time ),

DISJOINT ( ( ¢ : Course :: c.scheduled == NO

H = 0O O

rule

(

&& c.special_equip '= NULL ),

( 1 : Instructor :: c.name <| i.teachesx*
&% i.assigned < 3 ),

( r : Classroom :: t.time <| r.slots*
&& c.special_equip <| r.equip* ) )

.instructor = i.name, c.classroom = r.number,
.time = t.time, c¢.scheduled = YES,

.assigned = 1.assigned + 1,

.empty_slots* = r.empty_slots* - t.time

Schedule_Senior in_context SENIOR A
t : Time ),

DISJOINT ( ( ¢ : Course :: c.scheduled == NO

H = 0O O

rule

(

&& c.registrants < LIMIT ),

( i : Instructor :: i.is_senior == YES
&% c.name <| 1i.teachesx
&% i.assigned < 1 ),

( r : Classroom :: t.time <| r.slots* ) )

.instructor = i.name, c.classroom = r.number,
.time = t.time, c¢.scheduled = YES,

.assigned = 1.assigned + 1,

.slots* = r.slots* - t.time

Schedule_Popular in_context POPULAR {
t : Time ),
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DISJOINT ( ( ¢ : Course :: c.scheduled == NO
&% c.registrants > THRESHOLD ),
( i : Instructor :: i.is_senior == NO
&% c.name <| 1i.teachesx
&% i.assigned < 3 ),

( r : Classroom :: t.time <| r.slots* ) )
-->
c.instructor = i.name, c.classroom = r.number,
c.time = t.time, c¢.scheduled = YES,
1.assigned = 1.assigned + 1,
r.slots*x = r.slots* - t.time

rule Schedule_Regular in_context REGULAR {
(t : Time ),
DISJOINT ( ( : Course :: c.scheduled == NO ),
( i : Instructor :: i.is_senior == NO

-0

&& c.name <| i.teaches*
&% i.assigned < 3 ),

( r : Classroom :: t.time <| r.slots* ) )
-->
c.instructor = i.name, c.classroom = r.number,
c.time = t.time, c¢.scheduled = YES,
1.assigned = 1.assigned + 1,
r.slots*x = r.slots* - t.time

rule Print_Result in_context PRINT <

( ¢ : Course :: c.scheduled == YES && c.printed == NO )
-->

print_schedule(c),

c.printed == YES
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