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Chapter 1IntroductionProduction systems, also known as rule-based systems or simply rulesystems, have been shown to be a powerful architecture for intelligent systems,especially expert systems such as Prospector [37], R1 [94], and MYCIN [20].Initial implementations of production systems su�ered from poor performancewhich prohibited their use in large scale applications [45]. Nevertheless, appli-cations of rule-based programming have continued to expand. Recent interestin data intensive rule-based applications [121] has further fueled the need forhigh performance execution environments for production systems.Intuition suggests that languages based on the production systemmodel admit a high degree of parallelism [55]. E�orts to exploit parallel pro-cessing to increase production system performance have been ongoing for overa decade [85, 98, 136]. However, the maximum speedup achieved by actualimplementation rarely exceeds tenfold and has never done so over a generalsuite of applications no matter how many processors are used.Most of the existing techniques for parallel production systems are,from a methodology point of view, similar to the techniques used in the par-allelization of sequential imperative languages (mostly FORTRAN) [9, 115,116, 162, 167]. Critical part(s) of the sequential execution is(are) parallelized,or optimizing compilation and transformations are applied to automaticallytransform a sequential program into a parallel program. This approach hasthe obvious bene�t of its general applicability to existing sequential programs.However, the experiences show that these techniques have met with limitedsuccess, both on imperative languages [5] and rule languages [56, 98].In this research, we took an unusual approach to the problem of par-allelizing production systems. We promote the change of direction towardsemantic-based parallelism. We believe that to signi�cantly improve the per-formance of rule-based programs, programmers should share part of the respon-sibility for exposing parallelism. This is achieved by enable the programmersto provide semantic information, in the forms of data and function decom-positions, to the language systems. In other words, we suggest the design of1



2parallel rule languages and the development of techniques for parallel rule-basedprogramming. The challenges are:� to provide proper mechanisms for expressing application semantics with-out asking programmers to be an experts in parallel programming, and� to e�ectively exploit the semantic information supplied by the program-mers.This chapter highlights our approach, contributions, and research results.1.1 Production System ParadigmWe review the structure and operation of production systems. Thisserves both as an introduction to the terminology used throughout this thesisand as a characterization of essential features of production system that mustbe accounted for when we develop our framework. More information aboutproduction systems in general and about OPS5, a popular sequential rule lan-guage, in particular can be found in [19, 26].As depicted in Figure 1.1, a typical production system is composed ofthree components: a data store called working memory, a set of rules, and an in-ference engine. Working memory is a global database composed of data objectscalled working memory elements (WME's) representing the state of the system.A rule is essentially a conditions-actions pair. The inference engine stands forthe three-phase cyclic execution model of matching, conict-resolution and �r-ing, which is also known as the recognize-act cycle. In a cycle, the conditions ofeach rule are matched against the working memory. A rule with a set of WME'smatching the conditions is called an instantiation. The set of all instantiationsconstitutes the conict set. In a sequential environment, conict-resolutionaims to select one instantiation from the conict set for �ring. In a parallel en-vironment, multiple rule instantiations can be selected for �ring simultaneouslysubject to proper correctness constraints such as serializability [123]. Firing aninstantiation simply means to execute the actions which may add, delete, ormodify WME's in the working memory.1 The cycle repeats until no rule canbe �red, i.e. no instantiations are computed by the match.1The actions may include changes to the rules as indicated by the dash arrow. Thatconstitutes the so called learning production systems such as Soar [86]. Learning is not inthe scope of this thesis.



3
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Figure 1.1: Production System Model.1.2 Motivating ExamplesAnalysis of the parallelism in production systems [55, 79, 113, 136]has focused on the parallelism in the production system model and syntacticstructure of the production system programs. Chapter 2 details the researchthat explores this type of parallelism, which we will call syntactic-level par-allelism or application independent parallelism. Most of the techniques em-ployed were built upon the parallelization of the production system executionengine. The extraction of parallelism relied only on the syntactic structureof the rule programs. This approach has the advantage that the techniquesdeveloped can be applied on any rule programs without further informationfrom the programmer besides the program text. However, limited by similar(perhaps more) obstacles as the automatic parallelization of imperative lan-guages, namely, name ambiguity, non-statically resolvable dependencies, largespace of possible transformations, sequential semantics of the languages, highlydynamic and nondeterministic run-time behavior, this approach have met withlittle success.We begin this research by analyzing a set of common benchmarkproblems and the rule-based programs written in OPS5 to realize them for po-tential parallelism. These programs have been widely used in previous studies



4Program No. Rules DescriptionLIFE 16 A simulation program implements Conway'sLIFE.WALTZ 33 A constraint satisfaction problem using Waltz'salgorithm for scene labeling [158].MANNERS 8 A combinatorial search problem for seatassignment.Table 1.1: Benchmark programs.to evaluate the e�ectiveness of language extensions and compilation techniques[80, 84, 103, 123]. While the amount of parallelism found in previous work hastypically been modest and not necessarily scalable, we found, contrary to previ-ous expectations, that several of these programs had the potential for massiveand scalable parallelism. In this section, we give the results of preliminarysimulated parallel execution of three of the benchmark programs and identifythe sources of parallelism in the algorithms which leads to our semantic-basedapproach toward parallel production systems.The programs are LIFE, WALTZ, and MANNERS as listed in Ta-ble 1.1. All results are obtained by going through the following steps:� First, OPS5 benchmark programs and their sequential execution tracesare carefully studied and analyzed to identify the potential parallelism inthe problems and the algorithms.� Then, all programs are reformulated such that inherent parallelism canbe e�ectively exploited.� Both the results of sequential and parallel executions are collected interms of number of execution cycles.The speedup is measured by comparing the number of cycles between sequen-tial and parallel executions. Sequential cycles are obtained by actually runningthe OPS5 programs using OPS5c [103] on SUN SPARCs and HP 9000 worksta-tions. Parallel cycles are calculated by hand with the assumption of unlimitedresources, no overhead and no contention. To see whether our approach scalesup, the performance results of increasing problem size are collected for eachprogram.
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Figure 1.2: LIFE Speedup (with printing).1.2.1 LIFEThere are three sets of results on the LIFE program. The originalprogram contains a sequential print context to print out intermediate and �nalresults. Since this process is inherently sequential, according to Amdahl's law[2],2 the speedup is limited by the sequential part. The result on this versionof the program is given in Figure 1.2. Because of the limit imposed by thesequential printing, the potential speedup is quite small but close to the theo-retical maximum speedup calculated following Amdahl's law. To measure theactual speedup in the computation part, we have obtained the results on twoslightly modi�ed versions of the program. The �rst one is the version withoutprinting intermediate results. This is presented in Figure 1.3 together with thetheoretical speedup limits. The second set of results, which is in Figure 1.4, isto measure the computation part alone without any printing.The key reason for such impressive results resides in the identi�cationof the following sources of inherent parallelism in the LIFE program:� All live cells can generate neighbors at the same time.2Amdahl's law says that if f is the fraction of a computation that must be performedsequentially, where 0 � f � 1, then the maximum speedup S achievable by a parallelcomputer with p processors is S � 1=(f + (1� f)=p):
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Figure 1.3: LIFE Speedup (without printing intermediate results).� All cells can compute their neighbors simultaneously.� The generation update of all cells can be executed in parallel.The consequence is that it takes a constant number of parallel cycles to do thecomputation part while sequential cycles increase dramatically with the prob-lem size. These sources of parallelism are quite di�cult, sometimes impossible,to detect at compile-time using syntactic-based techniques developed in previ-ous research. This suggests the need for a new approach that could capturethe semantic parallelism described above.1.2.2 WALTZBecause of the time taken to simulate large data sets, we only per-formed simulations on small data sets for the WALTZ program. Nevertheless,the results are still quite inspiring as depicted in Figure 1.5.The potential parallelism in the WALTZ program rests on the impor-tant semantic information in the problem and the organization of the data:� Each line is associated with exactly two edges with opposite end points.� The type of a junction is unique and each junction is associated with aunique set of edges.
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Figure 1.4: LIFE Speedup (without printing).From this information, we can identify the following additional parallelism inthe program:� All junctions can be made concurrently without interfering with one an-other.� Since each labeling rule matches a single junction and its associated edges,all enabled labeling rules with disjoint matching working memory ele-ments can be �red in parallel.This is clearly scalable parallelism because the larger the problem (in terms ofnumber of line segments in the input drawing), the more junctions and edges adrawing has, which results in more rules being eligible for �ring in parallel. Likethe case for the LIFE program, the additional parallelism is a characteristic ofthe problem and is derived from the implicit design decisions of the WALTZprogram. Without this level of information available, a general dependencyanalysis technique can only detect problem independent parallelism which isquite modest and not necessarily scalable.1.2.3 MANNERSThe MANNERS program contains a hot-spot rule which �res repeat-edly during the execution of the program. The number of repetitions increases
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Figure 1.5: WALTZ Speedup.dramatically with the problem size. After carefully analyzing the program andtraces, it turns out that all instantiations of this rule can be �red in parallel.An impressive linear speedup as shown in Figure 1.6 should be obtainable ifthis important piece of semantic information can be exploited.1.2.4 RemarksThe three examples above indicate that application speci�c informa-tion is the key to the e�ective exploitation of inherent parallelism in the prob-lems and the rule-based programs. In this research, we have made an e�ortto systematically explore the potential and sources of this level of parallelismbeyond that of compile-time dependency analysis techniques developed by pre-vious research. Because of the use of application speci�c knowledge and thesemantic nature of this approach, we call it application parallelism or semanticlevel parallelism in production systems.1.3 Decomposition Abstraction: A Semantic ApproachThe more experience we gain from programming parallel machines,the more we learn that run-time success more often associated with explicitdecomposition. This is why most parallel programming languages, both im-perative and declarative, provide constructs for parallel decomposition. The
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Figure 1.6: MANNERS Speedup.PARTITION statement in Re�ned Fortran [77], the DECOMPOSITION andrelated statements in Fortran D [64], the Ada tasking mechanism [107], theprocess type in Concurrent C [50], the pcall and future in Multilisp [60], andthe notions of blackboard and theory in Shared Prolog [17], just to name a few,are all examples of language mechanisms for data or function decompositionto facilitate the expression of parallelism. The models of parallel structuringused in these languages (particularly data partitioning [64, 77] and data par-allel [63] models of parallel structuring) suggested analogies for rule languagesto capture the application parallelism.We propose a new approach called decomposition abstraction (DA)toward the expression and organization of semantic level parallelism in produc-tion systems. Decomposition abstraction is the process by which programmersspecify decomposition strategies for the exploitation of parallelism embodiedby an application. We provide the programmers with abstraction mechanisms,programming constructs, programming methodology, and compiler assistant toexpose the application parallelism through data and function decompositions.It is our belief that, just like the roles played by procedure abstraction, controlabstraction, and data abstraction in sequential programming, decompositionabstraction is the key to scalable and portable parallelism not only in rule-based languages, but also in other parallel languages as well. The scope of thisthesis, however, is focused on rule languages.



10Figure 1.7 depicts the comprehensive approach we propose that com-bine semantic-based and syntactic-based techniques to achieve high speed ex-ecution of parallel production system programs. All components except thesyntactic-based techniques (i.e. syntactic-based interference analysis [70, 123]and cluster analysis [80, 101]) will be discussed in later chapters.1.4 Summary of ResultsThe main results in this research can be summarized as follows.� A new general formulation of production systems in an object-basedframework together with a rule notation that abstracts away unneces-sary details while characterizing all essential features of production sys-tems. This formulation greatly simpli�es our discussion. The frameworkprovides a solid basis for specifying the formal semantics of the DA mech-anisms.� A set of DA mechanisms for rule languages, including set selection con-ditions (to match a quali�ed set of objects), aggregate operators (to op-erate on a selected set of objects as a whole), an ALL combinator (tocombine several conditions into a speci�cation of data decomposition), aDISJOINT combinator (to specify disjoint partitioning), and contexts(for grouping relevant rules and for the speci�cation of causal dependen-cies between di�erent groups of rules). By providing this set of minimalbut semantically rich constructs and their formal semantics, we greatlyclarify and formalize the essential elements of the so called set-orientedconstructs [34, 52, 142, 156] in production systems.� A semantic-based interference analysis technique for rule systems basedon data relationship speci�cations. This technique determines parallel ex-ecutable rules based on user-supplied semantic information in the form offunctional dependency. Our notion of functional dependency is analogousto the corresponding notion in database systems but used in a completelydi�erent way. Speci�cally, it is used to characterize data relationship thatimplies disjoint decompositions. The recognition of this important prop-erty leads to useful theorems that forms the basis of our semantic-basedinterference analysis techniques.� Methodologies for decomposition abstraction to transform sequential pro-grams into parallel programs and to write parallel programs from scratch.



11Application Problem?Decomposition Analysis���+Data Decomposition Plan QQQsFunction Decomposition Plan���+QQQsParallel Structuringwith DA Mechanisms?DA Programs���+Semantic-BasedInterference Analysis?Compatibility Matrix ����3 QQQsSyntactic Interferenceand Clustering Analysis?Rule Clusters�����+QQQQQs DA Compiler and RTL?Object ModulesFigure 1.7: Decomposition Abstraction: A Comprehensive Approach towardParallel Production Systems.



12Sequential programs are converted by following a set of heuristic rulesthat identify and transform the parts that can be parallelized. Parallelprograms are developed by following a sequence of steps that facilitatethe e�ective use of DA mechanisms.� A new technique for rapid system development and evaluation withoutthe high cost of full-edged system implementation or possible inaccu-racy of simulation. This technique includes a parallel rule execution en-gine that �res multiple rules in parallel on the Sequent Symmetry multi-processor and a work load generator that generates rule �ring sequencefrom sequential execution trace �le to feed into the parallel rule execu-tion engine. The technique accurately reects the system performancebecause all rule instantiations are faithfully executed and all schedulingand synchronization operations for correct parallel execution are actuallyperformed. It also has the nice feature that, given the same rule programand the same data set, the simulator terminates with exactly the sameresults as the sequential execution it is based upon. This makes it trivialto tell the correctness of the parallel execution.� Simulation results of applying the proposed DA mechanisms on threecommonly used benchmark programs. A variety of experiments target-ing factors that a�ects system performance are conducted on the parallelrule execution engine. Near linear speedup observed on all three bench-mark programs provides a strong evidence that the DA approach and theproposed mechanisms are e�ective and scalable. The analysis of the sim-ulation results suggests e�ective implementation strategies on the targetmachine.� Implementation of a DA language called Venus/DA on Sequent Symme-try multiprocessor. The implementation demonstrates both the e�ec-tiveness of the DA approach and the process of converting a sequentialrule language (Venus [18] in this case) into a parallel rule language sup-porting decomposition abstraction. The core of the implementation is aLEAPS-based [99, 100] parallel inference algorithm and an asynchronousrule execution engine. User-supplied semantic information are used in thealgorithm for pruning the search space and for intelligent backtracking.Concurrently executable instantiations are generated in parallel withoutthe need for conict resolution or run-time interference analysis. Therule execution engine executes the instantiations asynchronously and en-forces barrier synchronization whenever necessary. The integration ofthese techniques results in linear speedup on the benchmark programs.



131.5 Dissertation OutlineChapter 2 surveys related works on parallel production systems aswell as rule languages in database systems. Chapter 3 lays the groundwork ofthis research by formalize production systems under a general object model andprovide an abstract rule notation for ease of discussion. Chapter 4, Chapter 5,and Chapter 6 constitute the main theorems and core technologies of this re-search. More speci�cally, Chapter 4 presents the set of decomposition abstrac-tion mechanisms with illustrative examples and formal semantics. Chapter 5introduces the notions of functional dependency and the semantic-based inter-ference analysis techniques that determines the semantic compatibility betweenrules. And Chapter 6 describes the methodologies of transforming sequentialprograms and of writing parallel programs. A performance assessment on theparallel rule execution engine done before the real implementation is includedas Chapter 7. The simulation leads to the implementation of Venus/DA, whichis detailed in Chapter 8. Chapter 9 includes a good variety of experimentsand performance results on the Venus/DA implementation. Finally, we con-clude with the experience we gained from this research and point out the futuredirections of this work in Chapter 10.



Chapter 2Related WorksThe scope of this dissertation intersects with various research areasthat are di�erent in technical appearance but contain a nonobvious commonin an underlying central issue | decomposition. This chapter presents a briefsurvey of the research in parallel production systems and relates other workwithin the theme of decomposition abstraction.2.1 Parallel Production SystemsParallelization of production rule systems has been a signi�cant re-search topic for over a decade [85, 136]. Production systems have been as-sumed to encompass a high degree of parallelism [55]. Operations within allthree phases can potentially be processed in parallel. Pipeline parallelism canbe explored between phases or even across cycles. Driven by this expecta-tion, a burst of research started in the early 1980s aiming at applying parallelprocessing techniques to address the performance issue [98]. Based on the tar-get phase(s) or approach of parallelization, parallel production systems can beroughly classi�ed into:� systems that parallelize the match phase only,� systems that �re multiple rules in a cycle or asynchronously (also knownas multiple-rule-�ring systems), and� systems that employ other approaches such as specialized hardware ar-chitectures and connectionist production systems.We go through parallel matching and other approaches briey while discussmultiple-rule-�ring systems in more details for their close relationship with ourwork. 14



152.1.1 Parallel Matching Sequential Rule Firing SystemsEarly focus of research on parallel production systems were almostexclusively on parallel matching. These systems parallelize only the matchphase of the recognize-act cycle. Conict resolution and rule �ring are stillexecuted sequentially. The rationale behind this approach is the early reportthat production systems spent more over 90% of their execution time in thematch phase [43, 54]. Just to name a few, Gupta and others [55, 56] exploredparallelism in the Rete match algorithm [44], which is the match algorithmused in OPS5. The TREAT match algorithm by Miranker [96, 97] and otheralgorithms by Gupta [53] and Stolfo [137] were developed for DADO, a tree-structured massively parallel machine [140, 142]. DRete is a distributed versionof the Rete algorithm proposed by Kelly and Seviora [73] for a special machinecalled CUPID [72].The improvement in sequential match algorithms and advances incompilation techniques [62, 87, 100, 103, 126] drastically reduce the proportionof time spent in the matching to less than 50% as reported in [101]. FromAmdahl's law, systems that parallelize only the match phase can not havesigni�cant speedup over the optimized sequential version. Parallelism in otherphases of the recognize-act cycle must also be exploited.2.1.2 Multiple Rule Firing SystemsMultiple rule �ring systems parallelize not only the match phase, butalso the act phase (actually, all phases) of the recognize-act cycle. Some sys-tems even brake the barrier synchronization boundary between cycles by �ringrules asynchronously. In this approach, maintaining the correct execution of aprogram becomes as important as the performance issue. This type of systemis of particular interest to us since our decomposition abstraction mechanismsare designed for languages capable of �ring multiple rules either synchronouslyor asynchronously. We described in more details several important work thathave signi�cant impact on the research of parallel production systems.2.1.2.1 Ishida and Stolfo's Work The work done by Ishida and Stolfo[70] is both important and inuential. Much work done by other researchersare either inspired by their work or using the same or similar analysis methodproposed in their paper.Two essential problems are discussed to realize parallel rule �rings:



16� Synchronization Problem: Rules may interfere with each others. It isnecessary to identify the rules that must be synchronized.� Decomposition Problem: E�cient decomposition algorithms are re-quired to partition or distribute the rules so that multiple rules can be�red as often as possible.They identi�ed the possible interference between parallel execution of rules inOPS5-like language and proposed an important tool | data dependency graph| as the basis for synchronization analysis. By using this tool, they were ableto produce a synchronization set for each rule, which contains all rules thatmust be synchronized with the rule in question. Rules that do not need tosynchronize can be �red in parallel. For dependencies that can not be resolvedat compile-time, run-time analysis is applied to increase the parallelism. Thisgraph based analysis method has been widely used in many other works forsimilar analysis problems [80, 102, 118, 123, 125].A less important result is their decomposition algorithm based on theso called parallel executability between each pair of rules which measures thenumber of production cycles that can be reduced by allocating the two rulesin the same partition. The algorithm given is quite ad hoc and no method ofcomputing parallel executability is given.Though inuential, I&S's method has been identi�ed as overly re-stricted and in many cases, may cause unnecessary synchronizations [122, 123].Two rules can be �red in parallel, under I&S's requirements, if they are com-mutative [112]. It has been demonstrated in other research such as [102, 122]that commutativity is too strong for e�cient parallel rule execution.2.1.2.2 IRIS IRIS [118] is claimed to be a production system programmingmethodology rather than a language. Motivated by an attempt to solve theproblems of parallelizing production systems reported by Gupta [55], Pasik de-veloped several techniques for reducing the software complexity and improvingthe parallelism in production systems.Pasik proposed to partition a program into rulesets consisting of in-dependent rules that can be �red in parallel. An external control mechanismis employed to invoke rulesets explicitly. A sequence of rules that always �rein serial are rewritten into a macrorule. Table-driven rules are used to provideknowledge representational and system maintenance advantage.



17The most interesting technique, which is probably the one contributesthe most to the e�ectiveness of the IRIS programs, is the technique called copy-and-constrain (C&C). Under this technique, a rule is called a culprit rule if ittakes substantially more computation time to match and generate instantia-tions. This type of rules cause severe load balance problem in a multiple rule�ring environment. The C&C technique is to replace culprit rule with an equiv-alent set of smaller independent rules which require less computation time. Thistechnique proved to be quite e�ective not only in the IRIS production systemsbut also in other languages like CREL [80, 102] as well.2.1.2.3 Ishida's Work Ishida has provided implementation methods and aparallel programming environment for multiple rule �ring production systems[67, 68, 69]. The proposed methods combine compile-time and run-time depen-dency analysis and form the set of parallel executable instantiations using anincremental algorithm. Both paired-rule conditions and all-rule conditions (i.e.cyclic conditions) are used whenever appropriate for detecting interference.The parallel programming environment provides language constructsand a simulation environment which in turn consists of an analyzer and a sim-ulator. The construct of ruleset is introduced to form group of rules such thatdi�erent conict resolution strategies can be de�ned. A new conict resolutionstrategy called DON'T-CARE is added to declare that rules in a ruleset areto be �red in parallel. A focusing mechanism is then provided for ordering thepriority between rulesets. The simulation environment is used to obtain theperformance results of the proposed methods. The compile-time interferenceanalysis results, generated by the analyzer, are used in the simulator togetherwith run-time analysis to achieve the most e�ective results.2.1.2.4 Schmolze's Work Schmolze has conducted a series of research onmultiple-rule execution systems in both synchronous and asynchronous envi-ronment [122, 123, 124, 125]. Their framework is generally taken from [70]and improve upon I&S's method. The basic approach is based on serializabil-ity. The parallel execution of multiple rule instantiations is serializable if thereexists some serial execution of the same set of rule instantiations that wouldproduce the same result. They called the problem of guaranteeing that eachexecution in a multiple-rule execution system is serializable the serializationproblem. Two causes of non-serializability are identi�ed:



18� Disabling: A set of instantiations, if executed in parallel, may disableeach other. In such a case, the execution is not serializable.� Clashing: If the order of the execution of the actions of multiple rulesis not carefully controlled, two types of non-serializable e�ects may occurwhich is collectively called clashing.The �rst type can occur if one rule can add a WME that the other rulecan delete and one rule can disable the other. If both rules are executedsimultaneously, non-serializable result may occur.The second type can occur if one rule can add a WME that the other rulecan delete and the actions from two rules are executed in an intermingledorder. Again, the result of parallel execution may not be producible byany serial execution.Examples are provided in the paper for both cases and it is instructive to readthrough them and try to provide additional examples.The possible non-serializable e�ects due to disabling can be avoidedby preventing the parallel execution of certain pairs of instantiations. TheSELECT phase of the production system cycle is modi�ed to prohibit the co-execution of any pair of instantiations that is critical to a cycle of disablingrelations among instantiations.Clashing is avoided by either prohibiting certain rule instantiationsfrom co-executing as in the approach for disabling, or by imposing a partialorder on the execution of actions of selected instantiations in the ACT phase.The model is extended to asynchronous execution environment [125]where rules and WME's are physically distributed among several processors.The possible causes of non-serializability are still the same and the solutions arebased on the same principles as in synchronous environment. A new problemwhich is unique in distributed environment is the WME inconsistency problem.Since the working memory is distributed, temporary inconsistency may occurwhich can lead to non-serializable e�ects. The inconsistency problem is solvedby a simple protocol similar to the two-phase locking protocol [11, 40].2.1.2.5 Kuo and Moldovan's Work Kuo, Moldovan, and their colleaguehave developed a parallel inference environment under the RUBIC project atUSC for the analysis, simulation, and execution of parallel production programs[82, 81, 83, 84, 105, 106].Two problems that must be solved by a multiple rule �ring systemare identi�ed:



19� Compatibility Problem To avoid interference between concurrentlyexecuting rule instantiations, a system must determine which rule in-stantiations are compatible, i.e. they do not interfere with each other.� Convergence Problem Firing only compatible rule instantiations doesnot guarantee the correctness of the �nal solution because the systemmay search down a wrong path. The convergence problem is concernedwith the control of multiple rule �ring such that correct results are alwaysguaranteed.Themultiple-contexts-multiple-rules (MCMR) model is proposed to address theproblems at both context and program levels. At the context level, contextsare divided into sequential and converging contexts by using a set of UNITY-style [22] proof logics. Rule instantiations in a sequential context must be �redserially while those in a converging context can be executed in parallel withouterror. At the program level, only compatible contexts are activated in parallelsuch that the control ow of the program is not violated. Simulation results onthe RUBIC simulator [106] show that the MCMR model performs better thanboth the rule dependence model and the single-context-multiple-rules model.2.1.2.6 CREL It has been reported that the semantics of OPS5 productionsystem language is not suitable for parallel execution [102, 124]. A natural wayto cope with this problem is then to modify the OPS5 language so that thelanguage is suitable for parallel execution. Design a completely new languagealso su�ces. CREL [80, 102] is the result of an e�ort taking the �rst approach.The syntax of CREL is identical to OPS5 but the semantics is di�er-ent. Rules are executed asynchronously. CREL programs that run correctlyin a sequential environment are guaranteed to run correctly in a parallel envi-ronment. The correctness of parallel execution is also based on serializability.A bipartite data dependency graph adopted from [70] is used in dependencyanalysis of rules. Two types of interference between rules are identi�ed as spe-cial properties of the dependency graph. An algorithm is provided to �nd themutual exclusion sets in a program, which are de�ned to be sets of rules thatcannot be statically determined to be executable in parallel and thus requiresynchronization. Parallel execution is then guaranteed to be serializable if mul-tiple rules selected from the same mutual exclusion set for parallel �ring do notform a cycle with conicting interferences. For running in an asynchronous en-vironment, the synchronization set is de�ned to be a set of rules where global



20synchronization is needed to ensure serializability. It is shown that a synchro-nization set is actually the maximum cycle among mutual exclusion sets whereall synchronization is needed. The partition of rules by synchronization setsis then having the desired property that global synchronization is no longerneeded among di�erent partitions for correct execution. A program can thusbe executed completely asynchronously.Another contribution of this research is the optimizing transforma-tions performed on programs to further increase the available parallelism. Sev-eral transformation techniques are developed and proved to be quite e�ective.2.1.2.7 SPAM/PSM SPAM/PSM [61, 95] is not a production system lan-guage. Instead, it is a high-level vision system implemented as a productionsystem. The reason why we want to discuss it here is that the concept oftask-level parallelism promoted by SPAM/PSM is actually a form of semanticlevel parallelism. Task-level parallelism refers to parallelism inherent in thegiven task. It is certainly application speci�c and requires the programmers toprovide the necessary knowledge for the exploration of the parallelism.Three dimensions for task-level parallelism are identi�ed:� Implicit vs. Explicit The parallelism can be implicit such that thesystem or the compiler must extract parallelism out of the program code.On the other hand, explicit parallelism refers to providing explicit infor-mation for the system to explore task-level parallelism.� Synchronous vs. Asynchronous A rule system can be executed eithersynchronously following the recognize-act cycle, or asynchronously if noglobal synchronization in the resolve phase across processors.� Distribution of Rules and WME's Either rules or WME's can bedistributed across processors. Or, there can be no distribution at all.SPAM/PSM is a explicit and asynchronous system with WME distribution.The task-level parallelism is achieved by following a design methodology whichsystematically decomposes the given task into levels of subtasks for parallelexecution.The SPAM/PSM architecture and methodology proved to be quitee�ective in the vision domain and was able to achieve a 12-fold speedup on 14processors [61]. It was also reported that the framework seems most suitable



21for parallelizing knowledge-intensive systems that exhibit weak interaction be-tween the individual subtasks of the task for which vision problem is a perfectexample. However, it is not clear whether this approach is equally e�ective onother domains as well.2.1.2.8 PARULEL Among all the multiple rule �ring production systems,PARULEL [139, 143] is probably the only one that makes use of meta-levelknowledge in forming parallel executable rule instantiations. Like SPAM/PSM,it is another example of using semantic level knowledge in multiple rule �ringproduction systems. However, the approach taken is completely di�erent fromours. The most distinctive feature of PARULEL is that it is a two levelsystem. Domain rules are for encoding domain knowledge while meta-rules(or redaction rules), on the other hand, are used to select parallel executablerule instantiations. The way meta-rules are used in PARULEL is quite uniquein the literature. Programs are executed through the following cycles until a�xpoint if reached:Match All domain rules are matched to form the conict set.Redact Incompatible rule instantiations are redacted by the meta-rules.Fire All remaining rule instantiations are �red in parallel.In other words, meta-rules are used to eliminate incompatible rule instantia-tions from the conict set so that the resulting set of instantiations can be �redin parallel without error.Naturally, the use of meta-rules is the most important feature inPARULEL. Programmers provide application speci�c control knowledge in asimilar way as domain knowledge, i.e. by way of using rules. This results in aboth uniform and exible system. However, the responsibility of writing correctmeta-rules to guarantee the correctness of the �nal result is completely on theprogrammers. The run-time overhead of matching and executing meta-rulescan be substantial.2.1.2.9 Neiman's Work UMass Parallel OPS5 [109, 110] is a Lisp-basedOPS5 that support both parallel matching and multiple-rule-�ring. Neimanpoints out the signi�cant e�ect of scheduling overhead and the cost of guar-anteeing serializability on the performance of parallel rule-�ring production



22systems. It is reported that run-time interference detection can impose anapproximately 10% serial overhead on the execution. Synchronous rule �ringresults in even more serial bottleneck.To reduce the scheduling and synchronization overhead, as well as thecost of guaranteeing serializability, Neiman combines a task-based schedulerand an asynchronous rule-�ring policy with a weaker notion of serializability[111]. Rule instantiations may be associated with high-level tasks which can beexecuted asynchronously with one another. The asynchronous rule-�ring policyexecutes rule instantiations as soon as they are generated. Correctness is en-sured with language mechanisms in the design phase and a locking mechanismat run time.In comparison with Neiman's work, we completely eliminate the needfor run-time interference detection. Locking is minimized by generating inde-pendent and parallel executable rule instantiations directly. The decompositionabstraction mechanisms are among the �rst to provide general constructs forprogramming in parallel.2.1.3 Hardware ApproachesWhen software approaches fail to deliver satisfactory results, hard-ware approach is an immediate alternative. Many architectures and machinesfor production systems have been proposed over the past decade. Only a smallportion of it have been actually implemented. As early as 1980, Forgy has stud-ied the possibility of implementing production systems on Illiac-IV [42]. TheConcurrent Inference System (CIS) developed at MIT [15] is a forward- andbackward- chaining system implemented on the Connection Machine. DADO[140] is a tree-structured machine architecture that employs the TREAT al-gorithm for parallel matching. Hardware prototypes for both DADO and thesubsequent DADO2 [138] have been actually constructed. PESA-I, proposedby Schreiner and Zimmermann [128], is a distributed pipelined architectureimplementing the Rete algorithm but without the need for any central sched-uler or task queue. Simulation results show that 8000 rule-�rings per secondcan be achieved. The Production System Machine (PSM) project at CMU isprobably the most extensive research that studies the implementation of pro-duction system on both shared-memory [57] and message-passing architectures[1]. Based on the hardware available at that time, a shared-memory archi-tecture is suggested to explore �ne-grained parallelism in the Rete algorithm[56]. For executing the DRete algorithm discussed earlier, a special machine



23architecture called CUPID [73] is designed to maximize the performance. Themachine is designed to parallelize only the match phase while leaving a hostcomputer to perform the conict resolution and act phases. On the other hand,the RUBIC architecture and environment developed at USC [106] exploits theMCMR model of parallel production system mentioned earlier which is capa-ble of activating multiple contexts and multiple rule instantiations in parallel.Finally, a parallel processing scheme called DYNAMIC-JOIN with associatedparallel architecture is proposed by Oazer [114]. The main idea behind thescheme is to reduce the variance in processing time of di�erent rules. Thereduction is made possible by a new state representation of rules and WMEssuch that all possible partial matching information is included and be evenlydistributed across processors. Again, the proposed architecture has not beenactually implemented so far.As a summary, hardware approaches have not o�ered a convincingsuccess over software approaches. This may explain the reason why only asmall portion of it has been actually implemented.2.1.4 Other ApproachesIn search for new approaches of implementing production systems,some other methods have also been investigated. Gaudiot and Sohn employ theso-called macro data-ow approach to implement the Rete algorithm [49, 135].A data-ow approach is actually quite natural since Rete algorithm is basicallya data-ow algorithm. A 17-fold speedup is reported on a macro data-ow mul-tiprocessor simulator with 32 PEs. Another completely di�erent approach isthe so-called connectionist production systems which employ the connectionistarchitecture (i.e. neural network) to implement production systems. Galant[48] and Sohn and Gaudiot [134] both adopt local representation as the basicsystem architecture. Touretzky and Hinton introduce a di�erent architecturecalled distributed connectionist production systems (DCPS) [153]. Sohn andGaudio later on introduce a scheme, called hierarchical representation [133],that combines the local and distributed representation techniques.2.1.5 RemarksEven with such an extensive research e�ort, to e�ectively exploit theparallelism in production systems has been known to be very di�cult. The re-sults have not been quite to the expectation. The speedup achieved by systemswith real implementation is quite limited, only about 10-fold, no matter how



24many processors are used. The key reason is that the most valuable sourceof parallelism | the parallelism exhibited in the application domain | hasbeen almost completely overlooked. This level of parallelism, which resides inthe semantic characteristics of applications, is exactly the unexploited area ofparallel production systems we intend to investigate in this dissertation.2.2 Rule Languages in Database SystemsRule languages also appear in database context. It is fair to saythat the development of database production system languages is driven bythe demand of integrating database and expert system technology. In general,there are two approaches toward a solution to this problem:� augmenting a database system with rule constructs, or� extending a production system with interface to databases.Even though our research is targeted on main memory production systems,this line of research is still interesting to us because many problems that needto be solved are quite similar in these two contexts. In this section, we reviewsome of the systems and languages with emphasis on the semantics of the rulelanguages and how the problem of concurrency control is addressed.2.2.1 RPLRPL (Relational Production Language) [33] is a proposed languagefor the integration of production system language and relational database. Itwas motivated by the similarity of the LHS of production rules to relationalqueries observed by Woods [163]. The goal is to enable a production systemto directly access any conventional database that support a relational querylanguage interface. The use of relational data model also provides a formal basiswhich is not usually seen in other conventional production system languages.The syntax of RPL is based on SQL. OPS5 is used as a representativeproduction system language for comparison. The data structures for an RPLprogram are de�ned using a relational DDL as in most relational databasesystems. What makes RPL di�erent from other relational database systems isits addition of production rules for the manipulation of tuples. The LHS of aRPL rule is any valid SQL query which is relational complete. The RHS is thena collection of insert, modify, and delete tuple commands which correspond



25directly to the make, modify, and remove actions of OPS5. It is the powerof the relational complete LHS that makes RPL strictly more expressive thanOPS5. The relational basis also makes it quite suitable for integration withrelational databases.Even though, as far as we know, RPL has never been fully imple-mented, the language proposal is quite inuential. It demonstrates the poten-tial bene�ts and feasibility of integrating database and expert system technol-ogy. It is also a good example of showing the advantage of having a formalmodel underlying a language design.2.2.2 DIPSLike RPL, the DIPS system [120, 130, 131] represents another exampleof using database technology in supporting production rules functionality. Twospecial data structures are used for the processing of OPS5 rules in a databaseenvironment: the Working Memory Relations (WM) and the Condition Rela-tions (COND). Each class of WME's is stored as a WM relation. All conditionelements in rules that refer to the same class of WME's, say C, are representedas tuples in a corresponding COND-C relation. In this way, both matchingand instantiation generation can be done using database techniques. In partic-ular, for the matching of variable-free condition elements, a simple selection ofthe corresponding COND-C relation is su�cient. For condition elements withvariables, the necessary join of related WM relations is performed incremen-tally with intermediate results stored as tuples called matching patterns in theCOND relations. From the parallel processing point of view, this approach isbetter than the RETE approach [44] since the propagation of changes can beperformed in parallel to all the COND relations. More important, the conictset is updated �rst in contrast to the RETE approach where conict set is up-dated after the propagation is completed. Rules can thus be executed earlierthan the RETE approach.For the processing of applicable rules, since the matching patterns donot include identi�ers to corresponding WME's, an additional selection of thecorresponding tuples from the WM relations must be performed. The matchingpatterns provide necessary information for the selection criteria. The executionof applicable rules is then proceeded by treating the RHS actions of each ruleas a database transaction. The concurrency control mechanism is then used tomanage the execution of multiple transactions (i.e. rules) simultaneously. Thecorrectness of concurrent execution is, as usual, based on serializability. Serial-izable execution is enforced by specialized locking mechanism. The conditions



26under which relations must be locked are speci�ed and a logical commit pointis de�ned after which the execution of a rule is no longer a�ected by otherrules.2.2.3 The HiPAC ProjectThe HiPAC project [28, 29, 66, 93] is a representative research ofthe so-called active database systems. In here, we will concentrate only on theEvent-Condition-Action (ECA) rules proposed by the project. In particular, wewill discuss the knowledge model and the execution model of HiPAC designedto support the ECA rules.The concept of ECA rules is central to the HiPAC knowledge model.A rule in the model is represented as an object with the following attributes:[93]Event The event that triggers the rule.Condition A collection of queries to be evaluated when the rule is triggered.Action A sequence of operations to be executed when the condition is satis�ed.E-C Coupling A coupling mode that speci�es when the condition is evaluatedrelative to the transaction that signals the triggering event.C-A Coupling A coupling mode that speci�es when the action is executedrelative to the transaction in which the condition is evaluated.The semantics is quite straightforward: when the event occurs (is signalled),evaluate the condition; and if the condition is satis�ed, execute the action.The event that triggers a rule can be a primitive event such as adatabase operation, a temporal event, or an external event. Primitive eventscan be combined to form composite events using disjunction and sequence op-erators. In the HiPAC execution model, rules are �red as nested transactions.When a rule is triggered, a transaction is created to evaluate the rule's con-dition. If the condition is satis�ed, another transaction is created to executethe rule's action. The coupling modes control the time when the condition oraction is scheduled to be executed.If more than one rule is triggered, a condition evaluation transactionis created for each rule. For the set of rules with the same E-C coupling



27mode, the evaluation of conditions will be executed concurrently. Similarly forthe execution of actions. In this way, rules are �red concurrently as siblingtransactions and the HiPAC transaction manager is responsible for insuringserializability. Since the action of a rule may contain operations that triggerother rules, cascading rule �rings are possible and produce a tree of nestedtransactions.The HiPAC rule system is interesting in the use of an object-orientedknowledge model to represent rules. However, it is a passive objects passiverules(POPR) model in the sense that both data and rules are passive entitiesto be interpreted by the HiPAC system. Since the database transaction mech-anism is used to evaluate and execute the rules, serializability is still the solecorrectness criteria.2.2.4 The POSTGRES Rule SystemPOSTGRES [39, 145, 151] is one of the so-called next-generationdatabase systems [21] designed to support non-traditional applications suchas CAD/CAM, CASE, o�ce automation, and engineering applications. Thefundamental goal of POSTGRES is to provide data, object, and knowledgemanagement services for such applications. Instead of giving a complete de-scription of POSTGRES, we will again focus on the POSTGRES rule system[146, 147, 148, 149, 150].The POSTGRES rule system is designed to be a general-purposerule system in the sense that all the functions of view management, triggers,integrity constraints, referential integrity, protection, and version control, canbe achieved using the rule system. Therefore, it is tightly integrated with thePOSTGRES query language POSTQUEL.Similar to the HiPAC rule, a POSTGRES rule is triggered by eventwhich may be retrieve, replace, delete, append, new (i.e., replace or append) orold (i.e., delete or replace) to a data object. The condition to be evaluated aftera rule is triggered is an arbitrary POSTQUEL quali�cation with no additions orchanges. The action part is a set of POSTQUEL commands. In general, rulesare for specifying additional actions to be taken as a result of user updates.These actions may activate other rules and result in forward chaining style ofreasoning. On the other hand, POSTGRES allows backward chaining styleof rule �ring for deriving information from existing data. The programmersmust determine and specify whether forward chaining or backward chaining isdesired.



28For the implementation of POSTGRES rules, two complementarymethods are provided. The �rst is through record level processing which iscalled when individual records are accessed, deleted, inserted or modi�ed. Thesecond one is through a query rewrite module that converts a user commandto an equivalent form which is suitable for optimization and e�cient execution.The record level processing method is especially e�cient when there are alarge number of rules each of which covers only a few data instances. On theother hand, the query rewrite method works better if there are a small numberof rules with large-scope. A rule chooser is planned for suggesting the bestimplementation for any given rule. Di�erent policies to determine when therules are actually activated similar to the coupling modes of HiPAC rules arealso being explored.2.2.5 Set-Oriented Rules in StarburstThe goal of the Starburst project [58, 59, 88, 89, 91, 129] at IBMAlmaden Research Center is to build from scratch an extensible DBMS thatsupports new applications as addressed by the next-generation database sys-tems [21] and, at the same time, provide a testbed for the research and ex-periments of new DBMS technologies. In contrast to other next-generationdatabase systems that are object-oriented, functional, or based on nested re-lational model, Starburst is based on relational model and extensions to SQL.This allows Starburst to take advantages of proven relational database tech-nology and facilitates porting existing applications to Starburst. A distinctivefeature of the Starburst project is the e�ort to make it extensible at every level.In here, we will discuss the extension of Starburst to include user-de�ned rules[159, 160, 161].Similar to HiPAC and POSTGRES rules, a Starburst rule has a trig-ger clause, a condition clause, and an action clause. A rule is triggered byone or more SQL operations (INSERT, DELETE, or UPDATE) on a relationwhich is called the rule's trigger table. The condition is evaluated at the end ofthe transaction that triggers the rule. The rule's condition clause is any SQLquery on the database state or on a special type of relations called transitiontables. Transition tables maintain records of the most recently updates to therule's trigger table so that the rule can reference the data that are changed bythe triggering operation. When the result of the query in the condition clauseis nonempty, the action clause, which is a sequence of database commands, isexecuted. The actions may abort the transaction or perform further modi�ca-tions to the database, which may in turn trigger the same or other rules. Any



29modi�cations made by the actions are part of a transaction and can be rolledback. In case that more than one rules are triggered and satis�ed, one rule isselected for execution after which other rules are reevaluated for eligibility. Theprocess continues until no rules are satis�ed. A partial order may be speci�edon the rules with the precedes and follows clauses to assign relative priority.In addition to the user-de�ned rule which can only be triggered bybuilt-in operations on a stored table, the Starburst's Alert trigger system [127]extends the rules system a step further to allow user-de�ned Alert rule to betriggered by any event(s) which may be an invocation of a user-de�ned methodthat may update many tables.Even though the Starburst rules system is not a multiple rules �ringsystem, it is still quite relevant to our work because Starburst rules are inher-ently set-oriented in the sense that they can be triggered by arbitrary sets ofchanges to the database and may perform sets of changes. The Starburst expe-rience also pointed out that to achieve extensibility, it must be a fundamentalgoal and involve every aspect of the system design.2.2.6 LDLLDL (Logic Data Language) [24, 25, 108, 154] is a Datalog-like lan-guage extended with constructs such as negation, updates, control structures,and type constructors for developing intelligent data-intensive applications.The goal is to design a logic-based query language that combines the bene-�ts of logic programming languages such as PROLOG, with the ease of use,the suitability for parallel processing, and secondary storage management of therelational systems. The LDL system is probably the �rst e�cient realizationof the concept of deductive databases [47].Instead of describing the language in details, we will highlight themost important features of LDL, especially those that are related to our work.� Unlike PROLOG, LDL is based on pure Horn clause logic. The depen-dence of order of rules in a program or subgoals within a rule has beenremoved. All extra-logical constructs (such as the cut) are discarded andthe sequential execution-control model of PROLOG is no longer assumed.This results in a pure declarative language with clean semantics.� Complex terms can be used in both facts and rules. This allows data tobe structured and inferenced upon in a more natural and organized way.



30� In order to integrate with relational database systems, sets data objectsare introduced which can be used directly in the facts or rules. Setscan be explicitly enumerated or generated by rules. The response to aquery is the set of all possible answers that can be deduced from the baserelations. Aggregate operations such as cardinality can be used on theset objects.� A negation with set-di�erence semantics is used instead of the negationby failure semantics of PROLOG [90].� De�nition and update facilities are provided for database schema, baserelations, as well as derived relations.As a related research to our work, the most interesting part of theLDL approach is its compilation techniques. The compilation process consistsof the phase for compiling the rule program and the phase for the compila-tion and optimization of queries. The rule program is �rst transformed intoa predicate connection graph [71] which is for storing the relationship betweenterms and the clause-heads that can potentially be uni�ed. The structure isalso used to maintain the entry points for queries. Recursive rules are com-piled by means of naive evaluation and magic sets methods [7, 8]. Then for agiven query, the system generates all possible proof plans in the form of proofschema and compiles a single relational algebra program (RAP) which, whenexecuted, produces the set of all possible answers to the query. The RAP isfurther optimized using relational database techniques before execution. The�nal answers may be combined with intermediate results and proof schemato provide explanations about how the answers are derived. While other de-ductive database systems usually need a considerable amount of query-timedeductive search to derive the answers, the LDL approach transfers much ofthis rule manipulation cost from query-time to compile-time. Together withthe additional optimization phase, this approach has been proved to be quitee�ective [25].Other techniques that are also important to LDL include the uni�ca-tion of complex terms, the compile-time analysis to detect unsafe queries, andthe compiling of safe queries. These are discussed in [165, 166].2.2.7 RDL1 and RDL/CUnlike LDL [108, 154] or other deductive database systems [155],RDL1 [32, 76] rules are not in clausal form in the style of PROLOG or DAT-ALOG, but closer to forward chaining rule based languages like OPS5. Again,



31the design goal is to integrate production rule language with a relational DBMS.A rule consists of a condition part which is any tuple relational calculus expres-sion with the constrain of being range restricted, and an action part which is asequence of insertions and deletions of tuples in the database relations. The se-mantics of a RDL1 rule is de�ned as a mapping over database states. First, thevaluation of a condition is an assignment to the constants, functions and freevariables in the condition. A free variable x over a relation R is assigned with atuple in the domain of R. Then the condition is interpreted under the currentdatabase state to determine whether the condition is satis�ed. Similarly, thevaluation of an action is the replacement of tuple variables with tuples fromthe proper domains. When the condition is evaluated to true, the tuples val-uated in the action are inserted or deleted to the corresponding relations. Animportant feature of RDL1 rules is the atomic semantics of rule execution. Theaction part is not performed as a sequential execution of insertions and dele-tions. The whole action is considered as an atomic database update. Thereforethe order of insertions and deletions are irrelevant. Only net e�ect is actuallymaterialized. A �nite set of rules de�nes a rule program which is executedin interpret-select-execute cycles similar to OPS5. Only one rule whose inter-preted condition is true is selected for execution. This process repeats until astable state is reached which is a state in which either every interpretation ofevery condition is false or no new database state can be produced using anyaction. The most interesting feature of RDL1 is the modeling of rules using aspecial type of Predicate Transition Nets (PrTN) called Production Compila-tion Network (PCN) [31]. Structurally, a PCN represents the interrelationshipbetween rules and relational predicates as speci�ed by a rule program. It isalso a pre-compiled form of the rules and allows incremental updates to therule base. Dynamically, a PCN is also an execution model for the program itrepresents. The process of valuations and cyclic execution are actually doneon the PCN. The net-based approach not only provides an e�cient way of ex-ecuting rule programs, it also means that all available techniques and tools forthe analysis, transformation, and optimization of PrTN can be used on PCN.The reader interested in the details of PCN, including how to transform a ruleprogram into and execute it on a PCN, is referred to [31, 32]. Another facilityprovided by RDL1 is a control language for annotating PCN with informationof ow of control and the sequence of rule �ring. For a complete and formaldescription of the language, see [30].



32In summary, RDL1 is a powerful rule language that supports nega-tions in conditions and allows sequence of insertions and deletions in the ac-tions. It has been proved to be more expressive than DATALOGneg [132]. ThePCN model and the compilation technique provide a good basis for rule/queryoptimization and e�cient execution. Though primitive, the control languageo�ers programmers a way of specifying the order of execution of the rules andis also a tool for describing and developing query processing strategies andtransformations over the PCN.Even though the RDL1 rule programs and the associated PCNs arepotentially parallelizable, it is not a multiple rule �ring system since only onerule is selected for execution in each cycle. Furthermore, two main limitationsof the RDL1 approach are reported [75]:� The rule interface is DBMS-dependent.� The rule language does not provide programming features usually foundin expert system shells such as control structures, main memory variables,connections with a procedural language, and user interaction.In response to these de�ciencies of the RDL1 approach, a new rule languagecompiler called RDL/C [23, 74, 75] is developed which not only supports proce-dural constructs and C language interface, but also enable a program to run ontop of any relational DBMS because the interface between the rule languageand the DBMS is SQL. More importantly, RDL/C provides language con-structs, execution model, and run-time environment for supporting rule-levelparallelism. We now briey describe the RDL/C approach.RDL/C is derived from RDL1. The language supports both declara-tive programming in the form of production rules, and procedural programmingbased on C code. The original design of RDL/C does not include constructsfor parallelism. Similar to RDL1, the condition part of a RDL/C rule is atuple relational calculus expression with the declaration of range variables infront. The expression is to quali�es the tuples for participating in the rule's�ring. The actions can be insertions, deletions, C-like variable assignment andexternal procedural calls. The semantics of RDL/C rules is set-oriented inthe sense that when a condition is evaluated against the database, the set ofinstances satisfying the condition is returned. Similarly, when an action is ex-ecuted against the database, it is executed for all the values which appear asarguments in the action. In this respect, RDL/C rules are similar to a con-struct we provide called ALL combinator. For the execution of a rule program,



33one rule is randomly selected for execution among all �rable rules in each cycle.Program execution terminates when no rule is �rable. A control sub-languageis also provided as in RDL1 for explicit control over the rule execution. Twoparticular expressions BLOCK and SEQ specify non-deterministic or sequentialexecution.As already mentioned earlier, the original design of RDL/C does notinclude constructs for supporting parallelism. In [23] the basic design is ex-tended to include constructs for supporting parallelism. First, on the PCNmodel, which is the execution model for RDL/C language, su�cient conditionsare identi�ed for parallelizable transitions which correspond to rules in the pro-gram. To inform the compiler that the rule module is to be run in parallel,the ON statement is provided to specify the servers on which the module is tobe executed. Then the PAR structure is added to the control sub-language tospecify how rules are to be run in parallel. A run-time library is provided toactually manipulate parallelism during execution.Though primitive, the RDL/C approach to parallelism is actually arudimentary form of semantic level parallelism. However, the parallelism is onlysupported at the rule level and the programmer must transform applicationspeci�c knowledge into an explicit speci�cation of partial order among rulesusing the control sub-language. On the contrary, our approach is intended to bea much more general and comprehensive one that exploits semantic parallelismat every level of production system. The application speci�c knowledge is alsoexpressed and used in a much more natural way.2.2.8 Gordin and Pasik's WorkIn [51, 52], Gordin and Pasik have developed several set-oriented con-structs and showed how these constructs can be added to a DBMS implemen-tation of OPS5. The new constructs are implemented by an extended versionof the Rete algorithm [44].A condition element (CE) is set-oriented if it is enclosed in squarebrackets. The semantics of a set-oriented CE is to match with all consistentWME's to be associated with a single rule instantiation. From the databasepoint of view, if a rule contains only set-oriented CEs, then the entire relationwith tuples satisfying the CEs is generated with the instantiation when therule is matched against the database. However, a LHS can contain both set-oriented and regular CEs. In this case, the regular CEs can be considered aspartitioning the relation into smaller relations, or equivalently, the set-oriented



34CEs can be seen as combining the tuples forming the regular instantiations intoaggregated instantiations.Similarly, a pattern variable (PV) is set-oriented if it occurs within aset-oriented CE. The domain of values of a set-oriented PV is the set of valuesoccurring in the WME's satisfying the corresponding CE. When a set-orientedPV occurs in more than one CEs, a join is performed. When a PV occurs inboth a set-oriented CE and a regular CE, it is bound to the value in the WMEmatching the regular CE. A PV in a set-oriented CE can be forced to be non-set-oriented by listing it in the :scalar clause. The e�ect is to partition therelation induced by the LHS into separate instantiations. Aggregate operatorssuch as count, min, max, sum, and avg are provided for more expressive LHS.For the RHS actions, two types of capabilities are provided for access-ing set-oriented PVs or CEs. First, aggregate operations such as set-removeand set-modify are added to operate on an entire set. Then a foreach iteratorconstruct is provided to execute its body on each subset of the instantiation,having a distinct value for a speci�ed set-oriented PV. The partitioning is sim-ilar to the SQL group-by and the iterator can access the items in ascending,descending, or default order. By matching on a set of values and iterating overthem, subinstantiations correspond to distinct values of the set-oriented PVcan be access in a single rule �ring. The foreach operator can be nested tohave compositional e�ect. The operator can also be applied on set-orientedCEs with the semantics of iterating through the matching WME's rather thanvalues. For the implementation, an extended version of the Rete algorithmis developed for processing set-oriented constructs. A discussion of how tointegrate this work to the DIPS system [131] is also given to show that OPS5with the proposed constructs can be used as the language basis for expertdatabase systems.As a comparison, our approach di�ers in that we take an object-basedapproach rather than a relational database approach. Our design is to have amore expressive LHS and a SPMD semantics for RHS instead of the iteratorapproach which is contrary to the declarative nature of production systems. Asan example of more expressive LHS, the semantics of DISJOINT construct cannot be expressed by their corresponding LHS set-oriented constructs. Mostimportantly, our major concern is concurrency which is not the design goalof Gordin and Pasik's work. No discussion was given about the interferenceanalysis of rule and multiple rule �ring.



352.3 Chapter SummaryWe discussed rule systems for traditional and data base applications.The key to successful parallelism is the independence of parallel activities.This in turn manifests itself on the disjointness of data objects accessed by theparallel activities. We therefore conclude that the lack of mechanism for thespeci�cation of decomposition is the main reason for the limited speedup inprevious work. A general approach toward data and functional decompositionis required to have signi�cant performance improvement on production systemprograms. The main contributions of this research are to provide a generalframework and proper abstraction mechanisms for such purpose. Another goalof this research is also to demonstrate that decomposition abstraction is themissing layer which needs to be superimposed upon the familiar procedural,control, and data abstractions to achieve truly portable parallel programmingusing any language.



Chapter 3A General Object-Based FrameworkThe principles of decomposition abstraction are language indepen-dent. It is best to discuss it under a general framework rather than underthe context of any speci�c rule language. Such a framework must cover allessential features of production systems. In this chapter, we propose a gen-eral object-based framework and a generic rule notation. The intention is toprovide a language independent context for our discussion and to facilitate theapplicability of our results to any rule language.3.1 Object Model and the Abstract Rule NotationWe have built our framework on top of a uni�ed object model whichcan be used to characterize all entities in a rule system. The basic object modelis inspired by [6, 14] and is comprised of the following sets of symbols:A : attribute names,C : class names,I : identi�ers,M : method names,R : rule names,V : variable names.De�nition 1 (Methods) A method de�nition is a triple (M;P;B) where Mis a method name, P is a set of parameter speci�cations, and B is the de�nitionof operations performed by the method (usually called the body or implemen-tation of the method). A method invocation is a method name with necessaryparameters fully supplied. 2 36



37We have deliberately left out the details of how a parameter or bodyof a method is actually speci�ed. No restriction is placed on the way actualarguments are passed in a method invocation. These issues are not essentialto our discussion and thus our results are independent of any speci�c methodde�nition or invocation mechanism.De�nition 2 (Classes) A class de�nes a set of objects with similar structureand behavior.� INT, FLOAT, and STRING are primitive classes representing the setof integers, oats, and character strings, respectively.� An attribute de�nition is a pair (a;C) where a is an attribute name andC is a class name.� A set-valued attribute can be de�ned by adding a \�" at the end of anattribute name.� A class is a triple (C;A;M) where C is a class name, A is a set ofattribute de�nitions, and M is a set of method de�nitions. 2In terms of our abstract rule notation, a class C with attribute def-initions (a1; C1); : : : ; (an; Cn) and method de�nitions M1; : : : ;Mk is de�ned asfollows.class C fattributes ( a1 : C1; : : : ; an : Cn )methods ( M1; : : : ;Mk )gThe sets of attributes and methods of C are denoted by A(C) and M(C)respectively.De�nition 3 (Objects and WME's) Objects are de�ned to model WME's.They are the basic units of information and behavior encapsulation. Inheritanceis not considered since it is not an essential part of the production systemmodel.11However, our formalization is general enough to be extended later to include inheritance.



38� Integers, oats, and character strings are primitive objects.� If a1; a2; : : : ; an are the attribute names of a class C and O1; O2; : : : ; Onare objects, then:O = ( a1 : O1; a2 : O2; : : : ; an : On )is a structural object. The object is an instance of the class C.� Objects are the generalization of WME's. Each object has a unique iden-ti�er associated with it. Working memory is a set of objects.� If O1; O2; : : : ; On are objects of a class C, thenf O1; O2; : : : ; On gis a set object. Oi's are elements of the set object. Note that elements ofa set object must be instances of the same class. 2De�nition 4 (Rules) A rule has a triggering condition and an action com-ponent. Conditions may be positive or negative.� An expression is a quanti�er-free �rst order formula.� If v is a variable name, C is a class name and E is an expression, then(v : C :: E) is a positive condition and �(v : C :: E) is a negativecondition.� If P is a condition, then v(P ), C(P ), and E(P ) denote the variable,class, and expression components, respectively, of the condition.� A rule is a triple (P;N;M) where P is a set of positive conditions, N isa set (possibly empty) of negative conditions, and M is a set of methodinvocations.� A positive or negative condition is termed a condition element. The setof all condition elements is called the antecedent. The set of methodinvocations is called the consequent. 2



39Apparently a rule with empty consequent has no e�ect, therefore M is usuallynon-empty. Since methods can only be invoked on objects selected by thepositive conditions, P must be non-empty as well.In the rule notation, if r is a rule name, P1; P2; : : : ; Pn (n � 1)are positive conditions, N1; N2; : : : ; Nm (m � 0) are negative conditions, andM1;M2; : : : ;Mk (k � 1) are method invocations, then a rule is de�ned as fol-lows with ! delimiting the antecedent and consequent.rule r fP1; P2; : : : ; Pn;N1; N2; : : : ; Nm! M1;M2; : : : ;MkgDe�nition 5 (Program and System) A program is a pair (C, R) whereC is a set of class de�nitions and R is a set of rule de�nitions. A rule systemis also a pair (O, P) where O is a set of objects and P is a rule program. 23.2 Execution Model and SemanticsWe specify the semantics of rules by considering rule antecedents asqueries to the working memory for selecting a consistent set of objects. Theexecution of a rule system is de�ned in terms of state transitions betweenworking memory states.De�nition 6 (State) The state of a rule system is the set of objects in work-ing memory. 2De�nition 7 (Selection and Instantiation) Pattern matching is modeledby object selection. The following de�nitions are de�ned assuming a given stateS. � A positive condition element (v : C :: E) is satis�ed in S if there existsan object of class C such that E is evaluated to true. The object (whichcan be referenced by the variable v) is said to be selected by the conditionelement.



40� A negative condition �(v : C :: E) is satis�ed in S if there does not existany object of class C such that E is evaluated to true.� A rule is satis�ed in S if there exists at least one set of objects in S suchthat all condition elements in the antecedent are satis�ed. The set of ob-jects selected by the positive condition elements is called an instantiationof the rule. 2Formally, a rule as de�ned in De�nition 4 is satis�ed if the followingformula is true.9 v(P1); : : : ; v(Pn) (v(P1) 2 C(P1) ^ : : : ^ v(Pn) 2 C(Pn) ^E(P1) ^ : : : ^ E(Pn) ^6 9 v(N1); : : : ; v(Nm) (E(N1) _ : : : _ E(Nm)))Each set of n objects satisfying the formula is an instantiation of the rule.Operationally, a rule can be considered as a query to the workingmemory. The result of the query is a class whose instances are instantiationsof the rule. In other words, the set of all instantiations of a rule r, denotedInst(r), can be formally characterized as the setInst(r) � f t j t 2 Inst of r ^ A� gwhere Inst of r is the classclass Inst of r fattributes ( v(P1) : C(P1); : : : ; v(Pn) : C(Pn) )methods ( n[i=1M(C(Pi)) )gand � is the variable substitutions and A is a formula representing the tests inthe antecedent. That is,� = f v(P1)=t:v(P1); : : : ; v(Pn)=t:v(Pn) gA = E(P1) ^ : : : ^ E(Pn) ^6 9 v(N1); : : : ; v(Nm) (E(N1) _ : : : _ E(Nm)):Note that the value of each attribute in the class is an object selected by thecorresponding positive condition element, and the methods are the union of allmethods that can be invoked on the selected objects.



41De�nition 8 (Rule Firing) Let S be a state, r be a rule which is satis�edin the state, and i be an instantiation of r. The result of �ring the rule in-stantiation is a new state S 0 obtained from S by invoking the methods in theconsequent of r on the set of objects in i. We denote such a rule �ring byS 0 = S(i). 2De�nition 9 (Execution) An execution of a rule system is a sequence ofrule �rings that transforms the system from a state to another state. A stateis a terminal state if no rule is satis�ed under that state. An execution is aterminal execution if the last state in the sequence of rule �rings is a terminalstate. 2Note that an execution is not required to be a terminal execution.This is to allow systems that do not terminate. It is also important to notethat in the de�nitions of rule �ring and execution, no restriction is placed onhow objects are selected or on which rule instantiation to pick. In other words,no matching technique or conict resolution strategy is assumed.2The framework and execution model above characterize the core con-cepts and essential features of a sequential production system. We extend themodel to allow simultaneous �ring of multiple rule instantiations.De�nition 10 (Interference) If i1 and i2 are instantiations of two (possiblythe same) rules that are satis�ed in a state S, then i1 interferes with i2 if anyone of the following conditions is true:1. The execution of i1 prevents i2 from being an instantiation in the newstate resulting from i1's execution, or vice versa.2. There exist methods invoked by i1 and i2 that modify the same object. 2Since a newly created object is always assigned a unique identi�er,object creations do not contribute to any interference except when Condition 12In fact, our language model to be discussed later does not even have a conict resolutionphase. The idea of generating a bunch of instantiations and then resolving the conictis considered a waste of computation resource. Our approach is to generate only thoseinstantiation(s) that is(are) actually �red.



42is true. Identical objects with di�erent identi�ers are allowed to coexist in ourmodel, which is consistent with most rule languages.We note that it is possible to weaken Condition 2 above since weneed only to avoid conicting methods to be invoked on the same object. How-ever, such �ne-grained parallelism can be easily overwhelmed by the potentialcomplexity. We reserve this issue for future research.De�nition 11 (Compatibility) Two instantiations are said to be compati-ble if they do not interfere with each other. A set of instantiations is compatibleif the instantiations are pair-wise compatible. 2Since compatible instantiations do not interfere with each other, theycan be executed in parallel. Our de�nitions of interference and compatibilityare similar to the corresponding de�nitions in [70, 80, 84, 123] which are all es-sentially originated from Bernstein's conditions [10] and database concurrencycontrol theory [11, 117]. However, we formalize it to a general object-basedcontext which allows any type of method instead of just the add, delete, andmodify operations as in most previous work on parallel production systems.De�nition 12 (Parallel Rule Firing) The result of parallel �ring of twocompatible instantiations in a state is a new state obtained by invoking allmethods on corresponding objects of the two instantiations. Likewise, the par-allel �ring of a set of compatible instantiations I in a state S is to invoke allmethods on corresponding objects of all instantiations. The parallel �ring isdenoted by S0 = S(I). 2Because of the non-interference requirement between parallel exe-cutable instantiations, the resulting state of the parallel �ring is the same asthe result of execution of the set of instantiations in sequence following any or-der. To state it more precisely, if I = fi1; : : : ; ing is a set of parallel executableinstantiations in a state S, thenS(I) = S(ij1)(ij2) : : : (ijn)where j1; j2; : : : ; jn is any permutation of n.



433.3 Chapter SummaryIn this chapter, we presented a general formalization of productionsystem on top of an object model. An abstract rule notation is introducedto facilitate the coming discussion of language mechanisms in a language in-dependent way. The greatest bene�ts of this approach are the simpli�cationof discussion and the general applicability of results. It will be clear in laterchapters that our framework and rule notation greatly simplify the presenta-tion of semantics of our language mechanisms. We will also demonstrate thegenerality of our results by showing how to adopt our mechanisms to convertsequential rule languages into parallel rule languages.



Chapter 4Decomposition Abstraction MechanismsDecomposition abstraction mechanisms are language mechanisms thatassist the programmers in the abstraction process for parallel decomposition.Even though language constructs for parallel decomposition have been in ex-istence for quite a while, none of them seem to �t under the context of pro-duction system. This is primarily due to the fundamental di�erences in com-putation model. The design of decomposition abstraction mechanisms for pro-duction system must be in harmony with the essence of production systemand its distinctive computation module. In this chapter, we �rst present asystematic analysis of the types of parallelism in production systems to de-rive a set of design criteria. We then introduce a small but powerful set oflanguage-independent abstract mechanisms for parallel decomposition. Actualconstructs for parallel decomposition in any rule language can be easily de-signed by adopting these mechanisms.4.1 Parallelism in Multiple Rule Firing SystemsWhen rule instantiations are allowed to �re in parallel, various oppor-tunities for parallelism arise at di�erent levels of the production system model.This analysis of parallelism is di�erent from Gupta's analysis [55] in that weexamine this issue from a semantic point of view. In particular, we focus onthe patterns of computation and programming style that naturally map tothe familiar notions of data and function decomposition. Unlike such notionslike node parallelism from Gupta's analysis, our analysis is independent of anymatch or rule evaluation scheme.4.1.1 Data Level ParallelismIn a sequential environment, WME's are processed one at a time. Bydata level parallelism we mean that di�erent sets of WME's can be processedin parallel similar to the SPMD or data parallel systems [27, 63]. However,unlike other languages where data resides in regular data structures, this type44



45of parallelism in the context of production systems usually manifests in the formof multiple (either all or subset of) instantiations of the same rule. Specifyingthis type of parallelism with data declarations is not likely to work since thesame set of WME's may need to be processed sequentially for some rules whilethey may be fully decomposable for some other rules. We will show in latersections that declarations on a per rule basis turn out to be the most naturalway for covering this level of parallelism.4.1.2 Rule Level ParallelismThis is the concurrency observed when instantiations of multiple rulesare �red in parallel. It can be the result of both data and function decom-position depending on whether the rules are designed for similar or di�erentfunctionalities. For exploiting this level of parallelism, the main issues are thepossible interference between di�erent instantiations and the correctness of par-allel execution. Straightforward speci�cation is clearly inappropriate becausethe complexity of reasoning about concurrency and interference is likely to betoo heavy a burden for the programmers. The preferred way is to have thelanguage system derive the concurrency, possibly with the help of a minimumamount of semantic information provided by the programmers, and maintainthe correctness of parallel execution. We will show that relationships betweendata objects provide the key gateway to the exploitation of rule level parallelismin production systems.4.1.3 Program Level ParallelismFinally, a problem can often be decomposed into subproblems suchthat part or all of them may be processed in parallel. This corresponds tothe program level parallelism where the structuring of program provides valu-able hints for function decomposition. However, the basic production systemmodel does not have any notion of modules or rule groups, which is certainlya disadvantage from this point of view. Mechanisms for rule structuring wouldcertainly help the programmers in program development and the system inuncovering this type of parallelism.4.2 Design CriteriaFrom the analysis of the types of parallelism presented in the previoussection, we derive a set of criteria that must be met by any proper decomposi-tion abstraction mechanism for a parallel rule language.



46What vs. How The mechanisms must be declarative in nature. Specifywhat type of decomposition naturally exhibits the parallelism in the applicationindependent of how the decomposition is actually achieved.Consistent with Pattern Matching Paradigm The whole idea of produc-tion system is centered around pattern matching. The mechanisms for paralleldecomposition must also be expressed under the pattern matching paradigm.Conciseness As simple as possible, but no simpler. The mechanismsmust beconceptually simple and intuitively appealing. The burden of reasoning aboutconcurrency placed on the programmers should be minimized to the extentthat only natural parallelism in the application semantics need be considered.Versatility The set of mechanisms must be semantically rich and powerfulenough to express as many types of parallelism as possible.Compatibility The mechanisms should be compatible with sequential se-mantics. All sequential programs should still run correctly. Parallel programsshould be able to run correctly even if executed sequentially.E�ective Implementation Any set of mechanisms for parallel decomposi-tion should be feasible.4.3 Parallel Structuring MechanismsFollowing the design criteria, we propose a set of abstract mechanismsfor expressing decomposition strategies. The formal semantics of the mecha-nisms are speci�ed under our object-based model with illustrative examplesusing the abstract rule notation.4.3.1 Set Selection ConditionsIn most (if not all) sequential rule languages, each positive conditionelement matches a single data object from a speci�ed class. Then actions inthe consequent are applied on the instantiation composed of selected objects,one from each positive condition element. This implies that only one object



47from each class can be processed at a time. On the other hand, it is quite nat-ural for an application to adopt a basic problem solving strategy such that allobjects satisfying certain conditions in a speci�ed class need to be processed.This apparent mismatch between the language model and the application se-mantics is almost always circumvented by �ring the same rule repeatedly untilall quali�ed objects have been processed. For example, the rulerule Raise Poor Employee f( d : Department );( e : Employee :: e:dept == d:name ^ e:salary < 10000 )! e:salary = e:salary+ e:salary=10gwill �re repeatedly on each \poor" employee in all departments to raise his/hersalary by 10%. This type of rule can be found in almost all rule programs. Ifeach employee belongs to exactly one department, the rule actually representsa perfect case of DOALL loop [167] in which parallelism can be fully exploited.On the other hand, this is not at all obvious for many parallelizing compilers ofsequential rule languages since the possibility of interference can not be ruledout at compile-time. If the application semantics implies that no interferencecan occur, then there is no reason to be so conservative. What we need here isa mechanism for specifying the exact semantics of the application as to whethera rule is to be applied on all or just the selected object one at a time.For achieving the purpose above, we found that enriching the seman-tics of the rule antecedent to allow a positive condition element to match notjust one but all satisfying objects solves the problem naturally and elegantly.Using the abstract notation and the example above, the rule below speci�esthat for a department d, select all poor employees and raise the salary of eachone of them by 10%.rule Raise All Poor Employees f( d : Department );[[ e : Employee :: e:dept == d:name ^ e:salary < 10000 ]]! e:salary = e:salary+ e:salary=10g



48A positive condition element enclosed in square brackets is a set se-lection condition denoting that all quali�ed objects should be processed by theconsequent and that they can be processed independently. In other words,the selected set of data objects is fully decomposable and can be processed inparallel. The square bracket notation is adopted from [52] for its conciseness.However, the semantics is rather di�erent. A relational semantics was taken intheir set-oriented constructs to facilitate the integration with database systems.Our set selection condition is a mechanism for expressing parallelism. Theimplication that objects in the selected set can be processed in parallel is notin their relational semantics.Formally, a rule r with positive conditions P1; : : : ; Pi, set selectionconditions Pi+1; : : : ; Pn, and negative conditions N1; : : : ; Nm, de�nes the fol-lowing class.class Inst of r fattributes ( v(P1) : C(P1); : : : ; v(Pi) : C(Pi);v(Pi+1)� : C(Pi+1); : : : ; v(Pn)� : C(Pn) )methods ( n[i=1M(C(Pi)) )gEach instance of the class represents a set instantiation composed of objects(one from each regular condition) and set objects (one for each set selectioncondition). Set instantiations are, as the name suggests, representations ofsets of ground instantiations, which are instantiations of the ground rule of robtained by treating all set selection conditions as regular conditions. The setof all ground instantiations can be characterized by the setf (g1; : : : ; gn) j 9 t (t 2 Inst of r ^gk = t:v(Pk); 1 � k � i ^gk 2 t:v(Pk)�; i+ 1 � k � n ^A� ) gin which� = f v(P1)=g1; : : : ; v(Pn)=gn gA = E(P1) ^ : : : ^ E(Pn) ^6 9 v(N1); : : : ; v(Nm) (E(N1) _ : : : _ E(Nm)):



49We note that when more than one set selection condition coexists in arule, a join semantics similar to a relational join is implied. This is consistentwith sequential semantics in that the set of ground instantiations is exactlythe same as that of the rule with set selection conditions treated as regularconditions. The di�erence is that the former is fully parallel decomposablewhile the later can only be processed one at a time.Among previous work on parallel production systems, van Biema etal. [156] were probably the �rst to point out the issue and provide constructs forset-oriented processing in rule-based programming. Our set selection conditionis similar to their universal quanti�cation. However, the exact semantics of theuniversal quanti�cation has not been formally speci�ed as we have done here.This can easily result in ambiguous and complicate rules.4.3.2 Aggregate OperatorsThe set of objects selected by a set selection condition can also beprocessed as a whole by aggregate operators such as count, sum, max, min,and avg. This provides a new dimension of language constructs that greatlysimplify rule-based programming. The fact that e�cient parallel algorithmscan be used to implement these operators further increase the value of setselection mechanism in rule languages.Using our abstract rule notation, in a set selection condition [ v :C :: E ], v denotes an individual and v� the whole set of selected objects,respectively. For example, if the number of poor employees in a department isdesired, the following rule does exactly what we want.rule Count Poor Employees f( d : Department );[ e : Employee :: e:dept == d:name ^ e:salary < 10000 ]! d:poor emps = Count(e�)gWithout set selection conditions and aggregate operators, the same e�ect wouldrequire two rules, where one rule �res repeatedly on each poor employee toincrement a counter and another semantically redundant rule is used purelyfor testing whether all poor employees have been counted.



504.3.3 ALL CombinatorsExamining the Count Poor Employees rule above reveals an addi-tional, unexploited level of parallelism. Using only the set selection conditionand aggregate operators, all poor employees in a department can be processedas a whole using an e�cient parallel algorithm. However, di�erent departmentsare still processed sequentially. To specify that both conditions are set selec-tion conditions does not work since the join semantics would mean that thetotal number of poor employees in the company, not any department, is setto the poor emps attribute of each department. Instead, a new mechanism isneeded here to specify the intended patterns of decomposition among selectedsets of objects. In the example above, we want to specify that not only pooremployees in a department need to be considered, but that the same thing canbe applied on all departments independent of each other. In other words, aslong as the selected employees are decomposed or grouped by the department,di�erent groups of objects can be processed in parallel since no interference canoccur. For the purpose above, we found that a natural way to specify thedesired semantics is to group several condition elements together which charac-terizes the desired patterns of decomposition. To illustrate this, the followingrule speci�es that the number of poor employees of each departments can becomputed in parallel.rule Count All Poor Employees fALL ( ( d : Department );[ e : Employee :: e:dept == d:name ^ e:salary < 10000 ] )! d:poor emps = Count(e�)g The ALL combinator groups together several condition elements intoan ALL condition to denote that any consistent collection of objects and set ob-jects (for set selection conditions) can be considered independent, and thereforeall of them can be processed in parallel without worrying about interference.Formally, a rule r with positive conditions P1; : : : ; Pi, set selectionconditions Pi+1; : : : ; Pn, negative conditions N1; : : : ; Nm, and an ALL condi-tion consisting of positive conditions AP1; : : : ; APj, set selection conditions



51APj+1; : : : ; APk, and negative conditions AN1; : : : ; ANl, de�nes a class:class Inst of r fattributes ( v(P1) : C(P1); : : : ; v(Pi) : C(Pi);v(Pi+1)� : C(Pi+1); : : : ; v(Pn)� : C(Pn);all� : AllClass of r )methods ( n[i=1M(C(Pi)) [ k[i=1M(C(APi)) )gwhere AllClass of r is the classclass AllClass of r fattributes ( v(AP1) : C(AP1); : : : ; v(APj) : C(APj);v(APj+1)� : C(APj+1); : : : ; v(APk)� : C(APk) )methods ( k[i=1M(C(APi)) )gThe set of all ground instantiations can be characterized by the setf (g1; : : : ; gn; a1; : : : ; ak) j 9 t; u (t 2 Inst of r ^ u 2 t:all� ^gh = t:v(Ph); 1 � h � i ^gh 2 t:v(Ph)�; i+ 1 � h � n ^ah = u:v(APh); 1 � h � j ^ah 2 u:v(APh)�; j + 1 � h � k ^A� ) gwhere � = f v(P1)=g1; : : : ; v(Pn)=gn; v(AP1)=a1; : : : ; v(APk)=ak gA = E(P1) ^ : : : ^ E(Pn) ^ E(AP1) ^ : : : ^ E(APk) ^6 9 v(N1); : : : ; v(Nm); v(AN1); : : : ; v(ANl) (E(N1) _ : : : _ E(Nm) _ E(AN1) _ : : : _ E(ANl) ):



52We note that there is no need to have more than one ALL condition ina rule. It is not di�cult to prove that for a rule with multiple ALL conditions,the set of ground instantiations is exactly the same as the rule with all conditionelements in each combinator placed under one ALL condition. In other words,if C1; : : : ; Cn are sets of condition elements, thenALL(C1) ^ : : : ^ALL(Cn) � ALL(C1 ^ : : : ^ Cn):On the other hand, while nested ALL conditions may seem to providemore expressive power than a single level one, they unnecessarily complicatethe semantics. This is certainly against our conciseness criterion. We will showin later sections that the combination of set selection conditions, aggregateoperators, and combinators (including the DISJOINT combinator to be intro-duced next) is versatile enough to express all sources of data level parallelismdiscussed in Section 4.1.4.3.4 DISJOINT CombinatorsThe semantics of both set selection conditions and the ALL combina-tor imply that any consistent set of objects satisfying the conditions is a validunit of decomposition and all such units can be processed in parallel. This isdesirable when there is no worry about the repetition of selected objects be-tween di�erent sets as in all example rules above. However, when it is possibleto have the same object selected to di�erent units, the semantics above maynot be exactly what we want as demonstrated in the following rule.rule Team Employees f( e1 : Employee :: e1:dept == \research00 ^e1:team == unknown );( e2 : Employee :: e2 6= e1 ^e2:dept == \research00 ^e2:team == unknown );( e3 : Employee :: e3 6= e2 ^ e3 6= e1 ^e3:dept == \research00 ^e3:team == unknown )! e1:team = new Team(e1; e2; e3);e2:team = e1:team;e3:team = e1:teamg



53The purpose of the rule is to team up all employees in the research departmentsuch that each employee is in only one team and each team has exactly threeemployees. We can not use set selection conditions or the ALL combinatorhere since the same employee could be assigned to multiple teams. The key tothe decomposition in this case is the disjointness of selected employees betweendi�erent sets. Indeed, selecting disjoint sets of data objects for processing isa commonly used strategy in rule-based problem solving. This entitles a newmechanism for specifying the disjoint decomposition, which we call DISJOINTcombinator. For the example above, the rule below speci�es that all teams canbe formed at the same time as long as the selected employees are mutuallydisjoint (i.e., no two sets of selected objects have employees in common).rule Team All Employees fDISJOINT ( ( e1 : Employee :: e1:dept == \research00 ^e1:team== unknown );( e2 : Employee :: e2 6= e1 ^e2:dept == \research00 ^e2:team== unknown );( e3 : Employee :: e3 6= e2 ^ e3 6= e1 ^e3:dept == \research00 ^e3:team== unknown ) )! e1:team = new Team(e1; e2; e3);e2:team = e1:team;e3:team = e1:teamg Similar to the ALL combinator, the DISJOINT combinator is usedto combine several condition elements into a DISJOINT condition for denot-ing that objects matching the enclosed conditions are to be decomposed ina disjoint pattern. In other words, for any two instantiations of a rule withDISJOINT combinator, as long as the selected set of objects for the enclosedconditions are disjoint (i.e., no object in common), they are parallel executable.The true power of this mechanism is to reduce combinatorial explosive numberof possibly interfering and mostly redundant instantiations into an exact set ofall necessary and parallel executable instantiations. As an example, for a rulewith n condition elements similar to the rule above, traditional methods will



54generate n! instantiations as opposed to only one instantiation using the DIS-JOINT combinator. The n!� 1 redundant instantiations will either have to bedetected by interference analysis or removed by meta rules as in the PARULEL[143] approach, both at the cost of excessive run-time overhead.The formal semantics of the DISJOINT combinator can be de�nedin a similar way as the ALL combinator except that the disjointness propertymust be clearly speci�ed. For this purpose, we de�ne an additional notationObjs(a), for an object a, to denote the set of objects which are values of non-set attributes of a or elements of set-valued attributes of a. The semanticsof the DISJOINT combinator can now be de�ned as follows. A rule r withpositive conditions P1; : : : ; Pi, set selection conditions Pi+1; : : : ; Pn, negativeconditions N1; : : : ; Nm, and a DISJOINT condition combining positive con-ditions DP1; : : : ;DPj , set selection conditions DPj+1; : : : ;DPk, and negativeconditions DN1; : : : ;DNl, de�nes a class:class Inst of r fattributes ( v(P1) : C(P1); : : : ; v(Pi) : C(Pi);v(Pi+1)� : C(Pi+1); : : : ; v(Pn)� : C(Pn);disjoint� : DisjointClass of r )methods ( n[i=1M(C(Pi)) [ k[i=1M(C(DPi)) )gwhere DisjointClass of r is the classclass DisjointClass of r fattributes ( v(DP1) : C(DP1); : : : ; v(DPj) : C(DPj);v(DPj+1)� : C(DPj+1); : : : ; v(DPk)� : C(DPk) )methods ( k[i=1M(C(DPi)) )gThe set of all ground instantiations can be characterized by the setf (g1; : : : ; gn; d1; : : : ; dk) j 9 t; u (t 2 Inst of r ^ u 2 t:disjoint� ^8x 2 t:disjoint� (x 6= u) Objs(x) \Objs(u) = ;) ^



55gh = t:v(Ph); 1 � h � i ^gh 2 t:v(Ph)�; i+ 1 � h � n ^dh = u:v(DPh); 1 � h � j ^dh 2 u:v(DPh)�; j + 1 � h � k ^A� ) gwhere � = f v(P1)=g1; : : : ; v(Pn)=gn; v(DP1)=d1; : : : ; v(DPk)=dk gA = E(P1) ^ : : : ^ E(Pn) ^ E(DP1) ^ : : : ^ E(DPk) ^6 9 v(N1); : : : ; v(Nm); v(DN1); : : : ; v(DNl) (E(N1) _ : : : _ E(Nm) _ E(DN1) _ : : : _ E(DNl) ):Analogous to the ALL combinator, a single DISJOINT combinator isenough sinceDISJOINT (C1) ^ : : : ^DISJOINT (Cn)� DISJOINT (C1 ^ : : : ^ Cn):Nesting is not recommended either because of the conciseness criterion. Wecan also have both ALL and DISJOINT combinators in the same rule withwell-de�ned semantics. However, the resulting decomposition patterns seemto be too complex and not at all intuitively appealing for a programmer toconceive and use.4.3.5 ContextsRules are not designed completely independently of each other. Acommon programming style for rule programs is to decompose the problemsolving process into contexts. A set of rules is then written for each contextto serve the functionality of that context. Opportunities for parallelism arepresented when this level of application semantics is taken into consideration[82, 84]. In particular, causally independent contexts can often be processed inparallel. There is a catch if we are to be consistent with our goals. We shouldavoid providing any procedural-oriented or control-oriented mechanism. Thus,we provide mechanisms that designate the context for which a rule is intendedand that specify the causal dependency between di�erent contexts. The actual



56control dependency implied by the semantic information above should be leftfor the language system to derive.A rule of the formrule r in context T f : : : gdenotes that the rule r is designed for context T . All rules designated to thesame context are for solving the same subproblem. A context rule of the formT ` T1; T2; : : : ; Tnspeci�es that context T is causally dependent on contexts T1; T2; : : : ; Tn whichmeans, to solve the problem for which T is designed, all the subproblems forwhich T1; T2; : : : ; Tn are designed must be solved �rst. Note that a contextrule speci�es a causal dependency rather than an implication. The subproblemrepresented by context T must still be solved after solving all dependent con-texts. The following example denotes that the ruleRaise All Poor Employeebelongs to the context Salary Adjustmentwhich is a collection of rules for ad-justing salary.rule Raise All Poor Employees in context Salary Adjustment f( d : Department );[[ e : Employee :: e:dept == d:name ^ e:salary < 10000 ]]! e:salary = e:salary+ e:salary=10gThe context rule below speci�es that before working on salary adjustment, wemust perform pro�t evaluation and salary survey.Salary Adjustment ` Profit Evaluation; Salary SurveyThe context mechanisms proposed above provide a simple way tospecify function decomposition of a problem into subproblems. A set of contextrules speci�es a partial order that must be observed between subproblems tocorrectly solve the entire problem. Parallelism at the problem solving level canthen be exploited by processing independent contexts in parallel.



574.4 Chapter SummaryThe parallel structuring mechanisms presented in this chapter aredesigned centered around the semantics of applications and the characteristicsof production system. They are much more powerful than the examples candemonstrate when it comes to real programming. Programmers can easily pickup the ideas and use them e�ectively. In later chapters, we will show thatjust this simple set of mechanisms can signi�cantly improve the performanceof parallel rule programs.



Chapter 5Semantic-Based Interference AnalysisAn equally important technique in our decomposition abstraction ap-proach is a semantic-based interference analysis technique which derives infor-mation about run-time parallel structure from associative relationships amongdata objects. We present the technique in this chapter.5.1 A Motivating ExampleMore often than not, class relationships provide valuable hints on datadecomposition patterns that actually happen at run time but are not necessarilyclear at design or compile time. In particular, this information can often beused in determining the semantic compatibility (i.e., parallel executability) ofinstantiations of the same rule or between di�erent rules.As an intuitive example, consider the following rule from the corpora-tion application domain which is to raise the salary of all under-paid employeesin a team.rule Team Fairness f( t : Team );[ e : Employee :: e:team == t:name ^ e:salary < t:min wage ]! e:salary = t:min wagegIn general, di�erent instantiations of this rule can not be executed in paral-lel because the same employee may be a member of di�erent teams. On theother hand, if each team is associated with a unique and disjoint set of employ-ees, then di�erent instantiations will select di�erent teams with disjoint set ofemployees. Apparently, all such instantiations can be �red in parallel.In fact, many rule programs are written with similar implicit assump-tions but lack of any mechanism to specify them. In the example above, the key58



59point is on the relationship between instances of the Team and the Employeeclass. We call this relationship a functional dependency which turns out to bethe vital part of our semantic-based dependency analysis technique.5.2 Functional DependencyWe characterize the idea of functional dependency by de�ning rela-tions among classes. It helps in understanding the following de�nitions bycomparing the class names, classes, and schemes with the attribute names,domains, and relation schemes in relational database.De�nition 13 (Class Relations and Schemes) A class relation scheme orsimply scheme, is an ordered set of class names. A class relation on a classrelation scheme with n class names is an n-ary relation among instances of thecorresponding classes. 2For a class relation A, we denote the scheme on which A is de�nedby Sch(A). A class relation can be considered as a collection of classes witha certain relationship. Note that an element of an n-ary class relation is anordered set of n objects, one from each corresponding class in the scheme. Anobject here can be either a structural object or a set object. For an elementa 2 A and a scheme X � Sch(A), the notation a(X) denotes the orderedcollection of objects in a which are from classes in X. We note that from thede�nition above, a(X) � a and a(Sch(A)) = a.De�nition 14 (Functional Dependency) Let X and Y be the schemes oftwo class relations Rx and Ry. The functional dependencyX ! Yholds on Rx and Ry if1. Each element in Rx is associated with a unique element in Ry.2. For all a1, a2 in Rx and the associated b1, b2 in Ry,a1 6= a2 ) b1 \ b2 = ;:2



60As an example from the corporation application domain discussedearlier, the functional dependency fTeamg ! fEmployeeg holds when eachteam is associated with a unique and disjoint set of employees.Since an instantiation can also be considered as an ordered set ofobjects (one for each positive or set selection condition), a rule r actuallyde�nes a class relation whose elements are exactly the set of instantiations ofthe rule, i.e., Inst(r). The scheme of Inst(r), denoted by Scheme(r), is theordered set of class name components of positive and set selection conditionsof r. For example,Scheme(Team Fairness) = fTeam;Employeeg:De�nition 15 (Rule Speci�c Functional Dependency) Let X and Y betwo class relation schemes, and r be a rule. The rule speci�c functional depen-dencyX ! Y in rholds if both X � Scheme(r) and Y � Scheme(r) and for all i; j in Inst(r),i(X) 6= j(X) ) i(Y ) \ j(Y ) = ;:2 It is rule speci�c because the dependency only needs to hold on allinstantiations of r. It may or may not hold on collections of objects that arenot instantiations of r.De�nition 16 Let R be a set of rules, X and Y be two class relation schemes,then X ! Y in Rholds if X ! Y in r holds for each rule r in R. 2Except for borrowing the terminology, functional dependency as de-�ned here is quite di�erent than in databases [92]. In database systems, thenotion of functional dependency is de�ned at the attribute level and is usedprimarily in the normalization process. We generalize the concept to the classlevel and use it to identify the parallelism in rule systems. Functional de-pendencies are considered as speci�cations of data decomposition across classboundaries, which are shown below to play a crucial role in determining thecompatibility between instantiations of the same or di�erent rules.



615.3 Interference Analysis with Functional DependencyTo prove that two distinct instantiations can be �red in parallel, weneed to show two things, from De�nition 10:1. The execution of one does not a�ect the satis�ability of the other, andvice versa.2. They do not modify the same object.One of the biggest obstacles in proving validity of these conditionsat compile time is the nondeterministic nature of matching. By merely look-ing at the syntactic structure of rules, it is often the case that we can notcompletely rule out the possibility of self-interference or interference betweendi�erent rules. This is the place where functional dependency provide us withthe greatest help we need | decomposition. The idea is that if we can deter-mine the disjointness of objects modi�ed by di�erent instantiations, it is verylikely that they can be executed in parallel. This section presents the insightand techniques of how this could be accomplished.De�nition 17 Let r be a rule. The access set of r, denoted by Access(r), isthe set of all class names referenced in the antecedent of r. The write set of r,denoted by Write(r), is the set of class names with objects that are modi�ed(including creation and deletion) in the rule. 2De�nition 18 (Dominant Set) Let r be a rule and C be a class relationscheme. C is a dominant set of r if:1. C � Scheme(r),2. for all i; j 2 Inst(r) (i 6= j ) i(C) 6= j(C)). 2A dominant set of a rule is simply a set of class names su�cient todiscriminate between di�erent instantiations of the rule.Theorem 1 (Self Compatibility) Let r be a rule and A, B, C be three classrelation schemes that are subsets of Scheme(r) satisfying the following condi-tions:



621. C is a dominant set of r and C � A2. A! B or A! B in r3. 8c 2Write(r)(c 2 B _ c 62 Access(r))then all instantiations of r are compatible (i.e., parallel executable).Proof: In any given state, let i and j be instantiations of r such that i 6= j.i 6= j) i(C) 6= j(C) (� Condition 1 �)) i(A) 6= j(A) (� C � A �)) i(B) \ j(B) = ; (� Condition 2 �)) i(Write(r)) \ j(Write(r)) = ; (� Condition 3 �)) i and j do not interfere with each other (� Condition 3 �)) i and j are compatible (� De�nition 10 �): 2The central idea of this theorem is that functional dependency im-plies disjoint decomposition of objects selected by the instantiations of a rule.As long as the objects modi�ed in the consequent belong either to the de-composition or to classes which do not a�ect the satis�ability of the rule, noinstantiations will interfere with each other. There will be examples later inthis section. We �rst generalize this idea to the analysis of interference betweenmultiple rules.De�nition 19 (Partially Mutual Exclusion) Let p, q be rules and C be aclass relation scheme. We say that p and q are partially mutual exclusive onC, denoted by p><C q, if1. C � Scheme(p) and C � Scheme(q)2. For any two instantiations i, j of p and q respectively, i(C) 6= j(C). 2Partially mutual exclusion simply means that p and q can not haveinstantiations containing the same set of objects of classes in C. The simplestand most common case is when C contains a single class referenced in bothp and q but tested on disjoint values of the same set of attributes. Since thevalues are disjoint, p and q can not select the same object in C.



63Note that no requirement is placed on selected objects that are not ofthe classes in C. Therefore, partially mutual exclusive rules may still interferewith each other. However, in many cases, partially mutual exclusive rules canbe determined to be parallel executable with the help of functional dependenciesas indicated by the following theorem.Theorem 2 (Pair-Wise Compatibility) If p, q are two distinct rules, andA, B, C are class relation schemes that are subsets of both Scheme(p) andScheme(q) such that the following conditions are satis�ed:1. p><C q2. C � A3. A! B or A! B in fp; qg4. 8c 2Write(p)(c 2 B _ c 62 Access(q))5. 8c 2Write(q)(c 2 B _ c 62 Access(p))then p and q are compatible and therefore parallel executable.Proof: In any given state, let i be an instantiation of p and j be an instantiationof q. p><C q) i(C) 6= j(C) (� De�nition 19 �)) i(A) 6= j(A) (� C � A �)) i(B) \ j(B) = ; (� Condition 3 �)) i(Write(p)) \ j(Write(q)) = ; (� Condition 4 and 5 �)) p and q are compatible (� De�nition 10 �): 2Again, the central idea of this theorem is that as long as objectsmodi�ed in p and q can be determined as non-overlapping with the help offunctional dependency, instantiations of p and q do not interfere with eachother. Even with their general applicability to many cases, the two theo-rems above are less complicated than they appear. Continuing with our ex-amples in the corporation application domain, if a team is associated with aset of disjoint employees as team members, then the functional dependency



64fTeamg ! fEmployeeg holds. We note that this semantic information canbe easily supplied by the programmer (similar to the identi�cation of key at-tributes in database systems). With functional dependency and the fact thata team can be uniquely identi�ed by its name, we can immediately determinethat all instantiations of the Team Fairness rule can be �red in parallel usingTheorem 1.As another example, the following two rules can be determined to beparallel executable by Theorem 2.rule Facilities Research f( t : Team :: t:dept == \research00 )[ e : Employee :: e:team == t:name ]! e:equipment= \AXP500X(Alpha)00grule Facilities Sales f( t : Team :: t:dept == \sales00 )[ e : Employee :: e:team == t:name ]! e:equipment= \PowerBook00gIn this case, the two rules are partially mutual exclusive on Team. With thehelp of functional dependency, they can be statically determined to be parallelexecutable.As simple and natural as it may seem to be, without the knowledgeof functional dependency between the Team and the Employee classes, it isvery di�cult, if not impossible, for a parallelizing compiler or any other statictransformation technique to identify the parallelism underlying these rules.In general, any type of class relationship which implies certain pat-terns of association or partitioning in the application domain is of great helpin the determination of proper decomposition for parallel processing. Mech-anisms for expressing these relationships are therefore of great value to thedecomposition abstraction process in program development.



65We can now re�ne the de�nition of program in our framework to in-clude semantic speci�cations expressed by the decomposition abstraction mech-anisms.De�nition 20 (Program) A program is a quadruple (C;R;D;T) where Cand R are class and rule de�nitions, respectively. D is a set of class relationshipde�nitions which specify how objects are related to each other between di�erentclasses. T is a set of context rules that specify the causal dependencies betweendi�erent contexts. 25.4 Chapter SummaryTo the best of our knowledge, this chapter presents the �rst use offunctional dependency in the derivation of parallelism. We emphasize thatfunctional dependencies are the direct result of application semantics and pro-gram design. They are not arti�cially made up just for the sake of parallelism.It is therefore very easy and natural for the programmers to supply such in-formation. Actually, from all the benchmarks and our own experience, whenfunctional dependency implies parallel executability, programmers indeed wantto �re all the parallel executable instantiations in the �rst place.The mechanisms proposed in previous chapter and the semantic-basedinference analysis technique presented in this chapter constitute a powerful setof tools for the programmers to exploit application parallelism in productionsystems. In next chapter, we will show how they can be easily applied on exist-ing sequential rule programs and how to write e�cient parallel rule programsfrom scratch.



Chapter 6Programming with Decomposition AbstractionFrom the programming point of view, the decomposition abstractionapproach strongly suggests a declarative programmingmethodology that signif-icantly simpli�es the resulting rules and reduces the need to emulate imperativeconstructs. In this chapter, we evaluate the quality of the proposed mechanismsand present our experiences on programming with decomposition abstraction.6.1 The Power of Decomposition AbstractionTo assess the quality of the abstract mechanisms, we evaluate themagainst the design criteria listed in Section 4.2. The expressive power of themechanisms is judged by evaluating how well they cover di�erent types ofparallelism discussed in Section 4.1.What vs. How All proposed mechanisms are purely declarative. They char-acterize core decomposition concepts that can be used to specify various typesof parallelism. How they are actually implemented is independent of the de-composition strategies they represent. Programmers can use them entirely atthe conceptual and problem level without worrying about any implementationdetails.Consistent with Pattern Matching Paradigm A set selection conditionelement selects objects in exactly the same way as a normal condition elementexcept that all matching objects are selected. An aggregate operator derivesinformation on a set of objects selected by pattern matching. Both ALL andDISJOINT combinators simply group together several condition elements topartition the objects selected by pattern matching in the enclosed conditionelements. The pattern matching paradigm is left completely intact. The addi-tional power added by the decomposition abstraction mechanisms includes theabilities to partition the objects selected by pattern matching and to organizethe program at the problem solving level.66



67Conciseness The set of mechanisms is conceptually simple and easy to use inthe sense that all of them correspond naturally to the patterns of decompositioncommonly used in rule-based systems. When speci�ed using our mechanisms,the decomposition patterns map naturally to parallelization strategies whichare then exploited by the system. Programmers are not required to specify anysynchronization or communication constraints explicitly. There is no need toworry about interference beyond the level of application semantics.Versatility This criterion is about the expressive power of the mechanisms.Under the context of rule languages, it can be evaluated by considering howwell these mechanisms support the di�erent types of parallelism discussed inSection 4.1. The combination of set selection conditions, aggregate operators,ALL and DISJOINT combinators is capable enough to specify all sources ofdata level parallelism we found. As indicated by the example rules in previouschapters, they are much richer than many corresponding constructs, such asDOALL loop, DECOMPOSITION, or PARTITION statements in other ex-plicit parallel languages. We conclude that using pattern matching to specifydecomposition is much more exible and powerful than partitioning merely onarray index.For rule level parallelism, the use of class relationships to discoversemantic compatibility between rules is very e�ective, especially when usedin conjunction with the existing techniques on syntactic dependency analysis[70, 80, 84, 101, 123]. In particular, most of the parallel executable rules in ourbenchmark programs can be successfully identi�ed.For program level parallelism, the context mechanism provides a con-venient way to specify any causal relationship or partial order among the prob-lem solving stages. Independent contexts representing independent subprob-lems can then be identi�ed easily by a topological sort on the partial order.The set of mechanisms covers all three levels of parallelism found inproduction systems, and is certainly versatile and expressive enough for ourpurpose.Compatibility The mechanisms are designed in such a way that programsnot using any of these mechanisms are still perfectly correct programs. In par-ticular, all sequential programs are legal programs. Many sequential programscan be transformed directly into parallel programs as indicated by the examplesin Section 4.3 and in [164]. Above all, by simply removing the mechanisms ina parallel program, we return the program to its original sequential form. Theset of mechanisms is therefore fully compatibility with sequential semantics.



68E�ective Implementation The set of mechanisms can indeed be e�ectivelyimplemented on shared memory multiprocessors. Several alternative imple-mentation strategies and their e�ectiveness are discussed in Chapter 8 withperformance results.6.2 From Sequential to ParallelOne of the major design goal for the DA mechanisms is to minimizethe e�ort it takes to transform a sequential rule program into a parallel pro-gram. From the experience we gained in transforming sequential benchmarkprograms, we learned that this is a fairly strait forward and natural thing todo if the problem and the design decisions of the sequential programs are wellunderstood. We have collected a set of heuristics to assist the programmer inmaking the transformation. In this section, we present the set of heuristicswith illustrative examples. They are gathered from identifying common pro-gramming styles and idioms that exhibit the opportunity for parallel execution.They can also be used in automatic transformation systems such as STAR [46].6.2.1 Repeatedly Firing RulesCommonly, rules that �re repeatedly in a sequential program canactually be �red in parallel. This is quite normal under the production systemparadigm since there is no notion of loop in sequential rule languages. Theonly way to transform a collection of data objects by the same process is to�re the same set of rules repeatedly until all the data have been transformed.If the transformation of di�erent data objects do not interfere with each other,all transformations can be performed in parallel. For example, the followingrule calculates the GPA for all students.rule Calculate_GPA {( s : Student :: s.GPA_calculated == NO )--> s.GPA = calculate_GPA(s),s.GPA_calculated = YES}Note that there is a ag to indicate whether the GPA of a student has beencalculated. This is probably the most common way to do the same operation



69on a set of data objects. The ag is used to prevent the same object from beingprocessed more than once.This type of rules can be easily transformed into DA rules using setselection condition. For the example above, this yieldsrule DA_Calculate_GPA {[ s : Student :: s.GPA_calculated == NO ]--> s.GPA = calculate_GPA(s),s.GPA_calculated = YES} Sometimes it takes more than one rule to do the job. One rule ini-tializes the loop. One or more rules constitute the loop body and the last onedetects the end of the loop. For example, the following three rules do the GPAcalculation under a task control.rule Calculate_GPA_Loop_Init {( c : CurrentTask == PREVIOUS_TASK )( s : Student :: s.GPA_calculated == NO )--> c.task = CALCULATE_GPA}rule Calculate_GPA_Loop_Body {( c : CurrentTask :: c.task == CALCULATE_GPA ),( s : Student :: s.GPA_calculated == NO )--> s.GPA = calculate_GPA(s),s.GPA_calculated = YES}rule Calculate_GPA_Loop_End {( c : CurrentTask :: c.task == CALCULATE_GPA ),-( s : Student :: s.GPA_calculated == NO )--> c.task = NEXT_TASK}



70This type of simulated loop can also be easily transformed into DA rules usingset selection conditions. For the example about, the rules can be transformedinto a single DA rule as follows.rule DA_Calculate_GPA {( c : CurrentTask :: c.task == CALCULATE_GPA ),[ s : Student :: s.GPA_calculated == NO ]--> s.GPA = calculate_GPA(s),s.GPA_calculated = YES,c.task = NEXT_TASK}Heuristic 1 If a rule �res repeatedly on a class of objects, try to transformthe rule by changing the condition that matches the class into a set selectioncondition.6.2.2 Accumulation RulesEven though rule languages are primarily for symbolic computation,number crunching is still frequently needed. The most commonly used numer-ical computation are the aggregation operations such as counting, computingthe sum, maximal, minimal, average, etc. Once again, there is no construct insequential rule languages to do this type of computation directly. Instead, theyare \simulated" by a set of rules similar to the simulated loop in last section.For example, to compute the number of strait A students after �nishing thecalculation of GPA, we can use a counter and a loop.rule Count_Straight_A_Students_Init {( c : CurrentTask :: c.task == CALCULATE_GPA ),-( s : Student :: s.GPA_calculated == NO )--> c.task = COUNT_STRAIGHT_A,count = 0}rule Count_Straight_A_Students_Body {( c : CurrentTask :: c.task == COUNT_STRAIGHT_A ),



71( s : Student :: s.GPA == 4.0 && s.counted == NO )--> count = count + 1,s.counted = YES}rule Count_Straight_A_Students_End {( c : CurrentTask :: c.task == COUNT_STRAIGHT_A ),-( s : Student :: s.counted == NO )--> print_count(count),c.task = NEXT_TASK}This is the standard way of doing accumulation in sequential rule languages. Aset of rules for accumulation similar to the example above can be transformedinto a single DA rule using the set selection conditions and aggregate operators.For the counting rules above, we can use the Count operator as the followingrule.rule DA_Count_Straight_A {( c : CurrentTask :: c.task == COUNT_STRAIGHT_A ),[ s : Student :: s.GPA == 4.0 ]--> count = Count(s*),print_count(count),c.task = NEXT_TASK}Note that the DA rule is clearly much more intuitively appealing and concise.Other types of accumulation, such as sum, maximal, minimal, average, etc.can be transformed in similar way.Heuristic 2 Transform a set of rules for accumulation into a single DA ruleby a combination of set selection conditions and aggregate operators. Morespeci�cally, change the condition that matches the class of objects to be accu-mulated into a set selection condition and use appropriate aggregate operatorson the selected set in the consequent.



726.2.3 Nested RulesBy nested rules we means rules that simulate the nested loop in im-perative languages. This type of rule is often used when objects of severalrelated classes need to be processed repeatedly. Sometimes the set selectionconditions along may not express the exact semantics of the rules. This iswhere the ALL combinator comes into place. The following example shouldmake the point clear. Suppose we want to count the number of students in alldepartments.rule Count_Students_Init {( d : Department :: d.students_counted == NO )--> d.count = 0}rule Count_Students_Body {( d : Department :: d.students_counted == NO ),( s : Student :: s.dept == d.name && s.counted == NO )--> d.count = d.count + 1,s.counted = YES}rule Count_Students_End {( d : Department :: d.students_counted == NO ),-( s : Student :: s.dept == d.name && s.counted == NO )--> d.students_counted = YES}This is a standard nested loop over two classes of objects. They can be trans-formed into a single DA rule as follows. Note that the DA rule does not evenneed a ag to record whether a student has been counted or not.rule DA_Count_Students {ALL ( ( d : Department :: d.students_counted == NO ),[ s : Student :: s.dept == d.name ] )-->



73d.count = Count(s*),d.students_counted == YES,}Heuristic 3 Transform rules that simulate a nested loop into a single DArule using the ALL combinator. Enclose all conditions that match the targetobjects into the combinator and see if set selection conditions and/or aggregateoperators need to be used.6.2.4 Disjointness RulesRules that �re repeatedly on disjoint partitions of data objects are alsofrequently used in rule-based programs. Using sequential rule languages, thedisjointness property must be speci�ed explicitly with some types of inequalitytests in the antecedent. As an example, the following rule assigns projects togroups of three students.rule Assign_Projects {( p : Project :: p.assigned == NO ),( s1 : Student :: s1.assigned == NO ),( s2 : Student :: s2.assigned == NO && s2 != s1 ),( s3 : Student :: s3.assigned == NO && s3 != s1&& s3 != s2 )--> p.assigned = YES,s1.project = s2.project = s3.project = p.name,s1.assigned = s2.assigned = s2.assigned = YES}This type of rule is ine�cient, hard to read and counter intuitive. With DIS-JOINT combinator, the rule above can be transformed into a much better DArule.rule DA_Assign_Projects {DISJOINT ( ( p : Project :: p.assigned == NO ),( s1 : Student :: s1.assigned == NO ),( s2 : Student :: s2.assigned == NO ),( s3 : Student :: s3.assigned == NO ) )-->



74p.assigned = YES,s1.project = s2.project = s3.project = p.name,s1.assigned = s2.assigned = s2.assigned = YES}Heuristic 4 Transform rules that �res repeatedly on disjoint partitions of dataobjects using DISJOINT combinator. Enclose all conditions involving the dis-jointness test and remove the test.6.2.5 From Secrete Messages to Explicit ContextsThe use of so-called "secret-messages" [118] is a common technique insequential rule-based programming to emulate procedural control. This tech-nique employs a designated WME (usually called the goal element or context)to control the phases of execution. By matching di�erent values of the goalelement, rules are e�ectively partitioned into functional components. The owof execution is controlled by phase changing rules that change the value of thegoal element.This programming style can be easily mapped into DA context mech-anism. For example, the following two rules perform the computation andphase change, respectively.rule Calculate_GPA {( g : Goal :: g.current_task == CALCULATE_GPA ),( s : Student :: s.GPA_calculated == NO )--> s.GPA = calculate_GPA(s),s.GPA_calculated = YES}rule Calculate_GPA_to_Print_Results {( g : Goal :: g.current_task == CALCULATE_GPA ),-( s : Student :: s.GPA_calculated == NO )--> g.current_task = PRINT_RESULTS}They can be transformed into a single DA rule and a context rule as follows.



75rule DA_Calculate_GPA in_context CALCULATE_GPA {[ s : Student :: s.GPA_calculated == NO ]--> s.GPA = calculate_GPA(s),s.GPA_calculated = YES}PRINT_RESULTS |- CALCULATE_GPAHeuristic 5 Transform rules that match goal elements into DA rules that useexplicit contexts. Replace phase changing rules with context rules. With DAmechanisms at hand, there should be no need for goal element.6.2.6 RemarksAs the examples demonstrated, the DA rules are much more intu-itively appealing and e�cient than the corresponding sequential rules. Thetransformation is straightforward and requires only minor changes to the se-quential rules. Transforming a sequential program into a DA program is there-fore a smooth and painless process. The most important things are to un-derstand the problem domain and the program design. Once the applicationsemantics and the program structure are fully understood, the transformationcan be done very quickly.6.3 Programming in ParallelEven though the transformation of sequential rules into DA rules isrelatively easy, decomposition abstraction is really for parallel structuring andprogram design. In this section, we discuss issues about programming parallelrule systems using decomposition abstraction. We suggest several steps thatleads programmers to the e�ective use of decomposition abstraction mecha-nisms.6.3.1 A Simple Course Scheduling SystemWe use a course scheduling application as an example for our discus-sion. The problem is to schedule courses of several departments by assigning in-structors, time, and classrooms. Each instructor can teach a number of courses.



76An instructor should be assigned no more than three courses. A student is reg-istered in a unique department but can take a number of courses that may ormay not be o�ered by the same department. Each course is two hours long andto be assigned to the time slot of 8:00am, 10:00am, 1:00pm, or 3:00pm duringweekdays. Each department building has a number of classrooms. A class-room has a �x capacity. Some classrooms have special equipments that otherclassrooms may not have. Courses should be scheduled without any conict oninstructor and classroom.6.3.2 Identify Application ObjectsJust as the design of object-oriented software systems, the very �rststep is to analyze the problem and identify application objects. Any object-oriented analysis and design techniques can be applied here. The key is to thinkin terms of application objects. No implementation issue need to be worriedabout at this stage.In our course scheduling application, any noun that is mentionedmorethan once in the problem statement is probably a good candidate. We identifythe following application objects:departments Where courses are o�ered.courses The targets to be scheduled.instructors Those who teach.students Those who learn.time slots When.classrooms Where.Each type of objects should be de�ned by a proper class de�nition.Note that some nouns are better represented as attributes of applica-tion objects. For example, the special equipment should be an attribute of theclassroom objects rather than a stand along object by itself.



776.3.3 Identify Functional DependencyThe next thing to do is to identify the relationships between ap-plication objects. For the purpose of DA programming, we are particularlyinterested in the functional dependencies between objects of di�erent classes.In general, this is less complicated than it seems. A good starting point isto examine the relationships between each pair of classes. More dependenciesmay be identi�ed along the way, especially when we start writing rules. Somedependencies may turn out to be less useful but that's not to be worried aboutat this point. Just list all dependencies that can be identi�ed.For the sample application, we can identify the following functiondependencies.� A department has a unique set of classrooms in the department building.� A department is o�ering a unique set of courses.� Departments have disjoint sets of students.As demonstrated here, functional dependencies are easily identi�able in mostcases. The dependencies can be speci�ed as follows.{ Department } --> { Classroom }{ Department } --> { Course }{ Department } --> { Student }6.3.4 Identify TasksWith data objects and their relationships clearly identi�ed, the nextstep is to �gure out a solution plan to solve the problem. Dividing a complexproblem into subproblems is a powerful technique in both sequential and par-allel programming. This can be done by identifying the transformations thatneed to be applied on the data objects to produce the desired results. Eachtransformation corresponds to a task that need to be performed to solve thewhole problem. A task can be further decomposed into subtasks by identifyingthe transformations within the task. This process can proceed repeatedly untila subtask is manageable.In the process of decomposition abstraction, we provide the contextmechanism for designing the solution plan as described above. Each task canbe represented by a context. Each context can be designed separately. Forthe purpose of illustration, we adopt a simple solution plan for our exampleproblem. We identify the following possible tasks:



78Gather Information: To gather/derive any information that are needed forscheduling courses.Schedule Special Courses: Some courses need special equipments that areavailable only in certain classrooms. These courses can be scheduleddirectly.Schedule Senior: Schedule courses for senior faculty �rst.Schedule Popular Courses: Popular courses should be given higher prioritytoo.Schedule Regular Courses: Other courses still need to be scheduled, ofcourse.Print Results: Print the schedule.Each task can be represented by a context.The process of task identi�cation normally involves the identi�cationof task structure as well. The task structure should be constructed with par-allelism in mind. We discuss the related issues in next section.6.3.5 Identify Parallelism through DecompositionThe arguably most important step, as performance is concerned, isto identify potential parallelism in the applications. An e�ective technique isto analyze the problem alone two dimensions: function decomposition and datadecomposition.Function Decomposition Function decomposition involves the partitioningof the solution plan into subtasks as we did in last section, and the identi�cationof task structure. Task structure is represented by the causal dependenciesbetween tasks. By causal dependencies we mean the natural restrictions onthe order of execution between tasks. They can be identi�ed by examiningthe intended functionality of each individual task and analyzing the necessaryconditions for a task to apply correctly.In the process of decomposition abstraction, the causal dependenciesbetween tasks can be speci�ed by the context rules. For the example problem,it is fairly straight forward to identify the following rules:



79�������� ��������?? ??GET INFO SPECIALSENIOR POPULARREGULARPRINTFigure 6.1: Partial Order Derived from the Causal Dependencies between Con-texts of the Course Scheduling ProblemSINOR |- SPECIALPOPULAR |- GET_INFO, SPECIALREGULAR |- GET_INFO, SPECIAL, SINOR, POPULARPRINT |- SPECIAL, SINOR, POPULAR, REGULARNote that some of the dependencies may be redundant. We suggest to listall dependencies that correspond naturally to the application semantics. Forexample, we can only print the schedule when all types of courses have beenscheduled. We therefore specify all of them in the last context rule even thoughonly the REGULAR context is required.The set of context rules speci�es a partial order that must be satis-�ed when solving the tasks. This is a valuable information since independentcontexts (i.e. contexts that are not related to each other in the partial order)can be executed in parallel. Figure 6.1 shows the partial derived from thecausal dependencies between contexts of the example problem. Clearly, theGET INFO and SPECIAL contexts can be executed in parallel. So does theSENIOR and POPULAR contexts.



80Data Decomposition Data decomposition involves the partitioning of dataobjects for data-parallel or SPMD style computation. When rule languagesare used in data intensive applications such as expert database systems ordata/knowledge based systems, this is usually the most e�ective way of de-composition.Data partitioning for SPMD style computation in rule languages isachieved through pattern matching in the antecedents and concurrent execu-tion of multiple instantiations. Rather than trying to decompose data objectsdirectly, it is easier to consider the transformations that need to applied on thedata. By identifying the:� types of objects to be transformed,� the exact conditions and constraints for selecting the objects, and� the actions to be performed on the selected objects.Then each transformation can be represented as a rule. The pattern matchingwill dynamically decompose the data into desired partitions for processing inparallel. This is much more general as well as adhered to the application se-mantics (thus easier to specify) than the explicit partitioning of arrays or tables(which is at the implementation level) in most imperative parallel languages.We discuss the design of rules in next section.6.3.6 Writing DA RulesAfter all the steps in previous sections have been performed, writingDA rules is more a speci�cation process than a design process. The rulessimply specify the application semantics and identi�ed transformations. Thereare some guidelines to follow though:1. Write a set of rules for each context.2. Within each context, write a rule for each transformation identi�ed inthe data decomposition process.3. Within a rule (or transformation), add a positive condition element foreach type of objects to be transformed. Add negative condition elementsas required to specify the conditions and constraints for selecting theobjects to be transformed.



814. Spell out the actions to be performed in the consequent.5. According to the application semantics, determine whether a transforma-tion is a SPMD style transformation.6. Use DA mechanisms to specify the SPMD rules.We present some rules for the sample application to illustrate the process ofwriting DA rules. See Appendix A for a complete listing of the course schedul-ing system.In the GET INFO context, we want to gather information for used inthe course scheduling process. In particular, we need the number of registrantsfor each course. This can be considered as transformations on the courses.When computing the number of registrants of a course, the transformationobviously involves two types of objects: Course and Student. The condition fora particular transformation to apply is that the course has not been countedyet. The constraint for a student to be counted is that he/she must haveregistered for the course. This is represented by an attribute of the studentobject. Since we want all the students, the corresponding condition element isdesignated as a set selection condition. The number is counted with aggregateoperator in the consequent. A closer look at the transformation suggests thatall courses can be transformed at the same time. We therefore use the ALLcombinator to specify the SPMD rule as follows. Note that we use <| insteadof 2 as the set membership operator for the latter does not have correspondingkey on the keyboard.rule Count_Registrants in_context GET_INFO {ALL ( ( c : Course :: c.registrants_counted == NO ),[ s : Student :: c.name <| s.take* ] )--> c.registrants = Count(s*),c.registrants_counted = Yes} The SPECIAL context is special in that some courses need specialequipments that are available only in certain classrooms. For example, chem-istry lab courses can only be scheduled in the chemistry lab. These courses canbe scheduled directly, as in the following rule.



82rule Schedule_Special in_context SPECIAL {( t : Time ),DISJOINT ( ( c : Course :: c.scheduled == NO&& c.special_equip != NULL ),( i : Instructor :: c.name <| i.teaches*&& i.assigned < 3 ),( r : Classroom :: t.time <| r.slots*&& c.special_equip <| r.equip* ) )--> c.instructor = i.name, c.classroom = r.number,c.time = t.time, c.scheduled = YES,i.assigned = i.assigned + 1,r.empty_slots* = r.empty_slots* - t.time}Yes. A single rule is enough. For each special course, we select an instructorwho teaches that course and not yet assigned more than 3 courses, a classroomwith proper equipment, and a time slot that the classroom is still not occupied.Note that it is not necessary to enclose the time object in the DISJOINTcondition since two courses can be assigned to the same time slot as long asthe instructor and classroom are not the same. We also assume that none ofthe senior instructors teach special courses since these are mostly lab courses.For the SENIOR context, we schedule just one course for whatever asenior instructor wants to teach. The number of registrants must not exceed a�xed limit called LIMIT.rule Schedule_Senior in_context SENIOR {( t : Time ),DISJOINT ( ( c : Course :: c.scheduled == NO&& c.registrants < LIMIT ),( i : Instructor :: i.is_senior == YES&& c.name <| i.teaches*&& i.assigned < 1 ),( r : Classroom :: t.time <| r.slots* ) )--> c.instructor = i.name, c.classroom = r.number,c.time = t.time, c.scheduled = YES,i.assigned = i.assigned + 1,r.slots* = r.slots* - t.time}



83The POPULAR context schedules courses with number of registrantsexceeding a threshold named THRESHOLD. This can be designed similar tothe SENIOR context. Note that LIMIT is always smaller than THRESHOLD.So there is no worry about assigning a senior instructor to a popular course.rule Schedule_Popular in_context POPULAR {( t : Time ),DISJOINT ( ( c : Course :: c.scheduled == NO&& c.registrants > THRESHOLD ),( i : Instructor :: i.is_senior == NO&& c.name <| i.teaches*&& i.assigned < 3 ),( r : Classroom :: t.time <| r.slots* ) )--> c.instructor = i.name, c.classroom = r.number,c.time = t.time, c.scheduled = YES,i.assigned = i.assigned + 1,r.slots* = r.slots* - t.time} Now rest of the courses can be assigned simply by pattern matching.Again, we need only one rule for the REGULAR context.rule Schedule_Regular in_context REGULAR {( t : Time ),DISJOINT ( ( c : Course :: c.scheduled == NO ),( i : Instructor :: i.is_senior == NO&& c.name <| i.teaches*&& i.assigned < 3 ),( r : Classroom :: t.time <| r.slots* ) )--> c.instructor = i.name, c.classroom = r.number,c.time = t.time, c.scheduled = YES,i.assigned = i.assigned + 1,r.slots* = r.slots* - t.time} Finally, we print the result of the course scheduling. The printingmust be done sequentially. Otherwise the output would be unreadable.



84rule Print_Result in_context PRINT {( c : Course :: c.scheduled == YES && c.printed == NO )--> print_schedule(c),c.printed == YES}6.4 Chapter SummaryDecomposition abstraction and the mechanisms we proposed raise thelevel of abstraction from implementation level to application level. Rules aremuch easier to write since they are closer to application semantics. The numberof rules tend to be signi�cantly less than corresponding sequential program.In writing the rules, however, it is still the programmer's responsibility toensure the correctness of the speci�ed semantics. For example, if a functionaldependency is speci�ed, it must hold throughout the entire execution of thewhole program. If an execution of a rule may violate the dependency, anyparallel structure derived form the dependency may no longer hold. Thesetype of errors can be treated as programming errors.On the other hand, it is possible to detect violation of speci�ed se-mantics before the program execution. One of our primary future researchdirections is to develop theories and techniques for consistency checking andcorrectness validation of DA programs. This is a necessary component for thedecomposition abstraction approach to be a complete parallel programmingparadigm.In this chapter, we have demonstrated how decomposition abstractioncan be used in both the transformation of sequential programs and the develop-ment of parallel programs. All the transformation and development processesare the direct results of our experiences in dealing with sequential benchmarkprograms and writing parallel programs from scratch. Another direction of ourfuture research is to formally compare the programmability, complexity, ande�ectiveness of di�erent approaches including static transformation [101], meta-rule programming [143], source-to-source transformation [119], rule rewriting[46], and decomposition abstraction.



Chapter 7Performance AssessmentWith decomposition abstraction, programmers can specify the paral-lelism inherent in the problem domain, thereby increasing the concurrency thatcan be exploited by the language system. However, just like any explicit parallellanguage, the actual performance gain depends heavily on the implementationstrategy. This is especially the case in rule systems because rules tend to havelarge variation of processing requirements [56] and irregular patterns of decom-position. Systems that �re multiple instantiations in parallel tend to incur largerun-time overhead [111]. Granularity control and proper scheduling strategyare therefore of crucial importance to a multiple rule �ring production sys-tem with decomposition abstraction mechanisms. In this chapter, we employa unique software engineering technique to evaluate the performance of severalalternative implementation strategies on a parallel rule execution engine. Thetechnique is unique in that it enables rapid system development and assessmentwithout the possible inaccuracy of traditional simulation as well as the highcost of full-edged system implementation.7.1 A Parallel Rule Execution EngineThe central idea of our performance assessment technique is to beas close as possible to the real execution environment. For such purpose, wedeveloped a parallel rule execution engine that actually executes multiple ruleinstantiations in parallel on our target machine, the Sequent Symmetry sharedmemory multiprocessor. A work load generator generates work from sequentialexecution trace �les. This approach is di�erent from traditional simulationtechnique in several respects.� WME's are actually added, removed and modi�ed. All rule actions areexecuted as they would be in a real parallel environment. In other words,the time accumulated is the actual execution time.� All communication and synchronization operations needed to maintainthe correct parallel execution are actually performed when �ring multiple85



86rule instantiations. This provides us with accurate measurement of thescheduling overhead.� With the same set of data, the parallel rule execution engine will termi-nate with exactly the same result as in a sequential execution except, ofcourse, the execution time. With this, we can be sure that the parallelexecution is correct.The only important factor which is not accounted for is the time spent onmatching. To include matching would make it a real parallel inference machine,which will take much longer to develop before any experiment can be done onit. With the already existing good results on both sequential and parallelalgorithms for matching [87, 97, 100], the performance of the real system maybe even better with parallel matching since the e�ect is at least additive, if notmultiplicative.Figure 7.1 depicts the simulation method we developed. The parallelrule execution engine is a set of programs built on top of a C++ based object-oriented light weight thread package called PRESTO [13, 41]. A sequential ruleprogram1 and its execution trace are translated into a PRESTO program whichis the parallel version of the program integrated with the PRESTO run-timelibraries. More speci�cally, each data de�nition2 is translated into a C++ classde�nition which is called a WME class. Each rule de�nition is translated into a C++ function which is termed a rule function. The work load generatorgenerates a call to a rule function (with the WME's accessed by the rule asarguments) for each rule �ring in the execution trace. Successive rule �rings aretranslated into a sequence of asynchronous thread invocations to execute thecorresponding rule functions if the rules are compatible as determined by thedecomposition abstraction speci�cation. Synchronization points are insertedwhenever it is necessary to synchronize incompatible rules. With di�erentscheduling strategies to be discussed later, one or more rule function calls canbe assigned to a thread for executing sequentially within the thread.To experiment with the e�ect of granularity of rules on system per-formance, a controllable dummy loop (a FOR loop with empty body and a1At this moment, the parallel rule execution engine takes only OPS5 programs. However,the same approach can be applied to any sequential rule language.2In the case of OPS5, it is an element class de�ned by the literalize command.
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Figure 7.1: Parallel Rule Execution Engine and the Simulation Method.



88parameter controlling the number of iterations) is added to the action part ofeach parallel rule in the PRESTO program. The time to execute the actionpart of a rule can then be controlled by varying the number of iterations for thedummy loop. Also, by varying the number of threads created for processingparallel instantiations and the granularity of work (number of instantiations)assigned to each thread, we have measured the performance of four alternativescheduling strategies.� Strategy 1: Maximal Parallelism Create a new thread for each par-allel instantiation.� Strategy 2: Fixed Granularity Create as many threads as requiredexcept that each thread is assigned a �xed number of instantiations toexecute sequentially. This is to increase the granularity of work assignedto each thread so as to reduce the total number of threads in comparisonwith Strategy 1.� Strategy 3: Supervisor/Worker Create a �xed number of workerthreads and a scheduler thread. The scheduler thread keeps dispatchinginstantiations, one instantiation for each worker, as long as there are idleworkers. If no idle worker exists, the scheduler executes the instantiationitself.� Strategy 4: Supervisor/Worker with Packing Same as Strategy 3except that each time an idle worker is given a �xed number of instanti-ations to work on sequentially. The number is called the grain size [78]whose purpose is to increase the granularity of work assigned to a workerthereby reducing thread management and scheduling overhead.Even though previous work on task scheduling shows that the performance ofthe supervisor/worker model can be signi�cantly a�ected by the communica-tion cost [38], this model can still bene�t from parallel execution when thecomputation cost is high enough. We have demonstrated this in the set ofexperiments on rule granularity.To evaluate the e�ectiveness of di�erent scheduling strategies, we col-lect the performance results from the execution of three benchmark programsdrawn from the Texas OPS5 Benchmark Suite [16] and listed in Table 7.1. Allthree programs are executed with increasing numbers of processors on di�erentproblem sizes and di�erent grain sizes. We also compare their relative perfor-mance, scalability, as well as sensitivity to granularity change. The actual timeto execute the dummy loop for various number of iterations are also measuredand listed in Table 7.2.



89Program No. Rules DescriptionLIFE 16 A simulation program implements Conway'sLIFE.WALTZ 33 A constraint satisfaction problem using Waltz'salgorithm for scene labeling [158].MANNERS 8 A combinatorial search problem for seatassignment.Table 7.1: Benchmark programs used in the simulation.No. Iterations Time (ms)0 0.001000 2.573000 7.645000 12.717000 17.7810000 25.3820000 50.75Table 7.2: Time to execute the dummy loop for speci�ed number of iterations.7.2 The Benchmark ProgramsIdentifying the characteristics of an application is of crucial impor-tance in the process of decomposition abstraction. In this section, we analyzethe concurrent behavior of each benchmark program and point out key issuesto the successful application of proposed mechanisms.7.2.1 MANNERSMANNERS was derived from an example program in [76] which em-ployed a combinatorial search for solving a seat assignment problem amonga number of guests. The seats must be assigned such that neighbors are ofopposite sex and share at least one common hobby. This simple program, con-taining just 8 rules, is a very good test program for evaluating the e�ectivenessof a parallel production system. It consists of a hot spot rule that �res repeat-edly and consumes over 90% of sequential execution time for problem size of64 guests or more. The larger the problem size, proportionally more time isconsumed by this rule, which is used to maintain partial solutions. Althoughall instantiations of this rule can be �red in parallel, it is very di�cult to recog-nize this opportunity by pure syntactic techniques at compile-time without the
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Parallel CyclesFigure 7.2: MANNERS16 Concurrency Pro�le.information provided by our mechanisms. The concurrency exhibited is alsoexceptional. It is regular but not evenly distributed. The execution starts witha very low degree of parallelism which then gradually increases toward the end.More speci�cally, the program starts with only 2 instantiations that can beexecuted in parallel, then 3 instantiations, then 4, 5, : : : etc. Figure 7.2 is theconcurrency pro�le of MANNERS with 16 guests. This is highly challengingsince a parallel production system must not only detect the hot spot rule, butalso exploit e�ectively a rather peculiar pattern of parallelism.7.2.2 LIFELIFE is a simulation program that simulates the existence of bacteriain a rectangular grid of cells for a speci�ed number of generations. Whether acell stays alive across a generation is determined by the number of neighbors ithas. A living cell is born in an empty cell if it has exactly 3 neighbors. Sinceall decisions can be made locally, LIFE exhibits a high degree of data levelparallelism. However, the available concurrency has not been e�ectively ex-ploited in previous research. The di�culty of detecting it by syntactic analysisalone is again the key reason. Another probably even more important reason isthat a parallel production system must have the ability to perform set-orientedand aggregate operations to exploit the available concurrency. Figure 7.3 isthe concurrency pro�le of a 10x10 LIFE execution trace without showing the
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Parallel CyclesFigure 7.3: LIFE10 Concurrency Pro�le (with Sequential Printing at the Endtrimmed by the zigzag line).sequential printing at the end of execution. Because of the rather evenly dis-tributed pattern of parallelism, keeping processors busy doing useful work atall time is the primary issue.7.2.3 WALTZThe frequently studied WALTZ program is also selected here to serveboth as a test program to evaluate the e�ectiveness of our mechanisms and asa benchmark program to compare our results with others. This is a constraintsatisfaction problem that implements Waltz's algorithm for labeling of linedrawing scenes. The algorithm propagates labels based on local decisions andtherefore exhibits both SPMD- and MIMD-style of parallelism (i.e., parallelinstantiations of the same or di�erent rules working on di�erent parts of thescene). The available parallelism is again quite high as depicted in Figure 7.4,which is the concurrency pro�le of a 10 regions execution trace with sequentialprinting of results at the end excluded.Because, syntactically, a number of similar constraints appear in manyrules, the rules are highly interfering with themselves. Most of the existing par-allel production systems can only handle this at run-time resulting in excessiveoverhead. However, the constraints are disjoint, most of the run-time over-head is superuous. The functional dependency declaration and DISJOINT
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Figure 7.5: MANNERS512 Speedup with Varying Granularities.7.3.1 The E�ect of Rule GranularityTo understand the e�ect of rule granularity (i.e., the time to process arule) on the system performance, we select the supervisor/worker with packingscheduling strategy while varying the granularity of a rule by changing thenumber of iterations in the dummy loop. Figure 7.5 shows the results onMANNERS512 (i.e., 512 guests). The performance improves signi�cantly withlarger granularity. Nearly ideal speedup is achieved when the granularity perrule is increased to 20000 (i.e., 50.75ms). As a comparison, the average cycletime of the same program and data set running under OPS5c on a much fasterCPU (SUN4 workstation vs. the Intel 80386 on Sequent Symmetry) is about210ms. This implies that the overhead of scheduling and thread managementis very low, and as long as we can keep it low in a real implementation it isvery likely to get even better results since the granularity per rule is expectedto be much higher than 50ms when matching is included.Figure 7.6 and Figure 7.7 are the results of similar experiments onLIFE (40x40) and WALTZ (30 regions), respectively. In both cases, perfor-mance improvement is observed with increasing granularity.Among all three test cases, LIFE achieves the highest speedup withgranularity 20000. This is plausible because the run-time behavior of LIFEexhibits the highest and the most regular pattern of concurrency as depicted
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Figure 7.6: LIFE40 Speedup with Varying Granularities.
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Figure 7.7: WALTZ30 Speedup with Varying Granularities.



95earlier in Figure 7.3. On the other hand, WALTZ requires larger granularityto achieve the same level of performance. We were puzzled by this unexpectedresult at �rst since from the characteristics of the Waltz's algorithm, thereshould not be that much di�erence. Later on we found that the availableparallelism of a WALTZ program execution depends heavily on the data set(i.e., the scene to be label). The data generator we use (and used by otherresearchers as well) introduces a sequential factor that severely restricts theavailable parallelism. The generated scene consists of two arrays of rectangularblocks growing linearly according to the given problem size parameter. Thislinear factor contributes to the performance di�erence betweenWALTZ and theother two programs. We plan to develop a new data generator that generatesscenes without this linear factor.7.3.2 Scalability: The E�ect of Problem SizeAn important criterion when evaluating the e�ectiveness of a parallelsystem is its scalability. When the available parallelism increases, a parallelprocessing system must be able to e�ectively exploit it and achieve betterperformance. For the three benchmark programs, a common characteristic isthat available parallelism increases with the problem size. Therefore, we testedour mechanisms and system on three programs with increasing problem sizeswhere the problem size to MANNERS, LIFE and WALTZ are the number ofguests to be assigned, the grid size, and the number of regions3, respectively.All programs were tested under the supervisor/worker with packing schedulingstrategy. The grain size was set to 5 with rule granularity �xed at 20000 (i.e.,50.75ms).Figure 7.8 illustrates the performance results of MANNERS on dif-ferent problem sizes and graphically displays scalable speedup of our scheme.Figure 7.9 and Figure 7.10 are the results of similar experiments on LIFE andWALTZ. For all three programs, we achieved near linear speedup when prob-lem size was large enough. The speedup achieved on smaller problems is lowerbecause the available parallelism is not enough to keep all processors busy.When problem size becomes larger, processor utilization increases and so doesthe speedup achieved. The trends also indicate that the system can achieveeven better results with problem size larger than the largest size conducted inthe simulation.3In the scene generated by the data generator for WALTZ, a region consists of 72 linesegments.
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Figure 7.10: WALTZ Speedup on Di�erent Problem Sizes.7.3.3 Controlled vs. Unrestricted ParallelismToo much water drowned the miller. If the available parallelism is notexploited appropriately, the bene�t of parallel processing can easily be over-whelmed by the scheduling and synchronization overhead. In our case, sincethe embedded parallelism in the application is fully expressed, the key issuecomes down to e�ciently processing the collection of parallel instantiations onavailable computation resources. For a thread-based implementation like ours,this issue manifests itself in a tradeo� between parallel processing of as manyinstantiations as possible and controlling the number of concurrent threads. Ifa new thread is created for each parallel instantiation (i.e., Strategy 1), we getmaximal parallelism on the one hand but highest thread management over-head on the other hand. Using the supervisor/worker scheduling strategy, thenumber of threads is �xed but the communication and synchronization costincrease because of the need to partition and dispatch parallel instantiationsto the worker threads.To understand the e�ect of thread management overhead on systemperformance, we compare the results between applying Strategy 1 (maximalparallelism) and Strategy 4 (supervisor/worker with packing). Figure 7.11 is a3-D display of two sets of experiments on WALTZ10. The timing curves on thebase plane are the execution time while the B-spline surfaces are to demonstrate
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Figure 7.11: 3-D Display of Controlled vs. Maximal Parallelism on WALTZ10.the performance di�erences. It is quite evident that supervisor/worker withpacking outperforms maximal parallelism by a substantial margin. Figure 7.12presents the results of similar experiments on LIFE30. The di�erence is smallerbut still perceptible. This suggests that throttled parallelism is much betterthan unrestricted parallelism.Just when we expect to observe a similar type of performance di�er-ence on MANNERS program, it does not happen to be the case. Figure 7.13 isthe 3-D graph of the similar experiments as above. The performance of maximalparallelism is not only comparable to that of supervisor/worker with packing,it actually performs better when the granularity of rules and the number ofprocessors increases. To more clearly show this phenomenon, we demonstratethe timing curves on a 2-D diagram in Figure 7.14. A closer look at the problemreveals a peculiar pattern of concurrent behavior of the MANNERS program.As depicted in Figure 7.2, the number of parallel executable instantiations isquite small in the early stage of the execution. When packing is applied, theavailable parallelism is left unexploited while under the maximal parallelismstrategy these instantiations are always processed in parallel.As a summary, the supervisor/worker strategy which creates only alimited number of threads is, in general, better than the maximal parallelism
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Figure 7.12: 3-D Display of Controlled vs. Maximal Parallelism on LIFE30.
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Figure 7.14: 2-D Display of Controlled vs. Maximal Parallelism on MAN-NERS256.strategy which creates as many threads as the number of parallel instantiations.However, the actual performance gain still depends on the characteristics of theunderlying program. When the degree of concurrency in an application is low,the maximal parallelism strategy is likely to be better.7.3.4 The E�ect of Grain SizeIn last section, supervisor/worker with packing appeared to be thewinner in overall performance. The question of determining appropriate grainsize follows. It is unlikely that a single grain size is optimal for every program.We need, at a minimum, to determine if performance as a function of grainsize is well behaved enough to o�er a system default. We test the benchmarkprograms with grain sizes of 1 (i.e., no packing), 5, 10, and 20. Each one of themis tested with a �xed level of rule granularity. To understand the correlationof packing with respect to rule processing time, the same set of experiments iscarried out with di�erent levels of rule granularity.Figure 7.15 is the results on MANNERS512 with rule granularityset to 1000. We can observe quite clearly that packing is always better thanno packing at this level of granularity. A grain size of 5 provides the bestperformance. On the other hand, with the granularity of a rule raised to
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Figure 7.15: MANNERS512 Execution Time on Di�erent Grain Sizes (RuleGranularity = 1000).20000, the best performance is obtained when packing is not applied as shownin Figure 7.16. Similar results can be observed on both LIFE (Figure 7.17,Figure 7.18) and WALTZ (Figure 7.19, Figure 7.20) except that grain size of 5is not necessarily a clear winner over other grain sizes.7.4 Summary and AnalysisIn summary, reducing the granularity of rules improves the resultswe get from packing. This is primarily because of the reduction in threadmanagement, communication, and synchronization overhead. However, whenthe average granularity of the rules or the grain size becomes larger, the lossof parallelism o�sets the bene�t of packing. In general, packing with grainsize 5 provides the best performance when the rule granularity is smaller than5000. When the granularity is larger than 5000, it is better to do withoutpacking. In other words, packing is good for cases where the per rule schedulingoverhead is comparable or larger than that of the granularity of rule. This resultsuggests a dynamic scheduling strategy with either user-speci�ed granularityassignment to each rule or an automatic estimation done by the system. We areinvestigating this issue in our real implementation of an object-based parallelrule language equipped with decomposition abstraction mechanisms.
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Figure 7.16: MANNERS512 Execution Time on Di�erent Grain Sizes (RuleGranularity = 20000).
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Figure 7.17: LIFE40 Execution Time on Di�erent Grain Sizes (Rule Granular-ity = 1000).
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Figure 7.18: LIFE40 Execution Time on Di�erent Grain Sizes (Rule Granular-ity = 20000).
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Figure 7.19: WALTZ30 Execution Time on Di�erent Grain Sizes (Rule Gran-ularity = 1000).
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Figure 7.20: WALTZ30 Execution Time on Di�erent Grain Sizes (Rule Gran-ularity = 20000).



Chapter 8ImplementationNo matter how good a simulation is, it is still a simulation. Only areal implementation tells the real story. Based on the experiences gained fromthe simulation discussed in last chapter, we develop Venus/DA, an object-basedparallel rule language with decomposition abstraction mechanisms, on SequentSymmetry shared memory multiprocessors. In this chapter, we discuss thedesign and implementation of Venus/DA.8.1 Form Venus to Venus/DATo demonstrate that the idea of decomposition abstraction is univer-sally applicable to any sequential rule language, we extend a sequential rulelanguage with DA constructs rather than build a new parallel rule languagefrom scratch. This is also to give an example of how to turn a sequential rulelanguage into parallel rule language encompassing constructs for decompositionabstraction. The sequential rule language we choose is Venus, a C/C++-basedmodular rule language [18]. Venus is probably the �rst sequential rule-basedprogramming language to provide both a declarative syntactic and semanticmechanism to support top-down modular design of rule-based programs. Theability to inference upon both primitive and complex C++ objects is partic-ularly attractive to us. In stead of going into details of the Venus languagewhich can be found in the cited paper, we show how straightforward it is toturn Venus into Venus/DA. It only takes minor changes to the syntax whileresults in substantial enrichment of the semantics. We present the di�erencesbetween Venus and Venus/DA by listing the grammar rules of Venus/DA thatare di�erent from Venus. All other rules are exactly the same.When specifying the Venus/DA grammar rules, we use the followingconventions similar to those used in Stroustrup's C++ book [152]. That is,� Things in italic are nonterminals.� Everything else are terminals. 105



106� Alternatives are listed on separate lines.� Optional items are indicated by the subscript \opt".8.1.1 Functional Dependency DeclarationsGlobal declarations in Venus consist of #include directives, constantdeclarations, enumerated type declarations, and type declarations. All of themare retained in Venus/DA. The only new global declaration syntactic constructin Venus/DA is the functional dependency declarations. In other words, globaldeclarations in Venus/DA are exactly the same as in Venus with the additionof functional dependency speci�cations. This implies that, when transforminga Venus program into a Venus/DA program, all data declarations can stay thesame. The only thing we need to do is to �gure out and specify functionaldependencies between di�erent types of working memory objects.A functional dependency is speci�ed as follows.functional dependency :funcdep f identifier list g ! f identifier list g ;identifier list :identifieridentifier list ; identifierThe identi�ers must be names declared in the type declarations (i.e. classnames). The following functional dependency declaration speci�es that theclass Department functionally determines the classes Office and Classroom.funcdep { Department } ! { Office; Classroom } ;The declaration tells the system that di�erent departments have disjoint set ofo�ces and classrooms.8.1.2 Rule De�nitionsA rule de�nition in Venus consists of a rule header, an alias declarationsection, a left-hand-side (LHS) expression, and a sequence of right-hand-side(RHS) actions. Continuing with the approach in last section to keep all datadeclarations of Venus intact, all rule de�nition constructs are retained with



107two additions | an optional DA expression in the LHS and a set of aggregateactions. We list only those grammar rules that have DA constructs.The LHS of a Venus/DA rule has the DA expression as an additionalconstruct for specifying decomposition abstraction. The followings are thegrammar rules involving the DA expression.rule definition :rule header aliasopt conditions actions ;conditions :if ( expression and DA expressionopt )and DA expression :&& DA expressionDA expression :select op ( select arg list :: expression )select op :SelectALLSelectDISJOINTselect arg list :select argselect arg list ; select argselect arg :set variablevariableset variable :variable �variable :identifiereq pattern variableuq pattern variableThe RHS of a Venus rule is a list of actions enclosed in braces. Alltypes of actions in Venus are retained in Venus/DA with an additional type ofaction called aggregate operation. This type of operation operates on a set of



108objects rather than a single objects. The only aggregate operation supportedright now is Remove which is to remove all objects in a set of objects selectedin the LHS. Other operations are certainly possible. They are left as futureextensions.action :...aggregate op callaggregate op call :aggregate op ( identifier ) ;aggregate op :RemoveThe primitive element of an expression is called a factor. Similar tothe discussion above, all factors in Venus are retained in Venus/DA with theaddition of a new type of factor called aggregate function call, which is simplyto call an aggregate function with arguments properly supplied. An aggregatefunction computes a value based on a set of values passed as arguments. Theaggregate functions are Count, Avg, and Sum with usual meanings.factor :...aggregate function callaggregate function call :aggregate function ( arg list )aggregate function :CountAvgSumAs an example to the DA constructs above, the following rule is aslightly modi�ed, Venus/DA version of the rule DA_Count_Students presentedin Chapter 6.



109rule DA_Count_Students;from CurrentTask[?] t;Department[?] d;Student[?] s;if ( t.task == COUNTING &&SelectALL ( d, s* ::d.students_counted == NO &&s.dept == d.name ) ){ d.count = Count(s*),d.students_counted == YES,}8.1.3 RemarkThe key point we want to emphasize is that it is relatively straightfor-ward to transform a sequential rule language into a DA language. It only takes aminimal syntactic changes. We actually have a syntax for adding DA constructsto OPS5, which can be called OPS5/DA. One can easily have CLIPS/DA orAnyLang/DA where AnyLang is any sequential language. Because of this con-sistency with sequential rule languages, it is possible to have a single run-timesystem for all the extensions. We will discuss more about this in later sections.8.2 A Thread-Based Execution EnvironmentWe select the Sequent Symmetry multiprocessor as our target ma-chine because the shared-memorymodel of parallel computation is closer to theproduction system model than distributed memory machines and Symmetrywas the only shared-memory machine we had at the time we started program-ming. The implementation is based upon an object-based thread package calledPRESTO [13, 41]. This C++-based package provides C++ objects to server asour underlying object system. It also includes a variety of thread managementprimitives and synchronization objects such as condition variables, monitors[65], and locks. Because of the object-oriented nature of the package, it is easyto build more complex synchronization objects for various purposes such asbarrier synchronization. Even though it is not as e�ective as another very e�-cient C-based thread package called FastThreads [3, 4] developed by the sameresearch group, PRESTO is still nearly two orders of magnitude faster than the



110process-based parallelism provided by Sequent's Dynix operating systems [41].Its exibility and extensibility also make it a better choice than FastThreads.Another system issue that has signi�cantly impact on our implemen-tation is that Venus/DA is based upon a GNU G++ implementation of theVenus language. The run-time system is therefore written partially in SequentC++ and partially in GNU G++. This took us tremendous amount of e�ortsin making things work together, especially because Sequent C++ does not sup-port templates which are used heavily in Venus implementation. Details of thesoftware system related issues such as this one, however, will not be discussedany further.8.3 Implementation FrameworkThe implementation techniques developed from OPS5c [103, 104] andVenus [18] provide a general and e�ective framework for the implementationof rule-based languages. As depicted in Figure 8.1, the framework suggests acommon intermediate form as the interface between front end parser and backend code generator. Using this approach, the same code generator and run-timelibraries (RTL) can be used to implement di�erent rule languages. All we needto write for a new language is a new parser for the speci�c language syntax.This claim is supported by the existing parsers for OPS5, CLIPS, and Venusas presented in the �gure. The intermediate form is designed in such a waythat it is easily extensible to incorporate new features of new languages. Thecode generator and RTL can also be extended to handle these features. Thisis the original approach we intended to take which is delineated in Figure 8.2.When working on the real implementation, we actually started fromthe RTL since all parallel execution related codes are in the RTL. For testingthe RTL implementation and to gather performance results, we developed analternative approach toward the Venus/DA implementation. Since all of thetest programs are directly translated from Venus programs for performancecomparison, we developed a code translator to translate the C++ code gener-ated by the Venus compiler into corresponding code that are supposed to begenerated by the Venus/DA compiler. This is done with the help of a simplecon�guration �le that can be either hand edited or directly generated from theVenus/DA source code. The translator is implemented by a set of Perl scripts[157]. Figure 8.3 presents this code translation approach. It has the advantageof fast implementation and evaluation. Performance results can be gathered
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Figure 8.1: A General Framework for the Implementation of Rule-Based Lan-guages.
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Figure 8.2: Venus/DA Implementation.



113

Object Modules?C++ Compiler � Venus/DA RTL-Presto RTL ?Translated C++Source ModulesVenus to Venus/DATranslator?Config FileHHHj C++ SourceModules����Config FileGenerator? Venus Compiler?Venus/DAProgram? Venus Program?�

Figure 8.3: Venus/DA Implementation: An Alternative Approach.while other parts (such as parser and code generator) are still being imple-mented. This is also facilitated by our DA approach being a natural extensionto sequential rule languages.8.4 Run-Time SystemIt is fair to say that the run-time system (RTS) is the most importantpart of our Venus/DA implementation. The e�ectiveness of the DA approachcan only be materialized with an e�cient RTS implementation. In particular,the algorithms used in the parallel match and parallel execution have decisiveimpacts on whether the parallelism expressed by the programmers can be ef-fectively exploited. In this section, we discuss the design and implementationof the Venus/DA run-time system.



1148.4.1 Implementation StrategiesWe highlight the main strategies used for the Venus/DA implemen-tation. The general goals are to simplify the implementation and to reducethe synchronization cost as much as possible. The details and rationales foradopting these strategies are described in later sections.� Shared-memory model of computation. All working memory objects re-side in shared memory. Communications and synchronizations are donethrough shared variables.1� SPMD style execution [27, 144]. A number of inference engines capableof matching and rule execution are working asynchronously under theshared working memory. Inference engines are synchronized only at thebarriers or when accessing shared objects.� Parallel match and asynchronous execution within parallel cycles. Barriersynchronizations are enforced only between parallel cycles.� Eliminate the entire phase of conict-resolution and run-time interferencedetection.� Based on working technologies and existing sequential implementation.This includes the use of Lazy Match algorithm [99, 100] and the Venusimplementation.� Static work load distribution and prescheduling by copy-and-constrain(C&C) [118, 119, 141].� The nondeterministic safe assumption, i.e. �ring rules nondeterministi-cally should not a�ect the correctness of the program execution. In otherwords, the input source program should not depend on rule priority orany implicit conict resolution strategy for its correctness.1By using Sequent Symmetry and shared memory, we avoid the problems such as workingmemory partitioning and localities. While these issues are as important as other issues westudied, they are not within the scope of this thesis. They are, however, certainly in ourplan for future works which is discussed in Chapter 10.



1158.4.2 System ArchitectureFigure 8.4 is the system architecture of the Venus/DA RTS whichis essentially an integration of the Venus/DA run-time structure with thePRESTO system components [12]. A number of identical LEAPS engines(LE's) are allocated during the initialization phase. Each LE is run on a sep-arate PRESTO thread which can be in either ready, run, or wait state. AllLE's are initially in ready state. When there are idle processors available, thePRESTO scheduler assigns a processor to run on a ready thread. A thread isin run state when running on a processor. Each LE is a full edged inferenceengine that can match, execute rule instantiations and synchronize with otherLE's. LE's run asynchronously except when waiting for a lock, a condition vari-able (normally associated with a monitor), or in a barrier. A waiting threadbecomes ready when the lock is successfully acquired, or the condition variableis signaled, or the barrier is complete (i.e. all participating threads arrive atthe barrier). Rules are disjoint partitioned and assigned to the LE's. Workingmemory objects are kept in shared memory. Synchronization objects also residein shared memory. They are special objects such as locks, condition variables,monitors, and barriers, which are used exclusively for synchronization.There are several advantages for this architecture:� First of all, it simpli�es implementation considerably. With the imple-mentation of a single LE, we automatically have parallel match and paral-lel execution. The parallel implementation can base on the sequential im-plementation. In other words, the parallel implementation needs mostlyto handle the synchronization issues rather than the match and executionwhich are already available from the sequential implementation.� This architecture can easily support various rule partitioning strategies.In particular, it support CREL-style clustering [101]. This is becauseeach LE is a full-edged inference engine. It can be assigned any numberof rules for match and execution.� Potential contention on the stack for a LEAPS-based parallel implementa-tion is greatly reduced because each LE has its own stack. Even thougheach LE may need to process some extra stack entries for the sake ofparallelism, this architecture e�ectively partitions the sequential LEAPSstack into a number of smaller stacks equal to the number of LE's. Wewill discuss the stack issues in more detail when describing our parallelLEAPS-based inference system in next section.
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Figure 8.4: Venus/DA Run-Time System.



117� This approach also facilitates scheduling and load balancing as well.Static load balancing can be done by partitioning of rules into di�erentLE's. Run-time scheduling is straightforward since all LE's are identical.� Asynchronous execution follows automatically with this approach sincewhen each LE is running on a separate thread, all LE's are runningasynchronously.� Synchronization is also simpli�ed since all LE's are the same and thereforefollow the same synchronization patterns.� With each LE capable of both match and execution, each can �re theinstantiations found by itself, and therefore reduce the potential over-head of having separate matchers and executors such as the architectureadopted by Neiman [111].In the following sections, we discuss our LEAPS-based parallel infer-ence system and other components of the Venus/DA RTS.8.4.3 A LEAPS-Based Parallel Inference SystemThe Venus/DA RTS consists of a number of identical LE's that arecapable of match, �ring, and synchronization. The kernel of the RTS is aLEAPS-based parallel inference system that coordinate these LE's to performthe parallel match and multiple rule �rings. Each LE runs a modi�ed versionof the sequential LEAPS algorithm, which we call LEAPS/DA. By static par-titioning, each LE is assigned a number of rules for processing. Each LE isresponsible for keeping all stack entries generated for the rules assigned to it.The execution proceeds in parallel cycles. During a cycle, LE's matchand �re instantiations asynchronously until a point where barrier synchroniza-tion is needed to maintain correctness. When all LE's arrive at the barrier, anew parallel cycle begins. The execution continues until:� an explicit halt statement is encountered, or� when none of the LE's can �nd any instantiations to �re, or� when the stacks of all LE's are empty.
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Figure 8.5: The LEAPS/DA Stack Organization.8.4.3.1 The LEAPS/DA Stack Organization The central data struc-ture of the LEAPS algorithm is a stack called LEAPS stack for maintainingthe search states. The LEAPS stack in Venus is actually a priority queue sinceentries are sorted in prede�ned order. The stack organization of LEAPS/DA isessentially the same as LEAPS stack except that, for the purpose of parallel ex-ecution, a pair of alternating delay queues is associated with each LEAPS/DAstack. Figure 8.5 depicts the organization of a LEAPS/DA stack. The delayqueues are for keeping stack entries that should not be processed during thecurrent parallel cycle. In other words, all new stack entries pushed during thecurrent parallel cycle are placed in the delay queues rather than pushed into thestack. This is to prevent new entries from interfering with the current search.Entries in the delay queues are actually pushed into the stack after the barriersynchronization is completed. All LE's resume by doing a stack adjustmentbefore the search for new instantiations. Since stack adjustment of di�erentLE's are performed asynchronously, some faster LE's may interfere with thestack adjustment of slower LE's. This is where the alternating design comesinto play. The design ensures that, for each LE, all new entries are placed in adi�erent delay queue than new entries of the last cycle. Since stack adjustmentis performed only once for each cycle, a pair of alternating delay queues su�ces.There are several advantages to this design:� First and foremost, it helps maintain the correct execution of the parallelrule programs.



119� The alternating design also reduces contention considerably since thestack adjustment can be performed completely locally within each LEwith no worry of any possible interference.� It simpli�es the inference algorithm (to be discussed in the next section)since it rules out a signi�cant portion of the potential interference betweenrule �ring and instantiation search within the same parallel cycle.The design merely results in minor overhead since for each entry to be pushedinto the stack, only an additional append operation is needed. The cost iscomparatively much smaller than the cost of stack push which requires a searchdown the stack to �nd the proper place to insert the new entry.8.4.3.2 The LEAPS/DA Inference Algorithm One thing that can beeasily overlooked when designing parallel algorithms or writing parallel pro-grams is that doing less work, and therefore less time, to achieve the sameresults is as e�cient, and sometimes more e�cient, than trying to �nd the bestway to do things in parallel. In the design of the LEAPS/DA inference algo-rithm, one of the most important criteria is to eliminate as much as possibleany unnecessary or redundant work. As an example, in the design of matchalgorithm, our primary focus is not to do the match work faster but ratherto do much less match and achieve the same results, i.e. �nding the same setof instantiations. By doing less work in parallel, even a simple parallelizationstrategy may achieve the same or superior performance than complex parallelmatch algorithms. In this section, we detail the LEAPS/DA inference algo-rithm. Figure 8.6 presents the LEAPS/DA inference algorithm. The samealgorithm is run by each LE in the RTS. After initialization, each LE that passesthe context test (we will discuss more about the context mechanism later) startsby popping a stack entry from its own stack and applies the LEAPS best-�rstsearch to �nd an instantiation. A found instantiation is �red immediately if:� no instantiation has ever been �red during the current cycle, or� the instantiation is compatible with all other instantiations that are �redin the current cycle.To test the conditions above, especially the second condition, it isnot necessary to resort to expensive run-time interference detection as done by
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Figure 8.6: The LEAPS/DA Inference Algorithm.



121most previous research. We can use a rule compatibility matrix which is part ofthe results of the compile-time semantic and syntactic interference analysis. Tofurther reduce the run-time overhead, the Venus/DA implementation adopts aneven simpler approach. Instead of the rule compatibility matrix, we introducethe notion of compatibility graph and compatibility set.The compatibility graph of a rule program P is an undirected graphG = (V;E) such that each vertex i in V corresponds to a rule ri in P and thereis an edge between vertex i and j if and only if ri and rj are compatible. A com-patibility set of G is a complete subgraph of G. In other words, a compatibilityset is a set of rules that are pair-wise compatible. The compatibility graph isjust another representation of the rule compatibility matrix and therefore canbe obtained from compile-time interference analysis.For testing the conditions above, we identify the disjoint partitioningof G into a set of maximally complete subgraphs. Each subgraph is a com-patibility set and is assigned an unique ID number. Each rule is assigned acompatibility ID (CID) which is the ID number of the compatibility set therule resides. The RTS maintains a shared variable called current compatibilityID which is reset to null at the start of each parallel cycle. It is atomically setto the CID of the �rst instantiation �red and remains the same throughout thecurrent cycle. Subsequent instantiations must have the same CID to be eligiblefor parallel execution. With this approach, the test of the second condition issimpli�ed into just a simple comparison between the CID's.When a compatible instantiations is found, it is �red immediately.On the other hand, if an instantiation is conict with the current compatibilityset, the LE that generates the instantiation stops immediately and waits atthe barrier. After �ring an instantiation, an LE keeps on searching for moreinstantiations if the rule just �red is a parallel rule. That is, if� compile-time interference analysis shows that all instantiations of the rulecan be �red in parallel,� the rule's antecedent includes one or more set selection conditions, or� the rule's antecedent includes an ALL or DISJOINT combinator.Such LE's keep searching and �ring until no more instantiations can be found.When there is nothing more to do, an LE stops and waits at the barrier. Whenall LE's arrive at the barrier, a new parallel cycle begins.



122Figure 8.7 presents the LEAPS/DA inference algorithm in pseudocode. The subroutines used in the algorithm are explained in Figure 8.8. Forreadability, we use identation to denote block structures and only use bracesfor long while loop. In the algorithm, halt is a shared variable which is set totrue when an explicit halt statement is encountered or when no instantiationis found during the entire cycle. The details of the implementation of DAconstructs are discussed in the forthcoming sections.8.4.4 Implementing Set Selection ConditionsWe discuss the implementation of set selection conditions that areused purely for data parallel computation (i.e. not used with aggregate opera-tions), Aggregate operations are discussed in later section.With the LEAPS-based implementation, set selection conditions canbe accomplished through cursor management. For each rule with set selectionconditions, we record the indices of those condition elements. The search forinstantiations proceeds as if all set selection conditions were regular conditionelements. When the �rst instantiation is found and �red, it is used as a seedto �nd other instantiations. This is done by advancing only the cursors corre-spond to the set selection conditions. All instantiations thus found can be �redimmediately without checking the CID's. When no more instantiation can befound from the seed, the LE stops and wait at the barrier.This approach employs no additional data structure and incurs littleoverhead since it tries to �nd all executable instantiations directly by advancingthe right set of cursors. The e�ciency is gained not only from parallel execution,but also from the saving of not doing useless work.8.4.5 Implementing ALL CombinatorThe implementation of the ALL combinator is similar to that of theset selection conditions. For each rule with an ALL condition, the index ofthe �rst condition element in the ALL combinator is recorded as the ALLcombinator index or ACindex. The search for instantiations proceeds in a waysimilar to the implementation of set selection conditions, i.e. by treating allcondition elements as regular condition elements. When the �rst instantiationis found, it is �red and used as a seed to �nd other instantiations. This is doneby advancing only the cursors of the condition elements with indices largerthan or equal to the ACindex. In other words, advance only those cursorscorrespond to the condition elements enclosed in the ALL combinator.



123algorithm leaps da inference;while !halt fwhile context active() and stack not empty() fentry = pop();instantiation = leaps bfs(entry);while instantiation != null fif cid check(entry.cid) thenfire(instantiation);if halt thenterminate();else if entry.rule type == REGULARsync barrier check in();break;else instantiation = leaps bfs(entry);continue;else sync barrier check in();break;gif parallel instantiations fired thencontinue;else stack adjustment();gsync barrier check in();stack adjustment();gFigure 8.7: The LEAPS/DA Inference Algorithm in Pseudo Code.



124function context active();// Probe the top of the stack and check if the context of// the top entry is active.function stack not empty();// Check if the local stack is empty.function pop();// Pop an entry out of the local stack.function leaps bfs(stack entry);// Apply LEAPS best-first-search on the given stack entry.// Return an instantiation if found, null otherwise.function cid check(cid);// Compare the given cid with current CID for equality.// If current CID has not been set yet, set its value to// cid and return true.procedure fire(instantiation);// Fire the given instantiation.procedure terminate();// Terminate the inference algorithm.procedure sync barrier check in();// Report arrival at the synchronization barrier.procedure stack adjustment();// Adjust the local stack for the next cycle.Figure 8.8: Subroutines Used in the LEAPS/DA Inference Algorithm.



125We note that before �ring the seed instantiation, a check of the CIDmust be made. It can only be �red when it has the same CID. Subsequentinstantiations found can be �red directly without checking the CID's.8.4.6 Implementing DISJOINT CombinatorBecause of the disjointness requirement, the implementation of DIS-JOINT combinators is not as straight forward as the set selection conditionsand ALL combinators. However, the work is still accomplished through cursormanagement.For each rule with a DISJOINT condition, the index of the �rst con-dition element in the DISJOINT combinator is recorded as the DISJOINTcombinator index or DCindex. A set called disjoint timestamps set is main-tained to keep track of the time stamps of working memory objects in thedisjoint condition of any instantiation of the rule that is actually �red.The �rst instantiation (i.e. the seed) is searched in the same way asthe ALL combinator. If the CID is checked and the seed instantiation �red,the other instantiations are found by an intelligent backtracking technique:� The cursor that corresponds to a condition element in the DISJOINTcombinator and has the highest position in the LEAPS search tree islocated and advanced. The node in the tree is called the disjoint root,i.e. the root of the disjoint subtree.� All other cursors correspond to the condition elements in the DISJOINTcombinator are reset. The search for instantiations proceeds by advancingonly these cursors.� When doing the search, all working memory objects with time stampsappear in the disjoint timestamps set are simply skipped.� Once an instantiation is found, it is �red immediately without the needto check CID.� When all the cursors have been exhausted, the cursor pointing to the dis-joint root is advanced again and the rest of the cursors in the DISJOINTcombinator reset as above.� The whole process repeats until no more instantiation can be found, i.e.until all cursors in the DISJOINT combinator (including the disjoint root)have been exhausted.



126z
�����AAAAKHHHHHHHY Disjoint Subtrees36, 58 . . .Disjoint Timestamps Set
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Figure 8.9: The Implementation of the DISJOINT Combinator.The technique above is not as complex as it appears. We essentiallyexplore the disjoint property by skipping all unnecessary joins. The advancingof the disjoint root cursor e�ectively skips the whole disjoint subtree underthat root and starts with a new disjoint subtree. The test against the disjointtimestamps set reduces further the join work that must be performed otherwise.Figure 8.9 should help illustrate the technique and the signi�cant saving weobtained from reducing the join work.8.4.7 Implementing Aggregate OperationsSince aggregate operations are always used in conjunction with setselection conditions, the implementation of the two are closely related. Sameas the implementation of set selection conditions, we record the indices of all setselection conditions. The seed instantiation is again found in the same way. Animportant di�erence, however, is that for a rule employing aggregate operationsin its consequence, the seed is not �red when the CID check is passed. In stead,



127we maintain a set of executable instantiations and an accumulation variable foreach aggregate operation in the consequence. For example, if the operation isCount, we keep a counter to count the number of working memory objectssatisfying the set selection condition and are part of an executable instantia-tion. The saved instantiations are �red when the cursors advancement leadsto no more instantiations under the seed. When �ring these instantiations, allaggregate operations are replaced with the values of the proper accumulationvariables.The aggregate operations have not been actually implemented yet.We have decided not to implement them in the current environment. The pri-mary reason is that the platform and softwares we used to build the Venus/DAsystem is out of date. It serves our purpose well enough to build a prototypethat demonstrate the e�ectiveness of the decomposition abstraction approach.Our plan is to rewrite the whole thing on advanced platforms (including dis-tributed memory machines) with modern software environments.8.4.8 Implementing ContextsWe have implemented a less general version of the proposed contextmechanism for the purpose of evaluation. More speci�cally, we assume theexistence of a designated starting context which is to read in all the data. Therelationships between contexts are represented by an n�nmatrix where n is thetotal number of contexts in the program. For each context, the matrix recordsthe next set of contexts that should be activated when a context is �nished.The termination of a context is determined by an explicit End_of_Context call,a Switch_Context call, or when no rule is eligible for �ring in the current cycle.A call to End_of_Context simply indicates the end of the current context. TheSwitch_Context call speci�es a new context to activate which also terminatesthe context that makes the call. The RTS maintains a set of active contexts.During each cycle, a search for instantiation(s) is only initiated for a rule whosecontext is active.This simple technique results in signi�cant reduction in the excesswork done by the RTS due to parallelism. Without the context mechanism, thesearch of instantiations for those rules whose contexts are not active may wastea signi�cant portion of the computation resource. For Venus and Venus/DA,however, the ideal mechanism for similar purpose should probably exploit themodularity of the language. This is one of our future direction for this research.



1288.5 The Venus/DA Translator and CompilerAs discussed earlier, the \right" way to implement the Venus/DA lan-guage is the traditional parser and code generator approach. This will consti-tute the Venus/DA compiler presented in Figure 8.2. We select the translationapproach depicted in Figure 8.3 since our primary goal is to understand thee�ectiveness of the decomposition abstraction approach; besides, the platformand software environment we used are out of date. In the future rewrite of theentire system, we will certainly take the parser and code generator approach.In this section, we describe the Venus to Venus/DA translator and discuss howto implement the actual compiler.The translator is a set of Perl scripts that handles any Venus programconsisting of a single main module. In other words, the modular feature ofthe Venus language has not been incorporated into the DA system yet. Theinterplay between parallelism and modularity, the relationship between contextmechanism and modularity are good topics for future research. We, however,concentrate on our implementation goal which is to demonstrate and evaluatethe e�ectiveness of the DA approach.The translator takes input from the C++ source code generated bythe Venus compiler and a con�guration �le. The con�guration �le is a simpletable consists of entries of rule information, one entry per rule. Each entry iscomposed of �ve �elds:� rule name,� context id,� rule type (REGULAR, ALL, or DISJOINT),� the rule's CID, and� the ACindex or DCindex (for REGULAR rule, this �eld is not used)As discussed earlier, all information above can be obtained at compile-time,through parsing, code generation, as well as interference analysis. The con-�guration �le is actually an extension to the Venus rule con�guration process.The process records important feature of rules on run-time data structures. Weadd information related to parallel execution to the run-time data structuresso that the Venus/DA RTS can use them.



129The main part of the translator is to partition the rules among LE'ssuch that the join code and the execution code of the same rule are alwayshandled by the same LE. Other parts of the translator are primarily to augmentthe code for parallel execution. Most of the parallel execution related code areseparated from the C++ source code such that the same parallel code canbe used on di�erent rule programs. Rest of the translator simply copies theinput source code line by line into output �le, possibly with some substitutionsapplied. The translator also breaks large input source into separate compilationunits for parallel compilation on the Sequent.For static load balancing with C&C, selected rules from the Venussource code are copied and constrained by hand. The resulting Venus sourceis then compiled by the Venus compiler to generate the C++ source code forthe input of the translator. It is certainly possible to build a subsystem to dothe job. We decided not to do so since this is not our primary concern. Similarissues have been studies elsewhere [35, 36].8.6 Chapter SummaryThis chapter presents in details how we implement the Venus/DArun-time system and the constructs for decomposition abstraction. We demon-strate how to convert a sequential rule language (Venus in our case) into aparallel rule language with DA constructs (Venus/DA). The core of the im-plementation technologies is the LEAPS/DA inference algorithm that employsmultiple LEAPS engines for SPMD style parallel matching and rule execu-tion. We must emphasize that the techniques developed here can be easilyadopted to implement other DA language systems. By developing the systemon Sequent Symmetry, however, we avoid an important issue that is almostcertain to have signi�cant impact on other systems, namely locality issue. Ondistributed memory machines, for example, we not only need to partition therules but also the working memory objects to di�erent processing nodes. Thecommunication cost would certainly be much higher. These issues are amongour primary directions for future research.



Chapter 9Experimentation and Performance ResultsFor performance evaluation, we have conducted a variety of experi-ment on the three bench mark programs. The experimentation plan is designedwith the following objectives:� To evaluate the e�ectiveness of the DA mechanisms.� To discover the strength and weakness of the DA mechanisms.� To understand the behavior of the Venus/DA RTS. In particular, we wantto test how well the system scale with respect to computation resourcesand problem size.� To �nd out the reasons for the success or failure of the DA approach.In this chapter, we document our experimentation on the Venus/DA RTS andanalyze the performance results. We note that, since the purpose of this im-plementation is to build a prototype with the aim of future rewrite on modernplatform and software environment, we emphasize on the variety of the exper-iments rather than the number of test programs we run.9.1 The Benchmark ProgramsWe use the same MANNERS and WALTZ programs as we did inChapter 7. The LIFE program is dropped because of the decision of not toimplement aggregate operations in the current prototype. It is replaced by amuch larger program called ARP which is a route planning program employingthe A* algorithm. We list the programs in Table 9.1 for reference.9.1.1 From Venus to Venus/DAThe following steps are taken to prepare a Venus program for ourexperimentation: 130



131Program No. Rules DescriptionMANNERS 8 A combinatorial search program for seatassignment.WALTZ 33 A constraint satisfaction program using Waltz'salgorithm for scene labeling [158].ARP 111 A route planning program using A* algorithm.Table 9.1: Benchmark programs used in the experiments.1. Nondeterministic safe transformation.Transform the Venus program into a nondeterministic safe program. Thisis usually done by strengthening rule antecedents such that each rulematches exactly the state it is designed to �re. Sometimes it is neces-sary to replace a less speci�c rule with more speci�c rules, or add somenew rules. The transformed program must run correctly without relyingon any explicit or implicit conict resolution strategies such as priority,recency, speci�city, or rule order.2. Copy-and-constrain parallel rules if necessary.All parallel rules (i.e. rules containing set selection conditions, ALL com-binator, or DISJOINT combinator) are candidates for C&C.3. Replace stage changing rules with the DA context mechanismwhenever possible.In most cases, this should reduce the number of rules in the program.4. Compilation using the Venus Compiler.The nondeterministic safe and C&C version of the Venus program iscompiled using the Venus compiler. This can be done on any platformwhere the Venus compiler is available.5. Construct the con�guration �le.As discussed in last chapter (Section 8.5), this is currently done by hand.6. Venus to Venus/DA Translation.Translate the C++ code generated by the Venus compiler into Venus/DAC++ code. Simply run the translator.



1327. Compile the Venus/DA C++ code.This should be done with C++ compiler on the target machine.Surprisingly enough, the most time consuming step is the �rst stepthat transform the original Venus code into a nondeterministic safe program.The reason is that all three programs (actually most sequential rule programs)rely on explicit or implicit conict resolution strategies for their correct execu-tion. Some rules can be retained without change while some other rules mayrequire the recognition of the exact state for those rules to �re. We also need toprevent some rules from �ring earlier than then they should. Note however thatthese problems occur only because the original programs were written to takeadvantage of the built-in conict resolution strategies of Venus. If we were tostart from scratch with the Venus/DA language, things should be much better.We summarize the changes made to the test programs with emphasisplaced on how various sources of parallelism in the programs are expressedusing DA mechanisms.MANNERSCompare to the other two programs, MANNERS is a relatively easyone. It consists of 8 rules and only one of them, namely the make_path rule, isa parallel rule. Since all instantiations of the rule can be �red in parallel, wesimply transform it into an ALL rule.WALTZOne type of rules that are most di�cult to do the nondeterministicsafe transformation are the rules that are designed to �re only when no otherrules can �re in the same context. In many cases, these rules stay satis�ablethroughout the execution of the context but not �red because of some implicitconict resolution strategies until the end of the context. Most of the contextchanging rules are this type of rules. It is particularly di�cult to characterizeexactly the states that these rules should �re such that they don't �re otherwise.In many cases, we not only need to transform the rules in questions, we mayalso need to change all other rules in the same context as well. A practical (butnot necessarily elegant) technique is to add boolean attributes to data objectsthat are processed in the context such that they are checked when processed.The context changing rules can be transformed by adding the test that all such



133attributes have been successfully checked (i.e. all processing has been donesuccessfully).We highlight the transformation done on the WALTZ program:� The reverse_edge rule (or all its copies) is transformed into an ALL rulesince the rule is intended to duplicate all line segments.� All junction making rules are transformed into DISJOINT rules since eachrule matches disjoint set of edges to form a junction. These rules are alsopair-wise compatible because of the functional dependency between thejunctions and the edges.� The match_edge rule (or all its copies) is transformed into an ALL rulesince all pairs of opposite edges (such that one is labeled and the otheris not) must be matched.� All labeling rules are transformed into DISJOINT rules since each rulematch a junction and the set of edges associated with it for labeling. Forthe same reason as the junction making rules, these rules are pair-wisecompatible.� The rule that label the remaining unlabeled edges as boundaries is aperfect ALL rule. However, in the original Waltz program, the rule labelsan edge and also print its label. The output will be unreadable if multipleinstantiations of this rule are �red in parallel. We therefore split thelabeling and printing into two rules. The rule that labels the remainingedges is transformed into an ALL rule.� All other rules remain the same (i.e. stay as regular rules).ARP The central part of the ARP program is a route planner that employsthe A* algorithm [112] to search for an optimal route between the start andthe �nish points. The target for parallelization is also the rules for the routeplanner. The well-known A* algorithm is basically a best-�rst search algo-rithm that keeps on expanding the current best node until a solution is found.Apparently, there are two simple strategies to parallelize the algorithm:1. We can parallelize the calculation for the best node but still expand onlythe single best node.



1342. In addition to the calculation, we can also expand more than one node,say n best nodes, in parallel.The �rst one can be implemented simply by using the set selection conditions,ALL, or DISJOINT combinators to transform the cost calculation rules. Thesecond one is less obvious since it needs to select n best nodes for expandingwhich is not as straightforward to specify as the former one. However, thereis an alternative strategy similar to the second one that can be implementeddirectly. We can simply expand all best nodes instead of just one. In otherwords, all nodes with the same best f value (i.e. value of the heuristic function)are expanded. If there is only one such node, then only that node is expanded.If there exists more than one such node, all of them are expanded. This canbe implemented simply by transforming the node expanding rule into an ALLrule. The biggest problem in parallelizing the ARP program is the set ofagenda and task control rules. These rules are strictly sequential unless wecompletely change the control mechanism. The latter is not desirable eithersince we want to have fair performance comparison between the sequential andthe parallel programs. The good news is that the sequential e�ect reduces whenthe problem size increases. We therefore chose not to parallelize the controlrules.9.2 Experimentation MethodologyAll programs, sequential and parallel, are running in three stages |input, computation, and output. Since parallel I/O is out of the scope ofthis research, we compare the performance of the computation part for bothsequential and parallel execution. Furthermore, all experiments are conductedunder the following guidelines which are equally applicable to both sequentialand parallel execution.� To minimize the cache e�ect, all data are collected after the caches havestabilized.� Use the nondeterministic safe version of the sequential programs for thesequential time base.� Measure the elapsed time of the computation part (i.e. right after theinput of the last data and immediately before the output of the �rstresult).



135� Measure the mean and variance of at least 10 runs for each data point.� Measure each program on at least 4 data sets of increasing size.The following sets of experiments are repeated on each program:� Speedup ExperimentWith �xed problem size, increase the number of processors from 1 to 121. Measure the speedup by comparing the execution time against thesequential execution time. This will demonstrate the overall speedup ofthe Venus/DA system.� Scaling ExperimentRepeat the speedup experiment on all 4 data sets. The purpose is tounderstand how well the system scales with respect to problem size.� Processor Utilization MeasurementWith �xed problem size, 12 processors, keep track of the processor uti-lization throughout the execution. This complements the speedup experi-ment since we don't usually achieve good speedup without high processorutilization.On separate runs, we also perform the following measurement in orderto understand the behavior of the DA system:� Barrier Synchronization Overhead MeasurementWith �xed problem size, 12 processors, measure the time spent exclusivelyon the barrier, i.e. the time when all processors are at the barrier. Wewant to understand if the barrier synchronization constitutes a sequentialbottleneck.� CPU Time Distribution MeasurementWith �xed problem size, 1 to 12 processors, measure the percentage oftime each LE spent on join operations, �re instantiations, stack opera-tions, synchronization, and others. Also average the numbers over all1This is the number of actually usable processors on our Sequent Symmetry



136LE's to obtain the average percentage of time the system spent on eachtype of computation. Both the individual measurement and the aver-age tell us about how much time the system is doing real work and howmuch of the execution time is spent on overhead that does not occur onsequential version.� Stack MeasurementOver 4 data sets, on 1 to 12 processors, measure the number of stackoperations (i.e. push and pop) done on each LE and the total number ofstack entries on all LE over time. The LEAPS stack is the most importantdata structure in both the original LEAPS algorithm and the LEAPS/DAalgorithm. This measurement will tell how much more entries and stackoperations are performed by the DA system. It is another account forthe overhead due to parallelism.� Join MeasurementOver 4 data sets, on 1 to 12 processors, measure the total number of joinoperations performed on each LE. This is intended to show the e�ective-ness of our intelligent backtracking scheme. Compare the sum of thesemeasurement with the sequential number will demonstrate home muchsaving is obtained by the scheme. The result should reect the speedupobtained.� Overhead Ratio MeasurementOver 4 data sets, on 1 to 12 processors, measure the number of key oper-ations performed by the parallel and sequential systems. By measuringthe ratio of these numbers, we should have a good picture of how muchextra work is done by the parallel system and whether the extra workincreases with data size.9.3 Performance Results and AnalysisWe present and analyze various performance results on three bench-mark programs. We also compare the performance with simulation resultswhenever possible.



137#PE's 16 32 64 128 256Seq 0.776 5.491 58.101 771.751 11356.5801 2.517 11.190 89.246 761.020 10697.2102 1.576 6.488 48.500 397.595 5513.2953 1.376 5.098 34.568 280.415 3831.8234 1.244 4.482 28.572 222.555 2982.0355 1.206 4.104 24.590 186.270 2500.2776 1.272 3.994 22.320 162.066 2128.9657 1.248 3.856 20.276 145.835 1897.2058 1.340 3.850 19.092 131.701 1702.1759 1.442 3.925 18.258 121.070 1512.25010 1.516 3.978 17.208 111.280 1360.66511 1.552 4.200 16.678 102.068 1213.33512 1.755 4.272 16.100 91.575 1035.840Table 9.2: MANNERS execution time(seconds) on increasing problem size.9.3.1 Overall Speedup and Scaling ResultsMANNERSTable 9.2 and Figure 9.1 show the execution time and overall speedupresults of the MANNERS program on problem size of 16, 32, 64, 128, and 256guests. The �rst row denoted by Seq is the sequential execution time on eachproblem set. The second row is the execution time of the parallel programrunning on a single processor. Each execution time is the mean of at least 10runs. This set of experiments is a good indication of the e�ectiveness andscalability of the DA mechanism. First of all, the system exhibits good speedupbehavior. For the 256 guests problem, we achieve 11-fold speedup over 12processors. We also have the desired behavior of scalable speedup, both interms of number of processors and problem size. When the problem size getslarger, which usually means more available parallelism, the system is capableof exploiting those parallelism to achieve higher level of concurrency. We notethat when problem size gets larger than 128 guests, the speedup trend seems
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Figure 9.1: MANNERS overall speedup on di�erent problem size.to go up rather than down, suggesting that the system has the potential toachieve even higher speedup with more processors available.WALTZ and ARPTo our surprise, we were unable to get comparable results on bothWALTZ and ARP program. Since the reasons for failure are similar, we discussthem together.Figure 9.2 is the results on WALTZ program. The problem size isthe number of line segments in the input drawing to be labeled. We were onlyable to collect data for small problem sizes because the machine we worked onkept failing. Judging from the data we already have, there is no speedup whatso ever. We face the similar situation on the ARP program as well which isdepicted in Figure 9.3. The problem size in the ARP program is the numberof possible points of the space that the route planner travels.The reasons for the poor performance could be that the problem sizesare simply too small to allow the e�ect of parallel processing. When the prob-lem size increases, we may have the similar results as the MANNERS program.However, detail analysis reveals several additional reasons that teach us impor-tant lessons about this research.
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Figure 9.2: WALTZ overall speedup on di�erent problem size.
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Figure 9.3: ARP overall speedup on di�erent problem size.



140� First and foremost, it is not that the DA approach fails to expose enoughconcurrency, but that there exists an unexpected search interference dur-ing the match phase in our implementation. This also explains why thee�ect doesn't show up in simulation since the simulation does not accountfor match cost. Take WALTZ for example, the program uses only threetypes of WME's. Since the LEAPS-based algorithm uses cursors to scanthrough working memory during the search for instantiations, all cursorsare searching through the same three WME classes. What's worse isthat in a critical phase, all active rules are accessing only a single classof WME's. Even though, from the decomposition speci�cation, we knowthat these rules will eventually �re on disjoint sets of WME's and can�re in parallel without interference, they do interfere during the match.The asynchronous execution model makes the situation even worse sinceit is possible that some instantiation is removing a WME which happensto be scanning through by one or more concurrent search processes.We learn from this set of experiments that the nature of interference mustbe carefully studied, analyzed, characterized, and classi�ed. Syntactic in-terference does not necessarily imply semantic interference, which is oneof the main point of this thesis. On the other hand, semantic compati-bility (i.e. non-interference) does not necessarily imply implementationcompatibility. There is no free lunch in the world. As long as the con-current processes have the potential of accessing the same set of datastructures, they are still likely to interfere with each other.Nevertheless, this is not a problem that can't be solved. We have thinkof at least two possible solutions. The �rst one is to adopt a synchronousexecution model such that the search and the �ring proceed in two phases.That is, all parallel instantiations are found before �ring any of them. Wewill certainly loss come e�ciency but the interference discussed above isavoided since �nding instantiations are read-only process. The second oneis to use a delay update technique such that all updates are delayed untilcycle synchronization point. This prevents the updates from interferingwith the search. Some other techniques are certainly possible such asreplication of WME's. The implementation techniques to fully exploitthe available parallelism speci�ed by decomposition abstraction are oneof the immediate future work for this research.� The second point is that the C&C technique has its limitation. Themost signi�cant drawback is that the copies increase the code size con-siderably. Large code size often results in heavy memory usage and poor



141performance. The problem gets worse when the data size gets larger.This is one of the main reason why we can't run on large data sets forthe WALTZ and ARP programs. A possible solution is to use parallelsearch instead of C&C. We already have ideas on how to do this which ispart of our future work.� Finally, the duplication of stack entries on multiple LEAPS engines isanother important factor to explain the poor performance. This can besolved by better selection code and better partitioning of the rules.As discussed earlier in this chapter, the ARP program has two fac-tors that a�ect the performance considerably. The program has an agenda-task-subtask control mechanism which is strictly sequential. The program alsoexpands one node at a time. Both of these constitute part of the reasons forthe poor performance of the ARP program.Since we can not obtain enough data from the execution of WALTZand ARP for the problems discussed above, we measure various aspects of theMANNERS program to demonstrate the potential and to �nd possible solutionsfor the problems as well.9.3.2 Processor Utilization MeasurementThis set of measurement is to understand how well the RTS managesthe computation resources. Because of the cycle execution model, we expectthe utilization to be up and down frequently, especially when the concurrency islow. When the available concurrency is high, then the system should stay closeto 100% utilization much longer than the synchronization point. We shouldsee good performance in such case.Figure 9.4 demonstrate the processor utilization graph of the systemrunning with 12 processors on MANNERS program with 256 quests as inputdata size. The �gure reects the cycle execution of the run-time system. Notehow the utilization graph corresponds closely to the concurrency pro�le ofMANNERS, i.e. Figure 7.2. At the early stage of the execution, the availableconcurrency is low and so is the CPU utilization. This is evident by the densearea that begins the plot. When the available parallelism gradually increasestoward the end, the utilization also increases since more and more parallelinstantiations are available for execution. Since it does not take long to passthe period of low concurrency, we achieve good speedup on this benchmarkprogram.
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TimeFigure 9.4: MANNERS256 processor utilization.9.3.3 Behavior MeasurementWe collect and present rest of the measurement in this section. Themain purpose is to understand what exactly each LEAPS engine is workingon during the course of execution. This will show us why we are getting goodresults or where the performance bottleneck is.The following tables present the number and time statistics of theMANNERS program on di�erent problem sets. In the tables, S stands for thesequential version and P stands for the parallel version. Performance �gureson the same problem size are grouped into the same segment. For parallelversion, we present the minimal, mean, maximal, and total numbers of all theLE's. Since the sum of execution time of all LE's is of little meaning, they arenot listed in the time statistics table. Note that the execution time is a littlehigher than the speedup experiment presented in previous section because ofthe instrumentation added to collect these data. Also note that the LE's thatrun regular rules are in sleep state most of the time and therefore consume onlya small portion of the computational resources. The mean values in the tablethat count the sleep time in do not represent the system behavior well. Wetherefore collect the mean values among those LE's that run parallel rules andlisted as the ppmean.In sequential execution, the number of stack entries popped is aboutthe same and always smaller than the number of entries pushed. In parallel



143Problem #Push #Pop #Join #FireS16 618 501 517 184P16min 2 1 1 1P16mean 46 93 47 8P16max 75 358 98 18P16total 886 1770 895 169S32 2254 2022 2054 624P32min 2 1 1 1P32mean 169 392 187 31P32max 269 1666 321 57P32total 3229 7462 3564 593S64 8604 8148 8212 2272P64min 2 1 1 1P64mean 703 1720 795 116P64max 1102 7130 1297 198P64total 13370 32686 15120 2209S128 33404 32506 32634 8640P128min 2 1 1 1P128mean 2304 5850 2708 448P128max 3609 25770 4337 737P128total 43790 111157 51469 8513S256 132410 130610 130866 33664P256min 2 1 1 1P256mean 9098 23482 10770 1758P256max 14297 105905 17126 2838P256total 172585 446167 204641 33409Table 9.3: Number statistics of the MANNERS program.



144Size Join Fire Sync Stack ExecS16 0.35 0.70 n/a 0.16 1.49P16min 0.01 0.01 1.85 0.01 2.92P16max 0.10 0.41 2.47 0.30 2.95P16mean 0.03 0.08 2.08 0.09 2.91P16ppmean 0.05 0.06 2.04 0.11 2.90S32 3.67 2.23 n/a 0.64 7.60P32min 0.01 0.01 3.52 0.01 5.57P32max 0.50 0.70 5.10 0.74 5.64P32mean 0.27 0.26 4.17 0.21 5.60P32ppmean 0.41 0.29 3.87 0.27 5.60S64 48.54 10.92 n/a 2.53 66.01P64min 0.00 0.01 9.89 0.05 19.37P64max 5.66 1.51 18.76 1.73 19.45P64mean 3.47 0.91 12.88 0.71 19.40P64ppmean 5.39 1.24 10.15 0.94 19.40S128 714.59 58.94 n/a 11.69 805.62P128min 0.01 0.01 32.27 0.06 101.69P128max 56.20 4.81 101.19 6.04 101.76P128mean 35.49 3.08 56.71 2.26 101.72P128ppmean 55.56 4.48 33.23 2.62 101.72S256 10980.69 379.30 n/a 48.86 11502.00P256min 0.01 0.01 141.53 0.16 1088.55P256max 876.49 26.58 1087.41 22.66 1088.63P256mean 554.03 16.45 486.38 9.04 1088.59P256ppmean 872.95 25.18 145.90 12.19 1088.58Table 9.4: Time statistics of the MANNERS program.
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Figure 9.5: Parallel vs. sequential execution of MANNERS.execution, however, we almost always have to do more popping than pushing.This is due to our asynchronous parallel execution model. At the start of eachcycle, there is no way to know which rule will �re. All processors are thereforedevoted to the search for instantiations. When some instantiations are foundand �red, other concurrent search processes for incompatible rules have noreason to proceed. In the current implementation of the RTS, these LEAPSengines stop immediately and report at the barrier. The entries that havealready been popped are restored in the stack adjustment process. Those extrasearch that are interrupted constitute the source of the extra pop's in the table.Nevertheless, the extra work due to parallelism is within a constant factor of thesequential execution work. The constant does not increase with the problemsize, as depicted in Figure 9.5. This is a good indication of the scalability ofour approach and implementation. Also note that the total number of rule�ring of the parallel version is smaller than the sequential version because ofthe context mechanism employed which eliminates the context switching rules.In both sequential and parallel executions, join time still constitutesa large portion of the total execution time. Good speedup results show thatthe RTS is spreading the load quite well. The existence of a perfect hashfunction for copy-and-constrain the only parallel rule in the program is also animportant factor. We note that for smaller problem size, the synchronizationtime dominates all other items. This is because the concurrency is so low
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Figure 9.6: MANNERS CPU Time Distribution (Percentage).that processors are synchronize with each other most of the time. But whenproblem size gets larger, we observe a signi�cant shift of time distribution fromsynchronization to real work (i.e. join, �re, and stack operations). The speedupis also improved dramatically. In other words, when the concurrency is highenough, the RTS can indeed e�ectively exploit the parallelism to achieve goodspeedup. We demonstrate this shift of computational work load in Figure 9.6,which is the average percentage of time an LE spends on each type of work(i.e. join, �re, stack operations, synchronization, and the rest).For a LEAPS-based implementation, one may think that the cost onthe stack operations (i.e. push and pop) should dominate. This used to bethe case in our early implementation. This is no longer the case because ofthe implementation of the context mechanism. The mechanism successfullyfocuses the search on only the active rules (i.e. rules belong to the currentactive contexts).9.4 RemarkThe numbers on MANNERS experiments are so good that it is hard tobelieve the system failed on the other two programs. However, we understandwhy it is the case and know how we may solve the problem. In general, thisprototype implementation still demonstrates the potential of our approach.



147The results presented in this chapter are both encouraging and dis-appointing. They are encouraging because decomposition abstraction can in-deed reveal signi�cantly higher degree of concurrency than pure syntactic ap-proaches. They are disappointing because the implementation interference o�-set the available parallelism expressed by our mechanisms. However, the laterproblem can be solved by better software environment and implementation. Arewrite of the entire system should give us much better performance than whatwe have presented in this chapter.



Chapter 10Conclusions and Future WorkIn this research, we have identi�ed and demonstrated that applica-tion semantics constitute the most critical source of parallelism in productionsystems. We established the decomposition abstraction approach as the foun-dation toward the organization and speci�cation of semantic level parallelismin production systems. The set of decomposition abstraction mechanisms havebeen shown to be both e�ective in expressing application parallelism and easyto use. The use of functional dependency in the derivation of parallelism sug-gests the potential of a new direction which employs semantic analysis on datarelationship speci�cations to extract application parallelism that may other-wise di�cult to identify or specify. Both simulation and implementation resultsshow that the combination of explicit speci�cation and semantic analysis hasthe great potential of achieving the goal of massive and scalable speedup. Bet-ter implementation environment and techniques are necessary to fully exploitthe parallelism expressed through decomposition abstraction.The approaches and techniques developed in this research have appli-cations in other areas besides parallelization of production rule systems. Thedecomposition abstraction is the missing layer which needs to be superimposedupon the familiar procedural and data abstractions to achieve truly portableparallel programming. We believe that it will be a necessary ingredient fordata/knowledge based systems demanding high performance on large bodies ofdata and knowledge.10.1 Future WorkBased on the experiences we gained from this research, further re-search in the following directions are promising both in terms of expressivepower of the decomposition abstraction mechanisms and the performance ofthe implementation.� Aggregate operators in both antecedent and consequent.148



149Aggregate operators should be allowed in both antecedent and conse-quent. This will provide the expressive power of specifying aggregateconstraints in the antecedent.� Modularity instead of at contexts.The context mechanism should be generalized to introduce modularityinto the decomposition abstraction process. The interplay between mod-ularity and parallelism should be an exciting topic for further investiga-tion.� Parallel search vs. copy and constrain.Copy and constrain is e�ective but also has the problem of increasingcode and image size. The subtlety of selecting rules and attributes formaking the copies is another drawback of applying this technique. Tofacilitate parallel match in the LEAPS-based execution environment, aparallel search algorithm may be better.� Static partitioning and dynamic scheduling for load balancing.Load balancing is critical to any parallel system. E�ective exploitationof the available parallelism expressed by decomposition abstraction stillrequire careful management of granularity and scheduling strategy. Stat-ically partitioning of rules and dynamically scheduling of parallel exe-cutable instantiations based on the decomposition speci�cation is a mustaddressed issue in any follow up research.� Functional dependency theory.The notion of functional dependency introduced in this research is justa beginning. It captures a very familiar type of decomposition whichis, in most cases, easy to specify. Other notions of dependency thatcharacterize di�erent types of decomposition are certainly possible. Weexpect a through investigation alone this line of research to establish aunify dependency theory that links the relationships between data objectsto parallel decomposition.� Fine-grained parallelism in the object base.We did not explore the potential parallelism of allowing multiple threadsof execution within an object and other forms of type-speci�c concur-rency. When application objects are large and complex as required bymodern database applications, this level of parallelism may have signi�-cant impact on the system performance.



150� Integration of syntactic and semantic based techniques.The semantic speci�cation provided by decomposition abstraction shouldimprove the CREL transformation and clustering results. The concur-rency within each cluster should also increase. The integration of syn-tactic and semantic based techniques has the great potential of achievingbetter results with less help from the programmer.� Implementation strategies for distributed memory machines.We avoid most of the locality issues with implementation on the SequentSymmetry shared memory multiprocessor. When moved onto distributedmemory machines and message passing paradigm, the implementationstrategies are expected to be considerably di�erent. It is a good researchdirection to see how semantic decomposition can be mapped onto dis-tributed machine for e�cient processing.� Software engineering issues.The programming implication of decomposition abstraction is worthy ofmuch attention. Decomposition abstraction is a natural successor of thefamiliar notions of procedural, control, and data abstractions. A goodsoftware engineering process that integrates all the abstraction mecha-nisms would be a signi�cant contribution to the parallel programmingresearch.� Fundamental issues.Last, but certainly not the least, are a few fundamental issues that needto be looked into to have a better understanding of the nature of parallelprocessing both in production systems and in general.First of all, while syntactic non-interference may be overly conservativein the pursue of parallelism, semantic compatibility does not give us con-currency for free. For example, when syntactically interfering rules canbe determined to be semantically compatible by our mechanisms, in thesearch for instantiations, we may still have the potential of interferenceon what ever data structures we search. Unless we replicate the data ob-jects, we will always have the problem of accessing the same data objectby multiple processes and the potential need for expensive locking. Thereplication is not necessary a good solution either because of the need tomaintain consistency. A fundamental research is required to understand



151the nature of interference. A classi�cation of the degree of interferenceand the implication on implementation should provide a good foundationof e�cient processing of shared data objects.For this research, we also have the issue of adopting the LEAPS-basedinference algorithm for the rule processing engines. A fundamental revi-sion of the LEAPS/DA algorithm and an optimized selection mechanismare required to reduce the stack maintenance cost. In particular, the newalgorithm should result in disjoint partitioning of the LEAPS stack ratherthan duplication of the stack entries as in the current implementation.Finally, an e�ort should be made to classify and extract the core ingre-dients of decomposition abstraction mechanisms in all explicit parallelprogramming languages. Theoretical study on the expressive power ofthese mechanisms must be conducted. The results will bring us closerto, if not right on, the goal of easy to use and architectural independentparallel programming.



Appendix AA Simple Course Scheduling SystemA.1 Class De�nitionsclass Course {string name,boolean registrants_counted,int registrants,boolean scheduled,string special_equip,string instructor,string classroom,string time,boolean printed}A.2 Functional Dependency Declarations{ Department } --> { Classroom }{ Department } --> { Course }{ Department } --> { Student }A.3 Context DeclarationsSENIOR |- SPECIALPOPULAR |- GET_INFO, SPECIALREGULAR |- GET_INFO, SPECIAL, SENIOR, POPULARPRINT |- SPECIAL, SENIOR, POPULAR, REGULARA.4 Rule De�nitionsrule Count_Registrants in_context GET_INFO {ALL ( ( c : Course :: c.registrants_counted == NO ),152



153[ s : Student :: c.name <| s.take* ] )--> c.registrants = Count(s*),c.registrants_counted = Yes}rule Schedule_Special in_context SPECIAL {( t : Time ),DISJOINT ( ( c : Course :: c.scheduled == NO&& c.special_equip != NULL ),( i : Instructor :: c.name <| i.teaches*&& i.assigned < 3 ),( r : Classroom :: t.time <| r.slots*&& c.special_equip <| r.equip* ) )--> c.instructor = i.name, c.classroom = r.number,c.time = t.time, c.scheduled = YES,i.assigned = i.assigned + 1,r.empty_slots* = r.empty_slots* - t.time}rule Schedule_Senior in_context SENIOR {( t : Time ),DISJOINT ( ( c : Course :: c.scheduled == NO&& c.registrants < LIMIT ),( i : Instructor :: i.is_senior == YES&& c.name <| i.teaches*&& i.assigned < 1 ),( r : Classroom :: t.time <| r.slots* ) )--> c.instructor = i.name, c.classroom = r.number,c.time = t.time, c.scheduled = YES,i.assigned = i.assigned + 1,r.slots* = r.slots* - t.time}rule Schedule_Popular in_context POPULAR {( t : Time ),



154DISJOINT ( ( c : Course :: c.scheduled == NO&& c.registrants > THRESHOLD ),( i : Instructor :: i.is_senior == NO&& c.name <| i.teaches*&& i.assigned < 3 ),( r : Classroom :: t.time <| r.slots* ) )--> c.instructor = i.name, c.classroom = r.number,c.time = t.time, c.scheduled = YES,i.assigned = i.assigned + 1,r.slots* = r.slots* - t.time}rule Schedule_Regular in_context REGULAR {( t : Time ),DISJOINT ( ( c : Course :: c.scheduled == NO ),( i : Instructor :: i.is_senior == NO&& c.name <| i.teaches*&& i.assigned < 3 ),( r : Classroom :: t.time <| r.slots* ) )--> c.instructor = i.name, c.classroom = r.number,c.time = t.time, c.scheduled = YES,i.assigned = i.assigned + 1,r.slots* = r.slots* - t.time}rule Print_Result in_context PRINT {( c : Course :: c.scheduled == YES && c.printed == NO )--> print_schedule(c),c.printed == YES}
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