
An Operational Semantics and a Compilerfor Modechart Speci�cationsCarlos Puchol�, Douglas A. Stuart and Aloysius K. Mokfcpg,dastuart,mokg@cs.utexas.eduDepartment of Computer SciencesThe University of Texas at AustinAustin, TX 78712-1188Keywords: Formal speci�cation, real-time systems, reactive systems,synchronous systems, operational semantics, compilers.AbstractThe Modechart speci�cation language is a formalism for speci�cation of real-time systems. The originalsemantics of the language is described in an axiomatic style, with Real-Time Logic being the underlaying logic.We introduce a new formal semantics for it in an operational style in two steps. The semantics for the class ofdeterministic speci�cations is introduced �rst and then it is extended for the general class of non-deterministicspeci�cations. The deterministic semantics leads very naturally to an implementation of a compiler, which isdescribed as well. An enhancement to that compiler provides support for a limited, but very useful in practice,subset of the class of non-deterministic speci�cations.1 IntroductionThe Modechart speci�cation language is a synchronous language especially amenable for specifying the behavior ofreal-time systems with absolute timing constraints [JM94]. It was designed within the SARTOR project [Mok85], ane�ort towards an environment for the formal design, analysis and implementation of real-time systems. It is basedon the synchrony hypothesis. The synchrony hypothesis models the system as being theoretically in�nitely fasterthan the environment |it assumes instantaneous broadcast of internal signals and immediate response to externalinputs.This paper introduces a new, formal operational semantics for pure Modechart speci�cations. Pure Modechartspeci�cations are those not containing actions (non-synchronous functional objects attached to states of the speci�-cation). The execution model assumes that the internal events that take place in a reaction are in�nitely fast. Aninteger model for time is assumed, where the system is said to take transitions or steps at integer intervals. Hence,the the semantics is built in two levels, namely, the \step" level and the \reaction" level, which is subsumed withinthe former. Two Kripke structures model these semantic levels. For simplicity, we present the development in twostages. The �rst stage describes the semantics for the class of deterministic speci�cations. The second stage takesthe deterministic semantics and augments it to model all pure Modechart speci�cations.The original formal semantics for Modechart is an axiomatic semantics de�ned in RTL (Real-TimeLogic [JM86]).While the rigor of that de�nition allows for strong analytical capabilities, it does not address a computational ap-proach to the language. The goal of introducing the operational semantics for Modechart is to provide a semanticswhich captures a more practical and intuitive, yet rigorous, notion of behavior, i.e. a semantics suitable for im-plementation as well as reference. The deterministic semantics de�nes a compiler for the class of speci�cations itdescribes. We present the compiler algorithm for the language after introducing the complete semantics.This paper is organized as follows. Section 3 provides the notation and basic de�nitions used during the rest ofthe paper as well as the syntax of Modechart. Section 4 de�nes a two-level Kripke structure used in de�ning the �rststage of the semantics covering the deterministic speci�cations. Section 5 essentially rede�nes the reaction structure,�Supported by a Fulbright fellowship from Ministry of education, Spain.1

adding the capabilities for non-deterministic features of Modechart. Section 6 goes over special cases of speci�cationsthat have been considered particularly problematic in the original axiomatic semantics. Section 7 shows that thenewly introduced semantics is compatible with the axiomatic one. The compiler based on the deterministic semanticsis described in Section 8. Section 9 o�ers the conclusions obtained from this work.2 Modechart Overview3 Modechart SyntaxModechart is a graphical language, however we concentrate on laying out the formal syntax of the language capturingthe graphical rules that govern it.De�nition: A modechart is a 5-tuple h M; fS; P; initialg;v; T ; E i with the following components:� M is a (�nite) set of modes.� S � M is a set of serial modes and P �M a set of parallel modes, with S \ P = ; and S [P 6=M. Thetotal function initial : S !M denotes a mode (the default or initial mode) corresponding to a serial mode.� v is a partial order relation inM de�ning a tree among the elements ofM. We use often the relations <; 6v;and 6< naturally de�ned after v. If m < n we say \m is contained in n," \m is a descendant of n" or \nis an ancestor of m." It is required that S [P = fm 2M j n < m; for some n 2Mg.� T =M�M�MTE is a set of transitions. For a transition (s; t; e), s is the source mode of the transition,t is the target mode of the transition and e is the Modechart transition expression (MTE) associated withthe transition, as de�ned by the grammar below.� E is a (�nite) set of external input signals.De�nition: The set of external output signals of a modechart speci�cation is de�ned as a set of labels, and it isformed by the union of four sets of labels:L =M+ [M� [M? [M!;where a set of mode entry labels M+ for M �M is de�ned as follows:M+ = f m+ j m 2M g;and m+ is an entry label for mode m. The sets of labels M� and M? are de�ned similarly, but for exitmode and active mode labels. Thus every mode m in the system has three associated outputs which are meant tocapture the evolution of the system, one denoting the system entering the mode, m+, one denoting the exit of themode, m�, and one denoting the mode being active, m?, each of which can be present or absent each time instant.Additionally, each transition in the system has a transition label associated with it:M! = fs! t j (s; t; e) 2 T ; for some e in MTEg:De�nition: The valid Modechart transition expressions are de�ned according to the following BNF grammar, whereMTE is the initial symbol: MTE ::= TimingC j TrigCTimingC ::= (lb ; ub)TrigC ::= Event ^ TrigC j EventEvent ::= e j e j fMSet g j m+ j m� j m! nMSet ::= m? ; MSet j m?Where lb; ub 2 IN are called the lower bound and upper bound of the transition, e denotes the presence ofexternal event e at any time instant, e denotes the absence of external event e at any time instant and m;n 2Mare modes of the speci�cation. The expression m! n denotes a transition being taken from m to n.2

Expressions whose form is (lb; ub) are referred to as timing transition expressions while the rest of theexpressions are referred to as triggering transition expressions.Notation: For convenience, we denote the set of timing expressions as Eti and the set of triggering expressions asEtr. We extend the set of triggering expressions as follows. Two transitions with identical source and destinationmodes with triggering expressions e and e0 are merged into one transition with an expression e _ e0 and we equallycall it a triggering expression. We denote the set of possible input events in one time instant or input language with� = 2E and the set of possible outputs or output language with �o = 2L. We denote their closure or Kleene starwith �� and ��o respectively.De�nition: A modem is atomic i� 8n 2M :: n 6< m. A modem is the root mode of M i� 8n 2M :: n v m.The function children: M! 2M is de�ned as follows:children(m) = f n j n < m ^ 6 9n0 :: n < n0 < m g:If n 2 children(m), we say that n is an immediate child of mode m, and m is the immediate parent of n. In otherwords, < captures the tree of all children (or all parents) of a mode, but the function children allows us to refer tothe immediate relatives of modes.De�nition: The least upper bound of m;n 2M (with respect to the < relation), is de�ned as follows:lub(m;n) = f l j m < l ^ n < l ^ 6 9l0 :: m < l0 ^ n < l0 ^ l0 < l g:De�nition: Two modes m;n 2 M are concurrent, written m k n, i� m 6< n ^ n 6< m ^ lub(m;n) 2 P . Twomodes m;n 2M are sequential, written m� n i� m 6< n ^ n 6< m ^ lub(m;n) 2 S.Lemma 1 Let m;n 2M be any two modes, m 6= n. Then the following holds:m 6< n ^ n 6< m) m� n � :(m k n)Proof: The proof is trivial, since the lub of a mode can only be either serial or parallel.De�nition: (Syntactic correctness of a modechart.) A proper or syntactically correct modechart is a modechartfor which the following properties hold:� 8s 2 S :: 9m 2 children(s) :: initial(s) = m. Every serial mode has one initial mode1.� 8(s; t; e) 2 T :: s � t. Transitions can only take place between sequential modes.This ends the de�nition of the syntax of Modechart and the notation that will be used in the remainder of thepaper. The next section concentrates on the semantics of the language.4 Operational Semantics for Deterministic Modechart Speci�cationsIn order to de�ne the mathematical semantics of Modechart speci�cations, we need to formalize a few conceptsrelated to the external evaluation of their behavior as well as to the internal transitions taken by the system duringinstantaneous reactions. The latter need not be observable by external agents, but are essential for the understandingand design of Modechart speci�cations.We accomplish this by de�ning a two-level Kripke structure (in Plotkin's structural operational semanticsstyle [Plo81]). The top level transition system, h�; 7!i takes care of the aspects of the system that interface to theexternal environment and take time to carry out. At this level, the state of the system is de�ned as the elementsof the carrying set, �, and are the possible states that the system can be in. Transitions in the system take a �nite1This was not required in the original de�nition of the language. We justify imposing it to get rid of unnecessary burdens, while notconstraining the usefulness of the language. 3

amount of time, speci�cally one unit of time, or one step. The possible steps at this level are determined by thefamily of (�-indexed) relations i7����!.The lower level structure, h�;!i, is subsumed by the top level structure and is used to provide the low levelreactions of the system, which are not observable by external agents. This structure takes care of instantaneousreactions to external inputs, where no time is consumed in the process, in accordance with the synchrony hypothesis.The possible reactions are determined by the family of relations i�!.We drop the input event label from ! and 7! when not ambiguous and we refer to them as just relationsthroughout the rest of the development, unless otherwise explicitly referred to as families of relations.The top level structure is generic for the complete class of Modechart speci�cations, that is, only the low levelstructure will need to be rede�ned once the class of speci�cations that the semantics models is augmented to includenon-deterministic speci�cations. In the �rst case, the low level transition system is deterministic and in the second,it is not. In general, the top level structure de�nes transitions as labeled pairs of the form i7����!o 0, which meansthat \if the system is in state , a possible result of external input event i is the output event o and a change in thestate to 0."Technically, there are no outputs in Modechart speci�cations, however we consider the output of the systemto be the trace of entered, exited and active modes, over time (i.e. the output labels are the outputs). In animplementation, the actual interaction with the environment is produced by the operations associated with entryand exit events as well as those associated with a mode being active or a transition being taken.De�nition: A set of modes M �M is sound i�8m;m0 2M :: m 6= m0) (m < m0 _ m0 < m _ m km0):We assume that sound modes are non-empty in the remainder of the paper.De�nition: Let M �M be a sound set of modes. M is maximally sound i�8 m 2 (M�M) :: M [fmg is not sound.De�nition: Let M � M be a sound set of modes. The closure of M , M2, is constructed with the followingrules:� M2 �M .� 8m0 2M2 :: 8m 2M :: m0 < m) m 2M2.� 8s 2M2 \ S :: (M \ children(s) = ;)) initial(s) 2M2.� 8p 2M2 \ P :: children(p) � M2.� No other modes are in M2 than those added by the above rules.Lemma 2 Let M �M be a set of modes. Then the following holds:9m;m0 2M :: m 6= m0 ^ m�m0) M is not sound :Lemma 3 M2 is a unique maximally sound subset of M, for each sound M 2MProof: From the de�nition of M2, we can see that since M is sound, any two di�erent elements in M2 either arerelated by < or are concurrent. Thus M2 is a sound subset ofM.It is also the case that it is maximally sound. We prove it by showing that any addition of a modem 2M�M2yields an unsound subset of modes. We know thatm 62M2) 9m0 2M�M2; 9n 2M2 :: m0 2 children(n) ^ m v m0:We also know that n must be a serial mode, since otherwise m0 would be in M2. In addition, we know that9m00 2 children(n) \M2 :: m0 6= m00 by virtue of the de�nition of M2.4

Now consider the set N = M2 [fmg. From the de�nition of M2, all ancestors of m must belong to M2, inparticular m0. Since m0 �m00, then by Lemma 3, N is not sound.It is also easy to see that it is unique. Assume that is not the case and there are two di�erent closures, M1 andM2, of mode M . Assume 9m 2 (M1 �M2). Then, since M1 is a closure of M , it is the case that the set M [fmg issound. This implies that m must belong to M2 as well (by the de�nition of M2), contradicting the assumption mexists. This can be argued for all elements of the di�erence M2 �M1, thus M1 = M2, i.e. they are in fact one andthe same set, contradicting the assumption that the closure is not unique.Maximally sound subsets form an integral part of the state of Modechart speci�cations. We shall refer to themas mode con�gurations. Each mode present in a mode con�guration is said to be active.We de�ne the concept of state in the system at this point, which will be used as the carrying set of the Kripkestructures. A state includes a mode con�guration, a set of \active" transitions, each with an associated clock reading,and a set of labels, which carries the information of an output event to be constructed along the reaction.Notation: We de�ne the set of \extended" transitions as T 0 = T � ZZ, where the integer will denote a \clockreading," associated only to timing transitions.De�nition: A state of a proper modechart speci�cation is a tuple = (M;T; o) 2 2M � 2T 0 ��o = � with thefollowing properties:� M is a mode con�guration ofM.� T is the set of active transitions: 8� = ((s; t; e); n) 2 T; s 2 M . We call � an active transition. We looselytreat it as a transition, when not ambiguous. When e is a timing expression, we call n the local clock readingof � .� o 2 �o is the set of internal events (or output).De�nition: A timing transition with clock reading n is said to be triggered if n = 0. A triggering transitionwith expression � is triggered in the context R � E [L, written R ` � i� � is valid, according to the followingrecursive set of rules:R ` � ^ R ` �0R ` (� ^ �0) R ` � _ R ` �0R ` (� _ �0)e 2 RR ` e e 62 RR ` em+ 2 RR ` m+ m� 2 RR ` m�m0 ! m1 2 RR ` m0 ! m1 f m0?;m1?; : : : ;mn? g \R 6= ;R ` f m0;m1; : : : ;mn gwhere e is an external input signal and m;m0; : : : ;mn are modes in M.De�nition: Let T be a set of active transitions and M a set of modes. Then we de�ne a function texit : 2T 0�2M !2T 0 as follows: texit(T;M) = f ((s; t; e); n) 2 T j s 2M g:De�nition: Let M be a set of modes. Then we de�ne a function tenter : 2M ! 2T 0 as follows:tenter(M) = f ((s; t; e); n) j s 2Mg; with n = � lb if e = (lb; ub) 2 Etiunde�ned if e 2 Etr:5

De�nition: Let � = (s; t; e) 2 T be a transition. Then we de�ne a function mexit : T ! 2M as follows:mexit(�) = f m j m v n 2 children(lub(s; t)) ^ s v n g:The function mexit de�nes the \tree" of modes contained or equal to the \source" side of the transition � .De�nition: Let � = (s; t; e) 2 T be a transition. Then we de�ne a function menter : T ! 2M as follows:menter(�) = f m j t v m v n 2 children(lub(s; t)) g:The function menter de�nes the \path" of modes in the \target" side of the transition � .De�nition: We de�ne the reaction (family of �-indexed) binary relation(s), ! � � � � � �, using two rulesfor active transitions to be triggered, one for transitions with timing expressions and the other for transitions withtriggering expressions. For i 2 �,� Timing transitions: � = ((s; t; e); 0) 2 T ^ (s; t; e) 2 Eti(M;T; o) i�! (M 0; T 0; o0)� Triggering transitions: � = ((s; t; e); n) 2 T ^ (s; t; e) 2 Etr ^ (i [o) ` e(M;T; o) i�! (M 0; T 0; o0)where: Maux = M �mexit(�);Mout = M \mexit(�);M 0 = (Maux [menter(�))2;Min = M 0 �Maux ;T 0 = (T � texit(T;mexit(�))) [tenter(Min);oaux = Min+ [Mout� [M 0? [fs! tg ando0 = o [oaux :De�nition: Let � = (s; t; e); � 0 = (s0; t0; e0) 2 T be two transitions. Let l = lub(s; t) and l0 = lub(s0; t0). The pairof transitions are said to be consistent i� l k l0, otherwise, they are said to be in conict. A set of transitions isconsistent i� no two distinct transitions in it are in conict.At this point, we have de�ned all the possible states of a transition. A transition is said to be not active, whenit does not belong in a state, it is active otherwise. An active transition can be triggered if its transition expressionis true in a state. One of the triggered transitions is said to be taken when the transition system h�;!i selects itamong the triggered transitions for a step in the structure.De�nition: The reexive, transitive closure of the (family of binary) relation(s) i�! is de�ned as follows (for agiven input i, which is omitted for simplicity): !0 0 i� = 0 !n 0 i� 900 :: ! 00 ^ 00 !n�1 0 !� 0 i� 9n :: !n 0De�nition: A �xpoint of the reaction (family of binary) relation(s), i�!, with respect of the state and inputevent i is 0 and is de�ned as follows (for a given i): !4 0 i� !� 0 ^ 6900 :: 0 ! 00:6

At this point, the low level structure h�;!i is fully de�ned. We shall call the class of Modechart speci�cationsthat make this structure deterministic (with respect to the �xpoint relation) the class of deterministic speci�cationsof the language. We now start building the top level structure, based on the low level structure just de�ned. Westart by de�ning the function tick, which performs a \time step" in the state of the system, updating the transitionsand resetting the output event after a reaction has taken place. We then de�ne the step relation (or more speci�callythe family of binary relations) which forms the top level structure that causes the system to evolve over time. Wethus associate a transition system h�; 7!i to every Modechart speci�cation, which de�nes its semantics.De�nition: We de�ne a function tick : �! � which given a state, returns the resulting state after one time instanthas elapsed: tick(M;T; o) = (M;T 0;M?)where T 0 = f ((s; t; e); n0) j ((s; t; e); n) 2 T g; with n0 = � n� 1 if e 2 Etiunde�ned if e 2 Etr:De�nition: We de�ne the step transition relation 7! � �� ���o � � as follows (for a given i): i�!4 (M;T; o) ^ 0 = tick(M;T; o) i7����!o 0 :where i 2 � is a set of input events. We denote the transitive closure of 7! with �7! for sequences of input events.If = 0 and no transitions in T contain a reference to external events, the modechart is said to halt at .De�nition: Let i0i1 : : : in : : := I 2 ��; n � 0; be an input event sequence. Let S be a modechart with r as rootmode. Let p = frg2 and 0 = (p; tenter(p); p+ [p?). Then S(I) = o0o1 : : : on : : : = O 2 ��o is a correspondingoutput sequence for S and I i�91; : : : ; n; : : : 2 � :: 0 i07����!o0 1 i17����!o1 2; : : : ; n in7����!on n+1; : : : :The initial state 0 is called the start state of S.De�nition: Let S be a proper modechart. Then the behavior of S is the set B(S) = f S(I) j I 2 �� g.De�nition: A modechart S is said to have a zero-cycle when (o \ oaux)�M? 6= ; for some transition i�! 0in some derivation of some element of B(S). Intuitively, a zero-cycle-free modechart is one in which no mode can beentered (nor exited) more than once during one reaction.Lemma 4 (Termination) Let S a zero-cycle-free modechart with a structure h�; 7!;!i. Let 2 � be some stateof S. Then there exists a k � 0 such that90 2 � j !k 0 and 6 900 2 � j 0 ! 00:In other words, each reaction terminates.Proof: It is clear that each transition in the system can be taken at most once during one reaction, otherwise atleast one mode would be entered more than once, contrary to the assumption the S does not have zero-cycles. Giventhan the set of transitions is �nite, at most it can be exhausted within one reaction. Given an initial state , theremust be a state 0, such that !� 0 and no transition is triggered in it. Thus there cannot exist a state 00 suchthat 0 ! 00 (for any given input). Hence is a �xpoint of the relation !, with initial state .Lemma 5 Let S be a proper, zero-cycle free modechart speci�cation and let A = h�; 7!i and B = h�;!4i. Thenthe following three statements are equivalent: !4 is a function, B is deterministic and A is deterministic.7

Proof: If the �xpoint relation is a function for all inputs, B must be obviously deterministic. If B is deterministicthen A must be deterministic, since the �xpoint relation guarantees the determinism in A. From the de�nition of A,it is clear that the only possible element of non-determinism is the �xpoint relation, since the tick function does notintroduce non-determinism. Therefore, if A is deterministic then !4 must be a function.De�nition: Let S be a proper, zero-cycle free modechart with a transition system h�; 7!i. S is said to bedeterministic i� h�; 7!i is deterministic, i.e. i� 8! 2 ��;0 !7����!!o 0 !7����!!0o 0 9=;) !o = !0o ^ = 0where 0 2 � is the start state of S, ; 0 2 � and !o; !0o 2 ��o. Note that by Lemma 5, the low level structuremust be deterministic for a deterministic modechart.Lemma 6 (Conuence) Let S be a deterministic modechart with a transition system h�; 7!i. Then the �xpointrelation !4 associated with 7! is actually a function: it returns a unique state.Proof: It is possible that the system is in a reaction with a choice of several triggered transitions to be taken. Theoperational semantics calls for a choice to be made among them, not necessarily deterministic, and as long as thereexists at least one triggered transition in the active transition set, one must be taken.Since the sequence of output event sets generated by a reaction is non-decreasing, the clock readings of timingtransitions are not decreased and the external input signal set is not changed during reactions, no triggered transitioncan become not triggered within a reaction. This ensures that all triggered transitions are taken within a reaction.Furthermore, it is clear that the set of triggered transitions at any point in the reaction must be consistent, i.e.for each pair of triggered transitions, their source modes (as well as their target modes) must be parallel. Taking anyof the transition must involve a disjoint set of modes with respect to the modes involved with the rest of triggeredtransitions. The net result of taking all the transitions is a single state, regardless of the order in which they aretaken. This state is the result of the !4 relation, thus it is in fact a deterministic function. From the de�nitionof !4, for any such state , it is obvious that !4 , i.e. it is a �xpoint.4.1 Building Deterministic Modechart Speci�cationsThe transition system h�;!i de�ned allows more than one transition to be triggered simultaneously during thereaction. However, not all transitions should be allowed to be active simultaneously. Consistent sets of transitionsdo not present a problem for the semantics, since they can be taken in any sequence \in parallel," without a�ectingeach other. On the other hand, conicting transitions can present problems when triggered simultaneously.Given that two triggered conicting transitions in one state cannot have their source modes share a commonimmediate parent (no two immediate children can be active simultaneously by the de�nitions above), it is clear thattheir source modes must be at di�erent \levels." Intuitively, there can be at most one transition triggered per modelevel in the hierarchy. Obviously, when more than one of these transitions are active, a de�nite choice needs to bemade in the reaction relation as to which one of them take.As de�ned, computations involving conicting transitions could either be deterministic or non-deterministic.However, we take a conservative approach to this problem by introducing the strong preemption axiom: \when aset of pairwise conicting transitions are triggered, the highest level one must be taken �rst2." This axiom makesa choice of giving priority to \higher" transitions over related \lower" ones, which get preempted, once the highertransition is taken. This makes all such situations where a set of conictive transitions is enabled deterministic, thusbroadening the class of useful speci�cations that can be compiled in a deterministic way.De�nition: Let � = ((s; t; e); n) be a triggered transition and let T be a set of triggered transitions. We de�ne thepredicate preempted with domain T 0 � 2T 0 � L[E as follows:preempted(�; T; o) = � 2 T ^ 9� 0 = ((s0; t0; e0); n0) 2 T :: triggered(� 0; o) ^ s < s0 ^ � and � 0 are in conict:where triggered(� 0; o) = � n0 = 0 for � 0 2 Etro j= e0 for � 0 2 Eti2This is one of the options o�ered by the RTL semantics, but harder to implement there.8

The strong preemption axiom then is formally introduced in the semantics. This is done by adding the clause:preempted(�; T) with a conjunction to the antecedent of the two rules of the reaction relation, !, to preventtransitions that are preempted by \higher level" transitions from being taken.5 Operational Semantics for Non-Deterministic Modechart Speci�ca-tionsWe now proceed to extend the semantics just de�ned to capture the full set of non-deterministic speci�cations. Inthis section, we assume the de�nitions in the previous sections hold, only the new de�nitions presented rede�ne theprevious structure. We generalize the de�nition of timing transitions and rede�ne the ! relation to handle theseextended expressions as well as the rest of expressions handled before. We then proceed to rede�ne the transitiveclosure of ! and de�ne the �xpoint of it as a non-deterministic function.Notation: We make the following abbreviation: � = f 0; 1; 2 g. We introduce the symbol 1 to denote a \large"positive integer, and de�ne that 8n 2 IN :: n <1 ^ 1� n =1. We use � to denote the empty string.De�nition: A non-deterministic timing transition is a timing transition such that lb < ub. Where lb 2 IN andub 2 IN [f 1 g. A timing transition is triggered if its clock reading is at most zero.The intuitive meaning of these transitions is that they may be taken at least lb time units after becomingactive or at most ub time units after becoming active, at which time they must be taken (unless some other transition� is taken and � de-activates the original transition). To introduce this behavior into the formal semantics de�nedso far with minimal disruption, the semantics now allows the clock reading to become negative. The idea is thatwhen a non-deterministic timing transition is initialized, the value of the clock reading is set to the lower bound andis decreased by one each time instant (as before). While its value is greater than zero, the transition relation doesnot allow the transition to be taken. When its value becomes zero, it may be taken non-deterministically, accordingto the reaction relation (as de�ned below). If it is not taken, its value keeps on decreasing to negative values eachstep. However, if by the time it reaches the value (lb � ub) it has not been taken (i.e. its \window" is exhausted),the system must take it (if no other choice is available, as de�ned in the reaction transition).Therefore, for non-deterministic speci�cations, the system has the choice of taking a transition if it has beenactive for at least a period of time equal to the lower bound and at most the upper bound. Furthermore, as it ischaracterized below, the de�nition of non-deterministic speci�cations does not exclude the system from the choiceof taking a transition among any number of triggered transitions. Yet, if at least one triggering transition or oneexhausted timing transition are triggered, one must be taken.De�nition: We de�ne the labeled reaction relation, ! � ���� �� �, as follows for an input event i:0. Non-deterministic timing transitions:((s; t; (lb; ub)); n) 2 T ^ n � 0 ^ n > lb� ub(M;T; o) i;0����! (M 0; T 0; o0)1. Triggering transitions: ((s; t; e); n) 2 T ^ (i [o) ` e(M;T; o) i;1����! (M 0; T 0; o0)2. Exhausted timing transitions: ((s; t; (lb; ub)); n) 2 T ^ n = lb� ub(M;T; o) i;2����! (M 0; T 0; o0)where M 0; T 0; and o0 have the same de�nitions as in the deterministic case.De�nition: The transitive closure of the relation i�! is de�ned as follows (for an input event i, which we explicitlyshow): i;��! 0 i� = 0 i;u!�! 0 i� 900; 9u 2 �; 9! 2 �� :: i;u�! 00 ^ 00 i;!�! 0:9

De�nition: The �xpoint of the relation i�! with respect of the state is 0 and is de�ned as follows: i�!40 i� 9! 2 �� :: i;!�! 0 ^ 69u 2 f1; 2 g; 900 :: 0 i;u�! 00:De�nition: Let S be a proper modechart. Then the set of computations corresponding to an input event sequenceI 2 �� is the set S0(I) = f O j O = S(I) g.De�nition: Let S be a proper modechart. Then the behavior of S is the set:B(S) = [I2�� S0(I):De�nition: A proper, zero-cycle-free modechart with a transition system h�; 7!i as de�ned above is said to be anon-deterministic Modechart speci�cation.6 Special CasesIn the past, a few semantic areas from the original de�nition of the Modechart language have been identi�ed as beingparticularly di�cult or problematic [Stu95]. These problems stem from the inherent power of RTL. The class ofcomputations allowed by the axioms and formulas derived from some speci�cations can sometimes be larger than theintended intuitive semantics of said speci�cations, with sometimes obscure or non-intuitive behavior being allowed.We focus now on how the operational semantics addresses those issues.A common semantic error in synchronous systems is related to the instantaneous nature of the reactions.Given that a reaction is considered to take place in zero time units, a cycle in the reaction could, in principle,produce an unbounded number of events. This phenomenon is de�ned in the context of Modechart as a zero-cycle.It is also called an instantaneous loop or zero loop in the context of other synchronous languages. The de�nition ofzero-cycles in this semantics provides a compile-time checking procedure for ruling out those speci�cations with zerocycles (Section 4).A second common semantic problem is the problem of preservation of causality in speci�cations (called non-linearizability in the Modechart literature, and causality errors in others). This problem arises in the axiomaticsemantics due to the power of the axiomatic speci�cations. Computations which are not causally coherent can stillsatisfy the axioms formulated by a speci�cation. In our semantics, this problem is solved by only allowing the systemto react to events that have taken place. Transitions can only be triggered within the reaction relation when theirexpressions are true in the context of the current reaction input and accumulated output.Other synchronous languages such as Esterel [BG92] are more aggressive in allowing the compilation proce-dures to generate transitions based on the impossibility of certain \future" conditions to falsify or make expressionstrue (e.g. negated events) however, this approach requires a (sometimes costly) \look-ahead" in the compilation.Allowing these expressions also leads to frequent obscure causality errors (this problem is enhanced by the presenceof compile-time non-deterministic tests, which cause the tree of possible \future" computations within a reaction togrow).The problem of simultaneous conicting exits (when several conicting transitions are triggered simultane-ously) is taken care of in the semantics by way of the strong preemption axiom. The choice in the semantics is doneby assigning relatively higher priority to \higher" transitions in the hierarchy (Section 4). This converts a class ofnon-deterministic speci�cations to a class of (more useful in practice) deterministic ones by establishing a priorityamong conicting transitions.The problem of implicit exit arises when a mode is restarted (exited and entered) in the same reaction andsome of its new children are killed instead of old children being killed. This situation arises due to the lack ofsome mechanism to reect the concept of \instances" of children in the RTL semantics. This problem does not arisein the semantics here de�ned because of the causal and cumulative nature of the reaction relation.7 Compatibility of the SemanticsDe�ning an operational semantics for the Modechart speci�cation language provides a framework for a practicalimplementation of the language. The de�nition introduced is now validated against the axiomatic formulation of the10

semantics presented in the original de�nition using RTL (Real-Time Logic [JM86]).7.1 An overview of the RTL semanticsThe semantics in RTL essentially de�ne, for every speci�cation, a set of assertions in the logic of RTL. The behaviorof the speci�cation is the set of solutions of the conjunction of the set of assertions, for each possible input to thesystem. We now present succinctly how to derive the set of assertions from a given speci�cation. Further detailsabout the nature of the formulas displayed here are in [JM94].0. For every (unique) triggering transition of the form M ! N with triggering condition C we add the formula:8t :: M (t; t) ^ C) 9j :: @(M ! N; j) = t1. For every (unique) timing transition of the form M ! N with timing condition (r; d) we add the formula:8t :: M [t; t)) 9t0; 9j :: @(M ! N; j) = t0 ^ Bwhere B = (t+ r � t0) ^ (t0 � t+ d).2. Let e1; e2 denote two mode transition expressions, a mutual exclusion constraint is a formula of the form:8i; 8j :: @(e1; i) 6= @(e2; j):Every pair of transitions explicitly exiting a mode are subject to a mutual exclusion constraint.3. If M is a serial mode (with Mi 2 children(M)) and the system exits M at time t then we add the followingassertion: 8t :: M (t; t]) n̂i=1(Mi(t; t))Mi(t; t]):4. If M is a parallel mode (with Mi 2 children(M)) and the system exits M at time t then we add thefollowing assertion: 8t :: M (t; t]) n̂i=1Mi(t; t]:5. Transition assertions for nested modes at level M (where mode M is serial). For each mode M 0 2 children(M)the following formulas are added:� 8t :: M 0(t; t)) Vni=1(Ci) (Ti _ M 0(t; t])),� 8t :: M 0[t; t)) Vmi=1 [(Tn+i ^ Bi) _ (9t0 :: M 0[t; t0] ^ t0 � t+ di)],� Vn+mi=1 Ti) Ri,� 8t :: M 0(t; t)) f Level M 0 formulas g.Where Ti is a predicate denoting the occurrence of the mode transition event corresponding to the i-thtransition from M 0, and each Ri is the conjunction of:� the mode predicates denoting explicit exits for the i-th transitions, and� the mode predicates denoting explicit and implicit mode entries for the i-th transition.6. Transition assertions for nested modes at level M (where mode M is parallel). The following formulas areadded:� 8t :: Vni=1(Ci) (Ti _ M (t; t])),� 8t :: M [t; t)) Vmi=1 [(Tn+i ^ Bi) _ (9t0 :: M [t; t0] ^ t0 � t+ di)],� Vn+mi=1 Ti) Ri, 11

and for each mode M 0 2 children(M) the following formula is added:8t :: M 0(t; t)) f Level M 0 formulas g:De�nition: Let S be a modechart. Then RT L(S) is the set of RTL assertions associated with S accordingto the semantics de�ned above. Given an input event set sequence I = i1; i2; : : :, an output event set sequenceO = o1; o2; : : : is a computation of S i�8t :: @(it; t) ^ @(ot; t) ^ RT L(S) is satis�able,where @(it; t) and @(ot; t) (loosely) denote that all events in the input and output event sets at position t occurprecisely at time t.The semantics is completed by adding a clause to restrict the computations to consider, namely, the lineariz-ability axiom. This axiom rules out all computations on which a total order relation capturing a causal relationshipamong events in a computation cannot be established. These computations are called linearizable computations.The order relation enforces a causality relationship and also eliminates the need for a series of auxiliary axioms (theaccountability assertions) that were introduced in the original semantics to rule out computations with spontaneousgeneration of events. The following two theorems establish the equivalence of the two semantics.Theorem 1 Let S be a modechart. Let I 2 �� be an input set sequence and O 2 ��o be the corresponding outputsequence for I. Then O can be considered as a linearizable computation of RT L(S).Theorem 2 Let S be a modechart. Let I 2 �� be an input set sequence and let O be a linerizable computationof RT L(S). Then O is the corresponding output sequence for input I under the operational semantics de�nition.Proof: The premise is that O is a linearizable computation, that is, it satis�es all axioms in RT L(S), with theoutput ot and input it corresponding to time t. We will construct an output sequence O0 2 ��o satisfying the theorem.The assertions corresponding to the system entering the root mode in the �rst instant are formed by applying eitherrule 5 or 6 to the root mode (depending on it being serial or parallel). These rules in turn prompt the entry of someor all of their children recursively.The structure of the formulas in rules 5 and 6 capture the hierarchy of S. That allows for the formulas of thechildren of the root mode to be (or not be) true properly at time 0: all children of parallel modes are entered andat most one of the children of a serial mode is entered. Furthermore, since O is linearizable, there exists an orderrelation between all those entry events. This is precisely the order in which the closure operation is calculated in theoperational semantics. This scenario described is the only di�erence between the computation at t = 0 and the restof the computation.If any transition belonging to the modes just entered is triggered and it is taken (rules 0, 1 and 2, and ignoringsituations of self reinstatement such as self loops), it is taken at this point.The process of constructing O0 is repeated just as described above for every time instant, creating eachreaction's output.8 Compiling Modechart Speci�cationsOnce we have de�ned the operational behavior of the Modechart speci�cation language, we introduce a compileralgorithm for deterministic modechart speci�cations that produces a �nite state machine which is guaranteed toimplement the semantics of the speci�cation. This compiler algorithm is essentially an exhaustive symbolic executionof the two-level structure of the semantics, for all possible inputs. Reactions are compiled into states of a �nite statemachine and time-taking transitions are the directed edges among the states.Section 8.2 describes an extension to the compiler to allow for a certain class of non-deterministic speci�cationswhich is useful in practice and still allows the compilation of the speci�cation.8.1 Deterministic Speci�cation CompilationThe deterministic operational semantics presented in Section 4 introduces a relation that captures the essence ofthe execution of a deterministic Modechart, thus it yields itself naturally into the implementation of a compiler,presented below. In this presentation we do not keep track of the transitions for simplicity in the presentation. It isstraightforward to add mechanisms to track them. 12

Algorithm: CompileMCInput: MC (deterministic Modechart Spec.), E (input set);Output: FSM (a Finite State Machine);m := closure(root(MC));% states is a list% and current state is a pointer in the liststates := insert (NIL, hm, tenter(m)i);current state := head(states);done := FALSE;while (not done) donew states := ;;for each i in 2E donew states [= �xpoint(current state, i);end forif (new states � states = ;) and (current state = last(states)) thendone := TRUE;else states [= new states;current state := next state(current state, states);end ifend whileoutput fsm(states);end AlgorithmWe next de�ne the functions �xpoint and next state. The function �xpoint computes the �xpointof a reaction, returning the �nal state after all triggered transitions have been taken with the given input. Thefunction next state picks the next unexplored state out of the state list (the one right after the one from whichcurrent state was produced in the state list) and \applies" a time instant to it, producing the new current stateto explore.Function: �xpointInput: s (state), i (input signal event)Output: f (state)f := s;while (any triggered(f)) dof := take(f, any triggered(f));end whilereturn f;end FunctionThe function take picks one transition out of all the ones triggered. If any set of pairwise conicting transitionsis triggered, then take must pick the transition with highest priority, or otherwise any one of the other consistenttransitions that may be left.It is easy to see that the size of the state space is exponential on the size of the input signal set, the modes inthe speci�cation and linear on the timing transition expressions. However, the actual state space and input signalset, as well as the timing expressions, are user speci�cations, thus it is reasonable to assume that the user will becareful in providing an input to the compiler such that no state space blowup occurs.Obviously, it is required that the input speci�cation be deterministic so that the �xpoint function above isdeterministic as well (Lemma 6). Assuming that, the function �xpoint is computed in O(TN logN) time, whereT is the size of the transition set, N is the combined size of the state space (inputs times mode combinations).We assume the set operations are performed with e�cient data structures in O(N logN), including computingthe closure of a set of modes, which is linear with the size of the mode set (function taken). Assuming an e�cientimplementation of lists, the next state function has a time complexity of O(T). Considering the above and thefact that T � N , the time complexity of the algorithm above is approximately O(N2 logN).13

8.2 Non-Deterministic Speci�cation CompilationIn order to provide support for a larger and more practical class of speci�cations, we now add a particular type ofnon-deterministic speci�cations, the run-time deterministic class of speci�cations. These are introduced to modelthe concept of instantaneous non-deterministic decisions within a modechart. They model very practical situationssuch as loop counters, decisions over contents or types of messages received or, in general control ow instantaneousdecisions based on data items whose value is determined out of the scope of the modechart being implemented andonly available at run-time. It is the speci�er's job to decide at which level these transitions are going to be used.Some may decide to model some of this behavior with external events and keep control modes running in parallelto the speci�cation to constrain the possible situations and model the environment more closely, while others maydecide to leave more of the data processing as external behavior.Each immediate child of a serial mode is allowed to have a number of transitions whose expression involveinstantaneous evaluations of predicates over external variables. These external variables are typed variables whosevalue can be changed at any time by the environment. The predicates must be exhaustive and mutually exclusive.Intuitively, all the predicates must cover all the range of the variables they test and only one of the predicates mustbe true at the moment of checking them. We assume they are side-e�ect free and that the environment remainsinvariant during the (instantaneous interval of) time in which they are invoked.For veri�cation purposes, these transitions are replaced by timing transitions of the form (0; 0) before anyproperty of the speci�cation is attempted to be proved. For implementation, the functions take and any triggeredneed to be rede�ned to generate calls to the instantaneous predicates in the transitions. It is clear that as long asthe predicates take an amount of time signi�cantly smaller than the synchronous period, the system will implementthe right behavior. The transition expression syntax, the de�nition of triggered transitions and the reaction relationare augmented accordingly (from the deterministic semantics) to support this class of speci�cations very easily.9 Discussion and Future WorkThis paper has introduced a formal operational semantics for the class of real-time speci�cations expressed in theModechart formalism. This semantics provides the framework for de�ning a compiler for a subclass of the Modechartlanguage. The original semantics of the Modechart language was described axiomatically in terms of Real-Time Logic.Introducing this semantics provides a more intuitive reference to the language as well as an implementation guidefor it. The compiler presented is an e�cient implementation of the language. It is based on an exhaustive symbolicexecution of the speci�cation within the synchronous model, which compiles communication and concurrency away,providing a simple �nite state machine.This semantics and compiler are a basis for future work on native code generation for Modechart speci�cationsin a number of parallel and distributed architectures within the SARTOR project. Other areas of future work includesupport of the complete set of transition expressions originally de�ned in the language, support for code generationin a variety of general purpose programming languages, more e�cient implementation of timing speci�cations andsupport for a distributed correctness-preserving implementation of speci�cations.References[BG92] G. Berry and G. Gonthier. The Esterel synchronous programming language: design, semantics, imple-mentation. Science of Computer Programming, 19:87{152, 1992.[JM86] F. Jahanian and A.K. Mok. \Safety Analysis of Timing Properties of Real-Time Systems". IEEE Transac-tions on Software Engineering, 12(9):890{904, September 1986.[JM94] F. Jahanian and A. Mok. Modechart: a speci�cation language for real-time systems. IEEE Transactionson Software Engineering, pages 933{947, December 1994.[Mok85] A. Mok. SARTOR {a design environment for real-time systems. In Proceedings 9th IEEE COMPSAC,1985.[Plo81] G. D. Plotkin. A structural approach to operational semantics. Technical report, Aarhus University, 1981.[Puc95] C. Puchol. An operational semantics for Modechart speci�cations. Technical report, Computer SciencesDepartment, The University of Texas at Austin, 1995. http://www.cs.utexas.edu/users/cpg/OP-SEM.ps.Z.14

[Stu95] Douglas A. Stuart. \Speci�cation and Analysis of Real-Time Systems". PhD thesis, The University of Texasat Austin, Department of Computer Sciences, 1995.

15

