Parallel Matrix Distributions:
Have we been doing it all wrong?

Carter Edwards
Po Geng
Abani Patra

Texas Institute for Computational and Applied Mathematics
The University of Texas at Austin
Austin, TX 78712

and
Robert van de Geijn

Department of Computer Sciences
and
Texas Institute for Computational and Applied Mathematics
The University of Texas at Austin
Austin, TX 78712

Oct. 10, 1995

Abstract

The basic premise of this report is that traditional matrix distributions for distributing matrices
on distributed memory parallel architectures are in practice too restrictive. The primary problem lies
with the fact that such distributions start with the matrix, not with the underlying physical problem.
Through a series of examples, we show how this hampers convenient interfaces between applications
and libraries. In some instances, we show how it hampers performance in general. We propose a new
data distribution, Physically Based Matriz Distributions, which appear to show promise for solving
the encountered problems. Some traditionally used distributions are shown to be a special, but often
unnatural, case of this more general class of distributions.

1 Introduction

Ever since the conception of distributed memory parallel computing, the problem of distributing
data to the individual processors of a parallel computer has been of concern. Perhaps the longest
studied problem has been that of distributing matrices to processors. For most dense linear algebra
problems, so-called two dimensional data distributions have been shown to be required to obtain
scalable high performance [4, 9, 15]. However, some disturbing observations made in this paper seem
to indicate the final solution has not yet been found.

The most immediate observation is that the distribution of matrices is typically decoupled from
the partitioning and distribution of the underlying physical problem. Indeed, it may stand in the
way of convenient interfaces between applications and libraries. Moreover, the distributions for
dense matrices fall totally short when applied to common sparse problems, whether they are solved

iteratively or directly. We argue how a physically based matriz distribution (PBMD) shows promise
for solving many of these problems.

The primary intent of this paper is to raise a flag that the final chapter on data distributions has
not yet been written. It is not that for some applications we have encountered mismatches between
application and parallel library interface. It is that for all real applications we have pursued, we have
encountered some mismatch.

We are not the first to indicate that making the linear operator represented by a matrix the center
of the universe leads to a very limited view of the world. Indeed, Alan Edelman quite bluntly states

[11]

The “All large dense matrices are structured” hypothesis: This point of view
states that nature is not so perverse as to throw n? numbers at us haphazardly. Therefore
when faced with large n by n matrices, we ought to try our hardest to take advantage of
the structure that is surely there.

Matrices encountered in practical computations often result from discretization of differential equa-
tion operators. These operators possess the property of local action, i.e., interactions described in
matrices are only among physically connected particles/subdomains. Alternative, long range interac-
tions can be approximated using multipole expansions. Both of these methods benefit from focusing
on the physical problem first and taking advantage of physical information in structuring the matrix.
We believe that this paper is the first paper that, through examples, links the philosophy that matri-
ces are not at the center of the universe to parallel matrix distributions, leading to our Fundamental
Principle of Physically Based Matrix Distributions in the next section.

We start our paper by giving traditional approaches to distributing matrices, as well as introducing
the class of physically based matrix distributions. Next, we give a number of case studies that
illustrate of how traditional data distributions fall short. Furthermore, we illustrate how PBMD may
resolve some aspects of the encountered problems. In Section 2.1, we show how traditional methods
are in some sense special cases of PBMD. In the conclusion, we hint at other applications where
PBMD is more natural.

2 Parallel Matrix Distributions

Parallel matrix algorithms generally depend on the ability to view the p processors in the network
as a logical r x ¢ (two dimensional) array, with p = re. We will denote the (¢, j)th processor in this
two dimensional mesh as P; ;. Notice that by setting r = 1 or ¢ = 1, we automatically capture one
dimensional meshes (linear arrays) in this model.

2.1 Traditional distributions

In traditionally used distributions, the matrix is partitioned and assigned to processors in one of the
three ways: Blocked (Fig. 1), wrapped or cyclic (Fig. 2), or block-wrapped (Fig. 3).

2.2 Physically based matrix distributions

We postulate that one should never start by considering how to decompose the matrix. Rather, one
should start by considering how to decompose the physical problem to be solved. Notice that it is the
elements of vectors that are typically associated with data of physical significance and it is therefore
their distribution to processors that is related to the distribution of the problem to be solved. A
matrix merely represents the relation between two vectors:

y= Az (1)

Since it 18 more natural to start with distributing the problem to processors, we partition = and y
and assign portions of these vectors to processors. We will call a matrix distribution physically based

AO,O AO,l AO,c—l
Al,O Al,l Al,c—l
A= . . .
Ar—l,O Ar—l,l Ar—l,c—l

Figure 1: Blocked distribution: A, ; assigned to P, ;.

aoo ao1 Ao(n-1)
aio ari A1(n-1)
A= i
A(n-1)0 | A(n-1)1 A(n-1)(n-1)

Figure 2: Wrapped (cyclic) distribution: a,; assigned to P (i modr,j mode)-

Ap,o A Ao N—1
Aqo A Ay Noa
A= . . .
An-10 | Av-1 Av-1,nN-1

Figure 3: Block-wrapped (block-cyclic) distribution: A, ; assigned to P;modr jmodec-

if the layout of the elements of the vectors, and y, is dictated by the layout of the corresponding
physical components.

Notice from Eqn. (1) that rows and columns of matrix A are associated with corresponding
elements of y and x, respectively.

Fundamental Principle of Physically Based Matrix Distributions: It is assumed
that elements of and y are distributed to processors according to the natural physical
layout of components of the physical problem to processors. If it is convenient for the
physical application to use the representation of a two-dimensional mesh and matrix,
then columns of A should be assigned to the same column of processors as corresponding
elements of and rows of A should be assigned to the same column of processors as
corresponding elements of y.

A particularly important instance of this is the case where x and y are distributed identically. Ap-
plications include N-body problems (computation of the force on the particles due to other particles)
[14] and iterative methods (conjugate gradient-like iterations require inner-products of z and y) [1].

2.2.1 Simple case

To start our explanation of what distributions meet the conditions of the above principle, we will
assume x and y are partitioned into p approximately equal subvectors:

Lo Yo
L1 n
r = . and y =
Lp—1 Yp—1

Distribute these subvectors both column-major:

Lo Ly C Lle=1)r Yo Yr C Y(e=1)r
L1 Lr4l | | Tle=1)r+1 Y1 Y41 | | Yle—1)r41
- and . .
x,— 1| ®op_q1 | - Tp—1 Yr — 1 | yor—1 | - Yp—1

where the (7, j) box in the mesh indicates processor P; ; and the contents of the box indicate the
data assigned to that processor.

Letting
Ao Ava || Aop-a
Ao Avqg || Aipaa
A=)) .
Ap-1,0 | Ap-11 Ap—1p-1

Our Fundamental Principle, together with the distribution of z and y induces the matrix distribution
given in Fig. 4. The distribution assigns blocks of columns of the matrix to columns of processors,
and wraps blocks of rows of the matrix to rows of processors.

2.2.2 Example

We now give an example of the simple case described above, on a six processor mesh.
We start with a 3 x 2 column major indexing of six processors

Pos0,0) | Pse(o,1)
Py | Pacan
Pog20) | Pso21)

We begin by partitioning and distributing the vectors y and z (where y = Az) among the processors.
In this example y and x are distributed identically.

To, Y0 <> Poo | 23,y3 & Po
r1,y1 < Pro| 24,54 & Py
T2,y2 < Poo | 25,5 & P2y

We now concentrate on the assignment of the corresponding blocks of the matrix to processors. From
the distribution of & we induce the following assignment of matrix blocks to rows of processors:

Yo Po o Ao osPy. Ao1sPo. Ao2espPe. AosePe. Aoasp,. AosesPo.
Y1=P1o Al,OHPL* Al,l»—>P1,* Al,ZHPL* A1,3»—>P1,* A1,4»—>P1,* A1,5i—>P1)*
Y2oPao | Az onp,, Az1ep,. Aspsnp,, A23ap,., Asanp,, A2sep,,
Y3 Po A300Py. As1ePo. Asaup,. A3soPe. Asasp,. Assop,.
YasPq 1 A4,0»—>P1,* A4,1»—>P1,* A4,2»—>P1,* A4,3»—>P1,* A4,4»—>P1,* A4,5»—>P1,*
Ys5—Pa 1 AS,O»—>P2,* AS,l»—>P2,* AS,Z»—>P2,* A5,3»—>P2,* A5,4»—>P2,* AS,S»—>P2,*

Similarly, from the distribution of # we induce the following assignment of matrix blocks to columns
of processors:

Ao omsP., AoispP., Ao2esp., Aosep., Aoasp., AossPp,, T0mPo o
A1 onpP., AP, Ar2op., Aisep., Alasp,., AisePp,, T15P, o
Az 0mpP,, A21mP., A220p,, A230p., Asasp,, A2sePp,, T2sPy
A A A A A A =

3,0+P. o 3,1=P. o 3,2=P. o 3,3—=P.1 3,4—=P. 1 3,5=Py 1 l’3»—>PD,1
A4,0»—>P*,0 A4,1»—>P*,0 A4,2»—>P*,0 A4,3»—>P*,1 A4,4»—>P*,1 A4,5»—>P*,1 LasPy 4
A5,0b—>P*)0 A5,1b—>P*)0 A5,2b—>P*)0 A5,3»—>P*,1 A5,4»—>P*,1 AS,SHP*J L55Po ¢

Collecting all the submatrices to the nodes that own them, we obtain the following matrix distribu-

tion:
(AO,O AO,l AO,Z) N PO,O (AO,S A0,4 AO,S) — PO,l
(Al,O Al,l Alyz) N Pl,O (A1,3 A1,4 A1,5) — Plyl

(Az,o Az Asp) Py (Az,s Ay Ass) Py,

))

2.2.3 General case

Naturally, we may wish to distribute both # and y identically, but in a more complex fashion. For
example, let the vectors be partitioned into smaller subvectors for load balancing and wrapped in
column-major order:

Lo, Tp, - .- LryLTptr,--- Lle=1)ry Tpt(ec=1)rs - - -
L1, Lp41y .- Lr41y Lpdrtly .- | Tle=1)r+1 Tptle=1)+15 - - -
LTr—1,Lpdr—1,.-- | Lo2r—1,Lp42r—1,--. | "~ LTp—1,T2p—-1,---

This induces a matrix distribution that wraps blocks of both columns and rows of the matrix to
columns and rows of processors, respectively. The wrapping of rows is tighter (smaller blocks) than
the wrapping of the columns. Notice that such a distribution of z and y may result from an effort
to load balance work associated with the generation of the matrix.

In general, if P is a permutation so that

Tg Yo
i i
Pr = ; and Py = —
jp—l gp—l

AO,O AO,T—I AO,(C—I)T AO,p—l
Ar,O Ar,r—l Ar,(c—l)r Ar,p—l
A(c—l)r,O A(c—l)r,r—l A(c—l)r,(c—l)r A(c—l)r,p—l
Al,O Al,r—l Al,(c—l)r Al,p—l
Ar+1,0 Ar+1,r—1 Ar+1,(c—1)r Ar+1,p—1
A(c—l)r+1,0 A(c—l)r+1,7‘—1 A(c—l)r+1,(c—1)7‘ A(c—l)r+1,p—1
Ar—l,O Ar—l,r—l Ar—l,(c—l)r Ar—l,p—l

AZT—I,O AZr—l,r—l A2r—1,(c—1)r AZr—l,p—l
Ap—1,0 Ap—1,r-1 Ap—1,(c=1)r Ap—1p-1
Processor P; ; receives submatrix
Aj jr Ai jri1 Ai (+1)r—1
Ar+i,j7‘ Ar+i,j7‘+1 Ar+i,(j+1)7‘—1
B;; =)) }
A(c—l)r+i,j7‘ A(c—l)r+i,j7‘+1 A(c—l)r+i,(j+1)7‘—1

Figure 4: Matrix distribution induced when z and y are subdivided into p subvectors and distributed

identically.

\ P,
PO,* Pl’* \ \

Pl,* ’

4

PZ,* ’

\ P,
Pl,* \\
PS,* \ sz* \

PS,* \

(a) (b)

4

Figure 5: Blocked (left) vs. PBMD (right) distributions. The pictures above represent matrices that
have been decomposed as described for these methods. The thick lines indicate structured nonzeroes.
For such structured problems, the former leads to severe work imbalance, leaving some processors
potentially idle, while the latter distributed the nonzeroes, and the associated work, more effectively.

and z; and y; are assigned in column major order, the induced matrix A is assigned to processors as
in Fig. 4, except that

Ao Ava || Aopaa
pApT Ao A || Aipaa
Ap-1,0 | Ap-111 Ap—1p-1

An important consequence of using PBMD with = and y distributed identically is

Observation: Given integer constant C', 0 < C < n and that all subvectors of # and
y are of equal length, the set of elements of A, { a;; st. (({ —j+n)modn) = C } is
distributed evenly among all processors. In particular, the diagonal is evenly distributed
among all processors.

This is illustrated in Fig. 5.

3 A Survey of Experience with Applications

In this section, we outline a number of problem we have encountered when applying traditional data
distributions to various algorithms and/or applications. For each, we indicate how PBMD provide a
solution to these problems.

3.1 Matrix-vector multiplication

Matrix-vector multiplication is one of the easiest to describe matrix operations: Given vector z of
length n and m x n matrix A, y is formed by y = Az. For simplicity, we will assume m = n.

3.1.1 Application: NAS Parallel CG Benchmark

The NAS parallel CG benchmark [1, 2] can be roughly described as a problem that uses an inverse
power iteration to find the smallest eigenvalue of a randomly sparse symmetric positive definite
matrix. To solve the associated linear system, a simple, unpreconditioned, conjugate gradient method
is used. The bulk of the computation is in the sparse matrix-vector multiply and inner-products of the
conjugate gradient iteration. The constraint is thus that both and y must be identically distributed
across all processors, to facilitate the inner-products.

3.1.2 Parallel Matrix-Vector Multiplication

A typical implementation [1, 14] will use a blocked matrix distribution as in Fig. 1. The issues for
the other traditional distributions are essentially the same. Assuming x is distributed in column-
major order, the columns of A assigned to column j of processors is determined by the elements of
subvectors x(;_1),, ... Tjr—1.

3.1.3 Problems
The distribution leads to two problems [14, 16, 17]:

e After the matrix-vector multiplication, the elements of y will invariably be distributed different
than z. After all, the elements of subvectors y(;_1yc, ..., Yic—1, which must eventually reside
in processor column ¢, are computed in processor row i, requiring an extra communication to
redistribute the subvectors.

e Although the matrix is randomly sparse, it must have a dense diagonal, which is not evenly
distributed among all processors.

e In practical problems, the sparsity may be “random” in the sense that no advantage can be
taken of the sparsity structure. However, nonzero elements can be expected to be concentrated
around the diagonal and off-diagonal bands. These regions of the matrix are not distributed
evenly among processors.

3.1.4 Benefits of PBMD

In [16, 17], we show how a PBMD induced by distributing « and y identically overcomes all of the
concerns mentioned above:

e No additional communication is required since the parallel implementation can be arranged to
leave the result y distributed like x.

e The diagonal is distributed equally to all processors.
e The distribution does a better job of distributing bands.

e If necessary, a tighter wrapping of the vectors can be used to improve the distribution of off-
diagonal bands.

3.2 Dense linear solver

We wish to compute the solution z to the system of equations Az = y, where A is a dense n x n
matrix. This is typically accomplished by first computing the LU factorization of A:

PA=LU

where L and U are lower and upper triangular, respectively. P is a permutation matrix that represents
the accumulation of all row pivots required for stability (we assume the factorization uses partial
pivoting.)

3.2.1 Application: boundary element problems in acoustics

One of the primary applications of parallel dense linear solvers for very large problems come from
boundary integral formulations in electromagnetics and acoustics [6, 13]. We will discuss the latter
application.

3.2.2 Parallel linear solver implementation

The standard matrix distributions used by parallel dense linear solver packages are two-dimensional
(block) wrapped distributions [4, 9, 15, 18]. The benefit of blocking is that it allows the parallel im-
plementation to be more conveniently implemented using level-3 BLAS [8] matrix-matrix operations)
which reduce memory traffic on each processor, thereby yielding higher performance. The wrapping
is necessary to maintain reasonable load balance as the LU factorization proceeds: During the later
stages, computation involves only trailing submatrices of the original matrix, which are not properly
balanced among processors if blocked distributions are used.

3.2.3 Problems

There are two fundamental problems with dense linear solver packages based on traditional data
distributions:

e While there is no sparsity, the work associated in generating the matrix is often not equal for
all parts of the matrix.
A special difficulty in the acoustics application is that the integral equation is not uniquely solv-
able at certain frequencies. This non-uniqueness problem is overcome by combining the origi-
nal integral formulation with a hypersingular integral formulation (the Burton-Miller method).
The whole integral formulation then i1s approximated by the Galerkin method. The hyper-
singular integrals are avoided through a special transformation on the weak formulation [13].
The Burton-Miller formulation induces significant extra work in generating the dense matrices
characteristic of integral formulations. Generating blocks of the matrix on the diagonal proved
substantially more expensive than blocks away from the diagonal. This was due to the fact that
more elements of the matrix in blocks on the diagonal of the matrix must be computed through
singular integrals. In order to perform singular integrals (either by the Duffy triangular coordi-
nate method [7] or the local polar coordinate method [3]), the original element must be divided
into several subtriangles; and then the integrals are performed separately in all subtriangles.
This procedure is much more expensive than the regular Gauss quadrature integral performed
in one element, and so, unless the logical mesh of P processes is in the formof 1 x Por P x 1,
some load imbalance will be created.

Naturally, one can argue that filling the matrix is an O(n?) operation, and hence lower order
compared to the O(n®) operations required to perform the solve. Nonetheless, for many ap-
plications, parallel generation of the matrix requires time comparable to the solve. Indeed, in
our study, it became beneficial to generate the matrix using a one-dimensional data distribution
(r = 1), writing the matriz to disk, and reloading it using the two-dimensional data distribution
required by the dense solver.

e The second problem is more frustrating for those of us who develop libraries than for the user of
the library: Having had extensive experience designing and implementing parallel dense linear
packages, using techniques also used by packages like ScalLAPACK, we have faced a fundamental
problem: How do we distribute the vector? The question has always been whether the vector
should be distributed like rows of a matrix, or like columns, or like diagonals? In any of these
solutions, only a small subset of processors hold the vector.

3.2.4 Benefits of PBMD

Physically based matrix distributions retain the benefits of wrapped data distributions. By decom-
posing the vectors into more subvectors than processors, and either row or column wrapping, the
matrix is wrapped, although tighter in one dimension than the other.

Although we have yet to implement a dense solver package using this data distribution, we have
many years of experience with more traditional data distributions. It is thus our belief that little
performance degradation will result. The benefits due to simpler library interfaces will likely outweigh
any performance degradation.

3.3 Factorization of block-sparse matrices

We wish to compute the solution z to the system of equations Az = y, where A is a sparse n X n
matrix, this can be accomplished by first factoring

A=LU

where L and U are lower and upper triangular, respectively. By taking advantage of sparsity, com-
putational and storage requirements can be greatly reduced. The sparsity is usually a result of the
local action of the underlying operator.

3.3.1 Application: hp-adaptive FEM problems

A standard approach to solving partial differential equations arising in engineering and physics is
to discretize the problem using finite element methods. The most sophisticated of these use highly
adaptive hp meshes, wherein both the local element size and the polynomial order are dynamically
chosen for maximum efficiency [19]. These problems lead to highly irregular sparse linear systems.
However, the sparsity typically exhibits itself as locally dense blocks. The sparsity pattern is dictated
by both the connectivity of the graph associated with the discretization mesh and the local polynomial
distributions. A linear element (polynomial degree one) on a three dimensional scalar problem has
eight nonzeroes per row, whereas a fifth order element on a three dimensional scalar problem would
lead to 216 nonzeroes per row. Realistic problems consist of three to four degrees of freedom per
node, multiplying the number of nonzeroes accordingly.

3.3.2 Parallel implementation

Methods proposed for parallel implementations of direct LU factorization and corresponding sparse
triangular solvers take advantage of local density with techniques like nested disection and recursive
spectral bisection orderings. These methods create a physically based ordering that reduces the
amount of fill-in that occurs during the factorization stage, thereby reducing required computation.

Given an ordering, one effective general purpose implementations of sparse factorization is given
by Rothberg and Schreiber [20, 21]. In their implementation, they use a “supernodal” method that
allows them to take advantage of dense blocks in the sparse matrix. To distribute the sparse matrix
among processors, they view the processors as a logical two dimensional mesh and a block-wrapped
data distribution, except that they use a heuristic that maps the columns and rows asymmetrically.
Intuitively, their approach makes sense, since eventually fill-in leads to requirements during the later
stages of the algorithm that are much like those of dense matrices. However, during the earlier stages,
the diagonal needs to be distributed among all nodes.

3.3.3 Problems

By design, a primary source of density in the matrix is along the diagonal of the matrix. Indeed,
the closer to diagonal the matrix, the less fill-in occurs. As with the dense linear solve and the
sparse matrix-vector multiply, this leads to an imbalance in generating the problem and/or initial

10

stages of the factorization itself. This is particularly problematic, since clever orderings allow a lot of
parallelism early in the computation. Indeed, during these early stages, ideally we want the portion of
the matrix being factored to be block diagonal, with individual blocks assigned to different processors.

Rothberg and Schreiber overcome this problem by using a heuristic that maps rows and columns
in a nonsymmetric fashion. This then spreads out the diagonal among the processors.

3.3.4 Benefits of PBMD

The implementation of hp-adaptive FEM solvers is a prime example of how PBMD goes naturally with
the distribution of the physical problem: Elements are distributed to processors in an effort to achieve
load balance during the generation and solving of the linear system. In addition, careful ordering of
the elements reduces both matrix fill-in and communication during the parallel factorization.

Hence, we assign subvectors (corresponding to physical partitions) in some prescribed fashion to
processors. However, to further reduce fill-in in the matrix, each subvector can be further partitioned
into two — a set of exterior variables and a set of interior variables yx = {yxg,yrr}. The interior
variables yi; have no non-zero interactions with any variable outside the partition. The immediate
implication is that the dense diagonal block associated with this can be eliminated locally with no
resulting fill in outside the block. Furthermore, since the exterior of each physical partition is of a
space dimension one less that the original space dimension (surface instead of volume), the number
of variables in the exterior partition is significantly smaller than the interior partition. Hence most of
the work is done on blocks of the matrix along the diagonal before any fill-in or communication needs
occur. Traditional two-dimensional distributions would assign this work to only a few processors.
Nonetheless, once the fill-in does generate a nearly dense trailing submatrix, a two dimensional data
distribution can be ensured using some form of wrapping. In essence, PBMD reaches the goal of the
heuristic used by Rothberg and Schreiber in a more organized fashion, based on solid principles.

The conclusion 1s that from the physical attributes of the problem, very intelligent decisions can
be made about how to distribute the physical problems. While traditional data distributions can get
in the way of library routines that can then be used to solve the associated linear systems, PBMD
appears to fit the requirements naturally.

4 Traditional methods: a Special Case

In this section, we show how traditional matrix distributions can be viewed as a special case of phys-
ically based matrix distributions, when # and y are distributed appropriately. By our fundamental
principle, if x and y are naturally distributed as required, the traditional methods are a special case
of PBMD. Otherwise, they are an unnatural case of PBMD.

4.1 Inducing a blocked distribution

Let
Lo Yo
L1 N
xr = . and y =
Lp—1 Yp—1

If we now view the processors logically as a two dimensional array, we must decide how to assign the
subvectors of # and y to these processors.

Assign subvectors of « to processors in column-major order and subvectors of y to processors in
row-major order:

11

Lo Lr Lle—1)xr Yo Y1] Ye—1
L1 Lr41 o Fle=D)xr+1 Ye Yet1 o Y2e—1
L2 Lri2 | Tle=1)xr42 Y2e Y2e+1 | YBe—1
Lr—1 | T(2r=1) | " Lp—1 Yior—De | Yr—De+1 | | Yp-1

Consider again the equation y = Az. Notice that elements of y are formed from corresponding rows
of A and columns of A are multiplied by corresponding elements of & before being added together to
form y. If the matrix is blocked as in Fig. 1 then

Yic T Xp x{c—l)r
Yict1 L1 Lpr41 Llc—1)r+1
] = A; 0] +Aiq] +o A ;
Y(i+1)e-1 Tr—1 Tar—1 Tp-1

Notice that if the dimensions of blocks A; ; are chosen appropriately, elements of vector x exist within
the same column of processors as A; ;, and elements of vector y exist in the same row of processors.
Turning this observation around, we can say that ¢f the elements of z and y are distributed as
indicated, then a logical distribution for A is to block it, and assign A; ; to processor P; ;. In other
words:

Partitioning # and y into p subvectors and distributing them in row and column major
order, respectively, induces a blocked matrix distribution.

4.2 Inducing a wrapped distribution

Let
Lo Yo
L1 N
x = . and y =
Tp—1 Yn-1

View the processors logically as a two dimensional array and assign subvectors of z to processors in
row-major order and subvectors of y to processors in column-major order, wrapping if necessary:

Lo, Lp,y ... Le—1,Lpge—1y---
Le)Tpte)--- L2e—1, Tp42e—1,- - -
Loc) Lp42ey- - L3c—1,Lp43c—1)- -
$(r—1)ca$p+(r—1)ca~~~ Lp—1,L2p—1y---
Yo, Yp, - - - Ye=D)xrr Yp(c=1)xrs - - -
Y1, Yp+1, - - - o Yle—Dxr+1 Ypt(e=1)xr+1s - - -
Y2, Yp+2, - - - C Ye=D)xr+2 Ypt(c=1)r+2, - - -
Y—1,Yp4r—1,.-- Yp—1,Y2p—1,- .-

12

If the matrix is blocked as in Fig. 2, then

Yi ai 0 aj c a; 2¢ Lo
Yr i A(r44),.0 Alr4i),c A(r4i),2¢ co Te
Yor4i - A(2r44),.0 | A2r4i)e | C2r+4),2¢ | " Loc
g 1 a5 c41 a5 2c41 T
A(r4i),.1 A(r4i),etl A(r4i),2¢+1 e Lol
A2r44),.1 | F2r4i),e4+1 | A(2r44),2e41 | """ L2c+1

Notice that again elements of vector z exist within the same column of processors as columns of A
and elements of vector y exist in the same row of processors as rows of A. Turning this observation
around, we can say that if the elements of ¢ and y are distributed as indicated, then a logical
distribution for A is to wrap it, assigning a;; to processor P(;modr),(jmode)- In other words:

Partitioning z and y into n elements and wrapping them in row and column major order,
respectively, induces a two dimensional wrapped matrix distribution.

4.3 Inducing a block-wrapped distribution

Finally, a block-wrapped distribution can be induced by partitioning = and y into small vectors,
rather than individual elements; and distributing to processors at that granularity.

5 Conclusions

We have demonstrated encountered problems with traditional matrix distributions and proposed an
alternative distribution that appears to solve some of the problems. It is our belief that PBMD is much
more natural: it allows the user of a parallel linear algebra library to concentrate on decomposing the
problem rather than on how to fit the generation of the problem into a matrix distribution that has
little to do with the physical problem. In addition, we have argued that the new data distribution is
much more natural for sparse algorithms.

While we have used the problem of linear system solvers to illustrate our point, very similar issues
arise in the solution of linear eigenvalue problems. Take, for instance, traditional methods for solving
the symmetric algebraic eigenvalue problem: The first phase involves a reduction to tridiagonal
form, which requires a two-dimensional data distribution for scalability [5]. However, subsequently,
the tridiagonal eigenvalue problem must be solved. While traditional matrix distributions leave the
tridiagonal on a small number of processors, PBMD leaves it distributed among all processors.

Matrices can come in many forms, and need not be explicitly formed. Matrices can exist as trees
containing information on how to perform the computation (e.g. used by fast multipole methods)
or may exist implicitly (e.g. implicit element-by-element finite element methods). In that case,
PBMD may give an insight into where the computation that could be expressed as a matrix should
be performed.

Acknowledgements

The financial support of DARPA under Contract DABT63-92-C-0042 and the Office of Naval Re-
search under Contract N00014-95-1-0401 is gratefully acknowledged.

The ideas leading to the PBMD started with a collaboration on the implementation of the NAS
Parallel CG Benchmark with John Lewis and David Payne. We would like to mention a few people

13

who have worked with us over the years on research that also led up to the presented ideas. These
include Tom Cwik, Jim Demmel, Jack Dongarra, Shaoze Ouyang, Jean Patterson, David Payne,
Rob Schreiber, Yun Shen. and David Walker. We thank Alan Edelman for suggestions made after
reviewing an earlier draft.

References

(1]

The NAS Parallel Benchmarks. David Bailey, John Barton, Thomas Lasinski and Horst Simon
(editors). NASA Technical Memorandum 103863, NASA Ames Research Center, Moffett Field,
CA, July 1993.

D. H. Bailey, E. Barszcz, L.. Dagum, and H. D. Simon. NAS Parallel Benchmark Results, Pro-
ceedings of SHPCCY94.

C.A Brebbia, J. C. F. Telles and L. C. Wrobel 1984, Boundary Element Techniques, Theory and
applications in Engineering, Springer-Verlag.

J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker, “Scalapack: A Scalable Linear Algebra
Library for Distributed Memory Concurrent Computers, Proceedings of the Fourth Symposium
on the Frontiers of Masswely Parallel Computation. IEEE Comput. Soc. Press, 1992, pp. 120-
127.

J. Choi, J. Dongarra, and D. Walker, “The Design of a Parallel Dense Linear Algebra Software
Library: Reduction to Hessenberg, Tridiagonal, and Bidiagonal Form,” UT, CS-95-275, February
1995.

Tom Cwik, Robert van de Geijn, and Jean Patterson, “Application of Massively Parallel Com-
putation to Integral Equ Models of Electromagnetic Scattering,” Journal of the Optical Society
of America A, Vol. 11, No. 4, April 1994, pp. 1538-1545

L. Demkowicz, A. Karafiat and J.T. Oden 1992 Comp. Meths. Appl. Mech. Engrg. 101, 251-282.
Solution of elastic scattering problems in linear acoustics using h-p boundary element method.

J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff, “A Set of Level 3 Basic Linear Algebra
Subprograms,” TOMS, Vol. 16, No. 1, ppages 1-17, 1990.

Jack. J. Dongarra, Robert A. van de Geijn, and David W. Walker, “Scalability Issues Affecting
the Design of a Dense Linear Algebra Library,” Journal of Parallel and Distributed Computing,
Vol. 22, No. 3, Sept. 1994, pp. 523-537.

L. Demkowicz, J. T. Oden, W. Rachowicz and O, Hardy ”"Toward A Universal hp Adaptive
Finite Element Strategy, Part 1. Constrained Approximation and Data Structure” | Comput.
Methods. Appl. Mech. and Engg., 77(1989), pp.79-112

A. Edelman, “Large Dense Numerical Linear Algebra in 1993: The Parallel Computing Influ-
ence”. Journal of Supercomputing Applications. 7 (1993), pp. 113-128.

G. Fox, et al., Solving Problems on Concurrent Processors: Volume 1, Prentice Hall, Englewood

Cliffs, NJ, 1988.

P. Geng, J. T. Oden and R. A. van de Geijn 1995, Massively Parallel Computation for Acous-
tical Scattering Problems using Boundary Element Methods to appear in Journal of Sound and
Vibration.

B. Hendrickson, R. Leland, and S. Plimpton, A Parallel Algorithm for Matrix-Vector Multi-
plication, Tech. Rep. SAND 92-2765, Sandia National Laboratories, Albuquerque, NM, March
1993.

B. A. Hendrickson and D. E. Womble, “The Torus-Wrap Mapping for Dense Matrix Calculations
on Massively Parallel Computers,” SIAM J. Sci. Comput., check issue number

14

[16]

J. G. Lewis, D. G. Payne, and R. A. van de Geijn, “Matrix-Vector Multiplication and Conjugate
Gradient Algorithms on Distributed Memory Computers,” in Proceedings of the Scalable High
Performance Computing Conference 1994.

J.G. Lewis and R.A. van de Geijn, Distributed Memory Matrix-Vector Multiplication and Con-

Jugate Gradient Algorithms, in the proceedings of Supercomputing ‘93, Portland, OR, November
15-19, 1993.

W. Lichtenstein and S. L. Johnsson, ”Block-Cyclic Dense Linear Algebra” Harvard University,
Center for Research in Computing Technology, TR-04-92, Jan., 1992.

J. T. Oden, A. Patra, Y. Feng, “Parallel Domain Decomposition Solver For Adaptive Ap Meth-
ods” submitted to SIAM Journal for Numerical Methods.

E. Rothberg and R. Schreiber, “Improved load distribution in parallel sparse Cholesky factor-
ization.” in Proceedings of Supercomputing 94, pp. 783-792.

E. Rothberg and R. Schreiber, “Efficient parallel sparse Cholesky factorization,” in Proceedings
of the Seventh SIAM Conference on Parallel Processing for Scientific Computing (R. Schreiber,
et al. eds.), STAM, 1994, pp. 407-412.

15

