
Parallel Matrix Distributions:Have we been doing it all wrong?Carter EdwardsPo GengAbani PatraTexas Institute for Computational and Applied MathematicsThe University of Texas at AustinAustin, TX 78712andRobert van de GeijnDepartment of Computer SciencesandTexas Institute for Computational and Applied MathematicsThe University of Texas at AustinAustin, TX 78712Oct. 10, 1995AbstractThe basic premise of this report is that traditional matrix distributions for distributing matriceson distributed memory parallel architectures are in practice too restrictive. The primary problem lieswith the fact that such distributions start with the matrix, not with the underlying physical problem.Through a series of examples, we show how this hampers convenient interfaces between applicationsand libraries. In some instances, we show how it hampers performance in general. We propose a newdata distribution, Physically Based Matrix Distributions, which appear to show promise for solvingthe encountered problems. Some traditionally used distributions are shown to be a special, but oftenunnatural, case of this more general class of distributions.1 IntroductionEver since the conception of distributed memory parallel computing, the problem of distributingdata to the individual processors of a parallel computer has been of concern. Perhaps the longeststudied problem has been that of distributing matrices to processors. For most dense linear algebraproblems, so-called two dimensional data distributions have been shown to be required to obtainscalable high performance [4, 9, 15]. However, some disturbing observations made in this paper seemto indicate the �nal solution has not yet been found.The most immediate observation is that the distribution of matrices is typically decoupled fromthe partitioning and distribution of the underlying physical problem. Indeed, it may stand in theway of convenient interfaces between applications and libraries. Moreover, the distributions fordense matrices fall totally short when applied to common sparse problems, whether they are solved1



iteratively or directly. We argue how a physically based matrix distribution (PBMD) shows promisefor solving many of these problems.The primary intent of this paper is to raise a 
ag that the �nal chapter on data distributions hasnot yet been written. It is not that for some applications we have encountered mismatches betweenapplication and parallel library interface. It is that for all real applications we have pursued, we haveencountered some mismatch.We are not the �rst to indicate that making the linear operator represented by a matrix the centerof the universe leads to a very limited view of the world. Indeed, Alan Edelman quite bluntly states[11] The \All large dense matrices are structured" hypothesis: This point of viewstates that nature is not so perverse as to throw n2 numbers at us haphazardly. Thereforewhen faced with large n by n matrices, we ought to try our hardest to take advantage ofthe structure that is surely there.Matrices encountered in practical computations often result from discretization of di�erential equa-tion operators. These operators possess the property of local action, i.e., interactions described inmatrices are only among physically connected particles/subdomains. Alternative, long range interac-tions can be approximated using multipole expansions. Both of these methods bene�t from focusingon the physical problem �rst and taking advantage of physical information in structuring the matrix.We believe that this paper is the �rst paper that, through examples, links the philosophy that matri-ces are not at the center of the universe to parallel matrix distributions, leading to our FundamentalPrinciple of Physically Based Matrix Distributions in the next section.We start our paper by giving traditional approaches to distributing matrices, as well as introducingthe class of physically based matrix distributions. Next, we give a number of case studies thatillustrate of how traditional data distributions fall short. Furthermore, we illustrate how PBMD mayresolve some aspects of the encountered problems. In Section 2.1, we show how traditional methodsare in some sense special cases of PBMD. In the conclusion, we hint at other applications wherePBMD is more natural.2 Parallel Matrix DistributionsParallel matrix algorithms generally depend on the ability to view the p processors in the networkas a logical r � c (two dimensional) array, with p = rc. We will denote the (i; j)th processor in thistwo dimensional mesh as Pi;j. Notice that by setting r = 1 or c = 1, we automatically capture onedimensional meshes (linear arrays) in this model.2.1 Traditional distributionsIn traditionally used distributions, the matrix is partitioned and assigned to processors in one of thethree ways: Blocked (Fig. 1), wrapped or cyclic (Fig. 2), or block-wrapped (Fig. 3).2.2 Physically based matrix distributionsWe postulate that one should never start by considering how to decompose the matrix. Rather, oneshould start by considering how to decompose the physical problem to be solved. Notice that it is theelements of vectors that are typically associated with data of physical signi�cance and it is thereforetheir distribution to processors that is related to the distribution of the problem to be solved. Amatrix merely represents the relation between two vectors:y = Ax (1)Since it is more natural to start with distributing the problem to processors, we partition x and yand assign portions of these vectors to processors. We will call a matrix distribution physically based2



A = 0BBB@ A0;0 A0;1 � � � A0;c�1A1;0 A1;1 � � � A1;c�1... ... ...Ar�1;0 Ar�1;1 � � � Ar�1;c�1 1CCCAFigure 1: Blocked distribution: Ai;j assigned to Pi;j.
A = 0BBB@ a00 a01 � � � a0(n�1)a10 a11 � � � a1(n�1)... ... ...a(n�1)0 a(n�1)1 � � � a(n�1)(n�1) 1CCCAFigure 2: Wrapped (cyclic) distribution: aij assigned to P(imod r;jmod c).
A = 0BBB@ A0;0 A0;1 � � � A0;N�1A1;0 A1;1 � � � A1;N�1... ... ...AN�1;0 AN�1;1 � � � AN�1;N�1 1CCCAFigure 3: Block-wrapped (block-cyclic) distribution: Ai;j assigned to Pimod r;jmod c.3



if the layout of the elements of the vectors, x and y, is dictated by the layout of the correspondingphysical components.Notice from Eqn. (1) that rows and columns of matrix A are associated with correspondingelements of y and x, respectively.Fundamental Principle of Physically Based Matrix Distributions: It is assumedthat elements of x and y are distributed to processors according to the natural physicallayout of components of the physical problem to processors. If it is convenient for thephysical application to use the representation of a two-dimensional mesh and matrix,then columns of A should be assigned to the same column of processors as correspondingelements of x and rows of A should be assigned to the same column of processors ascorresponding elements of y.A particularly important instance of this is the case where x and y are distributed identically. Ap-plications include N-body problems (computation of the force on the particles due to other particles)[14] and iterative methods (conjugate gradient-like iterations require inner-products of x and y) [1].2.2.1 Simple caseTo start our explanation of what distributions meet the conditions of the above principle, we willassume x and y are partitioned into p approximately equal subvectors:x = 0BBB@ x0x1...xp�1 1CCCA and y = 0BBB@ y0y1...yp�1 1CCCADistribute these subvectors both column-major:x0 xr � � � x(c�1)rx1 xr+1 � � � x(c�1)r+1... ... ...xr � 1 x2r�1 � � � xp�1 and y0 yr � � � y(c�1)ry1 yr+1 � � � y(c�1)r+1... ... ...yr � 1 y2r�1 � � � yp�1where the (i; j) box in the mesh indicates processor Pi;j and the contents of the box indicate thedata assigned to that processor.Letting A = 0BBB@ A0;0 A0;1 � � � A0;p�1A1;0 A1;1 � � � A1;p�1... ... ...Ap�1;0 Ap�1;1 Ap�1;p�1 1CCCAOur Fundamental Principle, together with the distribution of x and y induces the matrix distributiongiven in Fig. 4. The distribution assigns blocks of columns of the matrix to columns of processors,and wraps blocks of rows of the matrix to rows of processors.2.2.2 ExampleWe now give an example of the simple case described above, on a six processor mesh.We start with a 3� 2 column major indexing of six processorsP0$(0;0) P3$(0;1)P1$(1;0) P4$(1;1)P2$(2;0) P5$(2;1)4



We begin by partitioning and distributing the vectors y and x (where y = Ax) among the processors.In this example y and x are distributed identically.x0; y0 $ P0;0 x3; y3 $ P0;1x1; y1 $ P1;0 x4; y4 $ P1;1x2; y2 $ P2;0 x5; y5 $ P2;1We now concentrate on the assignment of the corresponding blocks of the matrix to processors. Fromthe distribution of b we induce the following assignment of matrix blocks to rows of processors:0BBBBBB@ y0 7!P0;0y1 7!P1;0y2 7!P2;0y3 7!P0;1y4 7!P1;1y5 7!P2;1 1CCCCCCA) 0BBBBBB@ A0;07!P0;� A0;17!P0;� A0;27!P0;� A0;37!P0;� A0;47!P0;� A0;5 7!P0;�A1;07!P1;� A1;17!P1;� A1;27!P1;� A1;37!P1;� A1;47!P1;� A1;5 7!P1;�A2;07!P2;� A2;17!P2;� A2;27!P2;� A2;37!P2;� A2;47!P2;� A2;5 7!P2;�A3;07!P0;� A3;17!P0;� A3;27!P0;� A3;37!P0;� A3;47!P0;� A3;5 7!P0;�A4;07!P1;� A4;17!P1;� A4;27!P1;� A4;37!P1;� A4;47!P1;� A4;5 7!P1;�A5;07!P2;� A5;17!P2;� A5;27!P2;� A5;37!P2;� A5;47!P2;� A5;5 7!P2;� 1CCCCCCASimilarly, from the distribution of x we induce the following assignment of matrix blocks to columnsof processors:0BBBBBB@ A0;0 7!P�;0 A0;17!P�;0 A0;27!P�;0 A0;37!P�;1 A0;47!P�;1 A0;57!P�;1A1;0 7!P�;0 A1;17!P�;0 A1;27!P�;0 A1;37!P�;1 A1;47!P�;1 A1;57!P�;1A2;0 7!P�;0 A2;17!P�;0 A2;27!P�;0 A2;37!P�;1 A2;47!P�;1 A2;57!P�;1A3;0 7!P�;0 A3;17!P�;0 A3;27!P�;0 A3;37!P�;1 A3;47!P�;1 A3;57!P�;1A4;0 7!P�;0 A4;17!P�;0 A4;27!P�;0 A4;37!P�;1 A4;47!P�;1 A4;57!P�;1A5;0 7!P�;0 A5;17!P�;0 A5;27!P�;0 A5;37!P�;1 A5;47!P�;1 A5;57!P�;1 1CCCCCCA( 0BBBBBB@ x0 7!P0;0x1 7!P1;0x2 7!P2;0x3 7!P0;1x4 7!P1;1x5 7!P2;1 1CCCCCCACollecting all the submatrices to the nodes that own them, we obtain the following matrix distribu-tion: � A0;0 A0;1 A0;2A3;0 A3;1 A3;2 � 7! P0;0 � A0;3 A0;4 A0;5A3;3 A3;4 A3;5 � 7! P0;1� A1;0 A1;1 A1;2A4;0 A4;1 A4;2 � 7! P1;0 � A1;3 A1;4 A1;5A4;3 A4;4 A4;5 � 7! P1;1� A2;0 A2;1 A2;2A5;0 A5;1 A5;2 � 7! P2;0 � A2;3 A2;4 A2;5A5;3 A5;4 A5;5 � 7! P2;12.2.3 General caseNaturally, we may wish to distribute both x and y identically, but in a more complex fashion. Forexample, let the vectors be partitioned into smaller subvectors for load balancing and wrapped incolumn-major order:x0; xp; : : : xr; xp+r ; : : : � � � x(c�1)r; xp+(c�1)r; : : :x1; xp+1; : : : xr+1; xp+r+1; : : : � � � x(c�1)r+1; xp+(c�1)+1; : : :... ... ...xr�1; xp+r�1; : : : x2r�1; xp+2r�1; : : : � � � xp�1; x2p�1; : : :This induces a matrix distribution that wraps blocks of both columns and rows of the matrix tocolumns and rows of processors, respectively. The wrapping of rows is tighter (smaller blocks) thanthe wrapping of the columns. Notice that such a distribution of x and y may result from an e�ortto load balance work associated with the generation of the matrix.In general, if P is a permutation so thatPx = 0BBB@ ~x0~x1...~xp�1 1CCCA and Py = 0BBB@ ~y0~y1...~yp�1 1CCCA5



A0;0 � � � A0;r�1 � � � A0;(c�1)r � � � A0;p�1Ar;0 � � � Ar;r�1 � � � Ar;(c�1)r � � � Ar;p�1... ... ... ...A(c�1)r;0 � � � A(c�1)r;r�1 � � � A(c�1)r;(c�1)r � � � A(c�1)r;p�1A1;0 � � � A1;r�1 � � � A1;(c�1)r � � � A1;p�1Ar+1;0 � � � Ar+1;r�1 � � � Ar+1;(c�1)r � � � Ar+1;p�1... ... ... ...A(c�1)r+1;0 � � � A(c�1)r+1;r�1 � � � A(c�1)r+1;(c�1)r � � � A(c�1)r+1;p�1... ... ... ...Ar�1;0 � � � Ar�1;r�1 � � � Ar�1;(c�1)r � � � Ar�1;p�1A2r�1;0 � � � A2r�1;r�1 � � � A2r�1;(c�1)r � � � A2r�1;p�1... ... ... ...Ap�1;0 � � � Ap�1;r�1 � � � Ap�1;(c�1)r � � � Ap�1;p�1Processor Pi;j receives submatrixBi;j = 0BBB@ Ai;jr Ai;jr+1 � � � Ai;(j+1)r�1Ar+i;jr Ar+i;jr+1 � � � Ar+i;(j+1)r�1... ... ...A(c�1)r+i;jr A(c�1)r+i;jr+1 � � � A(c�1)r+i;(j+1)r�1 1CCCAFigure 4: Matrix distribution induced when x and y are subdivided into p subvectors and distributedidentically.
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@@@@@@@@@@@@@@(a) (b)Figure 5: Blocked (left) vs. PBMD (right) distributions. The pictures above represent matrices thathave been decomposed as described for these methods. The thick lines indicate structured nonzeroes.For such structured problems, the former leads to severe work imbalance, leaving some processorspotentially idle, while the latter distributed the nonzeroes, and the associated work, more e�ectively.and ~xi and ~yi are assigned in column major order, the induced matrix A is assigned to processors asin Fig. 4, except that PAP T = 0BBB@ A0;0 A0;1 � � � A0;p�1A1;0 A1;1 � � � A1;p�1... ... ...Ap�1;0 Ap�1;1 Ap�1;p�1 1CCCAAn important consequence of using PBMD with x and y distributed identically isObservation: Given integer constant C, 0 � C < n and that all subvectors of x andy are of equal length, the set of elements of A, f ai;j s.t. ((i � j + n)modn) = C g isdistributed evenly among all processors. In particular, the diagonal is evenly distributedamong all processors.This is illustrated in Fig. 5.3 A Survey of Experience with ApplicationsIn this section, we outline a number of problem we have encountered when applying traditional datadistributions to various algorithms and/or applications. For each, we indicate how PBMD provide asolution to these problems.3.1 Matrix-vector multiplicationMatrix-vector multiplication is one of the easiest to describe matrix operations: Given vector x oflength n and m � n matrix A, y is formed by y = Ax. For simplicity, we will assume m = n.7



3.1.1 Application: NAS Parallel CG BenchmarkThe NAS parallel CG benchmark [1, 2] can be roughly described as a problem that uses an inversepower iteration to �nd the smallest eigenvalue of a randomly sparse symmetric positive de�nitematrix. To solve the associated linear system, a simple, unpreconditioned, conjugate gradient methodis used. The bulk of the computation is in the sparse matrix-vector multiply and inner-products of theconjugate gradient iteration. The constraint is thus that both x and y must be identically distributedacross all processors, to facilitate the inner-products.3.1.2 Parallel Matrix-Vector MultiplicationA typical implementation [1, 14] will use a blocked matrix distribution as in Fig. 1. The issues forthe other traditional distributions are essentially the same. Assuming x is distributed in column-major order, the columns of A assigned to column j of processors is determined by the elements ofsubvectors x(j�1)r; : : :xjr�1.3.1.3 ProblemsThe distribution leads to two problems [14, 16, 17]:� After the matrix-vector multiplication, the elements of y will invariably be distributed di�erentthan x. After all, the elements of subvectors y(i�1)c; : : : ; yic�1, which must eventually residein processor column i, are computed in processor row i, requiring an extra communication toredistribute the subvectors.� Although the matrix is randomly sparse, it must have a dense diagonal, which is not evenlydistributed among all processors.� In practical problems, the sparsity may be \random" in the sense that no advantage can betaken of the sparsity structure. However, nonzero elements can be expected to be concentratedaround the diagonal and o�-diagonal bands. These regions of the matrix are not distributedevenly among processors.3.1.4 Bene�ts of PBMDIn [16, 17], we show how a PBMD induced by distributing x and y identically overcomes all of theconcerns mentioned above:� No additional communication is required since the parallel implementation can be arranged toleave the result y distributed like x.� The diagonal is distributed equally to all processors.� The distribution does a better job of distributing bands.� If necessary, a tighter wrapping of the vectors can be used to improve the distribution of o�-diagonal bands.3.2 Dense linear solverWe wish to compute the solution x to the system of equations Ax = y, where A is a dense n � nmatrix. This is typically accomplished by �rst computing the LU factorization of A:PA = LUwhere L and U are lower and upper triangular, respectively. P is a permutationmatrix that representsthe accumulation of all row pivots required for stability (we assume the factorization uses partialpivoting.) 8



3.2.1 Application: boundary element problems in acousticsOne of the primary applications of parallel dense linear solvers for very large problems come fromboundary integral formulations in electromagnetics and acoustics [6, 13]. We will discuss the latterapplication.3.2.2 Parallel linear solver implementationThe standard matrix distributions used by parallel dense linear solver packages are two-dimensional(block) wrapped distributions [4, 9, 15, 18]. The bene�t of blocking is that it allows the parallel im-plementation to be more conveniently implemented using level-3 BLAS [8] matrix-matrix operations)which reduce memory tra�c on each processor, thereby yielding higher performance. The wrappingis necessary to maintain reasonable load balance as the LU factorization proceeds: During the laterstages, computation involves only trailing submatrices of the original matrix, which are not properlybalanced among processors if blocked distributions are used.3.2.3 ProblemsThere are two fundamental problems with dense linear solver packages based on traditional datadistributions:� While there is no sparsity, the work associated in generating the matrix is often not equal forall parts of the matrix.A special di�culty in the acoustics application is that the integral equation is not uniquely solv-able at certain frequencies. This non-uniqueness problem is overcome by combining the origi-nal integral formulation with a hypersingular integral formulation (the Burton-Miller method).The whole integral formulation then is approximated by the Galerkin method. The hyper-singular integrals are avoided through a special transformation on the weak formulation [13].The Burton-Miller formulation induces signi�cant extra work in generating the dense matricescharacteristic of integral formulations. Generating blocks of the matrix on the diagonal provedsubstantially more expensive than blocks away from the diagonal. This was due to the fact thatmore elements of the matrix in blocks on the diagonal of the matrix must be computed throughsingular integrals. In order to perform singular integrals (either by the Du�y triangular coordi-nate method [7] or the local polar coordinate method [3]), the original element must be dividedinto several subtriangles; and then the integrals are performed separately in all subtriangles.This procedure is much more expensive than the regular Gauss quadrature integral performedin one element, and so, unless the logical mesh of P processes is in the form of 1 � P or P � 1,some load imbalance will be created.Naturally, one can argue that �lling the matrix is an O(n2) operation, and hence lower ordercompared to the O(n3) operations required to perform the solve. Nonetheless, for many ap-plications, parallel generation of the matrix requires time comparable to the solve. Indeed, inour study, it became bene�cial to generate the matrix using a one-dimensional data distribution(r = 1), writing the matrix to disk, and reloading it using the two-dimensional data distributionrequired by the dense solver.� The second problem is more frustrating for those of us who develop libraries than for the user ofthe library: Having had extensive experience designing and implementing parallel dense linearpackages, using techniques also used by packages like ScaLAPACK, we have faced a fundamentalproblem: How do we distribute the vector? The question has always been whether the vectorshould be distributed like rows of a matrix, or like columns, or like diagonals? In any of thesesolutions, only a small subset of processors hold the vector.9



3.2.4 Bene�ts of PBMDPhysically based matrix distributions retain the bene�ts of wrapped data distributions. By decom-posing the vectors into more subvectors than processors, and either row or column wrapping, thematrix is wrapped, although tighter in one dimension than the other.Although we have yet to implement a dense solver package using this data distribution, we havemany years of experience with more traditional data distributions. It is thus our belief that littleperformance degradation will result. The bene�ts due to simpler library interfaces will likely outweighany performance degradation.3.3 Factorization of block-sparse matricesWe wish to compute the solution x to the system of equations Ax = y, where A is a sparse n � nmatrix, this can be accomplished by �rst factoringA = LUwhere L and U are lower and upper triangular, respectively. By taking advantage of sparsity, com-putational and storage requirements can be greatly reduced. The sparsity is usually a result of thelocal action of the underlying operator.3.3.1 Application: hp-adaptive FEM problemsA standard approach to solving partial di�erential equations arising in engineering and physics isto discretize the problem using �nite element methods. The most sophisticated of these use highlyadaptive hp meshes, wherein both the local element size and the polynomial order are dynamicallychosen for maximum e�ciency [19]. These problems lead to highly irregular sparse linear systems.However, the sparsity typically exhibits itself as locally dense blocks. The sparsity pattern is dictatedby both the connectivity of the graph associated with the discretization mesh and the local polynomialdistributions. A linear element (polynomial degree one) on a three dimensional scalar problem haseight nonzeroes per row, whereas a �fth order element on a three dimensional scalar problem wouldlead to 216 nonzeroes per row. Realistic problems consist of three to four degrees of freedom pernode, multiplying the number of nonzeroes accordingly.3.3.2 Parallel implementationMethods proposed for parallel implementations of direct LU factorization and corresponding sparsetriangular solvers take advantage of local density with techniques like nested disection and recursivespectral bisection orderings. These methods create a physically based ordering that reduces theamount of �ll-in that occurs during the factorization stage, thereby reducing required computation.Given an ordering, one e�ective general purpose implementations of sparse factorization is givenby Rothberg and Schreiber [20, 21]. In their implementation, they use a \supernodal" method thatallows them to take advantage of dense blocks in the sparse matrix. To distribute the sparse matrixamong processors, they view the processors as a logical two dimensional mesh and a block-wrappeddata distribution, except that they use a heuristic that maps the columns and rows asymmetrically.Intuitively, their approach makes sense, since eventually �ll-in leads to requirements during the laterstages of the algorithm that are much like those of dense matrices. However, during the earlier stages,the diagonal needs to be distributed among all nodes.3.3.3 ProblemsBy design, a primary source of density in the matrix is along the diagonal of the matrix. Indeed,the closer to diagonal the matrix, the less �ll-in occurs. As with the dense linear solve and thesparse matrix-vector multiply, this leads to an imbalance in generating the problem and/or initial10



stages of the factorization itself. This is particularly problematic, since clever orderings allow a lot ofparallelism early in the computation. Indeed, during these early stages, ideally we want the portion ofthe matrix being factored to be block diagonal, with individual blocks assigned to di�erent processors.Rothberg and Schreiber overcome this problem by using a heuristic that maps rows and columnsin a nonsymmetric fashion. This then spreads out the diagonal among the processors.3.3.4 Bene�ts of PBMDThe implementationof hp-adaptive FEM solvers is a prime example of how PBMD goes naturally withthe distribution of the physical problem: Elements are distributed to processors in an e�ort to achieveload balance during the generation and solving of the linear system. In addition, careful ordering ofthe elements reduces both matrix �ll-in and communication during the parallel factorization.Hence, we assign subvectors (corresponding to physical partitions) in some prescribed fashion toprocessors. However, to further reduce �ll-in in the matrix, each subvector can be further partitionedinto two { a set of exterior variables and a set of interior variables yk = fykE; ykIg. The interiorvariables ykI have no non-zero interactions with any variable outside the partition. The immediateimplication is that the dense diagonal block associated with this can be eliminated locally with noresulting �ll in outside the block. Furthermore, since the exterior of each physical partition is of aspace dimension one less that the original space dimension (surface instead of volume), the numberof variables in the exterior partition is signi�cantly smaller than the interior partition. Hence most ofthe work is done on blocks of the matrix along the diagonal before any �ll-in or communication needsoccur. Traditional two-dimensional distributions would assign this work to only a few processors.Nonetheless, once the �ll-in does generate a nearly dense trailing submatrix, a two dimensional datadistribution can be ensured using some form of wrapping. In essence, PBMD reaches the goal of theheuristic used by Rothberg and Schreiber in a more organized fashion, based on solid principles.The conclusion is that from the physical attributes of the problem, very intelligent decisions canbe made about how to distribute the physical problems. While traditional data distributions can getin the way of library routines that can then be used to solve the associated linear systems, PBMDappears to �t the requirements naturally.4 Traditional methods: a Special CaseIn this section, we show how traditional matrix distributions can be viewed as a special case of phys-ically based matrix distributions, when x and y are distributed appropriately. By our fundamentalprinciple, if x and y are naturally distributed as required, the traditional methods are a special caseof PBMD. Otherwise, they are an unnatural case of PBMD.4.1 Inducing a blocked distributionLet x = 0BBB@ x0x1...xp�1 1CCCA and y = 0BBB@ y0y1...yp�1 1CCCAIf we now view the processors logically as a two dimensional array, we must decide how to assign thesubvectors of x and y to these processors.Assign subvectors of x to processors in column-major order and subvectors of y to processors inrow-major order: 11



x0 xr � � � x(c�1)�rx1 xr+1 � � � x(c�1)�r+1x2 xr+2 � � � x(c�1)�r+2... ... ...xr�1 x(2r�1) � � � xp�1 y0 y1 � � � yc�1yc yc+1 � � � y2c�1y2c y2c+1 � � � y3c�1... ... ...y(r�1)c y(r�1)c+1 � � � yp�1Consider again the equation y = Ax. Notice that elements of y are formed from corresponding rowsof A and columns of A are multiplied by corresponding elements of x before being added together toform y. If the matrix is blocked as in Fig. 1 then0BBB@ yicyic+1...y(i+1)c�1 1CCCA = Ai;00BBB@ x0x1...xr�1 1CCCA +Ai;10BBB@ xrxr+1...x2r�1 1CCCA+ � � �+ Ai;c�10BBB@ x(c�1)rx(c�1)r+1...xp�1 1CCCANotice that if the dimensions of blocks Ai;j are chosen appropriately, elements of vector x exist withinthe same column of processors as Ai;j, and elements of vector y exist in the same row of processors.Turning this observation around, we can say that if the elements of x and y are distributed asindicated, then a logical distribution for A is to block it, and assign Ai;j to processor Pi;j. In otherwords:Partitioning x and y into p subvectors and distributing them in row and column majororder, respectively, induces a blocked matrix distribution.4.2 Inducing a wrapped distributionLet x = 0BBB@ x0x1...xn�1 1CCCA and y = 0BBB@ y0y1...yn�1 1CCCAView the processors logically as a two dimensional array and assign subvectors of x to processors inrow-major order and subvectors of y to processors in column-major order, wrapping if necessary:x0; xp; : : : � � � xc�1; xp+c�1; : : :xc; xp+c; : : : � � � x2c�1; xp+2c�1; : : :x2c; xp+2c; : : : � � � x3c�1; xp+3c�1; : : :... ...x(r�1)c; xp+(r�1)c; : : : � � � xp�1; x2p�1; : : :y0; yp; : : : � � � y(c�1)�r; yp+(c�1)�r; : : :y1; yp+1; : : : � � � y(c�1)�r+1; yp+(c�1)�r+1; : : :y2; yp+2; : : : � � � y(c�1)�r+2; yp+(c�1)r+2; : : :... ...yr�1; yp+r�1; : : : � � � yp�1; y2p�1; : : :12



If the matrix is blocked as in Fig. 2, then0BBB@ yiyr+iy2r+i... 1CCCA = 0BBB@ ai;0 ai;c ai;2c � � �a(r+i);:0 a(r+i);c a(r+i);2c � � �a(2r+i);:0 a(2r+i);c a(2r+i);2c � � �... ... ... . . . 1CCCA0BBB@ x0xcx2c... 1CCCA+0BBB@ ai;1 ai;c+1 ai;2c+1 � � �a(r+i);:1 a(r+i);c+1 a(r+i);2c+1 � � �a(2r+i);:1 a(2r+i);c+1 a(2r+i);2c+1 � � �... ... ... . . . 1CCCA0BBB@ x1xc+1x2c+1... 1CCCA+ � � �Notice that again elements of vector x exist within the same column of processors as columns of Aand elements of vector y exist in the same row of processors as rows of A. Turning this observationaround, we can say that if the elements of x and y are distributed as indicated, then a logicaldistribution for A is to wrap it, assigning aij to processor P(imod r);(jmod c). In other words:Partitioning x and y into n elements and wrapping them in row and column major order,respectively, induces a two dimensional wrapped matrix distribution.4.3 Inducing a block-wrapped distributionFinally, a block-wrapped distribution can be induced by partitioning x and y into small vectors,rather than individual elements, and distributing to processors at that granularity.5 ConclusionsWe have demonstrated encountered problems with traditional matrix distributions and proposed analternative distribution that appears to solve some of the problems. It is our belief that PBMD is muchmore natural: it allows the user of a parallel linear algebra library to concentrate on decomposing theproblem rather than on how to �t the generation of the problem into a matrix distribution that haslittle to do with the physical problem. In addition, we have argued that the new data distribution ismuch more natural for sparse algorithms.While we have used the problem of linear system solvers to illustrate our point, very similar issuesarise in the solution of linear eigenvalue problems. Take, for instance, traditional methods for solvingthe symmetric algebraic eigenvalue problem: The �rst phase involves a reduction to tridiagonalform, which requires a two-dimensional data distribution for scalability [5]. However, subsequently,the tridiagonal eigenvalue problem must be solved. While traditional matrix distributions leave thetridiagonal on a small number of processors, PBMD leaves it distributed among all processors.Matrices can come in many forms, and need not be explicitly formed. Matrices can exist as treescontaining information on how to perform the computation (e.g. used by fast multipole methods)or may exist implicitly (e.g. implicit element-by-element �nite element methods). In that case,PBMD may give an insight into where the computation that could be expressed as a matrix shouldbe performed.AcknowledgementsThe �nancial support of DARPA under Contract DABT63-92-C-0042 and the O�ce of Naval Re-search under Contract N00014-95-1-0401 is gratefully acknowledged.The ideas leading to the PBMD started with a collaboration on the implementation of the NASParallel CG Benchmark with John Lewis and David Payne. We would like to mention a few people13
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