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A fundamental challenge for Artificial Intelligence is developing meth-
ods to build and maintain knowledge-based systems. Knowledge integration is
the task of identifying how new and prior knowledge interact while incorpo-
rating new information into a knowledge base. This task is pervasive because
substantial knowledge bases must be developed incrementally: segments of
knowledge are added separately to a growing body of knowledge. This task
is difficult because new and prior knowledge may interact in very subtle and
surprising ways, and unanticipated interactions may require changes to the
knowledge base. Performing knowledge integration involves determining and
effecting these changes. This research investigates knowledge integration as
a machine learning task. Its contributions include formalizing knowledge in-
tegration as a machine learning task, developing a computational model for
performing knowledge integration, and instantiating the computational model

as an implemented machine learning program.
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The study of knowledge integration and methods that perform it is
important both for pragmatic concerns of building knowledge-based systems
and for theoretical concerns of understanding learning systems. By identify-
ing subtle conflicts and gaps in knowledge, knowledge integration facilitates
building knowledge-based systems. By avoiding unnecessary restrictions on
learning situations, knowledge integration reveals important sources of learn-
ing bias and permits learning behaviors that are more opportunistic than do

traditional machine learning tasks.

REACT is a computational model that identifies three essential activ-
ities for performing knowledge integration. FElaboration assesses how new and
prior knowledge interact. The system’s limited capacity to explore the interac-
tions of new and prior knowledge requires methods to focus its attention. This
focus is achieved by restricting elaboration to consider only selected segments
of prior knowledge. Recognition selects the prior knowledge that is consid-
ered during elaboration. By identifying the consequences of new information
for relevant prior knowledge, recognition and elaboration reveal learning op-
portunities, such as inconsistencies and gaps in the extended knowledge base.
Adaptation exploits these learning opportunities by modifying the new or prior

knowledge.

KIis a machine learning program that implements the REACT model.
Empirical studies demonstrate that KI provides significant assistance to know-

ledge engineers while integrating new information into a large knowledge base.
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Chapter 1

Introduction

A fundamental challenge for Artificial Intelligence is developing knowl-
edge-based systems, computer programs that exploit computational representa-
tions of knowledge in one or more domains. The task of integrating new know-
ledge into a body of existing knowledge is essential for developing knowledge-
based systems. Substantial knowledge bases must be designed and constructed
incrementally; discrete fragments of knowledge are identified, formalized, and
then added to the growing knowledge base. Because new and existing know-
ledge may interact in surprising ways, unanticipated interactions may require
changes to either the new or existing knowledge. Determining and affecting

these changes are the goals of knowledge integration.

1.1 What is knowledge integration?

Performing knowledge integration involves identifying and evaluating
the interaction between new and existing knowledge. The responsibility for
performing knowledge integration is often placed on the teaching agent. For
example, a knowledge engineer adding new information to a knowledge base
must consider how new and existing knowledge will interact and then adapt
them accordingly. In such cases knowledge integration is a teaching or au-
thoring task. Alternatively, knowledge integration may be performed by the

learning agent; in such cases it becomes a learning task. This research investi-
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Teacher: The epidermis of the plant leaf is covered by the leaf cuticle, which is composed
of cutin.

Student: Cutin i1s impermeable to gases, so the cuticle restricts water loss from the leaf.
Teacher: Yes, that’s right.

Student: By reducing water loss, the cuticle helps the leaf avoid dehydration. Other plant
organs that transpire would also benefit from a cuticle. Do stems, fruits, and
flowers have cuticles?

Teacher: Yes.
Student: But the cuticle would also cause the leaf to starve.
Teacher: Explain.

Student: The cuticle is impermeable to gases. This prevents carbon dioxide in the atmo-
sphere from passing through the leaf’s epidermis. Without carbon dioxide, the
leaf cannot conduct photosynthesis and starves.

Teacher: Well, the cuticle is impermeable to carbon dioxide; however, the leaf survives.

Student: Does the cuticle only partially cover the epidermis? Or, are there portals in the
epidermis that permit restricted gas flow?

Teacher: Yes, the epidermis does have portals. They’re called stomata.

Figure 1.1: Learning about leaf cuticle

gates knowledge integration as a machine learning task.

Knowledge integration occurs as a learning agent strives to compre-
hend new information. In Figure 1.1 a teacher presents a student with new
information about the anatomy of a plant leaf. The student reacts to this
new information, investigating its consequences and responding with several
observations on the physiological effects of the leaf’s cuticle covering the leaf’s
epidermis. The student thus acquires additional knowledge beyond the ex-
plicit content of the new information. For example, the student generalizes
the new information: not only does the leaf have a cuticle, so do the other
parts of the plant’s shoot system. Furthermore, the student’s responses reveal
to the teacher the existing state of the student’s knowledge, thus enabling the
teacher to provide follow-up comments that resolve the student’s questions and

misconceptions.



1. learning identifies how new and prior knowledge interact

(a) learning identifies how new and prior knowledge conflict

(b) learning identifies how prior knowledge explains new information
2. learning acquires knowledge beyond the explicit content of new information

(a) learning generalizes new information

(b) learning resolves conflicts between new and prior knowledge
3. learning is reactive

(a) learning reveals the state of the learner’s knowledge

(b) learning solicits additional information
4. learning is opportunistic

(a) the learner need not anticipate the content of new information

(b) the learner need not anticipate the precise uses of acquired knowledge

A summary of important aspects of the learning scenario illustrated in Figure 1.1.

Figure 1.2: Aspects of Learning as Knowledge Integration

Figure 1.2 summarizes some of the significant aspects of the learning
scenario illustrated in Figure 1.1. While none of these aspects are strictly nec-
essary for learning, each can be beneficial, as the following sections discuss. A
primary goal of this research is to develop a computational model that exhibits

the aspects of learning presented in Figure 1.2.

1.2 Why study knowledge integration?

There are both pragmatic and theoretical goals to the study of know-
ledge integration and the methods of performing it. Performing knowledge
integration addresses critical issues that arise during the development of know-
ledge bases. Furthermore, knowledge integration builds on existing approaches

to machine learning in order to apply in a wider variety of learning situations.



1.2.1 Facilitating the construction of knowledge-based systems

One of the fundamental goals of machine learning is facilitating the
construction and maintenance of knowledge-based systems [Sim83]. This sec-
tion discusses the significance of knowledge integration for two pervasive prob-

lems confronting developers of knowledge-based systems.

The interdependence of knowledge: Knowledge bases are built by in-
crementally adding or modifying discrete fragments of knowledge. As each
fragment is added or changed, the correctness and utility of other fragments of

knowledge becomes questionable. This was noted by Hayes [Hay85]:

Since at any intermediate stage of theory construction there will
be tokens not yet axiomatized, the process of formalizing those
concepts may force changes in their correspondence to intuition
and these changes might require our earlier partial theories to be

rewritten.

Because this problem bears such close relation to the frame problem, intro-
duced by McCarthy and Hayes [MH69] and extensively discussed in Knowledge

Representation literature, it will be refered to as the learning frame problem.

The traditional frame problem is pervasive during reasoning because
any change to the state of a represented world calls into question the accuracy
of every statement describing that world. Solving the frame problem requires
determining how those changes affect previous statements. The learning frame
problem is pervasive during knowledge-base development because any modi-

fication (e.g., the addition of new information that extends the ontology) of



a knowledge base calls into question the correctness and utility of every ex-
isting statement in the knowledge base. Solving the learning frame problem
requires determining how those modifications affect the truth of existing beliefs
or the utility of existing concepts in the ontology. In other words, adding new
information to an existing body of knowledge requires determining how the
new and existing knowledge interact. Both frame problems are difficult for the
same reason: the inferential path by which a change affects other beliefs can
be arbitrarily long, so determining which beliefs are affected by a change can

be arbitrarily difficult.

It is important to assess how new information interacts with existing
knowledge because knowledge-base modifications intended to correct shortcom-
ings may conflict with existing knowledge and introduce problems. Identifying
such implicit conflicts is the necessary first step in resolving them; resolving
each conflict may suggest additional knowledge not explicitly contained in the
new information. Three common types of implicit conflict that occur during

learning are:

1. New information introduces competing problem-solving objectives. For
example, extending the drug therapy advisor MYCIN to minimize the
number of drugs prescribed to each patient conflicts with other therapy
goals, such as maximizing the number of symptoms covered by the pre-

scribed treatment [MS86].

2. New information violates tacit simplifying domain assumptions. For ex-
ample, the naive physics included in a botanical knowledge base may hold
that some botanical objects (e.g., leaves, fruit) drop to the ground when

they become disconnected (e.g., through abscission). This rule reflects



many implicit assumptions: that the objects are located in the earth’s
gravitational field; that a hungry bear has not just torn the objects away
from the plant in order to swallow them; that the objects are not tied to a
fleet of tiny little blimps that support them against gravity; etc. ad nau-
seam. Such simplifying assumptions are unavoidable in knowledge-based
systems; their necessity is due to the qualification problem [McC77]. How-
ever, new information may violate some of the multitudes of tacit sim-
plifying assumptions to which the knowledge base has committed (e.g.,
new information describing aquatic plants when only terrestial plants
were tacitly expected), and such violations introduce conflicts (e.g., the

disconnected leaves of aquatic plants float rather than drop.)

3. New information interferes with control knowledge implicitly encoded in
some structure imposed on the knowledge base, such as the order in
which rules appear. For example, it has been noted that simply adding
new rules to MYCIN caused existing rules to apply erroneously or not at

all [Die82, page 331]. *

These conflicts illustrate one general category of interaction that occurs be-
tween new and prior knowledge. New information can also interact syner-
gistically with existing knowledge. Fach synergistic interaction suggests new
knowledge not explicitly contained in the new information. Two common types

of synergistic interaction are:

1. Existing knowledge explains the new information. In Figure 1.1, the stu-

dent’s background knowledge determines that the leaf’s cuticle restricts

Tn contrast, learning in Waterman’s poker player carefully placed new rules within the
ordered list of rules to block application of faulty rules [Wat70].



water lost through the leaf and thus has an important physiological func-
tion. This teleological explanation suggests that other components of the
shoot system (such as stems, flowers, and fruit), which also require some
mechanism to restrict water loss, would benefit from having cuticles. Such
teleological explanations are essential to understanding aspects of many

domains [Sim81, DeK85, KC85, Dow90, Fra93].

2. New information explains existing knowledge. For example, adding the
fact that chloroplasts contain the green pigment chlorophyll to a botanical
knowledge base helps explain the existing default beliefs that the leaves of
plants are green and capable of conducting photosynthesis [Mur90]. This
explanation enables the system to justify its prior belief: “Leaves are
green because they contain chlorophyll.” Furthermore, this explanation
suggests additional knowledge: “Leaves that are not green do not contain
chlorophyll and probably cannot conduct photosynthesis.” Explaining new
information with prior knowledge is an important characteristic of com-
prehension [Gag85], and the ability to explain beleifs and conclusions is

recognized as essential for knowledge-based systems and their develop-

ment [SS89, Mor89].

Determining the interaction of new and prior knowledge facilitates the acqui-
sition of knowledge beyond that explicitly contained in the new information.
Identifying conflicts enables acquiring additional information to resolve the
conflicts. Identifying synergistic interactions between new and prior knowledge
enables acquiring other types of knowledge, such as generalizations of new in-

formation and explanations of new or prior beliefs.



The fidelity fallacy: Knowledge engineers often mistakenly conceive of sym-
bols within a knowledge base as the domain (e.g., real world) concepts they
represent rather than as what the symbols denote by virtue of their definitions
within the formal system. Unlike the examples of conflicts among beliefs within
a knowledge base discussed above, these fallacies transcend the system: they
are misconceptions in the minds of the system’s developers and result from

limitations in the developers’ understanding of the system’s knowledge.

Such misconceptions lead to blunders in knowledge engineering. Of-
ten knowledge engineers tacitly assume properties of the represented concepts
when formalizing a new fragment of knowledge. For example, when formalizing
the knowledge that each vertebrate animal has a head, it is easy to omit the
default constraint that each has precisely one head. Similarly, when formal-
izing knowledge about occupational situations, it is surprisingly easy to omit
the default constraints that employees are clothed and living. The more “sec-
ond nature” an expectation is, the more it resembles common sense, the more
ingrained it is by our culture or experiences, the harder it can be to conceive

and articulate explicitly when formalizing new knowledge.

These types of mistakes are examples of the fidelity fallacy, one of
the most pervasive problems in developing knowledge-based systems [L.(G90,
McD81]. Under this fallacy, an observer believes that what a symbol actually
denotes within a formal system is what the observer expects it to denote. All
too often the observer expects the symbols to denote some convenient subset of

those aspects of the domain concept that the symbol is intended to represent.

To avoid this fallacy, knowledge engineers must keep their concep-
tions of what symbols denote within the formal system as accurate as possible.

Consequently, it is important to show knowledge engineers the actual uses of



symbols in the formal system, what can and cannot be inferred about them,
and what inferences they do and do not support. The dialogical aspect of
learning exposes to the knowledge engineer the actual uses of symbols within
the formal system. This exposure includes both symbols referenced by new
information and relevant symbols in the knowledge base not referenced by new
information. It enables knowledge engineers to identify precisely what a sym-
bol denotes within the formal system, compare this to their expectations for
what the symbol should denote, and thereby determine how the symbol fails
to represent the intended domain concept. Thus, by actively investigating the
consequences of new information and presenting those investigations to the
knowledge engineer, the learning system reveals the current state of the sys-
tem’s knowledge, including the effects of the new information and how those
effects diverge from what was intended by the knowledge engineer. Presenting
the consequences of each knowledge-base modification to the knowledge engi-
neer is essential for the incremental and inherently nonmonomtoic development

of knowledge-based systems [Coh84, Mor89].

1.2.2 Enhancing learning opportunism

The study of knowledge integration as a learning task also explores
ways to relax some of the applicability constraints imposed by traditional ap-
proaches to machine learning. The learning situation described in Figure 1.1

is more opportunistic than traditional tasks in machine learning in two ways:

1. The learner need not anticipate the content or form of new information.

2. The learner need not anticipate precisely the uses of acquired knowledge.
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As the learning episode in Figure 1.1 begins, the student has no preconceptions
about what material will be presented and how acquired knowledge will be
used. The ability to learn without these preconceptions promotes opportunis-
tic learning: the learner can accept and make use of whatever new information
is encountered. However, learning without these preconceptions is more com-
plex since learning methods now must include strategies for handling a wide
variety of information and determining what lessons to learn from new infor-
mation. These strategies introduce sources of learning bias, knowledge that
guides learning. * This section explains the significance of these two aspects of

knowledge integration.

Relaxing preconceptions of content: A learner often has prior expecta-
tions about the topic or content of new information. Differing learning situa-

tions afford the learner differing degrees of expectation:

1. At one extreme, a learner might pose a very focused question and expect
to learn its answer. For example, the learner might ask: What is Fred’s
home phone number? Here the learner has very high expectations about

the content of the new information.

2. At another extreme, the learner might not anticipate new information.
For example, an acquaintance might unexpectedly announce: Adult but-
terfly fish are capable of changing gender. In this situation, the learner
does not anticipate encountering new information and, consequently, can-

not possess expectations about its content.

2Learning bias determines which new fragments of knowledge a learning system will ac-
quire when there many alternative new fragments of knowledge that could be acquired.
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In between these extremes is a range of learning situations in which the learner

may have strong or weak expectations about the content of the new information.

Assumptions about the content of new information can simplify learn-
ing. Expectations relating the content of new information to a particular topic
focuses the learner’s attention on existing knowledge relevant to that topic.
This is the principle underlying advance organizers in human education theory
[Aus63, RS83, May80]. However, these same assumptions, when programmed
into a machine learning system, restrict the applicability of the learning system:

new information that violates the assumptions cannot benefit the learner.

Traditional approaches to machine learning adopt strong preconcep-
tions about training content. Training is usually required to be either ground
observations in the domain or example problems that the system must per-
form. These restrictions preclude learning from new information that includes
general domain principles or explanations or new terms that extend the rep-
resentation language. ® Therefore, while it is advantageous for a learner to be
able to exploit available and warranted preconceptions about the content of
new information, it is preferable that general learning methods not commit to

learning only from new information having a narrowly specified content.

Relaxing preconceptions of application: A learner often has some expec-
tation about the applications of acquired knowledge. Again, differing learning

situations support diverse degrees of expectation:

3Exceptions to this trend include ANT, which admits both instance-level observations
and general rules while learning natural language grammars [LM90], PROTOS, which ad-
mits explanations of problem solutions that include general domain principles while learning
diagnostic audiology [PBH90], and FOO, which operationalizes general strategic advice while
learning strategies for playing the game of hearts [Mos83].
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1. Intentional learning occurs when the learner approaches a learning task
with specific expectations of at least one application of the knowledge to
be acquired. Often learning occurs during problem-solving: the learner
acquires knowledge or skill while trying to perform some specific task
(e.g., solve a particular math problem, write a particular sentence, feed
and water a particular plant, identify a cup, buy fish for an aquarium,
call Fred at home). Because a clear and immediate application of the
acquired knowledge exists, there is no doubt about what is to be learned.
In such situations, new information is processed according to the specific
requirements of the application: expectations about the use of the to-be-

acquired knowledge guide intentional learning.

2. Incidental learning occurs when the learner has no specific predetermined
expectations for the use of acquired knowledge. For example, unantici-
pated discourse can provide new answers to questions not previously con-
sidered, such as the new information about butterfly fish described above.
An absence of known applications for acquired knowledge introduces ad-
ditional complexity because the learning methods must determine what
to learn from new information, not just how to learn. Strategies for de-
termining what to learn are an important source of learning bias. In
the absence of strong use expectations, learning is essentially a reactive,
bottom-up process: constraints other than predetermined use expecta-

tions guide incidental learning.

Intentional and incidental learning are two extremes of a continuum. In be-
tween is a spectrum of learning situations ordered by the degree to which the
learner has expectations for the use of acquired knowledge. Much of human

learning occurs through the comprehension of mundane information when the
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potential uses of acquired knowledge are unknown. In such situations, the focus

of learning is comprehension, rather than application.

Often the learner has partial or generic expectations about the future
uses of acquired knowledge. When students open up textbooks required by
a course in which they are enrolled, they likely share the preconception that
information contained in the textbooks will be used to perform some tasks
required by the course (e.g., answer questions on examinations, perform lab
experiments, etc.). However, each student typically does not know what tasks
will be required (e.g., which questions will appear on an exam). Consequently,
students cannot anticipate precisely what information presented in the text-
books will be essential, nor what general lessons to draw from the presented
information, nor how it will have to be used during the examinations and lab
exercises. Nor can students predict precisely how the acquired knowledge will
be used for tasks beyond those imposed by the course. Human learning is
thus opportunistic: knowledge is acquired without precise stipulations of its
intended uses; such learning is ubiquitous [GH86]. Machine learning should be

equally opportunistic.

Traditional approaches to machine learning commit to precise restric-
tions on the eventual use of acquired knowledge. For, example, most concept
acquisition systems are designed to acquire knowledge dedicated to perform-
ing classification, applying the acquired definitions of the target concepts to

unclassified instance descriptions. *

4One notable exception is AM [Len76], which learned by discovering new concepts in the
domain of mathematics. In the absence of an assumed application task, AM confronted the
issue of determining what to learn. It exploited an extensive set of heuristics that estimated
the wnterestingness of a new domain concept, learning only new concepts deemed sufficiently
interesting.
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Restricting the use of acquired knowledge is not merely a commitment
of the learning methods. This commitment is also made at the more funda-
mental level of the learning task: traditional machine learning tasks narrowly
(although often implicitly) constrain the application of knowledge acquired by
the learning methods that perform the tasks. > Learning methods that perform
these tasks are generally not capable of acquiring other forms of knowledge than
that prescribed by the tasks. Intuitively, traditional machine learning tasks are
characterized as: given an application task and information about how to per-
form the task (e.g., examples of input and desired output), develop a procedure
to perform the task efficiently and correctly. In contrast, a more opportunistic
learning task can be characterized as: given new information, determine why
the information is to be believed, what other beliefs might also be true, and

what existing beliefs should no longer be held.

While it is advantageous that a learner be able to exploit available and
warranted preconceptions about the applications of new information, methods
of learning can be more opportunistic without restricting the use of acquired
knowledge. Consequently, a general learning task must not commit to partic-

ular applications of acquired knowledge.

This dissertation raises the question: Why assume learning occurs
only within a problem-solving context? Knowledge integration differs from
traditional machine learning tasks by not to committing to specific application
tasks. This difference introduces complexity because learning methods must

include strategies to determine what to learn from new information, not just

5A learning task is a specification of a computational problem that is to be solved by a
learning program; a learning method is a strategy for solving (aka performing) a particular
learning task.
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strategies for how to learn. However, this difference also significantly broad-
ens the scope of the learning task, and, consequently, the applicability of the

learning methods.

1.3 Dissertation organization

This dissertation investigates knowledge integration as a machine
learning task. Chapter 2 presents a computational model, called REACT,
for performing this task. REACT identifies several key capabilities required by
any solution to the task of knowledge integration. The model also serves as

conceptual framework for performing knowledge integration.

Chapters 3, 4 and 5 describe how the computational model proposed
in Chapter 2 has been implemented in the computer program KI. Chapter 6
presents some empirical experiments with this program. Chapter 7 surveys
other research that is relevant to knowledge integration. Finally, Chapter 8
includes a summary of the contributions and limitations of this research, and

suggests an agenda for future work.

Included in the appendices are some of the less essential technical de-
tails of the implementation as well as several informal discussions on topics that
are relevant (but not essential) to the thesis of this dissertation. Appendix A
describes the learning environment in which knowledge integration is assumed
to occur. It also presents an intuitive definition of learning, and a character-
ization of learning as a state-space search problem. Appendix B provides a
specification of knowledge integration as an information-processing task and
discusses learning goals that can guide learning in the absence of specific ex-
pectations for the use of acquired knowledge. Appendix C describes how the

implementation performs the task of interpretation — that is, translating new
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information, presented as semantic networks, into expressions in the internal
representation language. Appendix D lists some heuristics for estimating the
interestingess of a proposition that are used to guide the implemented learning

program as it performs knowledge integration.



Chapter 2

REACT: a Computational Model for Knowledge
Integration

Although the ubiquity and importance of knowledge integration has
been recognized in research on human learning, the computational issues in per-
forming knowledge integration have remained largely unexplored. This chap-
ter discusses properties of methods for performing knowledge integration. The
first section reviews findings in cognitive psychology that demonstrate the im-
portance of both actively relating new and existing knowledge and focusing
attention during learning. The second section proposes a computational model

for performing knowledge integration that reflects these findings.

2.1 Knowledge Integration as Human Learning

Humans provide the best examples of intelligent learning systems.
Because the essential computational properties of human learning may bene-
fit any learning system, cognitive mechanisms or effects that are pervasive in
theories of human learning suggest relevant computational issues for machine

learning. Two tenets of cognitive theories of human learning are:

1. Learning is an active process that relates new and prior knowledge.

2. The resources for performing this activity are limited.

17
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Relating new and prior knowledge is essential for learning; however, oppor-
tunities for performing this activity generally exceed the available cognitive
resources. Learning is thus necessarily selective and exclusive: only a por-

tion of the potential relations between new and prior knowledge will ever be

established.

2.1.1 Learning actively relates new and prior knowledge

The view that learning involves relating new information to existing
knowledge is central to contemporary theories of human learning and compre-
hension. It is fundamental to Piaget’s general learning theory of assimilation
and accommodation [Pia46] and to Kintsch’s model of discourse comprehen-
sion [KvD78]. It is the foundation of the learning strategy hypothesis, a popular

interpretation of numerous studies [May80]:

[A]ctivities aimed at making the learner actively integrate new in-
formation into existing knowledge affect the encoding, storage, and

eventual use of new material on performance tests.

A central component of many theories emerging from modern educa-
tional psychology is elaboration, the process of embellishing new information
during comprehension. It arises from the interaction between new information
and the learner’s existing knowledge. There are potentially as many elabora-
tions of new information as there are questions; both are unbounded. Figure

2.1 presents a partial list of common types of elaborations [Gag85, Wei78].

Extensive empirical investigations support the importance of elabo-
ration for successful comprehension and learning [Gag78]. Studies by Haviland

and Clark [HC74] and by Reder [Red79] indicate that readers elaborate to fill



19

10.

confirm or explain

(a) statement: This plant looks as if it has died.

(b) elaboration: Of course it died; 1t wasn’t given any food; all living things die without food.

recall examples

(a) statement: Eskimos believe polar bears were sent by the gods to keep human population low.

(b) elaboration: I remember seeing a polar bear once, at the St. Louis Zoo.
attribute detail

(a) statement: The Hispaniola is a fine vessel, a schooner with smart trim.

(b) elaboration: The Hispaniola probably has three masts, since it is a schooner.

make predictions

(a) statement: ... and Scarlett O’Hara said: “Tomorrow is another day.”

(b) elaboration: I bet Scarlett never did remarry. I wouldn’t!
form analogies

(a) statement: Endosperm is the nutrient within a plant seed.

(b) elaboration: An endosperm seems to be like the yolk of an egg.
make comparisons

(a) statement: The basking shark grows up to forty feet in length.

(b) elaboration: The basking shark is even bigger than the great white shark.
draw conclusions

(a) statement: The prime rate increased by 1%.

(b) elaboration: It’s going to cost more to borrow money.
motivate the lesson

(a) statement: Newt, we consider the events leading up to the first world war.

(b) elaboration: I'm supposed to understand what triggered World War L.
evaluate

(a) statement: The ozone layer is deteriorating.

(b) elaboration: This is a serious problem!
identify principles
(a) statement: Consumers compete to purchase desired goods.

(b) elaboration: As demand goes up, then price goes up too.

Figure 2.1: Common Types of Elaboration
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in missing details in text, and that elaboration is performed as information is
encountered rather than during recall through reconstructive memory. The es-

sential role of elaboration during comprehension is masked by its pervasiveness

[GH86, page 474]:

People are so practiced at integrating new information with old
information in memory that they usually don’t realize how mean-
ingless individual sentences could be if the connections could not

be made.

Studies by Mayer [May80] suggest two ways that elaboration enhances
learning. First, elaboration increases the student’s ability to recall information
by establishing relations between the new information and existing knowledge.
Second, elaboration expands the content of new information by adding new

beliefs to the student’s knowledge.

Advantages of elaboration: Elaboration facilitates subsequent recall by es-
tablishing relations between training and existing knowledge [And83]. Each
new relation introduces a reminding path from existing knowledge to the new
information. This increases both the number of paths between a given remind-
ing source and the target response and the number of reminding sources that
can stimulate recall of the target response. ' Each additional path that con-
nects training to prior knowledge enhances the probability of successful recall.

For example, the elaboration of a query may overlap or recreate the elabora-

n a recall test, the reminding source is provided to stimulate the subject’s recall of the
target response.
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(b) Increased Reminding Sources
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(a) Elaboration establishes new connections between a target response tr (e.g., the new

information) and an existing reminding source rs (e.g., a fragment of prior knowledge). (b)
Elaboration establishes connections between a target response and new reminding sources.

Figure 2.2: Improving recall with elaboration

tion of the training, resulting in a greater chance of target-response recall (what

Anderson calls semantic triangulation [And83]).

Figure 2.2 presents a graph-theoretic account of the effects of elabo-

ration. There are two useful interpretations of this graphical account:

1. In the first, nodes in the graph denote entities; arcs denote binary re-

lations over the entities. FElaboration increases the number of relational

paths in the graph, thereby making the graph more interconnected.

2. In the second, nodes denote knowledge segments (e.g., sets of beliefs); arcs

denote applied operators (e.g., rules). Each operator derives one segment

from another segment. Elaboration increases the number of derivational

paths in the graph, thereby making the graph more interconnected.

Elaboration enhances subsequent problem-solving performance by expanding

the content of new information. Elaborating new information results in addi-
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tional beliefs. The additional beliefs may include new inference methods (e.g.,
rules) as well as new facts. Sometimes inferred information can be more useful
than the explicit contents of new information [RS83]. Either new beliefs are
added explicitly to the learner’s knowledge and are directly accessible, or they
are added implicitly and are quickly computable [Red79]. Empirical studies
suggest that elaboration improves response times when subjects are asked to

estimate the plausibility of statements [Red79, Red82b].

Disadvantages of elaboration: As might be expected, not all elaboration
benefits learning. Elaboration may produce incorrect beliefs by propagating
learners’ misconceptions. However, the proliferation of false beliefs can be ad-
vantageous by increasing the likelihood of eventually uncovering and repairing

the underlying misconceptions.

Secondly, important aspects of the training can be obscured by a mass
of elaborated trivia. Too many related beliefs impedes recall of a particular fact
in what is called the fan effect [And83]. Students sometimes lose the impor-
tant points of a lesson in a mass of mundane conclusions constructed through
elaboration. This is especially common when a teacher attempts to provide ex-
plicit elaborations of subject matter to students, rather than allowing students
to form their own idiosyncratic elaborations through their own interests and
expertise. Reder [Red82a] demonstrates that when textbooks include elabora-
tions of main points, readers perform worse on recall tests than when they are
exposed to only summary information. However, when students provide their
own idiosyncratic elaborations, their recall performances improve, especially
when the elaborations produced are sufficient to reconstruct the lesson’s main

conclusions.
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A third (and related) potential hazard occurs when the inferences
completed during elaboration are not appropriate for the particular goals of
a learning episode, as determined by the criterial task. This is explained by
the theory of transfer-appropriate processing, which stresses the importance of
putting the processing of information during learning in correspondence with
the processing required by the criterial task [MBF77]. Experiments demon-
strate that the benefits of learning activities are strictly relative to the criterial
task used to evaluate learning performance. Consequently, learning perfor-
mance improves when elaboration reflects the processing required by the crite-

rial task and suffers when elaboration is not relevant.

2.1.2 Limited resources force selective learning

For new information to be comprehended, it must include references
to concepts familiar to the learner [HC74]. These references form the given
component of new information, so called because they are used to ground the
new information to existing segments of knowledge. This knowledge can then
be embellished by the new component, the portion of new information that is
not already known by the learner. The given provides indices into the learner’s
existing knowledge that locate where the new information is to be recorded.
Each segment of existing knowledge that shares content with the given is in
some way relevant to the new information and becomes a candidate for use
during elaboration. Many alternative segments of knowledge may share content

with the given of new information.

Because humans have limits on their resources for performing men-
tal activities, cognitive processes — such as elaboration — compete for shares

of the limited resource that is human attention. Elaboration is consequently
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selective and exclusive: not every relevant segment of existing knowledge can
be used during elaboration to embellish new information. Selecting among the

alternative segments of relevant knowledge is the task of recognition.

Two different kinds of stimulus are required to select a segment of
relevant knowledge: a stimulus that is specific to the content of that segment
(e.g., the content that overlaps the given component of new information), and
a stimulus that is not specific to the segment’s content [Kah73]. This non-
specific stimulus is often called activation. The distribution of activation man-
ifests human selective attention, differentiating the cognitive activities that are
performed (e.g., relating new information to segments of knowledge that are
selected during recognition) from those that could be performed (e.g., relating
new information to segments of knowledge that share content with the given

component of new information).

As new information is encountered, some portion of the activation
stimulus is distributed among the segments of existing knowledge that share
content with the given. Those segments whose activation levels surpass a
threshold become activated (e.g., are drawn into short-term memory, enter
conscious thought), and only activated segments are eligible to participate in
elaboration. Consequently, the importance of recognition for learning is fun-
damental: the existing knowledge that is activated during learning determines

both the content and the quality of acquired knowledge [Sch76].

2.2 REACT

This section presents REACT, a computational model for performing
knowledge integration. Such a model is useful because it defines a functional

decomposition of the learning task and provides a conceptual framework for
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describing methods of performing knowledge integration. The functional de-
composition facilitates independent research on strategies for performing each
sub-task. The conceptual framework is useful for comparing and relating dif-

ferent methods of performing knowledge integration.

The proposed model embodies three premises about learning:

1. Knowledge integration, and indeed all conceptual learning, ultimately
requires affecting changes to a body of knowledge. Consequently, all
methods that perform knowledge integration will have some capability to

perform adaptation, that is, to modify existing knowledge.

2. Knowledge integration, and all but the most trivial forms of conceptual
learning, requires determining how new and prior knowledge relate. Con-
sequently, all methods that perform knowledge integration will have some
capability to perform comprehension, that is, to make sense of the new

information by relating it to prior knowledge.

3. Comprehension involves two essential capabilities, recognition and elab-
oration. Recognition selects existing knowledge that is relevant to new
information. Elaboration relates the selected knowledge to the new in-
formation. Consequently, all methods that perform comprehension will

have some capabilities to perform both recognition and elaboration.

The model identifies a functional decomposition expected of any system that
performs the task. That is, any method that performs knowledge integration
must be capable of performing at least three activities: recognition, elaboration,
and adaptation. The model also embraces the hypothesis that any method ca-

pable of performing these three activities, in suitably compatible ways, will be
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able to perform some form of knowledge integration. However, this functional
decomposition need not be manifest as a physical or architectural decomposi-

tion within any learning system.

The proposed model makes explicit the intuitive relation between
comprehension and learning. Comprehension makes sense of presented infor-
mation by relating it to existing knowledge and reveals opportunities to add
or revise beliefs, especially when the encountered information is new. Ex-
ploiting these opportunities constitutes learning. In Figure 1.1, the student’s
comprehension of new information establishes the physiological advantage that
a cuticle provides to a plant leaf. Relating the new information to existing
knowledge about transpiration reveals a specific learning opportunity: that of

generalizing the new information for other transpiring plant organs.

2.2.1 Comprehension: relating new and prior knowledge

New information comprises a set of explicit beliefs that add to or re-
tract from the explicit beliefs of a learner’s theory. Comprehension reveals how
new and prior knowledge interact; it explores the consequences of new infor-
mation for prior knowledge and facilitates adapting new and prior knowledge

when these consequences violate learning goals.

Figure 2.3 illustrates the types of belief transformations that occur
during a knowledge-base modification. It partitions the beliefs of the the-
ory — both before and after the modification — into eight possible dispositions
and illustrates how changes to explicit knowledge can manifest changes in im-
plicit knowledge. Comprehension explores the implicit changes caused by a
knowledge-base modification as it relates new and prior knowledge. Figure 2.4

specifies necessary (not sufficient) conditions for perfoming the task of compre-
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A theory (A) comprising explicit beliefs (A.) and implicit beliefs (A;) is modified, resulting in
a new theory (A’) comprising explicit beliefs (AL) and implicit beliefs (A}). Each numbered
region illustrates a type of belief transformation.

Region 1: lost implicit beliefs Region 5: old implicit beliefs now explicit
Region 2: lost explicit beliefs Region 6: old explicit beliefs now implicit
Region 3: new implicit beliefs Region 7: old explicit beliefs remain explicit
Region 4: new explicit beliefs Region 8: old implicit beliefs remain implicit

Figure 2.3: Types of Belief Change

hension.

A total exploration of implicit beliefs is not possible for significant
theories (e.g., knowledge bases that are large or that are represented in expres-
sive languages, such as first-order logic). Therefore, comprehension selectively

explores the consequences of new information under resource bounds. Methods

(1) A: a set of beliefs (e.g., prior knowledge)

(2) ©: a set of beliefs (e.g., new information)

(3) F: an inference procedure

(4) b: resource bounds (e.g., a bound on execution time)

Given:

Find: ®: beliefs derivable from applying - to elements of A U ©
{1 (A+0 F p)}

within resource bounds b.

Figure 2.4: The task of comprehension
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that perform this task must determine which beliefs from the entailment of new
and prior knowledge are established. Recognition selects segments of explicit
knowledge (i.e., subgraphs of the knowledge base) that include the given com-
ponents of new information. Elaboration selects, by making explicit, segments
of implicit knowledge (i.e., subgraphs of the inferential closure) derived from

new information and prior knowledge selected during recognition.

The distinction between recognition and elaboration, between select-
ing what to reason about and doing the reasoning, has long been acknowledged
in Artificial Intelligence. McCarthy, in his seminal paper proposing an advice-

taking program, observes [McC58]:

The intelligence, if any, of the advice taker will not be embodied in
the immediate deductive routine. This intelligence will be embodied
in the procedures that choose the lists of premises to which the

immediate deductive routine is to be applied.

Performing recognition and elaboration may be piecemeal and interleaved, or
they each may be performed as complete and sequential stages (with recognition

occurring before elaboration).

Recognition — focusing attention during comprehension: Comprehen-
sion relates new information to existing knowledge; recognition selects which
segments of existing knowledge the new information will be related to. In other
words, recognition focuses the attention of the learner during comprehension.

Figure 2.5 presents a task specification for recognition.

The problem of focusing attention can be stated clearly in terms of the

generate and test paradigm. Given a current state and a set of operators that
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Given: (1) A: an initial knowledge base
(2) ©: a set of beliefs (e.g., new beliefs added to A)

(3) F: an inference procedure

Find: W: a subset of A s.t. F will be applied to elements of ¥ U ©

For the general task of recognition, no specification of a goal of the ensuing inference (i.e.,
applying - to YUG) may be assumed.

Figure 2.5: The task of recognition

map between states, determine which region (i.e., subset of accessible states)
within the state space to generate. When the current state comprises beliefs
denoting new information to be understood, and the operators relate these
beliefs to a body of prior knowledge (e.g., by performing inferences), then the
problem of focusing attention corresponds to the task of recognition during
comprehension: the new information is comprehended in light of a particular

subset of prior knowledge selected during recognition.

An important property of comprehension is how open and uncon-
strained it is. In general, a recipient of new information does not know in
advance the contents of the new information nor its possible uses. Therefore,
the learner cannot know in advance what existing knowledge will be relevant
for making sense of the new information. For this reason, comprehension must
include a reactive, data-driven process. This reactive aspect is an essential
feature of performing recognition: the learner responds to the (unanticipated)

content of new information.

Each subgraph of the knowledge base that includes some component
of the new information (e.g., some component of the given) is relevant to the
new information. The powerset of these subgraphs comprises the alternative

segments of existing knowledge that can be related to the new information dur-
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ing elaboration; they are the candidates for selection during recognition. This

identifies two important issues confronting methods for performing recognition:

1. Determining the appropriate grain size of the segment of existing know-
ledge selected during recognition. The selected segment could be a single
term, a single belief (e.g., a single fact or rule), or a large set of beliefs
(e.g., the entire knowledge base). In general, the more exclusive recogni-

tion is, the more restricted subsequent elaboration will be.

2. Determining focusing criteria for selecting from among a vast number of
candidate knowledge segments. The candidates all share some component
with the given of new information; consequently, they already satisfy a
relatively weak standard for establishing their relevance. Additional fo-
cusing criteria can establish a stronger principle of relevance that selected
segments must satisfy. (Examples are discussed in Chapter 4.) Relevance-
based focusing criteria relate the contents of candidate segments with the
contents of new information. Alternatively, focusing criteria may exploit
formal properties of the candidates that do not consider the content of
the candidate knowledge segments or their relations to new information
(e.g., an ordering of the rules in the knowledge base, an ordering of the

conjuncts appearing in the antecedent of a rule, etc.).

The REACT model does not specify the appropriate grain size nor the appro-
priate focusing criteria to be adopted by methods that perform recognition.
Nor does the model specify how the selected knowledge will be used during
elaboration; any style of reasoning, such as forward chaining, backward chain-
ing, general resolution, ground resolution, case-based reasoning, etc., can be

used. But differing styles of recognition will be appropriate for differing styles
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Given: (1) U: a set of beliefs (e.g., existing knowledge)
(2) ©: a set of beliefs (e.g., new information)

(3) F: an inference procedure
(4)

b: resource bounds (e.g., a bound on execution time)
Find: ®: beliefs derivable from applying I to elements of ¥ U ©
{1 (T+0 F p)}

within resource bounds b.

Figure 2.6: The task of elaboration

of reasoning. For example, case-based reasoning requires selecting appropriate
cases from among a library of alternative cases, while production systems re-
quire selecting appropriate rules to fire from among those that are triggered
(e.g., conflict resolution). Consequently, the tasks of recognition and elabora-
tion are not entirely independent; both are influenced by whatever mechanisms

structure the system’s knowledge.

Elaboration — embellishing new information during comprehension:
Comprehension relates new information to prior knowledge; elaboration relates
the new information and the prior knowledge selected during recognition by
establishing beliefs that they entail; it is the second phase of comprehension.

Figure 2.6. specifies necessary conditions for performing the task of elaboration.

The goals of learning (e.g., see Appendix B.2) require determining
whether desired properties (e.g., consistency, completeness, etc.) hold on a
set of beliefs. The beliefs that must satisfy these properties include both the
learner’s implicit and explicit beliefs. Learning therefore entails not only ap-
praising the explicit content of the extended theory but its implicit content
as well. Elaboration explores the impact of new information on the implicit

content by making explicit a partial entailment of new information and prior
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knowledge recalled during recognition. The partial entailment comprises a fi-
nite subset of the possibly infinite beliefs entailed by the new information and
prior knowledge and is made explicit by applying the inference procedure to the
new and sekected prior knowledge. Two important issues confronting methods

of performing elaboration are:

1. Operationalizing new and selected prior knowledge for the inference pro-
cedure. The available inference procedure may not be directly applicable
to the beliefs included in the new information and the prior knowledge
selected during recognition. For example, these beliefs may include only
rules, while the inference procedure may permit applying rules only to
ground propositions and not to other rules (i.e., general resolution is not
permitted). Consequently, new information and selected prior knowledge
must be operationalized so that the inference procedure can apply to

them.

2. Maintaining the dependencies between supporting knowledge and the facts
that are established as inferences are completed. Methods for detecting
and exploiting learning opportunities (examples are discussed in the next
chapter) require identifying the facts and rules that support a derived
belief. Therefore, the inference graphs that are completed during elabo-

ration must be maintained for subsequent analysis during adaptation.

An important subset of beliefs established during elaboration are
those supported by new information. A set of beliefs ©® (within knowledge
base A) supports another set of beliefs ® precisely when © participates in some
derivation of ®:

J(U) (¥ C A &—~(¥ F &) & (F+0 - @)
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The consequences of the new information is the set of beliefs supported by the

new information.

Appraising the consequences of new information: One common and im-
portant benefit of comprehension is that it reveals the consequences of adding
new information to prior knowledge. The analysis of interactions between
new information and existing knowledge is fundamental to nontrivial modes
of knowledge integration. Even determining that new information is in fact
new (i.e., constitutes new beliefs) requires establishing that it includes beliefs

not accessible as consequences of existing beliefs.

Intuitively, determining how new information interacts with prior

knowledge involves:

1. identifying new beliefs supported by the new information (regions 3 and

4 of Figure 2.3) ?

2. identifying prior knowledge supported by the new information (regions 5,

6, 7, and 8 of Figure 2.3)

3. identifying beliefs contained in the new information supported by prior

knowledge (regions 5 and 7 of Figure 2.3)

4. identifying conflicts between the new information and prior knowledge

(regions 1 and 2 of Figure 2.3)

Figure 2.7 presents a task specification for identifying the consequences of

adding information to existing knowledge. This task identifies beliefs supported

ZUnless otherwise noted, assume the new information includes asserting regions (of Figure
2.3) 4, b, and a subregion of 7, and unasserting regions 2 and 6.
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Given:
1) A: an initial knowledge base
2) ©: new beliefs added to A
3) k: an inference procedure
4) b: resource bounds (e.g., a bound on execution time)

Find: ® = &4 U ®_: the consequences of adding © to A
@, : beliefs supported by the new information, defined as
{pt | AU}y C A& (Uy F pp) & (Vg +0 F py)}
®_ : beliefs disputed by the new information, defined as
(o= | (BU_)(U_ C A)& (I— b po) & (0 +0 F p_))

within resource bounds b.

Figure 2.7: Assessing the consequences of new information

by the new information and constitutes a sufficient condition for performing

comprehension. Some interesting special cases are:

1. Identifying new beliefs supported by the new information:

(a) ¥, = A: belief p, was not supported by prior knowledge but is
supported with the addition of the new information (knowledge-level
expansion).

1. py € O: belief p, is in region 4 of Figure 2.3.

. p; ¢ O: belief p, is in region 3 of Figure 2.3.

(b) W, = {}: belief p, is derivable from just the new information (and

is not tautological).
2. Identifying corroborations between new and prior knowledge:

(a) py € A: the new information supports explicit prior beliefs (affir-

mation).

i. p, € 0O: the new information includes explicit prior beliefs;

belief p, is in region 7 of Figure 2.3.
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il. p, € ©O: the new information supports explicit prior beliefs;

belief p, is in region 6 or 7 of Figure 2.3.

(b) (A F py) & (py & A): the new information supports implicit prior
beliefs.

i. p; € O: prior knowledge supports beliefs contained in the new
information; belief p, is in region 5 of Figure 2.3 (validation).

ii. p, ¢ O: the new information supports prior implicit beliefs;

belief p, is in region 8 of Figure 2.3 (local expansion).
3. Identifying conflicts between new and prior knowledge:

(a) ¥_ = A: the new information refutes beliefs supported by prior

knowledge (knowledge-level contraction).
i. p_. € A: the new information refutes explicit prior beliefs;
belief p_ is in region 2 of Figure 2.3.
ii. p_ ¢ A: the new information refutes implicit prior beliefs;

belief p_ is in region 1 of Figure 2.3.

(b) ¥, F =p,: the new information provides new support for the

negation of a previously supported belief (local revision). *

i. ¥, = A: the new information negates a previously supported
belief (knowledge-level revision).
ii. ¥, = {}: the new information is inconsistent.

(¢) p- € A: the new information refutes support for prior explicit

beliefs.

3Analogously, ¥_ +© F —p_: the new information negates a previously supported belief
(local revision).
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(d) W_ + —p_: the new information resolves a local contradiction.
(e) ¥, +O F —p,: the new information supports a local contradiction.

(f) (py € ©) & (—p; € A): the new information explicitly contradicts

prior knowledge.

Each of these types of interaction between new and existing knowledge affords
learning opportunities; detecting and exploiting learning opportunities occurs

during adaptation.

2.2.2 Adaptation — detecting and exploiting learning opportunities:

Although many conditions qualify as learning opportunities and can
trigger adaptation, only three are discussed below. Examples of each of these

learning opportunities are presented in Chapter 5.

1. One type of learning opportunity occurs when comprehension identifies
new and interesting beliefs that are supported by new information, as
illustrated in Figure 1.1. In response to the new information describ-
ing a leaf cuticle, the learner finds support for the belief that the other
transpiring organs also have a cuticle and suggests this to the teacher.

Previously, support for this belief was evident.

2. A second type of learning opportunity occurs when comprehension identi-
fies conflicts between new and prior knowledge, also illustrated in Figure
1.1. The learner concludes that the leaf cuticle inhibits photosynthesis;
this conflicts with the expectation that leaves perform photosynthesis.
In order to resolve the inconsistency, the learner suggests adopting addi-
tional beliefs: either portals exist in the leaf covering or the cuticle only

partially covers the leaf.
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3. A third, important type of learning opportunity occurs when compre-
hension establishes how new information can explain existing beliefs that
were previously assumed without explanation. For example, when told
that chloroplasts contain chlorophyll, the learner is able to explain why
leaves are green and can perform photosynthesis [Mur90]. Previously,
these beliefs were known, but the system was unable to explain them.
The advantages of possessing explanations of beliefs is well recognized
[Swa83, SWMBS85, SS77], yet learning behaviors that acquire explana-
tions of existing beliefs have not been widely investigated in machine

learning research.

The REACT model does not commit to a particular set of condi-
tions that trigger adaptation. These are specified as the admissibility criteria,
conditions (e.g., consistency requirements) that must be satisfied by the re-
sulting knowledge base, and they may reflect any learning goal, such as those
discussed in Appendix B.2. Two significant issues confronting methods that
perform adaptation are detecting learning opportunities (e.g., violations of the
admissibility criteria) among the results of elaboration and exploiting learning
opportunities by determining which knowledge-base modifications to make in
order to satisfy the admissibility criteria. A task specification for adaptation
— modifying knowledge to comply with the admissibility criteria — is presented

in Figure 2.8.

An important point of comparison among machine learning systems
is the catalyst, or trigger, conditions for changing the knowledge base. Almost
all learning systems rely on observed performance failures; learning corrects
the observed failure. One important class of performance failure occurs when

the given classification of a training instance is not consistent with the target
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A a set of beliefs (e.g., existing knowledge)

U: a subset of A

©: a set of beliefs (e.g., new information)

: an inference procedure

®: a set of beliefs from inferential closure by applying F to ¥ U ©
I': a predicate on belief sets (e.g., consistency requirements)

Given:

N N e

(1
(2
(3
(4
(5
(6

Find: (1) T: subsets of ® that fail "
(2) ¥’ and ©’: transformations of ¥ and © that would retract the elements of T from &
(3) A’: a transformation of A that reflects ¥/ and ©' (e.g., A’ = ((A - ¥) - ©) + ¥/ + ©')

Figure 2.8: The task of adaptation

concept definition. Learning revises the target concept definition to resolve
the inconsistency. A second important class of performance failures occurs
when a system manages to compute the correct response to a request, but the
computation was costly. Learning revises the knowledge to ensure the response
can be inexpensively computed for subsequent requests. However, performance
failure is not the only catalyst for learning. AM, for example, uses heuristics to
determine whether a new mathematical concept is interesting enough to add
to its current knowledge [Len76] and Cobweb uses heuristics that assess the
predictive power of new potential concepts to determine which concepts should

be learned [Fis87]. Additional examples will be presented in Chapters 3 and 5.

2.2.3 Discussion

The REACT model decomposes the very general task of knowledge
integration into three fairly focused constituent tasks. Comprehension occurs
when beliefs are established from the entailment of new information and se-
lected segments of prior knowledge: recognition selects segments of prior know-
ledge, and elaboration establishes the beliefs. Learning occurs when new beliefs

are added or existing beliefs are modified during adaptation.
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The model does not commit to a type of knowledge or style of rea-
soning (such as case-based, production rules, logic, frame-based); it requires
only that the constituent activities are suitably compatible (e.g., the method
of recognition is capable of selecting a portion of knowledge to be used dur-
ing elaboration, and the adaptation methods are sensitive to the results of

elaboration).

Adaptation methods do not completely define all learning opportuni-
ties; rather, learning opportunities transcend the closed system. By generating
predictions of the consequences of new information, the elaboration method
reveals to the teacher the state of the learner’s knowledge, including any mis-
conceptions that occur. The teacher can respond with unsolicited additional
information to extend or revise the learner’s knowledge. Consequently, recogni-
tion and elaboration should not be finely tuned to a specific adaptation regime.
They should use the same reasoning mechanisms and (as much as is possible)

strategies the system would exploit during problem solving.

Learning Bias: One of the contributions of REACT is that it identifies tacit
sources of learning bias. Learning bias is knowledge that guides learning (e.g.,
the strategic knowledge that determines which particular knowledge-base mod-
ifications will be affected when many alternatives are possible). The model
identifies three activities as being individually necessary and jointly sufficient
for performing knowledge integration. Methods that perform each activity in-

troduce learning bias:

1. Adaptation detects and exploits learning opportunities. The catalyst
conditions that trigger each adaptation method determine when know-

ledge is modified during learning; they manifest one important form of
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learning bias. Furthermore, each method’s strategy for modifying the
knowledge base in response to the triggering condition (i.e., to satisfy the

admissibility criteria) manifests a second important form of learning bias.

2. Elaboration explores the consequences of new information as it estab-
lishes implicit beliefs supported by the new information and selected seg-
ments of prior knowledge. The particular beliefs established are the grist
for adaptation; they determine what learning opportunities will be en-
countered. Consequently, the method of elaboration manifests a form of

learning bias to the extent that it determines which beliefs are established.

3. Recognition determines which segments of prior knowledge are to be re-
lated to the new information. It has a dramatic effect on what beliefs can
be established during elaboration and so manifests an important source

of learning bias.

Sources of learning bias traditionally recognized in Machine Learning literature
(e.g., see [Die86]) include only biases for implementing adaptation strategies;
REACT also identifies methods of both recognition and elaboration as impor-
tant sources of learning bias. Use expectations are probably the single most
powerful and pervasive source of learning bias in traditional machine learning
systems. However, they have not been explicitly recognized as an important

source of learning bias in the literature.

Use Expectations: The REACT model helps clarify how use expectations
have been exploited by traditional machine learning systems to guide learning:

the integration of new information need only consider how changes affect lines
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of reasoning required for problem solving. This directive guides the design of

methods for each of the three activities identified by the model:

1. Recognition: select only knowledge segments required to perform the

anticipated application task.

2. Elaboration: pursue only lines of reasoning required by the application

task.

3. Adaptation: affect only knowledge-base changes required by the applica-

tion task.

Rather than exploring the consequences of new information for existing know-
ledge, a learning system dedicated to acquiring single-task knowledge simply

ensures the new knowledge does not invalidate performance on a set of test

cases [Wil88].

When the anticipated application task is cast as a search problem,
techniques such as backward chaining or goal reduction guide the selection of
operators so that only states known to be relevant to the goal condition are
generated. These techniques address the problem of determining the appropiate
grain size and focusing criteria confronting methods for performing recognition:
the grain size is simply a single operator, and the principle of relevance is that
of subgoaling. In subgoaling an operator is relevant to the goal condition when
it establishes either some requisite (e.g., some conjunct) of the goal condition

or some condition required by a relevant operator. 4

*Additional focusing criteria is used to select a single operator from among those candi-
dates that satisfy the criteria of subgoaling. Typically, this involves an ordering on operators
in the knowledge base and an ordering of the preconditions required for each operator.
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This makes clear one of the essential roles of use expectations in guid-
ing learning: strong use expectations define an operational goal condition; the
goal condition defines a principle of relevance (i.e., subgoaling); the principle of
relevance solves the recognition problem and guides elaboration. For example,
supervised concept learning systems receive new information comprising a set
of pairs (z; f(=;)) (i.e., an example from the domain of the target function and
the corresponding object from the function’s range). This learning situation
affords a simple and natural principle of relevance: existing rule R(z;.z,) ° is
relevant if and only if either it establishes f(z;) (i.e., f(x;) is a consequence of
R(z1..x,)) or it establishes some antecedent to a relevant rule. Such learning
systems rely on an external mechanism to specify the goal condition; they con-
sequently avoid, rather than solve, the problem of focusing attention during
comprehension. Unfortunately, such learning systems remain incapable of ac-
quiring knowledge to support any performance task other than responding to
the goal query. Postponing commitment to use expectations by the methods
that perform each learning subtask reduces the system’s use-based brittleness
(see Section A.1.5). However, this also requires determining an appropiate

grain size and focusing criteria to use during recognition.

2.3 Summary

The importance of actively relating new information to prior know-
ledge is widely recognized by theories of cognitive and educational psychology:
it is necessary for making sense of new information; it improves subsequent

recall of new information; and it improves subsequent problem solving by ex-

®Notation explanation: R(x1..2,) denotes a rule involving n terms.
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panding the content of new information. However, care must be taken to en-
courage relating new information to prior knowledge in useful ways (i.e., those
that promote learning goals rather than distracting the learner with a mass of
irrelevant details). Furthermore, the cognitive resources available to relate new
and prior knowledge is limited. Consequently, it is a selective and exclussive
process: new information is related to only a chosen portion of the relevant

prior knowledge.

REACT 1is proposed as a computational model of knowledge inte-
gration. It identifies a functional decomposition of knowledge integration into
three activities that are individually necessary and collectively sufficient to per-
form knowledge integration, and each is an important source of learning bias.
Recognition selects segments of prior knowledge to relate to new information.
Elaboration embellishes new information and explores its consequences while
establishing beliefs supported by new information and prior knowledge selected
during recognition. Adaptation exploits learning opportunities detected among
the beliefs established during elaboration. The next three chapters describe a

machine learning program that implements the proposed model.



Chapter 3

KI: A Tool for Knowledge Integration

Implementing a computational model for a new task as a computer
program has several advantages. It demonstrates the computational feasibility
of the model, it facilitates empirical evaluations of the utility of performing
the new task, and it defines strategies for solving the significant computational
problems involved in performing the task. This and the next two chapters
describe KI, an implementation of the REACT computational model for per-
forming knowledge integration, and illustrate how KI performs the learning
example in Figure 1.1. An empirical evaluation of KI follows in Chapter 6. KI
builds on the approaches of many other researchers in machine learning and

related disciplines; these will be described in Chapter 7.

3.1 Overview

KI is an interactive tool for knowledge integration. It was devel-
oped to help knowledge engineers extend the Botany Knowledge Base, a large-
scale knowledge base representing plant anatomy, physiology, and development
[PLM*88]. When a user provides new information, KI uses the existing know-
ledge base to identify possible gaps or conflicts and to identify beliefs supported
by the new information. KI helps to verify that the actual effect of the new
information accords with the knowledge engineer’s intended effect. By pos-

ing questions and further knowledge-editing suggestions back to the knowledge

44
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engineer, KI solicits additional information. Thus, KI provides a highly in-
teractive knowledge-editing interface between the knowledge engineer and the

knowledge base to guide knowledge-base development.

KI does more than identify “surface” gaps or conflicts (such as ex-
plicit constraint violations); it also determines indirect interactions between
new information and existing knowledge. This involves a focused, best-first
search to explore the consequences of new information and to detect learning

opportunities.

The Botany Knowledge Base is not dedicated to a single, narrow
application task; rather, it contains foundational, textbook knowledge intended
to support a wide range of tasks in the domain of botany. Consequently, KI
must adopt generic learning goals, such as promoting consistency, completeness,
economy, and conviction (see Appendix B.2) as well as some of the general

learning goals appropriate for this domain (e.g., relating plant anatomy to
physiology).
KI implements REACT, the computational model for knowledge in-

tegration presented in Chapter 2, and so comprises three prominent activities:

1. Recognition: identifying existing knowledge relevant to new information.

2. Elaboration: applying relevant domain rules to determine the conse-

quences of new information.

3. Adaptation: modifying new or prior knowledge to satisfy learning goals.

Furthermore, KI performs interpretation, which translates information from

the input language (i.e., a machine readable form of the specification language)
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Nodes denote data; arcs denote processes that transform the data. Knowledge in-
tegration decomposes into the activities of recognition, elaboration, and adaptation.
Recognition decomposes into view identification and selection; elaboration decom-
poses into instantiating quantified formulae and completing inferences; and adapta-
tion decomposes into a suit of methods that detect and exploit learning opportunities.
Collectively, the arcs implement KI, except for con firmation, which is performed
by the user.

Figure 3.1: The KI Architecture

into the internal representation language. Figure 3.1 presents the process ar-

chitecture of KI.

During recognition, KI identifies beliefs existing in the knowledge base
that are relevant to new information. KI uses views to determine which beliefs
and concepts, beyond those explicitly referenced by the new information, are
relevant [MP89]. FEach view contains a set of beliefs that interact in some
significant way and is indexed by concepts mentioned in the beliefs it contains.

When new information is presented, KI identifies the views indexed by concepts
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referenced by the new information and heuristically selects one. The beliefs
contained in the selected view are deemed relevant to the new information,
and KI focuses its search for learning opportunities on the interaction of the

new information with the beliefs contained in the selected view.

During elaboration, KI investigates the consequences of new infor-
mation for relevant beliefs in the knowledge base. This involves completing
inferences and instantiating quantified formulae included in both the new in-
formation and those beliefs recalled during recognition. Elaboration “expands
the content” of the new information by making explicit a partial entailment
of the new information and relevant prior knowledge. Concepts referenced by
beliefs contained within the selected view index other views relevant to this
partial entailment; each of these views contains beliefs that could be used to
extend the entailment. KI enters a cycle of recognition (i.e., selecting views)
and elaboration (i.e., completing inferences to extend the partial entailment) to
determine the consequences of the new information for relevant prior knowledge

as it searches for learning opportunities.

During adaptation, KI detects and exploits learning opportunities
suggested by both conflicts and novel explanations. Conflicts are revealed
when inferences completed during elaboration establish inconsistent conclu-
sions. KI responds by analyzing the explanations of inconsistent beliefs to
identify knowledge-base modifications that resolve the conflict. Identifying and
correcting conflicts during knowledge integration promotes consistency. Novel
explanations are detected when the new information enables inferences. KI
evaluates these explanations to identify new beliefs that, for example, general-
ize the new information or augment the representations of existing concepts.

Extending the knowledge base with new beliefs promotes completeness (when
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the beliefs are not entailed by existing knowledge), economy (when the beliefs
are implicit consequences of existing knowledge), and conviction (when the be-
liefs entail existing knowledge). By detecting implicit learning opportunities
and suggesting further knowledge-base modifications, KI assists the user in

extending the knowledge base with new information.

The next section describes the knowledge-based system in which KI
has been implemented. The following three sections describe the implementa-
tion of interpretation, elaboration and some aspects of adaptation while illus-

trating how KI begins the learning scenario presented in Figure 1.1.

3.2 The Botany Knowledge Base

The knowledge-representation language is an extended form of first-
order predicate calculus [LG90]; it is typed, nonmonotonic, and, in a few special
cases, second-order. The aspects of this language that are significant to KI are

briefly discussed in this section.

3.2.1 Representing concepts

Four major categories partition the constants in this language:

1. individuals: particular and singular entities or events; e.g., WinstonChurchill,

AustinTexas, LindberghLandingInParis, ...
2. attribute values: e.g., Green, VeryHigh, Disabled, 2, ...
3. predicates: constants denoting relations; e.g., color, density, cardinality, ...

4. collections: sets of similar constants; e.g., Politician, StateCapital, Historic-

Lvent, Color, BinaryPredicate, ...
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Many collection terms denote infinite sets; ! e.g., Leaf, Cell, Photosynthesis. Con-
sequently, the vast majority of elements for such sets are left implicit (i.e., there
is no constant in the knowledge base corresponding to these individuals). Such

elements are called implicit concepts.

The arguments of predicates are typed (i.e., constrained to be ele-
ments of a designated collection). For example, the binary predicate physical-
Part denotes the physical decomposition of a tangible thing into its constituent
tangible parts; both of its arguments are constrained to be elements of the
collection TangibleObject. Furthermore, argument constraints can be collection-
specific; e.g., when the first argument of physicalPart is an element of the col-
lection Plant, then the second argument must be an element of the collection

Botanical Organism Component.

3.2.2 Ontology

The ontology of this knowledge base includes many standard represen-
tational distinctions. For example, the predicate that relates an individual to
the collections of which it is an element is isa; e.g., isa(AustinTeras StateCapital)
denotes that Austin is a state capital. The ontology also makes a few novel
distinctions, some of which will be mentioned in the forthcoming discussion of

the example. These are briefly introduced in this section.

The ontology allows representing whether or not an event can occur
and refering explicitly to the event in either case: status(z Disabled) denotes that

event » does not occur (i.e., that it has no temporal extent, no duration).

It is useful to be able to state that an individual has some property

1QOr, more precisely, they denote sets that are convenient to consider infinite.
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without stating the particular value of that property; the predicate likelyFor
denotes this. For example,
[V () —translucency(x Transparent) = likelyF or(color z)]

denotes the belief that tangible objects that are not transparent probably have

one or more colors. 2

It is useful to represent explicitly some aspects of the way we think
about the domain of botany, whether or not those aspects actually exist in
the domain. Causation is an example: it is useful to be able to state that
the occurrence of one event causes another event to occur. Whether or not
causation actually exists in physical domains, it does often exist in the human
study of those domains. The notion of a domain goal is another example. We
often structure our understanding of biology by focusing on how the properties
of an organism contribute to its survivability; that is, we consider surviving to
be a “goal” of the organism (or species). Initially, the only goal asserted in
the knowledge base is hasPhysiological Goal(LivingObject health Facilitated); 1t is the
goal of every living thing to facilitate its own good health. Furthermore, we
often try to make sense of the plant’s anatomy and physiology in terms of how
goals are achieved. The ternary predicate hasPhysiological Function identifies
those behaviors of an object that contribute to establishing one of its goals.
For example, hasPhysiological Function(Leaf performs Photosynthesis) denotes that
performing photosynthesis is a “function” of the leaf; it contributes to the goal

of facilitating the leaf’s (and the plant’s) health.

ZApplicable argument typing constraints are implicitly conjoined to the antecedents of
rules; the first argument of translucency is constrained to be a tangible object.
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3.2.3 Inference

Rules are typically first-order axioms with quantified variables. They
are triggered only by ground propositions; i.e., general resolution is not sup-

ported. They can be directed to chain forwards or backwards.

Types of rules: KI distinguishes between two important types of rules:

1. skolemizing rules reference skolem functions

(e.g., V (z) isa(x Person) = 3 (y) isa(y FemalePerson) & mother(x y))

2. non-skolemizing rules reference no functions and cannot introduce terms

(e.g., ¥ (z) isa(z Leaf) = color(x Green))

Skolemizing rules are significant because they introduce terms (i.e., they make
implicit concepts explicit). * Distinguishing between these two classes of rules
facilitates KI's method for controlling inference during elaboration. (This

method will be presented in the next chapter.)

Nonmonotonicity: Default reasoning is important to knowledge-based sys-
tems as a method for coping with the qualification problem [McC77]: default
beliefs can be based on assumptions that are usually true but are not easily ver-
ified. Default reasoning is important to learning systems as a guide for coping
with conceptual conflict: default beliefs are based on assumptions that are not

always warranted. When inconsistent beliefs are established with the support

3There are no function symbols in the language; the only function terms come from turning
existentially quantified variables into skolem functions. Skolem functions are currently the
only means by which the system automatically creates new constants (i.e., makes implicit
concepts explicit).
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of default beliefs, the assumptions underlying those beliefs suggest conditions

that, if asserted, would retract the beliefs and resolve the conflict.

Rules in the knowledge base are associated with one of two degrees
of certainty: some are default (i.e., nonmonotonic); others are absolute (i.e.,
monotonic). Furthermore, the representation language includes the operator
unless to provide nonmonotonic inference based on the closed world assumption:

r < y & unless(z)

denotes that when y can be established and -z can be established under the
closed world assumption (i.e., with negation as failure) then conclude that =
is established. This scheme makes explicit the assumptions underlying default
beliefs (e.g., -z is an assumption underlying the inferred belief z). Conse-
quently, when a conflict results from nonmonotonic inference, the underlying

assumptions can be identified by searching the inference graphs.

Rule macros: For rules that share a very common syntactic form, it is con-
venient to define predicates that behave as rule macros and expand into rule

forms. * Some examples are:

1. ako: V (zy) [ako(z y)] < [V (2) isa(z ®) = isa(z y)]; e.g., ako(OakTree Tree)

2. inherits: V (xyp1p2...pn) [inherits(z (p1 p2 ... pn) Y)]
& [V (z122...2n) isa(z1 #) & p1(21 22) & pa(z2 23) & ... Pn1(2n-1 2n) = Pn(2n Y)]
(note: each p; denotes a binary predicate); e.g., inherits(Leaf (element color) Green).

3. relationType: V (zyz) [relationType(x y z)]
& [V (21) isa(zr ) = T (21) isa(z 2) & y(x1 z1)];
e.g., relationType(Person mother FemalePerson)

4. akoAttribute: V (zy) [akoAttribute(x y)] < [V (pz) p(z ) = p(z y)]
(note: p denotes a binary predicate); e.g., akoAttribute(Indigo Blue)

*Predicates denoting relations in the domain are binary. However, predicates that act as
rule macros can have higher arities.
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5. akoSlot: ¥ (p1p2) [akoSlot(py p2)] < [V (zy) p1(z y) = p2(z y)]
(note: pp and p2 denote binary predicates); e.g., akoSlot(mother parent)

6. inverseSlot: V (p1p2) [inverseSlot(py p2)] & [V (2y) pr(zy) = pa2(y @)]
(note: p; and p2 denote binary predicates); e.g., inverseSlot(part partOf)

7. argumentOneType: V (pz) [argumentOneType(px)] < [V (212) p(x1 2) = isa(zy x)]
(note: p denotes a binary predicate; there is a similar predicate for argument two);
e.g., argumentOneType(physical Part TangibleObject)

8. classArgTwoType: V (pry) [classArgTwoType(x p y)]
& [V (z1y1) dsa(ey x) & p(x1 y1) = isa(yr y)] (note: p denotes a binary predicate);
e.g., classArgTwoType(Plant physical Part BotanicalOrganismComponent)

9. likelyForType: Y (pz) [likelyForType(p ¢)] & [V (1) isa(z1 2) = 3 (y) p(z1 v)]
(note: p denotes a binary predicate)

Rule macros are important to knowledge-based systems because they permit
defining efficient special-case inference implementations, meta-reasoning meth-
ods (e.g., to detect conflicts and subsumption), and editing methods (e.g.,
to specify and present knowledge) for these very common inference patterns
[LG90, Der90]. They are important to learning systems because they suggest
one criterion for when knowledge compilation should occur: compile an infer-
ence path into a new shallow rule if the resulting rule can be expressed as a

rule macro.

The remainder of this and the following two chapters describe in detail

how KI performs the learning example presented in Figure 1.1.

3.3 Interpreting new information

Figure 3.2 presents the new information for the example as it is spec-
ified by knowledge engineers, provided as input to KI, and interpreted by KI.
New information is provided to KI as a semantic network (in the form of nested
lists) since knowledge engineers developing the knowledge base adopted seman-
tic networks as their knowledge specification language [PLM*88]. The nodes

and arcs of the networks correspond to knowledge-base constants.
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(a) The new information stated in the specification language

LeafEpidermis

lcoveringPart

composedOf
—_—

LeafCuticle Cutin

(b) The new information stated in the input language
(LeafEpidermis (coveringPart (LeafCuticle (composedOf (Cutin)))))

(¢) The interpretation of the new information

Rule A : Fach leaf epidermis has a leaf cuticle as a covering part.
[V (x) isa(x LeafEpidermis) = 3 (y) isa(y LeafCuticle) & coveringPart(x y)]

Rule B : Leaf epidermises have only leaf cuticles as covering parts.
[V (xy) isa(x LeafEpidermis) & coveringPart(x y) = isa(y LeafCuticle)]

Rule C : Each leaf cuticle is a covering part of a leaf epidermis.
[V (x) isa(x LeafCuticle) = 3 (y) isa(y LeafEpidermis) & coveringPart(y x)]

Rule D : Leaf cuticles are covering parts of only leaf epidermises.
[V (xy) isa(x LeafCuticle) & coveringPart(y x) = isa(y LeafEpidermis)]

Rule E : Fach leaf cuticle is composed of cutin.
[V (x) isa(x LeafCuticle) = composedOf(x Cutin)]

Rule F : Leaf cuticles are components of botanical organisms.
[V (x) isa(x LeafCuticle) = isa(x BotanicalOrganismComponent)]

Fact G : The class of leaf cuticles is a type of tangible object.
isa(LeafCuticle TangibleObjectTye)
The new information (a) conceived as a semantic network encoded graphically (i.e.,
in the specification language), (b) presented as a semantic network encoded as
nested lists (i.e., in the input language), and (c) interpreted as first-order axioms
(i.e., in the representation language).

Figure 3.2: Interpreting the new information

Interpretation translates new information expressed in the specifi-
cation language into the internal language of knowledge representation. A
detailed presentation of KI's methods for interpreting semantic networks is

included in Appendix C.

One of the important subtasks of interpretation is handling new sym-
bols (i.e., a node or arc not corresponding to any existing knowledge-base con-

stant). This involves both detecting new symbols denoting domain concepts



35

not previously represented in the knowledge base and determining preliminary

properties (e.g., taxonomic properties) of the new concepts.

When new symbols are detected in the new information KI (option-
ally) requests confirmation that the user intends to introduce a new constant to
the knowledge base. This prevents the generation of spurious new symbols in
the KB resulting from, for example, typing mistakes or false assumptions about
the precise formal symbols used in the knowledge base to denote a particular
domain concepts (e.g., the formal symbol in the knowledge base denoting the
collection of plant flowers might be Flower, Flowers, PlantFlower, BotanicalFlower,

Fleur, Gensym022, )

Interpretation also determines some preliminary properties of new
concepts. This includes preliminary assertions about the argument types ap-
propriate for new predicates and the existing collections that have new in-
dividuals as elements and new collections as subsets. In the example, new
information introduces the constant LeafCuticle. Argument typing constraints
applicable to the predicates that reference LeafCuticle requires that it subset

Botanical Organism Component.

Interpretation in KI relies on heuristic and defeasible strategies: the
semantic networks that reference a new concept may not provide sufficient
information to determine precisely where in the subsumption hierarchy that
new concept belongs (e.g., it is often ambiguous whether a new term denotes

an individual or a collection of individuals).

Interpretation translates the new information from the input language
into axioms stated in the representation language of the knowledge base. How-
ever, the consequences of resulting axioms remain implicit: elaboration inves-

tigates how these new axioms interact with prior knowledge.
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3.4 Elaboration: determining the consequences of new
information

During elaboration, KI determines how new information interacts
with existing knowledge. This involves maintaining a learning context com-
prising only beliefs deemed relevant to the new information. Initially, only
the new information is included in the learning context. Elaboration then ex-
tends the learning context with a partial entailment of new and relevant prior

knowledge.

3.4.1 Initializing the learning context

KT initializes the learning context with the new information, which
often includes quantified formulae. Since inference in the knowledge base is
constrained to reason only with ground propositions, rules appearing in the
new information will not directly unify with existing knowledge-base rules.
Consequently, KI must operationalize new rules by creating a set of ground
propositions that satisfy the rules’ antecedents (Figure 3.3). Each variable ap-
pearing in the new information is bound to a constant denoting a hypothetical

instance of the collection over which that variable may range.

There are three reasons for restricting the learning context to ground

propositions:

1. The inference engine of the knowledge base permits only ground propo-
sitions to trigger rules: quantified formulae can only unify with ground
formulae, not with other quantified formulae. Since inference performed
during learning should be representative of the inference capabilities that
will support problem solving, elaboration is subjected to this same re-

striction.
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(a) The new information
[V (x) isa(x LeafEpidermis) = 3 (y) isa(y LeafCuticle) & coveringPart(x y) & composedOf(y Cutin)]

(b) The hypothetical concepts (c¢) The initial learning context

{LeafEpidermis; {isa(LeafEpidermis; LeafEpidermis)

LeafCuticle; } isa(LeafCuticle; LeafCuticle)
coveringPart(LeafEpidermis; LeafCuticle;)
composedOf(LeafCuticle; Cutin)}

(d) The learning context as a semantic network

LeafEpidermis
isa
LeafEpidermis;
LeafCuticle
coveringPart
isa
. dOf .
LeafCuticle; PO Cutin

(a) New information provided to KI specifying that leaf epidermises are covered by
leaf cuticles composed of cutin. (b) KI instantiates constants denoting hypothetical
instances of the collections over which variables appearing in the new information
may range. (¢) KI initializes the learning context with a set of ground propositions
that satisfy the new information. (d) The contents of the learning context depicted
graphically as a semantic network. Numerical subscripts denote class membership
(e.g., isa(LeafEpidermis, LeafEpidermis); henceforth these isa links will not be shown.

Figure 3.3: Initializing the Learning Context

2. Reasoning with specific instances is more natural for humans than rea-
soning with general concepts and rules (e.g., syllogisms) [JLB84]. Our
understanding of a description often feels incomplete until we can imagine
a concrete example of what is described [GH86]. By performing inference
with ground propositions, KI produces a concrete (i.e., instantiated) rep-
resentation of the new information and its consequences. Traces of the
system’s inference engine using this representation are more meaningful
to the user/teacher than, for example, traces involving general resolution.

Consequently, the representation aids the user/teacher both in compre-
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hending the state of the system/learner’s knowledge and in detecting and

correcting faulty inference during learning.

3. Inference can be controlled by restricting the set of constants available
for binding to variables. Also, since constants directly denote domain
concepts and variables do not, selecting which constants to make available
for binding during inference can be guided by domain knowledge. This
strategy for controlling inference by restricting the constants available for
binding to variables is fundamental to KI and will be fully explained in

the next chapter.

3.4.2 Extending the learning context via inference

After the learning context has been initialized with the new informa-
tion and new rules have been operationalized as sets of ground propositions,
elaboration makes explicit a partial entailment of new and prior knowledge
by permitting the non-skolemizing rules in the knowledge base to exhaustively
forward-chain. Thus inference extends the learning context with consequences
of the new information. Figures 3.4 and 3.5 illustrate how inference in the
learning context reveals some of the implicit consequences of the new infor-
mation. Figure 3.4 shows some of the rules that are triggered as the ground
propositions that initialize the learning context are asserted. Figure 3.5 shows

the learning context after being extended by inference.

The task of completing inference in the learning context is described
formally in Figure 3.6. As each ground proposition p is added to the context,
every non-skolemizing rule triggered by any set of ground propositions in the
knowledge base that necessarily includes p is fired. To avoid completing infer-

ences that are completely independent of the learning context (and irrelevant
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Rule 1 : Epidermis is a type of container.
[V (x) isa(x Epidermis) = isa(x Container)]

Rule 2 : The coverings of containers are themselves containers.
[V (xy) isa(x Container) & coveringPart(x y) = isa(x Container)]

Rule 3 : Containers are solid.
[V (x) isa(x Container) = isa(x Solid)]

Rule 4 : Solid objects are opaque.
[V (x) isa(x Solid) = transparency(x Opaque)]

Rule 5 : Homogeneous composition suggests class membership.

[V (xy) composedOf(x y) & unless(3 (z) z#y & composedOf(xz)) = isa(x y)]

Rule 5a: Class membership in a composition type suggests composition.
[V (xy) isa(x y) & isa(y CompositionType) = composedOf(x y)]

Rule 6 : Cutin is impermeable to gases.
[V (x) isa(x Cutin) = impermeableToType(x Gas)]

Rule 7 : Cutin is impermeable to liquids.
[V (x) isa(x Cutin) = impermeableToType(x Liquid)]

Rule 8 : Covering parts cover.
[V (xy) coveringPart(x y) & unless(partiallyCovers(y x)) = covers(y x)]

Rule 9 : Impermeable coverings suggest impermeability.
[V (xyz) covers(x y) & impermeableToType(x z)
& unless(3 (w) portal(y w) & —covers(x w)) = impermeableToType(y z)]

Some of the non-skolemizing rules triggered by ground beliefs asserted as the learning
context is initialized.

Figure 3.4: Rules triggered in the learning context

to the new information) the set of propositions that trigger a rule must include
at least one proposition contained in the learning context. All inferences com-
pleted during elaboration are consequences of (i.e., supported by), and therefore
relevant to, the contents of the learning context, which is initialized with the
new information. Thus, during elaboration, a partial entailment of the new
information is completed, and only inferences relevant to the new information

are performed.

It is significant that only non-skolemizing rules are allowed to chain
exhaustively. Without this restriction, infinite computations might be at-

tempted. A standard example illustrates this:
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(a) The extended learning context

{isa(LeafEpidermis; LeafEpidermis) isa(LeafCuticle; Cutin)
isa(LeafCuticle; LeafCuticle) isa(LeafCuticle; Container)
coveringPart(LeafEpidermis; LeafCuticle;) isa(LeafCuticle; Solid)
composedOf(LeafCuticle; Cutin) transparency(LeafCuticle; Opaque)

covers(LeafCuticle; LeafEpidermis; )
impermeable To Type(Leaf Cuticle; Gas)
impermeable To Type(Leaf Cuticle; Liquid)
impermeable To Type(LeafEpidermis; Gas)
impermeable To Type(LeafEpidermis; Liquid)}

(b) The learning context as a semantic network

Solid Container Liquid

impT impT
Cutin isa isa Gas
Comp‘Of‘N {mpT impT
covers

Opaque ———————— LeafCuticle; g——————* LeafEpidermis;

transparency coveringPart
Abbreviations: impT ¢ impermeableToType
compOf ¢ composedOf

(a) The learning context extended with inferred consequences of the new informa-
tion. Inferred facts are presented in italics, and inferred facts that are not conse-
quences of the new information (e.g., isa(LeafEpidermis; Container) are omitted. (b) The
consequences depicted graphically as a semantic network.

Figure 3.5: The learning context extended through inference

1. V (#) isa(x Person) = 3 (y) isa(y FemalePerson) & mother(z y)

2. V (z) isa(x FemalePerson) = isa(x Person)

chains endlessly once triggered as an infinite number of implicit female ancestors
are created and made explicit. Limiting exhaustive chaining during elaboration

to non-skolemizing rules precludes such infinite computations.
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Given:
1) Ay : non-skolemizing beliefs of the knowledge base
2) ®: the learning context (i.e., a set of facts)

Find: ®’: an extended learning context that includes the partial entailment of (A, U @),
defined as {p | (L) (T C Ap)& (¥ + p)& (T + P F p)}

Figure 3.6: Inference in the learning context

3.4.3 Distinguishing consequences of new information

While many inferences are completed during elaboration, not all are
consequences of the new information. For example, one of the propositions
used to initialize the learning context, isa(LeafEpidermis; LeafEpidermis), trig-
gers many rules (e.g., inheritance, taxonomic subsumption) that add new facts
to the learning context (e.g., isa(LeafEpidermis; TangibleObject)). These new
facts may turn out to be relevant to the new information, but they are not con-
sequences of it (i.e., that a leaf epidermis is tangible is not a consequence of its
having a cuticle). There are two advantages in distinguishing the consequences

of the new information from the other inferred facts:

1. Guiding subsequent elaboration: consequences of new information are
more relevant to the new information and tend to be more interesting
and useful to the user. Distinguishing the consequences from the non-
consequences enables KI to guide subsequent elaboration in directions
that deepen the inference paths of consequences. This bias promotes the

relevance and utility of subsequent elaboration.

2. Guiding interactions with the teacher/user: consequences of new infor-
mation are presented separately to the user. As Chapter 1 discusses,

observing the consequences enables the user to better perceive the actual
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(vs. intended) effects of adding the new information to the knowledge
base. Furthermore, elaboration can populate the learning context with a
plethora of inferred facts; reporting all of them to the user would be over-
whelming. Distinguishing the consequences from the nonconsequences
enables KI to focus the user’s attention on the more relevant and useful

results of elaboration.

Therefore, during elaboration, KI distinguishes between those facts that are

and those that are not consequences of the new information.

By construction, the initialization of the learning context will nec-
essarily include some consequences: if the new information includes ground
propositions, then those propositions are consequences; if the new information
includes rules, then the ground propositions that instantiate the right-hand
sides of the rules are consequences. In the example, the initialization of the
learning context includes four propositions (Figure 3.3c), three of which are

consequences:

{isa(LeafCuticle; LeafCuticle)
coveringPart(LeafEpidermis; LeafCuticle;)
composedOf(LeafCuticle; Cutin)}

The inferred facts that are consequences of new information in the example

appear in italics in Figure 3.5a.

3.4.4 Maintaining justifications of inferred facts

As facts are inferred, the underlying knowledge base updates a truth
maintenance system (TMS) that records all inferential dependencies involved

in establishing each fact. However, during elaboration, KI also maintains a
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separate record of inferential dependencies. The former records will be referred

to as the TMS level, the latter as the explanation level.

The two levels support different capabilities and have different re-
quirements. The TMS level is charged with managing inferential dependencies
used to implement nonmonotonic inference: when an established fact violates
an assumption, the TMS uses the recorded inferential dependencies to deter-
mine which facts must be retracted because they rely on the violated assump-
tion. For this purpose, the TMS level must include every inferential depen-
dency; that is, it must include every inference path that establishes an inferred
fact. However, search at the TMS level is quite focused: only the inferential de-
pendencies involving particular facts (e.g., ones that are being retracted) need

be inspected. In general, the TMS level is not searched extensively.

The explanation level is charged with managing inferential depen-
dencies used to detect and exploit learning opportunities during adaptation.
(Some of these will be discussed in the following section.) For this purpose,
the explanation level is more extensively searched but need include only those
inferential dependencies that may participate in learning opportunities. Con-
sequently, many inference paths at the TMS level can be omitted from the

explanation level.

Intuitively, distinct inference paths at the explanation level should
correspond to distinct reasons, hypotheses, or phenomena in the domain. If
several TMS-level inference paths establishing a common fact are considered
(e.g., by a human) to provide essentially the same rationale for why that fact
is believed, then these inference paths form an equivalence class, and only one
would be included in the explanation level. Therefore, the explanation level

comprises a subset of the TMS level; it is an abstraction of the TMS level that
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omits details not required for detecting and exploiting learning opportunities.

There are two heuristics implemented in KI for separating the expla-

nation level from the TMS level:

1. ignore differences among inference paths due to inverseSiot inferences

2. ignore differences among inference paths due to akoSiot inferences

The first heuristic is warranted because slot ® inverses are artifacts of the rep-
resentation language and are not conceptually significant in the domains rep-
resented. For example, color(Leafy Green) and colorO f(Green Leaf,) are different
formal denotations of the same domain belief. Consequently, inference paths
that differ only because of slot inverse inferences do not correspond to distinct

reasons or hypotheses.

The second heuristic is warranted because inferences based on akoSlot
are obvious and uninformative. Many slots are artifacts of the representation
language and fail to denote any significant distinction in the domain. For exam-
ple, akoSlot(superset ako) is asserted since ako is simply the transitive closure of
the superset relation; two inference paths that differ only because one references
superset(Leaf BotanicalOrgan) and the other references ako(Leaf BotanicalOrgan)
make no distinction that is useful during adaptation. It is neither interesting
nor conceptually significant in the domain to distinguish among the different
paths through the slot generalization hierarchy when analyzing or reporting
the inference paths that establish a fact. Furthermore, both inverseSiot infer-

ences and akoSlot inferences are considered definitional and monotonic; they do

>A slot is a binary predicate.
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not introduce unwarranted support for erroneous or inconsistent facts. Conse-

quently, KI need not suspect them when resolving inconsistencies.

Figure 3.7 illustrates the distinction between the TMS level and the
explanation level with an example. A TMS-level inference graph comprising
four explanations of the fact that the leaf cuticle is impermeable to gas is
compressed to an explanation-level inference graph comprising a single expla-
nation. ¢ By identifying equivalence classes of inference paths at the TMS-level
and collapsing each class into a single explanation at the explanation level, KI
drastically reduces the number of explanations it must search for learning op-

portunities during adaptation.

3.5 Adaptation: detecting and exploiting learning op-
portunities

During adaptation, KI appraises those inferences completed during
elaboration and assists the user in modifying the knowledge base to accommo-
date the consequences of the new information. This assistance often takes the
form of suggestions for further knowledge-base editing, such as retracting or
modifying existing beliefs, adding new beliefs, and soliciting additional know-
ledge from the user. Alternatively, it can involve autonomous modifications of
the knowledge base, each accompanied by a notification that both explicitly
asks whether the modification is appropriate and implicitly offers the option to

undo the modification.

Performing adaptation requires detecting and exploiting learning op-

portunities that arise during elaboration and recognition. Each of the various

SFigure 3.7 does not include all the inference paths that establish this fact: there actually
are ten distinct TMS-level inference paths and four explanation-level inference paths.
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(a) Slot inverse and generalization rules

Rule 10 : inverseSlot rule.
¥ (zyp1p2) pi(z y) & inverseSlot(pr p2) = p2(y )]

Rule 11 : akoSlot rule.
[V (zyp1p2) p1(w v) & ako(p1 p2) = p2(z )]

(b) A TMS-level inference graph

impermeableToType(LeafCuticle; Gas)
Rule 6

element(Cutin LeafCuticle )
Rule 1 \Rule 11

isa(LeafCuticle; Cutin) instances(Cutin LeafCuticle)

Rule 11\‘ Rule 10
instanceOf(LeafCuticle; Cutin)
*Rule 5
composedOf(LeafCuticle; Cutin)
Rule E/ \Rule 10
isa(LeafCuticle; LeafCuticle) composes(Cutin LeafCuticle; )

(¢) An explanation-level inference graph

impermeableToType(LeafCuticle; Gas)
*Rule 6

element(Cutin LeafCuticle )
Rule 11

instances(Cutin LeafCuticle)

Rule 10
instanceOf(LeafCuticle; Cutin)
Rule 5
composedOf(LeafCuticle; Cutin)
Rule E/
isa(LeafCuticle; LeafCuticle)

(a) Rules that support inverseSiot and akosiot inferences. (b) An inference graph
at the TMS level comprising four distinct inference paths that establish the fact
that the hypothetical leaf cuticle is impermeable to gas. (¢) An inference graph
at the explanation level comprising one distinct inference path that establishes the
same fact. By collapsing multiple TMS-level paths into fewer explanation-level
paths, KI drastically reduces the number of explanations it must search for learning
opportunities during adaptation.

Figure 3.7: The TMS level vs. the explanation level
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learning opportunities acquires different types of knowledge and provides dif-
ferent types of knowledge-base improvements; each reflects a very different

learning heuristic. Consequently, adaptation in KI exemplifies multi-strategy

learning. [Mic94].

The adaptation methods for each learning opportunity comprise meth-
ods to detect the learning opportunity as well as methods to exploit it. While
the latter are fairly independent, the former are each triggered by the status
and contents of the learning context, so the implementation is conceptually
similar to a blackboard architecture [EL75]. In the example, elaboration of
the instantiated training reveals several learning opportunities. The following
three sections describe those opportunities that involve resolving inconsisten-

cies, compiling explanations into new rules, and abductively refining new rules.

3.5.1 Resolving inconsistencies

Large knowledge bases are prone to internal inconsistencies; resolv-
ing them promotes the general learning goal of consistency. One of the most
important design features of KI is that it “exercises” the knowledge base; elab-
oration uses explicit knowledge and the inference engine to explore regions of
implicit knowledge. As implicit beliefs become explicit, tacit inconsistencies in
the knowledge base are revealed, and each offers the learning opportunity of

resolving it.

In the example, elaboration establishes that the leaf cuticle covers
the leaf epidermis (Figure 3.5). However, this belief conflicts with the argu-
ment typing constraints defined for covers; specifically, the second argument
is required to be an element of SheetOfStuff, tangible objects having sheet-like

dimensions (i.e., flat, significant in precisely two dimensions) that are also ho-
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mogeneous (i.e., they can be thought of as unstructured, having no discernible

physical parts without changing grain size).

KT relies on the underlying inference engine to detect internal incon-
sistencies. © The system detects about a dozen different types of inconsistency,
each involving a constraint and a fact. When an inconsistency is detected KI
identifies knowledge-base modifications to resolve the conflict (Figure 3.8) using

three basic strategies:

1. Analyze the justification of the fact to determine what knowledge-base

modifications would cause the fact to be retracted.

2. Analyze the scope and justification of the constraint to determine what
knowledge-base modifications would cause the constraint to be retracted

or made inapplicable to the fact.

3. Analyze how the fact fails the constraint to determine what additional

beliefs would enable the fact to satisfy the constraint.

Each of these strategies can identify plausible knowledge-base modifications
to resolve the conflict, and KI pursues all three whenever an inconsistency is
encountered. The cumulative results of these pursuits are included in a memo
to the user suggesting how to resolve the inconsistency (Figure 3.8¢). Each of

these strategies is illustrated in turn using the example.

Determining how to refute a fact: The inference paths that established the

fact are analyzed for essential support. A set of beliefs provide essential support

"KI actually intercepts attempts by the system to suspend execution of the inference
engine and invoke the debugger.
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(a) An inconsistency: a fact and a violated constraint

covers(LeafCuticle; LeafEpidermis; ) argumentOneType(covers Sheet OfStuff)

(b) An explanation and assumptions establishing the fact

covers(Lea fCuticle; LeafEpidermisy)
<3z coveringPart(Lea f Epidermis, LeafCuticler)
<4 isa(LeafEpidermis) LeafEpidermis)
unless(partiallyCovers(Lea fCuticle; LeafEpidermis)

(c¢) A portion of the subsumption hierarchy
SpatialThing\ Temporal Thing

TangibleThing
/ Taﬁgiblestuff
ChemicalMixture SolidTangibleObject
Organicl\i[ixture OrganismComponent SheetOfStuff ComplexPhysicalObject
\ A
LifeSutstance SpecialisedPhysicalObject
BotanicalSubstance Container
PlantLipid Botglcq)incjz;l(());egstniqq BiologicalContainer
/Plantﬁll;cizlective BotanicalContainer
Cutin
LeafCuticle [all arcs are implicitly labeled ako]

The minimal generalization of LeafCuticle and SheetOfStuff i TangibleStuff.

(d) The condition imposed by the constraint
[covers(LeafCuticle; LeafEpidermis;) = isa(LeafCuticle; SheetOfStuff)]

(e) Suggested knowledge-base revisions

[:assert relationType(LeafCuticle LeafEpidermis partiallyCovers)]
[iretract argumentOneType(covers SheetOfStuil)]

[:assert argumentOneType(covers TangibleStuff)]

[:assert ako(LeafCuticle SheetOfStuff)]

Figure 3.8: Resolving an inconsistency

(a) An inconsistency: a fact and an applicable constraint not satisfied by the fact.
(b) An explanation establishing the fact reveals an underlying assumptions. (Rule 8
includes an assumption.) Only one explanation exists for the fact, so the assumption
provides essential support of the fact. Notation: p «<, ¢ denotes that p follows from
rule » triggered by ¢, and vertical alignment of antecedents denotes conjunction. (c)
A portion of the knowledge-base subsumption hierarchy. (d) The condition imposed
by the violated constraint. (e) The knowledge-base revisions suggested to the user:
asserting (an abstraction of) a refutation of the assumption made by the explanation
of the fact; retracting the constraint; asserting a minimally weakened constraint that
admits the fact; asserting that (an abstraction of) the condition imposed by the
constraint is satisfied.




70

if they participate in every explanation of the fact. The retraction of essential
support for an inferred fact refutes every inference path that establishes the

fact, causing the fact to also be retracted.

The explanations of a fact can include any number of alternative
essential supports, so a preference criteria is adopted to select among the alter-
natives. Each candidate essential support suggests beliefs that can be retracted
to resolve the inconsistency. The preference among alternative essential sup-
ports is therefore based inversely on the conviction of the beliefs contained in

the supports:

1. refuting explicit assumptions (e.g., as identified by unless clauses) is pre-

ferred to refuting nonmonotonic facts, and

2. refuting nonmonotonic facts is preferred to refuting monotonic facts

Consequently, KI first searches the explanations for assumptions that consti-
tute essential support. If this search fails, KI next searches the explanations for
essential nonmonotonic facts (i.e., those established by nonmonotonic rules).
If this search fails as well, KI then searches the explanations for any kind of
essential facts (e.g., ones established by either monotonic rules or directly by
a knowledge engineer). This last search is guaranteed to succeed: the fact
participating in the inconsistency itself constitutes essential support either es-
tablished by some rule or directly asserted by some knowledge engineer. Guid-
ing the search for candidate facts to refute using a preference based inversely
on some notion of the strength or utility of the refutation candidates is com-

mon to other approaches to resolving inconsistencies in knowledge bases (e.g.,

[GP94, DW93]).
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While searching for essential support, KI maintains a “single fix” pref-
erence: some support (e.g., assumption or inferred belief) will participate in
every explanation and so constitute essential support. KI thus avoids having
to search for preferred combinations of inessential support from various expla-
nations in order to construct a set of beliefs that collectively provide essential
support. ® Alternative approaches to resolving inconsistencies in knowledge
bases which do not permit refuting a fact (e.g., a positive training instance)
generally cannot adopt a single fix assumption and rely on a greedy algorithm
to heuristically search the combinations of inessential support for refutation

candidates that collectively provide essential support (e.g., [OM90]).

The knowledge-base modifications of refuting each essential support
retrieved by this search are included in a memo to the user that suggests how to
resolve the inconsistency. In the example, the explanations of covers(LeafCuticle;
LeafEpidermis; ) include the essential assumption unless(partiallyCovers(LeafCuticle,
LeafEpidermis;)) (Figure 3.8b). Simply asserting partiallyCovers(LeafCuticle;
LeafEpidermis; ) would resolve this particular inconsistency, but its effects would
be local to the learning context and would not resolve the tacit conflict among
the rules of the knowledge base. In proposing knowledge-base modifications to
the user, KI must abstract from particular terms used in its local analysis within
the learning context to terms that are referenced by the enduring beliefs in the
knowledge base. The abstraction is formed by replacing, those hypothetical in-
stances referenced by the proposition with the collections they instantiate (e.g.,
partiallyCovers(LeafCuticle LeafEpidermis)), and then interpreting the resulting

figurative proposition. ? The suggestion

8The inessential support of fact p includes every fact that is referenced by some, but not
all, explanations that establish p.
9A proposition is figurative when one or more of its arguments are a specialization, rather
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[:assert relationType(LeafCuticle partiallyCovers LeafEpidermis)]

if executed, resolves the tacit conflict in the knowledge base, and KI includes

this suggestion in the memo to the user.

Determining how to refute a constraint: The justifications of the con-
straint, if there are any, are analyzed for assumptions. If assumptions are found,
then knowledge-base modifications to refute them are included in the memo to
the user that suggests how to resolve the inconsistency. If there are no assump-
tions underlying the constraint, the knowledge-base modification of retracting
the constraint itself is included in the memo. KI further identifies alternative
minimal modifications of the constraint that admit the fact. The knowledge-
base modifications to assert these revised constraints are also included in the

memao.

The type of minimal modification appropriate for admitting the fact
depends on the type of constraint. For an argument typing constraint, the
appropriate minimal modification is a minimal generalization of the argument
type (e.g., SheetOfStuff) and of the collections instantiated by the argument (e.g.,
LeafCuticle). A minimal generalization of two collections is an existing, reified
collection that is a superset of each of the two collections but is not itself a
proper superset of any other superset of the two collections. In the example, the
minimal generalization of LeafCuticle and SheetOfStuff is TangibleStuff (Figure 3.8c¢).
Therefore, the suggestion [:assert argumentOneType(coversObject TangibleStuff)] is

included in the memo.

than an element, of the applicable argument types. Interpretation and figurative references
are discussed in Appendix C.
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Determining how to appease a violated constraint: Constraints impose
conditions that must be true of the beliefs to which they apply. The third strat-
egy KI pursues for resolving inconsistencies involves identifying what conditions
are being imposed by the constraint, and then determining what additional be-

liefs might satisfy those conditions.

Different constraints impose different types of conditions on beliefs.
For example, an argument-typing constraint requires that an argument of a
predicate be an element of a specified collection. In the example, the fact fails
the constraint because the fact isa(LeafCuticle; SheetOfStuff) has not been
established (Figure 3.8d). Simply asserting this fact would resolve the incon-
sistency in the learning context, but, as before, the suggestion memos must in-
clude knowledge-base modifications that resolve the tacit conflict among rules
in the knowledge base. KI abstracts this fact so that it no longer references

terms specific to the learning context, and the suggestion

[:assert ako(LeafCuticle SheetOfStuf f)]

is included in the memo.

This last suggestion is valid in the domain and will eventually be
accepted by the user. Thus, while resolving an inconsistency, KI has uncovered
a gap in the knowledge base and adbuctively filled it with new taxonomic

knowledge that extends the new information.

3.5.2 Inference-path compilation

An important and ubiquitous learning opportunity occurs when a
useful but deep inference path is compiled into a shallow and efficient rule

[MKKC86, DM86, Die86]; the new rule’s antecedent identifies the weakest pre-
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conditions [Dij75] for completing the inference path. Acquiring such compila-
tions can promote the general learning goal of economy as useful implicit beliefs

are made more accessible.

At this point in the example, the three types of knowledge KI acquires
by exploiting this learning opportunity are new inheritance (e.g., inherits) rules,

new taxonomic (e.g., ako) rules, and new skolemizing (e.g., relationType) rules.

Acquiring inheritance rules: In the cuticle scenario, elaboration reveals
that the hypothetical leaf epidermis is impermeable to gases. This fact is es-
tablished when KI determines that the epidermis is covered by a leaf cuticle,
which is composed of cutin, a wax-like substance that is impermeable to gases
(Figure 3.9). By analyzing the explanation of why the leaf epidermis is imper-
meable, KI determines that, under certain assumptions, all leaf epidermises are
impermeable to gases. Consequently, KI asserts the inheritance specification
that all leaf epidermises are assumed to be impermeable to gases. KI further
associates this rule with its underlying assumptions (e.g., that the leaf cuticle
is homogeneous, composed only of cutin; that it completely covers the epider-
mis). Making these underlying assumptions explicit permits identifying them
as assumptions that might be violated in situations where the rule is found to

be invalid (as discussed in the previous section.)

Acquiring taxonomic rules: The taxonomic subsumption hierarchy of the
knowledge base is fundamental to the inference engine: establishing class mem-
bership of constants is pervasive as inheritance is propagated and predicate
argument typing constraints are enforced. An important learning opportunity

involves establishing new taxonomic relations.
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(a) An explanation of the leaf epidermis’ impermeability to gas

tmpermeableToType(Lea f Epidermis, Gas)
<9 covers(LeafCuticle; LeafEpidermisy)

<3z coveringPart(Lea f Epidermis; LeafCuticle;)

<4 isa(LeafEpidermis) LeafEpidermis)
tmpermeableToType(Lea fCuticle; Gas)

<¢ isa(LeafCuticle; Cutin)

<5 composedO f(LeafCuticle; Cutin)
<4 isa(LeafEpidermis) LeafEpidermis)

(b) A proof establishing impermeability to gas

tmpermeableToType(w Gas)
<g covers(skolem; () x)
<3z coveringPart(z skolem;(z))
<4 isa(z LeafEpidermis)
tmpermeableToType(skolem; (z) Gas)
<¢ 1sa(skolem;(z) Cutin)
<5 composedO f(skolem;(z) Cutin)
<4 isa(z LeafEpidermis)

(c¢) A shallow rule compiled from the proof

[V (x) isa(x LeafEpidermis) = impermeableToType(x Gas)]

inherits(LeafEpidermis (impermeableToType) Gas)

(d) A deep rule compiled from the proof

[V (x) isa(x LeafEpidermis)
& unless(3 (y) coveringPart(x y)
& [(impermeableToType(y Gas)
& [partiallyCovers(y x) OR (3 (z) portal(x z) & —covers(y z))])
OR (3 (z) composedOf(y Cutin) & composedOf(y z) & z#Cutin)]
= impermeableToType(x Gas)]

Figure 3.9: Compiling a new inheritance rule

(a) An explanation for the hypothetical leaf epidermis being impermeable to gases.
Rules 1 though 9 are presented in Figure 3.4; Rule A is from the interpretation
of the new information, presented in Figure 3.2. (b) A general proof acquired by
generalizing the ground explanation. (¢) A new, shallow, inheritance rule acquired
by compiling the general proof excluding the assumptions (e.g., the uniess conditions
in the antecedents of rules used in the explanation). (d) A rule acquired by compiling
the general proof including the assumptions; this rule is correct to the extent that
the rules used in the explanation are correct.
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(a) An explanation establishing the leaf cuticle is a container

isa(LeafCuticle; Container)
<2 isa(LeafEpidermis; Container)
<1 isa(LeafEpidermis) LeafEpidermis)
<p 1sa(LeafCuticley LeafCuticle)
coveringPart(Lea f Epidermis; LeafCuticler)
< isa(LeafCuticle; LeafCuticle)
coveringPart(Lea f Epidermis; LeafCuticler)
< isa(LeafCuticle; LeafCuticle)

(b) A proof establishing every leaf cuticle is a container

isa(z Container)

<2 isa(skolem;(z) Container)

<1 isa(skolem;(z) LeafEpidermis)
<p isa(w Lea fCuticle)
coveringPart(skolem;(z) x)
<¢ isa(w LeafCuticle)
coveringPart(skolem;(z) x)

<¢ isa(z LeafCuticle)

(c) A new taxonomic rule

[V (x) isa(x LeafCuticle) = isa(x Container)]

ako(LeafCuti;le Container)
(a) A ground explanation establishing that the hypothetical leaf cuticle is a container.
(b) A general proof establishing that every leaf cuticle is also a container. (c) A

new, shallow, taxonomic rule acquired by compiling the general proof.

Figure 3.10: Compiling a new taxonomic rule

In the cuticle example, elaboration reveals that the hypothetical leaf
cuticle is a container. The explanation of this conclusion can be generalized
and compiled into a new taxonomic rule stating that every leaf cuticle is also

a container (Figure 3.10).

Acquiring new skolemizing rules: Skolemizing rules are also fundamen-
tal to the inference engine: they establish which implicit components can be
included in a domain configuration (i.e., a representation of a set of domain
objects arranged in order to denote some domain situation). Of particular

importance are relationType rules, which define the types of other components
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(a) An explanation establishing the cuticle covers the epidermis

covers(Lea fCuticle; LeafEpidermisi)
<3z coveringPart(Lea fEpidermis, LeafCuticle;)
<¢ isa(LeafEpidermis) LeafEpidermis)

(b) A proof establishing every cuticle covers an epidermis

covers(z skolem;(z))
<3z coveringPart(skolem;(z) )
<¢ isa(z LeafCuticle)
isa(skolem;(x) Lea f Epidermis)
<¢ isa(z LeafCuticle)

(c¢) A new relationType rule

[V (x) isa(x LeafCuticle) = 3 (y) isa(y LeafEpidermis) & covers(x y)]

relationType(LeafCuticle covers LeafEpidermis)

(a) A ground explanation establishing that the hypothetical leaf cuticle covers the
leaf epidermis. (b) A general proof acquired by generalizing the ground explanation.
(¢) A new, shallow, relationType rule formed by compiling the proof. However, the
same rule is acquired by simply generalizing the hypothetical instances to be arbi-
trary elements of the classes of which they are hypotheticals. because this rule is
subsequently invalidated by an applicable argument typing constraint, it is suggested
to the user and not autonomously asserted.

Figure 3.11: Compiling a new skolemizing rule

that any instance of a collection can relate to, including its partonomic, ances-
tral, and behavioral relations. Therefore, an important learning opportunity

involves acquiring new relationType rules.

In the cuticle example, elaboration reveals that the leaf cuticle covers
the leaf epidermis. The explanation of this conclusion can be generalized and
compiled into a new skolemizing rule stating that every leaf cuticle covers some
leaf epidermis (Figure 3.11). However, rather than performing this weakest-
precondition analysis on the explanation of this fact, KI creates a new rule by
simply abstracting the fact. As before, this involves replacing the hypothtical
terms with the collections they instantiate and then interpreting the resulting

figurative proposition. This results in a new relationType rule (Figure 3.11c).
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KI then determines whether this new rule is consistent with relevant existing

rules (e.g., the applicable argument typing constraints).

This strategy (in contrast to the standard weakest-precondition anal-

ysis [MKKC86, DM86]) is adopted for relationType rules for two reasons:

1. KI expects to be reasoning with hypothetical instances of collections, and
each instance typically denotes a very representative (and often arbitrary)
element of the collection. Consequently, any binary relation that holds
for two hypotheticals is also quite likely to hold for pairs of elements from
the two classes. It is a reasonable conjecture that any particular element
from one class will, by defualt, be related to some element from the other

class. 19

2. Easily accessed and applicable rules in the form of the predicate argument
typing constraints are always available. These rules impose necessary
conditions which the candidate rule must satisfy and help to identify

unwarranted rules.

Thus, to acquire new inheritance and taxonomic rules, KI imposes a con-
servative test that requires candidate rules to be validated (e.g., through a
weakest-precondition analysis of an inference path), but for new relationType
rules, KI admits candidate rules which satisfy the applicable argument typing

constraints.

10Tf KI were provided with new information comprising ground propositions on particular
individuals, rather than rules, the expectation that reasoning would involve representative
hypothetical instances of classes, rather than idiosyncratic instances, would be violated, and
this strategy would be inappropriate.
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As Figure 3.8 illustrates, the candidate rule is not consistent with
an existing constraint and so is not asserted. However, despite this conflict,
there exists a precedent (e.g., the fact covers(LeafCuticle; LeafEpidermis,)) for
the rule, so KI simply creates a memo suggesting that the user consider adding

the candidate rule to the knowledge base.

3.5.3 Abduction: acquiring rules to explain new beliefs

Explaining why a new belief is true establishes a better (e.g., more
complete) comprehension of the new belief. Completing such explanations
may require assuming additional beliefs, which extends the new information.
Acquiring these additional beliefs promotes both the general learning goals of
conviction (because the learner gains the capability of justifying the new belief)

and completion.

When new taxonomic beliefs are established, KI attempts to identify
refinements of existing taxonomic beliefs that subsume the new ones. For exam-
ple, during interpretation, KI establishes the taxonomic belief ako(LeafCuticle
Botanical OrganismComponent). Subsequently, when ako(LeafCuticle Container) is
established (Section 3.5.2), KI attempts to identify other collections that sub-
sume the previous two and to propose them as possible generalizations of Leaf-
Cuticle. When two collections intersect, many existing, reified collections may
be included in the intersection (i.e., collections that are proper specializations
of both of the two intersecting collections). In observing the minimal change
principle [Har86], KI identifies the mazimal specializations of the current gen-
eralizations. A maximal specialization of a set of collections is an existing,
reified collection that is a common subset — a subset of each element of the set

of collections — but is not itself a proper subset of any other common subset.
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In the example, the only maximal specialization of Container and BotanicalOrg-
anismComponent 18 Botanical Container (Figure 3.8C), so KI proposes the new belief

ako(LeafCuticle BotanicalContainer). H

The resulting new taxonomic belief is automatically asserted by KI
only if the affected collection (e.g., LeafCuticle) is a new concept and if there
is only one maximal specialization; otherwise, the new belief is simply sug-
gested to the user. Furthermore, if the new taxonomic belief is asserted, KI
creates a memo suggesting that the user assert the rule that any element of the
newly-subsumed generalizations (e.g., Container and BotanicalOrganism Component
is also an element of the maximal specialization. In the example, KI suggests

asserting:

[V (2) isa(x Container) & isa(xz BotanicalOrganismComponent)
= isa(x BotanicalContainer)]

3.6 Discussion

Through instantiating the new information, permitting non-skolemizing
rules to exhaustively forward propagate, and analyzing the resulting learning
opportunities, KI has begun to determine how the new information and existing
knowledge interact. This analysis has proved useful, resulting in several worth-
while extensions to the knowledge base. However, the analysis thus far has been
relatively shallow: it has been restricted to inference paths that reference only
explicit concepts in the knowledge base and the hypothetical individuals that

instantiate collections mentioned in the new information (e.g., LeafEpidermis,

I This example illustrates the analysis performed when multiple ako beliefs are established
for a class. A similar analysis is performed when multiple ¢sa beliefs are established for a
class.
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and LeafCuticle;). To further identify implicit consequences of the new infor-
mation, this analysis must be taken deeper. Recognition extends the learning
context to include instances of collections that are relevant to — but not explic-
itly mentioned in — the new information. This extension permits much deeper

inference paths that establish interactions between new and prior knowledge.

Determining what prior knowledge to use while extending the learning
context is a critical step in performing knowledge integration: it will circum-
scribe which inferences can be performed during the subsequent elaboration
and, consequently, which learning opportunities will surface and be exploited
during adaptation. However, the space of possible extensions to the learning
context is vast, and identifying which prior knowledge is most useful to con-
sider during knowledge integration is problematic. KI’s method for performing
recognition — for heuristically selecting prior knowledge to add to the learning

context — is discussed in the next chapter.



Chapter 4

Recognition: Focusing Attention with Views

Hoare’s Law of Large Problems:

Inside every large problem is a small problem struggling to get out.

Corollary:
Inside every large body of available knowledge is a small body of

relevant knowledge struggling to get out.

4.1 The problem of focusing attention

In general, a recipient of new information does not know the contents
of the new information in advance and therefore cannot know what existing
knowledge will be relevant to its comprehension. Without the use of know-
ledge to make sense of new information, comprehension is limited to the most
trivial level (e.g., one comparable to an emacs buffer; what might be called
zeroth-order comprehension). Prior knowledge is required to investigate the
consequences of the new information; e.g., by completing inferences. The diffi-
cult problem, however, is not completing inferences; rather it is deciding which
inferences to complete among the potentially infinite number that could be
completed. Therefore, inference during comprehension must be bounded, and
an appropriate (finite) subset of inferences to complete must be selected. Any

general computational model of comprehension must include some method of

82
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focusing attention, of determining which inferences to complete.

By operationalizing new information and permitting non-skolemizing
rules in the knowledge base to exhaustively forward-chain, elaboration begins to
identify the consequences of the new information for prior knowledge. The par-
tial entailment that is completed can be considered first-order comprehension:
some implicit consequences of the new information have been made explicit,
but only for a narrow range of concepts (e.g., those referenced by the new in-
formation and those already explicit in the knowledge base). Thus, this partial
entailment is quite limited: it excludes consideration of skolemizing rules and
the implicit concepts they reference. Deeper comprehension requires deter-
mining additional interactions between the new information and prior implicit
knowledge; it requries extending the partial entailment; it requires further elab-
oration in which selected implicit concepts are made explicit and added to the

learning context.

During recognition KI identifies existing knowledge that is relevant to
the new information to further elaboration. This requires selecting fragments
of prior knowledge, not already included in the learning context, to use while
extending the partial entailment of new and prior knowledge. This is quite
a difficult problem because there are so many alternative extensions: given n
beliefs in the knowledge base, there are 2™ alternative extensions. This problem
poses the single most difficult computational hurdle encountered while imple-
menting KI. Its solution involves a basic approach that controls inference by
restricting what concepts will be reasoned about (Section 4.2); the strategy for
implementing this basic approach involves both a model of relevance (Section

4.3) and a context-based method for structuring knowledge (Section 4.4).
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4.2 The approach: determining what to reason about

A pearl of conventional wisdom about reasoning with first-order theo-
ries states that completing inferences and instantiating quantified formulae are
separable tasks [McA80]. Because reasoning with ground formulae is typically
simple and fast, the problem of controlling first-order inference can be reduced
to the problem of controlling instantiation. ! Controlling reasoning by control-
ling the instantiation of quantified formulae is the foundation of KI’s approach

to guiding elaboration.

During elaboration, KI restricts reasoning to rules triggered by facts
contained in the learning context; therefore, every fact established through
inference is a consequence of other facts included in the learning context. At
any point during knowledge integration, some subset of facts contained in the
learning context are primitive, not derived as a consequence of other facts in
the learning context. These primitive facts determine what inferred facts are
established; they control elaboration. During recognition, KI determines what

quantified formulae to instantiate as extensions of this set of primitive facts.

The set of primitive facts in the learning context is initialized with
facts that instantiate the new information (Figure 3.3). In other words, during

the first cycle of comprehension, recognition simply “selects” the new infor-

Tn fact, some researchers hold the extreme position that controlling instantiation is the
“only difficult issue remaining in automated deduction” [McA80, page 1].

?The task of determining a set primitive of facts from which to reason extensively also
arises in (e.g., qualitative) model-based reasoning. Typically, a particular model-based rea-
soning task will not require reasoning with the entire model, and, for tractability concerns,
only a portion of the model (one that is sufficient for the task) will be used [FF91]. Deter-
mining this portion of the model (i.e., what components to include) is the model-selection
problem. Recognition is quite similar to model-selection: it determines both which compo-
nents (e.g., hypothetical instances) should be considered during elaboration and in which
configuration these components should be arranged; the components, defined in a particular
configuration, are the primitive facts used to initialize and extend the learning context.
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mation. During each subsequent cycle of comprehension, recognition selects
another set of quantified formulae to instantiate as an extension of the set of
primitive facts. Each extension of the primitive facts enables a new region of
implicit knowledge to be made explicit; explicating that region occurs during
elaboration as the non-skolemizing rules exhaustively forward chain. Since each
inferred fact is necessarily a consequence of the extension, the extension — the
set of new primitive facts selected during recognition — controls the inferences

that will be completed during elaboration.

The goal of comprehension is to assess how new information inter-
acts with prior knowledge. Therefore, each extension of primitive facts should
be relevant to the new information, that is, it should trigger inferences that

establish consequences of both the new information and the extension.

4.3 A model of relevance

To focus attention during inference, KI adopts an inference-based
model of relevance: two beliefs are relevant to the extent that they participate
in common inference paths. Thus, a fact is relevant both to its consequences
and to every fact of which it is a consequence. Under this interpretation,
relevance is a reflexive, symmetric, and transitive relation. The symmetrical

aspect of relevance is not common in other formulations of relevance (e.g.,

[Han92, SG8T]).

Defining relevance in terms of inference would seem to preclude using
relevance to control inference: if inference paths must be completed to establish
relevance, how can relevance be used to determine which inference paths to
complete? The answer to this paradox is that relevance itself is not directly

used to control inference; rather, properties that suggest (i.e., correlate with)
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relevance are used.

One such property is connectedness: two beliefs are mutually relevant
with respect to a set of beliefs only if some subset of the belief set forms
a connected graph that connects the them. Using property as a necessary
condition for an inference-based model of relevance is warranted because rules
are the syntactic conduits of inference and because the sets of facts referenced
by rule instances ? virtually always form connected graphs. When all instances
of a rule are necessarily connected, the rule itself is said to be connected. *
Furthermore, if every rule participating in an inference path is connected, then
the set of facts referenced by the inference path froms a connected graph, and
the inference path itself is said to be connected. If the knowledge base contains

only rules that are connected, then every inference graph will be connected.

The connectedness requirement is exploited during recognition to
drastically restrict the candidate extensions of the learning context: a set of
new primitive facts is relevant to the existing contents of the learning context
only when the union of the new primitive facts and some non-empty subset of
the learning context forms a connected graph. Requiring the set of new primi-
tive facts to be connected and to contain some belief that is already linked to
(i.e., shares a term with) some belief in the learning context ensures that the
new primitive facts is connected with some subset of the learning. This pol-

icy guarantees that if the learning context is connected it will remain so after

3A rule instance is a rule with all variables bound to constants such that the rule’s
antecedent 1s satisfied.

*Note that being connected is not a formal and universal requirement of rules. A particular
representation language may permit independent, free floating clauses to appear either in a
rule’s antecedent (e.g., [V (z) isa(z LivingObject) & 3 (y) color(y Green) = 3 (z) parents(w z)]) or
in 1ts consequence (e.g., [V (wy) isa(z LivingObject) & parents(z y) = 3 (z) color(z Green)]). While
such rules may be legal statements in the language, clauses that violate the connectedness
requirement (e.g., 3 (y) color(y Green)) cause them to lack coherence (if not correctness).
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recognition extends it with new primitive facts. Importantly, this restriction
promotes selecting new primitive facts that can extend the inference paths al-
ready completed in the learning context, since inference paths can be extended
only by facts that are connected to facts currently referenced by the inference
graph. Thus, the restriction promotes selecting extensions that are relevant to

the learning context. °

There are various ways to implement this restriction. One very sim-
ple method is to permit as new primitive facts only those that are directly
linked to some fact already in the learning context. Including every fact that is
directly linked to some fact in the learning context achieves a sort of “spread-
ing activation” behavior [And83]. The resulting search for the consequences
of new information is very complete. After cycle n (i.e., after n iterations of
the recognition-elaboration cycle) every fact accessible from the new informa-
tion by an access path of length n will be included in the learning context,
and every consequence that requires an inference graph of order n will be es-
tablished, where the order of an inference graph is the cardinality of the set
of terms referenced by graph’s leaf nodes. However, this strategy is too per-
missive: at cycle n, recognition will add to the learning context on the order
of m” new facts, where m is the average number of beliefs with which a fact
shares some term. Furthermore, this strategy tends to minimally extend the

length of access paths among concepts in the learning context. Therefore, each

*Inference path extensions, facilitated by new primitve facts, can deepen the inference
paths in both directions. For example, by combining with existing facts in the learning
context to trigger rules that establish facts new to the context they can extend inference paths
with new roots (i.e., adding onto the “tops” of inference paths). Similarly, by combining
with existing facts to trigger rules that establish beliefs already in the learning context
(e.g., the beliefs that instantiate new information) they can identify new explanations of
those established beliefs and extend inference paths with new leaves (i.e., adding onto the
“bottoms” of inference paths).
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cycle of recognition minimally increases the order of inference graphs that can
be completed during elaboration. Assuming the depth of an inference graph
correlates positively with its order, this strategy promotes the completion of
relatively shallow inference graphs over relatively deep ones, where the depth
of an inference graph is the greatest number of inference steps that connect
the root belief to a leaf node. Thus, connectedness is a necessary condition for
relevance, but alone it is insufficiently constraining, so additional criteria must

be imposed.

To avoid exponential growth in the learning context and to promote
the completion of deep inference paths, KI uses a context-based approach to
select sets of new primitive facts with which to extend the learning context and

thereby solve the problem of focusing attention. ©

4.4 Views: contexts of mutually relevant beliefs

[A]ny problem that a person can solve at all is worked out at each
moment in a small context ... [T]he key operations in problem-
solving are connected with finding or constructing these working

environments. [Minsky, 1981]

Views are contexts; that is, they are sets of beliefs. Unlike other types
of contexts, such as those that comprise beliefs sharing some epistemological
basis (i.e., sets of implicit assumptions) [Guh91], views comprise beliefs that
are mutually relevant, that is, they interact in some significant way and should

be considered together. Views are connected.

5This model of relevance provides a computational account for why new information must
reference known concepts (i.e., known constants) to be comprehended: if it does not, the new
information is not connected with, and not relevant to, any belief in the knowledge base.
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Figure 4.1 presents a view containing beliefs that describe the hy-
pothetical leaf epidermis as a container. It includes facts denoting that the
epidermis acts as a conduit in the leaf’s acquisition of light and carbon dioxide

and in the leaf’s release of water vapor during transpiration.

The knowledge base includes a system of views. This system embodies
a type of meta-knowledge: it structures the knowledge base and segregates
beliefs into coherent (i.e., mutually relevant) delineated contexts. The view
in Figure 4.1 is coherent because every fact contained therein is relevant to

describing the leaf epidermis as a container.

Intuitively, views are similar to gestalts. The components of a gestalt
are so inextricably tied together that an agent cannot easily perceive or conceive
of some of the components in isolation from the rest. Similarly, the contents
of views are beliefs that are indexed by the view and so are not retrieved
independently but rather as a collective whole. That is, when structured with
views, knowledge is retrieved from the knowledge base as coherent constructs

comprising sets of beliefs rather than as individual beliefs.

Views index the beliefs they contain. During recognition, KI deter-
mines an extension to the primitive facts contained in the learning context.
Rather than selecting each new primitive fact independently, KI selects a sin-
gle view. To ensure the selected view is relevant (i.e., connected to the learning
context), the view must contain at least one belief that is directly linked to
some belief in the learning context. Furthermore, to ensure the selected view
extends the primitive facts of the learning context, it must include at least
one belief not included in the learning context. The large problem of focus-
ing attention during recognition then decomposes into the smaller problems of

creating and selecting views.
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(a) The view: LeafEpidermis; QuaContainer

{coveringPart(LeafEpidermis; LeafCuticle;) source(LeafLight Acquisition LeafAmbient Atmosphere)
conduitIn(LeafEpidermis; LeafLightAcquisition)  destination(LeafLightAcquisition LeafEpidermis)
conduitIn(LeafEpidermis; LeafLightDistribution) transportee(LeafLightAcquisition Light)
conduitIn(LeafEpidermis; LeafCO3Acquisition) source(LeafLightDistribution LeafEpidermis)

conduitIn(LeafEpidermis; LeafTranspiration) destination(LeafLightDistribution LeafMesophyll)
conduitIn(LeafEpidermis; LeafCOyDistribution)  transportee(LeafLightDistribution Light)
source(LeafCO,Distribution LeafEpidermis) source(LeafCOsAcquisition LeafAmbient Atmosphere)
destination(LeafCO;Distribution LeafMesophyll)  destination(LeafCO2Acquisition LeafEpidermis)
transportee(LeafCODistribution CO3) transportee(LeafCO2Acquisition CO3)

source(LeafTranspiration LeafIntercellularSpace)  transportee(LeafTranspiration Ho OVapor)
destination(LeafTranspiration LeafAmbientAtmosphere) }

(b) The view presented as a semantic network

Light
tra% \ans
LeafLight Leaf LeafLight
Distribution Cuticley Acquisition
A
dest, source dest source
condIn cov condIn
Leaf Leaf LeafAmbient
Mesophyll Epidermis; Atmosphere
condIn condIn| condIn
des 'source dest dest
Y
LeafCO» LeafCO» Leaf
Distribution Acquisition Transpiration
trans trans tran source
Leaf
COy H,O Intercellular
Vapor Space
Abbreviations: trans ¢ transportee

dest ¢ destination

condIn ¢ conduitln

cov ¢ coveringPart

(a) The view LeafEpidermis; QuaContainer represents the hypothetical leaf epidermis in
its role as a container. The view comprises twenty-one beliefs, including one fact
(e.g., coveringPart(LeafEpidermis, LeafCuticle )) and twenty ﬁgurative beliefs. (b) The view
represented as a semantic network. For clarity, the belief source(LeafCO, Acquisition LeafAm-
bientAtmosphere) is omitted from the diagram.

Figure 4.1: An example view
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A large knowledge base contains a plethora of possible contexts. Con-
sidering only contexts comprising skolemizing rules, 2" contexts can be defined
for a knowledge base containing n skolemizing rules. Since it is untenable to
consider all possible contexts, the algorithms developed for creating and ma-
nipulating contexts must be biased to consider only a select subset. KI exploits
two sources of bias: an ontological bias restricts the set of primitive contexts
that can be defined (Section 4.4.1); an indexical bias restricts the set of contexts

that can be accessed in any given situation (Section 4.4.2).

4.4.1 Creating views with view types

The most imposing question concerning the use of views is: How are
these convenient contexts of mutually-relevant beliefs created? One approach
assumes each view is constructed prior to the reasoning tasks that require
their use (e.g., all views are created during some monolithic sweep through the
knowledge base). However, this is untenable because the system’s knowledge
includes implicit concepts that cannot be explicitly referenced and so cannot be
explicitly included in any handcrafted view. For example, the view presented
in Figure 4.1 cannot be defined before that hypothetical instance was created.
Also, there are an infinite number of plants and leaves and leaf epidermises, etc.,
tacitly represented; making them (and the views that reference them) explicit
is not feasible. Furthermore, assuming the knowledge base is incomplete, there
are domain concepts (e.g., the leaf cuticle) that cannot be referenced within
views before their introduction. Therefore, the knowledge base cannot undergo

some single, definitive structuring process; view construction must be dynamic.

The key observation underlying the approach adopted in KI is that

many views share a common structure; that is, while the terms referenced
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within two similar views might be completely different, the relations between
those terms are the same in both views. For example, Figure 4.1 illustrates the
view representing the hypothetical leaf epidermis in its role as a container. Not
surprisingly, there are analogous views for other leaf epidermises represented
as containers. The terms of these views are different (e.g., each leaf epidermis
has a distinct leaf cuticle); however, the relations that hold over the terms
referenced in each view will be the same. In other words, when represented as
semantic networks, these views tend to be isomorphic; the nodes differ, but the
arcs are identical. Similarly, analogous views represent other types of epidermis
(e.g., the stem epidermis, the root epidermis) considered as containers. The
semantic network representation of these views will likely not be isomorphic
because direct analogs do not exist in every view for each term in any view.
For example, there will likely not be an analog of the leaf acquisition of light
in a view representing the root epidermis as a container. However, the set
of relations, their identity and pattern, will remain similar; they will include
propositions representing the contents of the container as well as the events that
move things into and out of the container. Furthermore, there are analogous
views representing the seed coat, the cell wall, and the pollen sac, each having
different terms but a common pattern of relations. In general, anything that
functions as a container can be represented as a container, and a common
pattern of relations will be appropriate for every representation. Therefore, a
class of views can be defined and the relations common to every instance of this
class can be identified and associated with the class. Knowledge-base constants

denoting classes of views are called view types.

Figure 4.2 presents an example of a view type. View type QuaCon-

tainer identifies the knowledge-base paths emanating from a concept that iden-
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tify properties relevant to representing that concept as a container. These
properties include the contents of the container, the processes that transport
items into and out of the container, and the parts that are themselves contain-

ers.

A view type is a semantic-network schema, represented as a set of
paths emanating from a root node. Rather than having knowledge-base con-
stants as nodes, it has variables, each of which can bind to one or more con-
stants. A view is defined by instantiating a view type. This involves binding
the variables to (zero or more) constants and, perhaps, specializing the rela-
tions. For example, the view type in Figure 4.2 is instantiated to produce the
view in Figure 4.1. The view includes five constants (e.g., LeafCO- Distribution,
LeafC Oy Acquisition, LeafTranspiration, ...) that bind to a single variable in the
view type, and the relation part in the view type is replaced by its specialization

coveringPart In the view.

Views are created by applying a view type to a domain concept: the
concept is bound to the root node and each access path is instantiated. Only
the individual view types are manually constructed. Each view type can then
be used to generate (a potentially infinite number of) distinct views as they
are needed. Currently, there are twenty-two handcrafted view types defined in

the knowledge base.

Instantiating an access path within a view for a given concept first in-
volves binding the root node of the access path to the concept, then determining
the bindings for the next node along the path. The arc that connects the root
node to the next node is a binary predicate. Candidate bindings for the node in-
clude the second arguments of facts in the knowledge base whose predicates are

a specialization of the arc and whose first arguments are the concept bound to
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The view-type QuaContainer
O ource

\

trans O

‘@OHZNT%(M&I
trans contains part
O portal
\wﬂn
trans O din

trans contains condIn
O B — O sourceln source O
O _trans O _dIn “trans O
dest O
Node constraints: P : ako(P Container)
Abbreviations: condIn : conduitIn

cav ! cavity
dest ¢ destination
dIn : destinationln

trans ¢ transportee

The view type QuaContainer represented as a semantic-network schema. It contains
access paths relevant to considering a thing as a container; the shaded node is the
position of the root concept. Nodes are variables that can bind to knowledge-base
constants: unlabeled nodes are unconstrained; labeled nodes are constrained (e.g.,
any constant binding to node P must be a subset or element of the collection Container).

Figure 4.2: An example view type

root node. For example, while instantiating QuaContainer for LeafEpidermis,,
LeafCuticle; is a candidate binding for the node connected to the root node
by the arc labeled part since coveringPart(LeafEpidermis, LeafCuticle;) has been
established and akoSlot(coveringPart part) is true. Candidate bindings for the
node also include the third arguments of relationType assertions whose second
arguments are specializations of the arc and whose first arguments are col-

lections that contain (i.e., as an element or as a subset) the concept bound
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T For example, LeafLightAcquisition is a candidate bind-

to the root node.
ing for the node connected to the root node by the arc labeled conduitin
since relationType(LeafEpidermis conduitin LeafLight Acquisition). Finally, if the
node is labeled and has constraints, then candidate bindings that do not sat-
isfy the node’s constraints are discarded. Since prior elaboration established
isa(LeafCuticle; Container) (Figure 3.5), LeafCuticle, satisfies the constraint on
node P (Figure 4.2) and is accepted as a binding. The remaining candidate
bindings are returned as bindings. ® To instantiate the rest of the path, each
node binding is treated as a distinct, new root node, and the remaining access

path is instantiated for it using precisely the same procedure recursively. The

number of recursions equals the depth of the access path.

In the process of instantiating an access path, if there are no candidate
bindings for a node and if the predicate denoted by the arc connecting the node
to its predecessor is expected to have a value, then a learning opportunity is de-
tected. While creating the view presented in Figure 4.1, for example, no candi-
date bindings are found for the nodes connected to the root node by the arcs la-
beled cavity, portal and contains. The predicates portal and contains are expected
to have values for leaf epidermises because, respectively, most plant compo-
nents have some sort of portal, and epidermises contain the internal parts of the
morphological part they cover (i.e., the knowledge base includes the assertions
likelyF orType(portal BontanicalComponent) and likelyForType(contains Epidermis)).

However, the knowledge base includes no expectation that the leaf epidermise

"These second type of candidate bindings result in figurative references. Only the most
specific set of those figurative references for which no instance-level candidate bindings exist
is included as candidate bindings.

8As illustrated in Figure 4.1, a view can include multiple bindings for any non-root node
in a view-type. FEach distinct binding of the root node spawns a distinct view.
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has a value for the predicate cavity. ® Consequently, when creating the view
LeafEpidermis; QuaContainer, KI detects two gaps in the knowledge base and
creates a memo to the user suggesting the missing information be provided.
The memo includes the request: “For LeafEpidermis, please specify the rela-
tion types for predicates: contains, portal.” KI thus exploits expectations that
particular predicates should have values for elements of particular collections
(e.g., likelyFor assertions) to detect gaps in the knowledge base and request

additional knowledge to fill those gaps.

An important property of view types (and their constituent access
paths) is that they are trees and thus are connected, rooted, acyclic graphs.
The views created by instantiating view types are also graphs. Their nodes are
those constants in the knowledge base that can bind to the variables referenced
in the access paths, and their arcs are the predicates (or their specializations)
that appear in the access paths. Views need not be acyclic since a concept that
binds to one access-path node may also bind to another subsequent node along
the same access path. However, views are necessarily connected. Therefore,
the primary effect of KI's ontological bias for defining views is that only con-
nected contexts can be created with view types. This bias promotes defining
relevant contexts since views are necessarily connected. Furthermore, the bias
dramatically restricts the space of contexts that can be created as views: rather
than considering the space of all the knowledge-base subgraphs, only the space

of connected subgraphs is considered.

The view presented in Figure 4.1 contains one belief included in the

°In fact, the knowledge base should include this expectation as well but is missing
the assertion likelyFor(cavity LeafEpidermis); 1t 18, of course, also missing the assertion
relationType(Lea f Epidermis cavity Lea fIntercellular Space).
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Interpreting figurative references in LeafEpidermis; QuaContainer

H(abcdefghijk)

isa(a LeafMesophyll) & isa(b CO2) & isa(c H,OVapor) & isa(d Light) & isa(e LeafAmbient Atmosphere)
& isa(f LeafIntercellularSpace) & isa(g LeafLightAcquisition) & isa(h LeafLightDistribution)

& 1sa(i LeafCO2 Acquisition) & isa(j LeafCO, Distribution) & isa(k LeafTranspiration)

& conduitIn(LeafEpidermis; g) & transportee(g d) & source(g €) & destination(g LeafEpidermis; )

& conduitIn(LeafEpidermis; h) & transportee(h d) & source(h LeafEpidermis;) & destination(h a)

& conduitIn(LeafEpidermis; 1) & transportee(ib) & source(i €) & destination(i LeafEpidermis)

& conduitIn(LeafEpidermis; j) & transportee(j b) & source(j LeafEpidermis;) & destination(j a)

& conduitIn(LeafEpidermis; k) & transportee(k c) & source(k f) & destination(k €)]

P =ty =iy

The interpretation of the figurative references in view LeafEpidermis; QuaContainer is
an existentially quantified formula that can be used to extend the learning context.

Figure 4.3: Interpreting a view

learning context at the end of the first cycle of elaboration:

coveringPart(Leaf Epidermis, LeafCuticley)

Therefore, this view is connected to the learning context. However, most of
the beliefs included in this view are figurative; that is, they make figurative
references. As with new information, figurative beliefs contained in views are
interpreted as quantified formulae. Figure 4.3 presents the interpretation of the
figurative beliefs included in this view. The existentially quantified variables
denoted by figurative beliefs included in a view define new concepts (e.g., hypo-
thetical individuals) that can be considered during elaboration. Instantiating
these existentially quantified formulae defines new primitive facts that can be
added to the learning context. For example, extending the learning context
with this view adds thirty-one new primitive facts and eleven new terms to the

learning context.

It is often useful to represent a given concept in different roles: a leaf
can be considered in its role as a producer (e.g., of sugar via photosynthesis)

or as a consumer (e.g., of carbon dioxide and water). Consequently, there
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(a) The view type: QuaCoveringPart
. physicalPart O

coveringPartOf

O physicalPart O
(b) The view LeafEpidermis; QuaCoveringPart

Leaf
Cuticleq

‘coveringPart

Leaf Leaf
Epidermis; Mesophyll

epidermis\ierm%nd'ﬁssue
Leaf Leaf
Leaf

_intercellGap cell

Intercellular » Photosynthetic
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petiole veins \ blade
Leaf Leaf Leaf
Petiole Vascular Blade
Network

(a) The view type QuaCoveringPart contains access paths relevant to considering some-
thing as a covering part of an object. (b) The view LeafEpidermis; QuaCoveringPart rep-
resents the hypothetical leaf epidermis in its role as the covering part of some leaf.

Figure 4.4: A second view of LeafEpidermis;

can be several, perhaps many, view types applicable to each concept in the
knowledge base. Each view type defines a distinct view of that concept. For
example, another view type applicable to LeafEpidermis; 1s QuaCoveringPart.
Figure 4.4 presents this view type and the view that results when it is applied

to LeafEpidermis, .

Not all view types can be applied to all concepts in the knowledge
base; it doesn’t make (literal) sense, for example, to apply the view type

QuaContainer to an event (e.g., Photosynthesis). Therefore, each view type has
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preconditions that act as sufficiency constraints: the view type can be applied
only to concepts that satisfy its preconditions. Since each view identifies beliefs
relevant to considering some concept in a particular situation, the preconditions
of a view type simply require that a proposed root concept be in the situation
designated by the view type. For example, QuaContainer can be applied to
any concept that is a subordinate (i.e., an element or a subset) of Container;
QuaCoveringPart can be applied to any plant component known to function as
a covering (e.g., any subordinate of Epidermis, OvuleIntegument, or SeedCoat); and
QuaDehydratingLiving Thing can be applied to any living thing that is dehydrating.
By associating preconditions with view types, the appropriateness of a candi-
date view can be determined before it is created, and inappropriate views need

never occur.

To extend the learning context, KI identifies relevant views by deter-
mining the view types applicable to concepts already contained in the learning
context. At the end of the first cycle of elaboration, the learning context
contains the two hypothetical individuals LeafEpidermis; and LeafCuticle;. KI

identifies the view types applicable to these concepts.

There are four view types that apply to LeafEpidermis;:

1. QuaContainer — applying it to LeafEpidermis, identifies beliefs representing

the leaf epidermis considered as a container (Figure 4.1).

2. QuaCoveringPart — applying it to LeafEpidermis; identifies beliefs repre-
senting the leaf epidermis considered as the covering part of the leaf

(Figure 4.4).

3. QuaPhysical Component — applying it to the LeafEpidermis; identifies beliefs

representing the leaf epidermis considered as a physical component of the
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leaf. This set of beliefs is identical to LeafEpidermis, QuaCoveringPart.

4. QuaBiological DevelopingThing — applying it to LeafEpidermis; attempts to
identify beliefs representing the leaf epidermis considered as a living
thing with a developmental progression from creation through maturity

to death.

This last view, however, cannot be created because the beliefs denoting the
developmental progression of a leaf epidermis are missing from the knowledge
base. Any concept that satisfies the precondition of QuaBiological DevelopingT hing
(e.g., any subordinate of Biological LivingThing) is expected to root a set of be-
liefs that denote its developmental progression. When these beliefs are found
to be missing for LeafFEpidermis, KI detects a gap in the knowledge base and
creates a memo suggesting that the user add beliefs to the knowledge base
that describe how the leaf epidermis develops. By referring to the access paths
associated with the view type, this request for additional information can be

quite focused (Figure 4.5).

There are three view types that apply to LeafCuticle;. Prior elabora-
tion established that the leaf cuticle is an instance of both container and cutin
(Figure 3.5). Furthermore, cutin is a type of both BotanicalSubstance — the collec-
tion of non-living compounds, solutions or mixtures that are part of a plant —
and OrganismComponent — the collection of physical parts of organisms. By virtue
of being a container, the view type QuaContainer is applicable to the leaf cuti-
cle; by virtue of being a botanical substance, the view type QuaBiological Product
is applicable to it; and by virtue of being an organism component, the view
type QuaPhysicalComponent is applicable as well. However, since LeafCuticle is a

new concept, there is insufficient knowledge about it to create views capable
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Suggestion: Please describe how the LeafFpidermis develops.

Leaf "
Epidermis O acor,,

developy \%‘Stmge/evelopeeln

actor
succes’s% &iedecessor
O devStageOf O O devStageOf O
Abbreviations: devStage ¢ developmentalStage

devStageOf ¢ developmentalStageOf

The view type QuaDevelopingThing contains access paths relevant to considering the
developmental progression of a living thing. When applying this to LeafEpidermis, no
bindings could be found for any of the non-root node variables. Since this view type is
applicable to every living thing (i.e., every living thing should exhibit a developmental
progression), the absence of these beliefs reveals knowledge base gaps. A memo
is created suggesting the user describe the developmental progression of the leaf
epidermis by completing the access paths in QuaDevelopingThing rooted at LeafEpidermis
(i.e., by specifying what concepts bind to the variable nodes in these access paths).

Figure 4.5: Soliciting knowledge of how the leaf epidermis develops.

of extending the learning context. The view LeafCuticle; QuaPhysicalComponent
simply contains the fact that the leaf cuticle covers the leaf epidermis (Figure
4.6). Furthermore, this view is already activated (i.e., every belief is fully in-
stantiated and already contained in the learning context). There are no beliefs
contained in the other two views because there is no explicit knowledge of how
the leaf cuticle functions as a container or how it is produced. Consequently,
KI creates memos suggesting that the user provide the missing knowledge to

complete these views (e.g., Figure 4.7).

Typically, however, there will be many concepts represented in the
learning context, each having several different applicable views types that define

candidate views for extending the learning context. Therefore, a method is
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(a) The view type: QuaPhysicalComponent
O physicalPart O

physicalPartOf
. physicalPart O

(b) The view LeafCuticle; QuaPhysical Component

Leaf
Epidermis;

coveringPartOf coveringPart

Leaf
Cuticleg

(a) The view type QuaPhysicalComponent contains access paths relevant to con-
sidering something as a physical component of an object. (b) The view
LeafCuticle; QuaPhysicalComponent represents the hypothetical leaf cuticle as the cover-
ing part of the leaf epidermis. The leaf cuticle is the only known part of the leaf
epidermis (due to knowledge-base gaps), so there are no node bindings to concepts
not already included in the learning context. Consequently, this view is a proper
subset of the learning context and does not extend it.

Figure 4.6: A view of LeafCuticle;

needed for selecting one view from among the numerous alternatives.

4.4.2 Selecting views

KI’s indexical bias restricts the set of alternative views that can by
accessed during learning. Selecting a view to compose with the existing learning
context is performed in a generate and test manner: alternative candidate views

are first identified, then a single candidate view is selected.

Identifying candidate views: Every concept in the learning context is an

eligible root concept; every applicable unactivated view of each eligible root
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Suggestion: Please describe how the LeafCuticle is produced.

Leaf
Cuticle
producedBy,
O actor O

The view type QuaBotanicalProduct contains access paths relevant to considering how a
botanical substance is produced. When applying this to LeafCuticle, no bindings could
be found for any of the non-root node variables. Since this view type is applicable
to every botanical substance (i.e., every substance in a plant is produced by some
event), the absence of these beliefs reveals knowledge base gaps. A memo is created
suggesting that the user describe how the leaf cuticle is produced by completing the
access paths in QuaBiologicalProduct rooted at LeafCuticle.

Figure 4.7: Soliciting knowledge of how the leaf cuticle is produced.

concept is an eligible view. However, creating views indiscriminately is com-
putationally prohibitive for an interactive system. Therefore, a set of views,
called candidate views, is heuristically selected from those eligible, and only

candidate views are created. Selecting candidate views involves three steps:

1. The first step selects views whose view types are most specific. Because
some views types are more specialized and focused than others, view
types — and the views created by applying them to concepts — can be
related hierarchically. For example, QuaCoveringPart is a specialization of
QuaPhysicalPart; it refines (i.e., further restricts) the set of beliefs that
will be included in the view and is expected to provide greater focus;
it promotes greater mutual relevance among the included beliefs. Each
view type that is a generalization of another view type applicable to the
same concept is removed from consideration. In the example, the eligible

view LeafEpidermis; QuaPhysical Component is removed.
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|| Qualitative Value | Numeric Value ||

VeryHigh 1.0
High 0.75
Medium 0.5
Low 0.25
VeryLow 0.01

Figure 4.8: The qualitative and numeric values of interestingness

2. The second step ranks the remaining eligible views by a heuristic estimate
of interestingness, a product of the interestingness of the root concept and

the default interestingness of the view type.

The default interestingness of each view type is a qualitative attribute
provided manually as view types are defined. The qualitative values
for specifying interestingness are converted into real numbers between
0 and 1 (Figure 4.8). In the example, five different view types structure
the six eligible views remaining under consideration. Figure 4.9 presents
the default interestingness associated with each view type defined in the

knowledge base.

Computing the interestingness of a concept (e.g., the root concept of an
eligible view) involves summing the interestingness of every fact asserted
in the learning context whose first argument is the concept. A small set of
heuristics is used to appraise qualitatively how interesting a proposition
is within the learning context. The qualitative value is then converted
into a real number (Figure 4.8). The heuristics for appraising how the
interestingness of a proposition are explained in Appendix D and summa-
rized in Figure 4.10. Note that some are context specific (e.g., heuristics

a, b, €, f, g, and h), while others are not.
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|| View Type | Qualitative Value | Numeric Value ||
QuaAcquirer VeryHigh 1.0
QuaConsumer VeryHigh 1.0
QuaDehydratingThing VeryHigh 1.0
QuaProducer VeryHigh 1.0
QuaStarvingThing VeryHigh 1.0
QuaAssimilateProcessor High .75
QuaBotanicalGreenThing High .75
QuaPlantEnergySource High .75
QuaResourceAssimilator High .75
QuaResourceAttainment High .75
QuaResourceUtilization High .75
QuaBotanicalOrgan Medium b
QuaDevelopingSystem Medium D
QuaDevelopingThing Medium b
QuaAttachedPart Low .25
QuaBiological Product Low .25
QuaContainedObject Low .25
QuaContainer Low .25
QuaCoveringPart Low .25
QuaPhysical Component Low .25
QuaPortal Low .25
QuaResourceAssimilate Low .25

Figure 4.9: The default interestingness of the view types

The six eligible views under consideration have two different root concepts
(e.g., LeafEpidermis; and LeafCuticle; ); the appraisal of interestingness for

these two concepts is presented in Figure 4.11.

3. The third and final step orders the set of eligible views by their inter-
estingness estimates and selects candidate views in descending order of
their interestingness estimate until the cardinality of the set of candidate
views reaches a given threshold. ' Figure 4.12 presents the eligible views

ordered by their interestingness estimates.

10T his threshold is a parameter to KI; its value was 10 for all the described examples.
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Given a proposition p, of the form s(z y)

Compute interest(p) as follows:

[a] if  or y is directly referenced by the training, then return VeryHigh
else if p explains some fact that instantiates the training, then return VeryHigh
else if p denotes a domain goal (e.g., a physiological goal) of #, then return VeryHigh
else if p is anomalous (e.g., it conflicts with some constraint) then return VeryHigh
else if p is a consequence of the training, then return High
else if & or y instantiate a class referenced by the training, then return High
else if p refutes an existing assumption then return High
else if p is not asserted in the current context, then return Medium
else if s is a modulatory predicate (e.g., enables, restricts), then return Medium
else if y 18 an attribute value, then return Medium
else if s is a partonomic predicate, then return Low
else if p denotes the participation of some entity in an event then return Low

] else return VeryLow

i=p

oSN

el L g e e Do R L K e
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The letters along the left margin label the individual interestingness heuristics and
will be used to identify how the interestingness of particular propositions was as-
sessed.

Figure 4.10: Estimating the interestingness of a proposition

Significantly, the resulting set of candidate views is determined without actu-
ally creating any views. The typically large set of eligible views is pared down
to the relatively small set of candidate views using only the interestingness of
the eligible root concepts, the a priori interestingness of the view types, and
the taxonomic relations among view types. The (sometimes computationally
expensive) task of creating views need only be performed for a small set con-

taining the most promising candidates.

Each candidate view is then generated: the view type is applied to
the root concept to determine the set of beliefs from the knowledge base that
represents the root concept in the situation denoted by the view type. As
previously discussed, one of the views of LeafEpidermis; and two of the three
views of LeafCuticle; are empty due to insufficient domain knowledge in the

knowledge base; the third view of LeafCuticle; is already activated (i.e., ev-
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(a) computing the interestingness of LeafCuticle;

|| Proposition | Rule | Qualitative | Numeric ||
composedOf(LeafCuticle; Cutin) a VeryHigh 1.0
isa(LeafCuticle; Cutin) a VeryHigh 1.0
covers(LeafCuticle; LeafEpidermis; ) e High 0.75
impermeableToType(LeafCuticle; Gas) e High 0.75
impermeableToType(LeafCuticle; Liquid) e High 0.75
isa(LeafCuticle; Container) e High 0.75
isa(LeafCuticle; Solid) [e] High 0.75
transparency(LeafCuticle; Opaque) [e] High 0.75
coveringPartOf(LeafCuticle; LeafEpidermis;) | [f] High 0.75

|| total for LeafCuticle; | | | 7.25 ||

(b) computing the interestingness of LeafEpidermis;

|| Proposition | Rule | Qualitative | Numeric ||
hasCover(LeafEpidermis; LeafCuticle;) [d] VeryHigh 1.0
impermeableToType(LeafEpidermis; Gas) [e] High 0.75
impermeableToType(LeafEpidermis; Liquid) e High 0.75
basicUnit(LeafEpidermis; BotanicalCell) [f] High 0.75
coveringPart(LeafEpidermis; LeafCuticle;) f High 0.75
isa(LeafEpidermis; Solid) f High 0.75
transparency(LeafEpidermis; Opaque) [f] High 0.75

|| total for LeafEpidermis; | | | 5.5 ||

Figure 4.11: Estimating the interestingness of the root concepts

|| Root Concept | View Type | Estimated Interestingness ||
LeafEpidermis; QuaDevelopingThing 2.7500
LeafCuticle; QuaBiological Product 1.8125
LeafCuticley QuaContainer 1.8125
LeafCuticley QuaPhysical Component 1.8125
LeafEpidermis; QuaCoveringPart 1.3750
LeafEpidermis; QuaContainer 1.3750

Figure 4.12: Eligible views ranked by interestingness estimates
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ery belief is fully instantiated and already contained in the learning context).

Consequently, these four views are removed from further consideration.

Having been created, the contents of the two remaining candidate
views are appraised for their activation level (see Section 2.1.2). Each candidate
view is ranked using measures of coreference, which is a heuristic estimate of

relevance, and interestingness.

Appraising view relevance: The relevance between two contexts cannot
be directly measured without exploring the inferences enabled by the beliefs
contained in those contexts. Therefore, appraising the actual relevance between
candidate views and the learning context is not possible since each candidate
view is not yet activated. However, the relevance between two contexts can be
estimated by the extent to which their beliefs reference the same concepts. Note
that when the concepts referenced by two contexts are disjoint, their union is
not connected. Consequently, no inferences will be triggered by merging the two
contexts, and no inference graphs will contain beliefs from both contexts. Thus,
the two contexts are irrelevant to each other. On the other hand, each concept
referenced by both contexts can bridge an access path connecting beliefs in one
context to beliefs in the other, and each such path is also a potential access
path among beliefs appearing in an inference graph. When high overlap occurs
among the concepts referenced by two contexts, there is greater potential for
inferential synergy between the two (i.e., for inference graphs to contain beliefs

from each context); hence the two contexts are more likely to be relevant.

This heuristic estimate of relevance is evaluated for one context (i.e.,
set of propositions) with respect to another. It measures the coreference of the

two contexts; that is, the degree to which the two contexts reference common
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coreference(Cy Cy) = containment(C; Cz) * coverage(Cy Cs)
containment(Cy Cs) = | concepts(Cy) N concepts(Csy) | = | concepts(Cy) |
coverage(Cy C3) = | concepts(Cy) N concepts(Ca) | = | concepts(Ca) |

Cy and Cy denote two arbitrary contexts (e.g., C7 a candidate view and C3 the learning

context). The function concepts(C;) returns the set of relational terms contained in C;.

Figure 4.13: Estimating the mutual relevance of two contexts

concepts.

Coreference is computed for each candidate view with respect to the
learning context. Specifically, coreference is measured as the product of two
ratios (Figure 4.13). The first measures a view’s containment: the portion of
those concepts contained in the view that are also contained in the learning
context. The second measures a view’s coverage: the portion of those concepts

contained in the learning context that are also contained in the view.

Figure 4.14 presents the relevance estimates for each of the two can-
didate views from the example. Both views completely cover the learning con-
text. ' Since LeafEpidermis; QuaCoveringPart is smaller (e.g., contains fewer
terms), it has a higher containment value and so is estimated to be more rele-

vant to the learning context than LeafEpidermis; QuaContainer. '

In early versions of KI, only the coverage ratio was used to estimate a

Note: for estimating relevance, only the hypotheticals of the learning context are
considered.

12When a view’s containment (with respect to the learning context) is 1, then every concept
referenced by the view is already in the learning context, and the view cannot introduce new
relational terms (e.g., hypothetical instances) to the learning context. However, not every
proposition contained in the view is necessarily already asserted in the learning context. In
this situation, activating the view (e.g., establishing the as yet unasserted propositions) tends
to be inexpensive and so is performed, and the view is labeled as activated and removed from
further consideration.
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(a) Estimating the relevance of LeafEpidermis; QuaContainer

| concepts(LeafEpidermis; QuaContainer) | = 13
| concepts(LearningContext) | = 2
| concepts(LeafEpidermis; QuaContainer) N concepts(LearningContext) | = 2

coverage = 2 = 2 =1.0
containment = 2 + 13 = .1538
relevance(LeafEpidermis; QuaContainer LearningContext) = 1.0 * .1538 = .1538

(b) Estimating the relevance of LeafEpidermis; QuaCoveringPart

| concepts(LeafEpidermis; QuaCoveringPart) | = 9

| concepts(LearningContext) | = 2

| concepts(LeafEpidermis; QuaCoveringPart) N concepts(LearningContext) | = 2
coverage = 2 = 2 =1.0

containment = 2 + 9 = .2222

relevance(LeafEpidermis; QuaCoveringPart LearningContext) = 1.0 * .2222 = 2222

(a) The view LeafEpidermis; QuaContainer contains thirteen relational concepts (Fig-
ure 4.1); the learning context contains two (Figure 3.3), both of which are also
contained in the view. (b) The view LeafEpidermis; QuaCoveringPart contains nine
relational concepts (Figure 4.4) including both of those in the learning context.

Figure 4.14: Estimating the relevance of the candidate views




111

view’s relevance [Mur88, MP89]. However, this has proved inadequate because
it promotes strictly larger, more encompassing views. For example, a huge view
containing 100 concepts, including all, say, 15 concepts in the learning context,
would be judged more relevant than a view containing 15 concepts including
only 14 of those in the learning context. Always selecting very large views
tend to introduce an over abundance of new relational terms (e.g., hypothet-
sicals). This sacrifices focus and degrades performance since the selected view
introduces too many new terms to adequately constrain inference during elab-
oration. Similarly, containment, if used alone, promotes selecting views that
introduce very few new terms. Again, performance is degraded since the over-
head of identifying, creating, selecting, and activating views must be repeated
too frequently relative to the amount of inference that each view’s activation
enables; thus inference is overly constrained. Including both the coverage and
containment ratios creates a competition of opposing pressures: one for select-
ing large, encompassing views to promote bountiful inference; one for selecting
small, restrictive views to restrain and focus inference. Together these ratios
simultaneously facilitate both focusing and stimulating inference and appear

to provide a better assessment of relevance than either does alone.

Appraising view interestingness: Interestingness is computed for the set

of candidate views in three steps (Figure 4.15): '

1. The absolute interest for each view is computed by summing the inter-

estingness of each belief contained in the view.

3Intuitively, both relevance and interestingness are needed because relevance grounds
inference in the new information while interestingness discriminates among beliefs according
to their importance within both the general domain and the specific learning situation (i.e.,
not all beliefs are created equally).
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1. absolutelnterest(V) = > interestingness(p; )
for each belief p; € concepts(V)

2. availableInterest(C) = ) interestingness(p; )
for each belief p; in the union of concepts(V;) for each candidate view V;

3. relativeInterest(V) = absoluteInterest(V) =+ availableInterest(C)

V denotes an arbitrary candidate view; C denotes the learning context.

Figure 4.15: Computing the relative interestingness of views

2. The available interest for the set of candidate views is computed by sum-

ming the interestingness of each belief contained in any candidate view.

3. The relative interestingness of each view is computed as the ratio of the

available interestingness attributed to the beliefs it contains.

Figure 4.16 presents the computation of relative interest for each of the two
candidate views from the example. Virtually all the beliefs contained in the
candidate views contain figurative references. Consequently, some of the in-
terestingness heuristics of Figure 4.10 (e.g., those that consider how a be-
lief is supported or what other beliefs it supports) cannot apply. However,
other interestingness heuristics (e.g., heuristics a, f, ¢, j, k, and s of Figure
4.10) do apply to figurative beliefs. The view LeafEpidermis; QuaContainer is
dominated by beliefs describing processes that move things into and out of
the leaf epidermis; many of these beliefs directly reference the leaf epidermis.
The view LeafEpidermis; QuaCoveringPart is dominated by beliefs describing the
parts of the leaf; very few of these beliefs reference the epidermis. Conse-
quently, in the context of appraising new information about the leaf epider-
mis, LeafEpidermis; QuaContainer is deemed substantially more interesting than

Leaf Epidermis; QuaCovering Part.
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(a) Absolute interest for the candidate views

|| Belief | Rule | Interestingness | Vi | Vo ||
coveringPart(LeafEpidermis; LeafCuticle;) f 0.75 + +
conduitIn(LeafEpidermis; LeafLightAcquisition) f 0.75 + -
conduitIn(LeafEpidermis; LeafLightDistribution) f 0.75 + -
conduitIn(LeafEpidermis; LeafCO2Acquisition) f 0.75 + -
conduitIn(LeafEpidermis; LeafCO;Distribution) f 0.75 + -
conduitIn(LeafEpidermis; LeafTranspiration) f 0.75 + -
destination(LeafLight Acquisition LeafEpidermis; ) f 0.75 + -
source(LeafLightDistribution LeafEpidermis;) f 0.75 + -
destination(LeafCO2Acquisition LeafEpidermis;) f 0.75 + -
source(LeafCOyDistribution LeafEpidermis;) f 0.75 + -
epidermisOf(LeafEpidermis; Leaf) f 0.75 - +
epidermis(Leaf LeafEpidermis; ) f 0.75 - +
groundTissue(Leaf LeafMesophyll) k 0.25 - +
cell(Leaf LeafPhotosyntheticCell) k 0.25 - +
blade(Leaf LeafBlade) k 0.25 - +
veins(Leaf LeafVascularNetwork) k 0.25 - +
petiole(Leaf LeafPetiole) k 0.25 - +
intercellGap(Leaf LeafIntercellularSpace) k 0.25 - +
source(LeafLight Acquisition LeafAmbient Atmosphere) 1 0.25 + -
transportee(LeafLight Acquisition Light) 1 0.25 + -
destination(LeafLightDistribution LeafMesophyll) 1 0.25 + -
transportee(LeafLightDistribution Light) 1 0.25 + -
source(LeafCO3Acquisition LeafAmbient Atmosphere) 1 0.25 + -
transportee(LeafCO2Acquisition CO3) 1 0.25 + -
destination(LeafCO;Distribution LeafMesophyll) 1 0.25 + -
transportee(LeafCODistribution CO3) 1 0.25 + -
source(LeafTranspiration LeafIntercellularSpace) 1 0.25 + -
destination(LeafTranspiration LeafAmbient Atmosphere) 1 0.25 + -
transportee(Leaf Transpiration Hy OVapor) 1 0.25 + -

total 13.25 0.2 3.75

(b) Relative interest for the candidate views
relativelnterest(LeafEpidermis; QuaContainer) = 10.25 + 13.25 = 7736
relativelnterest (LeafEpidermis; QuaCoveringPart) = 3.75 +— 13.25 = 283

(a) The absolute interest for the two candidate views: column Rule identifies the

heuristic that assesses the belief’s interestingness (Figure 4.10); column V; iden-

tifies the beliefs in LeafEpidermis; QuaContainer; column V., identifies the beliefs in

LeafEpidermis; QuaCoveringPart. (b) The relative interest of the two candidate views:

LeafEpidermis; QuaContainer has significantly higher relative interestingness.

Figure 4.16: Computing the interestingness of candidate views




114

activationScore(LeafEpidermis; QuaContainer) = .1538 * .7736 = .1190
activationScore(LeafEpidermis; QuaCoveringPart) = .2222 * .283 = .0629

activationLevel(LeafEpidermis;QuaContainer) = .1190 + .1819 = .6542
activationLevel(LeafEpidermis;QuaCoveringPart) = .0629 +— .1819 = .3458

Figure 4.17: Computing activation levels for the candidate views

Combining relevance and interestingness: The final step in selecting a
candidate view is to combine the assessments of relevance and relative interest-
ingness into a single activation score for each candidate view. This activation
score is computed as the product of its relevance and relative interestingness.
The activation level of each candidate view is the ratio of its score to the sum
of the scores of all the candidate views. The candidate view having the highest
score (and hence level) is selected for activation. The beliefs contained in the
selected view are instantiated and added to the learning context. Thus the
learning context is extended with facts about those concepts in the knowledge
base heuristically considered most interesting and relevant to the new infor-
mation. Figure 4.17 presents the activation computations for each of the two
candidate views from the example: the view LeafEpidermis; QuaContainer has a

greater score and is therefore selected for activation.

4.5 Discussion

4.5.1 Why views work

Like endorsements [Coh85], views identify paths of relations that have
holistic properties: the property preserved by an endorsement is warranted in-
ference; the property preserved by a view is mutual coherence (e.g., relevance).

The ontological bias of views ensures that the beliefs contained in views are
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connected. This appears to be a necessary condition for preserving relevance
but alone is not sufficient (e.g., since any set of arbitrary beliefs can be ex-
tended to be connected by adding the facts isa(concept; Thing) for every concept;
referenced by one of the beliefs). Consequently, views are more than arbitrary
collections of connected beliefs: they manifest domain knowledge encoded in
the view types about what facts comprise useful contexts in the domain. View
types are more than arbitrary patterns of access paths: they manifest domain
knowledge about which access paths are useful in a domain and which paths

are most useful when considered together.

Using views to extend the learning context with segments of prior
knowledge reflects the intuition that humans do not retrieve individual facts
from memory as they reason in a domain. Like gestalts or schemas [Sch82],
views include beliefs that belong together and exclude beliefs that do not be-
long. The decisions of what domain situations are useful to consider and what
individual facts to include and exclude from these situations are unavoidable
for teachers, authors of textbooks, illustrators, etc. As humans gain experience
in a domain, they naturally (although perhaps tacitly) learn what situations
are useful to consider; they learn how to reason (e.g., what to reason about) as

well as what is true within the domain.

Composing views during multiple iterations of the comprehension cy-
cle frees KI from the assumption that some single view will always exist that
is sufficient to comprehend the new information (i.e., a perfect view that in-
cludes all background knowledge relevant to the new information). The view
mechanism is complete with respect to connected sets of domain propositions:
a view type can be defined that selects arbitrary connected subgraphs of the

knowledge base. Furthermore, with view composition, the learning context can
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be extended to include any connected set of propositions in the knowledge base.

4.5.2 Views qua learning bias

The view mechanism in KI solves the problem of focusing attention by
determining what to reason about. At any point during comprehension, there
exists some subset of facts in the learning context that are primitive — not
derived as a consequence of other facts in the learning context. Because these
primitive facts determine precisely what inferred facts will be established; they
control elaboration. Initially, primitive facts comprise only those facts that in-
stantiate the new information. During each subsequent cycle of comprehension,
recognition selects a view that determines an extension of the primitive facts.
Each extension makes a particular region of implicit knowledge accessible; ex-
plicating that region occurs as non-skolemizing rules exhaustively forward chain
during elaboration. Each inferred fact is necessarily a consequence of the ex-
tension, so the contents of the extension — the set of new primitive facts added
to the learning context each cycle — determines precisely those inferences that
are completed during that cycle. Thus, the primitive facts of the learning con-
text, which are determined exclusively by the new information and the selected

views, completely control the inferences completed during comprehension.

Learning opportunities arise from inferences completed during com-
prehension. By determining what inferences are completed, the views indirectly
determine which learning opportunities become available and, consequently, are
detected and exploited. Thus, by controlling inference, selected views are a very

significant source of learning bias.
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4.5.3 Views qua schemas

Views constitute yet another proposal for implementing schemas [Sch82];
however, they have some distinct advantages over earlier proposals, such as

frames. 1

One relative advantage of views over frames is that frames collect all
propositions that directly reference a particular concept (as the first argument)
and bundle those propositions together in the frame representing that concept.
Thus, the frame of a concept includes all, and only, propositions that directly

reference that concept. This has two deficiencies:

1. Frames presume a single description of each concept. Ironically, this vi-
olates a venerable adage of knowledge-base design: “Since one does not
usually know in advance what aspect of an object or action is important,
it follows that most of the time, a given object will give rise to several dif-
ferent coarse internal descriptions” [Mar77]. Views facilitate maintaining
multiple descriptions of a concept without losing coherence. Fach distinct
view provides a single, coherent description; the view selection mechanism
facilitates activating the most appropriate description for any particular

situation.

2. Frames include only propositions that directly reference the represented
concepts. Consequently, frames tend to provide partial, incomplete de-
scriptions of concepts. For example, given the facts producerin(DairyCow

CowMilking) and product(CowMilking CowMilk), those products produced

Here, frames denotes the data structure common to knowledge-based systems [BBB*83]
rather than the system of structuring knowledge proposed by Minsky [Min81].
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from dairy cows cannot be determined by inspecting only the frame rep-
resenting dairy cows. It is sometimes reasonable to compose a path of
two or more predicates into a single predicate (e.g., to compose the path
[producerIn product] into the single predicate produces), but in general it
is unreasonable to assume that every useful path through the knowledge
base (e.g., every access path appearing in any view type) has been com-
pressed into a single predicate. Views permit paths of propositions that

are relevant to, but do not necessarily directly reference, the root concept.

Thus, frames do not permit multiple descriptions of a single concept and do not
permit a description of a concept to include indirect propositions. Structuring
knowledge with views permits multiple descriptions of a concept, each contain-
ing only propositions that are relevant to that description, including relevant

propositions that do not necessarily reference the concept directly.

The methods of view creation and instantiation implemented in KI
accord with two features in proposed psychological assessments of schemas that

have eluded many computational implementations [RSMHS86]:

1. The interdependency of variables: The binding of one variable should be
able to affect the bindings of other variables. This is a natural conse-
quence of instantiating access paths in views; the bindings of one node

determine the bindings of the successor nodes along the path.

2. Constraining vartables: Schema variable constraints should serve two pur-
poses: they restrict the eligible bindings of the variable; and they provide
a default value if no bindings are identified. This feature is a natural con-
sequence of the use of figurative references and hypothetical instances. A

view type applied to a class contains figurative beliefs. Similarly, each
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node variable of an instance-level view assumes a figurative binding when
no instance-level binding is available (e.g., Figure 4.1). Each figurative
reference identifies a collection of eligible bindings for that node. When
an instance-level view is activated, a hypothetical instance is created for
any figurative reference it contains. Thus, figurative references both con-
strain bindings at the instance level and suggest default bindings, in the

form of hypothetical instances, when no other bindings exist.

Perhaps the most significant advantage of views as a proposal for implement-
ing schemas is that they are a dynamic, generative method for structuring
knowledge. Rather than existing as rigid, static entities, views are dynamically

created from view types, as they are needed. This offers several advantages:

1. Structuring knowledge dynamically permits the vast store of an agent’s
knowledge to reside in an unstructured form. This knowledge remains
tacit and unstructured until it is accessed; only as knowledge is accessed
need it become structured. Consequently, schemata are transient struc-
tures, created dynamically, as needed, rather than stored as static struc-

tures in memory. This accords with current trends in theories of human

knowledge [Sch82, Sch87, BM77].

2. Structuring knowledge dynamically also permits a natural and seamless
evolution in the contents of views as knowledge changes. For example, the
view of a leaf epidermis in its role as a container can not include beliefs
that reference the leaf cuticle before the knowledge base is extended with
new information about the leaf cuticle. However, as that new informa-
tion is received, and knowledge about the anatomy of the leaf epidermis

is extended, all the appropriate views include the new knowledge as they
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are subsequently created. Because views are transient and created dy-

namically, they naturally adapt to evolving knowledge.

3. Developing strategies for structuring knowledge that are independent of
the contents of knowledge also accords with a venerable adage in know-
ledge engineering that separates concerns for the epistemological adequacy
of the knowledge from concerns for its heuristic adequacy [MH69]. The
contents of the knowledge (i.e., its epistemological adequacy) can be de-
veloped without committing either to particular applications or to ways
of accessing the knowledge in order to perform those applications (i.e.,
its heuristic adequacy). In particular, knowledge of the domain can be
formalized and added to the knowledge base without first committing to

a specific array of views, view types, or view selection heuristics.

Furthermore, the view mechanism is not a purely formal method, free of
domain-specific knowledge. View types represent a kind of domain meta-
knowledge that includes knowledge of what contexts or situations in a domain
are useful. This meta-knowledge is heuristic; it is exploited in order to guide
the use of more traditional domain knowledge that denotes what concepts exist

in a domain and what properties are true of those concepts.



Chapter 5

Identifying Deep Consequences of New Information

The first cycle of comprehension considers only the new information
and non-skolemizing rules to reveal relatively shallow consequences of the new
information. Subsequent cycles consider other segments of relevant prior know-
ledge to reveal deeper implicit consequences. This chapter illustrates how mul-
tiple iterations of the comprehension cycle enable KI to identify and exploit

learning opportunities provided by identifying these deep consequences.

Rather than attempting a single, monolithic assessment of what prior
knowledge is relevant when presented with new information, KI enters a two-
phase cycle of selecting a relevant view to consider and determining the inter-
action between the new information and the selected prior knowledge. View
selection guides elaboration which then facilitates additional view selection.
During each cycle, KI determines how the new information interacts with the
beliefs contained in the selected view by extending the partial entailment of
new and prior knowledge. Then KI determines what prior knowledge not yet
considered is relevant to the partial entailment while selecting another view
to consider. FEach iteration of the cycle begins by selecting a relevant por-
tion of prior knowledge; that selection process is guided by all the inferences
established during prior iterations. The cycle continues either until the user

intervenes (e.g., to respond to some consequence or suggestion identified by KI)
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or until the computational resources expended exceed a threshold. !

The first two sections of this chapter describe two iterations of the
comprehension cycle while KI performs the example of Figure 1.1. The fol-
lowing three sections describe how KI exploits learning opportunities revealed

during these cycles.

5.1 Consequences for the leaf epidermis as a container

Chapter 4 discusses how the view LeafEpidermis, QuaContainer is se-
lected to extend the learning context. This view contains propositions that
describe the leaf epidermis as a container, including the processes that move
things (e.g., carbon dioxide, oxygen, water vapor) into and out of the epidermis.
Elaboration activates this view to identify consequences of the new information

for the beliefs it contains.

Activating a view involves operationalizing the quantified formulae it
contains and then adding the resulting facts to the learning context. * As each
fact is added, non-skolemizing rules are permitted to chain exhaustively; Figure
5.1 presents some of the triggered rules. Activating the view adds twenty-one
new facts to the learning context. This, in turn, stimulates the completion
of 170 inferences, including seventy consequences of both the new information
and the contents of the activated view. Figure 5.2 presents the learning context

extended to include this view as well as some of the resulting consequences.

Many of the inferences completed during this cycle of elaboration

1Unless otherwise noted, each example described was permitted to continue for three
cycles, instantiating the training followed by two extensions of prior skolemizing knowledge.

2Quantified formulae in a view are operationalized in precisely the same way as are quan-
tified formulae appearing in the new information (Section 3.4.1).
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24 :

25 :

: Transport assumes permeability.

[V xyz conduit(x y) & transportee(y z) & unless(impermeableTo(y z)) = permeableTo(y z)]

1 Permeability to light is translucence.

[V xy permeableTo(x y) & isa(y Light) = transparency(x Translucent)]

Covering parts preserve translucence.
[V xy coveringPart(x y) & transparency(x Translucent) = transparency(y Translucent)]

: Compositions preserve translucence.

[V xy transparency(x Translucent) & composedOf(x y)
& unless(intensionalAttribute(y transparency Opaque))
= intensionalAttribute(y transparency Translucent)]

Impermeable to type suggests impermeable to.
[V xyz impermeableToType(x y) & isa(z y)
& unless(permeableTo(x z)) = impermeableTo(x z)]

Impermeable conduit restricts emission.
[V xyz isa(x Emission) & conduit(x y) & transportee(x z) & impermeableTo(y z)
= restrictsEmission(y x)]

Impermeable conduit restricts intake.
[V xyz isa(x Intake) & conduit(x y) & transportee(x z) & impermeableTo(y z)
= restrictsIntake(y x)]

Object restricts emission of.
[V xy restrictsEmission(x y) & transportee(y z) = restrictsEmissionOf(x z)]

Object restricts intake of.
[V xy restrictsIntake(x y) & transportee(y z) = restrictsIntakeOf(x z)]

Impermeable conduit cover part restricts emission.
[V wxyz isa(w Emission) & conduit(w x) & coveringPart(x y) & transportee(w z)
& impermeableTo(y z) = restrictsEmission(y w)]

: Impermeable conduit cover part restricts intake.

[V wxyz isa(w Intake) & conduit(w x) & coveringPart(x y) & transportee(w z)
& impermeableTo(y z) = restrictsIntake(y w)]

Transport requires permeability.
[V xyz conduit(x y) & transportee(x z) & impermeableTo(y z) = status(x Disabled)]

Transport assumes conduit contacts source.
[V xyz conduit(x y) & source(x z) & unless(y=z) = contacts(y z)]

Transport assumes conduit contacts destination.
[V xyz conduit(x y) & destination(x z) & unless(y=z) = contacts(y z)]

Some of the non-skolemizing rules triggered by ground beliefs asserted in the learning
context as the view LeafEpidermis; QuaContainer is activated during the second cycle of
comprehension.

Figure 5.1: Rules triggered during cycle 2




124

(a) The learning context after the first cycle

{isa(LeafEpidermis; LeafEpidermis) isa(LeafCuticle; Cutin)
isa(LeafCuticle; LeafCuticle) isa(LeafCuticle; Container)
coveringPart(LeafEpidermis; LeafCuticle;) isa(LeafCuticle; Solid)
composedOf(LeafCuticle; Cutin) transparency(LeafCuticle; Opaque)

covers(LeafCuticle; LeafEpidermis; )
impermeable To Type(Leaf Cuticle; Gas)
impermeable To Type(Leaf Cuticle; Liquid)
impermeable To Type(LeafEpidermis; Gas)
impermeable To Type(LeafEpidermis; Liquid)}

(b) Additions to the learning context during the second cycle

{isa(LeafLightDistribution; LeafLightDistribution)  <transparency(LeafCuticle; Opaque)>

isa(LeafLight Acquisition; LeafLightAcquisition) transparency(LeafCuticle; Translucent)
isa(LeafAmbientAtmosphere; LeafAmbientAtmosphere) impermeable To(LeafCuticle; CO21)
isa(LeafCO5Acquisition; LeafCO2Acquisition) impermeable To(LeafEpidermis; CO21)
isa(LeafCOyDistribution; LeafCO,Distribution) impermeable To(LeafCuticley WaterVapor )
isa(LeafTranspiration; LeafTranspiration) impermeable To(LeafEpidermis; Water Vapor; )
isa(LeafMesophyll; LeafMesophyll) impermeable To(LeafCuticle; LeafAmbientAtmosphere; )
isa(Light; Light) impermeable To(LeafEpidermis; LeafAmbientAtmosphere; )
isa(CO21 CO3) restrictsIntake(LeafCuticle; LeafCOz Acquisition )
isa( WaterVapor; WaterVapor) restrictsIntake(LeafEpidermis; LeafC Oz Acquisitions )

isa(LeafIntercellularSpace; LeaflntercellularSpace)  restrictsIntake Of(LeafCuticle; CO21 )
conduitIn(LeafEpidermis; LeafLightDistribution;)  restrictsIntakeOf(LeafEpidermisy CO21)
conduitIn(LeafEpidermis; LeafLightAcquisition;) restrictsEmission(LeafCuticle; LeafTranspiration; )
conduitIn(LeafEpidermis; LeafCO2 Acquisition;) restrictsEmission(LeafEpidermis, LeafTranspiration; )
conduitIn(LeafEpidermis; LeafCO;Distribution; ) restrictsEmissionOf(LeafCuticley WaterVapor; )

conduitIn(LeafEpidermis; LeafTranspiration;) restrictsEmissionOf(LeafEpidermisy WaterVapory )
transportee(LeafLightDistribution; Lighti ) status(LeafC Oz Acquisition; Disabled)
transportee(LeafLight Acquisition; Light) status(LeafC Oz Distribution, Disabled)
transportee(LeafCOsAcquisition; CO21) status(Leaf Transpiration; Disabled)}

transportee(LeafCO,Distribution; CO21)
transportee(LeafTranspiration; WaterVapor )
source(LeafLightDistribution; LeafEpidermis;)
source(LeafLight Acquisition; LeafAmbient Atmosphere; )
source(LeafCOsAcquisition; LeafAmbientAtmosphere)
source(LeafCO,Distribution; LeafEpidermis;)
source(LeafTranspiration; LeafIntercellularSpace;)
destination(LeafLightDistribution; LeafMesophyll;)
destination(Leaflight Acquisition; LeafEpidermis;)
LeafCOAcquisition; LeafEpidermis;)
LeafCO4Distribution; LeafMesophyll;)
LeafTranspiration; LeafAmbientAtmosphere; )

destination
destination

P =i =iy =ty

destination

(a) The learning context after the first cycle of comprehension. Inferred facts are
presented in italics. (b) Some additions to the learning context made during the
second cycle of comprehension. Inferred facts are presented in italics; retracted facts
appear within brackets <...>.

Figure 5.2: Consequences for the leaf epidermis as a container
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reveal new learning opportunities. For example, KI establishes that the leaf
acquisition of carbon dioxide is disabled (i.e., the event cannot occur). Because
this consequence conflicts with the prior expectation that leaves do acquire car-
bon dioxide, it is considered anomalous. KI analyzes the justification of this
conclusion to identify essential assumptions that, if refuted, would refute the
anomalous conclusion. ® KI then creates a memo suggesting knowledge-base
modifications to refute the essential assumptions underlying the anomalous
conclusion. Furthermore, a weakest-preconditions analysis of the justification
of this conclusion suggests that every instance of LeafCOsAcquisition will be
disabled (i.e., since every such event requires gas passing through the leaf epi-
dermis which, as a consequence of the leaf cuticle, is impermeable to gas). KI
creates a memo suggesting that the user consider adding this rule to the know-
ledge base. However, this rule is not asserted by KI since it generalizes an

anomalous conclusion.

Some facts established during elaboration are not consequences of the
new information but still reveal useful learning opportunities. For example, the
first cycle of elaboration establishes that the leaf epidermis is opaque (Figure
3.4, Rule 4). However, while considering the leaf epidermis as a container,
elaboration establishes that the leaf epidermis must, in fact, be translucent in
order to permit the leaf’s acquisition of light (Figure 5.1, rule 13). * That the
leaf epidermis must be translucent is not a consequence of the new information,
yet it is a useful conclusion that exposes an error in prior knowledge. Thus,

reasoning about existing concepts in contexts reveals useful tacit knowledge

3This analysis is the same as that for resolving inconsistencies, described in Section 3.5.1.
*Note, rule 13 overrides rule 4. Handling such priorities among rules is performed by the

TMS.
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that can be made explicit. In this case, reasoning about the leaf epidermis’
transparency while also reasoning about the leaf’s acquisition of light exposes
a learning opportunity. KI asserts the general rule that the leaf epidermis is

translucent rather than opaque and suggests that the user verify this new rule.

5.2 Consequences for the leaf’s use of carbon dioxide

The second cycle of comprehension reveals several implicit conse-
quences of the new information for prior knowledge denoting the leaf epidermis
in its role as a containers, and it exposes several learning opportunities. In or-
der to more extensively determine how the new and prior knowledge interact,
KI selects a second view comprising beliefs deemed relevant to the learning

context.

The view selection process described in Chapter 4 is repeated again.
Each of the eleven hypotheticals, introduced as LeafEpidermis; QuaContainer is
activated, plus the original two, are eligible roots of new views for extending the
learning context. The eligible views, along with the interestingness estimates
for the most specific of these views, are presented in Figure 5.3, and Figure
5.4 presents the candidate views ranked by their activation scores. The view
LeafCO, Acquisition; QuaResourceAttainment has the highest score and is therefore
selected for activation. Figure 5.5 shows the view type that structures this

view.

Activating the selected view results in adding six new hypothetical
objects and twenty-seven new facts to the learning context. This stimulates
the completion of 173 inferences, including thirty consequences of both the
new information and the contents of the activated view. Figure 5.6 identifies

some of the rules that are triggered, and Figure 5.7 shows the learning context
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(a) Applicable view types for eligible root concepts

|| Root Concept View Type Status ||

LeafEpidermis; QuaContainer activated

LeafEpidermis; QuaCoveringPart eligible
LeafEpidermis; QuaPhysicalComponent | not most specific

LeafEpidermis; QuaDevelopingThing empty
LeafCuticley QuaBiologicalProduct empty
LeafCuticley QuaContainer empty

LeafCuticley QuaPhysical Component activated
LeafMesophylly QuaPhysical Component eligible
LeafMesophylly QuaDevelopingThing eligible
LeafIntercellularSpace; QuaPhysical Component eligible
LeafLight Acquisition QuaResourceAttainment eligible
LeafCOs Acquisition QuaResourceAttainment eligible
LeafTranspiration QuaResourceUtilization eligible
Light; QuaResourceAssimilate eligible
WaterVapor; QuaProduct eligible
WaterVapor; QuaResourceAssimilate eligible
CO2q QuaResourceAssimilate eligible

(b) Ranking the eligible views

Root Concept View Type Root Concept | Estimated View
Interestingness | Interestingness
LeafEpidermis; QuaCoveringPart 31.25 7.8125
LeafCOs Acquisition QuaResourceAttainment 9.75 7.3125
LeafTranspiration; QuaResourceUtilization 9.75 7.3125
LeafMesophylly QuaDevelopingThing 4.75 2.375
COsg1 QuaResourceAssimilate 8.76 2.19
WaterVapor; QuaBiologicalProduct 8.51 2.1275
WaterVapor; QuaResourceAssimilate 8.51 2.1275
LeafIntercellularSpace; QuaPhysical Component 5.01 1.2525
LeafMesophylly QuaPhysical Component 4.75 1.1875
LeafLight Acquisition QuaResourceAttainment 1.00 0.75
Light; QuaResource Assimilate 2.52 0.63

(a) The view types applicable to the eligible root concepts in the learning context and
the current status of the view associated with each view type and root concept pair.
(b) The eligible views ranked by their estimated interestingness scores (computed
by multiplying the default interestingness score of the view type, (Figure 4.7), by
the interestingness score of the root concept). Only the top ten are admitted as
candidate views and created; Light; QuaResourceAssimilate is removed from further
consideration.

Figure 5.3: Eligible views for comprehension cycle 3
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|| View | Relevance | Interestingness | Activation Level ||
LeafCO5 Acquisition;QuaResource Attainment 0.4451 0.1963 0.2550
CO21 QuaResourceAssimilate 0.2596 0.3037 0.2301
LeafLight Acquisition;QuaResourceAttainment | 0.377 0.1249 0.1374
WaterVapor; QuaResource Assimilate 0.1094 0.4142 0.1323
WaterVapor;QuaBiologicalProduct 0.1588 0.2607 0.1208
LeafTranspiration; QuaResourceUtilization 0.213 0.1356 0.0843
LeafEpidermis;QuaCoveringPart 0.1367 0.0535 0.0213
LeafMesophyll; QuaPhysical Component 0.0769 0.0428 0.0096
LeafIntercellularSpace; QuaPhysical Component | 0.0866 0.0356 0.0090

The candidate views are created; the view LeafMesophyll; QuaDeveloping Thing is empty.
The remaining views are ranked by activation level (Section 4.4.2).

Figure 5.4: Ranking the candidate views for comprehension cycle 3

actor
superEven/( \ibEvent
actor actor O
superEVV( \wi)Event
O actor @ actor O

Node constraints: ¢ ako(P ResourceProvision)

ako(A ResourceAssimilation)
ako(U ResourceUtilization)
(

ako(D ResourceDistribution)

UG>”U

The view type QuaResourceAttainment represented as a semantic-network schema. It
contains access paths relevant to representing how a resource is attained, distributed,
and utilized. Nodes along the access paths are variables that can bind to knowledge-
base constants: constrained nodes are labeled; unconstrained nodes are unlabeled.
The shaded node is the position of the root concept.

Figure 5.5: The view type QuaResourceAttainment
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extended to include this view and some of the resulting consequences.

At this point the autonomous comprehension cycle terminates because
the number of executed cycles has reached a threshold parameter; the results
of performing knowledge integration are displayed and the user is free to peruse
the consequences and suggestion memos generated by KI or to request that the

comprehension cycle continue.

Among the most interesting consequences of the new information dis-
covered during elaboration are inferences about the leaf’s health. By restricting
transpiration, the cuticle inhibits dehydration and facilitates the leaf’s good
health. This provides a teleological explanation of the new information: the
cuticle establishes the biological goal of facilitating good health. Thus, the
“function” of the cuticle, to restrict water loss, has been identified; it explains
why leaves have cuticles. However, by restricting the intake of carbon diox-
ide from the atmosphere, the cuticle inhibits photosynthesis, thereby causing
the leaf to starve. This conflicts with prior knowledge which holds that leaves
do acquire carbon dioxide from the atmosphere and perform photosynthesis.

Therefore, these consequences are labeled as anomalous. ®

The following three sections discuss in detail how KI exploits several
of the most significant learning opportunities afforded by these iterations of the

comprehension cycle.

5.3 Resolving anomalies

Anomalous predictions constitute expectation failures, and modify-

ing the knowledge base to resolve these failures constitutes a distinct learning

>The determination of anomalies is discussed in Appendix D.
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Distribution requires attainment.

[V xyz isa(x ResourceDistribution) & isa(y ResourceAttainment) & isa(z ResourceProvision)
& superEvent(x z) & superEvent(y z) & status(y Disabled)
& unless(3 w isa(w ResourceAttainment) & superEvent(w z) & —status(w Disabled))
= status(x Disabled)]

Provision requires attainment.

[V xy isa(x ResourceProvision) & isa(y ResourceAttainment) & subEvent(x y)
& status(y Disabled) & unless(3 z isa(z ResourceAttainment) & subEvent(x z)
& —status(z Disabled)) = status(x Disabled)]

Utilization requires provision.
[V xyz isa(x ResourceUtilization) & isa(y ResourceProvision) & resource(x z) & input(y z)
& status(y Disabled) = status(x Disabled)]

Assimilation requires provision.

[V xy isa(x ResourceAssimilation) & isa(y ResourceProvision) & subEvent(x y)
& status(y Disabled) & unless(3 z isa(z ResourceProvision) & subEvent(x z)
& —status(z Disabled)) = status(x Disabled)]

Assimilation requires utilization.

[V xy isa(x ResourceAssimilation) & isa(y ResourceUtilization) & subEvent(x y)
& status(y Disabled) & unless(3 z isa(z ResourceUtilization) & subEvent(x z)
& —status(z Disabled)) = status(x Disabled)]

Denying sugar causes starvation.

[V xyz performs(x y) & isa(y ResourceAttainment) & resource(y z) & isa(z Sugar)
& unless(3 w isa(w ResourceAttainment) & resource(w v) & isa(v Sugar)
& —status(w Disabled)) = health(x Starving)]

Restricting water loss inhibits dehydration.

[V wxyz performs(x y) & resource(x z) & isa(z Water) & restrictsEmission(w x)
& unless(3 abc performs(a x) & resource(a b) & isa(b Water)
& —restrictsEmission(a c)) = —health(x Dehydrating)]

Not deteriorating facilitates good health.
[V xy —health(x y) & ako(y DeterioratingHealth) = health(x Facilitated)]

Restricting parts suggest restriction role.
[V xyz physicalPart(x y) & restricts(y z) & actor(z x) = restricts(x z)]

C'Oy acquisition 1s a type of resource attainment.
[V x isa(x LeafCO2Acquisition) = isa(x ResourceAttainment)]

Photosynthesis 1s a type of resource attainment.
[V x isa(x LeafPhotosynthesis) = isa(x ResourceAttainment)]

Photosynthesis is a type of resource utilization.
[V x isa(x LeafPhotosynthesis) = isa(x ResourceUtilization)]

Some of the non-skolemizing rules triggered by ground beliefs asserted in the learning

context as the view LeafCO; Acquisition; QuaResourceAttainment 18 activated during the third

cycle of comprehension.

Figure 5.6: Rules triggered during cycle 3
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{isa(LeafPhotosynthesis; LeafPhotosynthesis)
isa(LeafCOsProvision; LeafCO5Provision)
isa(LeafCOyDistribution; LeafCO,Distribution)
isa(LeafCOyAssimilation; LeafCO Assimilation)
isa(Leaf; Leaf)

isa(Sugar; Sugar)

superEvent(LeafCOsAcquisition; LeafCO,Provision; )
subEvent(LeafCOsProvision; LeafCO3Distribution;)
superEvent(LeafCOsProvision; LeafCO; Assimilation;)
subEvent(LeafCO3Assimilation; LeafPhotosynthesis)
performs(LeafCO2Acquisition; Leaf;)
performs(LeafCOyProvision; Leaf;)
performs(LeafCOzDistribution; Leaf;)
performs(LeafCOsAssimilation; Leaf;)
performs(LeafPhotosynthesis; Leaf; )
conduit(LeafCO2Acquisition; LeafEpidermis;)
conduit(LeafCO;Distribution; LeafIntercellularSpace;)
conduit(LeafCO;Distribution; LeafEpidermis;)
conduit(LeafCO;Distribution; LeafMesophyll;)
source(LeafCOsAcquisition; LeafAmbientAtmosphere)
source(LeafCO,Distribution; LeafEpidermis;)
destination(LeafCO2Acquisition; LeafEpidermis;)
destination(LeafCO2Distribution; LeafMesophyll;)
resource(LeafCO2Acquisition; CO21)
resource(LeafCO;Distribution; CO21)
resource(LeafCOzAssimilation; CO21)
resource(LeafCO2Provision; CO21)
input(LeafPhotosynthesis; Lighti)
input(LeafPhotosynthesis; WaterVapor;)
input(LeafPhotosynthesis; CO21)
product(LeafPhotosynthesis; Sugar)
performs(LeafPhotosynthesis; Leaf; )
occursAt(LeafPhotosynthesis; LeafMesophyll;)

Py

impermeable To Type(Leafy Liquid)
impermeable To Type (Leafi Gas)

impermeable To(Leafi WaterVapor; )
impermeable To(Leafi CO21)

impermeable To(Leafi LeafAmbientAtmosphere; )
restrictsIntake(Leafi LeafCOz Acquisition; )
restrictsEmission(Leafi LeafTranspiration )
status(LeafC Oy Assimilation; Disabled)
status(LeafPhotosynthesisy Disabled)
status(LeafC Oz Distribution, Disabled)

status(LeafCOz Provision; Disabled)
—health(Leafi Dehydrating)

health(Leafy Facilitated)
health(Leafy Starving)
health(Leafi Anomalous)}

Some additions to the learning context made during the third cycle of comprehen-

sion. Inferred facts are presented in italics.

Figure 5.7: Consequences for the leaf’s attainment and use of CO,
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opportunity.

5.3.1 Identifying knowledge-base revisions to resolve anomalies

The method for resolving a set of anomalous predictions is similar to
the method described in Section 3.5.1 for refuting a single constraint violation.
However, it includes an extra step that appraises the interdependencies among

the anomalies:

1. The justification of each anomaly is analyzed to identify preferred essen-
tial support, and a memo is created that suggests knowledge-base mod-
ifications that refute each essential support of the anomalous prediction

(Section 3.5.1).

2. The proposed knowledge-base modifications, each of which resolves a par-
ticular anomaly, are organized hierarchically. Each node in the hierarchy
corresponds to a belief that provides essential support for one or more
of the anomalies. Furthermore, the nodes are arranged such that each
node provides essential support for each of its descendant nodes in the

hierarchy.

The resulting hierarchy reveals the interdependencies among anomalous pre-
dictions: the consequences of performing the candidate knowledge-base mod-
ifications associated with a particular node include resolving the anomalies
associated with each node in the subtree rooted at that node. Those modi-
fications that resolve the greatest number of anomalies appear higher in the

hierarchy; those that resolve fewer anomalies appear lower.

Figure 5.8 shows knowledge-base modifications proposed for each ano-

malous prediction, and Figure 5.9 presents the resulting hierarchy of suggested
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. health(Leaf; Starving)
:assert [J xy isa(x ResourceAttainment) & isa(y Sugar) & performs(x Leaf;) & resources(x y)
& —status(x Disabled)]
:assert [J x isa(x ResourceAttainment) & subEvent(LeafCO3Provision; x) & —status(x Disabled)]
:assert [J x portal(LeafEpidermis; x) & —covers(LeafCuticle; x)]
:assert [partiallyCovers(LeafCuticle; LeafEpidermisy)]

. status(LeafCO2Acquisition; Disabled)
:assert [J x portal(LeafEpidermis; x) & —covers(LeafCuticle; x)]
:assert [partiallyCovers(LeafCuticle; LeafEpidermisy)]

3. status(LeafCOzAssimilation; Disabled)
:assert [J xy isa(x ResourceProvision) & isa(y ResourceUtilization)
& subEvent(LeafCOsAssimilation; x) & subEvent(LeafCOzAssimilation; y)
& —status(x Disabled) & —status(y Disabled)]
:assert [J x isa(x ResourceAttainment) & subevent(LeafCOsProvision; x) & —status(x Disabled)]
:assert [J x portal(LeafEpidermis; x) & —covers(LeafCuticle; x)]
:assert [partiallyCovers(LeafCuticle; LeafEpidermisy)]

4. status(LeafCO;Distribution; Disabled)
:assert [J x portal(LeafEpidermis; x) & —covers(LeafCuticle; x)]
:assert [partiallyCovers(LeafCuticle; LeafEpidermisy)]

. status(LeafCO,Provision; Disabled)
:assert [J x isa(x ResourceAttainment) & subEvent(LeafCO3Provision; x) & —status(x Disabled)]
:assert [J x portal(LeafEpidermis; x) & —covers(LeafCuticle; x)]
:assert [partiallyCovers(LeafCuticle; LeafEpidermisy)]

6. status(LeafPhotosynthesis; Disabled)
:assert [J x isa(x ResourceAttainment) & subEvent(LeafCO3Provision; x) & —status(x Disabled)]
:assert [J x portal(LeafEpidermis; x) & —covers(LeafCuticle; x)]
:assert [partiallyCovers(LeafCuticle; LeafEpidermisy)]

7. status(LeafTranspiration; Disabled)
:assert [J x portal(LeafEpidermis; x) & —covers(LeafCuticle; x)]
:assert [partiallyCovers(LeafCuticle; LeafEpidermisy)]

The anomalous predictions established during elaboration. For each anomaly, KI
identifies knowledge-base modifications that, if made, would resolve the anomaly
(i.e., the modifications would place the anomalous prediction in region 1 of Figure
2.3).

Figure 5.8: Anomalous predictions and suggested resolutions
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knowledge-base modifications. This hierarchy guides the user through what
would otherwise be an unwieldy set of independent candidate knowledge-base
modifications to the select few that would have the greatest beneficial effect.
The user can search the tree, beginning with the root node. Any suggested
knowledge-base modifications selected by the user will resolve the anomalies
associated with all subordinate nodes in the hierarchy. Pushing new anoma-
lies into the hierarchy, indexed by their candidate fixes, naturally reveals the
underlying common “root causes” of groups of interdependent anomalous pre-
dictions. The hierarchy thus elucidates the interdependencies among anomalies;
it achieves what might be called “anomaly reduction” — identifying the under-
lying common reasons for establishing (and the common fixes for resolving)

anomalous predictions.

In the example, the fact impermeableToType(Leaf Epidermis; Gas), while
not deemed anomalous itself, provides essential support to all the anomalous
predictions, and retracting this fact would resolve all the anomalies. This fact
relies on the assumptions that the cuticle completely covers the leaf epidermis
and that the epidermis has no portals not also covered by the cuticle (Figure
3.9a, and rules 8 and 9 of Figure 3.4). Thus, these two assumptions provide
essential support for all the anomalous predictions. In accordance with Figure
1.1, KI presents the user with the two alternative suggestions of refuting these
assumptions. The user accepts the suggestion that, in fact, the leaf epidermis

does have portals.

When this knowledge-base revision is accepted, KI prompts the user
for the name of the epidermis portals (i.e., the name of the concept that binds

with the variable z in the suggested revision; see Figure 5.9, Suggestion 66).
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(a) Nodes in the resolution hierarchy

|| Suggestion Identifier | Suggestion Effect ||
Suggestion 66 Refute [impermeableToType(LeafEpidermis; Gas)]
Suggestion 70 Refute [status(LeafCO3Acquisition; Disabled)]
Suggestion 116 Refute [status(LeafCOsProvision; Disabled)]
Suggestion 112 Refute [status(LeafPhotosynthesis; Disabled)]
Suggestion 106 Refute [status(LeafCO3Assimilation; Disabled)]
Suggestion 110 Refute [health(Leaf; Anomalous)]
Suggestion 65 Refute [status(LeafCO,Distribution; Disabled)]
Suggestion 60 Refute [status(LeafTranspiration; Disabled)]

(b) The hierarchy
66
XX
70 60
XN
65

116

t

112

N

1 0

(¢) The proposed knowledge-base modifications

Suggestion 66 Refute [impermeableToType(LeafEpidermis; Gas)]
:assert [3 (x) portal(LeafEpidermis; x) & —covers(LeafCuticle; x)]
:assert [partiallyCovers(LeafCuticle; LeafEpidermisy)]

Suggestion 116 Refute [status(LeafCO;Provision; Disabled)]
:assert [3 (x) isa(x ResourceAttainment) & subEvent(LeafCOsProvision; x) & —status(x Disabled)]

Suggestion 106 Refute [status(LeafCO2Assimilation; Disabled)]
:assert [3 (xy) isa(x ResourceProvision) & isa(y ResourceUtilization)
& subEvent(LeafCOsAssimilation; x) & subEvent(LeafCOzAssimilation; y)
& —status(x Disabled) & —status(y Disabled)]

Suggestion 110 Refute [health(Leaf; HealthAnomalous)]
:assert [J (xy) isa(x ResourceAttainment) & isa(y Sugar) & performs(x Leaf;) & resources(x y)
& —status(x Disabled)]

(a) The nodes in the hierarchy of suggested resolutions for anomalous predictions.
Each node depicts a set of alternative knowledge-base modifications. The node iden-
tifiers include integers indicating their creation order (e.g., Suggestion 65 was cre-
ated before Suggestion 66). (b) Nodes in the hierarchy are indexed such that the
knowledge-base modifications associated with a non-leaf node apply to all of its de-
scendant nodes. (c¢) The alternative knowledge-base modifications proposed at each
node to resolve the anomalies included in the sub-tree rooted at that node.

Figure 5.9: Hierarchy of suggested anomaly resolutions
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(a) The revision stated in the input language

(& (LeafEpidermis (portal (Stomata)))
(= (LeafCuticle (covers (Stomata)))))

(b) The interpretation of the revision

: Each leaf cuticle has (at least one) stoma as a portal.

[V (x) isa(x LeafCuticle) = 3 (y) isa(y Stomata) & portal(x y)]

I : Leaf cuticles have only stomata as portals.

[V (xy) isa(x LeafCuticle) & portal(x y) = isa(y Stomata)]

J : Fach stoma is a portal in a leaf epidermais.

K:

[V (x) isa(x Stomata) = 3 (y) isa(y LeafCuticle) & portal(y x)]

Stomata are portals in only leaf epidermises.
[V (xy) isa(x Stomata) & portal(y x) = isa(y LeafEpidermis)]

: Fach stoma is not covered by leaf cuticle.

[V (x) isa(x Stomata) = —3 (y) isa(y LeafCuticle) & covers(y x)]

: Leaf cuticles do not cover stomata.

[V (xy) isa(x LeafCuticle) & covers(x y) = —isa(x Stomata)]

: Stomata are a type of portal.

[V (x) isa(x Stomata) = isa(x Portal)]

: Stomata are components of botanical organisms.

[V (x) isa(x Stomata) = isa(x BotanicalOrganismComponent)]

: The class of stomata is a type of tangible object.

isa(Stomata TangibleObjectType)

(a) The solicited revision presented as a semantic network encoded as nested lists
(i.e., in the input language). (b) The interpretation of the revision presented as
first-order axioms (i.e., in the representation language).

Figure 5.10: Interpreting the solicited knowledge-base revision
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The user specifies that these portals are called Stomata. ©

KI responds by
first constructing a training specification for this knowledge-base modification
stated in the input language (Figure 5.10a), then interpreting this training

specification (Figure 5.10b), and finally reinvoking the comprehension cycle for

the resulting interpretation.

5.3.2 Propagating the revision throughout the learning context

KT extends the learning context with facts that instantiate the knowledge-
base revision (Figure 5.11a). As these facts are added, they trigger non-
skolemizing rules that propagate their consequences throughout the learning
context. Figure 5.11b lists some of the consequences of the revision, and Fig-

ure 5.12 presents some of the triggered rules.

As expected, the revision retracts impermeableToType(LeafEpidermis,
Gas) and all of its anomalous consequences. Thus, in accordance with Figure
1.1, KI has identified anomalous consequences of the new information, de-
termined two underlying assumptions of these anomalous consequences, and
solicited a knowledge-base revision that retracts the underlying assumptions
and resolves the anomalies. Furthermore, KI has integrated the revision and
demonstrated to the user that the revision has successfully resolved the anoma-

lies (while not introducing others).

SKI also prompts the user to verify both that Stomata is being added to the knowledge
base as a new concept and that, in general, all leaf epidermises have stomata rather than
just the particular leaf epidermis under consideration.
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(a) Instantiating the revision

{isa(Stomata; Stomata)
portal(LeafEpidermis; Stomata;)
—covers(LeafCuticle; Stomata;)}

(b) Inferences completed while instantiating the revision

{conduitIn(Stomatay LeafCOz Acquisition; ) <impermeableTo(LeafEpidermis; COz1)>
conduitIn(Stomata; LeafC'O Distribution, ) <impermeableTo(LeafEpidermis; WaterVapor; )>
conduitIn(Stomatay LeafTranspiration; ) <impermeableTo(LeafEpidermis; LeafAmbientAtmy )>
permeable To(Stomata; CO21 ) <impermeable To Type(LeafEpidermisy Gas)>
permeable To(Stomatar WaterVapor ) <impermeable To Type(LeafEpidermisy Liquid)>
permeable To(LeafEpidermisy COz1 ) <impermeableTo(Leafi COz1)>
permeable To(LeafEpidermisy Water Vapor; ) <impermeableTo(Leafi WaterVapor; )>
—impermeable To(Stomata; CO21 ) <impermeableTo(Leafi LeafAmbientAtmosphere; )>
—impermeable To(Stomata; WaterVapor; ) <impermeable To Type(Leafi Gas)>
—impermeable To(LeafEpidermis; CO21) <impermeable To Type(Leafi Liquid)>

—impermeable To(LeafEpidermisy WaterVapor) ) <health(Leafy Starving)>
controlsIntake(Stomatay LeafC' Oz Acquisition; ) <health(Leafi Anomalous)>
controlsIntake Of (Stomata; CO21) < status(LeafC Oy Acquisition; Disabled)>
controlsEmission(Stomata; LeafTranspiration; ) <status(LeafCOzProvisiony Disabled)>
controlsEmissionOf(Stomata; WaterVapory ) < status(LeafC Oy Distributiony Disabled)>

facilitates(Stomata; LeafC Oy Distribution; ) < status(LeafPhotosynthesisy Disabled)>
facilitates(Stomata; LeafTranspiration; ) < status(LeafCOy Assimilation; Disabled)>
facilitates(Stomata; LeafCOy Acquisition; ) < status(Leaf Transpiration; Disabled)>}

facilitates(LeafEpidermisy LeafC'Os Distribution, )
facilitates(LeafEpidermisy LeafTranspiration; )
facilitates(LeafEpidermisy LeafC'Os Acquisition; )
facilitates(Leafi LeafC'Oo Distribution; )
facilitates(Leafi LeafTranspiration; )
facilitates(Leafi LeafC'Os Acquisition; )
status(LeafC Oy Acquisition Facilitated)
status(LeafCOy Distribution, Facilitated)
status(LeafC Oz Provision; Facilitated)
status(LeafPhotosynthesisy Facilitated)
status(Leaf Transpiration; Facilitated)
health(Leafy Facilitated)

Note: LeafAmbientAtm; abbreviates LeafAmbientAtmosphere;

(a) The facts added to the learning context as the revision is instantiated. (b) Some
consequences of the revision. Inferred facts are presented in italics; retracted facts
appear within brackets <...>.

Figure 5.11: Consequences of the knowledge-base revision
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Portal assumes conduit role.
[V (vwxyz) conduit(v w) & portal(w x) & physicalPart(w y) & transportee(v z)
& impermeableTo(y z) & unless(impermeableTo(y z)) = conduit(v x)]

: Permeable portal facilitates transport.

[V (vwxyz) conduit(v w) & portal(w x) & physicalPart(w y) & transportee(v z)
& impermeableTo(y z) & unless(impermeableTo(x z)) = facilitates(x v)]

Permeable portal controls emission.

[V (vwxyz) isa(w Emission) & conduit(v w) & portal(w x) & physicalPart(w y)
& resource(v z) & impermeableTo(y z) & unless(impermeableTo(x z))
= controlsEmission(z v)]

Permeable portal controls intake.

[V (vwxyz) isa(w Resourcelntake) & conduit(v w) & portal(w x) & physicalPart(w y)
& resource(v z) & impermeableTo(y z) & unless(impermeableTo(x z))
= controlsIntake(z v)]

: Permeability enables transport.

[V (xyz) conduit(x y) & transportee(x z) & permeableTo(y z) & unless(status(x Disabled))
= status(x Enabled)]

Facilitators facilitate events.
[V (xy) facilitates(x y) & unless(status(y Disabled)) = status(y Facilitated)]

: Facilitating parts suggest facilitator role.

[V (xyz) facilitates(x y) & part(z x) & actor(y z) = facilitates(z y)]

Restricting emission facilitates other uses.

[V (vwxyz) restrictsEmission(v w) & transportee(w x) & isa(y ResourceUtilization)
& resource(y x) & performs(y v) & unless(w = y) & unless(status(y Disabled))
= status(y Facilitated)]

Facilitating attainment facilitates provision.
[V (xy) isa(x ResourceAttainment) & isa(y ResourceProvision) & status(x Facilitated)
& subEvent(y x) & unless(status(y Disabled)) = status(y Facilitated)]

Facilitating provision facilitates utilization.

[V (xyz) isa(x ResourceProvision) & isa(y ResourceAssimilation)
& isa(z ResourceUtilization) & status(x Facilitated) & subEvent(y x)
& subEvent(y z) & unless(status(z Disabled)) = status(z Facilitated)]

Facilitating essential resource use facilitates health.
[V (xyz) isa(x ResourceUtilization) & status(x Facilitated) & resource(x y)
& isa(y EssentialPlantResource) & performs(x z) = health(z Facilitated)]

Some of the non-skolemizing rules triggered by ground beliefs asserted in the learning
context as the solicited knowledge-base revision is instantiated.

Figure 5.12: Rules triggered by instantiating the revision
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5.3.3 Propagating the revision through the adaptation methods

The scope of the TMS (Section 3.4.4) is limited to inferences com-
pleted by the knowledge-base’s inference engine. Significantly, this excludes the
results of KI performing adaptation during each execution of the comprehen-
sion cycle. For example, during the first cycle, elaboration establishes that the
hypothetical leaf epidermis is impermeable to gases, and adaptation determines
that the justification of this conclusion warrants asserting the general rule that
every leaf epidermis is impermeable to gases (Section 3.5.2). As a consequence
of instantiating the revision, the TMS retracts the fact that the hypothetical

leaf epidermis is impermeable to gases but leaves the general rule intact.

To handle revisions properly, KI implements its own ‘truth mainte-
nance’ facility for the new rules that it defines during adaptation. Each new rule
is indexed by the propositions that support it (e.g., those facts that triggered
the adaptation methods that created it). When these supporting propositions
are retracted by the TMS, KI re-evaluates the rule to determine whether or
not it is still warranted, and, if not, the rule is retracted (if it has already been
autonomously asserted), and suggestions that reference it are removed from

the memos queued for the user.

Extending the standard TMS to handle beliefs (e.g., rules) established
by the learning system has turned out to be a very significant feature of KI.
FEach adaptation method (many of which are not truth preserving) must record
the facts and rules in the knowledge base that warrant every new belief estab-
lished by the method. While this issue of extending a TMS to handle the results
of learning systems has been largely unexplored in machine learning research,
it remains an essential issue for any incremental learning system that exploits

nonmonotonic knowledge or knowledge that may be modified.
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5.4 Teleological learning

Figure 1.1 is offered as an example of learning that exemplifies know-
ledge integration. Among the most interesting learning behaviors demonstrated
by this example invovles teleological learning: acquiring descriptions of pur-
prose. Teleological learning plays an essential role in the acquisition of know-
ledge in many domains. In the biological sciences teleology explains the struc-
ture of organisms in terms of their physiological functions. © Differences among
the anatomies and physiologies of various species can be understood in terms
of their relative advantages for survivability. The very appeal of natural se-
lection and evolution as theories in the biological sciences is that they offer
such explanations. Similarly, in design domains, teleology explains the design
of artifacts (i.e., the intended structure and behavior of their parts) in terms of
their purposes (i.e., the intended behaviors or functions of the artifacts) [Fra93].
(Additional discussion of the importance of teleological knowledge is included
in sections 1.2.1 and 7.4.4.) This section explains how the teleological learning

behavior illustrated in Figure 1.1 is achieved by KI.

In the example, elaboration reveals that the leaf cuticle enhances the
leat’s physiology by restricting water loss through transpiration. KI recognizes
this as a “teleological” consequence of the new information: the physiological
benefit of moderating water loss explains why the leaf has a cuticle. Recognizing

that a domain goal has been established triggers teleological learning.

"The distinction between behavior and function are often conflated in the literature
[Kui85, Fra93]. Here, function is a subset of an entity’s behavior that contributes to its
achieving a domain goal. A teleological description is one that acribes purpose; it associates
an entity with one of its functions and the domain goal (or subgoal) facilitated by that
function.
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5.4.1 Representing goals

The predicate goal Predicate identifies predicates that denote domain
goals of the instances of a collection. Initially, the only assertions in the know-

ledge base referencing goal Predicate are:

goalPredicate(LivingObject hasPhysiologicalGoal)
goalPredicate(LivingObject hasPhysiologicalFunction)
goalPredicate(OrganismComponent hasPhysiologicalFunction)

and the only assertion in the knowledge base that establishes a domain goal is:

hasPhysiologicalGoal(LivingObject health Facilitated)

This denotes that it is a “goal” (in particular, a physiological goal) of all living
objects to promote their own good health. ® Initially, there are no assertions
referencing hasPhysiological Function. The knowledge base has therefore been
seeded with only the barest of knowledge about physiological goals and func-

tions in botany.

Each inference completed during elaboration is evaluated to determine
if 1t satisfies some domain goal. In the example, elaboration reveals that the
leaf cuticle restricts water loss through transportation. By inhibiting dehydra-
tion and preserving water for other uses (e.g., photosynthesis) the leaf cuticle
benefits the health of the leaf. A physiological goal is thus established since the
leaf, an instance of LivingObject, has the goal of facilitating its own good health.

Establishing domain goals enables learning from teleological explanations.

8This does not commit to the position that physiological goals really exist (i.e., that
each living thing really “has the goal” of promoting its own health). Rather, this scheme
simply reflects the fact that humans often conceive of such goals when considering biological
domains. When we study or teach biological subject matter, we interpret or explain many
aspects of the domain by postulating the existence of physiological goals in order to impose
structure on the domain and render it more explainable.
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5.4.2 Identifying teleological explanations

A teleological explanation motivates one or more properties of an ob-
ject by identifying the beneficial consequences of those properties. One common
form of teleological explanation justifies the structural properties of an object
by establishing how the behavior of its components contribute to its goals;
that is, explaining a thing’s structure by its function. In biological sciences
it is common to explain the structure of a living thing by determining how
its components contribute to achieving its physiological goals. For example, a
teleological explanation of why a plant has leaves is that the leaves enable the
plant to feed itself: the leaves generate, through photosynthesis, the essential
sugars required to sustain the plant. Furthermore, it is natural to interpret
those behaviors that directly contribute to achieving some physiological goal
as physiological functions (e.g., performing photosynthesis is a physiological

function of plant leaves).

Whenever an inference is made that establishes a physiological goal,
KI analyzes the supporting explanation to determine if it is teleological. An
explanation is teleological if structural (i.e., the partonomic or compositional)
properties of the beneficiary ? support establishing a physiological goal. Iden-

tifying a teleological explanation involves three steps:

1. Determine that the explanation establishes a domain goal. For example,
if the fact established by the explanation is p(z y), then

goal Predicate(z q) & q(z py) & isa(x 2)

must be true for some collection z and predicate q.

9The beneficiary is the thing whose physiological goals are established.
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2. Prune each sub-explanation that establishes a structural-property denot-
ing fact and that does not reference any structural properties among its

own sub-explanations (e.g., Figure 5.13).
3. Identify the pruned explanation’s weakest preconditions (Figure 5.14a).

4. Identify the essential structural properties, those propositions in the weak-
est preconditions that denote structural properties of the beneficiary (e.g.,

those structural components of Leaf:; see Figure 5.14b).

The first step simply ensures that the fact established by the ex-
planation is a domain goal. The second step removes from consideration the
purely logical support for propositions denoting structural properties. This pre-
vents structural preconditions from being replaced by non-structural precon-
ditions during the weakest-preconditions analysis performed during the third
step. When the weakest preconditions do include structural properties of the
beneficiary, then the explanation is considered to be teleological: establishing
this goal explains, teleologically (and abductively), why the beneficiary has the

designated structural properties.

In the example, there are 134 explanations of health(Leaf, Facilitated)),
thirty-six of which are teleological. However, only eight have unique sets of
weakest preconditions, and the explanations with redundant weakest precon-

ditions are omitted from further consideration.

Figure 5.13 presents one teleological explanation of health(Leaf, Facil-
itated). Pruned from this inference graph are all the subgraphs that establish
structural properties that are supported by other structural properties. This

guarantees that the weakest preconditions (Figure 5.14a) of the explanation



145

after pruning include all structural properties referenced in the original expla-
nation that are not simply consequences of other structural properties. For
example, the fact coveringPart(LeafEpidermis; LeafCuticle;) does itself have an
explanation: it is a consequence of isa(LeafEpidermis; LeafEpidermis) (Figures
3.9a and Rule A of 3.2¢). However, it appears as a leaf-node after the infer-
ence graph has been pruned (Figure 5.13). Similarly, each essential structural
property (Figure 5.14b) is also a consequence of the fact isa(LeafEpidermis;
LeafEpidermis), but after pruning the inference graph they appear as unex-
plained facts, as leaf nodes. This pruning step is required to preserve the
explanatory coherence of the inference graph. The purpose of this adaptation
method is to explain the structure of an object by identifying how its struc-
tural properties establish its goals. Without this pruning step, the structural
properties (Figure 5.14b) would be obscurred during the weakest-precondition

analysis.

5.4.3 Generalizing teleological explanations

Each teleological explanation identified by KI suggests a reason for
why an object has a particular structure. One way that KI attempts to learn
from a teleological explanation is by generalizing the scope of the explana-
tion to apply to other beneficiaries. This requires determining which other
domain objects (e.g., organisms, components of organisms) would also benefit
from the structural properties identified by the teleological explanations. KI
then conjectures that these candidate beneficiaries, in fact, share the explained

structure.

In generalizing a teleological explanation, care must be given to avoid

over-generalizing. While the antecedent-regression methods of explanation-
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health(Leafy Facilitated)
<4g performs(Leafi LeafPhotosynthesisi )
isa(LeafPhotosynthesis1 ResourceUtilization)
resource(LeafPhotosynthesisy Water Vapor; )
isa(WaterVapor) EssentialPlantResource)
status(LeafPhotosynthesisy Facilitated)
<45 performs(Leafi LeafPhotosynthesisy )
isa(LeafPhotosynthesis1 ResourceUtilization)
resource(LeafPhotosynthesisy Water Vapor; )
transportee(LeafTranspirationy WaterVapor; )
restrictsEmission(Leafi LeafTranspiration )
< isa(LeafTranspiration; Emission)
restricts(Leafi LeafTranspiration; )
<34 physicalPart(Leafi LeafEpidermis; )
<11 coveringPart(Leafi LeafEpidermis; )
<11 epidermis(Leafi LeafEpidermis; )
actorIn(Leafi LeafTranspiration )
<11 performs(Leafi LeafTranspiration; )
restricts(LeafEpidermisy Leaf Transpiration; )
<34 physicalPart(LeafEpidermis; LeafCuticle )
<11 coveringPart(LeafEpidermisy LeafCuticle; )
actorIn(LeafEpidermisi LeafTranspiration )
<11 conduitin(LeafEpidermisi LeafTranspiration )
restricts(LeafCuticle; LeafTranspiration; )
<11 restrictsEmission(LeafCuticle; LeafTranspiration; )
<21 1sa(LeafTranspiration; Emission)
conduitIn(LeafEpidermis, LeafTranspiration; )
coveringPart(LeafEpidermisy LeafCuticle; )
transportee(LeafTranspirationy Water Vapor; )
impermeable To(LeafCuticley WaterVapor; )
<16 1sa( WaterVapor; Gas)
impermeable To Type(LeafCuticle; Gas)
<g¢ isa(LeafCuticle; Cutin)
<5 composedOf(LeafCuticle;
Cutin)

One teleological explanation of health(Leaf; Facilitated). p <, q denotes that p
follows from rule » triggered by g¢; the referenced rules are presented in Figures 3.4,
3.7,5.1, 5.6, and 5.12. Implications with no subscript denote obvious rules that have
not been presented.

Figure 5.13: A teleological explanation
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(a) The weakest preconditions

{epidermis(Leaf; LeafEpidermis;)
coveringPart(LeafEpidermis; LeafCuticle;)
composedOf(LeafCuticle; Cutin)
conduitIn(LeafEpidermis; LeafTranspiration;)
transportee(Leaf Transpiration; WaterVapor )
performs(Leaf; LeafTranspiration;)
performs(Leaf; LeafPhotosynthesis; )
input(LeafPhotosynthesis; WaterVapor;)
isa(WaterVapor; Gas)
isa(WaterVapor; EssentialPlantResource)
isa(LeafTranspiration; Emission)

LeafPhotosynthesis; ResourceUtilization)}

(
isa(

185a

(b) The essential structural properties

{epidermis(Leaf; LeafEpidermis;)
coveringPart(LeafEpidermis; LeafCuticle;)
composedOf(LeafCuticle; Cutin)}

(a) The weakest preconditions of the teleological explanation presented in Figure
5.13. (b) The subset of weakest preconditions that denote structural (e.g., parto-
nomic or compositional) properties of the beneficiary.

Figure 5.14: Identifying a teleological explanation

based learning (EBL) preserve logical validity, they do not necessarily preserve
teleological validity. In other words, aspects of the explanation that endowed

it with teleological properties can be lost during the generalization process.

For example, consider a hunter with a gun who shoots a quail. The
hunter can eat the quail because the hunter possesses the quail (by shooting
it) and the quail is dead (by being shot by the hunter). This teleological
explanation suggests that perhaps the hunter owns the gun in order to be able
to shoot game. However, this explanation logically supports a generalization
in which the hunter shooting the quail is not the same one as the hunter who
subsequently eats it (e.g., a hunter obtains a quail by buying it). Such a

generalization offers no account for why a hunter might own a gun. Thus, when
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trying to determine, in general, why someone might own a gun, generalizations

that allow for some other agent to provide the game should be inhibited.

To avoid such over-generalization, additional constraints are imposed
on the generalization process that equate terms in the explanation. Specifically,
all references to the beneficiary are equated, and, for each structural compo-
nent of the beneficiary, all references to that component are equated. These
constraints anchor terms appearing as variables in the generalized explanation
to preserve the relationship between the beneficiary and its components. They

inhibit over-generalization (in a coherence sense, not a logical sense).

To illustrate this, Figure 5.15 presents the overly general rule that
results when traditional explanation-based generalization is applied to the tele-
ological explanation in Figure 5.13 (the variables have been renamed in Figure
5.15 for readability). Significantly, this rule fails to reflect the teleological
structure of the explanation from which it was generated. Lost is the re-
quirement that what facilitates achieving the goal are structural properties

of the beneficiary, and not of some other agent. Instead, the rule indicates

that the structural aspects of some arbitrary entity facilitate the beneficiary’s
goal. Thus, the rule fails to relate the beneficiary’s structural properties to
the achievement of the beneficiary’s goal: the explanatory coherence of the

explanation (i.e., its teleological quality) has been lost during generalization.

To preserve the explanatory coherence during generalization, all refer-
ences in the ground explanation (Figure 5.13) to terms denoting the beneficiary
(e.g., Leafi) are equated; for each structural component of the beneficiary (e.g.,
LeafEpidermis; and LeafCuticle; ) all references to that component are equated
as well. Consequently, variables referenced in the general rule presented in

Figure 5.15 are equated as follows:
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health(?Beneficiary Facilitated)
< performs(?Beneficiary ?ResourceUtilization)
& input(?ResourceUtilization ?EssentialResource)
& input(?ResourceUtilization ?OtherResource)
& transportee(?Transpiration ?OtherResource)
& transportee(? Transpiration ?WaterVapor)
& performs(?ShootOrgan ?ResourceUtilization)
& performs(?ShootOrgan ?Transpiration)
& epidermis(?ShootOrgan ?Epidermis)
& conduitIn(?Epidermis ?Transpiration)
& conduitIn(?OtherPart ?Transpiration)
& coveringPart(?Epidermis ?Cuticle)
& coveringPart(?OtherPart ?Cuticle)
& composedOf(?Cuticle Cutin)
& isa(?EssentialResource EssentialPlantResource)
& isa(?Water Liquid TangibleStuff)
& isa(?Transpiration Emission)
& isa(?ResourceUtilization ResourceUtilization)

The prefix “?” denotes terms that are variables

Figure 5.15: Rule compiled via EBL (no teleological structure)

1. 7Beneficiary = 7ShootOrgan
2. 7Epidermis = 7OtherPart

The resulting general rule (Figure 5.16) retains the teleological structure of
the original explanation since it identifies how structural components of the

beneficiary contribute to achieving one of its physiological goals.

Generalizing and compiling a teleological explanation produces a gen-
eral rule that identifies conditions under which a domain goal is established.
The resulting general rule is then analyzed to determine what other domain
entities (e.g., organisms, organism components) would benefit from the struc-
tural properties (e.g., having a cuticle) that enabled the beneficiary (e.g., the
leaf) to satisfy the domain goal. To identify other candidate beneficiaries, the

antecedent of the general rule is partitioned into two sets:

1. The endowments comprise antecedent propositions that do reference struc-

tural predicates.
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health(?Beneficiary Facilitated)
< performs(?Beneficiary ?ResourceUtilization)
& performs(?Beneficiary ?Transpiration)
& epidermis(?Beneficiary ?Epidermis)
& coveringPart(?Epidermis ?Cuticle)
& composedOf(?Cuticle Cutin)
& conduitIn(?Epidermis ?Transpiration)
& transportee(?Transpiration ?WaterVapor)
& transportee(?Transpiration ?OtherResource)
& input(?ResourceUtilization ?OtherResource)
& input(?ResourceUtilization ?EssentialResource)
& isa(?WaterVapor Gas)
& isa(?EssentialResource EssentialPlantResource)
& i1sa(?Transpiration Emission)
& 1sa(?ResourceUtilization ResourceUtilization)

Figure 5.16: Rule preserving teleological structure

2. The qualifications comprise antecedent propositions that do not reference

structural predicates.

In the example, the endowments are:

{epidermis(? Beneficiary ?Epidermis)
covering Part(? Epidermis 7Cuticle)
composedO f(?Cuticle Cutin)}

The qualifications are:

{performs(? Bene ficiary ?ResourceUtilization)
per forms(? Bene ficiary ?Transpiration)
conduitIn(? Epidermis ?Transpiration)
transportee(TTranspiration TWaterVapor)
transportee(?Transpiration TOther Resource)
input(? ResourceUtilization ?Other Resource)
input(? ResourceUtilization ?Essential Resource)
isa(?WaterVapor Gas)
isa(?Essential Resource Essential Plant Resource)
isa(?Transpiration Emission)
isa(? ResourceUtilization ResourceUtilization)}

The endowments identify structural aspects of an object that, under the right

circumstances, facilitate achieving a domain goal. The qualifications identify
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precisely what those circumstances are; they determine when the structural
properties would benefit an object. Typically, qualifications identify behaviors
of a beneficiary (e.g., performing transpiration) that create opportunities for

its components to facilitate a goal.

KI identifies as candidate beneficiaries those objects that satisfy the
qualifications. Each such candidate would benefit from having the structure
indicated by the endowment. A three-step process is used to determine the

candidate beneficiaries:

1. Argument-typing constraints are identified for variables (other than that
denoting the beneficiary) appearing as terms in the qualifications. Since
argument typing constraints are often collection specific (Section 4.2.3),
the typing constraints applicable to variables in a set of propositions
can interact, and identifying a typing constraint on one variable can im-
pose additional constraints on other variables. Consequently, an exhaus-
tive search for all applicable typing constraints could require a bounded,
but potentially intractable, number of passes through the qualifications.
Therefore, KI uses a greedy algorithm requiring one pass for each unique

variable. The applicable typing constraints found for the example are:

{isa(?Transpiration Transpiration)
isa(?Epidermis TangibleObject)
isa(?Other Resource WaterVapor)
isa(? ResourceUtilization Botanical ResourceUtilization)}

The collection denoting the most specific typing constraint applicable to
each variable is substituted into each proposition referencing that vari-
able (i.e., created figurative propositions), and the variable-typing propo-

sitions (i.e., those referencing the predicate isa) are removed from the
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qualifications. The resulting qualifications comprise figurative proposi-

tions that reflect applicable class-membership constraints; they are:

{per forms(? Bene ficiary Botanical ResourceUtilization)

per forms(? Bene ficiary Transpiration)
conduitIn(TangibleObject Transpiration)
transportee(Transpiration Gas)

transportee(Transpiration WaterV apor)

input(Botanical ResourceUtilization WaterV apor)
input(Botanical ResourceUtilization Essential Plant Resource)}

2. The knowledge base is queried to determine which concepts are candi-
dates to both share the domain goal and satisfy those properties in the
constrained qualifications that reference the beneficiary (e.g., living things
that perform transpiration). In this example, this query takes the form:

{z | ako(x LivingObject) & relation Type(x performs y) & ako(y Transpiration)}

This query is automatically constructed from the figurative propositions
in the constrained qualifications that reference the beneficiary; it eval-
uates to: {Stem Fruit Flower Leaf}. In other words, stems, fruit, and
flowers would all benefit, as do leaves, from having structural properties

identified by the endowment.

3. Argument-typing constraints are identified for the variable denoting the
beneficiary in the endowment, and the specification of each candidate
beneficiary is refined as necessary to satisfy these argument-typing con-
straints. This involves determining, for each candidate, the maximum
specialization of that candidate and the applicable constraints. In the
example, the only constraint applied to the beneficiary by the endowment
(e.g., argumentOneType(epidermis Morphological Part)) is already satisfied by

each of the candidates, so no additional refinement is necessary.
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(a) Generalize the new information for stems
(Stem (epidermis (StemEpidermis (coveringPart (?StemCuticle (composedOf (Cutin)))))))

(b) Generalize the new information for fruit
(Fruit (epidermis (?FruitEpidermis (coveringPart (?FruitCuticle (composedOf (Cutin)))))))

(¢) Generalize the new information for flowers

(Flower (epidermis (FlowerEpidermis (coveringPart (?FlowerCuticle (composedOf (Cutin)))))))

The teleological explanation of why leaves have cuticles suggests that stems, fruit,
and flowers also have cuticles. These conjectures are presented to the user in the input
language (i.e., semantic networks encoded as nested lists). There are no constants
defined in the knowledge base that denote the epidermis of fruit or the cuticle of the
stem, fruit, or flower, so these are denoted by variables to be named by the user.

Figure 5.17: Abductively generalizing the new information

Finally, those candidates for whom every structural proposition (i.e., the en-
dowment) is already known (e.g., Leaf) are removed from consideration, and
suggestions are generated to propose that the endowment holds for each of the

remaining candidates (Figure 5.17).

Thus, KI identifies a teleological explanation that motivates the new
information (i.e., explains why leaves have cuticles). Generalizing this expla-
nation identifies conditions under which other domain concepts can benefit by
having cuticles and supports the abductive conjectures that stems, flowers, and
fruit also have cuticles. Similarly, KI motivates and generalizes the solicited
revision as well (Figure 5.18). Each teleologically based conjecture is proposed

to the user as a suggested knowledge-base modification.

Completing teleological explanations supports the conjecture that the
beneficial properties of one domain concept hold for other domain concepts. Ac-
quiring knowledge by this method represents a novel variation on learning by

analogy. In traditional approaches [KC85, Car86, Gen89], a problem instance
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(a) Generalize the revision for stems

(Stem (epidermis (StemEpidermis (coveringPart (?StemCuticle (composedOf (Cutin))))
(portal (Stomata)))))

(b) Generalize the revision for fruit

(Fruit (epidermis (?FruitEpidermis (coveringPart (?FruitCuticle (composedOf (Cutin))))
(portal (Stomata)))))

(¢) Generalize the revision for flowers

(Flower (epidermis (FlowerEpidermis (coveringPart (?FlowerCuticle (composedOf (Cutin))))
(portal (Stomata)))))

(d) Generalize the revision for botanical organs

(= (BotanicalOrgan (epidermis (Epidermis (coveringPart (?Cuticle (composedOf (Cutin)))))))
(Epidermis (portal (Stomata)))))

The teleological explanation of why leaves have stomata suggests that other domain
entities having cuticles also have stomata. These conjectures are presented to the
user in the input language (i.e., semantic networks encoded as nested lists).

Figure 5.18: Abductively generalizing the revision

— called the target case — is given; to establish the analogy, the learner must
identify a solved problem instance — called the base — from a library of cases.
The base must be sufficiently similar to the target so that its solution can be
adapted to solve the target case. Two common subproblems of learning by
analogy are thus identifying the base case and determining what properties of
the base should be mapped to the target case. In exploiting teleological expla-

nations, KI identifies a base concept °

as being the beneficiary of a teleological
explanation. To establish the analogy, KI uses the explanation to determine

which properties of the base are germane to the analogy and should therefore

10Here a “case” is really a concept, and the implicit task is to know all that can be known
about the concept.
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be mapped to the target concepts (i.e., the endowment). This is similar to the
approach of purpose-directd analogy [KKC85] and accords nicely with Gentner’s
model of analogy based on systematicity [Gen83]: the teleological explanation
provides the higher-order structure that identifies which properties of the base
are to be transfered across the analogy to the target. KI also uses the expla-
nation to determine the prerequisite properties of candidate target cases (i.e.,
the qualifications). Thus, KI uses the teleological explanation to identify the
base and target concepts and to determine precisely which properties of the
base should be mapped to the target concepts. Furthermore, this approach
is opportunistic: rather than waiting until an unsolved problem (target case)
is encountered before attempting the analogy, KI recognizes and exploits ana-
logical learning opportunities as they arise. Despite being explanation-based,
this approach is inherently abductive: KI can teleologically explain why each
target concept (e.g., stems, fruit, flowers) would benefit by having the endow-
ment (e.g., a cuticle), but these conjectures remain purely speculative until

confirmed by the user.

Completing teleological explanations affords the advantage of con-
jecturing that structural properties of one concept may be shared by other
concepts (as illustrated above). It affords other advantages as well, such as

identifying why a particular domain rule (e.g., one that defines the structure

of a domain concept) might be true: Leaves have cuticles because cuticles re-
strict water loss and inhibit dehydration. Understanding why concepts have
structural properties has pedagogical advantages; it enables the system, for
example, to answer the query: Why do leaves have cuticles? Acquiring teleo-
logical reasons for the structural properties of domain concepts is a special case

of a general type of learning: acquiring explanations of domain rules.
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5.5 Knowledge deepening: explaining “shallow” rules

Acquiring explanations of domain rules enables a system to strengthen
an imperfect theory by connecting unexplained rules to the underlying prin-
ciples and tacit assumptions that justify their use. By identifying underlying
principles and assumptions, explanations of rules enable the system to justify
and qualify its conclusions to the user [Swa83], to guide knowledge refinement
[SWMBS5], and, in the case of default reasoning when assumptions are not

met, to improve problem solving [SS77].

An imperfect theory is strengthened when new information enables
previously unsupported rules to be explained. Initially, a novice’s knowledge in-
cludes shallow, associational rules such as “birds can fly” or “leaves are green.”
Such beliefs are accepted by novices that do not understand, and cannot ex-
plain, why they are true. However, as knowledge is extended and expertise
in the domain increases, explanations for these default rules are discovered,
and they become annotated with deeper causal support. Figure 5.19 illustrates
the natural transition in the depth of an agent’s understanding as expertise in
a domain improves. Gagne [Gag85, pages 77-79] illustrates this behavior in

people with the following example:

A student is told In vitro experiments show that Vitamin C in-
creases the formation of white blood cells. The student has prior
knowledge that white blood cells destroy viruses, and intuitively
knows that Vitamin C is taken to fight colds, which are caused
by viruses. The student realizes that Vitamin C is capable of
fighting colds because it stimulates the creation of white blood

cells, which subsequently kill cold-causing viruses.
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+4
Depth
of
Knowledge /
0 +

Expertise

Initially, knowledge is typically shallow: it is associational and cannot be explained.
As expertise in a domain increases, the initial shallow knowledge is understood in
terms of deeper knowledge such as general domain principles or causality.

Figure 5.19: The transition from shallow to deep knowledge

Thus, for an existing, “shallow” belief, the student identifies a causal expla-
nation that was neither stated in the new information nor previously known.
Discovering this explanation provides the student with greater insight into why
Vitamin C is taken to fight colds. For example, the student can now explain
why Vitamin C is not taken in response to similar symptoms whose causes are

unrelated to viruses (e.g., allergies).

Increases in the depth of knowledge enable an agent to explain why
the beliefs it holds are true; that is, it improves the explanatory competence
of the agent. This is but one of several possible manifestations of an increase
in expertise. Others include improved competence (e.g., correctly diagnosing
diseases) and improved response times (e.g., quickly diagnosing diseases) while
performing a task in the domain. While traditional approaches to machine
learning do support improving competence and response times for performing
criterial tasks they do not support the knowledge deepening effect illustrated
in Figure 5.19. Similarity-based learning is restricted to producing only shal-

low, associational rules that cannot be explained. Traditional applications
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of explanation-based learning compile shallow rules from (potentially) deeper
rules, but existing learning systems cannot exhibit the knowledge deepening
effect since compilation is only triggered in the absence of existing, shallow
rules. In other words, EBL is performed only to speed up inference; it does
not change the explanatory competence of the agent’s knowledge. However,
by acquiring explanations of existing domain rules, KI exhibits the knowledge
deepening effect and improves the explanatory competence of the knowledge

base.

The following two sections describe how KI models this learning be-
havior during knowledge integration. The first discusses how KI acquires ex-
planations of structural relations by identifying their physiological functions.
The second describes how KI discovers proofs of shallow rules; each such proof

explains the rule in terms of other, usually more fundamental, domain rules.

5.5.1 Identifying physiological functions

Section 5.4 illustrated how teleological explanations can suggest ab-
ductive generalizations of new information; teleological explanations can also
suggest why new or existing rules are true. For example, the explanation pre-
sented in Figure 5.13 reveals the physiological functions of several components
of the leaf. Each essential structural property included in a teleological expla-
nation contributes to effecting a goal; identifying physiological functions of the
component referenced by a structural property involves determining precisely
how that component contributes (e.g., behaviorally) to effecting the goal. This
analysis is performed for each essential structural property of the explanation

(e.g., each fact in 5.14b) and involves two steps:
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1. The subgraphs that establish the structural property are pruned from the
inference graph. This ensures that the structural property will not appear
in the graph as a consequence of any properties identified as physiological

functions of that component.

2. The behavioral properties (i.e., facts denoting the events that an object
participates in or affects) of components that are referenced by the struc-
tural properties appearing in the remaining inference graph are identified

as physiological functions of those component.

For example, the fact that the leaf epidermis has a cuticle is one of the essential
structural properties of the explanation presented in Figure 5.13, and the infer-
ence graph references the behavioral fact that the leaf cuticle, the component in
this structural fact, restricts transpiration. Thus, establishing a domain goal
of the leaf is a consequence of the two facts that the leaf epidermis has the
leaf cuticle as a covering part and that the leaf cuticle restricts transpiration.
This suggests that restricting transpiration is a physiological function of the
leaf cuticle. In this particular example, the behavioral fact is a consequence of
the structural fact: covering the leaf epidermis enables the cuticle to restrict
transpiration. Finally, identified functions of a component are conjectured to
provide teleological, not causal, explanations for the essential structural prop-
erty that references the component: The leaf epidermis has a cuticle because

the leaf cuticle restricts transpiration.

Figure 5.20 presents the results of this analysis for the new concepts
introduced during the example. Each relevant behavioral proposition is as-
serted as a physiological function of the component and memos are dispatched

suggesting the user verify these assertions.
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Identifying the physiological functions of domain concepts has two

advantages:

1. New physiological functions extend the representation in the knowledge
base of domain goals. Each behavioral property included in a teleolog-
ical explanation and identified as a new physiological function defines
a subgoal of the domain goal established by the explanation, and each
concept “has the goal” of performing its physiological functions. Thus,
identifying physiological functions extends the representation of domain
goals in the knowledge base. Initially, only the generic domain goal of
facilitating good health is represented; after identifying the physiologi-
cal functions (e.g., those in Figure 5.20a) several concept-specific domain
goals are also represented, including the goal of the leaf cuticle to restrict
transpiration, and the goal of the stomata to permit the leaf’s acquisition
of carbon dioxide from the atmosphere. During subsequent learning, ex-
planations that establish these new goals can be identified as teleological

in addition to those that establish the facilitation of good health.

2. In many domains, function often explains structure [Sim81, DeK85, Fra93];
the physiological functions of a component help to explain the structural
properties that reference that component. For example, one good an-
swer to the question Why do leaf epidermises have cuticles? is to restrict
transpiration. Before identifying this function of the leaf cuticle, the
knowledge base cannot provide this (or any other) answer. Since each
physiological function of a component suggests a teleological explanation
for some structural property referencing the component, each identified

function improves the system’s ability to explain the structure of domain
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(a) Acquired physiological functions of the new concepts

1. hasPhysiologicalFunction(LeafCuticle restrictsEmission LeafTranspiration)
2. hasPhysiologicalFunction(Stomata facilitates LeafCO3 Acquisition)

3. hasPhysiologicalFunction(Stomata facilitates Leaf Transpiration)

(a) Acquired explanations of structure

1. justifiedBy(coveringPart(LeafEpidermis LeafCuticle)
restrictsEmission(LeafCuticle Leaf Transpiration))

2. justifiedBy(composedOf(LeafCuticle Cutin)
restrictsEmission(LeafCuticle Leaf Transpiration))

3. justifiedBy(portal(LeafEpidermis Stomata)
facilitates(Stomata LeafCO2 Acquisition))

4. justifiedBy(portal(LeafEpidermis Stomata)
facilitates(Stomata LeafTranspiration))

(a) The physiological functions identified for the new concepts introduced during
the example. (b) Teleological explanations of structural properties enabled by the
acquired physiological functions of the new concepts.

Figure 5.20: Explaining structure by function

concepts. The physiological functions are asserted as teleological expla-
nations of the structural properties, and memos are dispatched suggesting
that the user verify these assertions. Figure 5.20b presents the teleological

explanations asserted for the new concepts during the example.

Identifying teleological explanations of beliefs is just one way to im-

prove explanatory competence: acquiring proofs of rules is another.

5.5.2 Identifying proofs of rules

Proofs of a shallow domain rule identify subsets of the knowledge base
comprising beliefs that collectively ensure the rule’s truth. Each proof of a rule

identifies a set of underlying principles and assumptions that justify the rule’s
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Rule;

Rule; Ruley
Ruleg
R +—mmM

S

P Q

Two inference graphs that are co-rooted (i.e., they establish a common consequent):
Q <, P Q &; S« R P

Nodes in the inference graphs denote sets of facts; arcs denote rules. Rule; establishes
a consequent @) from a set of antecedents P. An explanation involving rules j, k,
and [ also establishes @) from antecedents P. If the explanation can be generalized
and compiled into a rule that subsumes Rule; (i.e., its consequent subsumes the
consequent of Rule; and its antecedents subsume the antecedent of Rule;), then the
generalized explanation provides a proof of Rule;.

Figure 5.21: Acquiring a proof of a rule

use; different proofs may reveal different principles and assumptions.

Figure 5.21 illustrates a situation in which the proof of a rule can be
identified: a fact has been established by two distinct inference graphs. An
interesting prerequisite of this adaptation method is that multiple ground ex-
planations for some fact must exist. When this occurs, KI determines whether
any explanation can be generalized into a proof of some inference rule that

establishes that fact.

Let E be the set of explanations of some fact ¢, and let r; be the last
rule applied (i.e., r; concluded ¢) in some explanation e¢; € E. KI evaluates
each alternative explanation in K to determine if it can be transformed into a

proof of r;. This involves three steps:

1. KI uses explanation-based generalization to compute the maximal gener-
alization of each e; € E-¢;. Let g(e;) be the generalization of explanation

6]‘.
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2. KI compares the consequent of g(e;) (i.e., the generalized proposition
established by the proof ¢(e;)) to the consequent (i.e., the right-hand
side) of r;. When the consequent of g(e;) is equivalent to (or subsumes)
the consequent of r;, then g(e;) is a candidate proof of r;; otherwise, it is

removed from consideration.

3. KI searches candidate proof g(e;) for a subgraph whose weakest precon-
ditions entail the consequent of g(e;) (i.e., the subgraph and g(e;) remain
co-rooted at the consequent of g(e;)) and are equivalent to (or subsumes)
the preconditions of r;; each such sub-explanation constitutes a proof of

;.

Figure 5.22 shows two explanations for the fact isa(Leafi PhotosyntheticAgent)
that were established by elaboration during the cuticle example. The final in-
ference step in one explanation involves the application of the shallow, default,
taxonomic rule: Leaves are photosynthetic. The second explanation establishes
that the leaf is photosynthetic by determininng that the leaf can perform photo-
synthesis because of its photosynthetic ground tissue, called the leaf mesophyll.
Furthermore, this second explanation has a subgraph whose weakest precon-
ditions equal the antecedent of the shallow rule used in the final step of the

1 Thus, the second explanation establishes a proof of the

first explanation.
shallow rule: Leaves are photosynthetic because they are capable of performing

photosynthesis because their ground tissue, leaf mesophyll, is photosynthetic.

Establishing a proof of the taxonomic rule ako(Leaf PhotosyntheticAgent)

improves the explanatory competence of the knowledge base; the system can

UNote: only this subgraph is shown in Figure 5.22.
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(a) Two explanations of isa(Leaf, PhotosyntheticAgent)

explanation e; explanation e
isa(Leaf; PhotosyntheticAgent) isa(Leaf; PhotosyntheticAgent)
<49 isa(Leaf; Leaf) <51 canPerformType(Leaf; Photosynthesis)

<52 physicalPart(Leaf; LeafMesophyll;)
< groundTissue(Leaf; LeafMesophyll;)
<53 isa(Leaf| Leaf)
isa(LeafMesophyll; PhotosyntheticAgent)
<50 isa(LeafMesophyll; LeafMesophyll)
<53 isa(Leaf; Leaf)

(b) The rules referenced in the two explanations

Rule 49 : Leaves are photosynthetic.
[ako(Leaf PhotosyntheticAgent)]

Rule 50 : Leaf mesophylls are photosynthetic.
[ako(LeafMesophyll PhotosyntheticAgent)]

Rule 51 : Agents that can perform photosynthesis are photosynthetic.
[V x canPerformType(x Photosynthesis) = isa(x PhotosyntheticAgent)]

Rule 52 : Agents with photosynthetic parts can perform photosynthesis.
[V xy physicalPart(xy) & isa(y PhotosyntheticAgent) = canPerformType(x Photosynthesis)]

Rule 53 : Fach leaf has as ground tissue a leaf mesophyll.
[relationType(Leaf groundTissue LeafMesophyll)]

(C) The proof of ako(Leaf PhotosyntheticAgent)

proof(ako(Leaf PhotosyntheticAgent)
[isa(x PhotosyntheticAgent)
<351 canPerformType(x Photosynthesis)
<52 physicalPart(x skolem;(x))
< groundTissue(x skolem;(x))
<53 isa(x Leaf)
isa(skolem;(x) PhotosyntheticAgent)
<50 isa(skolem;(x) LeafMesophyll)
<53 isa(x Leaf)])

(a) Two explanations of isa(Leaf; PhotosyntheticAgent); the notation p «<; ¢ denotes
p is inferred from ¢ by rule ¢. (b) Rules referenced by the two explanations in (a).
¢) The discovered proof of Rule 49.

Figure 5.22: Discovering a proof of a shallow rule
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now respond to the query: Why are leaves photosynthetic? Aside from the
pedagogical advantages, acquiring this proof has inferential advantages. For
example, this proof identifies tacit assumptions supporting this rule. These as-
sumptions, if violated, can explain why a particular leaf is not photosynthetic:
perhaps it has no mesophyll, or perhaps its mesophyll is not photosynthetic.
Prior to acquiring the proof, the only condition that could explain why a par-
ticular leaf is not photosynthetic is the rule’s precondition: perhaps it is not

really a leaf.



Chapter 6

An Empirical Analysis of KI

One of the purposes of implementing a computational model as a
computer program is to empirically study its behavior. This chapter presents
an empirical analysis of KI's learning behavior during several learning episodes.
The learning trials used for this analysis are listed in Figure 6.1. These trials

fall into three categories:

1. The first three trials of Figure 6.1. are scripted trials. These trials were
deliberately engineered to demonstrate learning behaviors that exemplify
learning as knowledge integration. For each, a targeted learning behavior
was identified and the knowledge base was extended and corrected as

necessary to support that learning behavior.

2. The fourth through the tenth learning trials of Figure 6.1 are representa-
tive trials. These were developed as a coherent progression of knowledge
base extensions thought to be representative for developing a botany
knowledge base. For these trials, minor modifications to the knowledge
base were performed in order to facilitate reasonable behaviors. This
included, for example, correcting pre-existing knowledge-base errors that
prevented any reasonable interpretation of the new information and laun-

ched the subsequent search for consequences in spurious directions.

166
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10.

11.

12.

13.

14.

15.

16.

17.

The leaf epidermis is covered by the leaf cuticle, which is composed of cutin.

The chloroplast has as a constituent chlorophyll, which is a catalyst in the chloroplast photosynthetic
light reaction event.

A nonendospermic seed is a type of seed that has no endosperm.

Plants have roots, stems, leaves; their ambient habitat includes both plant ambient soil and plant
ambient atmosphere.

Water component is a specialization of the physical-decompositions relation; its domain is geographi-
cal regions, and its range is water. The plant microhabitat has ground water as its water component;
ground water is a type of plant assimilable water and its constituents include both pure water and
plant assimilable mineral nutrients.

The cactus has as a habitat the plant desert microhabitat which (often) has no water.

The plant marine microhabitat has sea water as its water component; it is the habitat of the sea
lettuce, which is green, and the nori, which is red.

Kelp is a type of algae; its color is brown and its habitat is the plant ocean floor microhabitat, which
has no atmosphere component and which has sea water as its water component.

Phytoplankton is a type of algae; its habitat is the plant ocean surface microhabitat, which has no
soil component and which has sea water as its water component.

The habitats of seaweed include both the plant oceanic floor microhabitat and the plant oceanic
surface microhabitat.

Chlorophyll has a chlorophyll electron, a type of electron. An ezcited chlorophyll electron is the state
of the chlorophyll electron in which it is the energy provider for photophosphorylation, a subevent of
photosynthetic light reactions, a subevent of photosynthesis.

Chloroplast photosynthesis is a kind of production that has raw materials plant assimilable CO2 and
plant assimilable water, by product oxygen, and end product plant small sugar. The producer is a
chloroplast, and the process occurs in a botanical organism component. The process has two steps:

the light reactions followed by the dark reactions.

In sexual reproduction, there is a male parent actor, which is a physical organism, an a female parent
actor, which is also a physical organism. The number of parents is two.

The eukaryotic cell is a kind of cell that has a mitochondrion, a cell nucleus, eukaryotic cytoplasm,
and eukaryotic plasma membrane. The eukaryotic cell is the basic unit of eukaryotes.

A fleshy fruit is a kind of fruit whose pericarp is a fleshy pericarp. This fleshy pericarp contains the
seeds of the fruit. The fleshy pericarp consists of the exocarp, the mesocarp, and the endocarp. The
exocarp contains the mesocarp, and the mesocarp contains the endocarp.

The pounds per square inch of water in roots is typically lower than that of water in soil.

Plant transpiration is a transport of water from the intercellular space to the air.

Phrases in italics denote concepts not yet defined in the knowledge base.

Figure 6.1: The learning trials
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3. The eleventh through the seventeenth learning trials of Figure 6.1 are
blind trials. These were desired knowledge-base extensions submitted by
knowledge engineers developing the Botany Knowledge Base. No modi-

fications to the knowledge base were performed to facilitate these trials.

Each group of learning trials has a significantly different origin and extent to
which the knowledge base was modified to facilitate desired learning behaviors.
Consequently, the following empirical analyses include separate consideration

for each of these three groups.

6.1 The knowledge base

The version of the Botany Knowledge Base used for this study is
implemented within a version (circa 1990) of the CYC knowledge base [LLG90].
Because there is no fire-wall separating the two, KI is free to make use of and
modify any axiom in the entire CYC knowledge base, and the possible bindings
for variables included all constants defined in CYC. Figure 6.2 presents data
that quantitatively describe the contents of both knowledge bases prior to any

of the learning trials.

6.2 Analyzing elaboration
6.2.1 The productivity of elaboration

One purpose of elaboration is to make explicit to the user the inter-
action of new and prior knowledge. To accomplish this, KI creates a context
comprising hypothetical instances of the concepts deemed relevant to the new
information, and then permits the non-skolemizing rules to exhaustively for-

ward chain in this context. In this approach, the creation of hypothetical
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Botany Knowledge Base CYC Knowledge Base

constants: 4,212 constants: 27,018
collections: 2,320 collections: 8,307
predicates: 1,014 predicates: 5,528
attributes: 93 attributes: 564

facts: 255,552 facts: 948,965

rules: 16,849 rules: 39,576
ako: 3,347 ako: 10,884
akoAttribute: 8 akoAttribute: 12
inverseSlot: 928 inverseSlot: 3,369
akoSlot: 832 akoSlot: 1,429
likelyForType: 3,487 likelyForType: 3,503
inheritance: 2,784 inheritance: 8,409
miscellaneous: 658 miscellaneous: 1,379
relation type: 1,689 relation type: 2,749
argument typing: 3,116 argument typing: 12,842

authors: 35 authors: 47

These data provide a profile of the explicit contents of the knowledge bases prior to the
learning trials. The category authors denotes the number of distinct knowledge engineers
who have introduced (i.e., defined) constants to the knowledge base; each author 1s a distinct

knowledge source (Section A.1.2). The rest of the data categories are explained in Section

Figure 6.2: The contents of the initial knowledge base

instances can be viewed as a measure of computational expense, and the ratio
of inferred facts to hypothetical instances can be viewed as a gross estimate of
the productivity of elaboration. Therefore, the following data were collected

during the execution of each learning trial:

1. the number of hypothetical instances created

2. the number of facts established by inference

3. the number of consequences of new information
4. the number of inference paths completed

5. the number of inference steps completed

Computed from these data were:



170

Trials | hypotheticals | inferred facts (avg) | consequences (avg) | inference steps (avg)
-3 177 352.7 (20.0) 1053 (6.0) 24064.7 (22.4)
1-10 393 1165.1 (29.7) 1013 (2.6) 1369.6 (a4
11-17 20.1 3481 (17.3) 33.6 (1.7) 1885 .4 (5.0)
1-17 27.6 6855 (24.8) 741 (2.7) 6822.3 (9.0)

Each row summarizes the productivity of elaboration for a group of learning trials. Column
1 indicates the group of trials considered. Column 2 presents the average number of hypo-
thetical instances introduced to the learning context during each trial. Column 3 presents
first the average number of facts established by inference per trial and second the average
number of inferred facts per hypothetical instance. Column 4 presents first the average
number of consequences of new information established per trial and second the average
number of consequences established per hypothetical instance. Column b presents first the
number of inference steps completed during each trial and second the number of inference
steps completed for each inference path.

Figure 6.3: the productivity of elaboration

1. the average number of facts inferred per hypothetical
2. the average number of consequences inferred per hypothetical

3. the average number of inference steps per inference path

This analysis is presented in Figure 6.3. While there is no base line (e.g., similar
data from an alternative approach) with which to compare these data, they do
indicate that in each group of learning trials elaboration in KI makes explicit
a substantial number of implicit beliefs about the hypothetical instances. Of
these inferred facts, a small but still significant percentage (overall, about 11%)
are consequences of the new information. Furthermore, the inference paths that
established these inferred facts required substantial numbers of inference steps
(overall, about 9 inference steps per inference path). Therefore, many of these

inferred facts are the results of fairly deep reasoning.

The number of inference steps completed for each inference path dur-

ing the first group of trials is significantly higher than for the subsequent trials.
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Because the first group includes demonstrations of specific learning behaviors
(e.g., that of Figure 1.1), many domain rules required as prior knowledge by
the targeted learning behavior were added to the knowledge base. This supple-
mental knowledge enabled the completion of many more inferences than would
otherwise have been possible. The same knowledge engineering was not pro-
vided in support of trials 4 through 17. These later trials were executed in
the relatively barren inferential environment that was the natural state of the
knowledge base at that time. However, the much richer inferential environment
provided for the first group of trials is likely to be more representative of what
the knowledge base will converge towards during its development than is the

state of the knowledge available to the other trials.

6.2.2 The explanation level

Section 3.4.4 discusses two separate subsystems for recording inferen-
tial dependencies: the explanation level and the TMS level. The explanation
level abstracts the TMS level and includes only those distinctions deemed sig-
nificant for learning opportunities. The purpose of this abstraction is to reduce
the number of inference paths that KI must search for learning opportunities

during adaptation.

To evaluate this abstraction the following data were collected during

the execution of each learning trial:

1. the number of facts established through inference represented at the ex-

planation level
2. the number of inference paths at the explanation level

3. the number of inference paths at the TMS level
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Explanation Level TMS Level
Trials | Facts | Inference Paths (avg) | Inference Paths (avg) Ratio
1-3 240.0 1075.0 (4.5) 1114456700000 (4643569700) 1036703940
4 -10 710.6 1004.9 (1.4) 17396070000 (24481804) 17311984
11 -17 | 226.7 380.1 (1.7) 434893800 (1918246) 1144027
1-17 428.3 760.0 (1.8) 204010995712 (476661205) 268435521

Each row summarizes the explanation level and the TMS level constructed for a group of
learning trials. Column 1 indicates the group of trials considered. Column 2 presents the
average number of facts established by an inference represented at the explanation level
per trial. Column 3 presents first the average number of inference paths established at the
explanation level per learning trial and second the average number of these paths established
for each fact. Column 4 presents the same data (as in Column 3) for the TMS level. Column
5 presents the ratio paths established at the TMS level to the paths established at the
explanation level.

Figure 6.4: Compression achieved by the explanation level

Computed from these data were:

1. the average number of explanation-level inference paths per fact
2. the average number of TMS-level inference paths per fact

3. the ratio of inference paths at the TMS level to those at the explanation

level

This analysis, presented in Figure 6.4, provides evidence for both the necessity
and the utility of the abstraction provided by the explanation level. The data
support the conclusion that the volume of inference paths created at the TMS
level precludes their exhaustive and individual consideration. The data further
show that the abstraction achieved by the explanation level during these learn-
ing trials reduces by many orders of magnitude the number inference paths

explicitly represented.
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All Concepts New Concepts
Trials | hypotheticals | view types (avg) | hypotheticals | view types (avg)
-3 177 377 @1 1.0 3.0 (3.0)
1-10 39.3 917 (2.4) 1.3 13 (3.3)
11— 17 20.1 39.3 (2.0) 1.6 17 (1.1)
1-17 27.6 17.9 (2.2) 14 3.0 (2.2)

Each row summarizes the applicability of view types for a group of learning trials. Column 1
indicates the group of trials considered. Column 2 presents the average number of hypothet-
ical instances introduced to the learning context during each trial. Column 3 presents first
the number of view types applicable to all hypothetical instances and second the average
number of view types per hypothetical instance. Column 4 presents the average number of
hypothetical instances of new concepts considered during each trial. Column 5 presents first
the number of view types applicable to instances of new concepts and second the average
number of these view types per hypothetical instance.

Figure 6.5: the coverage of view types

6.3 Analyzing recognition

6.3.1 The coverage provided by view types

In order to usefully guide elaboration, the view mechanism requires
the availability of view types that are applicable to the concepts (e.g., the hy-
pothetical instances) contained in the learning context. To assess the coverage
of the existing view types, the number of view types applicable to hypothetical
instances of existing concepts contained in the learning context and the number
view types applicable to hypothetical instances of new concepts were counted
during the execution of the learning trials (see Figure 6.5). The data indicate
that during these examples there were on average 2.2 views types applicable to
each hypothetical instance, regardless of whether the hypothetical instantiated
a new or existing concept. Thus, during these examples, both existing and new

concepts were fairly well covered by the view types.
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6.3.2 Sensitivity of view selection

The view selection method should facilitate reasoning about concepts
along a variety perspectives within different contexts. Each particular view
type should be used in those situations that it (i.e., the pattern of relations it
identifies) is most relevant. Therefore, a variety of learning scenarios should
define a variety of learning contexts which, in turn, should cause the selection of
a variety of view types. Specifically, if the view selection mechanism is sensitive
to the learning context, it should be unlikely that a variety of learning scenarios

would be guided by a single, or a very small set, of view types.

To test this expectation the number of unique view types used to
define the views selected during the learning trials was counted and is presented
in Figure 6.6. Overall, eleven different view types were used to create the thirty
views selected during these learning trials. The data indicate that while some
view types were deemed to be very relevant during several of the learning trials,
a variety of view types were indeed selected to process these trials. Thus, a
diversity of view types were used during the learning trials, and no single view

type dominated selection of the background knowledge.

6.3.3 Utility for selecting relevant background knowledge

KT’s method of recognition uses views to guide elaboration by select-
ing background knowledge that is deemed relevant to the new information.
This method can be evaluated by comparing its effectiveness to that of another
recognition method, such as spreading activation. One approach to measuring
the effectiveness of a recognition method is to objectively appraise its produc-
tivity, computed as the ratios of the inferred facts and of the inferred con-

sequences of new information to the number of hypothetical instances created
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Trials | views (avg) | view types (avg)
-3 6 (2.0 5 (0.8)
1-10 11 (2.0) 5 (04)
11-17 10 (1.4) 7 (0.7)
1-17 30 (1.8) 11 (0.4)

Each row summarizes the number of view types selected for a group of learning trials. Column
1 indicates the group of trials considered. Column 2 presents first the total number of views
selected during the trials and second the average number per trial. Column 3 presents first
the total the number of unique view types used to define the selected views during the trials

and second the average number of unique view types per selected view.

Note: during learning trials 13 and 14 a paucity of background knowledge prevented the
creation of any view from the view types applicable to concepts referenced by the new
information.

Figure 6.6: the diversity of selected view types

(e.g., Figure 6.3). A second approach to is to subjectively score the relevance of
facts established during elaboration to the new information. Experiments were
conducted to evaluate KI’s view mechanism as a method for recognition by
using both these approaches to compare its effectiveness with that of spreading

activation.

Experimental design: A version of KI was programmed to exhibit a spreading-
activation behavior during comprehension. The essential features that distin-
guish this control mechanism from KI’s standard view mechanism is that for

spreading activation:

o cach view includes all and only access paths of length one emanating from

the view’s root concept

e every applicable (unactivated) view is selected for activation each cycle

In other words, using spreading activation, recognition selects every proposition

that shares a constant with any fact already in the learning context. As before,
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the selected propositions are operationalized (as ground facts that reference hy-
pothetical individuals) and added to the learning context, and non-skolemizing

rules are then allowed to forward chain exhaustively.

The two versions of KI were both applied to the first learning trial.
Both were allowed to run until they exhibited the targeted learning behavior
(e.g., that the cuticle facilitates the leaf’s good health by restricting water
loss during transpiration but also endangers the leaf’s health by inhibiting

photosynthesis).

Objective evaluation: Figure 6.7 identifies for each elaboration cycle during
the first learning trial the number of hypothetical instances created, the num-
ber of facts inferred, the number of consequences of new information inferred,
and the average interestingness score for all facts established in the learning
context. These measurements are provided for elaboration controlled both by
the view mechanism (Figure 6.7a) and by spreading activation (Figure 6.7b).
Note that using spreading activation, the numbers of hypothetical instances
and facts added to the learning context each cycle grows explosively while
the percentage of established facts that are consequences of the new informa-
tion and the ratio of these to the hypothetical instances drops for most cycles.
However, using views, both the percentage of facts that are consequences of the
new information and the ratio of consequences to the hypothetical instances re-
mains relatively high across cycles. Thus, in this one trial, the view mechanism
more efficiently reveals consequences of the new information. Furthermore,
the estimated interestingness of facts established using spreading activation is

significantly lower than the interestingness of facts established using views.
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(a) Elaboration Results Using Views

Cycle | hypotheticals | inferred facts (avg) | consequences (avg) | interest score
1 2 24 (12.0) 24 (12.0) 0.82
2 11 109 9.9) 7 (7.0) 0.67
3 5 54 (10.8) 36 (72) 0.67
Total is 187 (10.4) 137 (7.6) 0.69

Cycle | hypotheticals | inferred facts (avg) | consequences (avg) | interest score
1 2 28 (11.0) 27 (13.5) 0.82
2 10 84 (8.4) 18 (1.8) 0.11
3 25 396 (15.8) 105 (1.2) 0.44
1 66 1022 (15.5) 104 (1.6) 0.39
Total 103 1530 (11.9) 254 (Z5) 0.41

The number of hypotheticals instances, inferred facts (and the average per hypothetical),
consequences of the new information (and the average per hypothetical), and interestingness
scores established by cycle during the execution of the first learning trial.

Figure 6.7: Objective comparison of views vs. spreading activation

Subjective evaluation: An independent evaluator was recruited to subjec-
tively estimate the relevance of the facts established during elaboration by the
two versions of KI. Because elaboration during spreading activation established
so many facts, the evaluator was not able to consider each fact individually,
and a selection method had to be devised to determine which facts would be

evaluated.

The evaluator was presented a list, sorted alphabetically, of all the
constants denoting the hypothetical individuals that were created during the
first learning trial performed with the spreading-activation control mechanism.
The evaluator subjectively assigned to each constant a score indicating its rel-
evance to the new information. This relevance score was an integer ranging

from 1 (denoting very low relevance) to 5 (denoting very high relevance).
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(a) Relevance Scores Using Views

Relevance Score
cycle | 1 (verylow) | 2 (low) | 3 (medium) | 4 (high) | 5 (very high) | Total (avg)
0 3 1 1 6 1 (37
0 5 5 16 a7 73 (4.4)
1 5 10 14 22 52 (4.0)
Total 1 13 19 31 75 139 (4.2)
(b) Relevance Scores Using Spreading Activation
Relevance Score
Cycle | 1 (verylow) | 2 (low) | 3 (medium) | 4 (high) | 5 (very high) | Total (avg)
0 3 1 1 6 11 (37)
1 12 14 20 24 71 (3.8)
2 6 12 22 54 96 (4.2)
76 46 48 34 14 218 (2.4)
Total 79 67 78 7 98 399 (3.1)

Subjective estimates of the relevance of facts established during elaboration controlled by
the view mechanism (a) and by spreading activation (b). Columns 2 — 6 present the number
of facts having each relevance score. Column 7 presents first the total number of facts scored
for each cycle and second the average score for these facts.

Figure 6.8: Subjective appraisal of views vs. spreading activation

Next, the evaluator was presented with a list of all facts established
during elaboration that referenced either any of the ten constants having the
highest relevance scores or any of the ten constants having the lowest relevance
scores. The evaluator assigned to each fact a score indicating its relevance to

the new information.

For each control mechanism, the facts scored by the evaluator were
tabulated by both relevance score and by the cycle in which the fact was es-

tablished. The results are presented in Figure 6.8.

There were 399 facts established using the spreading activation control
mechanism that referenced any of the twenty constants having the highest

and lowest relevance ratings; 139 of these facts were also established using
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the view control mechanism. The cumulative average relevance score for facts
established using view control is 35% higher than the average score for facts
established using spreading activation. This difference is statistically significant
at a .99 level of confidence. Furthermore, it is interesting to note that while
the average relevance score remained fairly constant across the different cycles
using view control, using spreading activation it dropped dramatically for the
last cycle. It is likely (due to the explosive number of hypotheticals and facts
added each cycle) that the average relevance of facts established using spreading
activation would continue to decrease asymptotically if additional cycles were

executed.

6.4 Analyzing Adaptation

6.4.1 Diversity of learning behaviors

KI was designed to exploit a method of searching for the consequences
of new information that was not dedicated to a single adaptation method. The
methods for elaboration and recognition reveal the consequences of new and
relevant prior knowledge; a suit of adaptation methods then searches these con-
sequences for learning opportunities. This approach separates the search for the
consequences of new and prior knowledge from the detection and exploration
of learning opportunities. This separation affords a single, uniform method for
identifying consequences that can be used seamlessly and concurrently with a

variety of adaptation methods and thus support a variety of learning behaviors.

To provide evidence for this, the frequencies for each type of learning
opportunity that was detected and exploited during the examples are summa-
rized in Figure 6.9. The data indicate that the learning opportunities were both

substantial and diverse: a variety of learning behaviors were exhibited during
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Acquired Rules Suggestions
Trials | tax inh rel arg | teleo | abd | total | gaps | expls | conflicts
1-3 2.7 9.7 53.0 4.0 6.0 1.0 72.0 13.7 8.0 99.7
4 —-10 2.1 20.0 | 105.1 14.9 1.3 0.7 | 143.0 8.4 16.1 554.3
11 -17 3.4 | 10.6 714 | 11.9 4.9 0.0 | 100.6 6.9 9.6 62.6
1-17 2.8 | 14.3 82.1 11.7 3.6 0.5 113.0 8.7 12.0 272.6

The average quantities of acquired rules per learning trial by type. Presented are the average
numbers of acquired taxonomic rules (column 2), inheritance rules (column 3), relation-type

rules (column 4), argument-typing constraints (column 5), rules resulting from teleological
learning (column 6), rules resulting from other abductive reasoning (column 7), and all
acquired rules (column 8). Also presented are the average number of suggestions to fill
knowledge-base gaps (column 9), to explain new or existing beliefs (column 10), and resolve
conflicts (column 11).

Figure 6.9: Scope of learning opportunities

the learning trials as demonstrated by the diversity of the types of knowledge

acquired.

Note that there are many more conflicts detected during the second
set of learning trials. This is primarily due to these trials having many more
facts generated during elaboration (see Figure 6.3). It also may be partially
due to the extent of interaction among the learning trials of this set. These
trials comprise a sequence of interacting learning episodes (i.e., the training of
one episode is relevant to the training of the next in the sequence). Because
so much interaction occurs, the conflicts revealed by an earlier trial may have
also been encountered by a later trial. There was little interaction among the

learning trials in the other two sets.

6.4.2 Utility of conflict-resolution hierarchies

KI sorts conflicts into conflict-resolution hierarchies as they are en-
countered during elaboration. Separate hierarchies are maintained for the two

types of conflicts, anomalies and errors (e.g., constraint violations), since their



181

repair strategies tend to be so different. Each hierarchy identifies subsump-
tion relations among the alternative knowledge-base revisions. One revision
subsumes another when it resolves every conflict that is resolved by the other.
The hierarchies prioritize for the user the alternative knowledge-base revisions
that resolve many conflicts over those alternative revisions that resolve few
conflicts. The utility of the hierarchies can be measured by the ratio of all
knowledge-base revisions that are subsumed in the hierarchies by the most

powerful alternative revisions.

Figure 6.10 summarizes the potential gains achieved by sorting sug-
gested conflict resolutions into hierarchies. The data indicate that both hier-
archies have the potential to significantly reduce the number of candidate fixes
that must be considered (e.g., by the user). Overall, only 20.3% of all candi-
date revisions sorted into the error-resolution hierarchies are not subsumed by
other alternative revisions. The hierarchies automatically identify those most
powerful 20.3% of the revisions. Similarly, the hierarchies automatically iden-
tify the 21.6% of the knowledge-base revisions identified for resolving anomalies
that are not subsumed by alternative revisions. Thus, by sorting the alternative
candidate knowledge-base revisions, the conflict-resolution hierarchies provided
substantial assistance during these learning trials in prioritizing the relatively

few, most powerful revisions over the relatively many, subsumed revisions.

6.4.3 Measuring learning gain

The obligation of every non-trivial learning system is to acquire know-
ledge beyond the literal content of new information (Section A.3). Learning
gain is defined as the amount of acquired knowledge (measured in terms of

the number of beliefs asserted or retracted) not included explicitly in the new
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Errors Anomalies
Trials conflicts | all fixes | common fixes % | conflicts | all fixes | common fixes %
1-3 11.3 70.0 26.7 31.0 5.3 29.7 2.3 7.9
4 —-10 93.0 522.6 86.7 16.6 9.1 34.3 11.3 32.9
11 -17 11.6 62.6 28.9 46.1 0.0 0.0 0.0
1-17 45.1 253.3 51.4 20.3 4.7 19.4 5.1 26.1

Presented are, for both errors and anomalies, the average number of conflicts encountered, the
average number of possible knowledge-base modifications identified to resolve the conflicts,
and the average number of modifications that are identified by roots of subtrees in the conflict
resolution hierarchies.

Figure 6.10: The utility of the conflict-resolution hierarchies

information; it provides a natural measure to estimate the effectiveness of a

learning program.

When new information is not expressed in the representation lan-
guage, it is not always clear precisely what the explicit contents of that in-
formation might be. The new information must be interpreted, and the in-
terpretation methods often introduce learning gain by augmenting the literal
translations of new information. However, even when the new information must
be interpreted, learning gain can be used to compare two different agents, each
executing a common set of knowledge-base modification tasks. The relative
learning gain is defined as the amount of knowledge acquired by one agent
(e.g., a learning program) beyond that acquired by another (e.g., a knowledge

engineer).

To determine the relative learning gain of KI, professional knowledge
engineers were recruited to perform the set of learning trials listed in Figure 6.1.
These knowledge engineers were quite familiar with the representation language
but only marginally familiar with botany and the contents of the knowledge
base. However, most of these trials involve only a basic and common knowledge

of botany.
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Trials KE KI gain
1-3 5.0 81.3 76.3
4-10 10.1 176.4 | 166.3
11 -17 | 174 | 141.3 | 123.9
1-17 12.2 | 145.2 | 132.9

The relative learning gain (column 4) is computed as the difference between the number
of axioms produced by KI and the number of axioms developed manually by a knowledge
engineer (KE).

Figure 6.11: Relative learning gain

For each trial, a knowledge engineer was provided with the new infor-
mation presented both as a semantic network and as a statement in English.
The knowledge engineers were free to make any knowledge-base modifications
they felt were appropriate and to inquire about either the domain or the con-
tents of the knowledge base. They were encouraged to follow their normal

practices when formalizing and entering knowledge.

The number of axioms produced manually by the knowledge engineers
was then compared to the number of axioms produced automatically by KI.
Figure 6.11 presents the results of this experiment. The relative knowledge gain
exhibited by KI is significant. Overall, KI derives many times more axioms

during these learning trials than was derived manually.

6.4.4 Measuring learning utility

While the data in Figure 6.11 indicate that KI identifies a relatively
large number of learning opportunities during the learning trials, it does not
indicate how useful are the new axioms that result from those opportunities.
Traditionally, the utility of acquired knowledge is demonstrated by showing
that after learning the system’s performance has improved on a set of test

queries (i.e., instances from the task domain). This approach is problematic
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for evaluating the utility of acquired foundational knowledge since there is no
assumed application task with which to test the system’s performance. How-
ever, the relative measure of utility can be estimated by subjectively comparing
the axioms produced by KI with those produced by the human knowledge en-

gineers.

For each learning trial, the axioms produced by KI that “correspond”
to the axioms produced manually by knowledge engineer were selected. Two
axioms correspond if they are the same or if the predates match and most of
the arguments match (e.g., (genls GroundWater Water) and (genls GroundWater

Plant AssimilableW ater) correspond). !

Next, for each learning trial, the selected KI axioms were compared
to the corresponding axioms developed by the knowledge engineer, and three
sets of axioms were defined. The first set includes axioms produced both by
KI and the knowledge engineer (i.e., those produced by KI that differed from
manually produced axiom only by variable names or by the order of literals).
The second set includes axioms produced only by the knowledge engineer. The
third set includes axioms produced only by KI. For each trial, the second and

third sets were randomly labeled as resulting from Method 1 and Method 2.

Finally, for each trial, a knowledge engineer (other than the knowledge
engineer who performed the learning trial) assessed the utility of the axioms
that were produced by either KI or the knowledge engineer but not both. For
each Method 1 axiom the evaluator was asked to indicate how much she agreed

with the statements This axiom is useful and This axiom is subsumed by axioms

!The knowledge engineers did not produce axioms corresponding to the targeted learning
behaviors of the first three trials. Therefore, these engineered learning behaviors were not
included in this study.
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KE KI
Trials all | unique | all | unique
1-3 3.6 2.2 | 4.5 3.8
4 -10 4.3 2.2 | 4.9 4.6
11-17 | 4.7 4.0 | 4.5 3.5
1-17 4.5 3.2 | 4.7 3.8

The subjective utility scores for all axioms produced by the knowledge engineer (column 2),
axioms produced only by the knowledge engineer (column 3), all axioms produced by KI
(column 4), and axioms produced only by KI (column 5).

Figure 6.12: The utility of acquired axioms

of Method 2 and the prior knowledge base. For each statement, the evaluator
scored each Method | axiom with an integer ranging from 1 (denoting strong
disagreement with the statement) to 5 denoting (denoting strong agreement
with the statement). The evaluator was then asked to perform a similar eval-
uation of the Method 2 axioms. The axioms that were produced by both KI
and the knowledge engineer were given the scores of 5 both for utility and

subsumption.

Figure 6.12 presents the average utility score for axioms produced by
KI and for axioms produced by the knowledge engineer. The overall utility
score for axioms produced only by KI was 0.6 (or about 19%) higher than the
scores for axioms produced only by the knowledge engineer. This difference is

statistically significant at .95 level of confidence.

Figure 6.13 presents the extent to which axioms produced by the hu-
man knowledge engineer were subsumed by axioms produced by KI. In almost
every learning trial, both KI and the knowledge engineer produced axioms that
transcend the explicit content of the new information. Learning systems that
exploit significant bodies of background knowledge are inherently idiosyncratic,

and it would be unreasonable to expect that any learning system (e.g., KI) to
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Trials all KE axioms | useful KE axioms
1-3 3.8 4.4

4 —-10 4.8 5.0

11 -17 4.4 4.4
1-17 4.5 4.6

The subjective estimates of the extent to which axioms produced by a knowledge engineer
were subsumed by the axioms produced by KI and the prior knowledge base. Column 2
presents the scores for all manually produced axioms. Column 3 presents the scores for those
manually produced axioms deemed useful (e.g., having a utility score greater than 3).

Figure 6.13: KI’s coverage of manually produced axioms

completely subsume the learning behavior of another learning system (e.g., a
knowledge engineer). However, the data indicate that KI was fairly effective at
producing axioms during these learning trials that subsume the useful axioms
produced by human knowledge engineers. Overall, KI scored a 4.6 out of a pos-
sible 5.0 for subsuming the useful axioms produced manually by professional
knowledge engineers on these learning trials. Statistical analysis determined
that with a 95% confidence coeflicient this score would range between 4.4 and

4.8.



Chapter 7

Related Work

This chapter reviews research related to the task of knowledge inte-
gration and the computational methods implemented in KI. The first section
discusses research on formalizing belief revision which is relevant to the overall
task of knowledge integration. The following three sections review research on
computational methods relevant to performing elaboration, recognition, and

adaptation.

7.1 Belief Revision

Belief revision comprises a community of researchers in philosophy,
mathematics, and computer science that are interested in formally defining
specifications (called postulates) for algorithms that implement operators to

change knowledge. These postulates formalize three such operators:

1. expansion (denoted by the symbol +) adds beliefs to existing knowledge

2. contraction (denoted by the symbol —) removes beliefs from existing

knowledge

3. revision (denoted by the symbol F) modifies existing knowledge to con-

sistently include beliefs

187
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The postulates specify what invariant properties should be true of these three
operations. The most prominent goal underlying the proposed postulates is
to promote minimal change [Har86): knowledge changes should be minimal in

both the addition of new beliefs and the loss of prior beliefs.

7.1.1 Belief revision and belief sets: The AGM model

Most formal approaches to belief revision are restricted to classical
propositional logic and consider theories represented as belief sets which ex-

plicitly include their inferential closure. *

The Alchourron, Gardenfors and Makinson (AGM) Model defines ra-
tionality postulates for each of the three operators applied to belief sets [Gar92].
For example, there are six basic postulates for belief revision defined in terms
of a belief set A and a statement in the representation language T in order to
characterize (A F T), the revision of A for T (i.e., the operation that modifies

A to consistently include T). The six basic revision postulates are:

1. the revision of a belief set with respect to a new statement is a belief set
2. the new statement is included in the resulting belief set
3. the revision is a subset of an expansion with the new statement

4. when the new statement is consistent with prior knowledge, the revision

is equivalent to an expansion with the new statement

5. the revision is inconsistent if and only if the new statement is inconsistent

!By assuming inferentially closed theories the learning goal of economy (e.g., compact-
ness), discussed in Appendix B.2 and of considerable interest to machine learning, is not
relevant to this formalization of belief revision.
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6. the revisions of a belief set for equivalent statements are equivalent (i.e.,
revision is not sensitive to syntactic variations in the form of the input

statement)

The Levi identity defines revision in terms of contraction and expansion:
AT®=(A- D) + @

The Harper identity defines contraction in terms of revision:
A-®=AnN(AF -

From a learning point of view, these postulates constrain the classes of permit-
ted learning behavior when integrating Y into A (i.e., they prescribe admissi-

bility criteria, see Section B.1).

The application of these postulates is illustrated with the multiple-
extension problem [Gin87], one of the essential issues in the study of the non-
monotonic nature of knowledge (and related to the credit-assignment problem

in machine learning [Die82]). Consider the following learning situation:

prior knowledge: (1) a = b

2)b = ¢

e = d

(1)
(2)
(3)
(4)

a

new information: —d

Which prior belief should be retracted? Any three out of the four initial beliefs
are consistent with the new information, so there are many possible exten-
sions; however, many possible extensions are precluded by the AGM revision

postulates. The initial belief state includes:



190

{a(a = b)b(b = c)c(c = d)d}

The second AGM postulate requires the inclusion of —d in the revised belief set,
and the fifth postulate requires the absence of d. The four possible extensions,

each corresponding to retracting one of the four initial beliefs, are:
{a(a = b)b(b = ¢)c—d)
{a(a = b)boe(c = d)-d)
{a=b(b = ¢)=c(c = d)~d)
{ma(a = b)=b(b = ¢)c(c = d)-d}

Thus the six basic AGM postulates for revision mitigate, but do not com-
pletely solve, the multiple extension problem, and it’s solution requires addi-

tional mechanisms (or postulates).

One response to the multiple extension problem is to maintain all
consistent extensions as alternative contexts; this is the policy of the ATMS
[DelK86]. While this has the advantage of permitting very efficient changes
from one extension to another (e.g., when an extension becomes contradicted
by subsequent information), it has the disadvantage of having to maintain,

potentially, an exponential number of contexts.

A second possible response to the multiple extension problem is to
maintain a single possible extension selected at random. This is the policy
of many standard TMSs [Doy79]. It has the advantage of avoiding the prob-
lem of maintaining a potentially exponential number of contexts but has the
disadvantage of introducing nondeterminism into the contraction and revision
operators (i.e., they are not pure functions). This violates the so-called recov-
ery postulate which requires that first contracting and then expanding a belief

set by a belief should result in the original belief set.
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Within the belief revision community, the most common response
to the multiple extension problem involves prioritizing beliefs. FEpistemic en-
trenchment reflects the notion that not all beliefs are of equal utility. Beliefs
of greater utility should be held with greater commitment than beliefs of lesser
utility. The epistemic entrenchment value of each belief denotes a given level
of commitment to that belief. When a contraction or revision is necessary, be-
liefs held with less commitment should be discarded before beliefs with greater
commitment. Fully prioritizing beliefs by their entrenchment value establishes
a notion of minimal change for the belief set that resolves multiple-extension
problems, such as the one above, and enables contractions and revisions to be
deterministic. For example, were the assignment of entrenchment values to

beliefs consistent with the following ordering:
a>(a="b>(b=c > (c=d

then the first of the four possible extension above would be deterministically

selected.

There are postulates characterizing how the entrenchment of beliefs
interact [Gar92]. For example, one postulate states that epistemic entrench-
ment is transitive; another states that a belief is less entrenched than its con-
sequences. The motivation for this second postulate is that in order to give up
commitment to a consequence one also must give up commitment to some (at
least one) of the premises from which that consequence is derived; however,
one can give up commitment to the premises without rejecting their conse-
quence. Thus, the relative entrenchment of two beliefs varies inversely with

their inferential dominance over each other.

KI exploits a partial order provided by the three-valued conviction

associated with beliefs in the knowledge base (i.e., preferring to refute assump-
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tions before nonmonotonic beliefs, and preferring to refute nonmonotonic be-
liefs refuting beliefs labeled as monotonic; see Section 3.5.1). Because this
ordering is only partial, when revising knowledge to resolve a conflict KI iden-
tifies an equivalence class of least entrenched prior beliefs (rather than a single
least entrenched belief) and relies on other criteria (e.g., subsumption in the

conflict hierarchies, the user) to select from among the equivalence class.

7.1.2 Belief revision and belief bases

Hansson [Han92] proposes postulates that characterize knowledge re-
vision on belief bases, which are not assumed to be inferentially closed, rather
than on belief sets. This has obvious computational advantages, since comput-
ers cannot explicitly store the infinite inferential closure of significant know-
ledge bases. It also has advantages in providing an intuitively appealing, less

conservative, interpretation of minimal change.

Because they are finite, belief bases link inferred beliefs to their justi-
fications; this differs significantly from belief sets. Consequently, in a belief set,
when all the justifications of a belief in a are rejected, the belief itself should
also be rejected but is preserved [Gar88]. However, in belief bases, implicit
beliefs are closely tied to the beliefs used in their derivations; consequently,
rejecting beliefs required for the derivation of an implicit belief also causes that
implicit belief to be rejected as well. For example, given explicit beliefs a and
a = b, the closed belief set would include b, but the open belief base would not.
The revision of the belief set for —a would include 6, while the similar revision
of the belief base would not, and b would no longer be in the inferential closer
of the revised belief base. Thus, the notion of minimal change is extremely

conservative when applied to revising belief sets, but can be naturally relaxed
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in ways that accord with our intuitions when applied to revising belief bases

[Han92].

Formalizing belief revision for belief bases also permits reorganization
a type of knowledge change that has significant pragmatic importance but is
not meaningful for belief sets. A reorganization is a change to a belief base
that does not change its inferential closure. This can have economic benefits
(i.e., by reducing the memory required to store the knowledge or by reducing
the response time through facilitating faster derivations of some beliefs). But
it also can have consequences for subsequent revisions [Han92]. For example,
reorganizing a knowledge base containing « and a = b to also explicitly include
b removes the dependence of b on the prior two beliefs. Revising this reorganized
knowledge base for —a now includes b, while as noted above, this revision on

the unreorganized knowledge base does not include b.

Formalizing belief revision for belief bases permits approximate im-
plementations of the AGM model for the three belief change operators for
first-order theories [DW93, Wob94]. Belief bases can be stored in finite space,
but their potentially infinite inferential closure precludes ensuring consistency
during belief change operators. Consequently, such implementations must sac-

rifice a guarantee of either termination or consistency.

7.1.3 Belief revision and coherence

Most approaches to formalizing belief revision do not permit the op-
tion of rejecting or revising the new information rather than conflicting prior
knowledge (e.g., the Levi identity). However, some formal approaches to belief
revision recognize that this is an essential operation for evolving knowledge,

especially in the context of modeling communication: the recipient of an utter-
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ance may choose to disbelieve the utterance or to believe some revision of the

utterance [Gal92].

In addition to the minimal change policy, Galliers adopts the mazimal
coherence policy [Har86]: knowledge revision (e.g., the gain of new beliefs and
the loss of prior beliefs) is permitted only when it sufficiently increases the
coherence of the resulting knowledge. Coherence requires consistency and is
established by support (e.g., by justifications established through inference, so

that a belief and each of its consequences are deemed mutually coherent). 2

While from one point of view the concerns of belief revision seem quite
germane to machine learning, from another point of view they are quite diver-
gent. For example, both learning and belief revision are concerned with how to
revise knowledge when new information is encountered. However, the tenet of
minimal change (e.g., the fourth AGM postulate for revision) is incompatible
with the premise that non-trivial learning acquires more than what is explicitly
included in the new information. The very idea of making an inductive leap
directly violates the essence of minimal change. However, the tenet of maxi-
mizing coherence begins to bridge the gap between learning and belief revision
by permitting non-minimal change when doing so increases overall coherence
(e.g., the ability to both compactly represent a concept and correctly derive its

extension).

ZNote that the symmetry of this interpretation of coherence accords with the inference-
based interpretation of relevance implemented in KI.
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7.2 Elaboration

There is a paucity of research into computational methods for de-
tecting the consequences of new information for prior knowledge that do not
commit to narrow assumptions about the eventual uses of the knowledge. This
sections discusses two approaches. KI differs from each of these methods by

one or more of the following:

1. KI permits a very expressive representation language
2. KI permits a very large knowledge base

3. KI identifies deep consequences of new information without sacrificing a

guarantee of termination

7.2.1 FIE: Integrating propositions into a theorem prover

In FIE, Cohen studied how existing knowledge could be used to cri-
tique proposed extensions to a deductive knowledge base [Coh84]. FIE com-
putes shallow consequences of new clauses and reports those it estimates as
interesting to the user. Results that contradict the user’s expectations suggest
bugs. Results that confirm the user’s expectations support the correctness of

the extended system. Thus, FIE critiques proposed extensions for the user, as

does KI.

FIE shares with KI the basic approach of using forward-chaining in-
ference to identify the consequences of new information. However, some im-
portant differences exist. FIE is limited to propositional theories, while KI
uses hypothetical reasoning to handle a first-order theory. Furthermore, FIE

addresses the problem of controlling the forward-chaining inference with a
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domain-independent assessment of “interestingness.” Interestingness is mea-
sured in terms of the domain of theorem proving (e.g., number of literals refer-
enced by a clause) rather than in terms of the domain being modeled. Inference
paths for which the conclusions are deemed uninteresting are terminated. In
contrast, KI attempts to restrict reasoning to background knowledge that is

deemed to be relevant to the new information (e.g., using views).

FIE computes the shallow entailment of the training. The conse-
quences of each new clause is determined by repeatedly using a modified form
of resolution to resolve the new clause with each existing clause until no re-
solvants are interesting. No attempt is made to identify and isolate a subset
of existing beliefs determined to be uniquely relevant to the new information.
Consequently, deep consequences are not computed and the size of the exten-

sion and initial domain theory must be small.

7.2.2 Inference in an implementation of AGM belief revision

Dixon and Wobcke have achieved an approximate implementation
of AGM postulates for belief revision adapted for finite belief bases [DW93,
Wob94]. Their implementation attempts to identify and remove all redun-
dancy and inconsistency during changes in belief. Since the system operates
on a first-order theory, complete elaboration of new information is not possible.
This system, at the user’s discretion, exploits a bound on the number of times
a formula can be used in a derivation (sacrificing completeness), or inference is
simply allowed proceed without any bounds (sacrificing a guarantee of termi-
nation). Therefore, despite being implemented and applied to small examples

[DW95], this approach is not feasible for large theories.
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7.3 Recognition

There are two veins of research that bear on the use of views to focus
attention. The first vein involves a community of researchers that study ex-
planation generation and natural language processing. In this research, views
correspond to segments of the knowledge base which are used to guide com-
prehension and to restrict the contents of generated explanations. The second
vein involves the qualitative reasoning community. In this research, views cor-
respond to fragments of qualitative models which are composed to complete a

model that is sufficient to perform a specified simulation task.

KI differs from each of the methods discussed by one or more of the

following:

1. KI guides inference without requiring a specific query or assuming a cri-

terial task

2. KI interleaves performing inference and selecting a view to guide subse-

quent inference

3. a relatively small set of manually defined view types can be used to define

a vast number of views
4. KI automatically generates views on demand

5. KI heuristically selects one view to use each processing cycle from among

the many alternative candidate views
6. multiple views can be defined for each concept

7. multiple views can be composed during inference



198

7.3.1 Focus spaces

One of the first uses of view-like structures for natural language pro-
cessing was a method developed by Grosz for structuring background know-
ledge with focus spaces. Focus spaces guide dialog comprehension by restrict-
ing the comprehender’s attention to relevant portions of background knowledge
[Gro86]. This approach assumes that background knowledge is encoded as a se-
mantic network; it uses a semantic-network partition to define each focus space.
Hendrix developed network partitions called spaces to represent abstractions,
hypothetical situations, and the scoping of quantified variables [Hen75]. Sets
of spaces could be organized into wvistas which were used to restrict accessible
contents of the network (e.g., while completing inferences). Focus spaces ex-
tend the use of network partitions to permit multiple, overlapping partitions

being imposed on the same network.

Information explicitly referenced in the dialog is considered “in focus”
(i.e., relevant) and made accessible for inference. Focus spaces are used to
determine which additional knowledge, that which is not explicitly mentioned,
is also relevant to comprehending the current part of the dialog and should also

be considered in focus (and accessible during inference).

Focus spaces do not completely restrict which fragments of back-
ground knowledge can be accessed; rather, they order the accessibility of back-
ground knowledge to facilitate considering those concepts and relations that are
within the current focus space prior to considering concepts that are outside
of the focus space. Thus, they heuristically guide attempts to find bindings to
variables when disambiguating a dialog utterance (e.g., a definite noun). For

example, while comprehending the dialog:

The key labeled A opens the office door.
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The key labeled B opens the car door.
Enter the office.

The door will be locked so use the key to open it.

the referent “the key” in the last utterance is ambiguous. The strategy of re-
cency would incorrectly bind “the key” to the key labeled B. However, focus
spaces overcome this failing. The prior sentence triggers a focus space that
includes the key labeled A and excludes the key labeled B. So while disam-
biguating the ambiguous reference in the last sentence with focus spaces, “the
key” correctly binds to the key labeled A. Thus, focus spaces are useful for
resolving ambiguous references in definite noun phrases by improving on the

simple strategy of searching for the most recent match in the dialog.

While the overall motivation of guiding comprehension is shared by
both focus spaces and KI’s view mechanism, the methods that define their use
are significantly different. One important difference is that all focus spaces are
assumed to be predefined explicitly and permanently. An important feature
of KI’s view mechanism is that (a potentially infinite number of) views are
constructed automatically from a relatively small set of predefined view types.
Furthermore, views are created dynamically on demand. This promotes views
automatically reflecting the system’s current beliefs despite the evolution of

knowledge and the introduction of new concepts.

A second important difference involves the issue of changing focus.
KI attempts to perform deep reasoning about each presented fragment of new
information. Since the emphasis is on comprehending a single fragment of new
information rather than comprehending many utterances during a discourse,
the problem of automatically changing focus during a learning scenario has

not been significantly addressed. Switching focus involves changing the set of
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concepts and relations that are given prioritized access during inference. KI
has no mechanism to do this other than to initialize a new learning context by
starting a new learning scenario and identifying a completely new set of rele-
vant fragments from the background knowledge. KI relies on the user/teacher
to indicate when to start a new learning context (e.g., by beginning a new
learning event). In contrast, Grosz has developed methods to automatically
change focus by recognizing significant changes in the explicit references made
in the dialog. Her approach assumes the dialog concerns questions and advice
about how to perform a set of pre-enumerated problem-solving tasks and uses
a hierarchical model of the assumed problem-solving tasks in order to decide
when the focus must be changed. For example, the focus is changed whenever
the dialog references a new task that is not subordinate or superordinate to

the task that is the current focus.

7.3.2 Perspective hierarchies

McKeown proposes an approach similar to focus spaces that uses
goal hierarchies to include in explanations only information of interest to user
[MMMS5]. The system provides advice to a user who is assumed to be trying
to achieve one of a given set of goals (e.g., registering for the college courses ap-
propriate for their major). Knowledge is organized by perspective hierarchies;
each possible goal of the user corresponds to one perspective hierarchy. Collec-
tively the hierarchies partition the domain knowledge; each cell of the partition

includes knowledge relevant to the goal corresponding to the hierarchy.

Selecting the appropriate subset of relevant domain knowledge cor-
responds to determining which goal the user is pursuing. There is a separate

hierarchy of goals which is used to identify an overall discourse goal from the
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goals associated with each utterance. The discourse goal is found by comput-
ing a minimal generalization within the goal hierarchy of the individual goals
associated with each utterance. The discourse goal is then used as the user’s

goal for completing explanations.

When the system must answer a query, it makes available to a rule
base only the facts from the perspective hierarchy indexed by the discourse goal;
facts from the other perspective hierarchies are not available to the rule base.
The query is answered by the rule base and the trace of the reasoning is provided
as an explanation. Thus, by restricting what facts are made available to the
rule base, perspectives control what rules can be fired and what explanations

can be constructed.

This approach of controlling inference by first selecting a portion of
relevant background knowledge is very similar to KI. However, as with focus
spaces, this approach relies on predetermined explicit views, while KI automat-

ically defines views from a relatively small set of predefined view types.

7.3.3 Romper

McCoy’s Romper system [McC85, McC89b] addresses the difficult
problem of determining what properties to include in a description of an ob-
ject. This problem is particularly difficult because as a problem-solving context

changes so to must the description of objects within that context.

KRL [BW77] and focus spaces (discussed above) proposes methods
of considering a concept from different perspectives; each perspective is associ-
ated with a different context and identifies different properties of the concept
that are relevant in the associated context. Romper extends the representation

of a perspective to permit a perspective to apply to more than a single con-
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cept. Thus, Romper distinguishes perspectives defined for domains from the
perspectives defined for individual concepts in KRL and focus spaces. A do-
main perspective can be applied to any concept in the domain to identify which
properties are relevant to describing that concept in the context associated with

that perspective.

Domain perspectives are declaratively represented; each specifies a
level of salience for every relation in the domain. For example, Nixon can be
represented in either a political context or a religious context. In the former
(political Party Nizron GOP) has very high salience; in the later (religion Nizon
Quaker) has very high salience. Thus, in different contexts, estimations of
similarity can use context-specific measures of salience. In a political context
Nixon can be judged similar to other republicans regardless of their religion; in
a religious context Nixon can be judged similar to other Quakers regardless of

their political affiliation.

The distinction between domain and concept perspectives established
by Romper is significant. It separates declarative knowledge about what is true
in a domain from declarative knowledge about what contexts are useful within
the domain. Furthermore, it suggests that a relatively few domain perspectives
can be specified and applied to a relatively large number of domain concepts;
each such application defining a context-specific description of the concept.
Thus, the distinction between domain and concept perspectives in Romper
provides the groundwork for the distinction between view types and views in

KI. The significant differences between Romper and KI are:

1. Romper identifies the relations relevant to a domain perspective by at-
tributing salience values to all relations in the domain. High salience val-

ues denote high relevance to the perspective. However, the salience of a
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relation (independent of its arguments) need not be constant throughout
the perspective. For example, (capacityOf Auditorium 1300) and (capacityO f
Car 4) are not equally relevant when planning a conference or planning
a trip. Similarly, (isa Nizon Republican) and (isa Nizon Quaker) share the
common relation isa and so must share a common salience level. The node
constraints in KI's view types permit discriminating among propositions
rather than only among relations. Furthermore, properties used to esti-
mate the relevance of a view, such as coreference and interestingness, are
established for the facts contained within the view rather than only for

relations.

. Romper perspectives are “flat”; they are limited to including a subset of
the relations directly applicable to a concept. In contrast, view types can
contain access paths of arbitrary length. Consequently, the views of a
concept are not restricted to only direct properties (e.g., facts having the

concept as their first arguments) and typically do have indirect properties.

. Perspectives in Romper are domain specific (e.g., global), rather than
concept specific. They identify what contexts are useful throughout the
entire domain, what relations are relevant to general tasks that can be
pursued in the domain. The approach of Romper assumes that a sin-
gle monolithic domain perspective can be defined (perhaps by somehow
composing the salience levels defined by several active perspectives). Fur-
thermore, determining this single active perspective is left as an open
problem. In contrast, KI addresses the problem of view selection by de-
termining a set of candidate views and selecting one from among them,
and KI does not require a single point of view to be adopted and main-

tained. Rather, during each processing cycle KI selects the view deemed
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most relevant to the existing overall learning context. Different perspec-
tives of a single concept or of multiple concepts can be composed and

included in the learning context.

7.83.4 View dimensions

Suthers addresses the problem of automatically generating views from
view specifications [Sut88]. He proposes a set of epistemological parameters by

which views can be specified and automatically defined:

1. the topic specifies a concept of interest

2. the model specifies which among different ways to consider a topic (e.g.,

light as wave vs. light as particle) *

3. the organization identifies a category of relations to be included in the
view (e.g., relation categories such as chronological, taxonomic, struc-

tural, procedural)

4. the detail indicates how much knowledge should be included (i.e., how

large the resulting view should be in terms such as Summary, Moderate,

All)

He further sketches out a procedure that extracts views given a knowledge base

and a specification in terms of the epistemological parameters:

1. starting at the topic node follow paths of relations that are members of

the slot category specified by the organization parameter

3This seems to correspond to modeling assumptions in qualitative reasoning.
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2. extend paths in parallel through intermediate nodes only when those

nodes are included in the model parameter

3. stop when the view is sufficiently inclusive as indicated by the detail

parameter

Note that this procedure only extracts subgraphs of the knowledge base, as
does KI.

This approach is quite similar to KI’s view mechanism in that it
cleanly separates knowledge about what is true in a domain and knowledge
about what contexts are useful in the domain (as did Romper), while attempt-
ing to keep the granularity of the resulting contexts (e.g., views) at the concept
level rather than at the level of the entire domain. Suthers’ specifications for
views require substantially more information than does KI’s view mechanism
(which simply requires a root concept and an applicable view type). Each
combination of the last three parameters corresponds to a view type that could
be defined. Consequently, these parameters should provide a way of succinctly
defining sets of useful view types. Furthermore, Suthers does not provide meth-

ods for composing views or for selecting from among alternative views.

7.83.5 View Retriever

Acker’s View Retriever program [Ack92, AP94] uses views to extract
coherent sets of beliefs from a knowledge base while answering a given query.
The View Retriever identifies four categories of view types and for each cat-
egory defines a specification template (i.e., a format for specifying the view
to be extracted from the knowledge base) and an algorithm for extracting the
specified view. Each algorithm corresponds to a set of similar view types (e.g.,

a common pattern of access paths and node constraints).
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The intended contribution is primarily one of content rather than
method: while “KI’s method for generating views is general-purpose ... [the
View Retriever provides| a fairly complete set of [view] types useful in all physi-
cal domains” [Ack92, page 115]. In other words, the View Retriever identifies a
small subset of all the view types that could be hand-crafted and proposes this
subset as being useful and substantially complete for physical domains. Aside
from the View Retriever’s focus on content rather than method, there are three

significant differences between the View Retriever and KI's view mechanism.

The first difference is the amount of information required to specify
a view. KI requires only a root concept and a view type to unambiguously
specify a desired view. The view retriever requires additional information,
such as a reference concept, in order to specify a particular view. This addi-
tional information enables defining smaller, more focused views from a fewer
number of view types than does KI's view mechanisms, but establishing the
additional information (e.g., selecting the appropriate reference concepts) can

be a significant requirement.

The second (related) difference is that KI's view mechanism addresses
the task of selecting from among many possibly-relevant views. The View Re-
triever does not address this difficult problem. KI’s view mechanism involves
distinguishing which views are appropriate in a particular context (i.e., view-
type preconditions), which appropriate views are most relevant to a given con-
text (i.e., by measuring a view’s interestingness and coreference with respect to
the context). Although the View Retriever identifies a relatively small number
of view-type categories, the space of possible views remains very large due to
range of possible values of the additional parameters (e.g., the reference con-

cept). Given new information, the View Retriever offers a plethora of possible
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views that could be extracted and does not provide assistance with the problem

of selecting among them. *

The third difference involves heuristics used to decide which facts will
be included in the resulting view. In particular, when representing a concept
as a type of one of its generalizations, the View Retriever excludes facts that
are common to both the concept and the generalization. For example, if the
knowledge base includes the facts:

performs PhotosyntheticOrgan Photosynthesis)
contacts PhotosyntheticOrgan LightEnergy)
constituent PhotosyntheticOrgan Chlorophyll)
hasColor PhotosyntheticOrgan Green)
performs Leaf LeafPhotosynthesis)

contacts Leaf LightEnergy)

constituent Leaf Chlorophyll)

hasColorLeaf Green)

ako Leaf PhotosyntheticOrgan)

ako LeafPhotosynthesis Photosynthesis)

(
(
(
(
(
(
(
(
(
(

the view resulting from the View Retriever representing Leaf as a kind of
PhotosyntheticOrgan would include

(performs Leaf LeafPhotosynthesis)

(ako Leaf PhotosyntheticOrgan)

(ako LeafPhotosynthesis Photosynthesis)
but would not include

(contacts Leaf LightEnergy)

(constituent Leaf Chlorophyll)
(hasColor Leaf Green)

4This difference is not intended as a criticism of the View Retriever. Rather it is a natural
consequence of the different uses of views by the View Retriever (answering queries) and by
KT (guiding the elaboration of new information). In the former task, it is assumed that the
query will contain information sufficient to complete a specification template for the View
Retriever; therefore, each query specifies a single view or a small set of views. However,
in the later task, the new information can not assumed to include information sufficient to
complete a specification template (e.g., the reference concept), so many candidate views are
viable and the problem of selecting from among the alternative views must be addressed.
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Thus, the View Retriever excludes those facts that the subordinate concept
inherited from the superordinate concept. However, when appraising the con-
sequences of new information in this type of context (e.g., new information
for leaves considered as photosynthetic organs), these common facts are quite

essential. Consequently, they would be included in the views generated by KI.

7.3.6 Compositional modeling

The problem of determining a set of primitive facts from which to
reason extensively also arises in model-based reasoning. Typically, a particular
model-based reasoning task will not require reasoning with the entire model,
and, for tractability concerns, only a portion of the model (one that is sufficient
for the task) will be used. Determining this portion of the model (i.e., what

components to include) is the model-selection problem.

Falkenhainer and Forbus propose an approach, called compositional
modeling, that automatically performs model-selection [FF91]. Their approach
advocates decomposing the representation of a model into coherent pieces called
model fragments. When a reasoning task is encountered, the relevant model
fragments can be identified and pieced together to form a customized model

that is sufficient for the task but remains as simple as possible.

In this approach model fragments form a meta-theory: antecedents
are constraints on the relevance of domain knowledge (e.g., modeling assump-
tions and operating constraints); consequents are domain knowledge (e.g., mod-
eling equations). The antecedents of model fragments serve a similar role as
do the preconditions of view types; both determine necessary conditions for
when a set of domain rules should be considered. The consequents model frag-

ments include sets of mutually interdependent axioms of domain knowledge
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(e.g., qualitative modeling equations) and thus correspond to views.

Compositional modeling occurs in the context of a reasoning task,
such as a query about the behavior of a physical system in some specified
state. The termsin the query are used to index a set of model fragments. These
fragments initialize the custom model being constructed. However, reasoning
about some aspects of a model often requires reasoning about other aspects.

Therefore, the initial model must often be extended.

Extending the initial model involves two phases. In the first phase,
rules about the interactions of modeling assumptions are used to identify what
aspects of the system must be considered in order to properly constrain the
aspects contained in the initial model (e.g., the variables referenced by the
query). In the second phase, a partonomic hierarchy is used to expand the
model with additional model fragments until it contains some single system
that includes as partonomic subordinates all components already contained
in the model. This system is identified by finding a minimal cover in the

partonomic hierarchy over all components already contained in the model.

The compositional modeling approach establishes the relevance of
model fragments using coreference (e.g., terms common to both a model frag-
ments and the query), rules about the interactions of modeling assumptions,
and partonomic containment. The compositional modeling approach also ad-
vocates a fairly small grain size: model fragments often contain only two or
three modeling equations. The grain size of KI’s views can vary significantly
but are generally larger than this. In the learning trials considered in Chapter

6, views created by KI contained an average of 28 propositions each.

The background theory involves quantified formulae; however, dur-

ing a preprocessing step called scenario expansion the quantified formulae are
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instantiated for the particular system being reasoned about. This results in
a model of the entire system, represented as a set of ground modeling axioms
organized into composable model fragments. Search for model components rel-
evant to a particular query can be restricted to these ground model fragments.
This represents a significant difference with KI which searches the quantified
domain theory to identify sets of relevant axioms and only instantiates those
that are selected for use. For example, when provided with new information
about the leaf cuticle, KI instantiates only relevant concepts, such as the leaf,
the leaf epidermis, leaf transpiration, etc., rather than an entire ground model

of a plant.

Compositional modeling also differs from KI's view mechanism in that
it requires a query to determine what background knowledge is relevant. KI
must determine what is relevant to presented information without the benefit of
a particular query to answer. Furthermore, only after the model is constructed
does the compositional modeling approach reason with it. KI interleaves model
construction (e.g., seeding the learning context with the new information and
relevant background knowledge) with reasoning. The results of prior reasoning
are used to guide subsequent model extensions (i.e., the explication of conse-
quences during one processing cycle helps to determine the more interesting
lines of reasoning to extend with the selection of an additional view during the

next processing cycle).

7.3.7 Tripel

Rickel and Porter describe a system called Tripel that addresses the
following problem [RP94]: given a set of ground model fragments and a pre-

diction question (e.g., how does one variable, called the driving variable, affect
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another variable, called the variable of interest) construct a model comprising

a subset of the model fragments adequate to answer the question.

Tripel improves on the original compositional modeling approach by
using chaining among the modeling equations in order to escape dependence on
the partonomic hierarchies while extending the initial model. Using a type of
backward chaining, Tripel identifies paths of modeling equations that constrain
the variable of interest; each modeling equation included in such a path is
included in the resulting model. This procedure ensures that all significant
modeling equations connecting the dependent variables (e.g., the variable of
interest) to independent variables (e.g., the driving variable) are included in
the model. A variable is allowed to be independent only if it is not constrained
by the driving variable or a dependent variable. Furthermore, Triple integrates
time scale constraints to significantly simplify the resulting models by ignoring

model fragments that don’t have effects within the selected time scale.

In this approach, grain size is minimal: a view corresponds to a single
domain rule (e.g., a single modeling equation). Modeling equations are relevant
if they participate in a path of modeling equations that constrains the values
of a dependent variable (e.g, the variable of interest) by the value of another
dependent or an independent variable. As with conventional compositional
modeling, Triple differs significantly from KI by its dependence on a given
goal query to determine which modeling equations to include in the model
and by not interleaving reasoning with the model (e.g., simulation) with model

construction.
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7.3.8 Composite model fragments

Iwasaki and Levy also propose improvements on the original composi-
tional modeling approach by organizing model fragments into larger structures

called composite model fragments [11L.94].

As in Tripel, backward chaining from the terms (i.e., variables of
interest) mentioned in the goal query identifies individual model fragments that
are relevant to answering the query. Each identified model fragment indexes
a candidate composite model fragment. The model-selection algorithm selects
and integrates those composite model fragments that have compatible modeling

assumptions.

Each composite model fragment includes a set of model fragments
that represent behaviors of a common set of domain entities under different
operating conditions. Therefore, the grain size of composite model fragments
is larger than the model fragments composed by Tripel and the original compo-
sitional modeling approach. The composite model fragment approach suggests
that model selection need not consider operating constraints. The justification
of this position is that during simulation it is likely that the behavior of mod-
eled entities will pass through several operating regions, therefore it is prudent

to not exclude model fragments solely on the basis of operating conditions.

As with Tripel and conventional compositional modeling, the com-
posite model fragment approach differs significantly from KI by its dependence
on a given goal query to determine the relevance of prior knowledge and by not

interleaving model-based reasoning with model construction.
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7.4 Adaptation

This section surveys other research relevant to KI’s suit of adaptation

methods. KI differs from the described methods by one or more of the following:

1. KI does not assume a (or restrict the) criterial task

2. KI does not exploit (or require) a large set of positive and negative task

instances

3. KI permits a very expressive representation language (e.g., one that in-

cludes skolem functions)
4. KI performs incremental learning
5. KI learns from general rules presented as new information

6. KI acquires new explanations of domain beliefs as well as resolving in-

consistencies and filling gaps in the knowledge base

7.4.1 Explanation-based learning

Traditional approaches to explanation-based learning require a crite-
rial task to determine when some path through an inference graph should be
compiled into a shallow rule: compile the rule when doing so improves perfor-
mance (e.g., in terms of response time) at that criterial task [Min88, Kel88].
Since KI cannot assume a criterial task, it must exploit other criteria to de-
termine when an inference path should be compiled into a shallow rule. The
rule macros of the representation language (Section 2.2.2) provide such criteria:
compile an inference path into a shallow rule when that rule can be denoted
by a rule macro and is not subsumed by an existing rule macro. All the advan-

tages of the rule macro (e.g., efficient implementations of methods to complete
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inferences with the rule, to index and present the rule, and to permit meta-
reasoning about the rule) are attained by compiling the inference path into the
rule. KI thus exploits the design of the representation language to determine

when to engage in rule compilation rather than relying on a predefined criterial

task.

The representation language, including the rule macros, reflects the
intuitions of its designers about what distinctions and basic knowledge-base
operations may be most useful in the domains represented and therefore are not
purely task independent in a truly absolute sense. However, the rule macros are
defined for basic types of inference (e.g., propagating inheritance, determining
set membership, propagating slot inverses and generalizations, enforcing typing
constraints on the arguments of predicates, etc.). Each such type of inference
is so abstract as to be a completely different kind of “task” than criterial
tasks common to traditional applications of explanation-based learning (e.g.,

identifying a cup or performing a set of benchmark calculus problems).

Thus, while KI's learning goals for explanation-based learning are
explicit (which is the case for any explanation-based learning system), these
learning goals are not defined by specific and relatively narrow expectations
about the application goals. The goal concepts that are being learned are not
defined by a criterial task as they are with traditional explanation-based learn-

ing systems (e.g., [MKKC86, DM86, Min88, Kel88]).

7.4.2 Theory refinement and inductive-logic programming

FOIL: FOIL improves on traditional approaches to concept acquisition and
theory refinement by operating over a clausal representation language that is

much more expressive than the attribute vector representation languages as-
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sumed by the traditional leaning methods. The clausal representation language
is a restricted form of first-order logic similar to logical programming languages
in which all variables are implicitly universally quantified and functions (e.g.,
skolem functions) are not permitted. Statements in this language are clauses
which include a single positive literal as a consequent and one or more literals
as an antecedent. Inference proceeds by backward chaining through the con-
sequent literal. The set of clauses whose consequent literal share a common
predicate provide a clausal definition of that predicate in terms of the pred-
icates referenced by the literals in the antecedents. Each antecedent defines
sufficient criteria to satisfy the predicate. In other words, the set of all clauses
is a logical theory in a stylized conjunctive-normal form; the antecedents of
all clauses whose consequent literals reference a common predicate provide a

definition of that predicate in disjunctive-normal form.

The learning task that FOIL addresses is:

Given: (a) the name of a target predicate
(b) n, the arity of the target predicate
(c) background knowledge comprising predicates whose definitions are
known
(d) a set of n-ary ground tuples that are classified as positive or neg-
ative examples of the predicate
Find: a correct clausal definition of the target predicate in terms of the back-

ground knowledge

As a simple example, FOIL is shown to learn the binary predicate
connected given a directed acyclic graph represented with the background bi-
nary predicate [inked and the sets of binary tuples that completely define

linked and connected for the given graph. The resulting clausal definition is:
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connected(z y) < linked(z y)
connected(z y) < linked(z z) & connected(z y)

This definition has been learned by analyzing only one graph but is reported

to be generally valid. ®

FOIL’s method for performing this task involves performing a search
for a set of clauses that admit all the positive examples while rejecting all the
negative examples. This search is achieved by two nested iteration loops: each
iteration of the outer loop generates a clause (i.e., a disjunct of the target
concept); each iteration of the inner loop generates a literal to be included
in the antecedent of the clause being constructed (i.e., a conjunct within that
disjunct). Each clause admits some subset of the positive examples of the
predicate while excluding the negative examples. After a clause is constructed,
the positive examples it admits are removed from further consideration, and
the subsequent clauses focus on admitting the remaining positive examples.
This proceeds until no more positive examples remain or until no more clauses
can be usefully constructed. Similarly, the first positive literal in each clause’s
antecedent ¢ admits some subset of outstanding positive examples, and each
additional positive literal imposes additional criteria that rejects negative ex-

amples.

This search is dominated by the inner loop, which picks a literal to

add to the growing clause. FOIL uses a decision-theoretic metric in order to

®Note that this definition may not terminate if applied to a graph that contains cycles,
vet the example learning task was not stated to be restricted to acyclic graphs.

5This nomenclature is consistent with the description of FOIL but may be confusing to
those having standard background in logic: a positive literal in the antecedent corresponds
to a negative literal in standard conjunctive-normal form
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heuristically rank the expected contribution of each available predicate. Basi-
cally, this metric determines the number of correctly classified examples for each
literal considered as a candidate for including in a derived clause. FOIL per-
forms a hill-climbing search guided by this metric and is subject to non-optimal
solutions when its metric guides it into local maxima. Relational pathfinding is
an enhancement of FOIL’s approach that uses a spreading-activation search to

avoid local maxima while acquiring first-order concept definitions [RM92].

FOIL’s learning method is not especially well suited to incremental
learning because of its rather heavy reliance on the adequacy of the provided
examples of the target concept [Qui90]: “FOIL requires all tuples of a relation
to be available before any clause is generated.” Therefore, as with all non-
incremental learning methods, FOIL doesn’t integrate new information into
existing knowledge; it has no distinction between new and prior knowledge.
However, it should be noted that other approaches to theory refinement have
been shown to facilitate various degrees of incrementalness by simply accepting

as input a previously revised theory [Mo092].

While FOIL improves on traditional approaches to concept learning
by extending the expressiveness of the representation language it adheres to
the ubiquitous assumption in traditional machine learning that learning occurs

only within a problem-solving context.

KR-FOCL: KR-FOCL addresses the problem of revising incorrect (rather
than just extending incomplete) knowledge bases [PB91]. KR-FOCL is an
extension of the learning program FOCL (itself an extension of FOIL) which
uses both induction and explanation-based learning to fit a given theory to a

set of solved task instances.
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As with other traditional approaches to theory refinement (and unlike
KI) learning in FOCL necessarily occurs within a problem-solving context.
Given a target concept defined in a nonoperational language, a clausal rule
base that maps operational expressions into nonoperational expressions, and
a set of positive and negative examples of the target concept presented in the
operational language, FOCL derives rules expressed in the operational language

that correctly classify all the examples.

FOCL proceeds by using explanation-based learning, guided by the
information-theoretic metric of FOIL, to operationalize the target concept.
This involves compiling inference graphs that establish the correct classifica-
tions of the positive examples into single-step rules. However, if the existing
rules are incorrect and fail to reject all negative examples, literals are induc-
tively added to the antecedents of the derived rules to ensure all negative ex-
amples are rejected. Similarly, if the existing rules are incomplete and fail to
admit all positive examples, new rules are inductively derived to ensure that
all positive examples are admitted. In both cases, the information-theoretic

metric is used to select the literals inductively added to the derived rules.

While FOCL is capable of using an initial theory that may be incom-
plete or incorrect to derive operational rules that correctly classify the training
examples, it does not correct the initial theory. KR-FOCL exploits the results
of FOCL and four heuristics to suggest to a knowledge engineer candidate cor-
rections to the initial theory. For example, if a rule from the initial theory is
never used by FOCL (i.e., is never operationalized) KR-FOCL might suggest
that the rule is spurious and should be discarded. A second heuristic suggests
that an induced literal added to reject negative examples might be added to the

antecedent of some superordinate rule in the inference graph that establishes
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the target concept. KR-FOCL serially asks the user to consider each possible

revision independently.

FOCL requires a set classified examples of the target concept, and
learning occurs only in the context of classifying the given training examples.
Explanation-based learning only occurs when the rules of the initial knowledge
base are used to establish how a positive example is admitted by the target
concept. Induction occurs only when positive examples are not admitted or
negative examples are admitted. The set of classified training examples is

essential to the information-theoretic metric used to guide learning.

In contrast, KI is not endowed with a set of solved task instances. In-
stead, KI must discover learning opportunities among the consequences of new
and relevant prior knowledge. Learning opportunities that suggest inductive
refinements to the knowledge base arise when conflicting facts are established
(e.g., facts that violate argument-typing constraints). Rather than relying on
an information-theoretic metric to guide learning by fitting the domain theory
to a set of solved task instances, KI exploits the structure of the inference graph
that establishes the conflicting facts to identify a set of candidate knowledge-
base revisions (i.e., KI identifies the essential facts that support the conflict).
Furthermore, KI exploits the different levels of confidence of rules participat-
ing in the nonmonotonic inference graphs that establish a conflict: KI prefers
knowledge-base revisions that refute beliefs established with the weakest convic-
tion (e.g., refuting assumptions is preferred to refuting facts having monotonic
support). Finally, rather than serially presenting to the user each candidate
knowledge-base revisions, KI uses the conflict-resolution hierarchies to sort the
candidate knowledge-base and to identify which revisions are strongest in the

sense that they correct the greatest number of encountered conflicts. The user
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can peruse conflict-resolution hierarchies to review the candidate revisions in

order of strongest to weakest.

Demand-driven concept learning: In BLIP [Wro89] there are no strong
commitments made to fixed and narrow learning goals. The user and system
work together to develop a theory that correctly characterizes a set of ground
observations. When new information introduces inconsistencies the learning
methods modify the exiting theory (e.g., by introducing new concepts) to re-
solve the inconsistencies. However, BLIP includes no mechanisms to guide
elaboration of new information to detect tacit inconsistencies and is therefore
restricted to either shallow elaboration or small theories represented with inex-
pressive languages. In contrast, an essential aspect of KI involves using views
to guide elaboration. This permits the completion of deep inference paths us-
ing very large theories that are represented with a very expressive language.
Furthermore, BLIP conforms to the traditional machine-learning paradigm of
fitting a theory to ground observations: learning behaviors only resolve incon-
sistencies and inductively characterize ground observations according to a set
of pre-enumerated rule schemas. In contrast, KI is capable of learning from
general domain rules without the use of ground observations: hypothetical
simulation is performed to detect tacit learning opportunities. Consequently,
explanation-based learning methods are adopted in KI over similarity based,

data-intensive, inductive learning methods.

7.4.3 Knowledge acquisition

Traditional approaches to machine learning assume that target know-
ledge (representations of valued domain knowledge) cannot be directly identi-

fied and added to the knowledge base; rather the user must think of an appro-
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priate sequence of examples in order to guide the learning system to formulate
the target knowledge. Consequently, the user must understand the learning
system, its strategies and background knowledge in order to lead it to the de-
sired target knowledge [Mor91]. Thus, in general, traditional machine learning
systems construct target knowledge from examples of task instances provided
by a domain expert. In contrast, knowledge acquisition systems elicit target
knowledge from a domain expert. Typically, knowledge acquisition systems are
guided by a problem-solving model and instantiate the problem-solving model

with the provided domain-specific knowledge.

EXPECT [Gil94] is a knowledge acquisition system developed to iden-
tify unharmonious interactions between new and exiting knowledge and thereby
prevent gaps, redundancies, and inconsistencies. Traditional knowledge acqui-
sition tools assume a particular problem-solving method that identifies how
each piece of knowledge may be used during problem solving. For example,
when a new class is introduced, classification systems can solicit knowledge to
determine how instances of the class are to be recognized. The problem-solving
method guides the acquisition of knowledge, but it also restricts the applica-
bility of the knowledge acquisition tool since the tool is designed to support
acquiring knowledge only for systems that exploit that particular problem-
solving method. This applicability restriction is permanent since the expecta-
tions about the assumed problem-solving method are (typically) programmed

into the tool.

The motivation of EXPECT is to retain the advantages of assum-
ing a problem-solving method (e.g., determining what knowledge is relevant
and what interactions between knowledge fragments may occur) while avoiding

the restricted applicability from permanently committing to a single problem-
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solving method. To do this, EXPECT requires the problem solving method
to be defined explicitly and declaratively as a set of problem solving modules.
These modules specify how problem-solving goals can be decomposed into sub-
goals, and thus identify how domain knowledge can interact during problem
solving. EXPECT can then examine these problem-solving modules to deter-
mine what knowledge is relevant to, and what interactions may occur among
knowledge fragments during, problem solving in order to guide knowledge ac-
quisition. Because the assumed problem-solving method is represented explic-
itly and declaratively in the knowledge base rather than being programmed
into the knowledge acquisition tool, different problem-solving methods can be
represented by changing the models. Therefore, EXPECT does not rely on,
and is not restricted to, any single problem-solving method. However, unlike
K1, it does require explicit models of the anticipated application tasks in order

to guide knowledge acquisition.

When gaps or inconsistencies are detected, EXPECT creates sugges-
tion memos for the user that identify both the problem and possible fixes, and
it pushes these memos on to an agenda where the user can peruse them rather

than interrupting problem solving. This approach is very similar to KI.

A static analysis identifies what properties may be used during prob-
lem solving for various classes of concepts. For example, a problem-solving
module indicates that to provide advice about transportation the system may
need to know which seaports are available at a location. The results of this
static analysis are expectations about what knowledge should be provided along
with instances of classes of concepts. For example, when the user introduces
Los Angeles to the system as an instance of location, a suggestion is created

that solicits the user to indicate what seaports can be found in Los Angeles.
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Unfortunately, this technique appears too permissive: the system would also
solicit the seaports local to all known locations (e.g., Kansas City, Treaty Oak,

the MCC parking lot, Fred’s house, etc.,).

EXPECT has a catalog of problems and for each has a set of repair
strategies. For example, when a suggestion is created to solicit a particular
property of a particular concept (as in the case above of when Los Angeles is

introduced), it identifies for the user the following options:

1. specify the value of the property for the concept
2. remove the concept

3. modify the problem-solving method so that it will not require the prop-

erty

Having a catalog of errors and repair strategies for each is similar to
KTI’s approach. Unlike KI, EXPECT also has a cached set of analyses it per-
forms whenever new information is provided. For example, when a new instance

is introduced to the knowledge base, the analysis that EXPECT performs is:

1. If the class given for the instance is too general (e.g., if Los Angeles were
specified to be an instance of T'hing rather than Location), then present
the user with specializations of the indicated class and request that one

be selected as the new class for the instance.

2. Identify which properties of the class given for the instance may be used
during problem solving, and for each property that does not already have

a value request the user specify a value.
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There are five methods used to integrate changes to problem-solving modules.

Three of them are:

1. If the goal of the new module does not achieve any subgoal of known

modules, then notify the user.

2. If there are syntactic errors in the definition of the new method, then

notify the user.

3. If the new method uses a property for a class that was not required by
other problem-solving modules, then request the user specify the value of

the property for every instance of the class.

This last method may be problematic. For example, if a new module for a
diagnostic system references the blood pressure of the parents of a person, then
the system requires the user to specify the blood pressure for every ancestor of

every person!

Unlike EXPECT, KI's learning behaviors transcend resolving incon-
sistencies and knowledge-base gaps to include explanation acquisition, rule

compilation, and teleological learning.

7.4.4 Teleological learning

Among the most interesting learning behaviors demonstrated by ex-
ample of Figure 1.1 is the teleological learning. Elaboration reveals the pre-
diction that by restricting transpiration, the cuticle inhibits dehydration and
facilitates the leaf’s good health. This provides a teleological explanation of the
new information: the cuticle establishes the biological goal of facilitating good
health. Thus, the “function” of the cuticle, to restrict water loss, has been

identified; it explains why leaves have cuticles.
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Type of Knowledge Type of Query
structural what are the static properties?
behavioral what are the dynamic properties?
causal how is a dynamic property achieved?
teleological why is a dynamic or static property included?

The knowledge types appearing in the first column support answering the types
of queries appearing in the second column. These knowledge types are (typically)
related hierarchically: teleology requires causality; causality requires behavior; be-
havior requires structure [Kui85].

Figure 7.1: Types of knowledge

Teleological knowledge (i.e., knowledge of purpose) plays an essential
role in our understanding of biological domains [Sim81, Dow90] and engineering
domains [Sim81, DeK85, Fra93]. Teleology, like causality, plays an important
role in learning by providing a higher-order description of many important
situations in a domain. These higher-order descriptions are essential to un-
derstanding and, therefore, to learning about those situations. Teleological
knowledge supports answering a different class of queries than do other types
of knowledge [Fra93] (see Figure 7.1). Consequently, some knowledge acquisi-
tion tools for knowledge-based systems attempt to explicitly acquire causal and
teleological knowledge [KBR91, Gru9l]. Furthermore, tools explicitly exploit
teleological explanations to guide analogical reasoning in a variety of domains

[KCS3].

Franke has noted that teleology plays several essential roles in design

domains:

1. good explanations of design rely on purpose [DeK85]

2. knowledge of purpose can guide the diagnosis of broken artifacts so that
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only those components mandated to achieve the violated design specifi-

cation are considered

3. knowledge of purpose in prior designs can guide subsequent design by
identifying prior design properties that achieve behaviors desired for the

current design [KC85]

He has developed TeD, a formal language to represent teleological descriptions
[Fra93]. The representation and acquisition of teleological knowledge in his

approach are discussed next.

Representation of teleological descriptions: In Franke’s approach, de-
scriptions of purpose are represented as guarantees that some specification will
be satisfied by a given design. This approach provides a well-defined account
of purpose; however, it does not completely capture some intuitive aspects.
Specifically, using guarantee as a primitive for teleological descriptions in some
cases is too strong: static or dynamic properties may simply promote, or con-
tribute to, rather than guarantee, achieving goals. For example, in behavioral
domains, certain actions promote, but do not guarantee, desired outcomes (e.g.,
consuming low fat foods, exercising, advertising a product, studying for a test),
yet we’d like to be able to discuss the teleological properties of these behaviors.
Thus, the notion of "guarantee” is too strong when a property promotes or

contributes to achieving goals. 7

This concern is partially addressed in Franke’s ontology by permitting

conditional guarantees. A conditional guarantee states that under certain con-

"Note that Franke focused on qualitative models for device design; in this context the
primitive guarantee seems more appropriate.
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ditions a static or dynamic property is guaranteed to achieve a goal. However,
this approach requires explicitly stating the conditions in which the goal is
achieved. In many situations this will be quite difficult due to the qualification
problem [McC77] (see Section 1.2.1). KI’s representation of purpose is weaker;
it denotes that assuming every thing is as expected in a situation it is reason-
able that a given property (e.g., having cuticle) contributes to the achievement
of a goal (avoiding dehydration). Achieving the goal is not guaranteed by the
property (e.g., even leaves with cuticles can become dehydrated), but explic-
itly enumerating all the conditions under which the goal is guaranteed is not

required.

Acquisition of teleological descriptions: In Franke’s approach, teleolog-
ical descriptions are acquired during the design process. When a design is
modified to achieve a previously unattained design goal, the designer triggers
the acquisition of the teleological description for the design modification. For
example, when adding a new component to a device design causes the device to
satisfy some required specification, then the acquired teleological description for
that component is that it guarantees the satisfied specification. Subsequently,
a query about the purpose of that component can be answered by referring to

the specification it satisfied.

Capturing teleological descriptions during the design process has some
intuitive and pragmatic appeal. For example, it permits referencing behaviors
(that are guaranteed not to occur) which the final design couldn’t ever produce
[Fra93]. However, when several aspects of the design each play individually
necessary and jointly sufficient roles in achieving the specification, and are

added to the evolving design in separate stages, only the aspects included in
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the last design change will be referenced in the teleological description. KI
avoids this by analyzing the explanation of how a domain goal is achieved in
order to identify all behaviors of all components that enable the goal to be
achieved; each such behavior of each component is identified as a teleological

description of the component (i.e., an account of its purpose).

The treatment of teleological descriptions in KI and in other research
are complimentary. TeD provides a formal language for representing teleo-
logical descriptions that is not specific to particular goals. KI demonstrates
that very general domain-specific goals (e.g., facilitating good health) can be
used during learning to automatically acquire teleological descriptions, and
that new teleological descriptions can guide further knowledge acquisition (via
analogies). Purpose-directed analogy [KC85] provides a method for suggest-
ing properties about a target concept when given both a purpose and a set of
previously-described base concepts. KI automatically (in the course of elabo-
ration) suggests the purpose of a property and then exploits the explanation of
that purpose to automatically identify target concepts which might also have

the property.



Chapter 8

Conclusions

One of the primary goals of Artificial Intelligence is to develop sys-
tems that learn. Achieving this goal requires developing computational learning
tasks as well as methods to perform them. This dissertation describes ex-
ploratory research that investigates knowledge integration as a machine learn-

ing task.

8.1 Summary

Knowledge integration is the task of identifying how new and prior
knowledge interact while incorporating new information into a body of existing
knowledge. This task is pervasive because substantial bodies of knowledge
must be developed incrementally: segments of knowledge are added separately
to a growing body of knowledge. This task is difficult because knowledge
engineers cannot anticipate precisely how new and prior knowledge will interact,
and unexpected interactions may require additional changes to the knoweldge
base. Performing knowledge integration involves determining and affecting
these changes. The goals of this research include characterizing knowledge
integration as a machine learning task, developing a computational model for
performing knowledge integration, and implementing the model as a machine

learning program.

229
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The study of knowledge integration and methods that perform it is
important both for pragmatic concerns of building knowledge-based systems
and for theoretical concerns of understanding learning systems. By identify-
ing conflicts and gaps in knowledge, knowledge integration facilitates building
knowledge-based systems. By avoiding unnecessary restrictions on learning sit-
uations, knowledge integration reveals important sources of learning bias and
permits learning behaviors that are more opportunistic than do traditional

machine learning tasks.

REACT is a computational model that identifies three essential ac-
tivities for performing knowledge integration. FKlaboration identifies how new
and prior knowledge interact. The limited resources to explore the interactions
of new and prior knowledge requires methods to focus attention. This focus
is achieved by restricting elaboration to consider only particular, relevant seg-
ments of prior knowledge. Recognition selects the prior relevant knowledge con-
sidered during elaboration. By identifying the consequences of new information
for prior knowledge, recognition and elaboration reveal learning opportunities,
such as inconsistencies and gaps in the knowledge base. Adaptation detects and

exploits these learning opportunities by modifying the new or prior knowledge.

KIis a machine learning program that implements the REACT model.
It identifies and resolves conflicts between new and prior knowledge as it inte-
grates new information into a knowledge base. KI builds on existing methods of
machine learning both to learn from general rules, rather than fitting a theory
to ground training instances, and to learn in the absence of strong use ex-
pectations. It builds on approaches to first-order belief revision by addressing
the difficult problem of guiding inference while searching for significant con-

sequences of new information. KI uses views to structure the knowledge base
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into contexts of mutually relevant beliefs; view types support the automatic
construction of views. Views appear to be an effective mechanism to focus
attention. KI implements a suite of adaptation methods that detect and ex-
ploit learning opportunities. These methods support both traditional learning
behaviors, such as knowledge compilation, and novel ones, such as teleological
generalization and knowledge deepening. Empirical studies demonstrate that
KI provides significant assistance (e.g., learning gain) to knowledge engineers

while integrating several test scenarios into the Botany Knowledge Base.

8.2 Research contributions

Knowledge integration reflects an evolution in knowledge-based sys-
tems from expert systems, which are dedicated to performing a single task (such
as classification) in a restricted domain, to more broadly scoped knowledge-
based systems, such as those containing foundational knowledge that can be
applied to a variety of tasks within one or more domains. The task of knowledge
integration differs from traditional machine learning tasks by rejecting commit-
ments to specific predetermined learning goals based on strong use expectations
(such as the speed or accuracy of performing classification). Consequently, it
facilitates more opportunistic learning methods than do traditional tasks since
learning opportunities are not excluded due to constraints on either content of

the training or the eventual uses of the acquired knowledge.

Intuitively, knowledge integration is intended for a different learning
situation than are traditional machine learning tasks. The traditional tasks are
motivated by the concern that the primary barrier to developing expert systems
is elucidating and representing the domain knowledge required to perform the

application task. Traditional machine learning methods address this concern
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by fitting a domain theory to a set of ground observations; they usually acquire
or optimize general rules that reflect regularities in the training data. The task
of knowledge integration is motivated by a different concern: the interaction of
new and prior knowledge is hard to accurately predict; learning methods should
determine those interactions to resolve conflicts and fill gaps in the knowledge.
Consequently, the elucidation of general domain rules from ground observations
is not the primary concern, and, for example, knowledge integration permits

learning from new information that includes general domain rules.

Evidence for the feasibility of performing knowledge integration has

been established by developing:

e REACT: a computational model for performing knowledge integration

o KI: a learning program that implements the model and performs the task

REACT provides a functional decomposition of the task; it identifies three
activities that appear individually necessary and collectively sufficient to per-
form knowledge integration. KI provides an existence proof that the compu-
tational model can be implemented and the task performed. To escape the
strong use expectations associated with traditional machine learning tasks, KI
adopts generic and domain-appropriate learning goals (e.g., promoting con-
sistency and acquiring teleological explanations). To escape intractability, KI
admits resource bounds, sacrificing “complete” solutions (which are not possi-

ble, in general) for approximate and tractable ones.

This dissertation identifies use expectations as an important aspect of
learning tasks and the methods that perform them. It suggests that use expec-

tations guide learning systems by specifying what to learn, and it suggests that
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use expectations are perhaps the single most powerful source of both learning
bias and brittleness in knowledge-based systems. Consequently, casting learn-
ing as knowledge integration challenges the assumption that learning occurs
(only) within the context of strong use expectations (e.g., during problem solv-
ing) and suggests that for many learning opportunities the appropriate focus of

learning is the comprehension of new information rather than its application.

REACT identifies three essential activities for performing knowledge

integration:

o during recognition, the learner identifies prior knowledge that is relevant

to the new information

o during elaboration, the learner identifies interactions between the new

and prior relevant knowledge

o during adaptation, the learner modifies new or prior knowledge to satisfy

the learning goals (e.g., to resolve inconsistencies)

Methods that perform these activities determine, more or less directly, what is

learned and are important sources of learning bias.

Two important issues for recognition methods are determining both
the grain size of the segments of relevant prior knowledge and a principle of
relevance that prioritizes alternative segments for consideration during com-
prehension. KI uses view types to determine grain size, and its principle of
relevance is based on the notions of the connectedness, interestingness, corefer-
ence (i.e., the extent to which two segments of knowledge share common terms),

and (most importantly) user-defined patterns of mutually-relevant beliefs.
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One important issue for elaboration methods is operationalizing know-
ledge (e.g., new information or retrieved prior knowledge) so that the system’s
inference procedure can be applied to it. KI uses a form of hypothetical rea-
soning to explore the consequences of knowledge encoded as general rules. A
second important issue is distinguishing inference paths that are significant for
learning from those that are not; KI provides an abstraction of the TMS level
that preserves only those inference paths reflecting conceptually (vs. formally)

distinct reasons for establishing a fact.

An important issue for adaptation methods is extending the system’s
truth-maintenance capabilities so that knowledge acquired by learning (e.g.,
compiled rules) is indexed by the beliefs used to acquired it. For example, when
a nonmonotonic fact is retracted, the rules formed by compiling inference paths
that establish the fact must be reviewed; if they are no longer warranted, they,

too, should be retracted.

8.3 Agenda for further research

This research adopts the generate and test methodology of experimen-
tal research in computer science. The results reported here represent roughly
two cycles of constructing, then studying, an implemented computational sys-
tem, roughly five years of committed study. Assuch, these results are inherently
exploratory and preliminary. They represent a beginning, not an end, to the
study of machine learning as knowledge integration. The following sections

identify some important issues for further study.
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8.3.1 Integrating top-down and bottom-up control

Traditional machine learning systems and KI represent two extremes
of a continuum defined by the generality of the learning goals: traditional sys-
tems adopt very specific learning goals based on very strong use expectations;
KI adopts very general learning goals based on very weak use expectations.
While it is important to fall back on general learning goals when reliable use
expectations are not available (e.g., during incidental learning), it is also im-
portant to exploit whatever reliable use expectations are available to guide

learning.

Currently, learning in KI occurs through a primarily bottom-up pro-
cess: comprehension (e.g., the activities of recognition and elaboration) ex-
plores the consequences of new information to reveal learning opportunities.
Adaptation methods are “consumers” of this exploration: they detect and ex-
ploit learning opportunities revealed by the exploration without directing its
course. However, when reliable and strong use expectations are available, it
might benefit learning to permit a top-down control regime to supersede the
default, bottom-up process. Selected methods of adaptation that are “acti-
vated” by the available use expectations could intervene during comprehension
to determine whether particular learning opportunities can be established in a
goal-directed fashion. The spontaneous use expectations (discussed in Appendix
B.2.2) are one general category of adaptation methods that can be triggered
by new information and used to guide learning. A second general category
includes domain-specific learning goals (also discussed in Appendix B.2.2). For
example, given new information describing a seedless grape, the domain learn-
ing goal of determining the consequences of a missing part, together with prior

knowledge of the reproductive function of seeds, would actively guide learning
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to acquire knowledge about how the grapes are produced. Future research must
study flexible schemes of adapting a range of both general and specific learning
goals to particular learning events, so that the strongest reliable available use

expectations guide learning.

8.3.2 Next generation views and view types

The problem of focusing attention (e.g., controlling inference) is per-
haps one of the great computational issues of artificial intelligence. KI’s use
of views and view types provide a promising approach. Their advantage over
traditional schemas is that they provide an extra level of indirection: only a
relatively small set of view types must be defined explicitly rather than every
possible individual view; individual views are then defined automatically only
as they are needed. While the notion of views is not original with this research,
the use of view types to construct views automatically is. View types enable
manual specification of common patterns of mutually relevant propositions.
Furthermore, they identify a type of meta-knowledge useful for controlling in-
ference. This contribution has triggered significant additional investigation of
different approaches to representing this meta-knowledge and exploiting it while
generating descriptions of domain concepts [Ack92]. Other important areas of
future work include developing strategies for acquiring this meta-knowledge

(e.g., learning view types) and making reasoning with views more purposeful.

Learning view types: While view types drastically reduce the effort in struc-
turing knowledge, they still must be defined manually. It remains an interesting
problem to develop methods that automatically acquire view types. Two pos-

sible methods pursued while experimenting with KI are:
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1. Bundling the predicates that are likely for a collection into groups based
on paths through the taxonomic hierarchy: Each unique path through the
taxonomic hierarchy that connects a concept to the taxonomic root con-
cept (e.g., Thing) suggests a different view type comprising the predicates
introduced along that path. The resulting view types are “flat” (i.e., their
access paths are of length one). However, these view types could form
primitive building blocks that compose into deeper view types (i.e., those

having longer access paths).

2. Extracting views from inference graphs that establish interesting facts:
Each derivation of a fact comprises a set of inference paths. By chang-
ing the ground terms referenced in the inference path into variables, the
inference paths can be abstracted into a set of general access paths that
define a view type. Each taxonomic fact (e.g., facts whose predicate is isa)
in the inference path suggests a taxonomic node constraint in the view
type. The resulting view type identifies contexts in which the inference
path can be re-established. The inference path provides a basis for the
mutual relevance of those propositions included in views that instantiate

the resulting view type.

While preliminary research in these directions is promising, automatically ac-

quiring view types remains a largely unexplored problem.

Making view types more purposeful: The inferences completed using
views should have greater focus and purpose. As Minsky suggests [Min81],
not only should contexts identify relevant concepts, they also should identify

the typical questions that are relevant and interesting within the context. For
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example, in biology a view type QuaVisualObject could include standard ques-

tions, such as:

1. What colors and shapes does it have?
2. What sexual or symbiotic partners or prey are attracted to it?
3. What predators cannot perceive it (e.g., due to camouflage)?

4. What predators are repulsed by it (e.g., due to warning signals)?

Ideally, these view-type questions should be learned after a few examples in
which the learner selected a view (relying on the default view selection heuris-
tics) and “noticed” that it led to a significant result (i.e., some particularly
interesting fact was established). The view-type questions focus attention to-
wards re-establishing the significant result during subsequent use of that view
type.

There is a trade-off between remaining opportunistic during elabora-
tion and incorporating predetermined focus. One possible approach to finessing
this trade-off is to chain forwards along all paths to depth n, and then chain
backwards on context goals to depth m, where m is significantly greater than
n. Investigating such trade-offs remains an important direction for further

research.

8.3.3 Evaluation via field tests

Future work must adapt KI to a variety of applications. The best
way to evaluate the utility of the learning gain achieved by KI is to have it
used during the construction of a variety of knowledge-based systems. In the

course of interacting with KI (e.g., by accepting, rejecting or modifying the
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knowledge that KI acquires), knowledge engineers will provide an important
and pragmatic assessment of KI’s utility for facilitating knowledge-base con-

struction.

A related and very important direction of future work involves ex-
ploring suitable methodologies to evaluate systems that acquire and use foun-
dational knowledge. Current methodologies for evaluating knowledge-based
systems commit to strong use expectations; methodologies must be developed
to evaluate systems (e.g., learning systems) that do not make these same com-

mitments.



Appendix A

A Characterization of Learning

When defining a new learning task, it is useful to consider the con-
text in which that learning is assumed to take place. The first section of this
appendix describes the learning environment; it identifies the essential com-
ponents within a learning situation and their interactions, and it considers
the consequences of learning only within problem-solving contexts. The next
section develops an intuitive definition of learning appropriate for this environ-
ment. The final section characterizes machine learning in terms of a state-space

search problem.

A.1 The learning environment

In order to develop a learning task specification, it is convenient to
first characterize the learning agent as well as the circumstances in which learn-
ing occurs. Figure A.l illustrates a model ! of a learning environment com-
prising four significant components: the target domain, the knowledge source,
the learning agent (e.g., a knowledge-based system), and the task source. The
model further identifies six types of interactions among these components and

three significant thresholds in the evolution of knowledge about the target do-

!This model relects a synthesis of the work of Bransford [Bra79], Morik [Mor89, Mor91],
Nilsson [Nil91, GN87], Newell [New90], and Porter [PLMT88].
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Task Source

application

___________________ requests responses | _ _ __ __________
Learning
Agent
fo_ﬁTf_“lh_Z_‘llfl_oﬁ _________ information questions | _ _ __ __________
Knowledge
Source
_cg@c_epéu_a_h_zgézg@ ______ perceptions manipulations

Target Domain

A componential model of the learning environment identifying four roles and six
types of interaction that can occur among the roles and three thresholds that are
crossed during the evolution of knowledge.

Figure A.1: The Learning Environment

main: conceptualization, formalization, and application.

A.1.1 The target domain

The target domain is a set of phenomena about which the learner is
to reason. This can be a natural, or real world, domain — such as geology,
botany, medicine, or meteorology — or it might be an artificial domain — such

as mathematics, chess, or Tolkien’s Middle Earth.

The target domain does not prescribe any particular application task;
rather, a range of general tasks can exist. For example, tasks such as diagnosing
conditions from symptoms, determining treatments appropriate for conditions,

predicting what conditions will follow from current conditions, teaching basic
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anatomy, physiology and medical procedures, etc. could all apply in the domain

of human medicine. Furthermore, the target domain can change over time.

A.1.2 The knowledge source

The knowledge source defines a conceptualization of the target do-
main and provides information about this conceptualization to the learner. A
knowledge source is any entity that can fill this role. It may be some set of
perceptual components of the learning agent that interpret direct experiences
of the target domain (e.g., a vision subsystem that provides information about
a physical scene), or it can be some intermediary that independently acquires
beliefs about the target domain and then presents them to the learner (e.g., a

human teacher, a textbook, another knowledge-based system).

The conceptualization is a characterization of the target domain that
is presented to the learner. It identifies the concepts (e.g., entities, relations,
attribute values) and their interrelationships that are presumed to exist in
the target domain [GN87]. There may be biases (e.g., personal, cultural) in
how the domain is conceived that are reflected in the conceptualization. The
conceptualization arises from either interactions (direct or indirect) with the
target domain or from interactions with other knowledge sources (e.g., while
never having visited Australia, a Texas school teacher can present material
gleaned from books on Australian wild life). Aspects of the conceptualization
need not actually exist in the target domain; they are required only to exist in
the way the domain is conceived by the knowledge source. For example, the
notion of causation may or may not actually exist in physical domains such
as medicine, but it has an esteemed place in many conceptualizations of such

domains.
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One or many knowledge sources can interact with the learner during
learning events, and each knowledge source that interacts with the learner can
define a more or less different conceptualization of the target domain. There-
fore, the learning agent cannot rely on receiving only instruction that reflects
either a single conceptualization or a set of mutually consistent conceptualiza-
tions. 2 Conceptualizations can differ on the concepts they recognize, or on the
beliefs they hold to be true about those concepts; even experts often disagree
about some aspects of their domains. Furthermore, the conceptualization of an

individual knowledge source is not necessarily static and can vary over time.

Conceptualizations restrict what concepts are referenced by the in-
formation presented to the learner. Through this restriction, the knowledge
source partially determines what aspects of the target domain are worth know-
ing. Therefore, knowledge-source conceptualizations manifest an important
bias in the knowledge acquired by the learner (e.g., the propagation of cul-
tural bias). Furthermore, the contents of the information included in training
reflects a prioritization among the aspects of the conceptualization. For exam-
ple, rather than providing either a complete account of all available knowledge
in a domain, or a random sampling of knowledge that values all beliefs equally,
textbooks contain a finite amount of selected accounts. The choices that deter-

mine what is included, and in what order, reflect the author’s intuitions about

?This observation is not at all intended to constrain or prescribe what role the learning
agent takes in responding to (e.g., resolving) incommensurate conceptualizations. For ex-
ample, the learning agent may search input for specific types of incompatibilities (e.g., task
specification errors [FIN88]), or the learning agent may permit different conceptualizations
and resolve them internally (e.g., with contexts [Reb83, Cla90, Guh91]), or the learning
agent may not address or even notice incommensurate conceptualizations until they result
in conflicts in the growing knowledge base (e.g., KI, the program described in Chapters 3
— 5. However, KI does interactively present the consequences of new information so that
incommensurate conceptualizations might be noticed by the users as they are defined).
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what domain knowledge is more important for the reader to possess and, con-
sequently, what domain knowledge is less important. These choices may be
made with few or many expectations about the eventual applications of this
knowledge; they are certainly made without a complete knowledge of specific

tasks in the reader’s future that might reference the target domain. ®

A.1.3 The learning agent: a knowledge-based system

The learner is a knowledge-based system. It is essentially a represen-
tation system; that is, it reflects one or more conceptualizations of the target
domain. This representation can be used to respond to requests about the
target domain. The system’s representation of the target domain is called
the domain theory, or simply the theory, and it comprises a set of statements

expressed in a representation language.

The language of representation defines a space of (i.e., a set of candi-
date) legal statements; the space of knowledge bases is the powerset of this set
of legal statements. Propositions are simple and basic statements in the lan-
guage; they are composed of constituent constructs (e.g., terms, relations).

Propositions that apply only to specified individual concepts (e.g., terms ap-

pearing as arguments that are constants rather than variables) are called ground

3Some textbooks (e.g., ones on how to play poker) are much more focused on solving
particular tasks than other textbooks (e.g., on medicine, history, biology, ...). The knowledge
included in some textbooks (and in some knowledge-based systems) must be determined by
their authors without the benefit of knowing which specific tasks in the domain will be
encountered by the readers (or the knowledge-based systems) and, therefore, what specific
knowledge in the domain will utlimately be required. Thus sometimes considerable use
expectations may be available (e.g., authoring a recipe book), but very often few or only very
general use expectations may be available (e.g., authoring an encyclopedia or a textbook or
a knowledge base on botany).

*Note that the langnage of representation does not specify an ontology or any elements
of an ontology; rather, it specifies how statements, including those that define the ontology,
can be expressed. Often in ML literature, the language includes ontology; here it does not.
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. . transformation . .
situation 1 > situation 2
encoding decoding
representation
. of transformation .
representation > representation
of situation 1 of situation 2

decode(encode(Transformation)(encode(Situation))) = Transformation(Situation)

Figure A.2: The Representation Law

propositions or facts, while those propositions that reference or apply to sets of
concepts (e.g., they include references to quantified variables) are rules. The
representation language also specifies both a set of operators (or procedures)
that apply to propositions and the semantics (behavior) of those operators
(e.g., rules of inference for using the operators to derive propositions from

other propositions).

The domain theory comprises a set of beliefs; each belief is a proposi-
tion that is presumed to be true in the target domain. Beliefs currently cached
in memory are said to be explicit; those not cached in memory but that can be
derived from explicit beliefs using the representation language’s operators are

implicit. ® The knowledge base comprises the explicit beliefs.

Newell characterizes the essential obligation of a representation with

The Representation Law [New90] (Figure A.2). In Figure A.2, the notion of

®Note that this explicit vs. implicit distinction is not the same as the explicit vs. tacit
distinction made in contemporary schema theory in human psychology: the former relates
to whether or not beliefs are directly stored in memory; the latter relates to whether or not
beliefs are known consciously. In both, the status of particular beliefs can shift between
explicit and otherwise.
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transformation is a very general one. Transformations include not only pro-
cesses in the target domain that physically manipulate or alter domain objects
but also any conceptual mapping from one situation to another. Situations in-
clude sets of propositions as well as the constituent constructs of propositions,
such as terms and relation constants. Transformations thus include decom-
posing sets of beliefs into individual beliefs and decomposing beliefs into con-
stituent constructs (e.g., relations and terms). The representation law requires
that a correspondence occur between concepts in the target domain and con-
stants in the representation and that this correspondence be preserved through
transformations. Commitment to the representation by the system’s users is
warranted only to the extent that the representation law holds between the
domain theory and the target domain in those situations and transformations

relevant to the application tasks.

The target theory is that which learning attempts to produce: a rep-
resentation of the knowledge sources’ conceptualizations adequate to support
correct responses to all requests from the task sources, and thereby to support
strong commitments. It is the theory-wide analog of the target concept in con-
cept learning; it maximizes the correspondence of every constant symbol (i.e.,
every object in the universe of discourse, every relation) in the theory to what
that symbol denotes in the conceptualization of the domain. The target theory
is an idealization that may never be realized. The domain theory changes over

time through learning as it evolves towards the target theory.

The ontology of the theory is the set of defined constants; this in-
cludes constant symbols denoting collections, individual entities, relations, and
attribute values. The number of identifiable objects or concepts recognized by

the conceptualization and defined in the target domain can be infinite; conse-
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quently, the theory’s universe of discourse may be infinite. While the set of
relations recognized by the conceptualization and defined in the target theory
is probably not infinite, at any given point in its evolution the set of relations
defined in the domain theory need not be complete. Therefore, the ontology is
extendable: new information can include references to symbols not previously
defined (e.g., symbols denoting new collections, new entities, new relations, or

new attribute values).

Information provided by the knowledge source is expressed in a spec-
ification language and is interpreted by the learner. Interpretation produces,
at least, a translation of new information in the internal language of repre-
sentation. ® In addition to stipulated beliefs about the target domain, new
information can include meta-information, such as the identity or type of the
knowledge source or bounds on the computational resources that can be con-

sumed by the learner while processing the new information.

A.1.4 The task source

The task source provides requests to the knowledge-based system.
Each request and response pair constitutes one problem, or task instance; col-
lections of problems sharing general specifications constitute problem types,
or application tasks. Multiple task sources can be interacting with the system

during problem solving.

As with knowledge sources, a conceptualization of the target domain

is associated with each task source. Each application task is conceived within

5A special case of this learning situation occurs when the information is expressed by
the knowledge source in the internal representation language (e.g., when the learning system
itself is the knowledge source) and, thus, requires no interpretation. This simplifying special
case has been called the same-representation trick [Die82, pages 368-369].
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(i.e., in terms of the concepts recognized by) the task source’s conceptualiza-
tion. Task-source conceptualizations also change over time. It is a fundamental
requirement of the representation effort that the conceptualizations of both the
task sources and the knowledge sources are sufficiently similar to permit the ex-
istence of a single theory (e.g., the target theory) capable of supporting correct
responses to the requests. However, during learning, the conceptualizations of
the task sources are often not known and so must be assumed. A notorious
source of failure by knowledge-based systems occurs when such assumptions

are violated.

For an information system, the task sources include the system’s user
community; for a robot, this may also include its physical environment. Know-
ledge sources can act as task sources, and vice versa: teachers and textbooks
pose questions about presented material, and employers train their employees

in preparation for subsequent work assignments.

The possible requests provided to the system by a task source can
include inquiries about the truth of any aspect of that task source’s concep-
tualization. Therefore, the scope of the tasks can include querying the truth
of any proposition that is expressible in the representation language and that
involves terms recognized by any conceivable conceptualization of the target

domain.

The criterial task is the set of requests used to evaluate learning.
Traditionally, learning is appraised by changes in the system’s performance on
the criterial task [Bra79, pages 3-11]. However, this tradition is warranted only
to the extent that the criterial task is representative of the application tasks

actually encountered.

Commitments of the knowledge sources and learning system to as-
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sumptions that constrain the application tasks are a very important aspect of
every learning environment. As Chapter 1 discusses, traditional approaches to
machine learning assume the application is completely (although perhaps im-
plicitly) known by both the learning system and the knowledge source. How-
ever, learning often occurs when the learner has no expectations about the
application tasks and when information presented by a knowledge source re-
flects only very general intuitions about its application. In general, it is not
warranted to assume the learner and the knowledge sources will precisely pre-

dict subsequent application tasks.

Learning without strong preconceptions about the eventual use of
acquired knowledge offers the important advantage of acquiring foundational
(i.e., multi-purpose or task-independent) knowledge. Knowledge bases com-
prising foundational knowledge are of interest to engineers of knowledge-based

systems for several reasons:

1. Building separate knowledge bases for every pairing of domain and task
(e.g., separate knowledge bases for diagnosing malfunctions, for design,
for education, for marketing) is not practical because so much of the do-
main knowledge required for one task would also be required for other
tasks [PLM*88]. Acquiring the knowledge for each of the many indi-
vidual task-specific theories within a common domain would duplicate,
and therefore waste, effort. More significantly, the effort to maintain (e.g.,
debug and extend) the separate knowledge bases would significantly mag-
nify the cost, and divergence among the many separate bodies of know-
ledge would seem inevitable. This suggests that maintaining a single
body of foundational knowledge is eminently preferable to maintaining a

large set of task-specific knowledge bases.
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2. Very few theories are stable: they are neither complete nor is their change
monotonic. Virtually no traditional knowledge sources (e.g., humans,
books, databases, etc.) can boast complete knowledge in any signifi-
cant or natural domain. It seems reasonable, therefore, to consider many
domains as, in principal, infinite, and to expect that any particular know-
ledge base will have gaps. Furthermore, our knowledge of most domains
fluctuates: new knowledge is discovered as old beliefs are refuted; new the-
ories are proposed as old theories are rejected; new paradigms are adopted
as old ones are discarded [Kuh70]. Ongoing evolution is inescapable for

a knowledge base.

3. Very few application tasks are stable enough and clearly understood
enough to warrant precise predictions for the use of a knowledge base
by its designers. Task drift is evolution in the set of tasks a system is

expected to perform; task drift has several causes:

(a) Changes in domain knowledge affect domain tasks. For example, the
introduction of a new treatment, the discovery of a new side effect
of an existing treatment, or the discovery of a new indicator (i.e.,
symptom) all change the task performed by a medical diagnostic
knowledge-based system (e.g., MYCIN). Similarly, new communica-
tion technology changes the tasks performed by political or market-
ing advising systems, and new policies in law and law enforcement
change the tasks performed by legal advising systems. Many prob-
lem solving methods, such as heuristic classification, assume stable
aspects of the domain, such as the set of possible solutions. Any

change to these aspects causes task drift.
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(b) Changes in the concerns of the users affect tasks. For example, the
users of a medical diagnostic advising system might show increasing
concern with the financial or ecological cost of diagnostic tests, or
they might no longer be content with simply a diagnosis but require

an explanation of the diagnosis as well.

(c) Changes in the populations of users affect tasks. For example, an
investment consulting system developed for professional investors
might fail miserably for less sophisticated investors who do not ad-
equately understand the risk and assumptions underlying various
investment strategies. Advising a professional and advising a novice

are different tasks.

Task drift can have enormous repercussions for a knowledge-based system,
depending on the extent to which that system is tailored to its expected
uses. If a system’s ontology cannot make the distinctions required to
perform new application tasks, and if the system was designed under
the assumption that these distinctions would not be necessary, then task
drift can be devastating, even terminal. By avoiding a close coupling to
narrow use expectations, foundational knowledge resists the potentially

dramatic impact of task drift.

. An advantage of declarative knowledge is that it is capable of being used
to solve tasks that are unforeseen by the knowledge engineers who craft
it [Nil91]. In other words, each unit of declarative knowledge is capable
of being combined with other units in novel ways to infer conclusions
or answers to queries that were not explicitly provided for by the sys-
tem’s designers. Encoding knowledge in logic achieves this quality at a

micro-level: each atomic statement can interact with other statements,
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according to the logic’s rules of inference, to derive new and unanticipated
statements. Foundational knowledge attempts to preserve this property
at a broader, macro-level of the knowledge base by excluding tacit as-
sumptions that are only appropriate for particular application tasks. By
adapting to unanticipated uses, foundational knowledge is more versatile

than conventional, task-specific expert systems.

Topics such as granularity of declarativeness (at what level units of knowledge
can interact in novel, non-scripted, ways) or the efficacy of task-specific com-
piled knowledge versus that of task-independent declarative knowledge are of
interest to research in the knowledge representation and knowledge-based sys-
tems communities and are not inherently germane to machine learning. How-
ever, questions such as how to acquire foundational knowledge, how to learn
from foundational or task-independent information, and how to support inci-
dental learning are germane to machine learning and form some of the core

issues of research on knowledge integration.

A.1.5 Knowledge transitions

Knowledge engineers face a daunting task. Developing representa-
tions of complex domains that support automated reasoning is difficult because
of the subtlety and complexity of the domains and because of obstacles such
as the qualification problem. Furthermore, the number of possible alternative
conceptualizations and representational schemes is staggering, and there are
few constraints available to guide selections among the alternatives. These
problems dominate the representation process and must be confronted each

time a representation is formulated or reformulated.

Figure A.1 illustrates a decomposition of the representation problem
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by identifying three important thresholds in the evolution of the representation:
conceptualization, formalization, and application. Crossing each threshold con-
stitutes part of the representation problem. It is important to consider what
factors guide the transitions across these thresholds and how these transitions
interact. Learning affects the transition from conceptualization to formaliza-
tion, while problem-solving affects the transition from formalization to appli-
cation; both are influenced heavily by the conceptualization. These thresholds
thus provide a framework to reassess the nature of use expectations and their

role in the representation problem.

Since it is true that only what is included in the conceptualization can
be included in the formalization, and only what is included in the formalization
can be included from the application, these three thresholds define a hierarchy
of inclusion. However, the value of any knowledge-based system is inevitably
judged by the quality of its application, that is, by how well it performs the
tasks actually put to it, rather than by the qualities of the underlying formal-
ization or conceptualization. Therefore, in practice, this hierarchy is turned
upside down and becomes a hierarchy of exclusion that prescribes: include in
the formalization (only) what will be required by the application; include in the
conceptualization (e.g., the ontology) (only) what is required by the formaliza-
tion. The exploitation of use expectations thus transcends machine learning:
it dominates other (e.g., manual) approaches to developing the formalization,

and it dominates the development of the conceptualization.

The practice of guiding the design and development of representa-
tions with use expectations is summarized by the Use-directed Representation

Principle:

Representation tasks occur in response to (or in the context of) an
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agent attempting to perform a particular problem-solving task, and
that problem-solving task identifies precisely what distinctions and

capabilities are required in the resulting representation.

The use-directed representation (UR) principle is ubiquitous in the traditional
pursuits of artificial intelligence. How-to books for constructing knowledge-
based systems admonish designers to begin by defining precisely the require-
ments of the application task [BBB*83, BD81]. It is inherent to the most
fundamental computational methodologies used in artificial intelligence, such
as the notion of a state-space search. The expectation to begin with a prob-
lem specification is ingrained, a fundamental tenet of computer science: it is
taught as basic programming methodology; it is assumed in the construction
of computer applications, such as data-base systems; it is assumed for the ap-
plication of formal methods for program analysis. Often the task specifications
are assumed to be the responsibility of users and therefore outside the realm

of computer science.

Methodologies for developing expert systems make extensive use of
the UR principle. The performance task dictates both what knowledge to
include and how to encode it. However, the tacit assumption that the encoded
knowledge will be used only for performing the anticipated performance task
appears to be a primary source of the brittleness that plague expert systems. If
the performance task drifts at all, this assumption may be violated. Essential
knowledge will be missing and the system’s performance will be very poor
or erratic [LF87]. It is no accident that projects like Botany [PLM*88] and
Cyc [LG90] do not commit to a specific set of performance tasks, since doing
so would have the advantage of guiding knowledge-base development and the

disadvantage of introducing brittleness. The bias that guides knowledge-base
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development is one and the same bias that introduces brittleness; they are
two sides of the same use-expectations coin. The relationship between use
expectations and brittleness is summarized by the use-commitment brittleness

conjecture:

Exploiting use expectations during the conceptualization or formal-

ization of knowledge introduces brittleness.

The use-committment brittleness (UB) conjecture suggests that the single strong-
est bias for acquiring knowledge for contemporary knowledge-based systems, by
either automated (e.g., machine learning) or manual means, is also the greatest

source of brittleness that plague the resulting knowledge-based systems.

The convincing attribution of brittleness in contemporary knowledge-
based systems to missing knowledge has been made elsewhere [LF87]. This
conjecture goes further by identifying use expectations as the predominant

cause of the missing knowledge, and, consequently, of the brittleness.

McCarthy hypothesizes that one important characteristic of common-
sense reasoning is that the reasoner cannot predetermine what knowledge will
be required by common sense tasks [McC89a). As discussed earlier, this is also
a property of foundational domain knowledge, which transcends common sense.
Let the class of abilities that have this general property be called flexible intelli-
gence; it is the complement of brittle, idiot-savant-like intelligence that achieves
very high levels of performance but only within a very narrowly specified set of
tasks. The consequences of the UB conjecture are profound: no method that
commits to strong use expectations can attain representations sufficient for
supporting flexible intelligence. This is why projects such as Botany and Cyec,

which are enormously risky and expensive, are also enormously important.
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The UB conjecture and its consequences could be dismissed by pro-

ponents of traditional system-building methodologies for a variety of reasons:

1. The concern of computer science is restricted to developing solutions to
specified computational problems; it is not concerned with developing spec-
ifications of computational problems. As a subfield of computer science,
artificial intelligence shares this restriction. Thus, use expectations are
inherent to computer science in general, and artificial intelligence in par-
ticular. However, even if this restriction applies to most subfields of com-
puter science, it cannot apply to artificial intelligence (and thus identifies
an importance difference between artificial intelligence and mainstream
computer science). For many of the essential problems studied within
artificial intelligence (e.g., common sense reasoning, general learning and
comprehension, teaching, natural language processing) there are no com-
plete task specifications. ” It is part of the enterprise of artificial intel-
ligence to develop an understanding of these tasks so that they can be
specified computationally; such tasks specifications would be considered

major results.

2. In the absence of precise use specifications, how can we as artificial in-
telligence researchers and practitioners evaluate our computational arti-
facts? This imposing concern pales before the reality and the difficulty of

evaluating human knowledge. Should the difficulty of evaluating human

"There are partial task descriptions. For example, each formal learning task represents
the hypothesis that any method that performs the task constitutes learning. Therefore, each
such task hypothesizes one sufficient condition of learning. However, traditional machine
learning tasks are nowhere close to covering all the behaviors that could generally be called
learning; so much of the task of learning, what it means to learn, remains unspecified.
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learning preclude our attempts to effect it? If evaluating human know-
ledge is so complex and imperfect, should we expect simple and precise
methods to evaluate general artificial intelligence? To avoid work on the
essential problems just because the methodology is not worked out is
no solution. Research on appropriate methodology, such as methods of
evaluation, must proceed in tandem with, not restrict, research on the
task specifications and computational methods to perform those tasks;

developing such methodologies should be considered major results.

3. There are many tasks that are well specified and that would be useful
to automate; restrict ourselves to these tasks. Essentially, this position
accepts brittleness as inherent, and thus limits artificial intelligence to

idiot-savant-like behavior.

4. There are no other alternatives; use expectations are the only source for
guiding representation tasks. This is simply not true, as evidenced by
the volumes of textbooks and other knowledge sources which commit to
conceptualizations and specify bodies of archival knowledge but do not

commit to strong use expectations.

Research in artificial intelligence should re-evaluate its reliance on UR. In some
(perhaps many) situations, representation tasks could be guided by other fac-
tors, such as the conventional wisdom about each domain as reflected in the

domains’ existing archival knowledge.

Use expectations should not be entirely eliminated from approaches
to knowledge representation. In some sitautions they are warranted; in oth-
ers they may be unavoidable. In those cases, a least commitment approach to

their use should be adopted. However, for many representation tasks, their
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use will be speculative and suspect. The only time their validity is uncondi-
tionally guaranteed is during problem solving, when a particular use is directly
availablle. Delaying their use past conceptualization and formalization pre-
vents use-based bias from shaping these thresholds and, consequently, restricts
the brittleness woven into the representations at each level. This is a major
motivation for acquiring foundational knowledge, and for studying knowledge
integration, which does not commit to fixed or narrow use expectations, as an

approach to machine learning.

A.1.6 Component interactions

The compositional model in Figure A.1 identifies four roles and six
types of transactions among them. The possible sequences of transactions
among the components define the types of interactions that are permitted.
Every sequence denoting a completed learning event will conclude with trans-
action type information. Different sequences of transactions exemplify different

assumptions about the context in which learning occurs:

1. The sequence [request, question, information] illustrates learning during prob-

lem solving.
2. The sequence [question, information] illustrates intentional learning.

3. The sequence [information] illustrates incidental learning.

Furthermore, it is possible for more than one role to be assumed by a single

entity:

1. When the learner is also the knowledge source introspective learning oc-

curs: learning occurs when new knowledge is discovered from existing

knowledge (e.g., AM [Len76]).
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2. When the task source is also the knowledge source, the learner is called
a learning apprentice: learning occurs when instruction on how to solve

a particular problem follows the learner’s failure to solve that problem

(e.g., PROTOS [PBH90)).

A.1.7 Discussion

An important aspect of this model of a learning environment is the
conceptualization of the target domain from which the knowledge source se-
lects information to present to the user. The conceptualization is essential to
learning that facilitates the construction of knowledge-based systems. One of
the fundamental difficulties in building knowledge-based systems is determining
sufficient (e.g., consistent and complete with respect to the application tasks)
conceptualizations, and the consequences of an inadequate conceptualization
can be extremely traumatic. Consequently, many approaches to knowledge ac-
quisition are dedicated to assisting knowledge engineers in defining and then
developing conceptualizations [Boo85]. To assume that the initial conceptual-
ization is sufficient and remains constant is to ignore one of the fundamental

problems of constructing knowledge-based systems.

A.2 What is learning?

In order to formulate a formal specification of a learning task appropri-
ate to the described learning environment, it is convenient to first characterize
informally what is meant by learning, that is, to assess what kinds of changes

to a learning system are indicated by the notion of learning.

There has been considerable debate among machine learning researchers

about proposed definitions of learning. There are two predominant traditions:
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one casts learning as improving task performance; the other casts it as acquiring

knowledge.

A.2.1 Learning as enhancing task performance

Learning commonly occurs during problem solving. In fact, some
researchers claim that learning occurs only in the context of performing a task.

For example, Langley and Simon (1981) define learning as:

any process that modifies a system so as to improve, more or less
irreversibly, its subsequent performance of the same task or tasks

drawn from the same population.

This definition assumes that each learning event is paired with a task (or pop-
ulation of tasks); the system’s performance at that particular task improves as
a result of learning. Any modification to a system that improves its perfor-
mance at the task constitutes learning, and all learning improves the system’s

performance at some task.

Although it is clear that problem solving does have an important role
in learning, this task-oriented definition advocated by Langley and Simon is
unsatisfactory. The suggestion that any process that causes a system’s perfor-
mance to improve constitutes learning is too permissive and includes processes
that defy our common beliefs about what learning should be [Sco83]. For ex-
ample, a new leather shoe improves its performance at providing comfortable
and unencumbering support and protection by selectively stretching to conform
to the shape of the wearer’s foot. Howver, this clearly violates our common
understanding of what learning is. Therefore, improving task performance is

not a sufficient condition for learning.
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This definition of learning is also too restrictive. It requires that
learning improve a system’s subsequent performance at the same (population
of ) task(s). The implication seems to be that learning occurs during (or in re-
sponse to) the system’s attempt to perform a particular task, and that what is
learned is necessarily relevant to that task. Using the componential model, this
constraint restricts learning to the transaction sequence [request ... information:
a particular request is associated a priori with each learning event. However,
this restriction excludes many events that satisfy our common understanding
of learning: simply acquiring knowledge that may be useful at some future
task constitutes learning [SV83]. For example, while reading an L.M. Boyd
article, a subject might be informed that the English word “hello” translates
to “marhaba” in Turkish. If this information was not previously known (and is
remembered ), the subject has learned something new even though the subject
certainly was not (consciously) performing a task relevant to this new informa-
tion. Alternatively, consider the behavior of the student in Figure 1.1: learning
occurs as the student comprehends the teacher. The student’s learning does
not primarily result in improved performance at comprehending the teacher;
rather, it results in a greater knowledge of botany. Therefore, the context of
performing an application task relevant to what is learned is not a necessary

condition for learning.

Furthermore, by requiring improved subsequent performance, the def-
inition is too restrictive. Learning can, in fact, be seen to decrease task perfor-
mance, depending on the measures used to evaluate that performance [Bra79].
A subject is told that one cause of condition Y is precondition X. The subject
is later queried for the single best reason causing each of a particular set of

patients to have condition Y and responds, correctly, that the cause might be
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precondition X. Later, the subject is told that preconditions A through W also
cause condition Y. Subsequently, the subject is asked for the single best reason
causing each of a new set of patients to have condition Y, and the subject
declines to speculate the possible cause. In fact, unbeknownst to the subject,
the conditional probability of precondition X being the cause of condition Y
is 90%. However, by learning an extension to the set of possible causes, the
success rate for the subject declines dramatically. Alternatively, consider again
the learning event presented in Figure 1.1. In response to new information,
the student’s knowledge of botany is in some ways enhanced, as evidenced by
the prediction that other shoot organs also have cuticles, but in other ways it
is corrupted, as evidenced by the prediction that leaves with cuticles starve.
Whether or not learning improves performance depends entirely on the criterial

task [Bra79].

Despite these objections, problem solving does have great significance
for learning. First, a problem-solving context can guide learning processes.
Second, the function of learning can be explained in terms of improved task
performance. Third, changes in task performance are often the only proof that
learning has occurred. Therefore, problem solving is very important to the pro-
cess of learning and to our study of learning. However, a definition of learning
should not so strongly couple learning and problem solving: it should not per-
mit any process by which task performance is improved; it should not require
improved subsequent performance; and, it should not restrict assessments of

performance changes to the same task.
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A.2.2 Learning as knowledge acquisition

In contrast to the task-oriented definition of learning advocated by
Langley and Simon, other machine learning researchers have proposed knowledge-

oriented definitions of learning:

1. Scott and Vogt define learning as: the construction of an organized rep-

resentation of experience [SV83].

2. Michalski defines learning as: constructing or modifying representations

of what is being experienced [Mic86].

3. Dietterich defines one important type of learning as: the acquisition of

knowledge [Die86)].

To simplify matters, this discussion considers only conceptual learning in which
“representations of experience” can be interpreted as knowledge, as opposed to
other possible phenomena (e.g., scars, changes in muscle mass, etc.) that are

not naturally recognized as knowledge.

Each of these definitions identifies knowledge acquisition as the essen-
tial effect of learning. Specifically, each claims that the acquisition of any know-
ledge (i.e., affecting the representation of any experience) constitutes learning,
(and the first two appear to claim that all learning involves the acquisition
of knowledge). In terms of the componential model, this position admits as
learning the simple transaction [information], requiring only that the informa-
tion endows the system with new beliefs. Although it is clear that knowledge
acquisition does have an essential role in learning, these knowledge-oriented
definitions are also unsatisfactory because they conflate knowing with learn-

ing.
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Devices that simply react to sensed aspects of their environment can
be said to have, and therefore to acquire, knowledge of their environment. For
example, a thermostat senses the ambient temperature, and, depending on its
target temperature setting, turns an air conditioner on or off. The thermostat
acquires new knowledge each time it senses fluctuations in the ambient temper-
ature; consequently, each such fluctuation results in an event that satisfies the
knowledge-oriented definitions of learning. ® Alternatively, consider an alarm
clock: does it learn as each moment passes? When the current time equals the
alarm setting the clock demonstrates its acquisition of this new belief by acti-
vating its alarm, but it hasn’t learned. There is a difference between knowing
and learning; consequently, there must also be a difference between knowledge

acquisition and learning.

A.2.3 Learning as response-function evolution through knowledge
acquisition
In contrast to the task-oriented definition of learning advocated by
Langley and Simon, and the knowledge-oriented definitions of Scott, Vogt,
Michalski, and Dietterich, the following definition of conceptual learning is

proposed:

Learning is any process by which a system acquires knowledge that

changes its response function.

Here, knowledge denotes information, held to be true, in any form of represen-

tation, that can be used by the system to influence its response function. The

8The first two definitions are even more permissive. For example, simple sensing devices —
such as thermometers, scales, cameras, audio recorders, etc. — are all capable of representing
aspects of their experiences, and as such they all qualify as learning systems under the first
two definitions.
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Each learning event advances the response function to the next step in the
progression.

Figure A.3: Learning as response-function evolution

response function is the system’s behavior potential; it comprises the mapping

from system inputs (i.e., requests) to outputs (i.e., responses).

This definition of learning resolves the problems noted with the task-
oriented and knowledge-oriented definitions. It unifies the two by retaining
the essential roles of problem solving (from the task-oriented view) and know-
ledge acquisition (from the knowledge-oriented view) while excluding notorious

examples of non-learning, such as the leather shoe and thermostat examples.

As Figure A.3 illustrates, each learning episode results in a new re-
sponse function: for at least one possible request, the new function produces a
different response than the prior function. This distinguishes between simply
acquiring knowledge (such as sensing) and learning. For example, the response

function of a simple thermostat can be characterized by the formulae:

[(temperature = target) = state(AC On)]
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[(temperature < target) = state(AC Off)]

These formulae completely, although implicitly, specify a table of triples that
associate the system’s response (i.e., state of the air conditioner) with every
possible input (i.e., the ambient temperature and the target temperature).
Sensing the ambient temperature or adjusting the target temperature doesn’t
change this response function and, consequently, doesn’t constitute learning.
However, if the thermostat were also designed to date stamp and remember

sensed temperatures, then the response function would be extended to include:

[recorded-temperatures(target-date, X) = display(X)]

This formula constrains the system’s response function but does not completely
specify it. The variable X is not an independent parameter; rather, it is defined
by the relation recorded-temperatures (e.g., a set of date and tempreature pairs
stored in the device’s memory); each fragment of knowledge that identifies a
new pair that satisfies this relation changes the system’s response function.
Consequently, sensing and recording a new temperature changes the response

function and constitutes learning.

An essential condition of this definition is that acquired knowledge
changes the system’s behavior: its response to some possible request must be
altered by acquired knowledge. The acquired knowledge constitutes what is
learned; the change in behavior demonstrates that learning has occured. In
order to influence behavior, knowledge must be accessible. For example, the
complete and correct rules of chess entail how to play every possible game of
chess, including the moves, if any, that lead only to wins for every possible chess
situation. However, simply learning the rules of chess does not support playing

perfect chess if the knowledge of the perfect moves are inaccessible (which must
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be the case for any realizable system).

This definition permits learning in the absence of new external ex-
periences (i.e., introspective learning). For example, learning may result from
altering the representation of knowledge to transform inaccessible beliefs into
accessible beliefs (i.e., improving the theory’s compactness; see Section B.2.1).
Learning actually does occur in this situation if the newly accessible beliefs

cause a change in the system’s response to some possible request.

According to this definition, each learning event acquires knowledge
that changes the system’s response function. When learning occurs, some task
relevant to the acquired knowledge can, in principle, always be identified, since
each possible response can be paired with a request that requires precisely that
response. For example, learning the Turkish word for “hello” improves the
learner’s ability to communicate politely with Turks; it certainly supports re-
sponding to the query: What is the Turkish word for “hello”? In general, the
acquisition of belief p can always be paired with the request: Is it true that
p? This reflects the important relation between learning and problem solv-
ing: learning always changes the system’s performance at some set of tasks. ®
However, the affected application tasks may be completely independent of the
learner’s activities during the learning event, and the learner may be oblivious

to them when learning occurs.

A.2.4 Teaching vs. learning

In every representation task, there are two essential roles: that of the

learner and that of the teacher. The responsibility of effecting the represen-

°In fact, learning necessarily improves the system’s performance at some set of tasks.
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tation is distributed between these two roles. For example, the teaching role
may be responsible for carefully selecting the training and presenting it in a
particular sequence. The learner may rely on the teacher to present only train-
ing having some particular form or content. The teacher may be expected to
provide worked-out solutions to tasks (e.g., classified training instances) or to
ensure that there is no noise in the provided training. The teacher may be
required to answer questions, or to ratify proposed new beliefs suggested by

the learner.

Each representation task will necessarily distribute the responsibility
for effecting the new representation between the teaching role and the learning
role.  When the teacher adopts some measure of responsibility (R), the re-
mainder (1-R) is apportioned to the learner. For example, during introspective
learning, the responsibility apportioned to the learner’s role may be complete;
during programming, the responsibility assumed by the teacher’s role may be
complete. Learning occurs only to the extent that responsibility for effecting
the resulting representation is assumed by the agent in the learning role. Con-
sequently, pure programming, which certainly can change the response function

of a system, does not constitute learning.

As Figure A.4 illustrates, most machine-learning methods commit to
some particular distribution of responsibility for effecting the new representa-
tion while most machine-learning tasks commit to some range of distributions.
Ideally, learning tasks and methods should not commit to narrow ranges of
the distribution of responsibility during learning. By being flexible on the ap-
portionment of responsibility, learning methods remain opportunistic, ready to
exploit whatever abilities both the teacher and the learner bring to each par-

ticular learning situation. Learning tasks should remain flexible to permit this
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Figure A.4: Teacher Responsibility vs Learner Responsibility

opportunism in learning methods that perform them.

A.3 Learning as test incorporation

Constructing a knowledge base can be viewed as a search through a
state space: each state is a candidate knowledge base, and each operator that
moves between states is a knowledge-base modification (e.g., an extension,

retraction, or revision). The contents of new information is equated with one
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operator that can be applied to the current state (i.e., the state denoting the
current knowledge base). Thus, the enterprise of machine learning can be
formally defined as automating, to some extent, search in this state space, and
acquiring knowledge beyond the explicit content of new information is a form

of test incorporation [Tap80].

As Figure A.5 illustrates, acquiring knowledge beyond that explicitly
contained in the new information causes the application of a single operator to
expand into the application of a sequence of operators. All states that do not
include the results of applying the entire sequence of operators are removed
from the state space, thereby effectively reducing the size of the state space.
If the size of the state space is n and the average number of operators applied
during each state change is m (including operators denoting both the training
and the additional learned knowledge), then the effective size of the state space
is n/m, and the reduction in the size of the state space, as well as the gain

from learning, is n — n/m.

This framework permits formally defining significant and trivial forms
of machine learning. Significant learning acquires knowledge beyond the ex-
plicit content of training, thereby compressing the knowledge-base state space;
it is the obligation of every non-trivial learning method. In contrast, trivial
learning acquires only what is explicitly presented; this includes the most ba-
nal forms of rote learning, such as the behavior of a text editing program (e.g.,

emacs).

The extent to which the search space is reduced varies directly with
the amount of additional knowledge that can be gleaned from the training,
which in turn varies with the number of different types of interaction between

new and prior knowledge that a learning method is sensitive to and can exploit



270

b1 b b +bg {—b1 +bg}
ba bs \
=l \%
by bo ba| b1 b2 ba| |b1 b2 b3 b3
b4 b5 b6 b4 b5 b4 b5 b4 b5 \
e — N
/ / -I-MA/ \m—l—bsa
b1 bo b3 by b3 b1 bo b3
by b5 by b5 b4 b5 by b5
/ b7 bg bg bg b8 b9
/ +b7/+b6¢ \-I—bg /61 * \
by b3 by bs by b3 /
by b5 by b5 bgl b4 b5 <
b7 bg bs bo

/#\/#\/#\

Machine learning, (i.e., knowledge-base development) viewed as a state space search:
states are alternative knowledge bases; operators that move between states are
knowledge-base modifications. In some initial state, the current knowledge base
includes beliefs b; through bs. Several operators can be applied to this state, one
of which is adding belief bs. A learning method, reacting to interactions detected
between new and prior knowledge, indicates that adding bg also requires retracting
b, and adding by, thereby collapsing a path of operators (i.e., a set of knowledge-
base modifications) into a single step (the arc on the right-hand side). Learning has
reduced the size of the state space by effectively removing many of the states; in
the example, the state {b; by b3 by b5 bg} is removed from the state space. Without
learning, no such interaction is detected, and the complete space of states and of
possible operator sequences must be searched.

Figure A.5: Learning as Test Incorporation
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to acquire additional knowledge. By actively investigating diverse ways that
new and prior knowledge can interact, learning methods can more effectively
guide knowledge-base development. By acquiring knowledge beyond the ex-
plicit content of the new information, they enhance the knowledge base and

compress the space of alternative knowledge-base extensions.



Appendix B

The Learning Task of Knowledge Integration

One of the goals of exploratory research in Artificial Intelligence is
to develop precise, computational specifications of new tasks. This appendix
describes knowledge integration as a machine learning task. The first section
proposes a formal specification for knowledge integration as an information
processing task. The second section discusses some general criteria to guide

learning methods that perform this task.

B.1 A formal definition of knowledge integration

The formal specification of a new task is useful in two ways. First,
it defines precisely the scope of a body of research. The definition facilitates
determining whether particular problems are or are not instances of the task
and whether different methods are or are not applicable to the task. Second,
it constitutes a hypothesis that the formal definition adequately characterizes
the phenomenon being studied. Subsequent research may reveal inadequacies,

such as failures in coverage, and may propose refinements to the task definition.

For the purpose of constructing a knowledge base, the learning task of
knowledge integration is defined as the information processing task presented

in Figure B.1.

The admissibility predicate defines an invariant condition that must

272
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Given:
1) Representation Language: a language (RL) to describe beliefs, and an inference procedure ().
2) Knowledge Base: A set of beliefs (A) expressed in RL.
3) Training: A set of beliefs (®) expressed in RL
4) Admissibility Criteria: A predicate (I') over A, ©, I, and the resulting knowledge base, A’,
specifying criteria that beliefs of A’ must satisfy (e.g., consistency requirements).

Determine:
Revised Knowledge Base: a set of beliefs (A’) that satisfies the admissibility criteria
(i-e., T'(A ® F A') is true).

Figure B.1: The Knowledge Integration Task

be preserved across knowledge-base modifications. As the knowledge base is
modified (e.g., extended with new information) the learning methods are ob-
ligated to ensure this condition is satisfied by the resulting knowledge base.
Satisfying the admissibility predicate may require learning methods to affect
further changes to new or prior knowledge. These further changes constitute
learning beyond the explicit contents of the new information (as discussed in
Chapter 1). Thus, the admissibility predicate characterizes the learning goals;

it determines the knowledge changes that learning must affect.

Machine learning can be viewed as achieving test incorporation in
the generate and test search paradigm (Section A.3), and this view makes clear
the role of the admissibility criteria. In this paradigm, knowledge-base con-
struction is cast as a state-space search problem: the current knowledge base
corresponds to the current state, and each possible modification of the know-
ledge base corresponds to a search operator that maps the current state into
a new state. The admissibility predicate specifies necessary conditions that
each new state (i.e., each candidate knowledge base) must satisfy. The learn-
ing methods incorporate into the process of generating a new state the test
that the admissibility criteria is satisfied by that state. Consequently, only

states that satisfy the admissibility criteria are generated. States that fail the
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admissibility criteria are never generated and so are tacitly removed from the
search space. Thus, machine learning is a form of test incorporation: it facili-
tates knowledge-base construction by enforcing the admissibility condition on
all generated knowledge bases, thus reducing the space of candidate knowledge

bases.

The admissibility predicate defines the learning goals. Making this an
explicit parameter of a general learning task has two advantages. First, it avoids
tacit commitments to particular learning goals: the admissibility predicate
specifies precisely the obligation of methods that perform the task. Second,
it provides a unifying framework in which the set of learning goals becomes
an accessible, manipulatable, independent variable. This framework defines
a space of learning tasks and a way of comparing existing machine learning
tasks. The task description presented in Figure B.1 serves as a schema for
more specific learning tasks since each distinct admissibility predicate defines

a distinct learning task.

Traditional machine learning tasks may assume a narrowly-focused
admissibility predicate because they constrain the knowledge to be learned.
Consequently, the learning methods that perform these tasks can be equally
narrowly-focused. They define strategies for only determining how to learn
rather than also determining what to learn. A less focused admissibility pred-
icate, one that does not tightly restrict the learning goals, requires learning

methods to include strategies for both.

Increasing the scope of the admissibility predicate increases the diffi-
culty of establishing it. For example, maintaining complete consistency among
all statements in a knowledge base (the traditional goal of the machine learning

task of knowledge revision) is a stronger learning goal than maintaining con-
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sistency among some subset of the knowledge base, such as concept definitions
and classified concept instances (the traditional goal of the machine learning
task of concept acquisition). Enforcing the stonger learning goal is more diffi-
cult since any learning method that fails to satisfy the more specific learning
goal also fails the general goal. Similarly, satisfying a given learning goal (e.g.,
maintaining the consistency of the knowledge base) is more difficult when the
representation language is more expressive (e.g., first-order logic vs. proposi-
tional logic). In general, increasing the scope of the learning task increases the

difficulty of performing it.

The task specification of Figure B.1 differs from traditional machine
learning tasks by not committing to learning goals dedicated to a specific ap-
plication task. The next section discusses learning goals that transcend narrow

use expectations.

B.2 General learning goals

In general, it cannot be assumed that either the learner or the know-
ledge source (e.g., a teacher, a textbook) can predict the precise application
tasks that the learner will eventually encounter (see Section A.1). This situa-
tion raises a fundamental question: in the absence of strong use expectations,
why should the learner expend any cognitive energy trying to learn from new
information? The learning behavior could simply add new information to the
existing knowledge base. Such behavior would constitute rote learning in the
extreme: no attention is given to the consequences of the new information, and
there is no learning gain (as defined in Appendix A.3). However, the learn-
ing behavior depicted in the scenario of Figure 1.1 is anything but rote: the

learner actively considers the consequences of the new information to find in-
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consistencies with prior knowledge and suggest generalizations. In the absence
of a specified application task, what can serve as learning goals to stimulate
the learner to exhibit this behavior? What conditions should be enforced by

the admissibility criteria? What principles trigger and guide learning?

B.2.1 Generic learning goals

In the absence of particular application tasks the learner relies on
generic learning goals: consistency, completeness, economy, and conviction.
Each of these goals promotes some aspect of the system’s competence. The
first two goals address the issue of correctness, minimizing both false positive
and false negative beliefs about the target domain. The last two address meta
issues, minimizing the cost of computing responses (e.g., establishing implicit

beliefs) and maximizing confidence in the content of responses.

Consistency: The goal of consistency is to minimize false positive beliefs.
These occur when the system establishes propositions which are not true in
(the conceptualization of) the target domain. Promoting internal consistency
involves minimizing the extent to which the learner’s beliefs are contradictory.
Promoting external consistency, or correspondence, involves maximizing the
fidelity by which the learner’s beliefs accurately represent the real world target
domain. Improving external consistency bolsters the user’s commitment to
the system. The goal of consistency incites the learner to detect and resolve
inconsistencies. Adjudicating among incompatible beliefs sometimes requires

additional knowledge.

Completeness: The goal of completeness is to minimize false negative beliefs.

These occur when the learner fails to establish a criterial proposition that is
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true in the target domain. A proposition is criterial to a request when the
content of the system’s response is affected by whether or not the proposition
is established. Promoting completeness involves identifying and filling gaps in

the learner’s knowledge, such as:

1. missing terms: collections or individuals in the target domain that have
no corresponding object in the universe of discourse and consequently

cannot be denoted in the theory.

2. missing predicates: relations, such as isa, color, age, location, etc., that are
true of objects in the target domain but have no corresponding represen-

tation in the theory.

3. missing facts: ground beliefs, such as isa(Mouse Pads Mouse Pad), color(M ouse-
Pads Royal Blue), age(Fred Years 29), location(Fred AustinTX), that are true

in the target domain but are not beliefs in the theory. !

4. missing rules: principles that are useful to describe sets of facts in the
target domain but are not explicitly represented as beliefs in the theory,

such as [V (zyz) contains(x y) & contains(y z) = contains(z 2)].

Missing terms and relations restrict the set of expressible propositions and so
typically entail large numbers of missing beliefs. Propositions that are express-
ible and true in the target domain but cannot be established also constitute
missing beliefs. One reason such propositions cannot be established is they are

not in the inferential closure of the theory because of other missing beliefs (e.g.,

!By convention, throughout this document, a term name comprising a concept prefix and
an integer subscript denotes a particular instance of the concept; e.g., MousePads denotes
a particular mouse pad and Plantg denotes a particular plant.
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rules and facts that support their derivation). Another reason is that they are
inaccessible: their derivation cannot be completed (e.g., due to limitations on

the computational resources consumed during inference).

Economy: The goal of economy is to organize knowledge in such a way as to
minimize cost, where cost is the consumption of computational resources (e.g.,
memory requirements, response time, CPU cycles, page faults, etc.). A primary
concern of economy is compactness — the accessibility of implicit beliefs. Econ-
omy is promoted when the accessibility of useful implicit beliefs is increased by
compiling the results of inference (e.g., proofs, derivations) into explicit know-
ledge fragments (e.g., theorems, macro operators). Chunking [And83, RN86]
and explanation-based learning [MKKC86, DM86] are techniques for increas-
ing the accessibility of implicit knowledge. Compilation can (although not

necessarily) improve the system’s response time [Min88] and completeness.

Conviction: The goal of conviction is to maximize commitment to the sys-
tem’s beliefs. Even if the system’s response to a given request is correct, in
the sense that the representation law (Section A.1.3) holds for the contents of
the request and response, the validity of the response might not be apparent
to the user. Internal conviction is the extent to which the system attributes
truth to its beliefs (e.g., a proposition may be held to be a monotonic or a
nonmonotonic belief, that is, a default assumption, depending on its support).
External conviction is the extent to which users are committed to the system’s
responses. Conviction is improved by justifying beliefs, that is, by determin-
ing how a belief follows from a set of other beliefs. Improving the system’s
explanatory competence — the ability to explain why a belief is held — bolsters

the user’s commitment to the system [Swa83, Mur90].
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Discussion: These four learning goals are interrelated. In a system that per-
mits nonmonotonic inference, consistency depends on completeness. For exam-
ple, with the default rule [V (z) p(x) unless q(x) = r(z)] * the system might fail
to conclude the true proposition ¢(Thing;) and conclude the false proposition

r(Thing;). Thus, a false negative belief begets a false positive belief.

In a system that includes computational resource bounds, complete-
ness depends on compactness. For example, let R denote the set of criterial
beliefs computed with infinite computational resources in response to an ar-
bitrary request, let R, denote the set of criterial beliefs computed under the
computational resource bound b in response to the same request (thus, every
proposition in R that has a monotonic derivation is included in R), and let p
denote an arbitrary element of K. Whether p is included in R is determined,
in part, by the compactness of p’s derivation. If the computational resources
required to establish p (e.g., the the number of variable bindings that must be
attempted before p is established) are too high, then p is omitted from R,. If

p is true in the domain then its omission from R, constitutes a false negative

belief.

In a system that includes derivation compilations, compactness de-
pends on consistency. A compilation is only as valid as the rules in the deriva-
tion that it summarizes. Compilations over incorrect rules will often reflect
the fallacies of those rules. As incorrect beliefs are detected and revised, com-
pilations that assumed those beliefs are no longer valid, and the benefits for

compaction afforded by those compilations are lost. Therefore, an evolving

2The operator unless(p) is satisfied when either —p is established or p cannot be estab-
lished; that is, it permits negation as failure when trying to establish —p in this particular
antecedent.
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system with poor consistency cannot reliably improve its compactness.

These generic learning goals can, in fact, be seen alternatively as
generic teaching goals (Appendix A.2.4). Each is simply a generic goal of any
representation. These goals are equally relevant whether a knowledge base is
being developed manually or with machine learning tools. In the absence of a
specific application task, the generic goals stimulate learning behavior beyond

simple rote learning.

B.2.2 Other learning goals

Generic learning goals and learning goals afforded by a specific appli-
cation task are two extremes. In between them is a spectrum of learning goals

associated with various aspects of each learning situation.

Domain-specific goals: Learners often acquire general learning goals for
particular domains. For example, students are taught to value some types
of knowledge within a specific domain over other types of knowledge. In most
academic domains, general principles that apply to a multitude of particular
situations are valued. The biological sciences stress the importance of survival
of both individuals and species; the relative significance of anatomy, physiology,
and reproduction are due partially to the extent to which they are essential to

survival.

Students are taught to value some aspects of a domain over others
because mentors (e.g., teachers and textbook authors) cannot provide complete
accounts of the domain and so must choose which specific material will be
presented. The more essential, fundamental, and influential a property is within

a domain, the more value is placed on knowledge of the property. The choice
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of material and the emphasis placed on it by mentors introduce and reinforce
biases, causing students to value some aspects of the domain over others. These

biases support the domain-specific learning goals:

e acquire valued domain knowledge

e determine how new information affects (e.g., explains) valued domain

knowledge

These learning goals develop from choices made by mentors who do not have
complete knowledge of the specific tasks each learner will encounter that might
require knowledge of the domain. Instead, the choices rely on general expecta-

tions of the types of tasks for which knowledge of the domain is most useful.

Source-specific goals: Learners often acquire general learning goals for par-
ticular sources of new information. For example, it is reasonable to expect
a student to respond differently to information disseminated by a teacher, a
textbook, a parent, a priest, a friend, an expert in the domain, a non-fictional
book, movie or television show, or a fictional book, movie or television show.
Different knowledge sources give rise to differing expectations about the types
of interactions with the source that are possible, about the veracity of the infor-
mation, and about subsequent application tasks. These different expectations

can cause the student to exhibit different learning behaviors.

Idiosyncratic and egocentric goals: Individual learning goals arise out
of an agent’s innate or acquired interests, or what Kahneman calls enduring
dispositions [Kah73]. Most people are naturally interested in determining the

consequences of new information about topics they care about, such as their
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health, occupation, employer, hobbies, family members, friends, enemies, and
investments. New information that references such topics may undergo much
greater scrutiny than information that mentions nothing of special interest to

the learner.

Spontaneous use expectations: While a learner may not have predeter-
mined expectations about the use of acquired knowledge, new information may

spontaneously trigger use expectations. These expectations have many sources:

1. One source of spontaneous use expectations is the learner’s outstanding
tasks. For example, a learner is informed by coworkers about traffic
problems ensuing from some new construction on a nearby freeway. The
learner recognizes that this information is directly applicable to the twice-
daily task of planning a route between work and home. The learner
may respond by collecting additional information to better perform this
application, such as the precise location and expected duration of the

construction, the condition of alternative roads, etc.

2. A second source of spontaneous use expectations is scripted or cliche uses
of new information. For example, a learner is informed that an acquain-
tance had a particularly wonderful meal at a local restaurant. For most
restaurant patrons such information is typically used for planning dining
outings. The ensuing learning behavior may be guided by the learner’s at-
tempt to determine under what circumstances this new restaurant would
be a better choice than other restaurants. Consequently, the learner may
respond by seeking additional information about the new restaurant, such
as the menu, typical dining cost, location, ambiance, suitable dress, need

for reservations, etc.



283

3. A third source of spontaneous use expectations is tasks tacitly suggested
by the new information. For example, a learner may be informed that
an acquaintance is looking for a job. Even though the learner has no
immediate plans to make use of this information, it does suggest a pos-
sible future use: that of pairing the acquaintance with appropriate job
openings. Consequently, the learner may respond by soliciting additional
information about the acquaintance (such as the acquaintance’s interests
and qualifications) to better determine what type of job openings might
be appropriate. The new information suggests the task of pairing the
acquaintance with job openings, and learning behavior includes attaining

additional information required to perform that task.

In the first case above, new information is directly applicable to a specific
outstanding task; in the second case, it is applicable to a standard task that
the learner is likely to encounter in the future; and in the third case, the new
information itself suggests a task that the learner may decide, if opportuni-
ties present themselves, to perform. In each case, learning is guided by use
expectations. However, the commitment to these use expectations was not

predetermined but rises spontaneously as the new information is encountered.

B.2.3 Discussion

General learning goals identify biases that guide learning in the ab-
sence of predetermined use expectations. They illustrate many alternative ways
in which learning can be an active, goal-driven process. However, the goals that
guide specific learning episodes cannot be detached from the content of the new
information and cannot be assumed in advance; it is the content of the new

information that suggests what learning goals are appropriate. Consequently,
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narrow learning goals cannot be scripted into the learning task specification
without also constraining the content of the new information in the task spec-
ification, which, in turn, constrains the applicability of the learning methods

that perform the task.
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Interpreting Semantic Networks

During interpretation, KI translates information, which is expressed
in the semantic network formalism of the input language, into the knowledge
base’s internal representation, which herein is characterized as axioms in first-
order logic. ! Figure C.1 presents a formal specification of interpretation as an

information-processing task.

Interpretation involves parsing training graphs (encoded in a nested-
list notation) into tuples, translating the tuples into axioms in the representa-
tion language, and finally adapting these axioms, as well as relevant existing
knowledge in the knowledge base, to promote their mutually compatibility. Tra-
ditionally, interpretation tasks confront the issue of representational adequacy:
the internal representation language must be sufficiently expressive to encode
the information provided [McC58]. When the input language is very expressive
(e.g., natural language), interpretation becomes very difficult. ITronically, KI's
interpretation task is difficult for a complimentary reason: the representation
language is much more expressive than the input language; consequently, ambi-
guities within input expressions must be resolved heuristically. This appendix

discusses how KI interprets expressions in the input language. The first section

!The knowledge base’s internal representation is actually CycL [LG90]. However, for
convenience, internal expressions are represented as sentences in logic.
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Given: IL, an input language
TL, a target language
TR, a set of translation rules that map expressions from the input
language into expressions represented in the target language
IE, an expression represented in the input language
KB, a set of expressions represented in the target language
AC, admissibility criteria, a predicate on sets of beliefs expressed in TR
Find: KB’, a nonmonotonic extension of KB that includes a translation of IE
into TL and that satisfies AC.

Figure C.1: The task of interpretation

describes the graphical input language, and the following sections discuss the

three subtasks of parsing, translating, and adapting.

C.1 The input language: specifying training with se-
mantic networks

Knowledge is presented to KI as semantic networks encoded as nested

lists. For example, the initial training for the cuticle scenario is:

(LeafEpidermis (coveringPart (LeafCuticle (composedOf (Cutin)))))

The supplemental training (i.e., the selected revision) is:

(& (LeafEpidermis (portal (Stomata)))
(= (LeafCuticle (covers (Stomata)))))

Figure C.2 presents the grammar of the input language. Classes of input ex-
pressions for which special handling is provided include logical networks and

disablement subgraphs.
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network ::= <nonterminal> | <logical-network>
graph = <terminal> | <nonterminal>
nonterminal = ( <node> <subgraph>T )

terminal = ( <node> )

subgraph ( <arc> <graph>t )
logical-network <implication-network> |
<conjunction-network> |
<negation-network>
( = <network> <network>)
( & <network>")
( = <network> )

implication-network
conjunction-network
negation-network

Arcs are symbols denoting binary predicates, and nodes are symbols denoting con-
stants (e.g., collections, individuals, attribute values, or predicates) or literal data
permitted in the knowledge base (e.g., strings, numbers, ...).

Figure C.2: The input-language grammar

C.1.1 Logical networks

Conjunction networks allow multiple networks to be entered as train-

ing for a single learning event. For example:

(& (Seed (contains (Embryo)))
(Plant (hasPart (Root) (Stem))))

denotes: Seeds contain embryos, and plants have as parts roots and stems.

KT assumes that knowledge-base assertions resulting from interpreta-
tion will be asserted with a positive truth value (i.e., denoting they are true
of the domain). Negation networks override this assumption and allow the
specifyication of beliefs are thought to be untrue. Each assertion produced by
interpreting a network within the scope of the negation symbol - is asserted

with an inverted truth value. For example the network:

(= (Seed (developmentalStageOf (Plant)))
(= (Seed (contains (PlantEmbryo (developmentalStageOf (Plant)))))
(= (PlantEmbryo (hasPart (Fruit))))))
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denotes: While seeds are not developmental stages of plants, they contain em-
bryos that are developmental stages of plants, and plant embryos do not have

fruit.

Implication networks enable conditional beliefs (e.g., rules) to be en-
tered as training. For example the network:
(= (Plant (physicalPart (Flower)))
(Plant (physicalPart (Stem))))

denotes: Plants that have flowers also have stems.

C.1.2 Disablement subgraphs

It is sometimes convenient to specify that, in a particular context, an
object does not exist or a process does not occur, when, in a broader context,
that object or process is expected. For example, almost all plants are photo-
synthetic; however, a few are not. It is therefore reasonable to specify in the
knowledge base that all plants, by default, engage in photosynthesis, and then
override this expectation for those plants that are not photosynthetic. A very
convenient way to specify this is:

(Plant (performs (Photosynthesis))

(specs  (Mushroom (performs (Photosynthesis (status (Disabled)))))))
However, the intent of the subgraph (Photosynthesis (status (Disabled))) is cer-
tainly not to assert that photosynthesis, in general (i.e., for all plants), fails to
occur. Therefore, KI adopts the convention that all such specifications of dis-
ablement (or enablement) are inherently context sensitive and includes special
translation rules that are required to support this convention. For example, the
above network is taken to denote that plants in general engage in photosynthe-
sis, but mushrooms, in particular, do not. Note that this network is equivalent

to:
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(& (Plant (performs (Photosynthesis))
(specs  (Mushroom)))
(= (Mushroom (performs (Photosynthesis)))
(Photosynthesis  (status (Disabled)))))

C.2 Parsing

Parsing involves performing an in-order traversal of the input network.
Each nonterminal appearing in the input network generates one or more tuples
during parsing. For each node N; appearing in the nonterminal, there exists up

to one incoming arc and zero or more outgoing arcs:

(Nic1i (p1 (N5 (p2 (Nig1))
(p3 (Nit2))
(P4 (Nits))

)

KT collects the tuples involving N;:

( Ni—1 Ni)
p2( Ni Niy1)
( Ni Nito)

( Ni Nit3)

T
[3v]

prH(N; Ni—y)
Py (Nig1 N;)
p?? (Ni+1 Nz)

(Ni+1 Nz)

Because the rules resulting from translating inverse tuples are sometimes falla-

cious, KI enables the user to inhibit the inclusion of inverse tuples. 2

ZUnless otherwise noted, all examples (e.g., those discussed in Chapter 6) include gener-
ating the inverse tuples during translation.
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For the cuticle example, the tuples resulting from parsing the initial

training are:

coveringPart(LeafEpidermis LeafCuticle)
composedOf(LeafCuticle Cutin)

and their inverses are:

coveringPartOf(LeafCuticle LeafEpidermis)
inCompositionOf(Cutin LeafCuticle)

After parsing, each tuple is translated into one or more statements in the target

language.

C.3 Translating tuples

The greatest challenge during translation is coping with the ambigu-
ities that result from a lack of explicit quantification in the input language.
Translations for each reference to a constant that denotes a collection may as-
sume either universal quantification, existential quantification, or neither (i.e.,
a literal translation). Those taken to be either universally or existentially
quantified are said to be figurative: the reference to the collection is not literal;
rather, it denotes a variable that ranges over elements of the collection. Fur-
ther ambiguity remains for tuples containing figurative references since they
could be taken to define any of a variety of rule types (e.g., argument-typing

constraints, inheritance rules, relation-type rules).

As Figure C.3 illustrates, at least 17 possible translations exist for
each tuple that references two collections, 7 exist for tuples that reference one
collection, only one exists for tuples that reference no collection. Since each

translation may or may not be included in an interpretation, a set of NV possible
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10.

11.

12.

13.

14.

15.

16.

17.

(a) literal translation

. physicalPart(Plant Leaf)
The (thing denoted by the) constant Plant has as a physical part the constant Leaf.

(b) translations that disambiguate figurative references

.V (x) isa(x Plant) = physicalPart(x Leaf)
Every plant has as a physical part the constant Leaf (i.e., an inheritance rule).

.V (x) isa(x Leaf) = physicalPart(Plant x)

The constant Plant has as physical parts every leaf.

3 (x) isa(x Plant) & physicalPart(x Leaf)
Some plant has a physical part the constant Leaf.

. 3 (x) isa(x Leaf) & physicalPart(Plant x)

The constant Plant has as a physical part some leaf.

Y (x y) isa(x Plant) & isa(y Leaf) = physicalPart(x y)
FEvery plant has as physical parts every leaf.

3 (x y) isa(x Plant) & isa(y Leaf) & physicalPart(x y)
Some plant has a physical part which is a leaf.

¥ (x) isa(x Plant) = [3 (y) isa(y Leaf) & physicalPart(x y)]

Every plant has a physical part which is a leaf (i.e., a relation-type rule).

. V (x) isa(x Leaf) = [3 (y) isa(y Plant) & physicalPart(y x)]

FEvery leaf is a physical part of some plant.

3 (x) isa(x Plant) & [V (y) isa(y Leaf) = physicalPart(x y)]

Some plant has as physical parts every leaf.

3 (x) isa(x Leaf) & [V (y) isa(y Plant) = physicalPart(y x)]
Some leaf 15 a physical part of every plant.

(c) translations that define typing constraints

Y (x y) isa(x Plant) & physicalPart(x y) = isa(y Leaf)
Only leaves are physical parts of plants.

¥ (x y) physicalPart(x y) & isa(y Leaf) = isa(x Plant)
Leaves are physical parts of only plants.

3 (x) isa(x Plant) & [V (y) physicalPart(x y) = isa(y Leaf)]

Some plant has as physical parts only leaves.

3 (x) isa(x Leaf) & [V (y) physicalPart(y x) = isa(y Plant)]
Some leaf 15 the physical part of only plants.

¥ (x) physicalPart(Plant x) = isa(x Leaf)
Only leaves are physical parts of the constant Plant.

¥ (x) physicalPart(x Leaf) = isa(x Plant)
The constant Leaf is a physical part of only plants.

Figure C.3: Candidate translations for physical Part(Plant Leaf)
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inverse

p(xy) -~ > pl(yx)
translation; translation;
. inverse L
constraint - » constraint

Figure C.4: Inverse tuples and inverse constraints

translations can suggest 2V possible interpretations. Heuristics are therefore

required to select among the candidate translations.

Note that symmetry exists between the following pairs of translations
in Figure C.3: 2 and 3; 4 and 5; 8 and 9; 10 and 11; 12 and 13; 14 and
15; 16 and 17. Fach element of a pair defines the inverse constraint of the
pair’s other element. For example, by the Inverse Rule (see Rule 10, Figure
3.7), the inverse tuple of physical Part(Plant Leaf) is physical PartOf(Leaf Plant).
Translation 3 for this inverse tuple is: (V (x) isa(x Plant) = physicalPartOf(Leaf x)),
which, by the Inverse Rule, can be rewritten as translation 2: (V (x) isa(x Plant)

= physicalPart(x Leaf)). Figure C.4 illustrates this relationship.

Since inverse tuples are, by default, generated for independent trans-
lation, translations 3, 5, 9, 11, 13, 15, and 17 may be disregarded. Furthermore,
translations 4, 6, 7, 10, 14, and 16 fail to capture common and useful relations
among concepts in domains such as Botany (e.g., such translations would not
be appropriate for any of the specifications in [PLM*88]); they are also disre-
garded. Thus, for each tuple, KI must select from among translations 1, 2, 8,

and 12; making this selection involves identifying figurative references.
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C.3.1 Identifying figurative references

Translating tuples extracted from a semantic network into first-order
axioms involves determining which translation rules are appropriate for each tu-
ple. Making this determination requires identifying figurative references, which
KI does using existing knowledge (e.g., argument-typing constraints) relevant
to each tuple. Specifically, for each tuple p(z y), KI collects the most specific
argument-typing constraints applicable to z and y and all existing constants

already related to = by p.

In the example, one of the tuples parsed from the input network
is coveringPart(LeafEpidermis LeafCuticle). The domain (i.e., the argument-
typing constraints imposed on the first argument) of predicate coveringPart
is TangibleObject, which is a generalization (i.e., a superset) of LeafEpidermis.
Thus, the relation physical Part does not admit as a first argument the collection
LeafEpidermis but rather rather the individual elements of this collection; so

this is a figurative reference.

Figurative references enable knowledge engineers to conceptualize do-
main knowledge in terms of prototypical entities without having to fuss with
the details and rigor of first-order expressions (e.g., the syntax of quantifi-
cation). While this abstraction has proved to be useful and appropriate for
sketching out fragments of the domain theory by knowledge engineers, it pro-
vides only a partial specification of the intended internal knowledge structures
(as demonstrated in Figure C.3). Therefore, during interpretation, KI must
determine not only whether references to a collections should be taken literally
or figuratively, but also the appropriate quantification and type of rule for each

figurative reference.

Translation Rule 1: Identifying figurative references to known constants



294

rule a: If the first argument in a tuple is a subset of the predicate’s

domain, then the argument is used figuratively.

rule b: If the second argument is a subset of the predicate’s range (i.e.,
the type constraint imposed on its second argument), then the sec-

ond is used figuratively.
Translation Rule 2: Identifying literal references to known constants

rule a: If the first argument in a tuple is an element of the predicate’s

domain, then the argument is (necessarily) used literally.

rule b: When the second argument is an element of the predicate’s

range, then the argument is (necessarily) used literally.

As noted earlier, the domain of coveringPart is TangibleObject, which is a su-
perset of LeafEpidermis; LeafEpidermis is thus used figuratively in the tuple cover-
ingPart( LeafEpidermis LeafCuticle). The range of composedOf 1s TangibleStuf fType,
which has Cutin as an element; Cutin is therefore used literally in the tuple
composedOf (LeafCuticle Cutin). ® However, these translation rules apply only
when the argument is a constant already defined in the knowledge base; other,

heuristic translation rules are required to handle new constants.

C.3.2 Handling new constants

One of the ubiquitous activities in knowledge-base construction is in-

troducing new concepts; one of the important functions of KI is to facilitate

3In the very rare cases when both translation rules 1 and 2 apply (e.g., a constant is both
an element and a subset of the applicable argument types), then Rule 2 takes precedence.



295

this task. It is natural to reference new constants while embellishing exist-
ing concepts. In fact, a knowledge engineer will often not even know that a
particular constant being referenced in a specification has not been previously
defined. Therefore, it is preferable to enable new constants to be referenced
within specifications without requiring special notational distinctions. KI pro-
vides an interface that has this property (i.e., the input specification language

includes no special syntax for new constants).

It is particularly critical to determine the taxonomic specifications of
each new constant (e.g., since they determine what predicates can reference
the new concept); however, doing so should not involve obtrusive interruptions
to the user’s knowledge-base editing. Therefore, KI attempts to infer the tax-
onomic specifications of new concepts as they are introduced, recommends the
inferred specifications to the user, then allows the user to accept or correct KI's

recommendations.

When new constants are encountered in an input specification, KI first
requests confirmation that the user intends to introduce a new concept. This
precaution allows the user to correct spelling errors or employ psuedonyms
when the user intends to refer to an existing concept. Next, KI determines

whether or not the new constant is a collection.

Translation Rule 3: Identifying new collection constants

rule a: When any tuple references a new constant as the second argu-
ment and imposes an argument-typing constraint that is a subset of

Collection, then the new constant denotes a collection.

rule b: Otherwise, when any tuple references a new constant as the sec-

ond argument and the first argument is used figuratively and the
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range of the predicate is a collection of individuals, KI assumes
(heuristically) that the new constant is also used figuratively and

is therefore a collection.

rule c: Otherwise, KI assumes (heuristically) that the new constant is
used literally as an element of the applicable argument-typing con-

straints.

In the example, the tuples that reference the new constant LeafCuticle as the

second argument are:

coveringPart(LeafEpidermis LeafCuticle)
inCompositionOf(Cutin LeafCuticle)

The applicable argument-typing constraint imposed on LeafCuticle by these
tuples are BotanicalOrganismComponent and TangibleStuff, respectively. Neither
of these typing constraints subset Collection, so translation Rule 3a does not
apply. Kl infers that LeafCuticle is a collection by Rule 3b applied to the tuple
coveringPart(LeafEpidermis LeafCuticle), since BotanicalOrganismComponent 18 a
collection of individuals and LeafEpidermis is used figuratively as the tuple’s

first argument.

Next, KI infers taxonomic specifications for the new constant by per-
forming a ceiling-floor analysis on the applicable argument-typing constraints
for each tuple in which the new constant appears as a second argument. A
ceiling-floor analysis involves identifying existing constraints that restrict the
membership of a new collection. The ceiling identifies a horizon in the existing
taxonomy below which a collection is indexed (i.e., a set of collections, each

element of which is a superset of the new collection). The ceiling imposed on
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the new collection constant y by the tuple p(z y) is identified by simply collect-

ing all the applicable argument-typing constraints (assuming = is figurative in

p(ry)):

{c | ako(x a) & akoSlot(p b) & classArgTwoType(a b c)}
Similarly, the floor identifies a horizon in the existing taxonomy above which
a collection is indexed (i.e., a set of collections each element of which the is a
subset of the new collection). The floor imposed on the new collection constant
y by the tuple p(z y) is computed as:

{c | ako(a x) & akoSlot(b p) & relationType(a b c)}

Translation Rule 4: Identifying generalizations of a new collection

rule a: The new collection constant is (heuristically) a subset of each ap-
plicable typing constraint in the ceiling imposed on the new constant

by tuples in which it is used figuratively as the second argument.

rule b: The new collection constant is (heuristically) an immediate proper

subset of each of its most specific proper supersets.
Translation Rule 5: Identifying specializations of a new collection

rule a: The new collection constant is (heuristically) a superset of each
applicable typing constraint in the floor imposed by tuples in which

the new constant is used figuratively as the second argument.

rule b: The collection constant is (heuristically) an immediate proper

superset of each of its most general proper subsets.

AIf @ 18 literal, then this formula becomes

{c | isa(x a) & akoSlot(p b) & classArgTwoType(a b c)}



298

Translation Rule 6: Identifying types of a new collection

rule a: The new collection constant is (heuristically) an element of each

collection that has an element any of the constant’s supersets.

rule b: The new collection constant is (heuristically) a direct element of

each of the most specific collections of which it is an element.
Translation Rule 7: Identifying types of a new constant

rule a: The new constant is an element of each collection that is an
applicable typing constraint imposed by tuples in which the new

constant is used literally.

rule b: The new constant is (heuristically) a direct element of each of

the most specific collections of which it is an element.

In the example, the ceiling imposed on LeafCuticle by tuple covering -
Part(LeafEpidermis LeafCuticle) is Botanical OrganismComponent. The ceiling im-
posed on LeafCuticle by tuple inCompositionO f(Cutin LeafCuticle) is TangibleStuff.
Neither tuple imposes a floor. By translation Rule 4a, KI infers that LeafCuticle
subsets both BotanicalOrganismComponent and TangibleStuff. Since BotanicalOrg-
anismComponent 1s an element of TangibleObject Type, translation Rule 6a suggests
that LeafCuticle is an element of TangibleObject Type. Similarly, since TangibleStuff
is an element of Collection, Rule 6a suggests that LeafCuticle is also a Collection.
Since BotanicalOrganismComponent subsets TangibleStuff, Rule 4b concludes that
LeafCuticle is an immediate subset of BotanicalOrganism Component. Similarly, Rule
6b concludes that LeafCuticle is a direct element of TangibleObject Type Thus, Leaf-
Cuticle 1s tentatively inserted into the existing taxonomy of the knowledge base

with the assertions:
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superset(LeafCuticle BotanicalOrganismComponent)
elementOf(LeafCuticle TangibleObjectType)

which accounts for Rule F and Fact G in Figure 3.2c.

C.3.3 Establishing quantification

As noted earlier, KI considers only translations 1, 2, 8, and 12 of
Figure C.3. Thus, for figurative subjects (i.e., for figurative references ap-
pearing as first arguments), KI assumes universal quantification, for figurative
entries (i.e., for figurative references appearing as second arguments), KI as-
sumes either existential quantification (e.g., relation-type rules) or universal
quantification (e.g., argument-typing constraints). By convention, KI assumes
that all applicable translations are intended. Thus, translations 8 and 12 are
appropriate when both arguments are figurative; translation 2, when only the
first argument is figurative; and translation 1, when both arguments are literal.
The adequacy of this convention can be evaluated empirically and is likely to

be domain specific.

Translation Rule 7: Determining quantification for figurative references

rule a: A figurative first argument with a literal second argument (heuris-
tically) denotes universal quantification over its elements in an in-

heritance rule.

rule b: A figurative first argument with a figurative second argument
(heuristically) denotes universal quantification over the elements of
the first argument and existential quantification over the elements

of the second argument in a relation-type rule.
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rule c: A figurative first argument with a figurative second argument
(heuristically) denotes universal quantification over the predicate’s

second argument in a argument-typing constraint.

In the example, the tuple coveringPart(LeafEpidermis LeafCuticle) includes fig-
urative references for both arguments; it translates by Rules 7b and 7c (i.e.,
selecting the candidate translations 8 and 12 of Figure C.3) into Rules A and
B of Figure 3.2. Similarly, the tuple coveringPartOf(LeafCuticle LeafEpidermis)
includes figurative references for both arguments; it translates into Rules C
and D of Figure 3.2. The tuple composedO f(LeafCuticle Cutin) includes a figu-
rative first argument and a literal second argument; it translates by Rule 7a
(i.e, selecting the candidate translation 2) into Rule E of Figure 3.2. The tuple
inCompositionO f(Cutin LeafCuticle), while helping to determining the ceiling of

LeafCuticle, does not produce a translation.

C.4 Adaptation: integrating translations

As each tuple is processed, KI integrates the translation into the
knowledge base by identifying relevant prior knowledge modifying the new or
relevant prior knowledge as necessary to accommodate the addition. * Rele-
vant prior knowledge includes the axioms that define the ceiling and floor for
each second argument in the pre-translation tuples. These are the argument-
typing constraints and the relation-type rules that are within the scope of, may

interact with, the new axioms.

When the scope of new and old rules overlap, KI must determine

®Note that this analysis is superficial in comparison with the integration that follows
interpretation and is described in Chapters 3 — 5.
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which rules take precedence: new rules can conjoin or disjoin with prior rules;
or, they can supersede or be superseded by prior rules. For example, new exis-
tential constraints resulting from translation may specialize existing existential
constraints: a prior rule might denote that photosynthetic organs contain some
photosynthetic pigment; a new rule might denote that leaves, a subset of pho-
tosynthetic organs, contain chlorophyll, a type of photosynthetic pigment. In
such a situation, KI must determine whether the prior and new rules disjoin
(in this case, the old rule supersedes) or conjoin (in this case, the new rule
supersedes). Similarly, new typing constraints resulting from translation may
conflict with or, more typically, specialize existing typing constraints. In such
cases, multiple axioms exist that could apply in a particular context. There-
fore, KI must adjudicate between overlapping new and prior constraints to
ensure, as much as possible, that the resulting constraints are not inconsistent
or incomplete. Specifically, KI determines whether the new constraints should
disjoin with or conjoin with prior constraints, whether the new constraints
must be modified to avoid conflicting with prior constraints, or whether prior

constraints must be modified.

It is, in general, unrealistic for learning systems to assume that all
prior knowledge is correct or that all training is perfectly accurate. Thus, adju-
dicating conflicts that arise between new and prior knowledge seems inherently
problematic. KI identifies the conflicts between new and prior constraints for
the user and exploits heuristics to suggest how such conflicts might be resolved.
Generally, potential conflicts occur among typing and existential constraints
when satisfying every subordinate constraint does not guarantee satisfying ev-
ery superordinate typing constraint. Specifically, some of the conflicts that can

involve typing and existential constraints are:
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1. A new typing constraint differs from existing local typing constraints;
e.g.,
(a) old: classArgTwoType(x p y1)

(b) new: classArgTwoType(x p ya)

(c) such that: y1 # v

2. A new typing constraint fails to specialize existing superordinate typing

constraints; e.g.,

(a) old: classArgTwoType(zy p1 y1)
(b) new: classArgTwoType(za2 p2 ya)

(C) such that: ako(zs z1) & akoSlot(psy p1) & —ako(yz y1)

3. A new typing constraint fails to generalize existing subordinate typing

constraints; e.g.,

(a) old: classArgTwoType(zy p1 y1)
(b) new: classArgTwoType(za2 p2 ya)

(C) such that: ako(z, x2) & akoSlot(py p2) & —ako(y; y2)

4. A new typing constraint fails to generalize existing local, subordinate, or

superordinate existential constraints; e.g.,

(a) old: relationType(x1 p1 y1)
(b) new: classArgTwoType(za2 p2 ya)

(C) such that: ako(z, x2) & akoSlot(py p2) & —ako(y; y2)
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5. A new existential constraint fails to equal existing local existential con-
straints; e.g.,
(a) old: relationType(z p y1)
(b) new: relationType(x p ya2)

(c) such that: y1 # v

6. A new existential constraint fails to specialize existing superordinate ex-

istential constraints; e.g.,

(a) old: relationType(x1 p1 y1)
(b) new: relationType(z2 p2 ya)

(C) such that: ako(zs z1) & akoSlot(psy p1) & —ako(yz y1)

7. A new existential constraint fails to generalize existing subordinate exis-

tential constraints; e.g.,

(a) old: relationType(x1 p1 y1)
(b) new: relationType(z2 p2 ya)

(C) such that: ako(z, x2) & akoSlot(py p2) & —ako(y; y2)

8. A new existential constraint fails to specialize existing local, subordinate,

or superordinate typing constraints; e.g.,

(a) old: classArgTwoType(zy p1 y1)
(b) new: relationType(z2 p2 ya)

(C) such that: ako(z, x2) & akoSlot(py p2) & —ako(y; y2)
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9. A new local literal may not be admitted by existing local or superordinate
typing constraints; e.g.,
(a) old: relationType(x1 p1 y1)

(b) new: ps(z2 yo)

(C) such that: isa(zs z1) & akoSlot(ps p1) & —isa(ys y1)
10. A new local literal differs from existing local literals; e.g.,

(a) old: p(z y1)
(b) new: p(z yo)

(c) such that: y» #

11. A a new inheritence literal may not be admitted by existing local, sub-

ordinate, or superordinate typing constraints; e.g.,

(a) old: relationType(x1 p1 y1)
(b) new: inherits(zs (element ps) yo)

(C) such that: ako(zs x1) & akoSlot(ps p1) & —isa(y2 y1)

12. A new inheritance literal differs from existing local, subordinate, or su-

perordinate inheritance literals; e.g.,

(a) old: inherits(z1 (p1 p2) y1)
(b) new: inherits(zs (p1 p2) y2)

(C) such that: ako(zs z1) & y2 # w1

In response to potential conflicts between new and prior rules, KI implements

the following conflict resolution strategies:
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rule a: Assume a new local typing constraint disjoins with all prior local and

subordinate typing constraints (conflicts 1, 3).

rule b: If a new local typing constraint fails to specialize prior superordinate
typing constraints, then minimally generalize the superordinate typing

constraints to admit the new local typing constraint (conflict 2).

rule c: If a new local typing constraint fails to generalize all prior local and
subordinate existential constraints, then minimally generalize it to admit

all local and subordinate existential constraints (conflict 4).

rule d: Assume a new local existential constraint disjoins with existing local

and subordinate existential constraints (conflicts 5 and 7).

rule e: If a new local existential constraint fails to specialize prior superordi-
nate existential constraints, then minimally generalize the superordinate

existential constraints to admit the new local existential constraint (con-

flict 6).

rule f: If a new local existential constraint fails to specialize prior local and su-
perordinate typing constraints, then minimally generalize the superordi-
nate typing constraints to admit the new local typing constraint (conflict

).

rule g: If a new local literal is not admitted by existing local or superordi-

nate typing constraints, then minimally generalize the typing constraint

(conflict 9).

rule h: If a new inheritance literal is not admitted by existing local, subordi-
nate, or superordinate typing constraints, then minimally generalize the

typing constraint (conflict 11).
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rule i: Assume a new inherited entry (i.e., second argument) of a single-entry

predicate supersedes all prior entries inherited from superordinates (con-

flict 12).

rule j: Assume a new inherited entry of a multiple-entry predicate conjoins

with all prior local and superordinate entries (conflict 11).

rule k: Assume all local, literal entries for a multiple-entry predicate conjoin

(conflict 10).

rule 1: If a single local typing constraint generalizes every other local typing
constraint, then assume it conjoins with a disjunction of the other typing

constraints (conflict 1).

rule m: If a single local existential constraint generalizes every existing local
existential constraint, then assume it conjoins with a disjunction of the

existing existential constraints (conflict 5).

rule n: If a single, common maximal specialization of every superset of the
new collection constant exists, then assume the new collection is a proper

subset of this common maximal specialization.

rule o: If a single, common maximal specialization of every collection of which
the new collection constant is an element exists, assume the new collection

is an element of this common maximal specialization.

Thus, KI assumes that new typing constraints disjoin with prior local and sub-
ordinate typing constraints but conjoin with (i.e., supersede) prior superordi-
nate typing constraints. Why should local typing constraints disjoin? Consider

examples involving the inverses of figurative references. Every time you drive



307

to the supermarket you get in your car, but getting in your car doesn’t mean
that you're driving to the supermarket; going to the supermarket is just one
of many activities you could be performing. Furthermore, typing constraints
must disjoin to permit multiple entries for a given property (e.g., a plant has
as parts leaves and stems and flowers...). Therefore, it is prudent to assume

that local typing constraints should disjoin.

Since KI, by default, assumes both existential and typing transla-
tions for figurative entries, it can be assumed that local existential constraints
(that satisfy the local typing constraints) will exist whenever new local typing
constraints fail to admit superordinate existential constraints. Since new local
constraints conjoin with superordinate ones, and assuming new local existential
constraints specialize the superordinate existential ones, new local typing con-
straints need only admit all the local and subordinate existential constraints
(i.e., new local existential constraints will specialize any superordinate existen-

tial constraints that are not admitted).

Integrating translations of tuples into the knowledge base during in-
terpretation is a special case of the general task of knowledge integration.
Rather than relying on a general method to perform this task (e.g., see Chapters
2 through 5), KI implements special, narrowly-focused methods. For example,
patterns of elaboration (e.g., computing the floor and ceiling applicable to the
referenced constants) are directly coded in KI's implementation of interpreta-
tion. Furthermore, all inference involves meta-reasoning; the knowledge-base’s
inference engine is never used. Similarly, during adaptation, KI considers only
a small, predetermined set of obvious conflict conditions and encodes, for each,
a hard-wired conflict resolution strategy. Treating the integration of translated

tuples during interpretation as a special case is warranted because the general
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method for performing knowledge integration (e.g., hypothetical reasoning in
the learning context) assumes that new information is (correctly) expressed in
the representation language of the knowledge base. In situations where the
learner must heuristically interpret the new information from an input lan-
guage that differs from the representation language, it is reasonable to perform
some amount of preliminary adaptation to correct obvious inconsistencies be-
tween the translation and relevant prior knowledge before committing to the
correctness of the translation and invoking the general knowledge-integration

method.

C.5 Summary

Interpretation translates new information expressed as semantic net-
works into first-order axioms and integrates them into the knowledge base. For

each node appearing in the input network, KI

1. parses the node and its links into tuples
2. next translates the tuples into first-order axioms

3. modifies these and relevant existing axioms as necessary to accommodate

each other

4. adds the resulting axioms to the knowledge base

The meaning of each new constant is determined from the context of
its use as relevant argument-typing constraints and relation-type rules are iden-
tified and analyzed. For example, the constant LeafCuticle, when encountered
during interpretation, is not defined in the knowledge base. KI exploits exist-

ing knowledge of the predicates coveringPart and composedOf to decide where
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to place it in the taxonomy of the knowledge base. This procedure, however,
has limitations. For example, when new constants appear only in tuples with
other new constants (e.g., new predicate constants), it is unlikely that KI can
correctly infer their taxonomic specifications or identify figurative uses. Also,
while KI can accept new predicate constants, much of their taxonomic spec-
ifications (e.g., domain and range) must be provided explicitly in the input

network.

KT’s translation heuristics promote strong interpretations (e.g., uni-
versal quantification) for collection constants appearing as the source nodes of
arcs. Thus, when told Leaf epidermis is covered by leaf cuticle, KI's interpre-
tation assumes that it is reasonable to expect that any given leaf epidermis is
covered by some leaf cuticle. However, it is not appropriate to assume that
each leaf epidermis is covered by all leaf cuticles. Therefore, KI assumes a
weaker interpretation (e.g., existential quantification) for collection nodes ap-
pearing as the destination nodes of arcs. © A consequence of KI's interpretation
heuristics is that new information spawns pervasive, although relatively weak,
expectations. The range of applicability of the expectations can be narrowed

if and when subsequent experience violates them.

C.6 Lessons learned

At the onset, interpretation appeared to be a very significant part of
knowledge integration. For example, determining where to index new constants

in the taxonomic hierarchy is a ubiquitous and important task.

®These interpretation heuristics constitute an empirically-testable hypothesis re (1) the
intention of (a) text book authors, (b) semantic net authors, and (2) the behavior of (a) text
book readers, (b) semantic net readers.
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Many of the test scenarios produced interesting results during inter-
pretation. However, at least for this project, translation eventually turned to be
less essential, less the true focus of knowledge integration. Existing knowledge
was insufficient to resolve some of the ambiguity problems, such as determining
whether figurative inverses should be asserted. Thus, some important aspects

of translation relied upon conventions and weak heuristics.

Extending the syntax of the input networks to allow users to make
explicit the currently ambiguous aspects of translation would remove the un-
comfortable dependence on conventions and weak heuristics during translation.
For example, it would be useful to extend the input language to enable the user

to explicitly indicate:

1. the intended quantification over elements of referenced collections (e.g.,

see [Woo091])
2. whether or not a reference is figurative

3. whether or not the interpretation of the inverse tuples should be asserted

However, such an extension would also force the user to be much more adept
with the target language (e.g., the internal representation language of the know-
ledge base) and force upon the user responsibilities for bridging the differences
between specification language and the representation language. This draws
into question the benefits of supporting a separate specification language and,

consequently, the very need to perform interpretation.



Appendix D

A Model of Interestingness

The interestingness of a proposition is used by KI to estimate the in-
terestingness of both concepts and views. It is an important factor in assessing
the activation level (Section 2.1.2) while determining which candidate view will
be used to extend the learning context. The following heuristics are used by

KI to appraise how interesting a proposition is.

1. A proposition that references a term (i.e., non-predicate constant) ap-
pearing in the training is deemed extremely interesting. In the example,
this would include any proposition referencing LeafEpidermis, LeafCuticle, or

Cutin.

2. A proposition that participates in an explanation of some fact in the
initial learning context (e.g., some fact that instantiates the new informa-
tion) is deemed extremely interesting. For example, the fact isa(LeafCuticle;
Cutin) participates in the explanation of composedO f(LeafCuticle; Cutin)

(by Rule 5a, Figure 3.4).

3. A proposition that denotes a domain goal or function is deemed extremely
interesting (e.g., the proposition establishes health(z Facilitated) for some

living thing bound to ).

311



312

4. A proposition that is identified as being anomalous is deemed extremely
interesting. A proposition is considered anomalous if any of the following

conditions are satisfied:

(a) The proposition explicitly violates a constraint (e.g., the conse-
quence covers(LeafCuticle; LeafEpidermis;) violates the argument-typing

constraints defined for covers; see Section 3.5.1).

(b) Conflicting truth values of the proposition are established (e.g., p(z y)
and —p(z y) are both established).

(c) The proposition involves a predicate considered likely for one of its
arguments, and that argument is disabled; e.g., p(z y) & likelyFor(p )

& status(x Disabled).

(d) The proposition establishes that an essential component or behavior
becomes disabled. Currently, essential component is defined to in-
clude organs, and essential behaviors include development, the pro-
cessing of essential assimilates (e.g., light, water, carbon dioxide,

mineral nutrients, etc.), and goal behaviors.

(e) The fact supports adopting a general rule denoting that an existing
collection has no elements. This occurs when some explanation of
the fact can be generalized into a rule of the form

[V (2:) isa(z; X) = status(z; Disabled)]

for some collection X.

5. A proposition that is a consequence of the new information is deemed

very interesting.
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6. A proposition that references a hypothetical instance of a class appearing
in the training is deemed very interesting. In the example, this would

include any proposition referencing LeafEpidermis, or LeafCuticle.

7. A proposition that refutes an assumption (e.g., its negation is referenced

within an unless clause) is deemed very interesting.

8. A proposition not yet established in the learning context but whose ar-
guments are included in the learning context (i.e., the proposition estab-
lishes an as yet unconsidered relation between concepts already consid-

ered) is deemed moderately interesting.

9. A proposition that references a modulatory predicate is deemed moder-
ately interesting. Modulatory predicates denote how events affect each

other (e.g., facilitates, controls, restricts, etc.).

10. A proposition that references an attribution predicate (versus a relation

predicate) is deemed moderately interesting.

11. A proposition that denotes a decomposing relation between something

and its parts is deemed marginally interesting.

12. A proposition that denotes a relation between an event and the entities

that participate in the event is deemed marginally interesting.

All other propositions are, by default, deemed to be negligibly interesting.

Figure 4.10 summarizes these heuristics.
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