
A Constraint-based Parallel Programming LanguageAjita John, J. C. BrowneDept. of Computer ScienceUniversity of Texas, Austin, TX 78701fajohn,browneg@cs.utexas.eduTR95-42 March 27, 1996AbstractThis paper describes the �rst results from research on the compilation of constraint systemsinto task level procedural parallel programs. Algorithms are expressed as constraint systems. Adata
ow graph is derived from the constraint system and a set of input variables. The data
owgraph, which exploits the parallelism in the constraints, is mapped to the target language CODE2.0, which represents parallel computation structures as generalized dependence graphs. Finally,parallel C programs are generated. The granularity of the derived data 
ow graphs depends uponthe complexity of the operations directly represented in the constraint system. To extract parallelprograms of appropriate granularity, the following features have been included: (i) modularity,(ii) operations over structured types as primitives, (iii) de�nition of sequential C functions. Aprototype of the compiler has been implemented. The domain of matrix computations has beentargeted for applications. Some examples have been programmed. Initial results are encouraging.1 IntroductionRepresenting an algorithm or computation as a set of constraints upon the state variables de�ningthe solution is an attractive approach to speci�cation of programs, but there has been little successpreviously in attaining e�cient execution of parallel programs derived from constraint representa-tions. There are however, both motivation for continuing research in this direction and reasons forsome optimism concerning success. Constraint systems have attractive properties for compilationto parallel computation structures. A constraint system gives the minimum speci�cation (See [8]for an explanation of the bene�ts which derive from postponing imposition of program structure.)for a computation, thereby o�ering the compiler freedom of choice for derivation of control struc-ture. Constraint systems o�er some unique advantages as a representation from which parallelprograms are to be derived. Both \OR" and \AND" parallelism can be derived. Either e�ectiveor complete programs can be derived from constraint systems on demand.1



The goal of this research is to explore a non-traditional approach to parallel programming:using constraint systems for speci�cation of numerical computation algorithms. This paper reportsearly results from this radical approach. The next two sections outline our approach and itsconceptual results. This is followed by a description of the programming language features andthe compilation algorithm. We conclude the paper with performance results for some examplesand directions for future work.2 ApproachThe approach we take speci�es algorithms as constraint systems. A data
ow graph is derived froma constraint speci�cation of an algorithm and an input set of variables. The data
ow graph ismapped to the target language CODE 2.0 [24], which expresses parallel structure over sequentialunits of computation declaratively as a generalized dependence graph. Finally parallel C pro-grams for the Sequent shared memory machine and the distributed memory PVM system can begenerated. Sequential C programs can also be generated. The granularity of the data 
ow graphsderived from the constraint systems depends upon the type system directly represented as primi-tives in the constraint representation. Introduction of matrix types and operations as primitivesin the constraint representation gives natural units of computation at granularity appropriate fortask level parallelism and avoids the problem of name ambiguity in the derivation of dependence(data 
ow) graphs from loops over scalar representation of arrays. The general requirements fora constraint representation which can be compiled to execute e�ciently, include: (i) modularityfor reusable modules, (ii) de�nition of sequential functions, and (iii) a rich type set. The mainfeatures of our approach are outlined in the rest of the section.(i) Constraint Representation: In our system a program is expressed as a set of con-straints between the program variables. A constraint is a relationship between a set of variables.E.g. A+B == C is a constraint expressing the equality between C and the sum of A and B. Aconstraint program speci�cation enumerates the di�erent relationships that must be establishedor maintained by the executing code. Our system handles linear arithmetic constraints composed2



by AND/OR/NOT operators.(ii) Constraint Modules: To develop programs for large scale applications we haveincorporated modularity by de�ning constraint modules with formal parameters. Constraint mod-ules are encapsulations of relationships between parameters and can be invoked within anotherconstraint. Formal parameters are names with associated types. The body is a constraint spec-i�cation. There follows a program for �nding the non-complex roots of a quadratic equation,ax2 + bx+ c == 0 which uses a module speci�cation. 00U 00 denotes an unde�ned value. sqr, sqrt,and abs are user-de�ned functions. A program speci�cation also identi�es the set of inputs to theprogram. In the quadratic equation solver example this could be fa; b; cg./* Constraint module */De�nedRoots(a, b, c, r1, r2)t == sqr(b)� 4ac AND r == sqrt(abs(t))AND t � 0 AND r1 == (�b+ r)=2a AND r2 == (�b� r)=2a/* Main */a == 0 AND r1 == \U 00 AND r2 == \U 00ORa 6= 0 AND De�nedRoots(a, b, c, r1, r2)(iii) Compilation to a Procedural Language: Encapsulated within the constraintA+B == C are three procedural (computational) statements: A = C�B, B = C�A, C = A+B.One of these three assignment statements can be extracted out of the initial constraint dependingon which two of the three variables fA;B;Cg are inputs or known variables. If all three variablesare inputs the constraint can be transformed into a conditional which can be checked by a programfor satis�ability. If less than two variables are inputs the constraint is unresolved and no resultingprogram can be extracted. The derived data
ow graph establishes the constraints by computingvalues for some or all of the non-input variables. Generation of a data
ow graph is attemptedby classifying constraints as conditionals or computational statements at di�erent points in thedata
ow graph. Data
ow graph generation is explained in greater detail in Section 5.Our translation exploits the AND-OR parallelism in the constraint speci�cation. Theresulting program has single-assignment variables and can generate multiple solutions on alternatepaths of the data
ow graph. A constraint speci�cation represents a family of data
ow graphs:3



one for each input set from which a data
ow graph establishing the constraints can be generated.Generation of all possible data
ow graphs can result in combinatorial explosion. We constructonly the data
ow graph for a speci�ed input set. The constraint speci�cation can be reused forgenerating the data
ow graphs for di�erent sets of inputs.(iv) Domain Speci�cation: The Hierarchical Type System: The semantic domainchosen for our application programs is matrix computation. To customize the environment forthis domain we have a built-in matrix type with its associated operations of matrix addition,subtraction, multiplication and inverse. The matrix subtypes currently included in our system arelower triangular, upper triangular and generalized matrices. We plan to extend to more specializedmatrices including hierarchical matrices [10]. Specialized algorithms based on the structure of thematrix can be invoked for the matrix subtypes.(v) Separate Speci�cation of Compilation Options and the Execution Environ-ment: To obtain architecturally optimized programs we plan to incorporate features such as thefollowing as part of an execution environment speci�cation separate from the constraint speci�ca-tion. � The programmer can override the default option of parallelizing a particular module ifthe default leads to a smaller than desired granularity.� The programmer can have the option of selecting certain operations for executing inparallel. For instance, if matrix multiplications are chosen to be compiled for parallel executionthe multiplications in the computation M1 �M2 +M3 �M4 will be computed in parallel.� Selected parallel algorithms can be chosen to execute some of the operations.� In a shared memory machine, the inputs to the main program and to a module can bedeclared as shared variables. Since ours is a single-assignment system these variables will only beread and not written to.� Parallelization methods can be chosen for loops over constraints.4



3 Potential Advantages of a Successful Compilation ofParallel Programs from Constraint Systems(i) Ease of Use: The programmer can think in terms of relationships between the objects ofthe domain rather than the details of how relationships will be implemented. The programmer isgiven a representation for reasoning in high level speci�cations, with no issues of control 
ow orsynchronization with which to deal. Domain speci�cations enable a programmer to reason aboutfamiliar entities.(ii) Portability: Separating the speci�cations for computation and the execution envi-ronment makes the former portable. The constraint speci�cation is free from issues of parallelism.Hence there is complete freedom for the compiler to choose appropriate mechanisms for imple-mentation of parallelism. This is important since di�erent architectures will not support the samecommunication/synchronization primitives with equal performance.(iii) Performance: To generate parallel programs of competitive e�ciency with thatof hand-coded parallel programs it is imperative to exploit the architectural characteristics ofthe executing machine. The execution environment speci�cation can be used by the compiler tochoose execution environment speci�c synchronization/communication mechanisms. By compilingto a procedural language, we avoid the slow execution environments plaguing typical declarativelanguages, which involve time-consuming search techniques, or other constraint programming lan-guages, which use interpretive techniques like local propagation. By narrowing our semanticdomain, the system has the added 
exibility of choosing optimal algorithms for executing opera-tions. (iv) Scalability: To build large programs in a non-tedious manner, scalability is importantin two respects: to scale to larger applications and to scale to larger problem sizes. Both thesefeatures are supported in our system through parameterization of abstract types, modularity anduse of C functions within arithmetic expressions.5



4 Constraint RepresentationOur basic type system consists of integers, reals, characters, and arrays. The associated operationsare the simple arithmetic operators of addition, subtraction, multiplication, division, div and mod.An arithmetic expression appearing in a constraint can be(i) an integer/real value or variable or a function call(ii) (X1), X1 O X2 X1, X2 are arithmetic expressions, and O 2 f+, -, *, /, div, modg(iii) Operator loops of the form < op > FOR (< index > < low > < high >) X op 2f+, -, *, /g, index is an identi�er, low and high are range bounds for index, X is an arithmeticexpression. This construct allows the speci�cation of operations over terms involving index in aconcise manner. E.g. + FOR (i 1 5) A[i] speci�es the sum of the elements in the array A frompositions 1-5. The index bounds for the outermost loop have to be integers. Nested loops canhave expressions involving outer level indices as index bounds.The constraints can be constructed by the application of the following rules.Rule 1 : Relations of the form below are constraints :(i) X1 R X2,R 2 f <, �, >, �, == , 6= g,X1, X2 are arithmetic expressions(ii) M1 ==M2M1;M2 are linear expressions involving matrices andthe matrix operators +, -, *, and InverseRule 2 : Propositional formulas of the form below are constraints :(i) NOT A(ii) A AND/OR BA and B are constraintsRule 3 : Calls to user-de�ned constraint modules are constraints.Rule 4 : Loops constructed over a list of constraints are constraints. Two such types of loopsare de�ned as: OR/AND FOR (<index> <low> <high>) A1; A2; : : : ; An where index is anidenti�er, low and high are range bounds for index, and A1; A2; : : : ; An are constraints formed6



from Rule 1 or Rule 4. AND and OR loops express terms connected by propositional connectivesin a concise manner. They are very useful in de�ning constraints over matrices or arrays. Nestedloops are allowed. The range limits for the outermost loop have to be integers. Nested loops canhave arithmetic expressions involving outer indices as index ranges.E.g. AND FOR (i 1 5) f A[i] == A[i-1] B[i+1] == A[i] g speci�es the constraint constructA[1] == A[0] AND A[2] == A[1] AND : : : AND A[5] == A[4] ANDB[2] == A[1] AND B[3] == A[2] AND : : : AND B[6] == A[5].Constraints formed from the use of arithmetic expressions and relational operators (Rule1) are referred to as simple constraints. These constraints form the building blocks for non-simple constraints which are formed by connecting simple constraints with logical AND/OR/NOToperators or loops, or by declaring a constraint module (Rules 2-4).A program in our system consists of the following sections:� Program name, Global variable declarations, Global Input variables.� User-de�ned function signatures: These are the signatures of C functions (linked duringexecution) which may be called within an arithmetic expression.� Constraint Module de�nitions: The de�nition of a constraint module includes a name,listing of formal parameters and their types, local variable declarations, and a body. The body issimilar in syntax to the main body.� Main body of the program: The body of the program consists of a set of constraintsconnected with AND/OR/NOT operators.5 CompilationThe compilation algorithm consists of the following phases, which are described in greater detailin this section:Phase 1. The textually expressed constraint system is transformed to an undirected graphrepresentation as for example given by Leler [21].7
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ow graph.Phase 4. Use the execution environment speci�cation to optimize the data
ow graph. This phaseis yet to be completely implemented in the system.Phase 5. The data 
ow graph is mapped to the CODE 2.0 parallel programming environment[25] to produce parallel programs in C as executable for di�erent parallel architectures.Phase 1: Generation of Constraint GraphsThe textual source program is transformed into a source graph for the compiler. Startingfrom an empty graph, for each application of Rules 1-4, an undirected constraint graph can beconstructed by adding appropriate nodes and edges to the existing graph. For each instance ofa simple constraint, a node is created with the attached constraint. For each application of Rule2, the graph is expanded as shown in Figure 1. For each application of Rule 3, a node is createdwith the attached constraint module call and the actual parameters. For each application of Rule4 with the loop speci�ed over a list of constraints A1 : : : A2, the graph is expanded as shown in8



Figure 2. The index and its range information are attached to the loop node.The di�erent kinds of nodes in the constraint graph are (i) Simple constraint nodes corre-sponding to simple constraints like X1 R X2 (ii) Operator nodes corresponding to AND/OR/NOTconnectives, (iii) Call nodes corresponding to Constraint Module Calls, and (iv) Loop nodes corre-sponding to For Loops. In the �rst phase, a set of constraint graphs is constructed correspondingto the main body and the constraint module bodies. Each graph is constructed in a hierarchicalfashion. Simple constraint nodes, call nodes, and loop nodes occur at lower levels. and operatornodes migrate to higher levels to connect one or two subgraphs, simple constraint nodes, call nodesor loop nodes. There will be a unique node at the highest level.Phase 2: A depth-�rst traversal of each of the graphs obtained at the end of phase 1 is doneto generate a set of trees. The construction of these trees simpli�es the constraint speci�cationas illustrated in Figures 3 and 4, where a, b, c, and d are simple constraints. Nodes are collapsedin the graph such that constraints connected by AND operators are collected at the same nodeand constraints connected by OR operators are collected at nodes on diverging paths because allconstraints have to be satis�ed for an AND operator to hold and any one of the constraints needsto be satis�ed for an OR operator to hold. The algorithm dfs is a generalization of Figures 3 and4. Let v1 be the unique node at the highest level of the input graph. Each output tree G� isinitialized to one node, v�1. vc and v�c are the nodes currently being visited in the graph and thetree, respectively. dfs is initially invoked with the call dfs( v1, v�1 ).The operator NOT has been omitted from the notation but it is implemented in the system.A NOT operator node will have a single subgraph or simple constraint as its child. If the child isa simple constraint, the NOT node is removed by negating the simple constraint. Otherwise, theNOT node is moved down the tree by changing nodes in its path till it reaches a simple constraint.The rules for changing the nodes are as follows: AND becomes OR and OR becomes AND.
9
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5.0.1 Phase 3 for Constraint Module CallsA constraint module call has the form ModuleName(e1; e2; : : : ; en) where ei, 1 � i � n is anarithmetic expression. Each ei can contain at most one unknown. Otherwise the constraintmodule call is unresolved. If all the variables in e1; : : : ; en are in the known set the call becomes aconditional. If one or more variables are not in the known set then a data
ow graph generation isattempted from the constraint module de�nition. The graph for the constraint module is traversedwith a new known set = fall formal parameters such that the variables of their corresponding actualparameters 2 old known setg. The output parameters are considered to be all formal parametersnot in the new known set. The traversal returns \True" if all the constraints in the constraintmodule are resolved and every output parameter is computed at the end of at least one path inthe resulting data
ow graph (other paths are discarded). For a more detail exposition of thisphase refer to [19]. If the traversal returns \False" (a data
ow graph is not generated) the currentsearch path is discarded. Each constraint module invocation is translated as a separate programmodule. Redundant translations can be eliminated by maintaining a table for each module withentries showing the data
ow graphs generated for combinations of parameter inputs.5.0.2 Extraction of AND parallelismThe computational statements that are assigned to a node have the potential for parallel execution.For instance, the assignments a := b+c and x := b+2 are independent and can be done in parallel.If another computation statement accesses the value of a then there is a data dependency betweenthe statement a := b+ c and the current statement. If a is the only data dependency, the currentstatement is assigned to the node which computes a. Else a new node is created for the currentstatement and a data arc brings in the value of a. Hence a particular node may be split into severalnodes to exploit the data parallelism in the computation at the node. Evidently, the granularity13



of such a scheme depends on the complexity of the functions called within the statements and thecomplexity of the operators.We have further exploited the complexity of the matrix operations by splitting up thespeci�cations, performing computations in parallel and composing them. For example if x :=m � y + b and x, m, y, and b are matrices m � y can be done in parallel. Our system splits theabove computation into two statements: (i) Z := m � y (ii) x := Z + b in view of the fact thatmultiplication of matrices is an O(N3) operation. This will be signi�cantly more costly to computethan addition of matrices. Since m � y is a primitive operation, a procedure which implements aparallel algorithm for m � y can be invoked. In a later version of the compiler provision will bemade for user speci�cation of parallelism for operations over structures.Hence data parallelism is exploited by keeping in mind that ours is a single-assignmentsystem and the lone write to a variable will appear before any reads to the variable. Computationsassigned to a node are thus split up as computations to di�erent nodes running in parallel. Resultsare collected by a merging node. The structures obtained at the end of Phases 2 and 3 from thequadratic equation example are shown in Figure 6.5.0.3 Phase 3 for AND For loopsOur system design handles loops with speci�ed patterns of access. As of now the implementedsystem does not include OR loops. To classify a constraint in a loop as a �ring/routing rule orcomputation, it is evaluated for all index values in the speci�ed range of the loop. We shall referto this as instantiations of the loop in this phase. The restrictions on the loop structure in orderto be compiled successfully in our system are speci�ed below:� A constraint has to have the same classi�cation in all instantiations of the loop.� If a constraint is classi�ed as computation, the same unique general term in the constraint14



has to be the unknown in all instantiations of the loop.An example of a construct that will be compiled successfully isA[0] == 0 ANDAND FOR i 1 5 fA[i] == A[i� 1] +B[i] gwith B known and A unknown.An example of a construct that will not be compiled successfully isAND FOR i 1 5 fA[1] == A[i] +B[i]with A unknown and B known.This is because in the �rst iteration both the terms A[1] and A[i] are unknown whereassubsequent iterations have only A[i] as an unknown.To extract parallelism from constraints classi�ed as computation, the patterns of accesswithin a constraint are studied. Throughout this discussion the case of array accesses will bedetailed. The case of scalar accesses in loops will follow trivially. The di�erent types of patternsof access for a loop with a single constraint and the corresponding structures that they are compiledto are detailed as follows.(i) If the array on the left-hand side of an assignment (computation) does not occur on theright-hand side then all instantiations of the loop at runtime are independent of each other andcan be run in parallel. The parallel structure compiled for such a loop is shown in Figure 7(a).The node performing the computation and the arc connecting the parent to it are replicated Ntimes where N is the range of the loop index. The results of the computation performed by theparallel nodes are merged (not shown in �gure).(ii) If the array on the left-hand side of an assignment does occur on the right-hand sidethen the set of accessed indices of the array are generated for both the left and right sides. Ifthese sets are disjoint the instantiations of the loop are independent for this constraint and thestructure compiled in this case is also Figure 7(a).15
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ow graph as its input. The form of a nodein a CODE data
ow graph is given in Figure 5. It is seen that there is a natural match betweenthe nodes of the data
ow graph developed by the constraint compilation algorithm and the nodesin the CODE graph. The arcs in the data
ow graph in CODE are used to bind names from onenode to another. This is exactly the role played by arcs in the data
ow graph generated by thetranslation algorithm.The CODE 2.0 programming interface is drawing and annotating of the directed graphon a workstation. This annotated directed graph is converted to a graph-format �le, which isthen passed through several translations to obtain an executable. The graph-format �le stores anabstract syntax tree (AST) which represents in a hierarchical form the CODE program that is tobe translated. The output of the translator for the constraint systems is the AST. This AST ispassed through the same translations as an AST from a CODE2.0 program. The �nal output is anexecutable in the form of a parallel C program. The data
ow graphs generated from the constraint16
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6.2 The Block Odd-Even Reduction AlgorithmConsider a linear tridiagonal system Ax = b whereA = 26666666664 B C 0 0 : : : 0 0 0C B C 0 : : : 0 0 00 C B C : : : 0 0 0... ... ... ... ... ... ... ...0 0 0 0 : : : C B C0 0 0 0 : : : 0 C B 37777777775is a block tridiagonal matrix and B and C are square matrices of order n � 2. It isassumed that there are M such blocks along the principal diagonal of A, and M = 2k � 1, forsome k � 2. Thus, N = Mn denotes the order of A. It is assumed that the vectors x and d arelikewise partitioned, that is, x = (x1; x2; : : : ; xM)t, d = (d1; d2; : : : ; dM)t, xi = (xi1; xi2; : : : ; xin)t,and di = (di1; di2; : : : ; din)t, for i = 1; 2; : : : ;M . It is further assumed that the blocks B and C aresymmetric and commute.Equations of this type are known to arise in discretizing a certain class of partial di�erentialequations of the elliptic type, using the idea of separation of variables [7]. A version of the parallelalgorithm speci�cation taken from [20] is given below. The algorithm has a reduction phase inwhich the system is split into two subsystems - one for odd-indexed (reduced system) and anotherfor even-indexed terms (eliminated system). The reduction process is repeatedly applied to thereduced system. The indexed terms for B, C, d refer to computed terms during iterations of thereduction process. After k � 1 iterations the reduced system contains the solution for a singleterm. The rest of the terms can be obtained by back-substitution.B(0) = B; C(0) = C; di(0) = di; /* INITIALIZATION */FOR j=1 TO k-1 STEP 1 DO IN PARALLEL /* REDUCTION PHASE */B(j) = 2 * C2(j � 1) - B2(j � 1)C(j) = C2(j � 1)di(j) = C(j)[di�h(j � 1) + di+h(j � 1)]�B(j � 1)di(j � 1),where h = 2j�1; i = 2j ; 2� 2j; 3� 2j; (2k�j � 1)2jSolve for x2k�1 in B(k � 1)x2k�1 = d2k�1(k � 1)FOR j=k-1 TO 1 STEP -1 DO IN PARALLEL /* BACK-SUBSTITUTION PHASE */19



Solve E(j)w(j) = y(j), whereE(j) = 2666664 B(j � 1) 0 0 : : : 0 00 B(j � 1) 0 : : : 0 0... ... ... ... ... ...0 0 0 : : : B(j � 1) 00 0 0 : : : 0 B(j � 1) 3777775, w(j) = 2666666664 xt�sx2t�s...xit�s...x2k�j t � s 3777777775,y(j) = 2666666664 dt�s(j � 1) �C(j � 1)xtd2t�s(j � 1) �C(j � 1)[x2t + xt]...dit�s(j � 1)� C(j � 1)[xit + x(i�1)t]...d2k�j t�s(j � 1)� C(j � 1)x(2k�j�1)t 3777777775where t = 2s = 2j.A constraint program speci�cation for this example for k = 3 in our system is given below.The results of the reduction process are stored in BP , CP , dP . pow is a C function implementingthe arithmetic power function. Without getting into the details of the program speci�cation, itcan be seen that the speci�cation is very similar to the algorithm speci�cation. This examplehas been programmed and successfully translated by our system. At the current time, the sharedmemory Sequent machine is not available for access. Hence we moved to the distributed memoryPVM system. The performance results for M = 31 and n = 150 are shown in Figure 10.This speedups obtained on the PVM system are not very impressive as this is a verycommunication-intensive problem and careful examination of the generated code shows that thenative pvm program would not do any better. This problem is ideal for executing on a sharedmemory architecture with computation being done on shared variables.BP[0] == B AND CP[0] == C ANDAND for (i 1 7) dP[i][0] == d[i] ANDAND for (j 1 2)BP[j] == 2 * CP[j-1] * CP[j-1] - BP[j-1] * BP[j-1]CP[j] == CP[j-1] * CP[j-1]AND for (i 1 pow(2,3-j)-)1dP[i*pow(2,j)][j] == CP[j-1] * ( dP[i*pow(2,j) + pow(2,j-1)][j-1] +dP[i*pow(2,j) - pow(2,j-1)][j-1] ) + BP[j-1] * dP[i*pow(2,j)][j-1] AND20
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2.00 4.00 6.00Figure 10: Performance Results for the Block Odd-Even Reduction AlgorithmBP[2] * x[4] == dP[4][2] ANDAND for (j 2 1)AND for (i 0 pow(2,3-j)-1)BP[j-1] * x[(i+1)*pow(2,j)-pow(2,j-1)] ==dP[(i+1)*pow(2,j)-pow(2,j-1)][j-1] - CP[j-1] * ( x[(i+1)*pow(2,j)] - x[i*pow(2,j)] )7 Related WorkThere has been considerable work in constraint programming in the past decade. Three majorpieces of work that are related to the research are described in this section. Consul [2] is aparallel constraint language that was developed as a vehicle to experiment with implicitly parallel,constraint-based programming. The ThingLab and the Kaleidoscope projects [6, 5, 23] camefrom the University of Washington. Concurrent constraint programming (CCP) languages [26]established the foundations of concurrent computation with constraints.Consul: This work resembles our work in that the goal is to extract parallelism fromconstraints [2]. But the approach is di�erent in that local propagation is used to �nd satisfyingvalues for the system of constraints. This approach has little hope of extracting e�cient programs21



and o�ers o�ers speedups only in the range of logic languages.Thinglab and Kaleidoscope: Thinglab [6, 5] was a constraint-oriented graphic simulationlaboratory. Constraints were compiled to sequential procedural code. Constraint ImperativeParadigm (CIP) was born out of the integration of imperative programming and constraint pro-gramming. It could be basically seen \either as adding constraints to imperative programs, or asadding control 
ow to constraint programs" [4]. Kaleidoscope [4, 3, 23] integrates object-orientedprogramming with constraints. Both these projects extracted procedural code from constraintsbut no parallelism was exploited.Concurrent Constraint Programming: There has been much recent work in the integrationof logic programming with constraints leading to the development of Constraint Logic Program-ming Languages. This has involved the merging of two domains - the Herbrand universe forpredicates and some other domain like reals for constraints. CLP(D) [17, 9] de�nes a generalscheme for constraint logic programming. Di�erent implementations of the scheme are describedin languages like Prolog III, CLP(R), and CHIP [12, 18, 13, 16, 22] Vijay Saraswat described afamily of concurrent constraint logic programming languages,the cc languages [26]. The logic andconstraint portions are explicitly separated with the constraint part acting as an active data storefor the logic half. The logic communicates with the constraint part only through constraints eitherby a \tell" operation (a new constraint is added to the store) or an \ask" operation (to check if aconstraint is consistent with the store).8 Summary and Future ResearchIn conclusion we claim that constraint programs o�er a rich, relatively untapped resource forparallelism. Constraint systems with appropriate initialization speci�cation can be mapped to ageneralized data
ow graph. Coarse-grain parallelism can be extracted through modularity, oper-ations over structured types, and speci�cation of arithmetic functions. By giving the programmer22



control over compilation choices for the execution environment, we assist in generation of archi-tecturally optimized parallel programs. The �rst stage of research has established that constraintsystems can be compiled to e�cient coarse grained parallel programs for some plausible examples.In fact, we have been quite surprised at the ease of attaining these results from such a radicalrepresentation.This paper reports on the �rst step in the quest for a practical compiler for constraintsystems to parallel programs. It is clearly necessary to be able to express constraints on partitionsof matrices if large scale parallelism is to be derived from constraint systems without use of thecumbersome techniques derived for array dependence analysis of scalar loop codes over arrays.There are several promising approaches: object-oriented formulations of data structures are onepossibility. A simpler and more algorithmic basis for de�nition of constraints over partitions ofmatrices is to utilize a simple version of the hierarchical type theory for matrices recently publishedby Collins and Browne [10]. The hierarchical type model for matrices establishes a compilablesemantics for computations over hierarchical matrices.The next steps in this research are:a) Design and implement a \block" structure in which destructive update to variablesis allowed. This structure will be encapsulated in the sense that the interface will be like aconstraint. This feature will allow compact speci�cation of many parallel numerical algorithmswhich are awkward using only single assignment variables.b) Implement hierarchical matrices.c) Extend the AND loop construct to handle more general forms of constraints.d) De�ne the semantics of and implement recursion in constraint module calls.e) Include the execution environment speci�cation as part of the input speci�cation. Thiswill provide compiler optimizations which take advantage of architectural characteristics of speci�c23
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