Scheduling Periodic Wireless Data Broadcast *

Veena A. Gondhalekar
October 17, 1995

Abstract

We develop simple heuristics, called “MAX” and “MAX-LD”, to
find a sub-optimal solution for scheduling data for periodic wireless
broadcasts. We also develop a lower bound for a branch-and-bound
algorithm, which we call “B&B”, to determine the optimal layout for
the broadcast. We evaluate these algorithms experimentally and show
that B&B runs considerably faster than exhaustive enumeration while
producing an optimal solution. We then show that the heuristics MAX
and MAX-LD run substantially faster than B&B while giving solutions
that are only slightly worse than the optimum. We conclude with a
brief analysis of our experimental results and end with possibilities for
future work in this area.

*The work described in this report was done for a Master’s Report in the Department
of Electrical and Computer Engineering at the University of Texas at Austin.



1 Introduction

Computer and communications technologies have seen advancements that
have led to the development of information systems which provide timely
access of information to users. Specifically, the use of wireless media for
delivery of data is gaining importance with expanding applications. Access to
financial data, news, weather, traffic, etc. by mobile users makes up a rapidly
expanding area of personal information services [7]. It is likely that the use
of various wireless media, such as paging, FM subcarrier, cellular data, and
PCS wireless networks [1] will see widespread proliferation in the years to
come. Efficient delivery of personal information services pose several design
challenges given that users of wireless communication services are mobile,
and consequently, have limitations on the capabilities of the terminals they
can use.

Jain and Werth [4] have developed a simple model, called the airdisk,
for modeling the access of data transmitted periodically over wireless media.
In this model, the transmission of data is shown to be analogous to the ac-
cess of data from a standard magnetic disk. A broadcast period is identified
with a single rotation of the (virtual) airdisk. A (logically) centralized server
broadcasts data (writes on the disk) periodically to many clients over a wire-
less medium. The clients can receive the broadcast (read the disk) and also
send messages to the server to modify the content of the next broadcast (i.e.
write the disk). Airdisks offer an efficient mechanism for delivering personal-
ized information services from a fixed server to large number of mobile client
devices.

Several wireless data protocols have been developed in recent times for
various wireless communication media serving different purposes. In [4], a
few possibilities for data layout on an airdisk have been discussed that would
require different scheduling schemes to minimize the mean access time for
data by the recipients. recipients of the broadcast data are typically portable
devices with restricted resources and limited battery power. Hence, minimiz-
ing the mean access time as well as the power consumption then becomes an
important concern. In the rest of this paper, the term “disk” is used to refer
to the virtual airdisk.

The motivation behind this work is to find a scheduling order for wire-
less broadcast of data from a disk that minimizes the mean data access time
over all clients. Several schemes can be used for the format of the broadcast
data depending upon the characteristics of the data. The broadcast cycle



could be designed to contain or not contain an index that precedes the data
and contains information about the sequence of data items; data items could
be of equal or unequal length, etc. In this work, we consider the broadcast
scheme where an index is broadcast along with the data items and the data
items are of equal length. We explore several algorithms to schedule the data
in the broadcast such that the mean access time over all clients is minimized.

An example of an application would be a server that receives current stock
price updates from the stock exchange, updates its own database, and period-
ically broadcasts the updated information. Clients tune in to the broadcast
and “listen” only when information of interest to them appears.

In section 2 we describe the problem, its graph theoretical model, and
the approach we have taken to find the solution to the problem using various
means. We briefly describe how we test and evaluate the performance of the
schedules obtained by these techniques. In section 3 we first describe the
heuristics that were developed and tested. We then describe a branch-and-
bound algorithm that was implemented. This is followed by a description of
the various experiments that we conducted to measure the performance of
our algorithms. Finally, we discuss some additional heuristics that we had
studied. We give several examples to pictorially show the workings of these
algorithms. In section 4 we analyze the results and conclude with possibilities
for future work.

2 The Data Scheduling Problem

One way of conceptualizing the layout of the broadcast data on a wireless
medium is to assume that during each broadcast period, the sequence of
data items broadcast is preceded by an index of the items. Clients can read
the index and determine when to read the items they are interested in. By
clients, we mean the devices that receive the broadcast information.

The access time is used as a measure of performance of the disk. We
limit our study to the situation where the length of the data items is fixed.
A client starts reading the disk at an arbitrary instant of time, reads the
index to determine the position of the items it is interested in, and reads
those items. A client’s access is not considered completed unless it has read
all the items it is interested in. The total access time for a client will then
be the sum of four components: 1) the rotational latency for the index, i.e.



waiting for the index of the next rotation to appear, 2) the data transfer time
to read the index, 3) the last-item time i.e. the time until the last item the
client is interested in appears, and 4) the data transfer time to read the last
item of interest. The data transfer time for items other than the last one
is overlapped with the last-item time. We are interested in minimizing the
mean access time over all clients.

The rotational latency and data transfer times to read the index and the
last item of interest are fixed for a given rotation. The problem then reduces
to minimizing one component, namely the last-item time.

The problem of minimizing the last-item time can be modeled in graph
theoretic terms as follows. Each data item is represented by a vertex of a
graph and each client is represented by a hyperedge that connects vertices
(items) of interest to the client. Self-loops represent clients that are only
interested in one item. For the purpose of this paper, we have considered
clients that are interested in exactly two items i.e. the graph is undirected.
The problem of minimizing the mean last-item time reduces to that of num-
bering the vertices such that the mean value of the position of the last item
of interest for all clients is minimized. It can be shown [4] that this problem
is NP-complete. The problem can be rewritten as follows:

Given a graph GG = (V, E') with vertex set V and edges F, find a one-to-one
function f:V — {1,2,....|V]} such that

s = > max(f(u), f(v)) (1)

(uw,v)eE

is minimized. We attempt to develop such a function f. For each layout,
the position of the vertices yields the last-item time for each client that is
interested in that vertex as its second item of interest.

2.1 Approach

There are several ways of solving the indexed data layout problem. The
simplest and most time consuming is by exhaustive enumeration, wherein
all possibilities are evaluated. For n vertices, the total number of possible
layouts is n!. This method is guaranteed to yield an optimal layout but the
cost in terms of computation time would be prohibitive for large values of n.

Our exhaustive enumeration algorithm is called “ENUMERATE”.



A faster way to derive the optimum solution is to use an algorithm that
precludes the need for exhaustive enumeration by discarding subsets of so-
lutions (layouts, in our case) from the solution space through the use of
constraints. Several methods can be used to accomplish this. We have used
the branch-and-bound method [3]. We call our branch-and-bound algorithm
“B&B”. A branch-and-bound algorithm yields an optimal layout but at a
reduced cost in terms of computation time as compared to exhaustive enu-
meration.

An even faster way to derive a good solution is by designing a heuristic.
This would be a much faster way of getting a good solution but there is
no guarantee that the solution obtained is optimal. How good a heuristic
is would depend upon how accurately it computes the solution (difference
between the value of the objective function derived by the heuristic and the
optimum value) and in how much time. We have designed two heuristics that
we call “MAX” and “MAX-LD”. Both are very fast as compared to B&B.
MAX is faster but MAX-LD generates better schedules.

We show experimental results which compare the performance of MAX,

MAX-LD, B&B and ENUMERATE.

3 Design and Implementation

3.1 Heuristics

We propose two heuristics to find a sub-optimal solution. The first one,
MAX, runs faster but produces relatively inferior solutions. The second one,
MAX-LD, is slower than MAX but, on an average, produces solutions that
are very close to the optimum value in our experiments.

3.1.1 MAX

It seems intuitive from Eq. 1 that if items of greater demand are placed first,
more clients will receive information of their interest early. We propose a
heuristic, MAX, that essentially involves laying out the vertices in descending
order of degree. This heuristic consists of two steps:

o calculate the degree of all vertices

o sort all the vertices in descending order of degree
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In Fig. 1, we show a) an input graph (7, whose ordering is improved by
MAX as shown in b), but which is greater than the cost of ¢) an optimal
layout.

We use Shell-sort [6], an O(N?/?) algorithm for sorting N numbers, to
sort the vertices in descending order of degree.

3.1.2 MAX-LD

We propose a second heuristic, MAX-LD, which is an improvement over
MAX. It involves additional manipulation of the layout obtained with MAX
so as to lower the objective function further. We define left-degree of a vertex
as the number of edges that the vertex shares with other vertices to the left
of it in a given ordering.

Def. For a permutation of the vertices of (¢, where f is a one-to-one function
f:V = {12, |V|}, the left degree, ld(v) of a vertex v under f is the
number of edges it has connected to vertices which are placed earlier in f,
i.e. the left degree of vertex v is

ld(v) = [{(u,v) : (u,v) € EA fu) < [(v)}]

We begin with the following observation:
Observation. For a given vertex permutation f of the vertices of graph

G = (V, E), we know that
s =, maz(f(u), f(v)) (2)
= > [(v)ld(v) (3)

Eq. 2 calculates s by finding the terminal position of each edge, while Eq. 3
counts the number of edges that terminate at each vertex, and multiplies by
the position of that vertex in the ordering.

For n vertices, s will clearly be smaller if vertices with larger left-degrees
are placed at earlier positions (smaller f’s). This is what MAX-LD tries to
achieve. The heuristic performs the following additional steps after obtaining

a layout with MAX.

e calculate the left-degree of all vertices except the first (which is always

0)



o for each vertex position 7,1 < ¢ < n, switch the vertex at position :
with that at position (i 4 1) if the left-degree of vertex at position ¢ is
less than the left-degree of vertex at position (¢ 4 1) less the number of
edges between the vertices at positions 7 and (¢ + 1), i.e. if

ld(v;) < (Id(vig1) — e(vi,viq1))

then switch vertices v; and v;41, where v; and v,y are the vertices at
positions ¢ and ¢+ 1 respectively, ld(v;) and [d(v;11) are their respective
left-degrees, and e(v;, v;11) is the number of edges between v; and v;1.

Fig. 2 shows a) an input graph G/, whose ordering is left unchanged by
MAX in b), but is improved by MAX-LD in c¢), which is also an optimal

solution.

3.2 Branch & Bound Algorithm

To find an optimal layout without enumerating all possible layouts, we de-
velop an algorithm using the branch-and-bound procedure [5]. Using infor-
mation derived from previous solutions and checking if certain constraint(s)
are violated, the branch-and-bound methods restrict the total number of
solution sets that need to be considered for evaluation in subsequent steps.

The set of all solutions can be schematically described by a tree of solu-
tions [2]. At every internal node in the traversal down the tree from the root
node, one or more branches of the subtree below that node are eliminated
from the solution space by comparing a known solution to the best solution
(bound) that each branch could yield. Fig. 3 shows a tree of solutions for a
graph of 3 vertices. This tree represents the entire solution space.

We call our branch-and-bound algorithm B&B. The B&B algorithm con-
sists of traversing a tree, where the root node of the tree (level 0) is the
starting point when no vertex placement has been made for the layout. Fach
interior node at level ¢ represents one permutation of i vertices from the
beginning. Each terminal node (leaf) of the tree represents one complete
permutation of n vertices, and hence one possible solution. As B&B tra-
verses the tree, at each node it calculates the lower bound of the objective
function for all the leaves in the subtree rooted at that node. If this bound
yields a greater (worse) solution than the candidate solution we begin with,



deg: 2 4 2 2

[-deg: O 1 2 2

a) Graph G, s=16

K0 O O

deg: 4 2 2 2

|-deg: 0 1 2 2

b) Layout obtained with MAX, s=16

3 O

deg: 4 2 2 2

[-deg: O 2 1 2

¢) Layout obtained with MAX-LD, s=15
Figure 2: Example to show the workings of MAX-LD

9



root (level 0)

Figure 3: Tree of all possible solutions for a graph of 3 vertices.

the tree is not traversed further down along any branch starting at this node,
thus eliminating a number of possible layouts. A branch is traversed down
to its leaf node so long as the bound obtained at each node along the path
yields a smaller (better) solution than the candidate solution. If the solution
at the leaf node is better than the candidate solution, it replaces the candi-
date solution for comparison with future traversal paths. The solution that
eventually exists as the candidate solution is the optimal solution.

The performance of B&B depends on the tightness of the bound and the
speed with which it can be calculated. The more accurate the lower bound,
the greater the number of branches eliminated early in the traversal. At
the same time, if the calculation of a tighter bound is time consuming, the
advantage gained by eliminating more branches could be nullified by the time
spent at each node to calculate the bound.

3.2.1 Lower Bound for an Optimal Solution

We calculate the lower bound for the branch-and-bound algorithm by using
Eq. 3. The sum s would be lower if the layout places the vertices in de-
scending order of left degree. The sum for the entire layout of n vertices

10



can be broken up as the sum of the cost for vertices that have already been
scheduled and the cost for the unscheduled vertices i.e.

s = S+ s, (4)

where s; 1s the known sum and s, 1s the unknown sum. We find a lower
bound L for the value of s, as follows:

Lemma 1 Suppose that 1 out of n vertices have been placed, i.e. the first ¢
positions of the permutation have been decided. Let E; C E denote the edges
which are completed, i.e. have both endpoints placed, after 1 < n wvertices
have been placed. Then a lower bound on the objective function s, of Fq. 4
for the remaining vertices is given by

Ly = Y jxmax(0,min(|E] - |E;|,d(SV(j —1)))) (5)
7=1+1
where d(SV (k)) is the degree of the kth vertex in the list SV created by sorting
the remaining vertices in order of descending degree.

Proof. After i vertices have been placed, |E| — |E;| edges remain which need
to have one or both endpoints placed. To minimize s,, these edges should
be completed, i.e. have both endpoints placed, as early in the vertex per-
mutation as possible. In the best case, for every vertex from 7 4+ 1 onwards,
all its incident edges are completed at that vertex, i.e. it has its left degree
equal to its degree. From Eq. 3, the vertices from 7 + 1 onwards should be
arranged in order of descending degree.

The max term of L ensures that the calculation of L stops when all the
remaining edges have been completed. The min term ensures that at the last
vertex for which edges remain, only the remaining number of edges, and not
the degree of the vertex, is used in the calculation; otherwise, the formula
calculates an estimate based upon Eq. 3 assuming that the left degree of
each remaining vertex equals its degree.

3.3 Experiments

We performed a set of experiments to measure the performance of our heuris-

tics MAX and MAX-LD, and the branch-and-bound algorithm B&B against
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the exhaustive enumeration algorithm, ENUMERATE. All algorithms were
implemented as C programs and all programs were run on Sun Sparc 1 work-
stations after being compiled with optimization level O4. The CPU time
required for the execution of these programs was measured using the clock()
library call. Input graphs were generated randomly after specifying the max-
imum number of edges that are allowed between any two vertices and the
edge density which is the probability of existence of an edge between any
two vertices of the graph. Initially, we implemented B&B using a recursive
program. But since it was found to be very slow, it was re-implemented as
an iterative program. ENUMERATE was also implemented as an iterative
program. The B&B and ENUMERATE algorithms were tested on graphs
with 11 or fewer vertices because larger graphs ran for too long to enable us
to collect a large enough experimental data size to be used for comparative
evaluation. The following experiments were performed:

Expt. 1: CPU time for B&B and ENUMERATE for varying n
Random graphs were generated with the constraint that for every two ver-
tices, u,v (u # v), an edge was inserted with probability 0.5. Edges are of
unit weight (i.e. at most one edge is allowed between any pair of vertices).
Since the time for enumeration does not depend on the characteristics of the
graph of a given size, only one input graph was used to obtain the running
time of ENUMERATE for each value of n. The running time of the B&B
does depend upon the distribution of edges in an input graph of a given size.
Hence each data point was obtained by calculating the mean CPU time over
25 graphs for each value of n (5, 8, 10, 11). The results are shown in the plot
in Fig. 4.

Expt. 2: Cost and CPU time for B&B and MAX-LD for varying n
Random graphs were generated with the constraint that the edge density
is 0.5 and edges are of unit weight. The clock() call has a resolution of
16.666ms. The execution time of the heuristic MAX-LD was found to be of
the same order as the granularity of time measurement. Hence, the heuristic
was repeated a number of times for each input graph to obtain a total time
of the order of minutes, which was then divided by the number of repeti-
tions to obtain the execution time for a single run. Fig. 5 shows the mean
CPU time for B&B compared with that for MAX-LD obtained by running
25 input graphs for each value of n (5, 8, 10, 11). We did not compare the
performance B&B with that of MAX because MAX-LD yields costs closer to

12



5000 ; . T T T
B&B <—
ENUMERATE -+

4000 | )
n
e /
8 3000 | ,
[} ’/
E
c
S
5
[S) //
2 2000 | / -
[} N
s /
o
(@]

1000 | -

A
0 gmmmmn T
1 1 1 1 1
5 6 7 8 9 10 11

Number of vertices, n

Figure 4: Comparison of mean execution time of ENUMERATE and B&B
for graphs with unit edge-weight

the optimum cost, and the difference in the CPU time of MAX and MAX-LD
is insignificant when compared with the CPU time for B&B.

In addition to the CPU time, the cost sy;ax_rp of the ordering obtained
by MAX-LD was also found for each graph as was spgp, the cost of the
ordering obtained by B&B. The ratio

SMAX—-LD — SB&B (6)
SB&B

was computed for these costs and was averaged over 25 graphs for each value
of n. Fig. 6 shows that the penalty paid by MAX-LD in terms of increased
cost is only a few percent on an average for this experiment.

Expt. 3: Relative Performance of MAX and MAX-LD for varying
n
Random graphs were generated as before with the constraint that the edge
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density is 0.5 and edges are of unit weight. As in Expt. 2, to overcome
the limitation of clock() function granularity, each heuristic was repeated a
number of times for each input graph to obtain a total time of the order of
minutes, which was then divided by the number of repetitions to obtain the
execution time for a single run.

Fig. 7 shows the mean CPU time for MAX compared with that for MAX-
LD obtained by running 20 input graphs for each value of n (5, 8, 10, 11, 15,
20, 50, 100).

Fig. 8 shows the difference in costs calculated by MAX and MAX-LD for

different values of n, i.e.

SMAX — SMAX—LD (7)

The difference was averaged over 20 input graphs for each value of n.
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Fig. 9 shows the penalty paid by MAX in terms of increased cost over
the cost obtained by MAX-LD. Each point was obtained by computing the
following ratio

SMAX — SMAX-LD

(8)
SMAX—-LD
The ratio was averaged over 20 input graphs for each value of n.

Expt. 4: Cost and CPU time for B&B and MAX-LD for n=10 and
varying edge-weights

Random graphs were generated for varying edge-weights with the constraint
that the edge density is 0.5. By fixing the edge-weight to a given value, say
8, we mean that the graph generated could have at most 8 parallel edges
between any given pair of vertices. As in case of Expt. 2, to overcome the
limitation of the clock() function, the heuristic was repeated a number of
times for each input graph to obtain a total time of the order of minutes,
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which was then divided by the number of repetitions to obtain the execution
time for a single run. Fig. 10 shows the mean CPU time for B&B compared
with that for MAX-LD. Fach point was obtained by computing the average
over 10 input graphs for each value of edge-weight (1, 2, 8, 16, 32).

The cost of the ordering, sy ax_rp, obtained by MAX-LD was also com-
puted for each graph as was spg¢ g, the cost of the ordering obtained by B&B.
The ratio given by Eq. 6 was determined for these costs and was averaged
over 10 graphs for each value of edge-weight (1, 2, 8, 16, 32). Fig. 11 shows
the penalty paid by MAX-LD in terms of increased cost over the optimum
cost for each value of edge-weight.

3.4 Additional Work

In the following pages we discuss two heuristics that we studied but did not
implement for reasons described therein.
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3.4.1 Heuristics

We developed two heuristics that were extensions to MAX-LD. We call them
“MAXLD-SEP” and “COMP”.

MAXLD-SEP This heuristic resulted from the observation that if the lay-
out obtained with MAX-LD has a two-vertex component embedded inside
another connected component of the graph, the cost of the schedule can
often be lowered by taking this two-vertex component “outside” the other
component.

Fig. 12 shows layout a) for a graph G obtained with MAX-LD where a
two-vertex component formed by vertices vz and vy is embedded inside the
component formed by vertices vy, vy and vs. The cost of this schedule is 28.
Layout b) shows that the sum goes down to 27 if vertices v3 and vy are taken

17
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Figure 9: Mean percentage increase in cost obtained by MAX over that
obtained by MAX-LD for graphs with unit edge-weight

“outside” the other component.

Our program checked to see if such a separation was beneficial before affecting
the change. We found that in a set of 160 randomly generated graphs (20
graphs each for 8 different values of n) with edge density 0.5, no improvement
in cost was seen to justify the added computational cost. The computational
time of this heuristic was typically 1-2% higher than that of MAX-LD while
the cost was always the same.

COMP For graphs that were not completely connected, i.e. they had two
or more components, it appeared that the cost of the layout was lower if the
components were separated than if all vertices were arranged based on their
degree using MAX-LD. After separating the components, MAX-LD was to
be applied to each of the components to give a good ordering for the ver-
tices within the component. For graphs with two components, we arrived at a
computation that would evaluate which component should be scheduled first.
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As shown in Fig.12, separating components can reduce the cost. We found
out, however, that it was not always beneficial to separate the components.
Fig. 13 shows various layouts of a graph G where the components are either
separated or embedded. Layout a) obtained by MAX-LD has the sum 50.
Its components are embedded one inside the other. When the components
are separated, we can either get layout b) with cost 52 or layout ¢) with cost

51.

Clearly, it is not always beneficial to separate the components. The com-
putation time that would be required to determine if the graph has compo-
nents, and if so, to separate them for scheduling in appropriate order would
be very high. Since there was no guarantee that a better solution would be
obtained for the additional computation time, this heuristic was not pursued
further.
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4 Conclusions

We have developed two fast and simple heuristics and one optimal algorithm
using the branch-and-bound method for scheduling data for wireless broad-
cast based on the airdisk model. We have performed a set of simulation
experiments to evaluate the performance of the heuristics and the optimal
algorithm. Our experiments have shown that, for the type of graphs we have
considered, our heuristics run considerably faster than the branch-and-bound
algorithm, while producing only slightly worse cost. We expect that simple
heuristics like MAX and MAX-LD will provide excellent results in general
for other types of graphs with different constraints than those generated by
us, as well as for graphs with self-loops and hyperedges.
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Figure 12: Example for heuristic MAXLD-SEP

4.1 Results

In the following pages, we analyze the results obtained by the experiments
that we performed.

4.1.1 Expt.1

As shown by Fig. 4, exhaustively enumerating all possible solutions becomes
extremely time consuming even for relatively small values of n. Since the
enumeration time is proportional to n!, for a unit increment in the value
of n, the computation time increases by a factor of n over the time for the
previous n. The branch-and-bound algorithm computes the solution much
faster.
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4.1.2 Expt.2

The computation time for the heuristic MAX-LD is of the order of a fraction
of a millisecond over the range of values of n considered (Fig. 5). The
computation time for B&B increases much faster. An experiment in which
B&B was run on one graph of 15 vertices did not complete even after 48
hours of execution on a dedicated RISC6000 machine. As n increases, the
heuristic tends to give increasingly worse solution than the optimal solution
because with increasing n, the possibilities of layouts increase for a given
edge-density and edge-weight, and the chances for the heuristic to not catch
the optimal layout increase. Hence the ratio given by Eq. 6 increases with
increasing value of n as seen in Fig. 6.

4.1.3 Expt.3

As the value of n increases, the number of vertices that could have the same
degree as another vertex in the graph increases. When MAX and MAX-
LD determine a sub-optimal ordering, both heuristics arrange the vertices
in descending order of degree. However, only MAX-LD goes a step further
and tries to improve the ordering between adjacent vertices, thus improving
the ordering amongst vertices of the same degree. Hence, as n increases,
the solution obtained by MAX-LD is closer to the optimal solution than
that obtained by MAX. Fig. 8 shows that the difference between the costs
given by MAX and MAX-LD (the numerator in Eq. 8) increases with n.
However, the cost of the solution obtained by MAX-LD (the denominator
term) increases with increasing n at a much faster rate than the numerator.
Hence we see the negative slope in Fig. 9.

4.1.4 Expt.4

We are unable to conclude much from the experimental data of Fig. 10. and
Fig. 11. We suspect that as the edge-weight increases, a higher number of
branches gets rejected earlier in the tree traversal since the variance obtained
between the candidate solution and the lower bound gets larger. Hence, the
time taken by B&B reduces with increasing edge-weights. The computation
time for the heuristic does not depend on the edge-weights but depends on
the number of vertices in the graph. Hence, the CPU time for MAX-LD
remains constant for a given n. Since we ran only 10 graphs for each value
of edge-weight (due to shared resources and time limitations), we feel that a

23



definitive insight into the behavior of the graphs with varying edge-weights
could be obtained by using a larger sample size. This could be a subject for
future experimentation.

4.2 Future Work

This paper has dealt with graphs containing no hyperedges or self-loops. The
evaluation of performance of the heuristics for graphs containing hyperedges
and self-loops would be an interesting extension to this problem. Our graphs
have been generated with a simple random number generator, a predefined
upper limit on the number of edges that can exist between any two vertices,
and an edge-density of 0.5. Testing the heuristics on graphs generated with
more variation and more control over their characteristics could provide an
area for future experimentation. Other heuristics could be designed and eval-
uated. Development of a tighter lower bound that improves the performance
of the existing B&B algorithm is also an area worth exploring.
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