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1 IntroductionComputer and communications technologies have seen advancements thathave led to the development of information systems which provide timelyaccess of information to users. Speci�cally, the use of wireless media fordelivery of data is gaining importance with expanding applications. Access to�nancial data, news, weather, tra�c, etc. by mobile users makes up a rapidlyexpanding area of personal information services [7]. It is likely that the useof various wireless media, such as paging, FM subcarrier, cellular data, andPCS wireless networks [1] will see widespread proliferation in the years tocome. E�cient delivery of personal information services pose several designchallenges given that users of wireless communication services are mobile,and consequently, have limitations on the capabilities of the terminals theycan use.Jain and Werth [4] have developed a simple model, called the airdisk,for modeling the access of data transmitted periodically over wireless media.In this model, the transmission of data is shown to be analogous to the ac-cess of data from a standard magnetic disk. A broadcast period is identi�edwith a single rotation of the (virtual) airdisk. A (logically) centralized serverbroadcasts data (writes on the disk) periodically to many clients over a wire-less medium. The clients can receive the broadcast (read the disk) and alsosend messages to the server to modify the content of the next broadcast (i.e.write the disk). Airdisks o�er an e�cient mechanism for delivering personal-ized information services from a �xed server to large number of mobile clientdevices.Several wireless data protocols have been developed in recent times forvarious wireless communication media serving di�erent purposes. In [4], afew possibilities for data layout on an airdisk have been discussed that wouldrequire di�erent scheduling schemes to minimize the mean access time fordata by the recipients. recipients of the broadcast data are typically portabledevices with restricted resources and limited battery power. Hence, minimiz-ing the mean access time as well as the power consumption then becomes animportant concern. In the rest of this paper, the term \disk" is used to referto the virtual airdisk.The motivation behind this work is to �nd a scheduling order for wire-less broadcast of data from a disk that minimizes the mean data access timeover all clients. Several schemes can be used for the format of the broadcastdata depending upon the characteristics of the data. The broadcast cycle2



could be designed to contain or not contain an index that precedes the dataand contains information about the sequence of data items; data items couldbe of equal or unequal length, etc. In this work, we consider the broadcastscheme where an index is broadcast along with the data items and the dataitems are of equal length. We explore several algorithms to schedule the datain the broadcast such that the mean access time over all clients is minimized.An example of an application would be a server that receives current stockprice updates from the stock exchange, updates its own database, and period-ically broadcasts the updated information. Clients tune in to the broadcastand \listen" only when information of interest to them appears.In section 2 we describe the problem, its graph theoretical model, andthe approach we have taken to �nd the solution to the problem using variousmeans. We briey describe how we test and evaluate the performance of theschedules obtained by these techniques. In section 3 we �rst describe theheuristics that were developed and tested. We then describe a branch-and-bound algorithm that was implemented. This is followed by a description ofthe various experiments that we conducted to measure the performance ofour algorithms. Finally, we discuss some additional heuristics that we hadstudied. We give several examples to pictorially show the workings of thesealgorithms. In section 4 we analyze the results and conclude with possibilitiesfor future work.2 The Data Scheduling ProblemOne way of conceptualizing the layout of the broadcast data on a wirelessmedium is to assume that during each broadcast period, the sequence ofdata items broadcast is preceded by an index of the items. Clients can readthe index and determine when to read the items they are interested in. Byclients, we mean the devices that receive the broadcast information.The access time is used as a measure of performance of the disk. Welimit our study to the situation where the length of the data items is �xed.A client starts reading the disk at an arbitrary instant of time, reads theindex to determine the position of the items it is interested in, and readsthose items. A client's access is not considered completed unless it has readall the items it is interested in. The total access time for a client will thenbe the sum of four components: 1) the rotational latency for the index, i.e.3



waiting for the index of the next rotation to appear, 2) the data transfer timeto read the index, 3) the last-item time i.e. the time until the last item theclient is interested in appears, and 4) the data transfer time to read the lastitem of interest. The data transfer time for items other than the last oneis overlapped with the last-item time. We are interested in minimizing themean access time over all clients.The rotational latency and data transfer times to read the index and thelast item of interest are �xed for a given rotation. The problem then reducesto minimizing one component, namely the last-item time.The problem of minimizing the last-item time can be modeled in graphtheoretic terms as follows. Each data item is represented by a vertex of agraph and each client is represented by a hyperedge that connects vertices(items) of interest to the client. Self-loops represent clients that are onlyinterested in one item. For the purpose of this paper, we have consideredclients that are interested in exactly two items i.e. the graph is undirected.The problem of minimizing the mean last-item time reduces to that of num-bering the vertices such that the mean value of the position of the last itemof interest for all clients is minimized. It can be shown [4] that this problemis NP-complete. The problem can be rewritten as follows:Given a graph G = (V;E) with vertex set V and edges E, �nd a one-to-onefunction f : V ! f1; 2; :::; jV jg such thats = X(u;v)2Emax(f(u); f(v)) (1)is minimized. We attempt to develop such a function f . For each layout,the position of the vertices yields the last-item time for each client that isinterested in that vertex as its second item of interest.2.1 ApproachThere are several ways of solving the indexed data layout problem. Thesimplest and most time consuming is by exhaustive enumeration, whereinall possibilities are evaluated. For n vertices, the total number of possiblelayouts is n!. This method is guaranteed to yield an optimal layout but thecost in terms of computation time would be prohibitive for large values of n.Our exhaustive enumeration algorithm is called \ENUMERATE".4



A faster way to derive the optimum solution is to use an algorithm thatprecludes the need for exhaustive enumeration by discarding subsets of so-lutions (layouts, in our case) from the solution space through the use ofconstraints. Several methods can be used to accomplish this. We have usedthe branch-and-bound method [3]. We call our branch-and-bound algorithm\B&B". A branch-and-bound algorithm yields an optimal layout but at areduced cost in terms of computation time as compared to exhaustive enu-meration.An even faster way to derive a good solution is by designing a heuristic.This would be a much faster way of getting a good solution but there isno guarantee that the solution obtained is optimal. How good a heuristicis would depend upon how accurately it computes the solution (di�erencebetween the value of the objective function derived by the heuristic and theoptimum value) and in how much time. We have designed two heuristics thatwe call \MAX" and \MAX-LD". Both are very fast as compared to B&B.MAX is faster but MAX-LD generates better schedules.We show experimental results which compare the performance of MAX,MAX-LD, B&B and ENUMERATE.3 Design and Implementation3.1 HeuristicsWe propose two heuristics to �nd a sub-optimal solution. The �rst one,MAX, runs faster but produces relatively inferior solutions. The second one,MAX-LD, is slower than MAX but, on an average, produces solutions thatare very close to the optimum value in our experiments.3.1.1 MAXIt seems intuitive from Eq. 1 that if items of greater demand are placed �rst,more clients will receive information of their interest early. We propose aheuristic, MAX, that essentially involves laying out the vertices in descendingorder of degree. This heuristic consists of two steps:� calculate the degree of all vertices� sort all the vertices in descending order of degree5



c) An optimal  layout,   s =  37

 1  2  3  4  5

l-deg:  0                  2                 2                   2                 5

   deg:  7                  2                 3                   5                 5

a) Original graph  G,   s =  43

 1  4  5  3  2

l-deg:  0                  1                 5                   3                 2

b) A layout by MAX,   s =  39

 4  5  1  3  2

   deg:  7                  5                 5                   3               2

   deg:  5                  5                 7                   3                 2

l-deg:  0                  3                 3                   3                 2Figure 1: Example to show the workings of MAX6



In Fig. 1, we show a) an input graph G, whose ordering is improved byMAX as shown in b), but which is greater than the cost of c) an optimallayout.We use Shell-sort [6], an O(N3=2) algorithm for sorting N numbers, tosort the vertices in descending order of degree.3.1.2 MAX-LDWe propose a second heuristic, MAX-LD, which is an improvement overMAX. It involves additional manipulation of the layout obtained with MAXso as to lower the objective function further. We de�ne left-degree of a vertexas the number of edges that the vertex shares with other vertices to the leftof it in a given ordering.Def. For a permutation of the vertices of G, where f is a one-to-one functionf : V ! f1; 2; :::; jV jg, the left degree, ld(v) of a vertex v under f is thenumber of edges it has connected to vertices which are placed earlier in f ,i.e. the left degree of vertex v isld(v) = jf(u; v) : (u; v) 2 E ^ f(u) < f(v)gjWe begin with the following observation:Observation. For a given vertex permutation f of the vertices of graphG = (V;E), we know thats = X(u;v)2Emax(f(u); f(v)) (2)= Xv2V f(v)ld(v) (3)Eq. 2 calculates s by �nding the terminal position of each edge, while Eq. 3counts the number of edges that terminate at each vertex, and multiplies bythe position of that vertex in the ordering.For n vertices, s will clearly be smaller if vertices with larger left-degreesare placed at earlier positions (smaller f 's). This is what MAX-LD tries toachieve. The heuristic performs the following additional steps after obtaininga layout with MAX.� calculate the left-degree of all vertices except the �rst (which is always0) 7



� for each vertex position i; 1 < i < n, switch the vertex at position iwith that at position (i+ 1) if the left-degree of vertex at position i isless than the left-degree of vertex at position (i+1) less the number ofedges between the vertices at positions i and (i+ 1), i.e. ifld(vi) < (ld(vi+1)� e(vi; vi+1))then switch vertices vi and vi+1, where vi and vi+1 are the vertices atpositions i and i+1 respectively, ld(vi) and ld(vi+1) are their respectiveleft-degrees, and e(vi; vi+1) is the number of edges between vi and vi+1.Fig. 2 shows a) an input graph G, whose ordering is left unchanged byMAX in b), but is improved by MAX-LD in c), which is also an optimalsolution.3.2 Branch & Bound AlgorithmTo �nd an optimal layout without enumerating all possible layouts, we de-velop an algorithm using the branch-and-bound procedure [5]. Using infor-mation derived from previous solutions and checking if certain constraint(s)are violated, the branch-and-bound methods restrict the total number ofsolution sets that need to be considered for evaluation in subsequent steps.The set of all solutions can be schematically described by a tree of solu-tions [2]. At every internal node in the traversal down the tree from the rootnode, one or more branches of the subtree below that node are eliminatedfrom the solution space by comparing a known solution to the best solution(bound) that each branch could yield. Fig. 3 shows a tree of solutions for agraph of 3 vertices. This tree represents the entire solution space.We call our branch-and-bound algorithm B&B. The B&B algorithm con-sists of traversing a tree, where the root node of the tree (level 0) is thestarting point when no vertex placement has been made for the layout. Eachinterior node at level i represents one permutation of i vertices from thebeginning. Each terminal node (leaf) of the tree represents one completepermutation of n vertices, and hence one possible solution. As B&B tra-verses the tree, at each node it calculates the lower bound of the objectivefunction for all the leaves in the subtree rooted at that node. If this boundyields a greater (worse) solution than the candidate solution we begin with,8



l-deg:  0                  2                  1                  2

    deg:  2                  4                  2                  2

l-deg:  0                  1                  2                  2

 1  2  3  4

 2  1  3  4

l-deg:  0                  1                  2                  2

a)   Graph  G,   s = 16

b)   Layout obtained with MAX,   s = 16

    deg:  4                  2                  2                  2

    deg:  4                  2                  2                  2

c)   Layout obtained with MAX-LD,   s = 15

 2  3  1  4

Figure 2: Example to show the workings of MAX-LD9
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Figure 3: Tree of all possible solutions for a graph of 3 vertices.the tree is not traversed further down along any branch starting at this node,thus eliminating a number of possible layouts. A branch is traversed downto its leaf node so long as the bound obtained at each node along the pathyields a smaller (better) solution than the candidate solution. If the solutionat the leaf node is better than the candidate solution, it replaces the candi-date solution for comparison with future traversal paths. The solution thateventually exists as the candidate solution is the optimal solution.The performance of B&B depends on the tightness of the bound and thespeed with which it can be calculated. The more accurate the lower bound,the greater the number of branches eliminated early in the traversal. Atthe same time, if the calculation of a tighter bound is time consuming, theadvantage gained by eliminating more branches could be nulli�ed by the timespent at each node to calculate the bound.3.2.1 Lower Bound for an Optimal SolutionWe calculate the lower bound for the branch-and-bound algorithm by usingEq. 3. The sum s would be lower if the layout places the vertices in de-scending order of left degree. The sum for the entire layout of n vertices10



can be broken up as the sum of the cost for vertices that have already beenscheduled and the cost for the unscheduled vertices i.e.s = sk + su (4)where sk is the known sum and su is the unknown sum. We �nd a lowerbound L1 for the value of su as follows:Lemma 1 Suppose that i out of n vertices have been placed, i.e. the �rst ipositions of the permutation have been decided. Let Ei � E denote the edgeswhich are completed, i.e. have both endpoints placed, after i � n verticeshave been placed. Then a lower bound on the objective function su of Eq. 4for the remaining vertices is given byL1 = nXj=i+1 j ? max(0;min(jEj � jEjj; d(SV (j � i)))) (5)where d(SV (k)) is the degree of the kth vertex in the list SV created by sortingthe remaining vertices in order of descending degree.Proof. After i vertices have been placed, jEj � jEij edges remain which needto have one or both endpoints placed. To minimize su, these edges shouldbe completed, i.e. have both endpoints placed, as early in the vertex per-mutation as possible. In the best case, for every vertex from i+ 1 onwards,all its incident edges are completed at that vertex, i.e. it has its left degreeequal to its degree. From Eq. 3, the vertices from i + 1 onwards should bearranged in order of descending degree.The max term of L1 ensures that the calculation of L1 stops when all theremaining edges have been completed. The min term ensures that at the lastvertex for which edges remain, only the remaining number of edges, and notthe degree of the vertex, is used in the calculation; otherwise, the formulacalculates an estimate based upon Eq. 3 assuming that the left degree ofeach remaining vertex equals its degree.3.3 ExperimentsWe performed a set of experiments to measure the performance of our heuris-tics MAX and MAX-LD, and the branch-and-bound algorithm B&B against11



the exhaustive enumeration algorithm, ENUMERATE. All algorithms wereimplemented as C programs and all programs were run on Sun Sparc 1 work-stations after being compiled with optimization level O4. The CPU timerequired for the execution of these programs was measured using the clock()library call. Input graphs were generated randomly after specifying the max-imum number of edges that are allowed between any two vertices and theedge density which is the probability of existence of an edge between anytwo vertices of the graph. Initially, we implemented B&B using a recursiveprogram. But since it was found to be very slow, it was re-implemented asan iterative program. ENUMERATE was also implemented as an iterativeprogram. The B&B and ENUMERATE algorithms were tested on graphswith 11 or fewer vertices because larger graphs ran for too long to enable usto collect a large enough experimental data size to be used for comparativeevaluation. The following experiments were performed:Expt. 1: CPU time for B&B and ENUMERATE for varying nRandom graphs were generated with the constraint that for every two ver-tices, u; v (u 6= v), an edge was inserted with probability 0.5. Edges are ofunit weight (i.e. at most one edge is allowed between any pair of vertices).Since the time for enumeration does not depend on the characteristics of thegraph of a given size, only one input graph was used to obtain the runningtime of ENUMERATE for each value of n. The running time of the B&Bdoes depend upon the distribution of edges in an input graph of a given size.Hence each data point was obtained by calculating the mean CPU time over25 graphs for each value of n (5, 8, 10, 11). The results are shown in the plotin Fig. 4.Expt. 2: Cost and CPU time for B&B and MAX-LD for varying nRandom graphs were generated with the constraint that the edge densityis 0.5 and edges are of unit weight. The clock() call has a resolution of16.666ms. The execution time of the heuristic MAX-LD was found to be ofthe same order as the granularity of time measurement. Hence, the heuristicwas repeated a number of times for each input graph to obtain a total timeof the order of minutes, which was then divided by the number of repeti-tions to obtain the execution time for a single run. Fig. 5 shows the meanCPU time for B&B compared with that for MAX-LD obtained by running25 input graphs for each value of n (5, 8, 10, 11). We did not compare theperformance B&B with that of MAX because MAX-LD yields costs closer to12
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a).  Components of graph not separated,  s = 28
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 b)  Components of graph separated,     s = 27Figure 12: Example for heuristic MAXLD-SEP4.1 ResultsIn the following pages, we analyze the results obtained by the experimentsthat we performed.4.1.1 Expt.1As shown by Fig. 4, exhaustively enumerating all possible solutions becomesextremely time consuming even for relatively small values of n. Since theenumeration time is proportional to n!, for a unit increment in the valueof n, the computation time increases by a factor of n over the time for theprevious n. The branch-and-bound algorithm computes the solution muchfaster. 21



a ) Unseparated components, 
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b )  Separated components, 

Figure 13: Counter-example for heuristic COMP22



4.1.2 Expt.2The computation time for the heuristic MAX-LD is of the order of a fractionof a millisecond over the range of values of n considered (Fig. 5). Thecomputation time for B&B increases much faster. An experiment in whichB&B was run on one graph of 15 vertices did not complete even after 48hours of execution on a dedicated RISC6000 machine. As n increases, theheuristic tends to give increasingly worse solution than the optimal solutionbecause with increasing n, the possibilities of layouts increase for a givenedge-density and edge-weight, and the chances for the heuristic to not catchthe optimal layout increase. Hence the ratio given by Eq. 6 increases withincreasing value of n as seen in Fig. 6.4.1.3 Expt.3As the value of n increases, the number of vertices that could have the samedegree as another vertex in the graph increases. When MAX and MAX-LD determine a sub-optimal ordering, both heuristics arrange the verticesin descending order of degree. However, only MAX-LD goes a step furtherand tries to improve the ordering between adjacent vertices, thus improvingthe ordering amongst vertices of the same degree. Hence, as n increases,the solution obtained by MAX-LD is closer to the optimal solution thanthat obtained by MAX. Fig. 8 shows that the di�erence between the costsgiven by MAX and MAX-LD (the numerator in Eq. 8) increases with n.However, the cost of the solution obtained by MAX-LD (the denominatorterm) increases with increasing n at a much faster rate than the numerator.Hence we see the negative slope in Fig. 9.4.1.4 Expt.4We are unable to conclude much from the experimental data of Fig. 10. andFig. 11. We suspect that as the edge-weight increases, a higher number ofbranches gets rejected earlier in the tree traversal since the variance obtainedbetween the candidate solution and the lower bound gets larger. Hence, thetime taken by B&B reduces with increasing edge-weights. The computationtime for the heuristic does not depend on the edge-weights but depends onthe number of vertices in the graph. Hence, the CPU time for MAX-LDremains constant for a given n. Since we ran only 10 graphs for each valueof edge-weight (due to shared resources and time limitations), we feel that a23



de�nitive insight into the behavior of the graphs with varying edge-weightscould be obtained by using a larger sample size. This could be a subject forfuture experimentation.4.2 Future WorkThis paper has dealt with graphs containing no hyperedges or self-loops. Theevaluation of performance of the heuristics for graphs containing hyperedgesand self-loops would be an interesting extension to this problem. Our graphshave been generated with a simple random number generator, a prede�nedupper limit on the number of edges that can exist between any two vertices,and an edge-density of 0.5. Testing the heuristics on graphs generated withmore variation and more control over their characteristics could provide anarea for future experimentation. Other heuristics could be designed and eval-uated. Development of a tighter lower bound that improves the performanceof the existing B&B algorithm is also an area worth exploring.AcknowledgementsThe invaluable contributions of Dr. John Werth of the Department of Com-puter Science, University of Texas at Austin, and Dr. Ravi Jain of Bellcore,New Jersey towards this work are gratefully acknowledged.
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