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Start-time Fair Queuing: A Scheduling Algorithm for Integrated
Services Packet Switching Networks

Abstract
We present Start-time Fair Queuing (SFQ) algorithm that is computationally efficient, achieves fairness regardless

of variation in a server capacity, and has the smallest fairness measure among all known fair scheduling algorithms. We
analyze its throughput, single server delay, and end-to-end delay guarantee for variable rate Fluctuation Constrained
(FC) and Exponentially Bounded Fluctuation (EBF) servers. We show that SFQ is better suited than Weighted Fair
Queuing for integrated services networks and it is strictly better than Self Clocked Fair Queuing. To support heteroge-
neous services and multiple protocol families in integrated services networks, we present a hierarchical SFQ scheduler
and derive its performance bounds. Our analysis demonstrates that SFQ is suitable for integrated services networks
since it: (1) achieves low average as well as maximum delay for low-throughput applications (e.g., interactive audio,
telnet, etc.); (2) provides fairness which is desirable for VBR video; (3) provides fairness, regardless of variation
in server capacity, for throughput-intensive, flow-controlled data applications; (4) enables hierarchical link sharing
which is desirable for managing heterogeneity; and (5) is computationally efficient.

1 Introduction

1.1 Motivation

Integrated services networks are required to support a variety of applications (e.g., audio and video conferencing,
multimedia information retrieval, ftp, telnet, WWW, etc.) with a wide range of Quality of Service (QoS) requirements.
Whereas continuous media applications such as audio and video conferencing require the network to provide QoS
guarantees with respect to bandwidth, packet delay, and loss; applications such as telnet and WWW require low delay
and packet loss. Throughput intensive applications like ftp, on the other hand, require network resources to be allocated
such that the throughput is maximized. A network meets these requirements primarily by appropriately scheduling its
resources.

To determine the characteristics of a suitable scheduling algorithm, consider the requirements of some of the
principal applications envisioned for integrated services networks:� Audio applications: To maintain adequate interactivity for such applications, scheduling algorithms must provide

low average and maximum delay.� Video applications: Variable bit rate (VBR) video sources, which are expected to impose significant requirements
on network resources, have unpredictable as well as highly variable bit rate requirement at multiple time-scales
[12]. These features impose two key requirements on network resource management:

– Due to the difficulty in predicting the bit rate requirement of VBR video sources, video channels may
utilize more than the reserved bandwidth. As long as the additional bandwidth used is not at the expense
of other channels (i.e., if the channel utilizes idle bandwidth), it should not be penalized in the future by
reducing its bandwidth allocation.

– Due to multiple time-scale variation in the bit rate requirement of video sources, to achieve efficient
utilization of resources, a network will have to over-book available bandwidth. Since such over-booking
may yield persistent congestion, a network should provide some QoS guarantees even in the presence of
congestion.

Real-time scheduling algorithms that are unfair, such as Virtual Clock [22], Delay EDD [21], etc., penalize
channels for the use of idle bandwidth and do not provide any QoS guarantee in the presence of congestion [16].1
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Fair scheduling algorithms, on the other hand, guarantee that, regardless of prior usage or congestion, bandwidth
would be allocated fairly[16]. Hence, fair scheduling algorithms are desirable for video applications.� Data applications: To support low-throughput, interactive data applications (e.g., telnet), scheduling algorithms
must provide low average delay. On the other hand, to support throughput-intensive, flow-controlledapplications
in heterogeneous, large-scale, decentralized networks, scheduling algorithms must allocate bandwidth fairly
[5, 13, 17]. Due to the coexistence of VBR video sources and data sources in integrated services networks, the
bandwidth available to data applications may vary significantly over time. Consequently, the fairness property
of the scheduling algorithm must hold regardless of variation in server capacity.

Hence, in summary, a suitable scheduling algorithm for integrated services networks should: (1) achieve low
average as well as maximum delay for low throughput applications (e.g., interactive audio, telnet, etc.); (2) provide
fairness for VBR video; and (3) provide fairness, regardless of variation in server capacity, for throughput-intensive,
flow-controlleddata applications. Furthermore, since such networks will support a wide variety of services and multiple
protocol families, the scheduling algorithm should facilitate hierarchical link sharing [7, 18]. Finally, it should be
computationally efficient (so as to facilitate its implementation in high-speed networks). A scheduling algorithm that
achieves all of these objectives is the subject of investigation in this paper.

1.2 Relation To Previous Work

Each unit of data transmission at the network level is a packet. We refer to the sequence of packets transmitted by a
source as a flow [22]. Each packet within a flow is serviced by a sequence of servers (or switching elements) along the
path from the source to the destination in the network. Before we describe fair scheduling algorithms proposed in the
literature, let us consider the precise meaning of fair allocation of link bandwidth.

Intuitively, allocation of link bandwidth is fair if equal bandwidth is allocated in every time interval to all
the flows. This concept generalizes to weighted fairness in which the bandwidth must be allocated in proportion
to the weights associated with the flows. Formally, if rf is the weight of flow f and Wf (t1; t2) is the aggregate
length of packets served in the interval [t1; t2] (a packet is considered to have been served in the interval [t1; t2]
if it starts and finishes service within [t1; t2]), then an allocation is fair if, for all intervals [t1; t2] in which both
flows f and m are backlogged, Wf (t1;t2)rf � Wm(t1;t2)rm = 0. Clearly, this is an idealized definition of fairness as it
assumes that flows can be served in infinitesimally divisible units. The objective of fair packet scheduling algorithms
is to ensure that j Wf (t1;t2)rf � Wm(t1;t2)rm j is as close to 0 as possible. However, it has been shown in [8] that

if a packet scheduling algorithm guarantees that j Wf (t1;t2)rf � Wm(t1;t2)rm j� H(f;m) for all intervals [t1; t2], thenH(f;m) � 12 � lmaxfrf + lmaxmrm �
, where lmaxf and lmaxm denote the maximum lengths of packets of flow f and m,

respectively.
Several fair scheduling algorithms that achieve value of H(f;m) close to the lower bound have been proposed

in the literature. The earliest known fair scheduling algorithm is Weighted Fair Queuing (WFQ) [5] (also referred
to as Packet-by-Packet Generalized Processor Sharing (PGPS) [16]). WFQ was designed to emulate a hypothetical
bit-by-bit weighted round robin server1 in which the number of bits of a flow served in a round is proportional to
the weight of the flow. Since packets can not be serviced a bit at a time, WFQ emulates bit-by-bit round robin by
scheduling packets in the increasing order of their departure times in the hypothetical server. To compute this departure
order, WFQ associates two tags, a start tag and a finish tag, with every packet of a flow. Specifically, if pjf and ljf
denote the jth packet of flow f and its length, respectively, and if A(pjf ) denotes the arrival time of packet pjf at the

server, then start tag S(pjf ) and finish tag F (pjf ) of packet pjf are defined as:S(pjf ) = maxfv(A(pjf )); F (pj�1f )g j � 1 (1)F (pjf ) = S(pjf ) + ljfrf j � 1 (2)1In [5], a scheduling algorithm is considered fair if it emulates weighted bit-by-bit round robin server. This de�nition becomescumbersome when the link capacity uctuates over time. Hence, we use the de�nition given in [8].
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where F (p0f ) = 0 and v(t) is defined as the round number that would be in progress at time t if the packets were being
serviced in a bit-by-bit weighted round robin manner. Formally, v(t) is defined as:dv(t)dt = CPj2B(t) rj (3)
where C is the capacity of the server and B(t) is the set of backlogged flows at time t in the bit-by-bit round robin
server. WFQ then schedules packets in the increasing order of their finish tags.

It has been conjectured that WFQ achieves a H(f;m) value that is close to the lower bound2 [19]. Surprisingly,
however, the following example illustrates that H(f;m) is at least a factor of two away from the lower bound.

Example 1 Consider flows f and m such that
lmaxfrf = lmaxmrm = c. For ease of exposition, let f and m be the only

flows at the server. Let flow f send two packets of length lmaxf at time 0. Hence, F (p1f ) = c and F (p2f ) = 2c. Let

flow m send 3 packets at time 0 such that l1m = lmaxm and l2m = l3m = lmaxm2 . Then, F (p1m) = c, F (p2m) = 3c2 , andF (p3m) = 2c. Let WFQ schedule the packet in the order p1f ; p1m; p2m; p3m; p2f . Let t1 be the time at which p1m starts
service and t2 be the time at which p3m finishes service. Then, Wm(t1; t2) = 2lmaxm and Wf (t1; t2) = 0. Hence,j Wf (t1;t2)rf � Wm(t1;t2)rm j= 2 lmaxmrm = lmaxfrf + lmaxmrm . Therefore, for WFQ, we conclude thatH(f;m) � lmaxfrf + lmaxmrm for
any arbitrary flows f and m.

Observe that implementation of WFQ requires computation of v(t), which in turn requires simulation of bit-by-bit
round robin server in real time. This simulation is computationally expensive. Furthermore, as the following example
illustrates, since WFQ is based on the assumption that the capacity of a server is constant, it fails to provide fairness
over servers with time varying capacity.

Example 2 Let the capacity of the server that WFQ is emulating be C pkts/s, C > 1. Let the actual server capacity
be 1 pkt/s in [0,1) andC pkt/s in [1,2). Consider two flows f andm both of which have unit length packets and weights
of 1 pkt/s. Let flow f send C+1 packets at time 0. Hence, for flow f , F (pjf ) = j ; 1 � j � C+1. Let flow m become
backlogged at t = 1 and be backlogged during the interval [1,2]. Since only flow f is backloged during [0,1), using
(3), we get v(1) = C. Hence, for flow m, F (p1m) = C + 1. Since WFQ schedules packets in the increasing order of
finish tags, we get: C � 1 � Wf (1; 2) � C and Wm(1; 2) � 1. However, for fair allocation of bandwidth,Wf (1; 2)
and Wm(1; 2) should both be C=2. Since C can be chosen arbitrarily, this example illustrates the unfairness that can
result when the actual capacity is lower than the capacity being assumed.

A similar example can also be constructed for the case when the the actual capacity of the server is higher than
the assumed capacity. Thus, WFQ fails to provide fairness over variable rate servers. As we will outline in Section
3, to be useful for hierarchical link sharing [7, 18], a scheduling algorithm must provide fairness over variable rate
servers. Consequently, WFQ fails to meet two key requirements of a fair scheduling algorithm for integrated services
networks. Observe that it may be possible to extend WFQ to provide fairness over variable rate servers by changing
the definition of v(t) as given in (3) to be a function of time varying server capacity C(t). However, due to the
unpredictable and multiple time-scale variation in VBR video bit rate, it may not be possible to accurately estimateC(t). Furthermore, this would make the computation of v(t) even more expensive, thereby making WFQ infeasible
for high speed networks.

Fair Queuing based on Start-time (FQS), proposed in [11], computes start tag and finish tag of a packet exactly
as in WFQ. However, instead of scheduling packets in the increasing order of finish tags, it schedules packets in the
increasing order of start tags. Though FQS has advantages for processor scheduling, it is not known to have any
advantage over WFQ for scheduling packets in a network. Moreover, since it utilizes v(t) as defined in (3), it has all
the disadvantages of WFQ.

Self Clocked Fair Queuing (SCFQ), originally proposed in [4] and later analyzed in [8], was designed to reduce
the computational complexity of fair scheduling algorithms like WFQ. SCFQ also schedules packets in the increasing
order of finish tags. However, it achieves efficiency over WFQ by approximating v(t) with the finish tag of the packet2Though it may be surprising, fairness properties of WFQ have not been rigorously established using either of the fairnessde�nitions.
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Scheduling Deviation in fairness Deviation in delay Fairness over
algorithm from optimal algorithm from WFQ variable rate servers

WFQ At least a factor of 2 0 Unfair
FQS At least a factor of 2 Not known Unfair

SCFQ At most a factor of 2

Pn2Q^n6=f lmaxnC ?3
DRR Unbounded Dependent on ?3

weight assignment

Table 1 : Summary of fair scheduling algorithms

in service at time t. It has been shown that the value of H(f;m) for SCFQ is ( lmaxfrf + lmaxmrm ) which is only a factor of
two away from the lower bound (i.e., its fairness measure is at most that of WFQ) [8]. The main limitation of SCFQ is
that it increases the maximum delay incurred by the packets significantly. Specifically, if Q is the set of flows served

by a server and C its capacity, then packets of flow f may incur

Pn2Q^n6=f lmaxnC more delay in SCFQ than in WFQ
[9]. This may be unacceptably large in many cases.

WFQ and SCFQ sort and schedule packets in the increasing order of finish tags. Hence, per packet computational
complexity is O(logQ) where Q is the number of flows served by the server. To reduce this per packet computational
complexity, Deficit Round Robin (DRR) was proposed in [19]. It is a derivative of weighted round robin algorithm
designed to accommodate variable length packets of a flow. Though the per packet computational complexity of DRR
is O(1) per packet, it has the following two limitations:

1. The value of H(f;m) for DRR is
�1 + lmaxfrf + lmaxmrm �

whenminn2Q rn = 1, which can deviate arbitrarily away

from that of fair scheduling algorithms like SCFQ. For instance, if rf = rm = 100 and lmaxf = lmaxm = 1,
then H(f;m) for DRR is 1:02, which is 50 times larger than the corresponding 0:02 value for SCFQ. Clearly,
appropriate choice of weights can make this factor as high as desired. Since absolute values of H(f;m) have
no physical meaning, the relative values are important.

2. The maximum delay incurred by packets serviced by a DRR server can be arbitrarily high. To observe this,
consider a weighted round robin server with all packets of size l (DRR is equivalent to weighted round robin
server in such a scenario). It is easily observed that a lower bound on maximum delay of a packet of flow f isPn2Q^n6=f l�rnC . Since weights can be arbitrary, the lower bound can be arbitrarily high.

The properties of WFQ, FQS, SCFQ and DRR are summarized in Table 1. As it illustrates, the design of a fair
scheduling algorithm that is: (1) computationallyefficient, (2) provides fairness over variable rate servers, (3) facilitates
hierarchical link sharing, and (4) has good delay properties is an open problem.

1.3 Research Contributions of This Paper

In this paper, we present Start-time Fair Queuing (SFQ) algorithm that is computationally efficient and allocates

bandwidth fairly regardless of variation in a server rate. We show that it has a fairness measure of ( lmaxfrf + lmaxmrm ),
which is only a factor two away from the lower bound and is at least as good as the fairness measure of all known fair
scheduling algorithms. We analyze the throughput, single server delay, and end-to-end delay guarantee of SFQ. To
accommodate links whose capacity fluctuates over time (for example, flow-controlled and broadcast medium links),
this analysis is carried out for servers which can be modeled as either Fluctuation Constrained (FC) or Exponentially
Bounded Fluctuation (EBF) servers [15]. To the best of our knowledge, this is the first analysis of a fair or a real-time
scheduling algorithm for such servers. To support hierarchical link sharing, we present a hierarchical SFQ scheduler.3It appears that SCFQ and DRR may achieve fairness over variable rate servers. However, this has neither been formallydemonstrated nor articulated.
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We build upon the analysis of FC and EBF servers and analyze the throughput, delay and end-to-end delay guarantees
of a flow when the link bandwidth is hierarchically partitioned. The analysis is simple and conceptually elegant.
We demonstrate that the hierarchical SFQ scheduler, in addition to supporting heterogeneity, can be used to achieve
separation of delay and throughput allocation as well as delay shifting (i.e., reduction of delay of a set of flows while
increasing the delay of other flows).

Our analysis demonstrates that: (1) SFQ is better suited than WFQ for integrated services networks since it
provides significantly smaller average and maximum packet delay for low-throughput applications and efficiently
achieves fairness over variable rate servers; (2) SFQ is strictly better than SCFQ since maximum packet delay in SFQ
is considerably smaller than in SCFQ and both have same the fairness measure and implementation complexity; (3)
SFQ is strictly better than FQS since it has lower complexity and achieves fairness over variable rate servers without
increasing the maximum packet delay; and (4) SFQ provides considerably better fairness properties and smaller
maximum delay than DRR.

We demonstrate that SFQ is suitable for integrated services networks since it: (1) achieves low average as well
as maximum delay for low-throughput applications (e.g., interactive audio, telnet, etc.); (2) provides fairness which
is desirable for VBR video; (3) provides fairness, regardless of variation in server capacity, for throughput-intensive,
flow-controlled data applications; (4) enables hierarchical link sharing which is desirable for managing heterogeneity;
and (5) is computationally efficient.

The rest of the paper is structured as follows. We present SFQ algorithm and analyze its fairness, throughput,
single server delay guarantee, and end-to-end delay guarantee in Section 2. We discuss hierarchical link sharing in
Section 3 and present our implementation of SFQ for an ATM network interface in Solaris 2.4 environment in Section
4. Finally, Section 5 summarizes our results.

2 Start-time Fair Queuing

In Start-time Fair Queuing algorithm (SFQ) two tags, a start tag and a finish tag, are associated with each packet.
However, unlike WFQ and SCFQ, packets are scheduled in the increasing order of the start tags of the packets.
Furthermore, v(t) is defined as the start tag of the packet in service at time t. The complete algorithm is defined as
follows:

1. On arrival, a packet pjf is stamped with start tag S(pjf ), computed as:S(pjf ) = maxfv(A(pjf )); F (pj�1f )g j � 1 (4)
where F (pjf ), the finish tag of packet pjf , is defined as:F (pjf ) = S(pjf ) + ljfrf j � 1 (5)
where F (p0f ) = 0 and rf is the weight of flow f .

2. Initially the server virtual time is 0. During a busy period, the server virtual time at time t, v(t), is defined to be
equal to the start tag of the packet in service at time t. At the end of a busy period, v(t) is set to the maximum
of finish tag assigned to any packets that have been serviced by time t.

3. Packets are serviced in increasing order of the start tags; ties are broken arbitrarily (some tie breaking rules may
be more desirable than others and are discussed in Section 2.3).

As is evident from the definition, the computation of v(t) in SFQ is inexpensive since it only involves examining the
start tag of packet in service. Hence, the computational complexity of SFQ is same as SCFQ, which is O(logQ) per
packet, where Q is the number of flows at the server.

Traditionally, scheduling algorithms have been analyzed only for servers whose service rate does not vary
over time. However, service rate of flow-controlled, broadcast medium and wireless links may fluctuate over time.
Fluctuation in service rate may also occur due to variability in CPU capacity available for processing packets (for
example, a CPU constrained IP router may not have sufficient CPU capacity to process packets when routing updates
occur). If a server is shared by multiple types of traffic with some traffic types being given priority over the other,
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then for lower priority traffic, the link appears as a server with fluctuating service rate. In order to accommodate such
scenarios, we analyze SFQ for servers with bounded fluctuation in service rate.

Two server models, termed Fluctuation Constrained (FC) server and Exponentially Bounded Fluctuation (EBF)
server, that have bounded fluctuation in service rate and are suitable for modeling many variable rate servers have been
introduced in [15]. A FC server has two parameters; average rate C (bits/s) and burstiness �(C) (bits). Intuitively, an
FC server, in any interval during a busy period, does at most �(C) less work than an equivalent constant rate server.
Formally,

Definition 1 A server is a Fluctuation Constrained (FC) server with parameters (C; �(C)), if for all intervals [t1; t2]
in a busy period of the server, the work done by the server, denoted by W (t1; t2), satisfies:W (t1; t2) � C(t2 � t1)� �(C) (6)
EBF server is a stochastic relaxation of FC server. Intuitively, the probability of work done by an EBF server deviating
from the average rate by more than , decreases exponentially with  4. Formally,

Definition 2 A server is an Exponentially Bounded Fluctuation (EBF) server with parameters (C;B; �; �(C)), if for
all intervals [t1; t2] in a busy period of the server, the work done by the server, denoted by W (t1; t2), satisfies:P (W (t1; t2) < C(t2 � t1)� �(C)� ) � Be�� 0 �  (7)

In what follows, we analyze the fairness of SFQ for any variable rate server, and its throughput and delay
guarantees for FC and EBF servers. Since a (C; 0) FC server is a constant rate server, the following analysis is also
valid for constant rate servers. We present the proofs of only few results; the rest of the proofs are presented in the
appendix.

2.1 Fairness Guarantee

To prove that SFQ is fair, we need to prove a bound on j Wf (t1;t2)rf � Wm(t1;t2)rm j for any interval in which both flows f
andm are backlogged. We achieve this objective by establishing a lower and an upper bound onWf (t1; t2) in Lemmas
1 and 2, respectively.

Lemma 1 If flow f is backlogged throughout the interval [t1; t2], then in a SFQ server:rf (v2 � v1)� lmaxf � Wf (t1; t2) (8)
where v1 = v(t1) and v2 = v(t2).
Proof: Since Wf (t1; t2) � 0, if rf (v2 � v1) � lmaxf � 0, (8) holds trivially. Hence, consider the case whererf (v2 � v1)� lmaxf > 0. Let packet pkf be the first packet of flow f , that receives service in the open interval (v1; v2).
Since flow f is backlogged during the interval [t1; t2] and rf (v2 � v1)� lmaxf > 0, such a packet exists. Furthermore,S(pkf ) = F (pk�1f ). To observe this, let us suppose S(pkf ) > F (pk�1f ). This implies packet pkf arrives after pk�1f
finishes service. There are two cases to consider:� pk�1f finishes service at time t � t1. Since flow f is backlogged during the interval [t1; t2], packet pkf can not

arrive after pk�1f finishes service. Hence, this is a contradiction.� pk�1f finishes service at time t < t1. Since flow f is backlogged during the interval [t1; t2], this implies packetpkf arrives at time A(pkf ) � t1. Since virtual time of system is non decreasing function of time, v(A(pkf )) � v1.

As packet pkf is serviced in the open interval (v1; v2), S(pkf ) > v1. But S(pkf ) = maxfv(A(pkf )); F (pk�1f )g.

Since v(A(pkf )) � v1 and S(pkf ) > v1, we conclude S(pkf ) = F (pk�1f ) which is a contradiction.4The EBF server as presented here has an extra parameter �(C). However, this parameter does not change the de�nitionsigni�cantly.
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Hence, S(pkf ) � F (pk�1f ). But S(pkf ) � F (pk�1f ) by definition. Hence, we conclude S(pkf ) = F (pk�1f ). SinceS(pk�1f ) � v1, F (pk�1f ) � v1 + lk�1frf ) F (pk�1f ) � v1 + lmaxfrf . Hence,S(pkf ) � v1 + lmaxfrf (9)
Let pk+mf be the last packet to receive service in the virtual time interval (v1; v2). Hence,F (pk+mf ) � v2 (10)

From (9) and (10), we conclude: F (pk+mf )� S(pkf ) � (v2 � v1)� lmaxfrf (11)
But since flow f is backlogged in the interval (v1; v2), from (4) and (5) we know:F (pk+mf ) = S(pkf ) + n=mXn=0 lk+nfrf (12)F (pk+mf ) � S(pkf ) = n=mXn=0 lk+nfrf (13)

Hence, from (13) and ( 11), we get:n=mXn=0 lk+nfrf � (v2 � v1) � lmaxfrf (14)n=mXn=0 lk+nf � rf (v2 � v1)� lmaxf (15)
Since Wf (t1; t2) �Pn=mn=0 lk+nf , the lemma follows.

Lemma 2 In a SFQ server, during any interval [t1; t2]:Wf (t1; t2) � rf (v2 � v1) + lmaxf (16)
where v1 = v(t1) and v2 = v(t2).
Proof:

From the definition of SFQ, the set of flow f packets served in the interval [v1; v2] have service tag at least v1 and
at most v2. Hence, the set can be partitioned into two sets:� This set, denoted by D, consists of packets that have service tag at least v1 and finish time at most v2. Formally,D = fkjv1 � S(pkf ) � v2 ^ F (pkf ) � v2g (17)

From (4) and (5), we conclude: Xk2D lkf � rf (v2 � v1) (18)� This set, denoted by E, consists of packets that have service tag at most v2 and finish time greater than v2.
Formally, E = fkjv1 � S(pkf ) � v2 ^ F (pkf ) > v2g (19)
Clearly, at most one packet can belong to this set. Hence,Xk2E lkf � lmaxf (20)
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Figure 1 : (a)The network topology used for the simulations and (b) Comparison of the number of packets received
by sources 2 and 3 in WFQ and SFQ

From (18) and (20) we conclude that (16) holds.
Since unfairness between two flows in any interval is maximum when one flow receives maximum possible service

and the other minimum service, Theorem 1 follows directly from Lemmas 1 and 2.

Theorem 1 For any interval [t1; t2] in which flows f and m are backlogged during the entire interval, the difference
in the service received by two flows at a SFQ server is given as:j Wf (t1; t2)rf � Wm(t1; t2)rm j� lmaxfrf + lmaxmrm (21)

Theorem 1 demonstrates that fairness measure of SFQ is at most a factor of 2 away from an optimal fair packet
scheduling algorithm. Furthermore, it demonstrates that SFQ has the smallest fairness measure among all the known
scheduling algorithms (see Table 1).

Observe that to establish Theorem 1, we did not make any assumptions about the service rate of the server. Hence,
Theorem 1 holds regardless of the characteristics of the server. This demonstrates that SFQ achieves fair allocation
of bandwidth over variable rate servers, and thus meets a fundamental requirement of fair scheduling algorithms for
integrated services networks. This is an important advantage over WFQ that does not allocate bandwidth fairly over
variable rate servers.

To experimentally evaluate the relative performance of SFQ and WFQ, we simulated 3 flows with the same
destination traversing a single switch using REAL network simulator (see Figure 1 (a)). Source 1 transmitted a MPEG
compressed VBR video sequence with average rate 1.21 Mb/s using 50 bytes packets 5. Sources 2 and 3 were TCP
Reno sources and used 200 bytes packets. The link capacity between the switch and the destination was 2.5 Mb/s.
The scheduling algorithm at the switch gave higher priority to source 1 packets and scheduled source 2 and 3 packets
using either WFQ or SFQ. Consequently, the output link at the switch appeared as a variable rate server to sources 2
and 3. The WFQ implementation used the link capacity to compute the finish tags. Source 3 was made active 500 ms
after sources 1 and 2, and the network was simulated for one second. Figure 1(b) plots the sequence number of packets
of sources 2 and 3 received by the destination when WFQ and SFQ were used. As the figure demonstrates, source 2
received unfair advantage over source 3 when WFQ was used. Specifically, when WFQ was used, during the 500ms
interval after source 3 became active, whereas the destination received only 48 packets from source 3, it received 331
packets from source 2. On the other hand, when SFQ was used, it received 189 packets and 190 packets from sources
2 and 3, respectively. Furthermore, during the first 435 ms after source 3 was started, the number of source 3 packets
received by the destination in WFQ and SFQ was 2 and 145, respectively. This experimentally validates the superiority
of SFQ over WFQ for achieving fair allocation of bandwidth over variable rate servers.5The video sequence was derived by digitizing and compressing television serial Frasier.
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2.2 Throughput Guarantee

In the previous sections, we have not assigned any interpretation to the weight of a flow. To establish the throughput
and delay guarantee of a flow, we will henceforth interpret rf as the rate assigned to flow f . Theorems 2 and 3 establish
the throughput guaranteed to a flow by a SFQ FC and EBF server, respectively, when appropriate admission control
procedures are used.

Theorem 2 If Q is the set of flows served by a SFQ FC server with parameters (C; �(C)), and
Pn2Q rn � C, then

for all intervals [t1; t2] in which flow f is backlogged throughout the interval, Wf (t1; t2) is given as:Wf (t1; t2) � rf (t2 � t1)� rfPn2Q lmaxnC � rf �(C)C � lmaxf (22)
Proof: Let v(t1) = v1 and let cW (v1; v2) denote the aggregate length of packets served by the server in the virtual
time interval [v1; v2]. Then, from Lemma 2 we conclude:cW (v1; v2) � Xn2Q rn(v2 � v1) + Xn2Q lmaxn (23)
Since

Pn2Q rn � C, cW (v1; v2) � C(v2 � v1) + Xn2Q lmaxn (24)
Define v2 as: v2 = v1 + t2 � t1 � Pn2Q lmaxnC � �(C)C (25)
Then from (24), we conclude:cW (v1; v2) � C(v1 + t2 � t1 � Pn2Q lmaxnC � �(C)C � v1) + Xn2Q lmaxn (26)� C(t2 � t1)� �(C) (27)
Let bt2 be such that v(bt2) = v2. Also, let T (w) be the time taken by server to serve packets with aggregate length w in
its busy period. Then, bt2 � t1 + T (cW (v1; v2)) (28)� t1 + T (C(t2 � t1)� �(C)) (29)
From the definition of Fluctuation Constrained server, we get:T (w) � wC + �(C)C (30)
From (29) and (30) we get: bt2 � t1 + C(t2 � t1) � �(C)C + �(C)C (31)� t2 (32)
From Lemma 1 we know that: Wf (t1; bt2) � rf (v2 � v1)� lmaxf (33)
Since bt2 � t2, using (25) we get:Wf (t1; t2) � rf (t2 � t1)� rfPn2Q lmaxnC � rf �(C)C � lmaxf (34)
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Theorem 3 IfQ is the set of flows served by a SFQ EBF server with parameters (C;B; �; �(C)), and

Pn2Q rn � C,
then for all intervals [t1; t2] in which flow f is backlogged throughout the interval, Wf (t1; t2) is given as:P �Wf (t1; t2) < rf (t2 � t1)� rfPn2Q lmaxnC � rf �(C)C � rf C � lmaxf � � Be�� 0 �  (35)

The throughput guarantees of other fair scheduling algorithms have not been established. However, it can be
shown that for constant rate servers, when similar admission control procedure is used, the throughput guarantee of
neither WFQ nor SCFQ is better than that of SFQ.

Observe that throughput guarantees derived in Theorems 2 and 3 for SFQ have a recursive structure. Specifically,
the throughput guaranteed to a flow by an FC or an EBF SFQ server is also fluctuation constrained or has exponentially
bounded fluctuation, respectively. We will exploit this recursive structure to analyze performance bounds when a link
bandwidth is hierarchically partitioned.

2.3 Delay Guarantee

SFQ algorithm, as defined so far, only allocates constant rate to the packets of a flow. However, due to the multiple
time-scale variation of VBR video, to achieve efficient utilization of network resources, a server may be required to
allocate variable rate to packets of a video flow. To support variable rate allocation, we generalize SFQ by extending
the definition of service tags. Let rjf be the rate assigned to packet pjf . Then finish tag of packet pjf , F (pjf ) is defined
as: F (pjf ) = S(pjf ) + ljfrjf j � 1 (36)
Start tag of a packet and the system virtual time are defined as before. We now prove the delay guarantee of the
generalized SFQ algorithm.

Clearly, a server can provide a bound on delay only if its capacity is not exceeded. However, when variable rate
is allocated to the packets of a flow, the intuitive meaning of capacity not being exceeded needs to be defined precisely.
To do so, let rate function for flow f at virtual time v, denoted by Rf (v), be defined as the rate assigned to the packet
that has start tag less than v and finish tag greater than v. Formally,Rf (v) = ( rjf if 9j 3 �S(pjf ) � v < F (pjf )�0 otherwise

Let Q be the set of flows served by the server. Then a FC or EBF server with average rate C, is defined to have
exceeded its capacity at virtual time v if

Pn2QRn(v) > C. If the capacity of a SFQ server is not exceeded, then it

guarantees a deadline to a packet based on its expected arrival time. Expected arrival time of packet pjf that has been

assigned rate rjf , denoted by EAT (pjf ; rjf ), is defined as:EAT (pjf ; rjf) = maxfA(pjf ); EAT (pj�1f ; rj�1f ) + lj�1frj�1f g j � 1 (37)
where EAT (p0f ; r0f ) = �1. A deadline guarantee based on expected arrival time has been referred to as delay
guarantee [9, 14]. Theorems 4 and 5 establish the delay guarantee of SFQ for FC and EBF servers, respectively.

Theorem 4 If Q is the set of flows served by a SFQ FC server with parameters (C; �(C)) and
Pn2QRn(v) � C

for all v, then the departure time of packet pjf at the server, denoted by LSFQ(pjf ), is given by:LSFQ(pjf ) � EAT (pjf ; rjf ) + Xn2Q^n6=f lmaxnC + ljfC + �(C)C (38)
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Proof: Let set H be defined as follows:H = fmjm > 0 ^ S(pmf ) = v(A(pmf ))g (39)

Let k � j be largest integer in H. Also, let v1 = v(A(pkf )) and v2 = S(pjf ). Observe that as the server virtual

time is set to the maximum finish tag assigned to any packet at the end of a busy period, packet pkf and pjf are served in
the same busy period of a server. From the definition of SFQ, the set of flow f packets served in the interval [v1; v2]
have start tag at least v1 and at most v2. Hence, the set can be partitioned into two sets:� This set consists of packets that have start tag at least v1 and finish tag at most v2. Formally the set of packets

of flow n, denoted by Dn, in this set is:Dn = fmjv1 � S(pmn ) � v2 ^ F (pmn ) � v2g (40)
Then, from the definition of Rn(v) and F (pmn ; rmf ), we know that the cumulative length of such flow n packets
served by the server in the virtual time interval [v1; v2], denoted by APn(v1; v2), is given as:APn(v1; v2) � Z v2v1 Rn(v)dv (41)
Hence, aggregate length of packets in this set,

Pn2QAPn(v1; v2), is given as:Xn2QAPn(v1; v2) � Xn2Q Z v2v1 Rn(v)dv (42)� Z v2v1 Xn2QRn(v)dv (43)� Z v2v1 Cdv (44)� C(v2 � v1) (45)
But since v2 = S(pjf ; rjf ), from the definition of k, v2 � v1 =Pn=j�k�1n=0 lk+nfrk+nf . Hence,Xn2QAPn(v1; v2) � C n=j�k�1Xn=0 lk+nfrk+nf (46)� This set consists of packets that have start tag at most v2 and finish tag greater than v2. Formally, the set of
packets of flow n, denoted by En, in this set isEn = fmjv1 � S(pmn ) � v2 ^ F (pmn ) > v2g (47)
Clearly, at most one packet of flow n can belong to this set. Furthermore, Ef = fjg. Hence, the maximum
aggregate length of packets in this set is: Xn2Q^n6=f lmaxn + ljf (48)

Hence, the aggregate length of packets served by the server in the interval [v1; v2], denoted by cW (v1; v2), is:cW (v1; v2) � C n=j�k�1Xn=0 lk+nfrk+nf + Xn2Q^n6=f lmaxn + ljf (49)
Let T (w) be the time taken by server to serve packets with aggregate length w in a busy period. From the definition
of Fluctuation Constrained server, we get: T (w) � wC + �(C)C (50)
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Since packet pjf departs at system virtual time v2 and all the packets served in the virtual time interval [v1; v2] are
served in the same busy period of the server, we get: A(pkf ) + T (cW (v1; v2)) � LSFQ(pjf ) (51)A(pkf ) + CPn=j�k�1n=0 lk+nfrk+nf +Pn2Q^n6=f lmaxn + ljfC + �(C)C � LSFQ(pjf ) (52)A(pkf ) + n=j�k�1Xn=0 lk+nfrk+nf + Xn2Q^n6=f lmaxnC + ljfC + �(C)C � LSFQ(pjf ) (53)
From (37) we get EAT (pjf ; rjf ) + Xn2Q^n6=f lmaxnC + ljfC + �(C)C � LSFQ(pjf ) (54)
Theorem 5 IfQ is the set of flows served by a SFQ EBF server with parameters (C;B; �; �(C))and

Pn2QRn(v) �C for all v, then the departure time of packet pjf at the server, denoted by LSFQ(pjf ), is given by:P 0@LSFQ(pjf ) � EAT (pjf ; rjf ) + Xn2Q^n6=f lmaxnC + ljfC + �(C)C + C1A � 1� Be�� 0 �  (55)
The delay guarantee derived in Theorems 4 and 5 is independent of a tie breaking rule that a SFQ server may use

when more than one packet have the same start tag. Though a tie breaking rule does not effect the delay guarantee, it
can be used by a server to achieve different objectives. For example, a tie-breaking rule may give higher priority to
interactive, low-throughput applications to reduce the average delay.

Theorems 4 and 5 can be used to determine delay guarantee even when a server has flows with different priorities
and services them in the priorityorder (such a scenario may occur in an integrated services network with different traffic
types). To illustrate, consider a server that services flows with two priorities and uses SFQ to schedule the packets of
lower priority flows. If the bandwidth requirement of flows that are given higher prioritycan be characterized by a leaky
bucket with average rate � and burstiness � (such a characterization may be enforced by shaping the higher priority
flows through a leaky bucket), then the residual bandwidth available to the lower priority flows can be modeled as
fluctuation constrained with parameters (C��; �). Hence, Theorem 4 can be used to determine the delay guarantee of
the lower priority flows. Similarly, if the aggregate arrival process of the high priority flows can be modeled as poisson
process, then the residual bandwidth can be modeled as EBF server [15] and Theorem 5 can be used to determine the
delay guarantee.

Theorem 4 demonstrates that maximum delay of a packet in SFQ is significantly smaller than in SCFQ. Specifically,
a tight bound on the departure time of a packet at a constant rate server employing SCFQ, given in [9], is:LSCFQ(pjf ) � EAT (pjf ; rjf ) + Xn2Q^n6=f lmaxnC + ljfrjf (56)
Since �(C) = 0 for a constant rate server, the difference in maximum delay that a packet may incur at servers employing
SCFQ and SFQ is: ljfrjf � ljfC (57)
Clearly, maximum delay in SFQ is much smaller than in SCFQ. To illustrate numerically, when rjf =64Kb/s, ljf = 200
bytes and C=100Mb/s, the difference is 24.4ms. If there areK servers on the path of a flow, this difference increases by
a factor of K. For instance, the difference increases to 122ms for K = 5. Similarly, the difference increases linearly
with the packet size.
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Figure 2 : (a)Difference in maximum delay in WFQ and SFQ (b) Comparison of average delay in WFQ and SFQ

Theorem 4 demonstrates that SFQ does not couple bandwidth and delay allocation. This enables it to provide
lower maximum delay to low-throughput applications as compared to WFQ that inversely couples delay and bandwidth
allocation. To observe this, consider the difference in the maximum delay experienced by packet pjf , denoted by�(pjf ),
in WFQ and SFQ. Since WFQ guarantees that packet pjf will be transmitted byEAT (pjf ; rjf )+ ljfrjf + lmaxC where lmax
is the maximum packet length at the server, we get:�(pjf ) = ljfrjf + lmaxC � Xn2Q^n6=f lmaxnC � ljfC (58)
To gain a qualitative understanding of �(pjf ), let ljf = lmax = lmaxn = l and rjf = rf . Then,�(pjf ) = lrf � (j Q j �1)lC (59)
Hence, �(pjf ) � 0 if: 1j Q j �1 � rfC (60)
This shows that maximum delay of packets of a flow in SFQ is smaller than in WFQ if the fraction of the link bandwidth
used by the flow is at most 1jQj�1 , which is expected to be true for low-throughput applications. This is also illustrated
by Figure 2(a), which plots the reduction in delay in SFQ for different number of flows and flow rates, assuming 200
bytes packet and link capacity of 100Mb/s. As the figure shows, the reduction is higher for lower throughput flows.
To compare the delay performance of WFQ and SFQ, consider a network link that is servicing 70 flows (possibly
video flows) with rate 1Mb/s and 200 flows (possibly audio flows) with rate 64Kb/s. In such a scenario, whereas the
maximum delay of the packets of flow with rate 64 Kb/s reduces by 20.39ms in SFQ, the maximum delay of 1Mb/s
flows increases by 2.48 ms. Hence, SFQ reduces the maximum delay of low throughput flows significantly without an
appreciable increase in the delay of high throughput flows.

SFQ not only reduces the maximum delay as compared to WFQ, but is also expected to lower the average delay of
low-throughput applications. This is because whereas SFQ schedules packets in the increasing order of start tags, and
thereby schedules packets at the earliest possible instant; WFQ schedules packets in increasing order of finish tag, and
thus delays a packet as long as possible. To validate this hypothesis, we simulated a switch that was shared by high and
low throughput flows carrying poisson traffic. The link capacity was 1Mb/s and the packet size was 200 bytes. Seven
high-throughput flows with average rate 100Kb/s shared the switch with varying number of low-throughput flows with
average rate 32Kb/s. The number of low-throughput flows was varied from 2 to 10 and the switch was simulated for
1000 seconds. Figure 2(b) compares the average packet delay of low-throughput flows in WFQ and SFQ at varying
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levels of link utilization. As the figure illustrates, the average delay of low-throughput flows is significantly higher in
WFQ than in SFQ. In fact, at 80.81% link utilization, the average delay is 53%, higher in WFQ than in SFQ. Hence,
SFQ provides lower maximum as well as average delay to low-throughput applications as compared to WFQ.

As is evident from the definition of the expected arrival time, two key properties of the delay guarantee of SFQ
for a flow are: (1) it is independent of the behavior of other sources at the server, and thereby isolates the flow; and
(2) it is independent of a traffic characterization. Whereas the isolation property enables a server to provide stronger
guarantees to the flow and is highly desirable when sources may be malicious [2, 5, 14, 17], independence of delay
guarantee from traffic characterization enables a server to provide various QoS guarantees to flows conforming to any
specification [9]. To enable a network of servers to provide similar guarantees, in what follows, we derive end-to-end
delay guarantee.

2.4 End-to-End Delay Guarantee

The objective is to determine the deadline guarantee of a network of servers based on the expected arrival time of a
packet at the first server on the path of a flow [9]. To do so, let the ith server along the path of a flow be denoted as
server i. Also, let there be K servers on the path of a flow and let each of the server guarantee a deadline to a packet
based on its expected arrival time. Then, the network guarantees a deadline to a packet based on its expected arrival
time at the Kth server. Observe that the expected arrival time of a packet at server K is dependent on departure time
of packet at server K � 1, which, in turn, is dependent on expected arrival time of the packet at server K � 1. Using
this argument recursively, a network of servers can guarantee a deadline to a packet based on the expected arrival time
of the packet at the first server. This method has been used in [9] to derive end-to-end delay guarantee of a network of
servers that employ algorithms in the class of Guaranteed Rate (GR) scheduling algorithms. However, the end-to-end
delay guarantee presented in [9] assumes that each of the server provides a deterministic bound on the departure time
of a packet. Consequently, even though SFQ belongs to GR, the guarantee is not applicable to a network which may
have some SFQ EBF servers. To analyze such networks, we generalize the method presented in [9].

Observe that SFQ delay guarantee for both FC and EBF servers can be rewritten as:P �LSFQ(pjf ) � EAT (pjf ; rjf ) + �jf + � � 1� Be�� 0 �  (61)
Substituting �jf = Pn2Q^n6=f lmaxnC + ljfC + �(C)C , B = 0 and � = 1, yields the delay guarantee for FC server.

Substituting �jf =Pn2Q^n6=f lmaxnC + ljfC + �(C)C and � = �C, on the other hand, yields the delay guarantee for EBF
server. Hence, we will use (61) to derive the end-to-end delay guarantee. Furthermore, to facilitate interoperability
with other scheduling algorithms, we will only require each server on the path of a flow to guarantee a deadline which
is similar to (61). We first relate the expected arrival time of a packet at adjacent servers in Theorem 6 and then use it
to derive end-to-end delay guarantee in Corollary 1.

Let � i;i+1 be an upper bound on the propagation delay between servers i and i + 1. Also, let all the variables of
server i be identified by superscript i, i.e., �jf and rjf are identified as �j;if and rj;if , respectively. Henceforth in this
section, we will refer to a single flow f , and, hence drop the subscript f from all the variables.

Theorem 6 If scheduling algorithm at server i guarantees that:P �Li(pj) � EAT i(pj ; rj;i) + �j;i + � � 1� Bie��i 0 �  (62)
where Li(pj) is the time at which packet pj departs server i, then:P �EAT i+1(pj ; brj;i) � EAT i(pj; brj;i) + maxn2[1::j]f�n;ig+ � i;i+1 + � � 1� Bie��i 0 �  (63)
where brj;i � minfrj;i; rj;i+1g.

Corollary 1 If scheduling algorithm at each server on the path of a flow satisfies (62), and there are K servers on
the path of the flow, then:P  LK(pj) � EAT 1(pj; brj) + n=KXn=1 maxm2[1::j]f�m;ng+ n=K�1Xn=1 �n;n+1 + ! � 1� (n=KXn=1 Bn)e� 1Pn=Kn=1 1�n(64)
where LK (pj) is the time at which packet pj leaves server K, and brj = minn2[1::K] brj;n.
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As Corollary 1 illustrates, the end-to-end guarantee, like the single server guarantee, is based on the expected

arrival time of a packet and hence is independent of the behavior of other flows and any particular flow characterization.
Moreover, it can be used to determine various QoS parameters like upper bound on end-to-end delay, packet loss
probability and buffer requirement for any traffic specification [9] (see Section A.5 for a brief exposition of method
for deriving end-to-end delay bounds and a bound for flows conforming to leaky bucket). Hence, such a guarantee is
highly desirable.

To derive Corollary 1, we have only required the scheduling algorithm at each server to satisfy (62). Hence, any
scheduling algorithm that satisfies (62) (for example, Virtual Clock, WFQ, and SCFQ) can interoperate to provide
end-to-end guarantee. Furthermore, Corollary 1 can be used for an internetwork of FC and EBF servers. Finally, the
proof method of Theorem 6 and Corollary 1 can be used to derive end-to-end delay guarantee even when packet may
be fragmented and reassembled in the network. Hence, SFQ can provide guarantees in heterogeneous internetworking
environments.

2.5 Discussion

SFQ borrows the notion of “self-clocking” i.e., computing system virtual time based on a tag of a packet in service,
from SCFQ to achieve efficiency. However, it provides significantly lower delay than SCFQ while achieving the same
fairness measure. Hence, using fairness, throughput, delay, and computational complexity as performance metrics, we
conclude that SFQ is strictly better than SCFQ.

SFQ is similar in spirit to FQS which also schedules packets in the increasing order of start tags. However, as
FQS uses v(t) as defined in (3), it is computationally expensive and fails to allocate bandwidth fairly over variable rate
servers. Furthermore, as Theorem 1 and Table 1 show, its fairness measure is no smaller than that of SFQ. Finally,
since in FQS, all Q flows can become active simultaneously, and consequently Q packets can have the same start tag,
the bound on the departure time of a packet in FQS cannot be smaller than in SFQ. Hence, SFQ has many advantages
but no disadvantages over FQS.

A key advantage of SFQ over WFQ, in addition to lower implementation complexity, is that it achieves fairness
over variable rate servers while WFQ does not. Moreover, it provides considerably lower maximum and average delay
to low-throughput applications than WFQ. Since low-throughput applications like audio and telnet are more delay
sensitive than high-throughput applications like video and ftp, this feature is highly desirable. In case delay guarantee
of WFQ is required, as we show in Appendix B, SFQ can be combined with non work-conserving Virtual Clock to
derive Fair airport scheduling algorithm that provides the delay guarantee of WFQ and efficiently achieves fairness even
over variable rate servers. Thus, since SFQ addresses the drawbacks of WFQ while achieving its delay guarantee if
desired, it is better suited than WFQ for integrated services networks.

Finally, since SFQ provides a bound on maximum delay that does not depend on the weights of other flows and
has a bounded deviation from an optimal fair scheduling algorithm, it has better fairness and delay properties than
DRR.

To summarize, we have shown that SFQ: (1) achieves low average as well as maximum delay for low-throughput
applications; (2) provides fairness, regardless of variation in a server rate; (3) has a fairness measure that is at least
as good as that of all the known fair scheduling algorithms; and (4) is computationally efficient. In the next section,
we show that it enables hierarchical link sharing, and thus meets all the requirements of a scheduling algorithm for
integrated services networks.

3 Hierarchical Link Sharing

Hierarchical link sharing is an ideal mechanism for managing heterogeneity in integrated services networks [7, 18].
It can be used by a network to support services that provide heterogeneous QoS as well as multiple protocol families
that support different traffic types and/or congestion control mechanisms. For example, a network can support hard
and soft real-time, as well as best effort services by partitioning the link bandwidth between them as per the expected
requirements of each of the service. To support high and low reliability soft real-time services, the bandwidth of
soft real-time service may be further partitioned. Similarly, the bandwidth of the best effort services may be further
partitioned between throughput intensive and interactive services.

A key advantage of hierarchical link sharing is that it provides isolation between different services while enabling
similar services to share resources. Hence, incompatible congestion control algorithms can coexist while compatible
algorithms reap the advantages of sharing. For example, while high and low reliability soft real-time services get
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the benefits of sharing, the hard real-time service is isolated from the overbooking that may occur in soft real-time
services, and the congestion control algorithm that may be used by the best effort services. Hierarchical link sharing
also facilitates use of different resource allocation methods for different services. This is desirable as hard real-time
services may use a scheduling algorithm that performs well when there is no overbooking; soft real-time services may
prefer to use a scheduling algorithm that provides QoS guarantees and/or minimizes deadline violations in presence
of overbooking [1]; and best effort services may use a fair scheduler for throughput intensive flow-controlled data
applications.

The requirements of hierarchical link sharing is specified by a tree, referred to as link-sharing structure, in which
each node, other than possibly leaf nodes, denotes an aggregation of flows [7]. Each node in the tree is referred to
as a class and has a weight associated with it. The objective of a mechanism implementing hierarchical link sharing
is to distribute the bandwidth allocated to a class among its subclasses fairly, i.e., in proportion to the weights [18].
This objective can be achieved by a hierarchical scheduler that considers each class, other than the leaf classes, as a
virtual server and uses a fair scheduler to schedule the virtual servers. However, as the following example illustrates,
the scheduler used must allocate bandwidth fairly even over variable rate servers.

Example 3 Consider a link sharing structure in which classes A and B are subclasses of the root class. Let classes
C and D be subclasses of class A and let each class have weight 1. Initially, let there be no packets in class B. Hence,
class A gets the full link bandwidth. When class B also becomes active, the bandwidth available to class A (and hence
to subclasses C and D) reduces to 50% of the link bandwidth. Consequently, to fairly partition the bandwidth of class
A between subclasses C and D, the scheduler must be able to allocate bandwidth fairly over variable rate servers.

SFQ is the only scheduling algorithm that has been demonstrated to allocate bandwidth fairly even over variable rate
servers. In what follows, we present a hierarchical SFQ scheduler for link sharing.

Hierarchical SFQ scheduler is simple. It uses SFQ to schedule each class; treating each subclass as a flow.
The scheduling of packets occurs recursively: the scheduler for root class schedules the subclasses; the scheduler of
subclasses in turn schedule their subclasses. Since SFQ fairly allocates bandwidth regardless of the server behavior,
this simple recursive hierarchical scheduling ensures that bandwidth allocated to a class is fairly allocated between
the subclasses and thereby achieves the objective of hierarchical link sharing. Moreover, in contrast to link sharing
mechanism in [7], it provides bounds on various performance measures:� Throughput Guarantee: Consider a class f that is a subclass of the root class. Let the link be FC server

with parameters (C; �(C)) and let the set of the subclasses of the root class be denoted by Q. Then, if class f
has been assigned rate rf , from Theorem 2 we conclude that the virtual server corresponding to f is a FC server
with parameters: (rf ; rfPn2Q lmaxnC + rf �(C)C + lmaxf ) (65)
Similarly, using Theorem 3, we conclude that if the link is an EBF server, then the virtual server corresponding
to f is a EBF server. Hence, if the link is an FC or EBF server, then the virtual servers corresponding to the
subclasses of the root class are FC or EBF servers, respectively. Using the argument recursively, we conclude
that if the link is a FC or EBF server, then each of the virtual server in the hierarchical structure is a FC or EBF
server, respectively. Consequently, Theorems 2 and 3 can be used to determine the throughput guarantee of the
flows.� Delay Guarantee: Since each of the virtual server is either FC or EBF server, Theorems 4 and 5 can be used
to determine the single server delay guarantee of the flows.� End-to-End Delay Guarantee: Since the single server delay guarantee when a flow is hierarchically scheduled
satisfies (62), Corollary 1 can be used to determine the end-to-end delay guarantee.

The elegance of the above analysis is in its simplicity. This simplicity demonstrates the generality of the analysis
of SFQ servers presented in Section 26.6We would like to warn the reader of a potential pitfall. It is possible that some may reach the conclusion that this analysiswould hold even if the throughput of a server was modeled by a Service Burstiness server which is similar to a FC server [3].However, even though the throughput guaranteed to a ow by a Virtual Clock server conforms to Service Burstiness, it can beshown that Virtual Clock when used for hierarchical link sharing provides no guarantees.
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Hierarchical SFQ scheduler not only achieves the objectives of hierarchical link sharing, but can also be used to

achieve several other objectives. For example it can be used to achieve:� Separation of delay and throughput allocation: Observe that SFQ does not allocate delay and throughput
separately. However, it may be desirable to do so for some flows. This can be achieved by aggregating the flows
for which separation of delay and throughput is desirable into one class and then using a scheduling algorithm
that achieves such a separation for that class. Though conceptually simple, since the throughput of a class
fluctuates over time, the algorithm used must be able to achieve the separation over variable rate servers. In
Theorem 7, we show that Delay EDD can achieve this over a FC server. Since the throughput of a class is
fluctuation constrained, Delay EDD can be used to achieve the objective.

We first define Delay EDD and then prove its delay guarantee for a FC server. Delay EDD on arrival of packetpjf of flow f assigns it a deadline, denoted by D(pjf ), and schedules packets in increasing order of deadline.D(pjf ) is defined as: D(pjf ) = EAT (pjf ; rf) + df (66)
where df is the deadline of flow f packets, rf = rjf , and lf = ljf .

Theorem 7 If Q is the set of flows serviced by the server and8t > 0 : Xn2Qmaxf0;�(t� dn)rnln � lnC g � t (67)
and the server is a (C; �(C))FluctuationConstrained Delay EDD server, then the time at which the transmission
of packet pjf is completed, denoted by LEDD(pjf ), is:LEDD(pjf ) � D(pjf ) + lmaxC + �(C)C (68)
Due to high computational complexity, it may not be feasible to employ (67) as the schedulability test. Hence,
conditions stronger than (67) which have lower computational complexity have been developed in [23]. The
theorem holds under the stronger conditions as well.� Delay shifting: This involves the reduction of the maximum delay of certain flows at the expense of increasing
the delay of others. To illustrate, let the server be a FC server with parameters (C; �(C)) and let the set of flows
served by it be denoted by Q. For ease of exposition, let the packet length of each flow be l. Hence, using
Theorem 4, for packet pjf : LSFQ(pjf ) � EAT (pjf ; rf) + (jQj � 1)lC + �(C)C + lC (69)
Now, let the set Q be partitioned into K sets Q1; :::; QK and let them be hierarchically scheduled. Let flow f
belong to partitionQi and the rate assigned to partitionQn be denoted by Cn. To determine delay guarantee of
flow f when it is hierarchically scheduled, observe from (65) that the virtual server corresponding to partitionQi is a FC server with parameters (Ci; Ci(�(C)+Kl)C + l). Hence, the departure time of packet pjf of flow f ,

denoted by dLSFQ(pjf ), is given as:dLSFQ(pjf ) � EAT (pjf ; rf ) + (jQij � 1)lCi + Ci(�(C)+Kl)C + lCi + lCi (70)� EAT (pjf ; rf ) + (jQij+ 1)lCi + �(C) +KlC (71)
From (69) and (71), we conclude that the bound on the departure time would be smaller when the flow is
hierarchically scheduled if: (jQij+ 1)lCi + �(C) +KlC � jQjlC � �(C)C < 0 (72)
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Figure 3 : (a) SFQ scheduler implementation (b) Throughput of the connections) jQij+ 1jQj �K < CiC (73)
Hence, by ensuring that (73) is satisfied for the partitions which require lower delay, delay shifting can be
achieved.

4 Implementation

We have implemented SFQ scheduler for a FORE Systems ATM network interface in Solaris 2.4. Since network
protocols in Solaris are implemented using streams, the SFQ scheduler is implemented as a streams module and driver
(see Figure 3). The driver is used to maintain a hierarchical link sharing structure, created via ioctl() calls, for a network
interface. The module, on the other hand, is used to schedule packets. We have modified the FORE API for opening a
connection to include the weight of a connection and its class as parameters 7.

To experimentally validate the implementation of the scheduler, we initiated three connections with weights 1,
2, and 3. Each of the connection terminated after transmitting 500,000 4KB packets. Figure 3 shows the throughput
received by each connection. As it demonstrates, when all the three connections were active, they received throughput
in the ratio 1:2:3. When the connection with weight 3 terminated, the throughput of the other two connections increased
but still remained in the ratio 1:2. Finally, when only one connection remained, it received the full link bandwidth.
The throughput of the interface in this experiment was 48Mb/s which was the same without the SFQ scheduler (i.e.,
the scheduler did not impose any overhead). Observe from Figure 3 that SFQ scheduler achieved fair allocation even
though the realizable bandwidth of the interface varied over time. This demonstrates the feasibility of employing SFQ
for scheduling network interface in operating systems where the processing capacity available for a network interface
varies over time.

5 Concluding Remarks

In this paper, we presented Start-time Fair Queuing (SFQ) algorithm that is computationally efficient, achieves
fairness regardless of variation in a server capacity, and has the smallest fairness measure among all known fair
scheduling algorithms. We analyzed its throughput, single server delay, and end-to-end delay guarantee for variable
rate Fluctuation Constrained (FC) and Exponentially Bounded Fluctuation (EBF) servers. This is the first analysis
of any fair or real-time scheduling algorithm for such servers. Our analysis demonstrated that SFQ is better suited
than WFQ for integrated services networks and it is strictly better than SCFQ and FQS. To support heterogeneous
services and multiple protocol families in integrated services networks, we presented a hierarchical SFQ scheduler.
We derived performance bounds for flows that are hierarchically scheduled using a conceptually simple and elegant7We assume that there is an authentication mechanism to verify the class and the weight.
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method. Finally, we presented an implementation of SFQ scheduler and demonstrated that it achieves fair allocation
of bandwidth.

In summary, we demonstrated that SFQ: (1) achieves low average as well as maximum delay for low throughput
applications (e.g., interactive audio, telnet, etc.); (2) provides fairness which is desirable for VBR video; (3) provides
fairness, regardless of variation in server capacity, for throughput-intensive, flow-controlled data applications; (4)
enables hierarchical link sharing which is desirable for managing heterogeneity; and (5) is computationally efficient.
Thus, SFQ meets the requirements of a suitable scheduling algorithm for integrated services networks.
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A Appendix

A.1 Proof of Theorem 3

Proof: Let v(t1) = v1 and let cW (v1; v2) denote the aggregate length of packets served by the server in the virtual
time interval [v1; v2]. Then, from Lemma 2 we conclude:cW (v1; v2) � Xn2Q rn(v2 � v1) + Xn2Q lmaxn (74)
Since

Pn2Q rn � C, cW (v1; v2) � C(v2 � v1) + Xn2Q lmaxn (75)
Define v2 as: v2 = v1 + t2 � t1 � Pn2Q lmaxnC � �(C)C � �C (76)
Then from (75), we conclude:cW (v1; v2) � C(v1 + t2 � t1 � Pn2Q lmaxnC � �(C)C � �C � v1) + Xn2Q lmaxn (77)� C(t2 � t1) � �(C)� � (78)

Let bt2 be such that v(bt2) = v2. Also, let T (w) be random variable denoting the time taken by server to serve
packets with aggregate length w in its busy period. Then:P (bt2 � t2) � P (t1 + T (cW (v1; v2)) � t2) (79)� P (T (cW (v1; v2)) � (t2 � t1)) (80)
Since P (T (w) � (t2 � t1)) = P (W (t1; t2) � w), we get:P (bt2 � t2) � P (W (t1; t2) � cW (v1; v2)) (81)� P (W (t1; t2) � C(t2 � t1)� �(C)� �) (82)� 1� Be��� (83)

From Lemma 1 we know that P �Wf (t1; t2) � rf (v2 � v1) � lmaxf � � P (bt2 � t2). Hence, using (83) we get:P �Wf (t1; t2) � rf (v2 � v1)� lmaxf � � 1�Be��� (84)
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From (76) (the definition of v2) we get:P �Wf (t1; t2) � rf (t2 � t1)� rfPn2Q lmaxnC � rf �(C)C � rf �C � lmaxf � � 1� Be��� (85)P �Wf (t1; t2) < rf (t2 � t1)� rfPn2Q lmaxnC � rf �(C)C � rf �C � lmaxf � � Be��� (86)
A.2 Proof of Theorem 5

Proof: Let T (w) be the random variable denoting the time taken by server to serve packets of aggregate length w in
a busy period. From the definition of Exponentially Bounded Fluctuation server, we get:P (W (t1; t2) � C(t2 � t1)� �(C)� ) � 1�Be�� (87)) P �W (t1; t2 + �(C)C + C ) � C(t2 � t1)� � 1�Be�� (88)
Since P (T (w) � (t2 � t1)) = P (W (t1; t2) � w), we get:P �T (C(t2 � t1)) � (t2 � t1) + �(C)C + C� � 1� Be�� (89)

Define k, v1 and v2 as in the proof of Theorem 4. Then:LSFQ(pjf ) � A(pkf ) + T (cW (v1; v2)) (90)) P  LSFQ(pjf ) � A(pkf ) + cW (v1; v2)C + �(C)C + C! � P  T (cW (v1; v2)) � cW (v1; v2)C + �(C)C + C!(91)
From (89) we get: P  LSFQ(pjf ) � A(pkf ) + cW (v1; v2)C + �(C)C + C! � 1�Be�� (92)
Substituting the upper bound on cW (v1; v2) from (49), we get:P 0@LSFQ(pjf ) � A(pkf ) + n=j�k�1Xn=0 lk+nfrk+nf + Xn2Q^n6=f lmaxnC + ljfC + �(C)C + C1A � 1�Be�� (93)P 0@LSFQ(pjf ) � EAT (pjf ; rjf) + Xn2Q^n6=f lmaxnC + ljfC + �(C)C + C1A � (94)
A.3 Proof of Theorem 6

Proof: The proof is by induction on j.
Base Case: j = 1 EAT i+1(p1; br1;i) = Ai+1(p1) (95)
From (62) we know: P �Li(p1) + � i;i+1 � EAT i(p1; br1;i) + �1;i + � i;i+1 + � � 1�Bie��i (96)P �Ai+1(p1) � EAT i(p1; br1;i) + �1;i + � i;i+1 + � � (97)P �EAT i+1(p1; br1;i) � EAT i(p1; br1;i) + maxn2[1::1]f�n;ig+ � i;i+1 + � � (98)



22
Hence (63) holds for j = 1.
Induction Hypothesis: Assume (63) holds for 1 � j � m.
Induction: We need to show (63) holds for 1 � j � m + 1.EAT i+1(pm+1; brm+1;i) = maxfAi+1(pm+1); EAT i+1(pm; brm;i) + lmbrm;i g (99)
There are two cases to consider:� Ai+1(pm+1) > EAT i+1(pm; brm;i) + lmbrm;i : From (99) we get:EAT i+1(pm+1; brm+1;i) = Ai+1(pm+1) (100)

From (62) we know:P �Li(pm+1) + � i;i+1 � EAT i(pm+1; brm+1;i) + �m+1;i + � i;i+1 + � � 1� Bie��i(101)P �Ai+1(pm+1) � EAT i(pm+1; brm+1;i) + �m+1;i + � i;i+1 + � � (102)P �EAT i+1(pm+1; brm+1;i) � EAT i(pm+1; brm+1;i) + maxn2[1::m+1]f�n;ig+ � i;i+1 + � � (103)� Ai+1(pm+1) � EAT i+1(pm; brm;i) + lmbrm;i : From (99) we get:EAT i+1(pm+1; brm+1;i) = EAT i+1(pm; brm;i) + lmbrm;i (104)
From the induction hypothesis, we know:P �EAT i+1(pm; brm;i) � EAT i(pm; brm;i) + maxn2[1::m]f�n;ig+ � i;i+1 + � � 1�Bie��i(105)P �EAT i+1(pm; brm;i) + lmbrm;i � EAT i(pm; brm;i) + lmbrm;i + maxn2[1::m]f�n;ig+ � i;i+1 + � � (106)
Since EAT i(pm; brm;i) + lmbrm;i � EAT i(pm+1; brm+1;i), using (104) we get:P �EAT i+1(pm+1; brm+1;i) � EAT i(pm+1; brm+1;i) + maxn2[1::m+1]f�n;ig+ � i;i+1 + � � 1� Bie��i(107)

From (103), (107) and the induction hypothesis, we conclude that (63) holds for 1 � j � m + 1. Hence, the
theorem follows.

A.4 Proof of Corollary 1

Proof: Define:Dn+1(pj) = EATn+1(pj; brj) �EATn(pj; brj) � maxm2[1::j] �m;n � �n;n+1 1 � n � K � 1 (108)
Also let: DK+1(pj) = LK(pj)� EATK(pj ; brj) � maxm2[1::j] �m;K (109)
Since brj � brj;n�1, from Theorem 6 we get:P (Dn(pj) > ) � Bn�1e��n�1 2 � n � K (110)
Hence Dn is an Exponentially bounded random variable with parameters Bn�1 and �n�1 [15]. Similarly from
Theorem 5, we know: P �DK+1(pj) > � � BKe��K (111)
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Hence, DK+1(pj) is an Exponentially Bounded variable with parameters BK and �K . From [20] we know that sum
of Exponentially Bounded variables D1; :::; DK with parameters B1; :::; BK and �1; :::; �K is also an Exponentially
Bounded variable with parameters

Pn=Kn=1 Bn and 1Pn=Kn=1 1�n . Hence,
Pn=K+1n=2 Dn(pj) is an Exponentially

Bounded variable. Therefore,P  n=K+1Xn=2 Dn(pj) > ! � (n=KXn=1 Bn)e� 1Pn=Kn=1 1�n (112)P  n=K+1Xn=2 Dn(pj) � ! � 1� (n=KXn=1 Bn)e� 1Pn=Kn=1 1�n (113)
Now, n=K+1Xn=2 Dn(pj) = LK(pj)� EAT 1(pj; brj)� n=KXn=1 maxm2[1::j]f�m;ng � n=K�1Xn=1 �n;n+1 (114)
Hence, the corollary follows from substituting (114) in (113).

A.5 Deriving End-to-End Delay Bounds

Let dj be the end-to-end delay experienced by packet pj. Then dj = LK(pj) � A1(pj) where LK (pj) is the time
at which packet pj leaves server K and A1(pj) is the arrival time of the packet at the first server. SubstitutingLK(pj) = dj +A1(pj) in (64), we get:P �dj � EAT 1(pj ; brj)�A1(pj) + � + � � 1� (n=KXn=1 Bn)e� 1Pn=Kn=1 1�n (115)
where � =Pn=Kn=1 maxm2[1::j]f�m;ng+Pn=K�1n=1 �n;n+1. The only term in (115) that depends on flow behavior and

is unknown isEAT 1(pj ; brj)�A1(pj). Let ej = EAT 1(pj ; brj)+ ljbrj �A1(pj). If a bound on ej is known, then bound

on EAT 1(pj; brj) � A1(pj) can be determined. Observe that ej can interpreted as the queuing delay experienced by
packet pj at a server with variable capacity; the capacity being the bottleneck rate for the packet in service. Hence, ej
can be determined by a single server queuing analysis for any flow specification. Specifically, it has been shown in [9]
that if a flow conforms to leaky bucket with parameters (�; �), then ej � �r ; r � brj. Substituting ej � ljbrj in (115) we
get a delay bound for flows conforming to leaky bucket. Delay bounds for other flow specifications like Exponentially
Bounded Burstiness [20] process can be similarly derived.

A.6 Proof of Theorem 7

Proof: From (66) and (37), we conclude that the cumulative length of packets of flow n that arrive in the interval[t1; t2] and have deadline less than or equal to t2, denoted by APn(t1; t2), is given as:APn(t1; t2) � � (t2 � t1 � dn)rnln � ln (116)
We now prove the theorem by contradiction. Let (68) not hold for packet pjf . Also, let t0 be the beginning of the

busy period in which pjf is served and t2 = D(pjf ). Let t1 be the greatest time less than t2 during the busy period
at which a packet with deadline greater than t2 is scheduled. If such a t1 does not exist, set t1 = t�0 . Since the
packets are scheduled in the earliest deadline first order, all the packets scheduled in the interval (t1; LEDD(pjf )] arrive
in the interval (t1; t2] and have deadline at most t2. Hence, the aggregate length of packets served in the interval[t1; LEDD(pjf )] is at most lmax +Pn2QAPn(t+1 ; t2). Since the server is fluctuation constrained, we get:LEDD(pjf ) � t1 + lmax +Pn2QAPn(t+1 ; t2)C + �(C)C (117)
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Using (116) and (67) with t = t2 � t+1 , we get:LEDD(pjf ) � t1 + lmaxC + t2 � t+1 + �(C)C (118)� t2 + lmaxC + �(C)C (119)
This contradicts the assumption that LEDD(pjf ) > t2 + lmaxC + �(C)C . Hence such a packet pjf does not exist and the
theorem follows.

B Fair Airport Scheduling Algorithm

The objective of Fair Airport (FA) scheduling algorithm is to efficiently achieve fairness even over variable rate links
while achieving the delay guarantee of WFQ. The algorithm is inspired by and derives its name from the class of
Airport scheduling algorithms proposed in [3]. In an Airport scheduling algorithm, every packet of a flow on arrival
joins a rate regulator for the flow and an Auxiliary Service Queue (ASQ). Once a packet passes through the rate
regulator, it joins a Guaranteed Service Queue (GSQ) if it has not been serviced by ASQ by then. The server is work
conserving and services packets from either GSQ or ASQ but gives priority to GSQ. The scheduling algorithms for
GSQ and ASQ may be different.

Observe that if both GSQ and ASQ schedulers guarantee fair allocation of bandwidth, then the aggregate allocation
of bandwidth would be fair. Furthermore, if the GSQ scheduler has the same delay guarantee as WFQ, then as ASQ
only services a packet earlier than it would have been served via GSQ, the combined algorithm at the server would
have the same delay guarantee as WFQ. Hence, the objective is to design: (1) a GSQ scheduler that is fair and has the
same delay guarantee as WFQ and (2) ASQ scheduler that is fair. In FA scheduler (see Figure 4), we use Virtual Clock
and SFQ for GSQ and ASQ, respectively 8. The complete scheduling algorithm is defined as follows:

1. On arrival, a packet of a flow joins the rate regulator for the flow and ASQ.8As we show in Theorem 8, Virtual Clock is able to achieve fair allocation of bandwidth of GSQ due to the rate regulatorused in FA server.
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2. The departure time of packet pjf from the rate controller, LRC (pjf ), is given as:LRC(pjf ) = EATRC (pjf ; rf ) (120)

where EATRC (pjf ; rf ) is the expected arrival time of packet pjf computed at the rate controller using only the

subsequence of packets of flow f that were serviced through GSQ prior to pjf . For simplicity of exposition, we

have assumed rf = rjf .

3. The ASQ scheduler is SFQ as defined in Section 2. The GSQ scheduler is Virtual Clock which on arrival of

a packet in GSQ, timestamps it with EATGSQ(pjf ; rf) + ljfrf and schedules the packets in increasing order of

timestamps. EATGSQ(pjf ; rf) is the expected arrival time of packet pjf computed at the GSQ by using only the

subsequence of packets of flow f that were serviced through GSQ prior to pjf .

4. A packet is removed from the rate regulator when it starts service in the ASQ.

5. A packet that has become eligible in GSQ is dequeued from ASQ only after it has been serviced by the GSQ.
On removal of such a packet, the start tag of the next packet in the ASQ (if such a packet exists) is set to the start
tag of the packet being removed.

6. The server gives priority to GSQ over ASQ. However, it does not preempt the transmission of a packet from
ASQ.

Since Virtual Clock as well as SFQ compute timestamps/tags in O(1) time and schedule packets in increasing
order of the timestamps/tags, the per packet computational complexity of FA is O(logQ). Though it may appear that
every packet is inserted into the priority queue of both SFQ and Virtual Clock servers, it is not the case. In fact, ifn packets of a flow arrive in the flows busy period, a total of at most n + 1 insertions occur in either of the priority
queues. This is so because: (1) every packet that is inserted into the priority queue of the VC server is served by it,
and (2) due to rule 5 of the algorithm, if k packets of a flow are inserted into SFQ priority queue during the flows busy
period, then at least k� 1 packets are served by SFQ server. Consequently, at most n+ 1 insertions and compuations
of timestamps/tags occurs. Hence, the implementation complexity of FA is the same as that of non work-conserving
dynamic priority algorithms like Jitter EDD which is lower than that of WFQ. We now show that FA is fair as well as
has the same delay guarantee as WFQ in Theorems 8 and Theorem 9, respectively.

To prove Theorem 8 we first derive lower and upper bounds on the service received by a flow through GSQ in
Lemmas 3 and 4, respectively. Let WGSQf (t1; t2) and WASQf (t1; t2) be the service received by flow during [t1; t2]
from GSQ and ASQ, respectively. Let the minimum capacity of the FA server be C, i.e., the work done by the server
in any busy period [t1; t2] is at least C(t2 � t1). Also, let � = lmaxC where lmax is the maximum length of a packet
serviced by the server.

Lemma 3 If Q is the set of flows served by a FA server with minimum capacity C and
Pn2Q rn � C, then for any

interval [t1; t2] in which the flow is backlogged throughout the interval:rf (t2 � t1 � �) � 2lmaxf � WGSQf (t1; t2) (121)
Proof: Let packet pjf refer to the jth packet of flow f serviced by GSQ. Since flow f is backlogged during [t1; t2],
the maximum value of the expected arrival time of the first packet that is served via GSQ in the interval [t1; t2], pmf , is:EATGSQ(pmf ; rf ) � t1 + lmaxfrf (122)
Since

Pn2Q rn � C, Virtual Clock guarantees that packet pjf departs by EATGSQ(pjf ; rf ) + ljfrf + �. Hence, if pnf
is the last packet served in the interval [t1; t2], then:EATGSQ(pnf ; rf) � t2 � � � lmaxfrf (123)
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Since the flow is backlogged, EATRC(pnf ; rf) = EATRC(pmf ; rf ) +Pk=m�n�1k=0 lm+kfrf . It has been shown in [10]
that: EATGSQ(pjf ; rf ) = EATRC(pjf ; rf ) (124)
when the rate controller satisfies (120). Hence, we get:k=m�n�1Xk=0 lm+kfrf = EATGSQ(pnf ; rf )�EATGSQ(pmf ; rf ) (125)k=m�n�1Xk=0 lm+kfrf � t2 � � � lmaxfrf � EATGSQ(pmf ; rf) (126)� (t2 � t1)� � � 2 lmaxfrf (127)
Since WGSQf (t1; t2) �Pk=m�n�1k=0 lm+kf , the lemma follows.

Lemma 4 If Q is the set of flows served by a FA server with minimum capacity C and
Pn2Q rn � C, then for any

interval [t1; t2] in which the flow is backlogged throughout the interval:WGSQf (t1; t2) � rf (t2 � t1 + �) + 2lmaxf (128)
Proof: Let packet pjf refer to the jth packet of flow f serviced by GSQ. Since

Pn2Q rn � C, Virtual Clock guarantees

that packet pjf departs by EATGSQ(pjf ; rf ) + ljfrf + �. Hence, the first packet to be serviced within [t1; t2], pmf , must
be such that: EATGSQ(pmf ; rf) + lmfrf � t1 � � (129)
Since the rate regulator ensures that at all time t, the expected arrival time of the packets in GSQ is at most t, we know
that last packet that is served in [t1; t2], pnf , is such that:EATGSQ(pnf ; rf ) < t2 (130)
From the definition of expected arrival time, we know:EATGSQ(pnf ; rf )�EATGSQ(pmf ; rf ) � k=m�n�1Xk=0 lm+kfrf (131)) EATGSQ(pnf ; rf )�EATGSQ(pmf ; rf ) + lnfrf � k=m�nXk=0 lm+kfrf (132)
Using the bounds on EATGSQ(pnf ; rf) and EATGSQ(pmf ; rf ), we get:(t2 � t1) + � + lmfrf + lnfrf � k=m�nXk=0 lm+kfrf (133)
Since

Pk=m�nk=0 lm+kf � WGSQf (t1; t2),rf (t2 � t1) + � + 2lmaxf � WGSQf (t1; t2) (134)
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Theorem 8 If Q is the set of flows served by a FA server with minimum capacityC and

Pn2Q rn � C, then for any
interval [t1; t2] such that flows f andm are backlogged during the entire interval, the difference in the service received
by two flows is given as: j Wf (t1; t2)rf � Wm(t1; t2)rm j� 3( lmaxfrf + lmaxmrm ) + 2� (135)
Proof: To derive a bound on WASQf (t1; t2) observe that� Since a packet is removed from the ASQ only when it has been service either through ASQ or GSQ, whenever

a flow is backlogged in the system, it is also backlogged in the ASQ.� Whenever a packet is serviced from the GSQ, the start tag of the next packet in the ASQ is set to the start tag of
the packet. Hence (13) and (18) continue to hold.

Since (13) holds and the flow is backlogged in ASQ during interval [t1; t2], Lemma 1 is valid for ASQ. Similarly, since
(18) holds, Lemma 2 is valid for ASQ. Hence, from Lemmas 1 and 2, we conclude:rf (v2 � t1)� lmaxf �WASQf (t1; t2) � rf (v2 � v1) + lmaxf (136)
where v2 = v(t2) and v1 = v(t1). The theorem follows from (136) and Lemmas 3 and 4.

In proving Theorem 8, we have only required the server to have minimum capacity C. Hence, it holds even if the
server capacity fluctuates as long as it is greater than C.

Theorem 9 If Q is the set of flows served by a FA server with minimum capacity C and
Pn2Q rn � C, then the

departure time of packet pjf at the server, denoted by LFA(pjf ), is given as:LFA(pjf ) � EAT (pjf ; rf) + ljfrf + � (137)
Proof: Consider packet pjf . It may be served through ASQ or GSQ. Let us consider the two cases:� Packet pjf is serviced through GSQ: If

Pn2Q rn � C, then from [6] we know that Virtual Clock guarantees that

packet pjf will be transmitted by 9: EATGSQ(pjf ; rf ) + ljfrf + lmaxC (138)
It has been shown in [10] that: EATGSQ(pjf ; rf ) = EATRC(pjf ; rf ) (139)
when the rate controller satisfies (120). Since EATRC(pjf ; rf) � EAT (pjf ; rf), from (138) and (139) we

conclude that (137) holds for packet pjf .� Packet pjf is serviced through ASQ: Packet pjf starts service from ASQ at time t only if t < EATRC(pjf ; rf).
Hence, packet pjf departs by t + lmaxC . Since EATRC(pjf ; rf ) � EAT (pjf ; rf ), we conclude that (137) holds

for packet pjf .

Since WFQ also guarantees that packet pjf departs by EAT (pjf ; rf) + ljfrf + �, the delay guarantee of FA is the
same as WFQ. Hence, as FA has lower implementation complexity and achieves fair allocation of resources even over
variable rate servers, even though it has a larger fairness measure, it is better than WFQ.9Since the server does not preempt ASQ, one may expect that the packet delay may increase by lmaxC . However, the termlmaxC in the bound on departure time occurs due to the non-preemptibility of a lower priority packet that may be in servicewhen a higher priority packet arrives; the packet in service in ASQ can be considered to be packet with the lowest priority inthe busy period of GSQ.


