Start-time Fair Queuing: A Scheduling Algorithm for Integrated
Services Packet Switching Networks

Pawan Goyal, Harrick M. Vin and Haichen Cheng

Department of Computer Sciences
The University of Texas at Austin
Taylor Hall 2.124
Austin, TX 78712-1188
E-mail: {pawang, vin hccheng}@cs.utexas.edu
Phone : (512) 471-9732
Fax : (512) 471-8885

Citation: Technical Report TR-96-02, Department of Computer Sciences, University of Texas at Austin.

This research was supported in part by IBM Graduate Fellowship, Intel, the National Science Foundation
(Research Initiation Award CCR-9409666), NASA, Mitsubishi Electric Research Laboratories (MERL) and

Sun Microsystems Inc..

Start-time Fair Queuing: A Scheduling Algorithm for Integrated
Services Packet Switching Networks

Abstract

We present Start-time Fair Queuing (SFQ) algorithm that is computationally efficient, achievesfairness regardless
of variation in a server capacity, and hasthe smallest fairnessmeasure among all known fair scheduling algorithms. We
analyze its throughput, single server delay, and end-to-end delay guarantee for variable rate Fluctuation Constrained
(FC) and Exponentially Bounded Fluctuation (EBF) servers. We show that SFQ is better suited than Weighted Fair
Queuing for integrated servicesnetworksand it is strictly better than Self Clocked Fair Queuing. To support heteroge-
neousservicesand multiple protocol families in integrated servicesnetworks, we present ahierarchical SFQ scheduler
and derive its performance bounds. Our analysis demonstrates that SFQ is suitable for integrated services networks
sinceit: (1) achieveslow average as well as maximum delay for low-throughput applications (e.g., interactive audio,
telnet, etc.); (2) provides fairness which is desirable for VBR video; (3) provides fairness, regardless of variation
in server capacity, for throughput-intensive, flow-controlled data applications; (4) enables hierarchical link sharing
which is desirable for managing heterogeneity; and (5) is computationally efficient.

1 Introduction

1.1 Motivation

Integrated services networks are required to support a variety of applications (e.g., audio and video conferencing,
multimediainformationretrieval, ftp, telnet, WWW, etc.) with awiderange of Quality of Service (QoS) requirements.
Whereas continuous media applications such as audio and video conferencing require the network to provide QoS
guarantees with respect to bandwidth, packet delay, and loss; applications such as telnet and WWW require low delay
and packet loss. Throughput intensive applicationslikeftp, on theother hand, require network resourcesto be all ocated
such that the throughput ismaximized. A network meets these requirements primarily by appropriately scheduling its
resources.

To determine the characteristics of a suitable scheduling agorithm, consider the requirements of some of the
principal applications envisioned for integrated services networks:

o Audioapplications: To maintain adequateinteractivity for such applications, scheduling a gorithmsmust provide
low average and maximum del ay.

¢ \Mideoapplications: Variablebit rate (VBR) video sources, which are expected to impose significant requirements
on network resources, have unpredictable as well as highly variable bit rate requirement at multipletime-scales
[12]. These features impose two key requirements on network resource management:

— Due to the difficulty in predicting the bit rate requirement of VBR video sources, video channels may
utilize more than the reserved bandwidth. Aslong as the additional bandwidth used is not at the expense
of other channels (i.e,, if the channd utilizesidle bandwidth), it should not be penalized in the future by
reducing its bandwidth allocation.

— Due to multiple time-scale variation in the bit rate requirement of video sources, to achieve efficient
utilization of resources, a network will have to over-book available bandwidth. Since such over-booking
may yield persistent congestion, a network should provide some QoS guarantees even in the presence of
congestion.

Real-time scheduling algorithms that are unfair, such as Virtual Clock [22], Delay EDD [21], etc., penalize
channelsfor the use of idle bandwidth and do not provide any QoS guarantee in the presence of congestion [16].

Fair scheduling algorithms, on the other hand, guarantee that, regardless of prior usage or congestion, bandwidth
would be allocated fairly[16]. Hence, fair scheduling algorithms are desirable for video applications.

o Dataapplications: To support low-throughput, interactive data applications (e.g., telnet), scheduling algorithms
must providelow average delay. On theother hand, to support throughput-intensive, flow-controlled applications
in heterogeneous, large-scale, decentralized networks, scheduling algorithms must alocate bandwidth fairly
[5, 13, 17]. Due to the coexistence of VBR video sources and data sources in integrated services networks, the
bandwidth available to data applications may vary significantly over time. Consequently, the fairness property
of the scheduling agorithm must hold regardless of variation in server capacity.

Hence, in summary, a suitable scheduling algorithm for integrated services networks should: (1) achieve low
average as well as maximum delay for low throughput applications (e.g., interactive audio, telnet, etc.); (2) provide
fairness for VBR video; and (3) provide fairness, regardless of variation in server capacity, for throughput-intensive,
flow-controlled dataapplications. Furthermore, since such networkswill support awidevariety of servicesand multiple
protocol families, the scheduling agorithm should facilitate hierarchical link sharing [7, 18]. Finadly, it should be
computationally efficient (so as to facilitate itsimplementation in high-speed networks). A scheduling a gorithm that
achieves al of these abjectives isthe subject of investigation in this paper.

1.2 Relation To Previous Work

Each unit of data transmission at the network level is a packet. We refer to the sequence of packets transmitted by a
source as aflow [22]. Each packet withina flow is serviced by a sequence of servers (or switching elements) along the
path from the source to the destination in the network. Before we describe fair scheduling algorithms proposed in the
literature, let us consider the precise meaning of fair allocation of link bandwidth.

Intuitively, allocation of link bandwidth is fair if equal bandwidth is alocated in every time interval to al
the flows. This concept generalizes to weighted fairness in which the bandwidth must be alocated in proportion
to the weights associated with the flows. Formally, if »; is the weight of flow f and W, (¢1,t2) is the aggregate
length of packets served in the interva [t1,15] (a packet is considered to have been served in the interval [¢;,¢5]
if it starts and finishes service within [¢,5]), then an alocation is fair if, for al intervals [t1,¢2] in which both

flows f and m are backlogged, Wy “’“) — W (“’”) = 0. Clearly, thisis an idealized definition of fairness as it
assumes that flows can be served in mﬂmtw maIIy divisible units. The abjective of fair packet scheduling algorithms
is to ensure that | Wy tfl’“) — W (:’“ | is as close to O as possible. However, it has been shown in [8] that

if a packet scheduling algorithm guarantees that | 2+ tfl’“) — W “’” |< H(f,m) for dl intervals [¢;, 5], then

H(f,m) > 5 (lfrf + %) where [7'* and ;% denote the maximum lengths of packets of flow f and m,
respectively.

Severa fair scheduling algorithms that achieve value of H (f, m) close to the lower bound have been proposed
in the literature. The earliest known fair scheduling agorithm is Weighted Fair Queuing (WFQ) [5] (also referred
to as Packet-by-Packet Generalized Processor Sharing (PGPS) [16]). WFQ was designed to emulate a hypothetical
bit-by-bit weighted round robin server! in which the number of bits of a flow served in a round is proportional to
the weight of the flow. Since packets can not be serviced a bit at a time, WFQ emulates bit-by-bit round robin by
scheduling packetsintheincreasing order of their departuretimesin the hypothetica server. To computethisdeparture
order, WFQ associates two tags, a start tag and a finish tag, with every packet of aflow. Specifically, if pf and 1‘7

denote the j** packet of flow f and its length, respectively, and if A(pf) denotes the arrival time of packet p‘} a the
server, then start tag S(pf) and finish tag F(pf) of packet pf are defined as:

S()) = max{v(A@}), Fp} ™)} §2 1 (1)

Fip)) = S(7) >+l—f = o)

n [5], a scheduling algorithm is considered fair if it emulates weighted bit-by-bit round robin server. This definition becomes
cumbersome when the link capacity fluctuates over time. Hence, we use the definition given in [§].

where F'(p}) = 0 and v(t) isdefined astheround number that would bein progressat timet if the packets were being
serviced in a bit-by-bit weighted round robin manner. Formally, »(¢) isdefined as:

du(t) C
= (3)
dt 2 jeB() T

where C' is the capacity of the server and B(t) isthe set of backlogged flows at time ¢ in the bit-by-bit round robin
server. WFQ then schedul es packets in the increasing order of their finish tags.

It has been conjectured that WFQ achieves a H (f, m) vaue that is close to the lower bound? [19]. Surprisingly,
however, the following example illustratesthat H (f, m) isat least afactor of two awvay from the lower bound.

(maz

Example 1 Consider flows f and m such that = = 2" — . For ease of exposition, let f and m be the only

T

flows at the server. Let flow f send two packets of Iength Iper at t|me0 Hence F(p}) = cand F(p7) = 2c. Let

flow m send 3 packets at time 0 such that I}, = I7:%" and lﬁ1 =13, = =—. Then, F(p},) = ¢, F(p2,) = 2, and
F(py,) = 2c. Let WFQ schedule the packet in the order p}, p}n,pfn,pgl,p? Let ¢; be the time at which p., starts

service and ¢, be the time at which p2, f|n|sh$ service. Then, Wy, (¢1,t2) = 20727 and W, (tl,tz) =0. Hence
| Wf(:l,tz) _ W,n;:,tz) |= leaz _ lfT-|- ﬁ_ Therefore, for WFQ, we concludethat H (f, m) > fr—f

any arbitrary flows f and m.

Observe that implementation of WFQ requires computation of »(¢), which in turn requires simulation of bit-by-bit
round robin server inreal time. Thissimulation is computationally expensive. Furthermore, as thefollowing example
illustrates, since WFQ is based on the assumption that the capacity of a server is constant, it failsto provide fairness
over servers with time varying capacity.

Example 2 Let the capacity of the server that WFQ isemulating be C pkts/s, C' > 1. Let the actual server capacity
be 1pkt/sin[0,1) and C' pkt/sin[1,2). Consider two flows f and m both of which have unit length packets and weights
of 1 pki/s. Let flow f send C' + 1 packets at time 0. Hence, for flow f, F(p‘}) =j;1<j<C+1. Letflowm become
backlogged at ¢ = 1 and be backlogged during the interval [1,2]. Sinceonly flow f is backioged during [0,1), using
(3), we get v(1) = C. Henceg, for flow m, F(p},) = C + 1. Snce WFQ schedules packets in the increasing order of
finishtags, weget: C' —1 < W;(1,2) < Cand W,,(1,2) < 1. However, for fair allocation of bandwidth, 1, (1, 2)
and W, (1, 2) should both be C'/2. Since C' can be chosen arbitrarily, this example illustratesthe unfairnessthat can
result when the actual capacity islower than the capacity being assumed.

A similar example can also be constructed for the case when the the actua capacity of the server is higher than
the assumed capacity. Thus, WFQ fails to provide fairness over variable rate servers. Aswe will outlinein Section
3, to be useful for hierarchical link sharing [7, 18], a scheduling algorithm must provide fairness over variable rate
servers. Consequently, WFQ failsto meet two key requirements of afair scheduling algorithm for integrated services
networks. Observe that it may be possible to extend WFQ to provide fairness over variable rate servers by changing
the definition of v(¢) as given in (3) to be a function of time varying server capacity C'(¢). However, due to the
unpredictable and multiple time-scale variation in VBR video bit rate, it may not be possible to accurately estimate
C'(t). Furthermore, this would make the computation of v(t) even more expensive, thereby making WFQ infeasible
for high speed networks.

Fair Queuing based on Start-time (FQS), proposed in [11], computes start tag and finish tag of a packet exactly
as in WFQ. However, instead of scheduling packets in the increasing order of finish tags, it schedules packets in the
increasing order of start tags. Though FQS has advantages for processor scheduling, it is not known to have any
advantage over WFQ for scheduling packetsin anetwork. Moreover, sinceit utilizesv(¢) as defined in (3), it has all
the disadvantages of WFQ.

Self Clocked Fair Queuing (SCFQ), originally proposed in [4] and later analyzed in [8], was designed to reduce
the computational complexity of fair scheduling algorithmslike WFQ. SCFQ al so schedul es packets in theincreasing
order of finish tags. However, it achieves efficiency over WFQ by approximating v(¢) with the finish tag of the packet

2Though it may be surprising, fairness properties of WFQ have not been rigorously established using either of the fairness
definitions.

Scheduling | Deviationinfairness | Deviationin delay Fairness over
algorithm | from optimal agorithm from WFQ variablerate servers
WFQ At least afactor of 2 0 Unfair
FQS At least afactor of 2 Not known Unfair
SCFQ At most afactor of 2 Z"e‘“+fl" »
DRR Unbounded Dependent on >
weight assignment

Table 1 : Summary of fair scheduling algorithms

man
iy

inservice at timet. It has been shown that the value of 1 (f, m) for SCFQ is (£— + %) whichisonly afactor of

two away from thelower bound (i.e., itsfairness measure is at most that of WFQ) [8]. The main limitation of SCFQis
that it increases the maximum delay incurred by the packets significantly. Specifically, if @ isthe set of flows served

max

by a server and C' its capacity, then packets of flow f may incur Z"Gm+fl" more delay in SCFQ than in WFQ
[9]. Thismay be unacceptably large in many cases.

WFQ and SCFQ sort and schedul e packetsin the increasing order of finish tags. Hence, per packet computational
complexity is O(log@) where Q) isthe number of flows served by the server. To reduce this per packet computational
complexity, Deficit Round Robin (DRR) was proposed in [19]. It is a derivative of weighted round robin agorithm
designed to accommodate variable length packets of aflow. Though the per packet computational complexity of DRR
isO(1) per packet, it has the following two limitations:

1. Thevdueof H(f, m)for DRRis (1 + lfT + %) whenmin, g 7, = 1, which can deviate arbitrarily away
from that of fair scheduling algorithms like SCFQ. For instance, if ry = r,, = 100 and [7*7 = [97 =1,
then H(f, m) for DRRis 1.02, which is 50 times larger than the corresponding 0.02 value for SCFQ. Clearly,
appropriate choice of weights can make this factor as high as desired. Since absolute values of H(f, m) have
no physical meaning, the rel ative val ues are important.

2. The maximum delay incurred by packets serviced by a DRR server can be arbitrarily high. To observe this,
consider a weighted round robin server with all packets of size! (DRR is eguivalent to weighted round robin
server in such ascenario). It iseasily observed that a lower bound on maximum delay of a packet of flow f is

M. Since weights can be arbitrary, the lower bound can be arbitrarily high.

The properties of WFQ, FQS, SCFQ and DRR are summarized in Table 1. As it illustrates, the design of a fair
scheduling algorithmthat is: (1) computationally efficient, (2) providesfairnessover variablerate servers, (3) facilitates
hierarchical link sharing, and (4) has good delay propertiesis an open problem.

1.3 Research Contributions of This Paper

In this paper, we present Start-time Fair Queuing (SFQ) algorithm that is computationally efficient and allocates
bandwidth fairly regardiess of variation in a server rate. We show that it has a fairness measure of (lfT + l;f),
which isonly afactor two away from the lower bound and is at least as good as the fairness measure of al known fair
scheduling agorithms. We analyze the throughput, single server delay, and end-to-end delay guarantee of SFQ. To
accommodate links whose capacity fluctuates over time (for example, flow-controlled and broadcast medium links),
thisanalysisis carried out for servers which can be modeled as either Fluctuation Constrained (FC) or Exponentially
Bounded Fluctuation (EBF) servers [15]. To the best of our knowledge, thisisthe first analysis of afair or area-time
scheduling algorithm for such servers. To support hierarchical link sharing, we present a hierarchical SFQ scheduler.

31t appears that SCFQ and DRR may achieve fairness over variable rate servers. However, this has neither been formally
demonstrated nor articulated.

We build upon the analysis of FC and EBF servers and analyze the throughput, delay and end-to-end delay guarantees
of a flow when the link bandwidth is hierarchically partitioned. The analysis is simple and conceptually elegant.
We demonstrate that the hierarchical SFQ scheduler, in addition to supporting heterogeneity, can be used to achieve
separation of delay and throughput allocation as well as delay shifting (i.e., reduction of delay of a set of flows while
increasing the delay of other flows).

Our analysis demonstrates that: (1) SFQ is better suited than WFQ for integrated services networks since it
provides significantly smaller average and maximum packet delay for low-throughput applications and efficiently
achieves fairness over variable rate servers; (2) SFQ is strictly better than SCFQ since maximum packet delay in SFQ
is considerably smaller than in SCFQ and both have same the fairness measure and implementation complexity; (3)
SFQ is gtrictly better than FQS since it has lower complexity and achieves fairness over variable rate servers without
increasing the maximum packet delay; and (4) SFQ provides considerably better fairness properties and smaller
maximum delay than DRR.

We demonstrate that SFQ is suitable for integrated services networks since it: (1) achieves low average as well
as maximum delay for low-throughput applications (e.g., interactive audio, telnet, etc.); (2) provides fairness which
isdesirable for VBR video; (3) provides fairness, regardless of variation in server capacity, for throughput-intensive,
flow-controlled data applications; (4) enables hierarchical link sharing which is desirablefor managing heterogeneity;
and (5) is computationally efficient.

The rest of the paper is structured as follows. We present SFQ algorithm and analyze its fairness, throughput,
single server delay guarantee, and end-to-end delay guarantee in Section 2. We discuss hierarchical link sharing in
Section 3 and present our implementation of SFQ for an ATM network interface in Solaris 2.4 environment in Section
4. Finaly, Section 5 summarizes our results.

2 Start-time Fair Queuing

In Start-time Fair Queuing agorithm (SFQ) two tags, a start tag and a finish tag, are associated with each packet.
However, unlike WFQ and SCFQ, packets are scheduled in the increasing order of the start tags of the packets.
Furthermore, v(¢) is defined as the start tag of the packet in service at timet¢. The complete algorithm is defined as
follows:

1. On arrival, a packet p‘} is stamped with start tag S(p‘j;), computed as:
S(p}) = max{v(A(p})), F(r,)} j>1 (4)
where F(p‘j;), the finish tag of packet p‘}, isdefined as:

. ol
F(p‘})IS(p‘})Jr# i>1 (5)
where F(p}) = 0 and r; istheweight of flow .

2. Initidly the server virtual timeis 0. During abusy period, the server virtual time at timet, v(t), is defined to be
equal to the start tag of the packet in service at time¢. At the end of abusy period, v(t) is set to the maximum
of finish tag assigned to any packets that have been serviced by timet.

3. Packetsare serviced in increasing order of the start tags; ties are broken arbitrarily (sometie breaking rules may
be more desirable than others and are discussed in Section 2.3).

Asis evident from the definition, the computation of »(¢) in SFQ isinexpensive since it only involves examining the
start tag of packet in service. Hence, the computational complexity of SFQ is same as SCFQ, which is O(logQ) per
packet, where () isthe number of flows at the server.

Traditionally, scheduling agorithms have been analyzed only for servers whose service rate does not vary
over time. However, service rate of flow-controlled, broadcast medium and wireless links may fluctuate over time.
Fluctuation in service rate may aso occur due to variability in CPU capacity available for processing packets (for
example, a CPU constrained | P router may not have sufficient CPU capacity to process packets when routing updates
occur). If aserver is shared by multiple types of traffic with some traffic types being given priority over the other,

then for lower priority traffic, the link appears as a server with fluctuating service rate. In order to accommodate such
scenarios, we analyze SFQ for servers with bounded fluctuation in service rate.

Two server models, termed Fluctuation Constrained (FC) server and Exponentially Bounded Fluctuation (EBF)
server, that have bounded fluctuationin servicerate and are suitable for modeling many variable rate servers have been
introduced in [15]. A FC server has two parameters; average rate C' (bits/s) and burstiness ¢ (C') (bits). Intuitively, an
FC server, in any interval during a busy period, does at most §(C') less work than an equivalent constant rate server.
Formally,

Definition 1 Aserver isaFluctuation Constrained (FC) server with parameters (C, 6(C")), if for all intervals[t,, -]
in a busy period of the server, the work done by the server, denoted by 17 (¢, t5), satisfies:

W (ty,ts) > Clts —t1) — 6(C) (6)

EBF server isastochastic relaxation of FC server. Intuitively, the probability of work done by an EBF server deviating
from the average rate by more than -, decreases exponentially withy #. Formally,

Definition 2 Aserver isan Exponentially Bounded Fluctuation (EBF) server with parameters (C, B, «, 6((')), if for
all intervals[ty, t5] in a busy period of the server, the work done by the server, denoted by 17/ (¢1, ¢5), satisfies:

P(W(tl,tz)<C(t2—t1)—(5(0)—"}/) SB@‘_O{’Y OS"}/ (7)

In what follows, we analyze the fairness of SFQ for any variable rate server, and its throughput and delay
guarantees for FC and EBF servers. Sincea (€, 0) FC server is a constant rate server, the following analysisis also
valid for constant rate servers. We present the proofs of only few results; the rest of the proofs are presented in the
appendix.

2.1 Fairness Guarantee

To prove that SFQ isfair, we need to prove abound on | Wy (ffl’”) - W’"ﬁfnl’“) | for any interval in which both flows f

and m are backlogged. We achieve thisobjective by establishing alower and an upper bound on W (¢1, ¢2) in Lemmas
1 and 2, respectively.

Lemma 1 If flow f isbacklogged throughout theinterval [¢1, ¢], thenin a SFQ server:
7°f (v2 — vl) — l}nax S Wf (tl,tz) (8)
where vy, = v(t1) and vy = v(t2).

Proof: Since W (t1,t2) > 0, if rp(va — vq) — rper <0, (8) holds trividly. Hence, consider the case where
re(vg — 1) — l}”‘” > 0. Let packet p? be thefirst packet of flow f, that receives service in the openinterval (vy, v2).

Sinceflow f isbacklogged during theinterval [¢1,t2] and 7 (vs —v1) — l}”‘” > 0, such apacket exists. Furthermore,
S(pf) = F(p}~"). To observe this, let us suppose S(pk) > F(pj~"). Thisimplies packet p§ arrives after p}~"

finishes service. There are two cases to consider:

. p?_l finishes service at time¢ > ¢;. Sinceflow f isbacklogged during theinterval [ty ¢-], packet p? can not
arrive after pl;_l finishes service. Hence, thisisa contradiction.

. p?_l finishes service a timet¢ < ¢;. Sinceflow f isbacklogged during theinterval [¢;, 2], thisimplies packet
P arrivesat time A(p}) < t,. Sincevirtual time of system is non decreasing function of time, v(A(p})) < v.
As packet pf; is serviced in the open interval (v1,va), S(p¥) > v1. But S(ph) = max{v(A(p})), F (")}
Sincev(A(p§)) < vy and S(pf) > vy, we conclude S(pk) = F(p;~") whichisacontradiction.

4The EBF server as presented here has an extra parameter §(C). However, this parameter does not change the definition
significantly.

Hence, S(p§) < F(p}~"). But S(pf) > F(p}~") by definition. Hence, we conclude S(p§) = F(p}~"). Since

k=1 max

— _ l _ l
Sy <vL, i) <o+ = = Fpf™) <u + —. Hence,
lmaf[f
S(P?)Sm-l- fr
!

Let pl;-l_m be the last packet to receive service inthe virtual timeinterval (vq, v2). Hence,

F(p?"'m) > vy

From (9) and (10), we conclude:

lmax

k _ _
S(py) > (v2 — 1) -

But since flow f isbacklogged in theinterval (vq, v2), from (4) and (5) we know:

F(pitm) -

. n=m l?+n
Pt = Sf) + .
n=0 f
n=m l?+n
Ft™y —swh) = > o
n=0
Hence, from (13) and (11), we get:
n=m lk+n [max
Z g > (va—w) -
n=0 ' '
Z l?"’" > re(va—v1) — e
n=0

Since Wy (t1,12) > S 0" 117, thelemma follows.
Lemma 2 InaSFQ server, during any interval [tq, ¢s]:

Wit t2) <rp(ve —) + l}””
where vy, = v(t1) and vy = v(f2).

Proof:

(16)

From the definition of SFQ, the set of flow f packets served intheinterval [v,, v5] have servicetag at least v, and

at most v5. Hence, the set can be partitioned into two sets:

o Thisset, denoted by D, consists of packets that have servicetag at least v, and finish time at most v,. Formally,

D = {k|v; < S(p’;) < wg /\F(p?) < vy}

From (4) and (5), we conclude:

Z l? <rp(ve — 1)

keD

(17)

(18)

e This set, denoted by E, consists of packets that have service tag at most v» and finish time greater than vs.

Formally,
E = {kloy < S(f) < va AF(pf) > va)

Clearly, at most one packet can belong to this set. Hence,

SRV

keE

(19)

(20)

Packet Number Received

Switch AJL5AMH§><:::>

Destination

" Time

Figure 1 : (a)The network topology used for the simulations and (b) Comparison of the number of packets received
by sources 2 and 3 in WFQ and SFQ

From (18) and (20) we conclude that (16) holds. |
Since unfairness between two flowsin any interval is maximum when oneflow receives maximum possibleservice
and the other minimum service, Theorem 1 follows directly from Lemmas 1 and 2.

Theorem 1 For anyinterval [¢1, 2] in which flows f and m are backlogged during the entire interval, the difference
in the service received by two flows at a SFQ server isgiven as:

We(ti,t Wi (t1,t rpar pmae

r(t,ts) Wi(h 2)|§f n (21)

7°f 'm 7°f 'm

Theorem 1 demonstrates that fairness measure of SFQ isat most a factor of 2 away from an optimal fair packet
scheduling algorithm. Furthermore, it demonstrates that SFQ has the smallest fairness measure among al the known
scheduling a gorithms (see Table 1).

Observethat to establish Theorem 1, wedid not make any assumptions about the service rate of the server. Hence,
Theorem 1 holds regardless of the characteristics of the server. This demonstrates that SFQ achieves fair allocation
of bandwidth over variable rate servers, and thus meets a fundamental requirement of fair scheduling algorithms for
integrated services networks. Thisisan important advantage over WFQ that does not allocate bandwidth fairly over
variablerate servers.

To experimentally evaluate the relative performance of SFQ and WFQ, we simulated 3 flows with the same
destination traversing a single switch using REAL network simulator (see Figure 1 (a)). Source 1 transmitted a MPEG
compressed VBR video sequence with average rate 1.21 Mb/s using 50 bytes packets ®. Sources 2 and 3 were TCP
Reno sources and used 200 bytes packets. The link capacity between the switch and the destination was 2.5 Mb/s.
The scheduling algorithm at the switch gave higher priority to source 1 packets and scheduled source 2 and 3 packets
using either WFQ or SFQ. Consequently, the output link at the switch appeared as avariable rate server to sources 2
and 3. The WFQ implementation used the link capacity to compute the finish tags. Source 3 was made active 500 ms
after sources 1 and 2, and the network was simulated for one second. Figure 1(b) plotsthe sequence number of packets
of sources 2 and 3 received by the destination when WFQ and SFQ were used. Asthe figure demonstrates, source 2
received unfair advantage over source 3 when WFQ was used. Specifically, when WFQ was used, during the 500ms
interval after source 3 became active, whereas the destination received only 48 packets from source 3, it received 331
packets from source 2. On the other hand, when SFQ was used, it received 189 packets and 190 packets from sources
2 and 3, respectively. Furthermore, during thefirst 435 ms after source 3 was started, the number of source 3 packets
received by the destination in WFQ and SFQ was 2 and 145, respectively. Thisexperimentally validatesthe superiority
of SFQ over WFQ for achieving fair allocation of bandwidth over variable rate servers.

5The video sequence was derived by digitizing and compressing television serial Frasier.

2.2 Throughput Guarantee

In the previous sections, we have not assigned any interpretation to the weight of a flow. To establish the throughput
and delay guarantee of aflow, wewill henceforthinterpret r; astherateassigned toflow f. Theorems 2 and 3 establish
the throughput guaranteed to a flow by a SFQ FC and EBF server, respectively, when appropriate admission control
procedures are used.

Theorem 2 If @ isthe set of flows served by a SFQ FC server with parameters (C', §(C')), and > 7, c o 7 < C, then
for all intervals [¢1, 2] inwhich flow f isbacklogged throughout the interval, W (¢1,t2) isgiven as:

ZHEQ ZZ’““? 6(0) [maz
o -

Wf(tl,tz) er(tz—tl)—rf C 7°f C

(22)

Proof: Let v(t;) = v; and let /W(vl, v9) denote the aggregate length of packets served by the server in the virtua
timeinterval [vy, v2]. Then, from Lemma 2 we conclude:

W(vg,v2) <3 ralvs — 1) + 3 170 (23)
neQ neQ
Since) o <0,
W(vr,v2) < Clvg —v1) + 17 (24)
neq
Define v, as:
2 S(C
vg = v +i2 — 11 — eg - (C) (25)
Then from (24), we conclude:
= Yonegln™ S(C
W(Ul, Uz) S C(Ul + tz — tl — Eg — (C') — Ul) + Z lgbax (26)
neq
< Oty —t) —8(C) (27)

Let {- be such that v(f2) = vs. Also, let T'(w) be the time taken by server to serve packets with aggregate length w in
its busy period. Then,

o~

tl —|—T(W(v1,v2)) (28)
t+T(Cta—t1)—6(C)) (29)

ty <
<

From the definition of Fluctuation Constrained server, we get:

w §(0)
< — 4 227
T(w) < c + C (30)
From (29) and (30) we get:
Clta —t1) —46(C) 4(C)
it < i 1
2 < b+ C + C (31)
<ty (32)
From Lemma 1 we know that: R
Wity t2) > ry(va —vy) = 17 (33)
Since i, < ts, using (25) we get:
Y onen®® s(C
Wit ta) > rp(ts —t1) — 1y Eg —ry (c) —lpee (34)

10

Theorem 3 IfQ istheset of flows served by a SFQ EBF server with parameters (C', B, a, §(C')), and ZHEQ ry < C,
then for all intervals ¢+, ¢] inwhich flow f isbacklogged throughout the interval, W, (¢1,¢») isgiven as:

ZnEQ ZZ’L(M‘ 6(0) 2 max —a
o -7y 8 —rfa—lf)gBe T 0<¥y (35)

P (Wf(tl,tz) < Tf(tz —tl) — Ty

The throughput guarantees of other fair scheduling agorithms have not been established. However, it can be
shown that for constant rate servers, when similar admission control procedure is used, the throughput guarantee of
neither WFQ nor SCFQ is better than that of SFQ.

Observe that throughput guarantees derived in Theorems 2 and 3 for SFQ have arecursive structure. Specifically,
the throughput guaranteed to aflow by an FC or an EBF SFQ server isa so fluctuation constrained or has exponentially
bounded fluctuation, respectively. We will exploit thisrecursive structure to analyze performance bounds when alink
bandwidth is hierarchically partitioned.

2.3 Delay Guarantee

SFQ algorithm, as defined so far, only alocates constant rate to the packets of a flow. However, due to the multiple
time-scale variation of VBR video, to achieve efficient utilization of network resources, a server may be required to
alocate variable rate to packets of avideo flow. To support variable rate allocation, we generalize SFQ by extending
the definition of servicetags. Let - be the rate assigned to packet p’. Then finish tag of packet p}, F(p}) is defined
= . o
Fiph) =Sl + L j>1 (36)
¥
Start tag of a packet and the system virtual time are defined as before. We now prove the delay guarantee of the
generalized SFQ agorithm.

Clearly, a server can provide a bound on delay only if its capacity is not exceeded. However, when variable rate
isallocated to the packets of aflow, the intuitivemeaning of capacity not being exceeded needsto be defined precisely.
To do so, let rate function for flow f at virtual time v, denoted by R (v), be defined as the rate assigned to the packet
that has start tag less than v and finish tag greater than v. Formally,

PR AL (S(p;) <wv< F(pg,))
0 otherwise

Let @ be the set of flows served by the server. Then a FC or EBF server with average rate €, is defined to have
exceeded its capacity at virtual time v if ZHEQ R, (v) > C. If the capacity of a SFQ server is not exceeded, then it

guarantees a deadline to a packet based on its expected arrival time. Expected arrival time of packet p‘} that has been
assigned rate r‘}, denoted by EAT(p‘j;, r‘}), isdefined as:

o . R
EAT(p‘},r‘}) = 1rnaX{A(p}),EAT(]D‘ZC 1,7“‘} 1) + rg_l
f

baz1 (37)

where EAT(p?,r?) = —oo. A deadline guarantee based on expected arrival time has been referred to as delay
guarantee[9, 14]. Theorems 4 and 5 establish the delay guarantee of SFQ for FC and EBF servers, respectively.

Theorem 4 If) isthe set of flows served by a SFQ FC server with parameters (C',6(C)) and 3, .o Ra(v) < C
for all v, then the departure time of packet p‘} at the server, denoted by Lerq (p‘}), isgiven by:

j i me 4 8(C)
Lsrq(p}) < EAT(W), 7))+ > ot (38)
nEQANFES

11

Proof: Let set H be defined as follows:
H ={mlm>0AS(p})=v(AP}))} (39)

Let k& < j belargest integer in H. Also, let v; = v(A(p’;)) and vy = S(p‘j;). Observe that as the server virtual

timeis set to the maximum finish tag assigned to any packet at the end of abusy period, packet p? and p‘} areserved in
the same busy period of a server. From the definition of SFQ, the set of flow f packets served in the interval [v, v]
have start tag at least v; and at most v,. Hence, the set can be partitioned into two sets:

e Thisset consists of packets that have start tag at least v; and finish tag at most v,. Formally the set of packets
of flow n, denoted by D,,, inthissetis:

Dy = {mlvy <SF) <va AF(py) < w2} (40)

Then, from the definition of 12, (v) and F(py;’, "), we know that the cumulative length of such flow n packets
served by the server in thevirtual timeinterval [vy, vo], denoted by AP, (v1, v2), isgiven as:

APy (v1,v5) < / R (v)dv (41)

Hence, aggregate length of packetsinthisset, » - .o AP, (vi, v2), isgivenas:

S AP (or,vs) < Z/UQRn(v)dv (42)

neQ neQ
< / 3 R (13)
U1 HEQ
< Cdv (44)
S C(Uz - Ul) (45)
. . . k4+n
Butsince v, = S(p},7}), fromthe definition of &, vy — vy = S oAl :j;ﬂ Hence,
n=j—k—1 lk-l—n
Z AP, (vi,v9) < C Z (46)
neq

e This set consists of packets that have start tag at most v, and finish tag greater than v». Formally, the set of
packets of flow n, denoted by F,,, inthissetis

Ep = {mlvy <S(py') < va AF(py) > 02} (47)

Clearly, at most one packet of flow » can belong to this set. Furthermore, £y = {;j}. Hence, the maximum
aggregate length of packetsinthisset is:

oo+l (48)

neQAnEf

Hence, the aggregate length of packets served by the server intheinterval [vy, v2], denoted by /W(vl, va), IS

n=j—k— 11‘1;‘4—77,)
Wor,ea) € Z e D DI L (49)
f neQAn#f

Let T'(w) be the time taken by server to serve packets with aggregate length w in abusy period. From the definition

of Fluctuation Constrained server, we get:

I(C)

T(w) < —
(w) < C

+ (50)

Qls

12

Since packet p‘} departs a system virtua time v, and dl the packets served in the virtua time interval [vq, vo] are
served in the same busy period of the server, we get:

AP}) + T(W(v1,v2)) > Lsro(p)) (51)
n=j—k-1 i max j
. CY o T’f;ﬂ + X neqanzs T + 1 5(C) i
Ap}) + - +—5 = Lsrqlpy) (52)
n=j—k=1 jk+n jmaz 2 5
k f 4 ;o 00) j
AP+ Y e T Y. It St 2 Lerelr)) (53)
n=0 f neQAnZf
From (37) we get '
o [mar L §(C :
sty + Y B D g (54)
nEQAnZS
[|

Theorem 5 If Q) istheset of flowsserved by a SFQ EBF server with parameters (C', B, ., 6(C)) and 3, o Rn(v) <
C for all v, then the departure time of packet p‘} at the server, denoted by Lerq (p‘}), isgiven by:

. . . [maz lj (5(0)
J J o n f v —a
p (LSFQ(pf) < EAT(p},v}) + HEQEM# o tet g tg| 2B 0<y (55)

The delay guarantee derived in Theorems 4 and 5 isindependent of atie breaking rule that a SFQ server may use
when more than one packet have the same start tag. Though atie breaking rule does not effect the delay guarantee, it
can be used by a server to achieve different objectives. For example, a tie-breaking rule may give higher priority to
interactive, low-throughput applicationsto reduce the average delay.

Theorems 4 and 5 can be used to determine delay guarantee even when a server has flowswith different priorities
and servicestheminthepriority order (such ascenario may occur in an integrated services network with different traffic
types). Toillustrate, consider a server that services flows with two priorities and uses SFQ to schedul e the packets of
lower priority flows. If the bandwidth requirement of flowsthat are given higher priority can be characterized by aleaky
bucket with average rate p and burstiness ¢ (such a characterization may be enforced by shaping the higher priority
flows through a leaky bucket), then the residua bandwidth available to the lower priority flows can be modeled as
fluctuation constrained with parameters (C' — p, o). Hence, Theorem 4 can be used to determine the delay guarantee of
the lower priority flows. Similarly, if the aggregate arrival process of the high priority flows can be model ed as poisson
process, then the residua bandwidth can be modeled as EBF server [15] and Theorem 5 can be used to determine the
delay guarantee.

Theorem 4 demonstratesthat maxi mum del ay of apacket in SFQissignificantly smaller thanin SCFQ. Specifically,
atight bound on the departure time of a packet at a constant rate server employing SCFQ, givenin[9], is:

: o pras 1
LSCFQ (p‘;) S EAT(])‘}, 7“‘}) + Z — + —g (56)
nEQARES s

Sinced (C) = 0for aconstant rateserver, thedifferencein maximum delay that apacket may incur at servers employing
SCFQand SFQiis:

g (57)
¥ C

Clearly, maximum delay in SFQ ismuch smaller than in SCFQ. To illustrate numerically, when r‘} =64Kb/s, l‘} =200
bytesand C=100Mb/s, the differenceis24.4ms. If thereare K servers onthe path of aflow, thisdifferenceincreases by
afactor of K. For instance, the differenceincreases to 122msfor X' = 5. Similarly, the difference increases linearly
with the packet size.

Difference in delay(s)

50

40

30

20

10

-10

13

T T T T T 60 T T T T
Flows =100 — SFQ —

F Flows =150 ---- WFQ/"
Flows =200 ----- /

Delay (ms)
w
S
T

20

10

800 1000 0.7 0.75 0.9

0 600 0.8 0.85
Rate(Kb/s) Average Utilization

Figure 2 : (a)Difference in maximum delay in WFQ and SFQ (b) Comparison of average delay in WFQ and SFQ

Theorem 4 demonstrates that SFQ does not couple bandwidth and delay allocation. This enables it to provide
lower maximum delay to low-throughput appli cationsas compared to WFQ that inversely couples delay and bandwidth
allocation. To observethis, consider the differencein the maximum delay experienced by packet p‘} , denoted by A(p‘}),
inWFQ and SFQ. Since WFQ guaranteesthat packet p‘} will be transmitted by EAT(p‘j; , r‘}) + f;’; + ’mﬁ wherel,, o
isthe maximum packet length at the server, we get: !

lgmx _ ﬁ

A A
Jy— o lmaz
neQAnZf

To gain a qualitative understanding of A(p‘j;), let 19 =100 = e =l and r‘} = rs. Then,

o L _del=1t
A =5 = 2 (59)
Hence, A(p‘}) > 0if:
1 rf
Q-1 el (60)

This showsthat maximum delay of packetsof aflow in SFQ issmaller thanin WFQ if thefraction of thelink bandwidth
used by theflow isat most H;—l which isexpected to be true for low-throughput applications. Thisisasoillustrated
by Figure 2(a), which plotsﬁwe reductionin delay in SFQ for different number of flows and flow rates, assuming 200
bytes packet and link capacity of 100Mb/s. As the figure shows, the reduction is higher for lower throughput flows.
To compare the delay performance of WFQ and SFQ, consider a network link that is servicing 70 flows (possibly
video flows) with rate 1IMb/s and 200 flows (possibly audio flows) with rate 64Kb/s. In such a scenario, whereas the
maximum delay of the packets of flow with rate 64 Kb/s reduces by 20.39ms in SFQ, the maximum delay of 1Mb/s
flowsincreases by 2.48 ms. Hence, SFQ reduces the maximum delay of low throughput flows significantly without an
appreciable increase in the delay of high throughput flows.

SFQ not only reduces the maximum del ay as compared to WFQ, but isal so expected to lower the average delay of
low-throughput applications. Thisis because whereas SFQ schedules packets in the increasing order of start tags, and
thereby schedul es packets at the earliest possibleinstant; WFQ schedul es packetsin increasing order of finish tag, and
thusdelays apacket aslong as possible. To validatethishypothesis, we simulated a switch that was shared by high and
low throughput flows carrying poisson traffic. The link capacity was 1Mb/sand the packet size was 200 bytes. Seven
high-throughput flows with average rate 100K b/sshared the switch with varying number of low-throughput flowswith
average rate 32Kb/s. The number of low-throughput flows was varied from 2 to 10 and the switch was simulated for
1000 seconds. Figure 2(b) compares the average packet delay of low-throughput flows in WFQ and SFQ at varying

0.95

14

levels of link utilization. Asthe figureillustrates, the average delay of low-throughput flows is significantly higher in
WFQ than in SFQ. In fact, at 80.81% link utilization, the average delay is 53%, higher in WFQ than in SFQ. Hence,
SFQ provideslower maximum as well as average delay to low-throughput applications as compared to WFQ.

Asisevident from the definition of the expected arrival time, two key properties of the delay guarantee of SFQ
for aflow are: (1) it isindependent of the behavior of other sources at the server, and thereby isolates the flow; and
(2) it isindependent of a traffic characterization. Whereas the isolation property enables a server to provide stronger
guarantees to the flow and is highly desirable when sources may be malicious [2, 5, 14, 17], independence of delay
guarantee from traffic characterization enables a server to provide various QoS guarantees to flows conforming to any
specification [9]. To enable a network of serversto provide similar guarantees, in what follows, we derive end-to-end
delay guarantee.

2.4 End-to-End Delay Guarantee

The objective is to determine the deadline guarantee of a network of servers based on the expected arrival time of a
packet at the first server on the path of aflow [9]. To do so, let the i*” server along the path of aflow be denoted as
server i. Also, let there be K servers on the path of aflow and let each of the server guarantee a deadline to a packet
based on its expected arrival time. Then, the network guarantees a deadline to a packet based on its expected arrival
time at the K'*" server. Observe that the expected arrival time of a packet at server K is dependent on departure time
of packet at server K — 1, which, in turn, is dependent on expected arrival time of the packet at server K — 1. Using
thisargument recursively, a network of servers can guarantee adeadline to a packet based on the expected arrival time
of the packet at the first server. This method has been used in[9] to derive end-to-end delay guarantee of a network of
servers that employ agorithmsin the class of Guaranteed Rate (GR) scheduling a gorithms. However, the end-to-end
delay guarantee presented in [9] assumes that each of the server provides a deterministic bound on the departure time
of a packet. Consequently, even though SFQ belongsto GR, the guarantee is not applicable to a network which may
have some SFQ EBF servers. To analyze such networks, we generalize the method presented in [9].
Observe that SFQ delay guarantee for both FC and EBF servers can be rewritten as:

P (LSFQ(P}) < EAT(p‘},r‘}) + 3 +'y) >1-Be™ 0<y (61)

Substituting g o= ZHEQM# lmcaz —|— —|— (C), B = 0and A = oo, yields the delay guarantee for FC server.

jmaz lJ

Substituting 6§ = Z_HEQM# =+ &+ % and A = o', on the other hand, yieldsthe delay guarantee for EBF
server. Hence, we will use (61) to derive the end-to-end delay guarantee. Furthermore, to facilitate interoperability
with other scheduling a gorithms, we will only require each server on the path of a flow to guarantee a deadline which
issimilar to (61). Wefirst relate the expected arrival time of a packet at adjacent serversin Theorem 6 and then use it
to derive end-to-end delay guarantee in Corollary 1.

Let 7»i+! be an upper bound on the propagatmn delay between serversi and i + 1. Also, let al the variables of
server i be identified by superscript , i.e, 5 and r; are identified asﬁ? " and r‘}l respectively. Henceforth in this
section, we will refer toasingle flow f, and, hence drop the subscript f from all the variables.

Theorem 6 If scheduling algorithmat server ¢ guarantees that:
P (LY < EAT (), /9y + 891 44) > 1= Ble™7 0<~ (62)
where L' (p?) isthe timeat which packet p/ departs server i, then:
g (EAT”%pJ',W) S PATP,) 4 e (5704 700 4 'V) >1-Be™ 0<y (63)
nell..j

where 7 < min{r)t riit1},

Corollary 1 If scheduling algorithm at each server on the path of a flow satisfies (62), and there are K servers on
the path of the flow, then:

n=K-1 n=K _ 1
P(LKWKEATl Z max {77} + Z T”’”“H) 1— (3 B"e Zuow 3"
n=1

where L (p) isthetime at which packet p’ leaves server K, and 7/ = min, e g 7",

15

As Corollary 1 illustrates, the end-to-end guarantee, like the single server guarantee, is based on the expected
arrival time of a packet and hence isindependent of the behavior of other flowsand any particul ar flow characterization.
Moreover, it can be used to determine various QoS parameters like upper bound on end-to-end delay, packet loss
probability and buffer requirement for any traffic specification [9] (see Section A.5 for a brief exposition of method
for deriving end-to-end delay bounds and a bound for flows conforming to leaky bucket). Hence, such a guaranteeis
highly desirable.

To derive Corollary 1, we have only required the scheduling algorithm at each server to satisfy (62). Hence, any
scheduling agorithm that satisfies (62) (for example, Virtua Clock, WFQ, and SCFQ) can interoperate to provide
end-to-end guarantee. Furthermore, Corollary 1 can be used for an internetwork of FC and EBF servers. Findly, the
proof method of Theorem 6 and Corollary 1 can be used to derive end-to-end delay guarantee even when packet may
be fragmented and reassembled in the network. Hence, SFQ can provide guarantees in heterogeneous i nternetworking
environments.

2.5 Discussion

SFQ borrows the notion of “self-clocking” i.e., computing system virtual time based on atag of a packet in service,
from SCFQ to achieve efficiency. However, it provides significantly lower delay than SCFQ while achieving the same
fairnessmeasure. Hence, using fairness, throughput, delay, and computational complexity as performance metrics, we
conclude that SFQ is strictly better than SCFQ.

SFQ issimilar in spirit to FQS which also schedules packets in the increasing order of start tags. However, as
FQSusesv(t) asdefined in (3), it iscomputationally expensive and failsto alocate bandwidth fairly over variablerate
servers. Furthermore, as Theorem 1 and Table 1 show, its fairness measure is no smaller than that of SFQ. Finally,
sincein FQS, al @ flows can become active simultaneoudly, and consequently) packets can have the same start tag,
the bound on the departure time of apacket in FQS cannot be smaller than in SFQ. Hence, SFQ has many advantages
but no disadvantages over FQS.

A key advantage of SFQ over WFQ, in addition to lower implementation complexity, isthat it achieves fairness
over variablerate servers while WFQ does not. Moreover, it provides considerably [ower maximum and average delay
to low-throughput applications than WFQ. Since low-throughput applications like audio and telnet are more delay
sensitive than high-throughput applications like video and ftp, thisfeature is highly desirable. In case delay guarantee
of WFQ is required, as we show in Appendix B, SFQ can be combined with non work-conserving Virtua Clock to
derive Fair airport scheduling algorithmthat providesthe delay guarantee of WFQ and efficiently achieves fairness even
over variable rate servers. Thus, since SFQ addresses the drawbacks of WFQ while achieving its delay guarantee if
desired, it is better suited than WFQ for integrated services networks.

Finally, since SFQ provides a bound on maximum delay that does not depend on the weights of other flows and
has a bounded deviation from an optimal fair scheduling algorithm, it has better fairness and delay properties than
DRR.

To summarize, we have shown that SFQ: (1) achieves |ow average as well as maximum delay for low-throughput
applications; (2) provides fairness, regardless of variation in a server rate; (3) has a fairness measure that is at least
as good as that of all the known fair scheduling algorithms; and (4) is computationally efficient. In the next section,
we show that it enables hierarchical link sharing, and thus meets al the requirements of a scheduling agorithm for
integrated services networks.

3 Hierarchical Link Sharing

Hierarchical link sharing is an ideal mechanism for managing heterogeneity in integrated services networks[7, 18].
It can be used by a network to support services that provide heterogeneous QoS as well as multiple protocol families
that support different traffic types and/or congestion control mechanisms. For example, a network can support hard
and soft real-time, as well as best effort services by partitioning the link bandwidth between them as per the expected
requirements of each of the service. To support high and low reliability soft rea-time services, the bandwidth of
soft real-time service may be further partitioned. Similarly, the bandwidth of the best effort services may be further
partitioned between throughput intensive and interactive services.

A key advantage of hierarchical link sharingisthat it providesisolation between different services whileenabling
similar services to share resources. Hence, incompatible congestion control algorithms can coexist while compatible
algorithms reap the advantages of sharing. For example, while high and low reliability soft real-time services get

16

the benefits of sharing, the hard real-time service is isolated from the overbooking that may occur in soft real-time
services, and the congestion control algorithm that may be used by the best effort services. Hierarchica link sharing
also facilitates use of different resource allocation methods for different services. Thisis desirable as hard rea-time
services may use a scheduling algorithm that performs well when thereis no overbooking; soft real -time services may
prefer to use a scheduling algorithm that provides QoS guarantees and/or minimizes deadline violationsin presence
of overbooking [1]; and best effort services may use a fair scheduler for throughput intensive flow-controlled data
applications.

The requirements of hierarchical link sharing is specified by atree, referred to as link-sharing structure, in which
each node, other than possibly leaf nodes, denotes an aggregation of flows [7]. Each node in the tree is referred to
as aclass and has a weight associated with it. The objective of a mechanism implementing hierarchical link sharing
is to distribute the bandwidth allocated to a class among its subclasses fairly, i.e., in proportion to the weights [18].
This objective can be achieved by a hierarchical scheduler that considers each class, other than the leaf classes, as a
virtual server and uses afair scheduler to schedule the virtua servers. However, as the following example illustrates,
the scheduler used must allocate bandwidth fairly even over variable rate servers.

Example 3 Consider a link sharing structure in which classes A and B are subclasses of the root class. Let classes
C and D be subclasses of class A and let each class have weight 1. Initially, let there be no packetsin class B. Hence,
class A getsthe full link bandwidth. When class B al so becomes active, the bandwidth availableto class A (and hence
to subclasses C and D) reduces to 50% of the link bandwidth. Consequently, to fairly partition the bandwidth of class
A between subclasses C and D, the scheduler must be able to allocate bandwidth fairly over variable rate servers.

SFQ isthe only scheduling agorithm that has been demonstrated to allocate bandwidth fairly even over variable rate
servers. In what follows, we present a hierarchical SFQ scheduler for link sharing.

Hierarchical SFQ scheduler is simple. It uses SFQ to schedule each class; treating each subclass as a flow.
The scheduling of packets occurs recursively: the scheduler for root class schedul es the subclasses; the scheduler of
subclasses in turn schedule their subclasses. Since SFQ fairly alocates bandwidth regardless of the server behavior,
this simple recursive hierarchical scheduling ensures that bandwidth allocated to a class is fairly allocated between
the subclasses and thereby achieves the objective of hierarchical link sharing. Moreover, in contrast to link sharing
mechanism in [7], it provides bounds on various performance measures:

e Throughput Guarantee: Consider a class f that is a subclass of the root class. Let the link be FC server
with parameters (C, 6(C')) and let the set of the subclasses of the root class be denoted by). Then, if class f
has been assigned rate ;, from Theorem 2 we conclude that the virtual server corresponding to f isaFC server
with parameters:

neo ln®” i(C

(rpors Sty (c) + 1) (65)
Similarly, using Theorem 3, we conclude that if thelink isan EBF server, then the virtual server corresponding
to f isa EBF server. Hence, if the link isan FC or EBF server, then the virtua servers corresponding to the
subclasses of the root class are FC or EBF servers, respectively. Using the argument recursively, we conclude
that if thelink isa FC or EBF server, then each of thevirtua server in the hierarchical structureisaFC or EBF
server, respectively. Conseguently, Theorems 2 and 3 can be used to determine the throughput guarantee of the
flows.

o Delay Guarantee: Since each of thevirtual server is either FC or EBF server, Theorems 4 and 5 can be used
to determine the single server delay guarantee of the flows.

¢ End-to-End Delay Guarantee: Sincethesingleserver delay guaranteewhenaflow ishierarchically scheduled
satisfies (62), Corollary 1 can be used to determine the end-to-end delay guarantee.

The elegance of the above analysisisinitssimplicity. This simplicity demonstrates the generaity of theanaysis
of SFQ servers presented in Section 2°.

8 We would like to warn the reader of a potential pitfall. It is possible that some may reach the conclusion that this analysis
would hold even if the throughput of a server was modeled by a Service Burstiness server which is similar to a FC server [3].
However, even though the throughput guaranteed to a flow by a Virtual Clock server conforms to Service Burstiness, it can be
shown that Virtual Clock when used for hierarchical link sharing provides no guarantees.

17

Hierarchical SFQ scheduler not only achieves the objectives of hierarchical link sharing, but can aso be used to
achieve severa other objectives. For example it can be used to achieve:

e Separation of delay and throughput allocation: Observe that SFQ does not allocate delay and throughput
separately. However, it may be desirableto do so for some flows. This can be achieved by aggregating the flows
for which separation of delay and throughput is desirable into one class and then using a scheduling agorithm
that achieves such a separation for that class. Though conceptualy simple, since the throughput of a class
fluctuates over time, the algorithm used must be able to achieve the separation over variable rate servers. In
Theorem 7, we show that Delay EDD can achieve this over a FC server. Since the throughput of a class is
fluctuation constrained, Delay EDD can be used to achieve the objective.

We first define Delay EDD and then prove its delay guarantee for a FC server. Delay EDD on arrival of packet
p‘} of flow f assigns it a deadline, denoted by D(p‘}), and schedules packets in increasing order of deadline.
D(pY,) is defined as:

D(p}) = EAT(py,ry) + dy (66)

where d; isthe deadline of flow f packets, r; = r‘}, andl; = I}.

Theorem 7 If) isthe set of flows serviced by the server and
. (t—dn)rn] ln

neq

andtheserver isa (C, 6(C)) Fluctuation Constrained Delay EDD server, then thetimeat which thetransmission

of packet p‘} iscompleted, denoted by Lz pp (p‘}), is:

lmae 0(C)
C

Lepp(P}) < D)) + =55 +

C (68)

Due to high computational complexity, it may not be feasible to employ (67) as the schedul ability test. Hence,
conditions stronger than (67) which have lower computational complexity have been developed in [23]. The
theorem holds under the stronger conditionsas well.

o Delay shifting: Thisinvolves the reduction of the maximum delay of certain flows at the expense of increasing
thedelay of others. Toillustrate, |et the server be a FC server with parameters (C', §(C)) and let the set of flows
served by it be denoted by ¢). For ease of exposition, let the packet length of each flow be /. Hence, using
Theorem 4, for packet p}:

(lQf-nt ¢y 1

Lspq(py) < BAT(py, 1) + =+ ="+ & (69)

Now, let the set () be partitioned into K sets (4, ..., @k and let them be hierarchically scheduled. Let flow f
belong to partition); and the rate assigned to partition (),, be denoted by C',,. To determine delay guarantee of
flow f when it is hierarchically scheduled, observe from (65) that the virtual server corresponding to partition

Q); isa FC server with parameters (C;, w + /). Hence, the departure time of packet p‘} of flow f,
denoted by LEFQ (p‘j;), isgiven as;

— j (Qi| -1y LOEHEL 4
Lsrqlry) = BAT(ppr)+——c—+ c. t & (70)
: d+1) §(0) + K

From (69) and (71), we conclude that the bound on the departure time would be smaller when the flow is
hierarchically scheduled if:

(Q+11, 8(C)+ KL QI 4(C)
Cs C C C

<0 (72)

18

60

T
Weight =1 —
Weight =2 ----
Weight =3 -~

Stream Stream Stream 50 -

40 |

30 |

Rate(Mb/s)

| sFQ SFQ SFQ SFQ |
' |Module Module Module Driver |
10
ATM Device Driver o
0 200 400 Time(se)oo 800 1000

Figure 3 : () SFQ scheduler implementation (b) Throughput of the connections

Qi +1 G
— 73
Q[-& =T 73)
Hence, by ensuring that (73) is satisfied for the partitions which require lower delay, delay shifting can be

achieved.

4 Implementation

We have implemented SFQ scheduler for a FORE Systems ATM network interface in Solaris 2.4. Since network
protocolsin Solaris are implemented using streams, the SFQ scheduler isimplemented as a streams modul e and driver
(seeFigure3). Thedriver isused to maintain ahierarchical link sharing structure, created viaioctl() calls, for anetwork
interface. The module, on the other hand, is used to schedul e packets. We have modified the FORE API for opening a
connection to include the weight of a connection and its class as parameters ”.

To experimentally validate the implementation of the scheduler, we initiated three connections with weights 1,
2, and 3. Each of the connection terminated after transmitting 500,000 4KB packets. Figure 3 shows the throughput
received by each connection. Asit demonstrates, when all the three connectionswere active, they received throughput
intheratio 1:2:3. When the connection withweight 3 terminated, thethroughput of the other two connectionsincreased
but till remained in the ratio 1:2. Finally, when only one connection remained, it received the full link bandwidth.
The throughput of the interface in this experiment was 48Mb/s which was the same without the SFQ scheduler (i.e.,
the scheduler did not impose any overhead). Observe from Figure 3 that SFQ scheduler achieved fair allocation even
though the realizabl e bandwidth of theinterface varied over time. This demonstrates the feasibility of employing SFQ
for scheduling network interface in operating systems where the processing capacity available for a network interface
varies over time,

5 Concluding Remarks

In this paper, we presented Start-time Fair Queuing (SFQ) agorithm that is computationally efficient, achieves
fairness regardless of variation in a server capacity, and has the smallest fairness measure among al known fair
scheduling algorithms. We analyzed its throughput, single server delay, and end-to-end delay guarantee for variable
rate Fluctuation Constrained (FC) and Exponentially Bounded Fluctuation (EBF) servers. Thisis the first analysis
of any fair or real-time scheduling algorithm for such servers. Our analysis demonstrated that SFQ is better suited
than WFQ for integrated services networks and it is strictly better than SCFQ and FQS. To support heterogeneous
services and multiple protocol familiesin integrated services networks, we presented a hierarchical SFQ scheduler.
We derived performance bounds for flows that are hierarchically scheduled using a conceptually simple and elegant

"We assume that there is an authentication mechanism to verify the class and the weight.

19

method. Finally, we presented an implementation of SFQ scheduler and demonstrated that it achieves fair alocation
of bandwidth.

In summary, we demonstrated that SFQ: (1) achieves low average as well as maximum delay for low throughput
applications (e.g., interactive audio, telnet, etc.); (2) providesfairness which is desirable for VBR video; (3) provides
fairness, regardless of variation in server capacity, for throughput-intensive, flow-controlled data applications; (4)
enables hierarchical link sharing which is desirable for managing heterogeneity; and (5) is computationally efficient.
Thus, SFQ meets the requirements of a suitable scheduling algorithm for integrated services networks.

REFERENCES

[1] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and D. Shasha. On-line Scheduling in the Presence
of Overload. In Proceeding of Foundationsof Computer Science, pages 100-110, 1991.

[2] D.D. Clark, S. Shenker, and L. Zhang. Supporting Real-Time Applications in an Integrated Services Packet
Network. In Proceedings of ACM SS GCOMM, pages 14-26, August 1992.

[3] R.L. Cruz. Service Burstiness and Dynamic Burstiness Measures: A Framework. Journal of High Speed
Networks, 2:105-127, 1992.

[4] J.Davinand A.Heybey. A Simulation Study of Fair Queueing and Policy Enforcement. Computer Communication
Review, 20(5):23-29, October 1990.

[5] A. Demers, S. Keshav, and S. Shenker. Analysisand Simulation of a Fair Queueing Algorithm. In Proceedings
of ACM SIGCOMM, pages 1-12, September 1989.

[6] N. Figuera and J. Pasquale. Leave-in-Time: A New Service Discipline for Rea-Time Communication in a
Packet-Switching Data Network. In Proceedings of ACM SIGCOMM'’ 95, pages 207-218, 1995.

[7] S. Floyd and V. Jacobson. Link-sharing and Resource Management Models for Packet Networks. |EEE/ACM
Transactions on Networking, 3(4), August 1995.

[8] S.J. Golestani. A Self-Clocked Fair Queueing Scheme for High Speed Applications. 1n Proceedings of INFO-
COM’' 94, 1994.

[9] P Goyd, S. S. Lam, and H. M. Vin. Determining End-to-End Delay Bounds In Heterogeneous Networks. In
ACM/Springer-Verlag Multimedia Systems Journal (to appear), 1996. Also appeared in the Proceedings of the
Workshop on Network and Operating System Support for Digital Audio and Video, April 1995.

[10] P. Goyal and H. M. Vin. Generalized Guaranteed Rate Scheduling Algorithms: A Framework. Technical Report
TR-95-30, The University of Texas at Austin, July 1995.

[11] A. Greenberg and N. Madras. How Fair is Fair Queuing. The Journal of ACM, 39(3):568-598, July 1992.

[12] M. Grossglauser, S. Keshav, and D. Tse. RCBR: A Simple and Efficient Service for Multiple Time-Scale Traffic.
In Proceedings of ACM SGCOMM'’ 95, 1995.

[13] S.Keshav. A Control-Theoretic Approach to Flow Control. In Proceedings of ACM SSIGCOMM'’ 91, pages 315,
1991.

[14] S.S. Lam and G.G. Xie. Burst Scheduling: Architecture and Algorithm for Switching Packet Video. In
Proceedings of INFOCOM'’ 95, April 1995.

[15] K. Lee. Performance Boundsin Communication Networks With Variable-Rate Links. In Proceedings of ACM
S GCOMM’ 95, pages 126-136, 1995.

[16] A.K. Parekh. A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks. PhD
thesis, Department of Electrical Engineering and Computer Science, MIT, 1992.

[17] S. Shenker. Making Greed Work in Networks: A Game-Theoretic Analysis of Switch Service Disciplines. In
Proceedings of ACM SSGCOMM'’ 94, pages 47-57, 1994.

20

[18] S. Shenker, L. Zhang, and D. Clark. A Scheduling Service Model and a Scheduling Architecturefor an Integrated
Services Packet Networks. Available via anonymous ftp from ftp://ftp.parc.xerox.com/pub/archfin.ps, 1995.

[19] M. Shreedhar and G. Varghese. Efficient Fair Queuing Using Deficit Round Robin. In Proceedings of ACM
SIGCOMM’ 95, pages 231-242, 1995.

[20] O. Yaronand M. Sidi. Performance and Stability of Communication Networks via Robust Exponential Bounds.
In |EEE/ACM Transactions on Networking, volume 1, pages 372-385, 1993.

[21] H. Zhang and S. Keshav. Comparison of Rate-Based Service Disciplines. In Proceedings of ACM SIGCOMM,
pages 113-121, August 1991.

[22] L. Zhang. VirtualClock: A New Traffic Control Algorithm for Packet Switching Networks. 1n Proceedings of
ACM SIGCOMM'’ 90, pages 1929, August 1990.

[23] Q. Zheng and K. Shin. On the Abilitiy of Establishing Rea-Time Channels in Point-to-Point Packet-switching
Networks. |EEE Transactions on Communications, 42(3):1096-1105, March 1994.

A Appendix

A.1 Proof of Theorem 3

Proof: Let v(t;) = v; and let /W(vl, v9) denote the aggregate length of packets served by the server in the virtual
timeinterval [vy, v2]. Then, from Lemma 2 we conclude:

W(vr,v2) £ 3 ralve — 1) + 3 17 (74)
neQ neQ
Since} ,cqm < C,
W1, v9) < Clvg —v1) + Y 17" (75)
neq
Define v, as:
Ponco i 8(C
va =1+l — 1) — eg - (C)_% (76)
Then from (75), we conclude:
= 2nen™ d(C) g
Wvi,ve) < Clog+ts—t, — - — S —u) 4y e (77)
C C C e
< C(ty—t1) —68(C) =7 (78)

Let £, be such that v(f2) = v4. Also, let T'(w) be random variable denoting the time taken by server to serve
packets with aggregate length w in itsbusy period. Then:

o~

P(tl + T(W(Ul, 1)2)) S tz) (79)
P(T(W (v1,v2)) < (t2 — 1)) (80)

Pt <ty) >
>

Since P(T'(w) < (t2 —t1)) = P(W(t1,12) > w), We get:

Py <ty) > P(W(ty,ts) > W(v1,v2)) (81)
> P(W(t,tz) > C(t2 — 1) = 8(C) —) (82)
> 1— Be ™" (83)

From Lemma 1 we know that P (Wf (t1,t2) > re(ve —v1) — l}”‘”) > P(@ < t2). Hence, using (83) we get:

P (Wg(ty,ta) > rp(vo —vi) = IF*) > 1 — Be™*" (84)

21

From (76) (the definition of v2) we get:

lgmx 6
P (Wf(tl,tz) > ity —t) —rp Z”Eg — 7y (g) - rf% - l}”‘”) > 1— Be™ " (85)
Poneqn® 5(C B
P(Wf(tl,tz) <7°f(t2—t1)—7°f Eg — Ty (C') —Tf%—l}mw) S Be™% (86)
|

A.2 Proof of Theorem 5

Proof: Let T'(w) be the random variable denoting the time taken by server to serve packets of aggregate length « in
abusy period. From the definition of Exponentially Bounded Fluctuation server, we get:

P (W(tl,tz) Z C(tz - tl) - 6(0) - ”y) Z 1— Be™™ (87)
@ + %) > Oty — tl)) > 1—Be™™ (88)

Since P(T'(w) < (t2 —t1)) = P(W(t1,12) > w), We get:

=P (W(tl,tz +

6(C
P (T(C(t2 —t1)) < (t2 —t1) + % + %) > 1— Be™ ™" (89)
Define k, v, and v- asin the proof of Theorem 4. Then:

Lsrq(p}) < A(PY) + T(W(v1,v2)) (90)

i /W(Ul, v2) 5(/W(vl, va) 6(C) v

k

jP(LSFQ(P‘})SA(Pf)+ C + > P T W{(vi,v2)) < C + C —1-5

(91)
From (89) we get:
: W, 5(C

P (Lsm@;) < A + Pl 00 g) > 1= B 92)

Substituting the upper bound on /W(vl, va) from (49), we get:

J k T lk+n L Z‘Jy; 6(0) 2 —ay
P Lsro(p}) < AW+ Y o tot—(e tal 2 1B (93)
n=0 f NEQANZES
» » e B 80) o
P (LSFQ(])‘}) < EAT(p‘},?“‘}) + Z C + 5 + T + 5 > (94)
nEQAnES
|
A.3 Proof of Theorem 6
Proof: The proof isby inductionon j.
Base Case: j =1 ' ' '
EATZ-H(pl,?l’Z) — Az+1(p1) (95)
From (62) we know:
P (Ll(pl) 4 Ti,i-l—l S EATi(pl,?l’i) +61,i 4 Ti,i-l—l 4 7) Z 1— Bie—)\l’y (96)
P (A (ph) < EAT (p', 7)) 4+ gV + 704) > (97)

v
—_
©
0
z

P (EATi+1(p1,?1’i) S EATi(pl’?lvi) + I&?’Xl]{ﬁnvl} + Ti,i-|—1 + ")/)

22

Hence (63) holdsfor j = 1.
Induction Hypothesis: Assume (63) holdsfor 1 < j < m.
Induction: We need to show (63) holdsfor 1 < j < m + 1.

. |m
EATH (pm+L #mtbly — max{ AT (pm), EAT T (p™ 77" + ?m,i} (99)
There are two cases to consider:
o AtL(pmtly > pATIH(pm 7l 4 ?’ml From (99) we get:
EATi+1(pm+1,?m+1’i) — Ai+1(pm+1) (100)

From (62) we know:

p (Li(pm-l—l) + Ti’H_l S EATi(pm-I_l,?m-l_l’i) +6m+1,i + Ti,i+1 + ’Y) Z 1 — Bze(—fo’ﬂ)
P A () < BATH (P PR 4 g) (102
P (EATi+1(pm+1,?’”+1’i) < EAT! (pm Tt 7mthi) max]{ﬁ"vi} + 7t 4 'y) > (103)
nell.m+1
o AHL(pmtly < PATIH(p7m 7ty 4 ;% From (99) we get:
, , : , m
EATZ+1(pm+1,?m+1’Z) — EATZ+1(pm,?m’Z) 4 — (104)
Fm,i

From the induction hypothesis, we know:

P (EATZ’“(pm,W) < BAT (p™,7™"%) + max]{BW} + it 4 'y) > 11— B(105)
nell..m

P<EAT+1(p)+ =g < BAT(p ,?””’)erﬁrng[ll%]{ﬁ’}+T’+1+'y) > (106)

Since EAT (p™, 7™%) + ?’ml < EAT!(pm+1 #mt17) using (104) we get:

P (EATi+1(pm+1,m+l’i) S EATi(pm-I_l,?m-l_l’i) 4 [max]{ﬁn’i}—l—Ti’H_l _1_7) Z 1 — Bie_)\w
nell.m+1
(107)

From (103), (107) and the induction hypothesis, we conclude that (63) holdsfor 1 < j < m + 1. Hence, the
theorem follows. |

A.4 Proof of Corollary 1

Proof: Define:
D) = EAT™ (1, 7) = BAT (7, 7) = max 97" =774 1SS K -1 (108
Also let:
DIHp) = LX) = PATS (4 7) = max 5™% (109)
Since7/ < #m~1 from Theorem 6 we get:
P(D"(F)>4) < B" e 2<n< K (110)

Hence D" is an Exponentially bounded random variable with parameters B"~! and A\»~! [15]. Similarly from

Theorem 5, we know: ' .
P(DRF1(p) >) < BN e (111)

23

Hence, DX+1(p’) isan Exponentially Bounded variable with parameters BX and A% . From [20] we know that sum
of Exponentialy Bounded variables Dy, ..., Dg with parameters By, ..., Bx and /\1, ..., Ax isaso an Exponentially

Bounded variable with parameters Zzzf B, and m Hence yon=l K41 Dn(pi) is an Exponentialy
Bounded variable. Therefore,
n=K+1) n=K _’Y#'l
P(3 D"<p1>>~y) < (3B 2am (112)
n=2 n=1
n=K+1) n=K _’Y#'l
P(> D"(pmz»y) < 1= (3 Be Zam (113)
n=2 n=1
Now,
n=K+1 n=K-1
D (p') =LK EATY(p/,#) — max {3™" Fontl 114
; (W) = LE(p)) = BAT (¢ Z_:meu{ﬁ b= Z:j (114)
Hence, the corollary follows from substituting (114) in (113). |

A.5 Deriving End-to-End Delay Bounds

Let ¢/ be the end-to-end delay experienced by packet p/. Then &/ = L& (p/) — Al(p?) where LE (p/) is the time
a which packet p’ leaves server K and Al(p/) is the arrival time of the packet at the first server. Substituting
LE(p?) = &7 + A (p?) in (64), we get:

n=K -V =
P(d <EAT'(p),#7)—A'(p/)+0+7) = 1-(>_ B")e Dy (115)
n=1

wheref = ZZ‘{(maxmen {8+ >ons) =K=1,nn+1 Theonly termin (115) that depends on flow behavior and
isunknownis EAT! (p/ 7)) — AL (p?). Leted = EAT(p?,77) + :’% — At(p?). 1f abound on ¢/ isknown, then bound
on EAT (p?,7) — A'(p) can be determined. Observe that ¢/ can interpreted as the queuing delay experienced by
packet p? at a server with variable capacity; the capacity being the bottleneck rate for the packet in service. Hence, e/
can be determined by a single server queuing analysisfor any flow specification. Specificaly, it has b%n shownin[9]
that if aflow conformsto leaky bucket with parameters (o, p), thene/ < 2 ;r < 7. Subgtitutinge’ — r in(115) we

get adelay bound for flows conforming to leaky bucket. Delay boundsfor other flow specifications like Exponent| aly
Bounded Burstiness [20] process can be similarly derived.

A.6 Proof of Theorem 7

Proof: From (66) and (37), we conclude that the cumulative length of packets of flow n that arrive in the interval
[t1, 2] and have deadline lessthan or equal to ¢2, denoted by A P, (t1,¢2), isgiven as:

APn(tl,tz) S "(tz_tll—_d”)r”-‘ ln

(116)
We now prove the theorem by contradiction. Let (68) not hold for packet p‘}. Also, let ¢y be the beginning of the
busy period in which p‘} isserved and ¢» = D(p‘j;). Let ¢; be the greatest time less than ¢, during the busy period
at which a packet with deadline grester than ¢, is scheduled. If such a¢; does not exist, set ¢; = ¢ . Since the
packets are scheduled in theearliest deadlinefirst order, al the packets scheduled intheinterval (¢1, Lgpp (p‘})] arrive

in the interval (¢1,] and have deadline at most . Hence, the aggregate length of packets served in the interval
[t1, LEDD(p‘})] isat most l,,,45 + ZHEQ AP, (t],12). Sincethe server isfluctuation constrained, we get:

max + ZHEQ (tl atZ) + (5(0)
C C

Lepp(p}) <t + (117)

24

Rate Regulator

. Virtual Clock
Guaranteed Service Queue Server

Server

SFQ

Auxilary Service Queue Server

Figure 4 : Fair Airport scheduler

Using (116) and (67) witht = ¢, — ¢t , we get:

. lnas L 9(0)
LEDD(P}) < 11+ C + ity —t7 + Wl (118)
lmaz ~ 0(C)
< ot e 11
< a2+ C + C (119)
This contradicts the assumption that LEDD(p‘}) > 1y + ’mﬁ + 5(0—0) Hence such a packet p‘} does not exist and the
theorem follows. |

B Fair Airport Scheduling Algorithm

The objective of Fair Airport (FA) scheduling algorithmis to efficiently achieve fairness even over variable rate links
while achieving the delay guarantee of WFQ. The algorithm is inspired by and derives its name from the class of
Airport scheduling algorithms proposed in [3]. In an Airport scheduling algorithm, every packet of aflow on arrival
joins a rate regulator for the flow and an Auxiliary Service Queue (ASQ). Once a packet passes through the rate
regulator, it joins a Guaranteed Service Queue (GSQ) if it has not been serviced by ASQ by then. The server iswork
conserving and services packets from either GSQ or ASQ but gives priority to GSQ. The scheduling a gorithms for
GSQ and ASQ may be different.

Observethat if both GSQ and A SQ schedul ers guaranteefair all ocation of bandwidth, thenthe aggregate allocation
of bandwidth would be fair. Furthermore, if the GSQ scheduler has the same delay guarantee as WFQ, then as ASQ
only services a packet earlier than it would have been served via GSQ, the combined algorithm at the server would
have the same delay guarantee as WFQ. Hence, the objectiveisto design: (1) aGSQ scheduler that isfair and hasthe
same delay guarantee as WFQ and (2) ASQ scheduler that isfair. In FA scheduler (see Figure 4), we use Virtual Clock
and SFQ for GSQ and ASQ, respectively 8. The complete scheduling algorithm is defined as follows:

1. Onarriva, a packet of aflow joinstherate regulator for the flow and ASQ.

8 As we show in Theorem 8, Virtual Clock is able to achieve fair allocation of bandwidth of GSQ due to the rate regulator
used in FA server.

25

2. The departure time of packet p‘} from the rate controller, Lzc (pjc), isgiven as:
Lre(py) = BEAT™C (), ry) (120)

where FATEC (p‘}, r¢) isthe expected arrival time of packet p‘} computed at the rate controller using only the
subsequence of packets of flow f that were serviced through GSQ prior to p‘}. For simplicity of exposition, we

have assumed ry = r7.

3. The ASQ scheduler is SFQ as defined in Section 2. The GSQ scheduler is Virtual Clock which on arrival of
a packet in GSQ, timestamps it with JL«ELITGSQ(p‘jc ,Tr) + % and schedul es the packets in increasing order of
timestamps. EAT %% (p, r;) isthe expected arrival timeof packet p, computed at the GSQ by using only the
subsequence of packets of flow f that were serviced through GSQ prior to p‘}.

4. A packet isremoved from the rate regulator when it starts service in the ASQ.

5. A packet that has become eligiblein GSQ is dequeued from ASQ only after it has been serviced by the GSQ.
Onremoval of such a packet, the start tag of the next packet inthe ASQ (if such apacket exists) is set tothe start
tag of the packet being removed.

6. The server gives priority to GSQ over ASQ. However, it does not preempt the transmission of a packet from

ASQ.

Since Virtual Clock as well as SFQ compute timestamps/tags in O(1) time and schedule packets in increasing
order of the timestamps/tags, the per packet computational complexity of FA is O(log@). Though it may appear that
every packet isinserted into the priority queue of both SFQ and Virtual Clock servers, it is not the case. In fact, if
n packets of aflow arrive in the flows busy period, a total of at most » + 1 insertions occur in either of the priority
gueues. Thisis so because: (1) every packet that isinserted into the priority queue of the VC server is served by it,
and (2) duetorule5 of the algorithm, if £ packets of a flow are inserted into SFQ priority queue during the flows busy
period, then at least £ — 1 packets are served by SFQ server. Consequently, at most n» + 1 insertions and compuations
of timestamps/tags occurs. Hence, the implementation complexity of FA isthe same as that of non work-conserving
dynamic priority agorithmslike Jitter EDD which islower than that of WFQ. We now show that FA isfair aswell as
has the same delay guarantee as WFQ in Theorems 8 and Theorem 9, respectively.

To prove Theorem 8 we first derive lower and upper bounds on the service received by a flow through GSQ in
Lemmas 3 and 4, respectively. Let WfGSQ(tl,tz) and WfSQ(tl,tz) be the service received by flow during [t,, ¢5]
from GSQ and ASQ, respectively. Let the minimum capacity of the FA server be C, i.e.,, thework done by the server
in any busy period [t,t5] isat least C'(t2 — t1). Also, let 5 = ’mﬁ where [, 4, 1Sthe maximum length of a packet
serviced by the server.

Lemma 3 If Q) isthe set of flows served by a FA server with minimum capacity C' and ZHEQ rn < C, then for any
interval [¢1, t] inwhich the flow is backlogged throughout the interval :

Pty =ty — B) = 27 < W9y, 1) (121)

Proof: Let packet p‘} refer to the j** packet of flow f serviced by GSQ. Since flow £ is backlogged during [t1, -],
the maximum value of the expected arriva time of thefirst packet that isserved viaGSQ in theinterval [¢4, tz],pT, is:

lmax
BATSQ(pl rp) < t1+ frf (122)
. . ; ; & .
Since Y, .o ™ < C, Virtua Clock guarantees that packet p} departsby EAT? (p), rf) + L+ 3. Hence, if p}

isthelast packet served intheinterval [¢1, ¢5], then:

lmal‘
EATGSQ(p?,rf) >ty — 5 — /
rt

(123)

26

m+k
Since the flow is backlogged, EATHC (p7, ;) = EATRC (p,rs) + SEZmenst " |t has been shown in [10]
that:
EATC(py, rp) = EATRC (p, 7)) (124)

when the rate controller satisfies (120). Hence, we get:

k=m-n-—1 lm+k
f

) = BATSSQ, 1g) — BATOSQ(p, 1)) (125)
k=0 r‘f
k=m-n-—1 lm+k max
> > ty—f— L—— BAT P vy (126)
— rt rt
k=0
> (ta—tr)— g -2 (127)
rt

Since W9 (t1,t2) > S04 Zy' "I T, thelemmafollows.
|

Lemma 4 If) isthe set of flows served by a FA server with minimum capacity C' and ZHEQ rn < C, then for any
interval [¢1, t5] in which the flow is backlogged throughout the interval :

W9t ts) < rp(ta — t1 + B) + 207" (128)

Proof: Let packetp‘j; refer tothe ;7 packet of flowfserviced by GSQ. Since) ", o™ <0, Virtual Clock guarantees

that packet p‘} departsby EAT9 (p}, ry) —|— L+ 8. Hence, thefirst packet to be serviced within [¢1, ¢2], p', must
be such that:

m

BATQ T rp) + L >t — 8 (129)
Ty

Sincetherate regulator ensuresthat at all timet, the expected arrival time of the packetsin GSQ isat most ¢, we know
that last packet that isserved in [tl,tz],p;}, issuch that:

EAT(p} rs) <t (130)

From the definition of expected arrival time, we know:

k=m-n-—1 lm+k
f

EATESQ(p}rp) — BATSQ (T rg) > > - (131)
k=0
n k=m-n lm+k
= EATS9(p},ry) — EATYS9 (pT)+ = > Z (132)
Using the boundson EAT % (p}, r;) and EAT9(p}', r¢), we get:
lm n k=m-—n lm+k
(t2—t1) + 5+ L Y Z (133)
Since Y2y T IPTR > W9t),
rets —t1) + B+ 2077 > W9ty 1) (134)

27

Theorem 8 If () isthe set of flows served by a FA server with minimum capacity C' and ZHEQ rn < C', then for any
interval [¢4, 2] such that flows f and m are backlogged during the entire interval, the difference in the service received
by two flowsis given as:

Wi (ty,t W (t1,t rpar qmaw
st Walhote) g sy i) o (135)

7°f 'm 7°f 'm

|
Proof: To derive abound on W;‘SQ(tl ,12) observe that

e Since a packet is removed from the ASQ only when it has been service either through ASQ or GSQ, whenever
aflow isbacklogged in the system, it is a so backlogged in the ASQ.

o Whenever apacket is serviced from the GSQ, the start tag of the next packet inthe ASQ isset to the start tag of
the packet. Hence (13) and (18) continueto hold.

Since (13) holdsand the flow is backlogged in ASQ during interval [t1, ¢»], Lemmalisvalid for ASQ. Similarly, since
(18) holds, Lemma 2 isvalid for ASQ. Hence, from Lemmas 1 and 2, we conclude:

re(va — 1) = 1P < W59t 1) < rp(vg — o) + 17 (136)

where vy = v(ts) and v1 = v(¢1). The theorem followsfrom (136) and Lemmas 3 and 4. [|
In proving Theorem 8, we have only required the server to have minimum capacity C'. Hence, it holdseven if the
server capacity fluctuatesaslong asit is greater than C'.
Theorem 9 If @ isthe set of flows served by a FA server with minimum capacity C' and ZHEQ rn < C, then the
departure time of packet p‘} at the server, denoted by Ly 4 (p‘}), isgiven as.
. . L
Lra(p}) < BAT(p),rg) + -0+ (137)

ry

Proof: Consider packet p‘}. It may be served through ASQ or GSQ. Let us consider the two cases:

o Packet p‘} isserviced through GSQ: If >~ rn, < C, thenfrom [6] we know that Virtua Clock guarantees that

packet p‘} will be transmitted by °:

neq

. l] [max
EATESQ (pf L 1
W)+ 2+ = (138)
It has been shown in [10] that: ' '
EATC(py, rp) = EATRC (p, 7)) (139)

when the rate controller satisfies (120). Since EATEC (p‘j;,rf) < EAT(p‘j;,rf), from (138) and (139) we
conclude that (137) holdsfor packet p; .

o Packet p‘} is serviced through ASQ: Packet p‘} starts service from ASQ at timet only if ¢t < EATEC (p‘j;,rf).
Hence, packet p‘} departs by ¢ + tmes . Since FATEC (p‘j;, r) < EAT(p‘j;,rf), we conclude that (137) holds
for packet p‘}.

v |

Since WFQ aso guarantees that packet p‘} departs by EAT(p‘jc)+ iif + 3, the ddlay guarantee of FA isthe

same as WFQ. Hence, as FA has lower implementation complexity and achieves fair allocation of resources even over
variable rate servers, even though it has alarger fairness measure, it is better than WFQ.

lmax

9Since the server does not preempt ASQ, one may expect that the packet delay may increase by 2. However, the term

lmax

in the bound on departure time occurs due to the non-preemptibility of a lower priority packet that may be in service
when a higher priority packet arrives; the packet in service in ASQ can be considered to be packet with the lowest priority in

the busy period of GSQ.

