
Fair On-Line Scheduling of aDynamic Set of Tasks on a Single ResourceSanjoy K. Baruah� Johannes E. Gehrkey C. Greg PlaxtonzFebruary 1996AbstractIn many real-time applications, a set of \tasks" compete for the use of a single\resource", where: (i) only one task is allowed to use the resource at a time, (ii) theresource is scheduled in unit-time intervals, (iii) each task requires a speci�c fraction ofthe resource capacity over an extended period, and (iv) tasks arrive and depart at anytime. We refer to such a task system as an instance of the single-resource schedulingproblem. The problem of designing a \fair" scheduling algorithm for such task systemshas recently received a great deal of attention in the literature. This paper makes twomain contributions. First, we point out that a 1980 paper of Tijdeman concerningthe so-called \chairman assignment problem" provides a simple and e�cient on-linealgorithm for the static version of the single-resource scheduling problem (i.e., wherethe set of tasks competing to use the resource does not change over time). We thenextend Tijdeman's algorithm to obtain a simple and e�cient on-line algorithm for thedynamic single-resource scheduling problem.
�Supported by the National Science Foundation under Research Initiation Award No. CCR{9596282.Department of Computer & Information Science, New Jersey Institute of Technology, University Heights,Newark, NJ 07102. E-mail: sanjoy@homer.njit.edu.yComputer Sciences Department, University of Wisconsin{Madison, 1210 West Dayton Street, Madison,WI 53706{1685. E-mail: johannes@cs.wisc.edu.zSupported by the National Science Foundation under Grant No. CCR{9504145, and the Texas AdvancedResearch Program under Grant No. ARP{93{00365{461. Department of Computer Science, University ofTexas at Austin, Austin, TX 78712{1188. E-mail: plaxton@cs.utexas.edu.

1 IntroductionIn distributed real-time computer systems, various \resources" (e.g., processors, disks, net-work bandwidth) may be shared among di�erent \tasks" (e.g., user processes), where eachtask requires access to a particular shared resource at a steady rate for an extended period oftime. For example, a network link may need to support a number of real-time data streamswith each data stream requesting a certain bandwidth. Or, a movie-on-demand server mayneed to retrieve several programmes concurrently from storage disks with a limited numberof read heads. Or, a processor may support a number of long-term processes, each of whichrequires a certain fraction of the processor capacity.Integer boundary constraint. In many such instances, the shared resource is charac-terized by the property that a contending task requires exclusive access to the resource forinteger multiples of some basic time unit. For a �xed-size packet network, this unit mightcorrespond to the time required to send a single packet. For disk access, it is determined bysuch factors as the size of a disk block and the seek and scan times, while for shared CPUs itmay be the clock rate. This property is formalized as the integer boundary constraint: Timeis viewed as being divided into a countably in�nite number of equal-sized \slots", numberedfrom 0, with each slot corresponding to one basic time unit. The resource is allocated toexactly one task (or remains unallocated) during each slot.Proportionate progress. Suppose that a given task X requires a fraction w, 0 < w < 1,of a shared resource over an extended period of time. Ideally, the resource would be assignedto X in w � t of the �rst t slots, for all t. However, this is clearly impossible due to the integerboundary constraint; for example, after one time slot the resource will have been assigned toX either 0 or 1 times, and not w times. The best we can hope to do is to assign the resourceto X in either bw � tc or dw � te of the �rst t slots, for all t. A schedule that simultaneouslyprovides such proportionate progress to all tasks is said to be P-fair [1]. More generally, aschedule for which the number of allocations to any task is at all times within an additive �of the ideal value is said to achieve a lag bound of �. (Note that a P-fair schedule achievesa lag bound of less than 1.) The problem of designing an e�cient on-line algorithm forsingle-resource scheduling that achieves a small lag bound has recently received a great dealof attention in the literature [4, 6, 8, 9, 10]. However, none of the algorithms presented inthe aforementioned papers achieves a constant lag bound (i.e., independent of n, the numberof tasks), let alone P-fairness. In this paper, we extend a result of Tijdeman [7] to obtaina simple P-fair algorithm for scheduling a dynamic set of tasks on a single resource. Weremark that a variant of our algorithm has recently been independently discovered by Stoicaand Abdel-Wahab [5].Graceful degradation upon overload. When the cumulative request of all tasks of aresource exceeds the capacity of the resource, at least two di�erent strategies are possible.One strategy is to identify a maximal subset of the requesting tasks whose requests can allbe accommodated, and to deny service to the rest. Another strategy, the one adopted inthis research, is to o�er every task a fraction of its requested capacity, the fraction o�ered1

depending upon the degree of overload. (Thus, if all the requests made of a resource ofcapacity C sum to R, R > C, each task is o�ered a fraction C=R of its requested capacity.)This strategy reacts to slight overload by o�ering a slightly degraded quality of service toall tasks, rather than choosing to maintain optimal service to some tasks while providingno service to others. The task semantics determine what to do with this reduced capacity.For example, a process representing an MPEG stream of video data can tolerate a certainamount of slowdown that is indiscernible to the human eye. On the other hand, an audiostream may choose to discard some data, and maintain the rate of data delivery. (A taskthat does not wish to accept this lesser level of service can, of course, decline to do so.)Organization of the paper. The remainder of this paper is organized as follows. In Sec-tion 2, we de�ne some basic terminology and formulate several variants of the single-resourcescheduling problem. In Section 3, we discuss certain consequences of Tijdeman's work onthe so-called \chairman assignment problem" [7], including an e�cient on-line schedulingalgorithm for the static version of the single-resource scheduling problem. In Section 4, westate our main result, an e�cient on-line scheduling algorithm for a dynamic version of thesingle-resource scheduling problem. In Section 5, we present this algorithm, prove its cor-rectness, and discuss the details of an e�cient implementation. In Section 6, we o�er someconcluding remarks.2 TerminologyWe now de�ne a number of terms to be used in the description and analysis of the schedulingproblems addressed in this paper.We have a (possibly in�nite) set of tasks � competing for the use of a single resourcethat can accommodate only one task at a time. The resource is available to be scheduled(i.e., assigned to some speci�c task, or to no task) during a (possibly in�nite) number ofnon-overlapping intervals of time that we refer to as slots. The slots are numbered from 0.Let �t � � denote the �nite set of tasks that are available to be scheduled in slot t. Fort > 0, we view the set �t as being obtained from �t�1 by inserting the tasks in �t n �t�1 anddeleting the tasks in �t�1 n�t. If a particular task x is deleted at slot t, we do not allow x tobe inserted at any later slot t0 > t. If �t = � for all t, we say that the set of tasks is static.Otherwise, it is dynamic.A schedule S is a function from N to � [f#g such that S(t) is an element of �t [f#gfor all t. Schedule S is interpreted as follows: (i) if S(t) = x where x is in �t, then task xis assigned to the resource in slot t, and (ii) if S(t) = #, then no task is assigned to theresource in slot t.A scheduling algorithm computes a schedule S by successively computing S(0), S(1),S(2), and so on. A scheduling algorithm has preprocessing cost a(n), per-slot cost b(n),insertion cost c(n), and deletion cost d(n) if: (i) the time to compute S(0) is O(a(n)+ b(n))where n = j�0j, (ii) for all t > 0 the time to compute S(t) (excluding the time to computeS(0); : : : ; S(t� 1)) is O(b(n) + x � c(n) + y � d(n)) where x = j�t n �t�1j, y = j�t�1 n �tj, andn = maxfj�t�1j; j�tjg. 2

For each slot t and each task x in � there is an associated nonnegative real number r(x; t),which we refer to as the request of task x at slot t. If x is not in �t then r(x; t) = 0. We saythat the task requests are constant if for each task x, and for any pair of slots t and t0 suchthat x 2 �t \ �t0, r(x; t) = r(x; t0). Otherwise, we say that the task requests are variable.The total request at slot t, denoted R(t), is the sum over all x in � of r(x; t). The scalingfactor at slot t, denoted f(t), is 1 if R(t) � 1, and 1=R(t) otherwise. The weight of task xat slot t, denoted w(x; t), is r(x; t) � f(t). Note that 0 � w(x; t) � 1, and that the sum of thetask weights at any given slot also lies in the real interval [0; 1].In applications, r(x; t) will typically be less than 1, and should be interpreted as thefraction of the resource that task x would ideally like to receive during slot t. Unfortunately,each slot is indivisible so a scheduling algorithm cannot assign the resource to task x for anon-trivial fraction of a slot. Even if the slots were divisible, a scheduling algorithm couldnot hope to satisfy the requests of all tasks at slot t unless R(t) � 1; the task weights w(x; t)should be viewed as adjusted (in a fair manner) task requests that take this observationinto account. In particular, note that w(x; t) = r(x; t) if R(t) � 1 (i.e., the system is notoverloaded and no adjustment is necessary), and w(x; t) = r(x; t)=R(t) if R(t) > 1 (i.e., thesystem is overloaded and so we uniformly scale down all the task requests to obtain a set ofcorresponding task weights that sums to 1).As indicated above, we still need to address the indivisibility of the slots. To do so, weintroduce a couple of additional de�nitions. For each task x and slot t, letW(x; t) = X0�t0<tw(x; t0):Informally, W(x; t) represents the \ideal" number of times for task x to be assigned theresource in slots 0 through t � 1. It will prove to be useful to generalize the precedingde�nition of W(x; t) to allow for arbitrary nonnegative real values of t. However, for the sakeof clarity, we prefer to reserve the variable t to denote only integer slots; the variable � willbe used to denote real slots, as in the following de�nition.W(x; �) = 0@ X0�t<b�cw(x; t)1A+ (� � b�c) � w(x; b�c):For any given schedule S, task x, and slot t, let A(S; x; t) denote the number of timesthat task x is allocated the resource in slots 0 through t � 1 under schedule S, and de�nethe lag of task x at slot t with respect to schedule S asLag(S; x; t) = W(x; t)� A(S; x; t):Because of the indivisibility of slots we cannot hope to maintain a lag of 0 for all tasks atall slots. Instead, we focus on the design of schedules S for whichmaxx;t jLag(S; x; t)jis as small as possible. 3

A lag bound L is a pair (�L;�L) where �L is either < or �, and �L is a real number.The results of the present paper are concerned with lag bounds of the form (<; 1) and(�; 1� 1=(2n� 2)), where n is a given upper bound on maxt j�tj. For the sake of brevity, wewill often refer to these lag bounds as < 1 and � 1� 1=(2n � 2), respectively. A schedulingalgorithm achieves a lag bound of L if and only if any schedule S produced by the algorithmsatis�es jLag(S; x; t)j �L �L for all tasks x and slots t. A schedule or scheduling algorithmthat achieves a lag bound of < 1 is said to be P-fair [1]. Note that P-fairness is a very strongfairness property: A schedule S is P-fair if and only if for all tasks x and slots t, eitherA(S; x; t) = bW(x; t)c or A(S; x; t) = dW(x; t)e. All of the algorithms described in this paperare P-fair.For any schedule S, task x, slot t, and lag bound L, let the predicate Contending(S; x; t; L)be de�ned as ��L �L Lag(S; x; t) + w(x; t)� 1:Note that Contending(S; x; t; L) holds if and only if task x could be scheduled in slot t withoutviolating the the lower bound on lag associated with L. We also de�ne Deadline(S; x; t; L)as the (least, if �L is <, and greatest, if �L is �) real slot � such thatLag(S; x; t) +W(x; �)�W(x; t) = �L:Note that if �L is < (resp., �), then task x must be scheduled in at least one of the slotsft; t+ 1; : : : ; d�e � 1g (resp., ft; t+ 1; : : : ; b�cg) in order to avoid violating the upper boundon lag associated with L. LetSlack(S; x; t; L) = Deadline(S; x; t; L)� t:A scheduling algorithm is on-line if for all slots t it computes S(t) without any knowledgeof: (i) future task sets (i.e., �0t for t0 > t), in cases where the set of tasks is dynamic, and(ii) future task requests (i.e., r(x; t0) for t0 > t), in cases where the task requests are variable.Otherwise, it is o�-line.In this paper, we discuss the complexity (in terms of preprocessing cost, per-slot cost,insertion cost, and deletion cost) of both on-line and o�-line scheduling algorithms achievinglag bounds of < 1 or better. We consider the following speci�c variations of the basicscheduling problem discussed above:� Problem A: Static task set, constant task requests.� ProblemB: Dynamic task set, constant task requests, given upper bound n on maxt j�tj.� Problem C: Dynamic task set, constant task requests.� ProblemD: Dynamic task set, variable task requests, given upper bound n on maxt j�tj.� Problem E: Dynamic task set, variable task requests.4

Note that we do not consider the case of a static task set with variable task requests; that caseis equivalent to Problem D. We further remark that the above list of problems is arranged inincreasing order of di�culty, except that Problems C and D are incomparable. (It turns outthat Problem C is easier than Problem D in the on-line setting, which is our main interest,but that a slightly better lag bound is achievable for Problem D in the o�-line setting.)Thus: (i) any upper bound on the complexity of Problem B also applies to Problem A, (ii)any upper bound on the complexity of Problem C or D also applies to Problems A and B,and (iii) any upper bound on the complexity of Problem E also applies to Problems A, B,C, and D.3 Previous ResultsWork of Tijdeman [7] on the so-called \chairman assignment problem" has direct implicationsfor the problems considered in this paper.Lemma 1 (Tijdeman) There exists a schedule with lag bound � 1 � 1=(2n � 2) for anyinstance of Problem D (hence also for Problems A and B). Furthermore, there exists aschedule with lag bound < 1 for any instance of Problem E (hence also for Problem C).The following scheme is implicit in [7], and underlies a number of scheduling algorithmsfor Problems A through E.Tijdeman's Scheme. We wish to generate a schedule for a given instance ofProblem A, B, C, D, or E, subject to a given lag bound L that is known to beachievable by Lemma 1. Assume that S(0) through S(t� 1) have already beencomputed, t � 0. We now compute S(t) as follows. First, de�ne task x to becontending if and only if Contending(S; x; t; L) holds. Next, de�ne the deadlineof each contending task x as Deadline(S; x; t; L). If there are no contending tasks,set S(t) = #; otherwise, set S(t) to any earliest-deadline task x.We have chosen to refer to the above procedure as a \scheme", and not an \algorithm",because in general it is not possible to calculate the task deadlines in a �nite number of steps.For example, if the task requests are variable and the length of the schedule being computedis in�nite, it may be necessary to examine an in�nite number of future task requests inorder to compute even a single task deadline. (By contrast, it is easy to determine the setof contending tasks, even in an on-line sense.) On the other hand, in cases where the taskdeadlines can be computed in a �nite number of steps (e.g., if the length of the schedule is�nite), Tijdeman's Scheme provides an o�-line algorithm.Theorem 1 (Tijdeman) Restricting attention to problem instances that admit an o�-linealgorithm for computing the task deadlines, there is an o�-line algorithm for Problems A, B,and D (resp., C and E) with lag bound � 1 � 1=(2n � 2) (resp., < 1).Of course, if we could give an on-line algorithm for computing the task deadlines, thenTijdeman's Scheme could also be implemented on-line. Unfortunately, it is easy to see that5

the task deadlines cannot possibly be computed on-line for general instances (even �niteinstances) of Problems B, C, D, and E. On the other hand, for instances of Problem A, itis easy to compute task deadlines on-line; because the task requests are constant and theset of tasks is static, w(x; t) does not depend on t. Tijdeman [7] gives the following on-linealgorithm for Problem A with L = (�; 1� 1=(2n � 2)), and where we write w(x) to denotew(x; t).AlgorithmA. Proceed as in Tijdeman's Scheme above, but calculateDeadline(S; x; t; L)using the formula t+ � where� = �L � Lag(S; x; t)w(x) :The correctness of Algorithm A follows immediately from the correctness of Tijdeman'sScheme. Note that Algorithm A remains correct if we substitute Slack(S; x; t; L) = � for thedeadline t+ �. (In fact, the algorithm given in [7] makes use of � instead of t+ �.)A naive implementation of Algorithm A leads to a preprocessing cost of O(n) and aper-slot cost of O(n). Using standard algorithmic techniques (see, for example, the imple-mentation of Algorithm PD in [2]) these bounds can be improved to obtain the followingresult. (Although no implementation details are provided in [7], we attribute the result toTijdeman since these details are straightforward.)Theorem 2 (Tijdeman) Problem A can be solved by an on-line algorithm with lag bound� 1� 1=(2n � 2), preprocessing cost O(n), and per-slot cost O(log n).4 Our ResultsIn this paper we show that Tijdeman's Scheme admits an e�cient on-line implementationfor solving Problems B and C with small lag bounds. We refer to this implementation asAlgorithm BC. Interestingly, these results are achieved in spite of our earlier observation(Section 3) that task deadlines cannot be computed on-line. The main idea underlyingAlgorithm BC is that it is possible to compute on-line a \virtual" deadline for each tasksuch that the relative order of the virtual deadlines is the same as the relative order ofthe (unknown) deadlines. Thus, virtual deadlines can be used instead of deadlines withinTijdeman's Scheme.Theorem 3 Problem B (resp., Problem C) can be solved by an on-line algorithm with lagbound � 1 � 1=(2n � 2) (resp., < 1), preprocessing cost O(n log n) (resp., O(n)), per-slotcost O(log n), insertion cost O(log n), and deletion cost O(log n), under the assumption thatno task is ever deleted when its lag is negative.The technical assumption regarding deletion in the statement of Theorem 3 may seemsomewhat arti�cial, but cannot be dropped while maintaining a lag bound of < 1 or better.For example, consider an instance of Problem B involving 10 tasks with unit requests. If notasks are inserted or deleted in the �rst 8 slots, then some pair of tasks x and y will have lag0.8 at t = 8 (since at least two tasks have not been scheduled in any of the �rst 8 slots). If6

the other 8 tasks are deleted at t = 8, then at least one of x and y will have lag 1.3 at t = 9(whichever one is not scheduled in slot 8).In practice, our assumption regarding deletion should not pose any serious concern, sincethe deletion of a task with negative lag can simply be \delayed" until the lag of that taskreaches 0. (Note that the lag of a task increases as long as the task is not scheduled, andso we only need to ensure that the scheduling algorithm does not assign the resource to a\deleted" task.)5 An On-Line Algorithm for Problems B and CIn this section we prove Theorem 3 by giving an on-line algorithm for Problems B and C,along with an e�cient implementation of the algorithm. The algorithm is parameterizedby a lag bound L which should be set to � 1 � 1=(2n � 2) for Problem B, and to < 1 forProblem C.Since Problems B and C involve constant task requests, we write r(x) instead of r(x; t)throughout this section.With any real slot � we associate a virtual slot v(�), de�ned asv(�) = 0@ X0�t<b�c f(t)1A+ (� � b�c) � f(b�c):Lemma 2 For any real slots � and � 0, � � � 0 if and only if v(�) � v(� 0).Proof: Straightforward since f(t) � 0 for all slots t.Lemma 3 For any task x and real slot � , we haver(x) � v(�) = W(x; �):Proof: Straightforward since r(x) � f(t) = w(x; t).We can assume that our scheduling algorithm initially discards all tasks x with r(x) = 0,since such tasks never need to be scheduled. Thus, in the pair of de�nitions that follow, wecan divide by r(x) without worrying about dividing by zero.For any schedule S, task x, slot t, and lag bound L, we de�neVirtualReleaseSlot(S; x; t; L) = 1��L + A(S; x; t)r(x)and VirtualDeadline(S; x; t; L) = �L + A(S; x; t)r(x) :Lemma 4 For any schedule S, task x, slot t, and lag bound L, Contending(S; x; t; L) holdsif and only if VirtualReleaseSlot(S; x; t; L) �L v(t) + f(t):7

Proof: Multiplying both sides of the given inequality by r(x), we obtain1��L + A(S; x; t) �L W(x; t) + w(x; t);which is logically equivalent to��L �L W(x; t)� A(S; x; t) + w(x; t)� 1= Lag(S; x; t) + w(x; t)� 1;and hence also to Contending(S; x; t; L).Lemma 5 For any schedule S, task x, slot t, and lag bound L, we haveVirtualDeadline(S; x; t; L) = v(Deadline(S; x; t; L)):Proof: Let Deadline(S; x; t; L) = � . ThusLag(S; x; t) +W(x; �)�W(x; t) = �Land henceVirtualDeadline(S; x; t; L) = Lag(S; x; t) +W(x; �)�W(x; t) + A(S; x; t)r(x)= W(x; �)r(x)= v(�);where the last equation follows from Lemma 3.Lemma 6 For any schedule S, tasks x and y, slot t, and lag bound L, we haveVirtualDeadline(S; x; t; L) � VirtualDeadline(S; y; t; L)if and only if Deadline(S; x; t; L) � Deadline(S; y; t; L):Proof: Immediate from Lemmas 2 and 5.AlgorithmBC. Proceed as in Tijdeman's Scheme, but use VirtualDeadline(S; x; t; L)instead of Deadline(S; x; t; L).The correctness of Algorithm BC follows immediately from the correctness of Tijdeman'sScheme and Lemma 6. It remains to establish the time bounds claimed in Theorem 3. Astraightforward implementation of Algorithm BC results in an O(n) per-slot cost.In order to obtain an e�cient implementation of Algorithm BC, we make use of anabstract data structure for maintaining a dynamic set X of triples T = (T:x; T:a; T:b),where T:x is a task and T:a and T:b are real numbers. The set X contains at most one entry8

associated with any particular task at any given time, that is, if T and T 0 belong to X theneither T:x 6= T 0:x or T = T 0. For any real number a and lag bound L, let Triples(X; a; L)denote the set of all T in X such that T:a �L a, and let MinTriple(X; a; L) denote: (i) #, ifTriples(X; a; L) is empty, and (ii) T:x for some triple T in Triples(X; a; L) such that T:b � T 0:bfor all T 0 in Triples(X; a; L), if Triples(X; a; L) is non-empty.The operations allowed on the set X are as follows: (i) Insert(T), which is applicable onlyif T is a triple satisfying T:x 6= T 0:x for all T 0 in X, and which inserts T into the set X; (ii)Delete(x), which is applicable only if there is a (unique) triple T in X such that T:x = x,and which returns and deletes the triple T from the set X; (iii) 2D-FindMin(a; L), which isapplicable for any real number a and lag bound L, and which returns MinTriple(X; a; L). Allthree of these operations can easily be implemented to run in worst-case O(log jXj) timeusing an appropriately augmented red-black tree data structure [3].Given the aforementioned data structure, we implement Algorithm BC as follows. Atslot 0, we set v(0) = 0 and compute f(0) (at a cost that is linear in j�0j). For each task x in�0, we perform an Insert(T) operation to add the tripleT = (x;VirtualReleaseSlot(S; x; 0; L);VirtualDeadline(S; x; 0; L))to the (initially empty) dynamic set X. We remark that the cost of these insertions isO(n log n) where n = j�0j, but that this cost can be reduced to O(n) if L = (<; 1), becausein that case all of the virtual release slots are initially equal to 0. (The underlying red-blacktree is ordered by virtual release slot.)Having properly initialized the set X, we assign S(0) to 2D-FindMin(v(0) + f(0); L). IfS(0) = x 6= #, then we apply the operation Delete(x) followed by the operation Insert(T)where T = (x;VirtualReleaseSlot(S; x; 1; L);VirtualDeadline(S; x; 1; L)):Assuming that we have computed S(0) through S(t�1) for some t > 0, we now determineS(t) as follows. First, we compute v(t) = v(t� 1) + f(t� 1) and the scaling factor f(t) (givenf(t � 1), this is easily accomplished at a cost that is linear in j�t�1 n �tj + j�t n �t�1j). Foreach task x in �t�1 n �t, we perform a Delete(x) operation. For each task x in �t n �t�1, weperform the operation Insert(T) whereT = (x;VirtualReleaseSlot(S; x; t; L);VirtualDeadline(S; x; t; L)):Having properly updated the set X, we assign S(t) to 2D-FindMin(v(t) + f(t); L). IfS(t) = x 6= #, then we apply the operation Delete(x) followed by the operation Insert(T)where T = (x;VirtualReleaseSlot(S; x; t+ 1; L);VirtualDeadline(S; x; t+ 1; L)):We remark that if T 0 is the triple returned by Delete(x), then T = (x; T:a+ (1=r(x)); T:b+(1=r(x))). Thus it is easy to calculate T in constant time. (The same remark holds for thecase t = 0 discussed earlier.)The correctness of the above implementation of Algorithm BC follows immediately fromLemma 4 and the observation that the virtual release time or virtual deadline of a task x onlyneeds to be updated when x is scheduled. The performance bounds claimed in Theorem 3are straightforward to verify. 9

6 Concluding RemarksWe have addressed the problem of sharing a resource among a set of contending tasks, where:(i) only one task is allowed to use the resource at a time, (ii) the resource is scheduled inunit-time intervals, (iii) each task requires a speci�c fraction of the resource capacity overan extended period, and (iv) tasks arrive and depart at any time. We provided a formalcriterion, P-fairness, to evaluate the fairness of such systems, and presented an e�cienton-line P-fair scheduling algorithm.In previous work [1, 2], we have developed e�cient P-fair algorithms for the multiple-resource periodic scheduling problem, which may be viewed as the multiple-resource versionof Problem A: (i) there is a static set of tasks, (ii) each task has constant weight less thanor equal to 1, (iii) there are m � 1 resources, (iv) the sum of the task weights is at mostm, and (v) up to m distinct tasks can be scheduled in each slot. Interestingly, the knownP-fair scheduling algorithms for the multiple-resource periodic scheduling problem are quitea bit more complicated than Algorithm A. (The obvious generalization of Algorithm A tothe case of multiple-resources is known not to be P-fair.) Given Theorem 3, an interestingopen question is whether a polynomial-time P-fair on-line scheduling algorithm exists for themultiple-resource version of either Problem B or C.References[1] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress:A notion of fairness in resource allocation. Algorithmica, 15:600{625, 1996.[2] S. K. Baruah, J. E. Gehrke, and C. G. Plaxton. Fast scheduling of periodic tasks on mul-tiple resources. In Proceedings of the 9th International Parallel Processing Symposium,pages 280{288, April 1995.[3] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press,Cambridge, MA, 1990.[4] U. Maheshwari. Charge-based proportional scheduling. Technical Memorandum,MIT/LCS/TM{529, Laboratory for Computer Science, Massachusetts Institute of Tech-nology, July 1995.[5] I. Stoica and H. Abdel-Wahab. Earliest eligible virtual deadline �rst: A
exible andaccurate mechanism for proportional share resource allocation. Technical Report TR{95{22, Department of Computer Science, Old Dominion University, November 1995.[6] I. Stoica and H. Abdel-Wahab. A new approach to implement proportional share re-source allocation. Technical Report TR{95{05, Department of Computer Science, OldDominion University, April 1995.[7] R. Tijdeman. The chairman assignment problem. Discrete Mathematics, 32:323{330,1980. 10

[8] C. A. Waldspurger. Lottery and Stride Scheduling: Flexible Proportional-Share ResourceManagement. PhD thesis, Laboratory for Computer Science, Massachusetts Instituteof Technology, September 1995.[9] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: Flexible proportional-shareresource management. In Proceedings of the First Symposium on Operating SystemDesign and Implementation, pages 1{12, November 1994.[10] C. A. Waldspurger and W. E. Weihl. Stride scheduling: Deterministic proportional-share resource management. Technical Memorandum, MIT/LCS/TM{528, Laboratoryfor Computer Science, Massachusetts Institute of Technology, July 1995.

11

