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Abstract

Query optimizers are complex subsystems of database management systems. Modifying
query optimizers to admit new algorithms or storage structures is quite difficult, but partly alle-
viated by extensible approaches to optimizer construction. Rule-based optimizers are a step in
that direction, but from our experience, the rule sets of such optimizers are rather monolithic and
brittle. Conceptually minor changes often require wholesale modifications to a rule set. Conse-
quently, much can be done to improve the extensibility of rule-based optimizers.

As a remedy, we present a tool called Prairie that is based on an algebra of layered optimiz-
ers. This algebra naturally leads to a building-blocksapproach to rule-set construction. Defining
customized rule sets and evolving previously defined rule sets is accomplished by composing
building-blocks. We explain an implementation of Prairie and present experimental results that
show how classical relational optimizers can be synthesized from building-blocks, and that the
efficiency of query optimization is not sacrificed.

1 Introduction

Query optimization [11, 14, 19] is a fundamental part of database systems. It is the process of gener-
ating an efficient access plan (i.e., an execution strategy) for a database query. There are three aspects
that define and influence query optimization: the search space, the cost model, and the search strat-
egy.

The search space is the set of logically equivalent access plans that can be used to evaluate a
query. All plans in a query’s search space return the same result; however, some plans are more
efficient than others. The cost model assigns a cost to each plan in the search space. The cost of a
plan is an estimate of the resources used when the plan is executed; the lower the cost, the better the
plan. The search strategy is a specification of which plans in the search space are to be examined.

Traditionally, query optimizers have been built as monolithic subsystems of database manage-
ment systems (DBMSs). This simply reflects the fact that traditional database systems are them-
selves monolithic: the algorithms that are used for storing and retrieving data are hard-wired and are�This research was supported in part by grants from The University of Texas Applied Research Laboratories, Schlum-
berger, and Digital Equipment Corporation.yCurrent address: Oracle Corporation, 500 Oracle Parkway, Box 659413, Redwood City, CA 94065, USA
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difficult to change. Customizability of such optimizers is almost impossible without an enormous
effort by the database implementor (DBI). This difficulty has lead to the development of rule-based
query optimizers, whose primary purpose is to achieve query optimizer extensibility [9, 10, 12, 13].
The basic idea is that the actions of a query optimizer are defined as a set of rewrite rules that pro-
gressively optimize expressions which define how queries can be evaluated.

From our experience, the rule sets of such optimizers are rather brittle. If a new feature (e.g.,
retrieval or join algorithm) is to be added to an optimizer, it is not quite a simple matter of adding one
or more rules. For example, in the Volcano rule-based optimizer [10], rule implementations are not
encapsulated. Consequently, conceptually simple modifications to a rule set often require significant
effort including new function definitions to characterize the new feature.

Modifying rule sets is actually quite important for systems like Starburst [15], Open OODB [5],
or P2 [3, 4] where adding a new feature to a DBMS involves plugging a component into the DBMS
itself.1 For obvious reasons, updating a DBMS in such a manner should not require DBIs to hack
rule sets in order to make the resulting DBMS execute correctly; rule sets should be automatically
updated as a consequence of the addition or removal of a component. Thus, it is imperative that
better ways to structure rule sets be found that make rule sets themselves more easily extensible and
automatically updatable.

In this paper, we describe extensions to the Prairie tool and rule specification language [7, 8] that
meet this demand for rule-set extensibility. Monolithic rule sets can be modularized as compositions
of primitive rule sets. By encapsulating primitive rule sets into components called layers, and by
composing layers in different ways, we are able to generate large families of customized rule sets,
where each family member targets a different DBMS implementation. We describe the process of
rule set generation as one of compacting and optimizing a layered specification. Experimental results
are presented that show that a layered optimizer can be just as efficient as a monolithic one. We
conclude by discussing related work.

2 Prairie: A Rule Specification Language

Prairie is a front-end to the Volcano [10] optimizer generator. Prairie is similar to Starburst [15] in
using a rule-based approach to optimizer design in that both rely on a model of rewrite rules with
corresponding actions. Prairie is different than Starburst and Volcano in using a building-blocks
methodology (as described in this paper). We have based our work on Volcano because it is freely
available and because of Prairie’s demonstrated usefulness [8] in re-engineering large Volcano rule
sets such as the Open OODB optimizer [5].

As described in [8], Prairie provides three key features that simplify the effort in writing rules.
First, abstractions (like rules and actions) capture the design and semantics of an optimizer. This has
the advantage that changes to an optimizer consists of changing the implementation of its abstrac-
tions, not the abstractions themselves. Second, the extensibility (i.e., modifying the optimizer when
its target DBMS changes) of Prairie optimizers is facilitated not only by the abstractions, but also
by the uniform treatment of the rules and actions.2 Third, good performance of Prairie optimizers

1Components are called extensions in Starburst, policies in Open OODB, and layers in P2.
2In Volcano, for example, there are two different kinds of rules: implicit and explicit. Implicit rules are inferred by the

Volcano model; explicit rules are those that DBIs must define. The distinction of implicit vs. explicit rules can be a source
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(i.e., the time to optimize a query) is ensured by having efficient implementations of the abstractions.
Experimental results demonstrating these goals were achieved are presented in [7, 8].

This paper describes a fourth important enhancement to the Prairie model, namely to generate
reconfigurable rule sets from components. That is, rule sets are modularized as building-blocks that
can be arranged in various ways to construct a customized rule set. These building-blocks encapsu-
late primitive implementations of basic optimizer abstractions. This means that the rule set of an
optimizer can be modified quickly, simply by changing the composition of building-blocks that de-
fine the optimizer’s rule set. The ability to generate reconfigurable rule sets almost “on-the-fly” not
only means that Prairie can be used to construct highly customized rule sets, but also that it can be
used to build “throw-away” optimizers for one-of-a-kind applications (something that is not possible
with monolithic optimizers) [3, 4].

In [7, 8], we discussed how Prairie achieves the first three goals. In this paper, we describe how an
extension to Prairie achieves the fourth goal: namely, how reconfigurable rule sets can be constructed
from building-blocks. Before doing this, however, we begin with a brief presentation of the concepts
and notation employed by Prairie.

2.1 Notation and Assumptions

Relations and Streams. Relations reside on disk and are denoted byRi. A stream is a sequence of
tuples and is the result of a computation on one or more streams or relations. Streams can be named
(denoted by Si) or unnamed.

Database Operators. An operator is a computation on one or more streams or relations. There
are two types of operators in Prairie. Abstract (or conceptual) operators are computations on streams
or relations; they are denoted by all capital letters (e.g., JOIN). Algorithms are concrete implemen-
tations of abstract operators; they are represented in lower case with the first letter capitalized (e.g.,
Merge join). There can be, and usually are, several algorithms for a particular operator.

Operator Trees. An operator tree is a rooted tree whose non-leaf, or interior, nodes are abstract
operators or algorithms, and whose leaf nodes are relations. The children of an interior node in an
operator tree are the inputs (i.e., streams or relations) of the node. Algebraically, operator trees are
compositions of database operators. Thus, we will also call operator trees expressions; both terms
will be used interchangeably.

EXAMPLE 1 A simple expression is SORT (JOIN (RET (R1), RET (R2))). Tuples of relationsR1 andR2 are first RETrieved, and then JOINed, and finally SORTed resulting in a stream sorted on
a specific attribute. �
Descriptors. A property of a node is a (DBI-defined) variable that contains information used by
an optimizer. For example, the tuple order of a stream or the number of tuples of a relation or stream
are properties. An annotation is a hproperty, valuei pair that is assigned to a node. A descriptor is a
list of annotations that describes a node of an operator tree; every node has its own descriptor. The

of confusion, particularly when debugging rule sets. Prairie, in contrast, has no implicit rules.
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E(x1; : : : ; xn) :D1 =) E0(x1; : : : ; xn) :D2ff
pre-test statementsgg

testff
post-test statementsgg

(a) General form of a T-rule

E(x1; : : : ; xn) :D1 =) A(x1; : : : ; xn) :D2
testff

pre-opt statementsggff
post-opt statementsgg

(b) General form of an I-rule

Figure 1: Prairie rewrite rules

following notations will be useful in our subsequent discussions. If Si is a stream, then Di is its
descriptor. Also, let E be an expression and letD be its descriptor. We will write this as E : D.

EXAMPLE 2 The expression of Example 1 that is annotated with descriptors is:

SORT(JOIN(RET(R1) : D3;RET(R2) : D4) : D5) : D6D3 andD4 are the descriptors of the two RETrievals respectively,D5 is the descriptor of the JOIN,
andD6 is the descriptor of the SORT. �
Access Plans. An access plan is an operator tree in which all interior nodes are algorithms.

EXAMPLE 3 A possible access plan for the expression in Example 1 is:

Merge sort(Nested loops(File scan(R1); File scan(R2)))
Relations R1 and R2 are each retrieved using the File scan algorithm, joined using Nested loops,
and finally sorted using Merge sort. �
2.2 Rules in Prairie

There are two types of algebraic transformations (or rewrite rules) in Prairie: T-rules (“transforma-
tion rules”) and I-rules (“implementation rules”). Each rule transforms an expression into another
conditionally; the transformation also results in a mapping of descriptors between expressions. T-
rules and I-rules are defined in the following sections.

2.2.1 Transformation Rules

Transformation rules, or T-rules for short, define equivalences among pairs of expressions; they
define mappings from one operator tree to another. Let E and E0 be expressions that involve only
abstract operators. Figure 1(a) shows the general form of a T-rule. The actions of a T-rule define the
equivalences between the descriptors of nodes of the original operator tree E with the nodes of the
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output tree E 0; these actions consist of a series of (C or C++) assignment statements that define the
descriptors of E 0.

A test is used to determine if the transformations of a T-rule are applicable. Purely as an opti-
mization, it is usually the case that not all statements in a T-rule’s actions need to be executed prior
to a T-rule’s test. For this reason, the actions of a T-rule are split into two groups; those that need to
be executed prior to the T-rule’s test, and those that can be executed after a successful test. These
groups of statements comprise, respectively, the pre-test and post-test statements of a T-rule.

2.2.2 Implementation Rules

Implementation rules, or I-rules for short, define equivalences between expressions and their imple-
menting algorithms. Let E be an expression and A be an algorithm that implementsE. The general
form of an I-rule is shown in Figure 1(b).

The actions associated with an I-rule are defined in three parts. The first part, or test, is a boolean
expression whose value determines whether or not the rule can be applied.

The second part, or pre-opt statements, is a set of descriptor assignment statements that are exe-
cuted only if the test is true and before any of the inputsxi ofE are optimized. Additional properties
of nodes are usually assigned in the pre-opt section. This is necessary before any of the nodes on the
right side can be optimized.

The third part, or post-opt statements, is a set of descriptor assignment statements that are exe-
cuted after all xi are optimized. Normally, the post-opt statements compute cost properties that can
only be determined once the inputs to the algorithm are completely optimized and their costs known.

3 Layered Rule-Based Optimizers

3.1 Layers

In the Prairie framework described in Section 2, optimizers are specified using rules (T-rules and
I-rules). The rule engine treats all rules as belonging to a single set, so at any given stage, the rule
engine transforms an expression using all applicable rules. Rule conditions determine the search
space to be generated. A shortcoming of this model is that the behavior of the optimizer can be
changed only by the modification of individual rules; there is no simple way to selectively modify a
set of rules.

This section describes a building-blocks approach to the construction of rule sets for rule-based
optimizers using Prairie. The goal is to generate families of rule sets quickly and automatically where
each family member corresponds to a DBMS with a unique set of features (e.g., retrieval and join
algorithms). We discuss the model, together with a few simple examples, and describe how efficient
implementations can be quickly generated from primitive Prairie specifications.

Rules that implement a basic feature of database system construction (e.g., relation distribution,
relation replication, relation implementation) are encapsulated in components called layers. Layers
can either be defined by a DBI, or can exist in pre-defined component libraries. Each layer is a collec-
tion of T-rules and I-rules and has well-defined import and export interfaces that consist of database
operators. The general form of a layer is shown in Figure 2(a). By applying rewrite rules, a layer
translates an abstract expression consisting of abstract operators fO1; : : : ; Ong to a set of concrete
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Oi: Abstract operatorsCi: Concrete operators

LAYER

O1 On
Prairie RulesC1 Cm

(a) General form of a layer

MERGE

JOIN SORT RET

JOIN(S1; S2) =) JOPR(SORT(S1); SORT(S2))
JOPR(S1; S2) =) Merge join(S1; S2)
JOIN(S1; S2) =) JOIN CONC(S1; S2)
SORT(S1) =) SORT CONC(S1)
RET(R1) =) RET CONC(R1)

JOIN SORT RET

(b) An example layer

Figure 2: General form of a Prairie layer and an example

expressions, each consisting of one or more concrete operators fC1; : : : ; Cmg or algorithms. This
represents a one-to-many mapping between expressions, and is typically the method used by an op-
timizer to construct its search space. The term concrete refers to the fact that they are obtained by
transforming abstract operators through the use of rules; concrete operators of a layer can also be
viewed as calls to abstract operators of lower layers.

Viewing complex rule sets as compositions of primitive layers is an example of the GenVoca
paradigm of software generation [2]. In GenVoca, building-blocks of software systems are layers
that import and export standardized interfaces; a layer transforms abstract programs (operator trees)
that call operators of its export interface into more concrete programs (operator trees) that call opera-
tors of its import interface. Importing and exporting standardized interfaces enables layers to “snap”
together like legos. Different compositions of building-blocks define different systems (or, in our
case, different optimizer rule sets). A key feature of GenVoca is the use of symmetric layers; i.e.,
layers that export and import the same interface. Symmetric layers have the important feature that
they can be composed in virtually arbitrary orders. In the case of Prairie, symmetry offers DBIs many
ways to construct different rule sets using a small set of layers.3

To allow optimizer specifications using layers, the Prairie specification language of Section 2
was extended in two ways. First, rules can now be declared as belonging to a specific layer (a layer
declaration demarcates rule definitions). Second, the rule set of an optimizer can be defined as a
linear composition of layers. Layer compositions are described in more detail in the next section.

An example layer is shown in Figure 2(b). This layer, called MERGE, transforms three ab-
stract operators, JOIN, SORT, and RET into one algorithm (Merge join) and three concrete operators
(JOIN, SORT, and RET). The MERGE layer consists of four T-rules and one I-rule. The purpose
of the layer is to either transform the JOIN operator into the Merge join algorithm, or to a concrete

3Not all the compositions of GenVoca layers are necessarily meaningful or correct. Methods for validating the consis-
tency of compositions are discussed in [1].
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Operator Tree

Prairie Layer 1
Prairie Layer n

P2V Preprocessor

Volcano Rules

Volcano Rule Engine

Access Plan

(a) Schematic representation

%optimizer SEQUENTIAL [ MERGE [ SORT [ RET ] ] ]

%layer SEQUENTIAL
%trule JOIN(S1; S2) =)! JOIN(S2; S1)
%trule JOIN(JOIN(S1; S2); S3) =) JOIN(S1; JOIN(S2; S3))
%trule JOIN(S1; S2) =) JOIN CONC(S1; S2)
%trule SORT(S1) =) SORT CONC(S1)
%trule RET(R1) =) RET CONC(R1)

%layer SORT
%irule SORT(S1) =) Merge sort(S1)
%irule SORT(S1) =) Null(S1)
%trule JOIN(S1; S2) =) JOIN CONC(S1; S2)
%trule SORT(S1) =) SORT CONC(S1)
%trule RET(R1) =) RET CONC(R1)

%layer MERGE
%trule JOIN(S1; S2) =) JOPR(SORT(S1); SORT(S2))
%irule JOPR(S1; S2) =) Merge join(S1; S2)
%trule JOIN(S1; S2) =) JOIN CONC(S1; S2)
%trule SORT(S1) =) SORT CONC(S1)
%trule RET(R1) =) RET CONC(R1)

%layer DISTRIBUTION
%trule JOIN(S1; S2) =) JOIN CONC(XFER(S1); XFER(S2))
%irule XFER(S1) =) Ship(S1)
%irule XFER(S1) =) Null(S1)
%trule JOIN(S1; S2) =) JOIN CONC(S1; S2)
%trule SORT(S1) =) SORT CONC(S1)
%trule RET(R1) =) RET CONC(R1)

%layer REPLICATION
%trule RET(R1) =) RET CONC(R11)
%trule RET(R1) =) RET CONC(R12)

%layer RET
%irule RET(R1) =) File scan(R1)
(b) Syntactic specification. Rule actions are omitted
for clarity.

Figure 3: The Prairie layered optimizer paradigm

JOIN operator that will be transformed into an algorithm by another (lower) layer.
Note that MERGE is symmetric, i.e., it exports the same set of operators that it imports. To

distinguish exported operators from imported operators in rules, Prairie requires a DBI to append
“ CONC” to an operator to refer to an imported operator. Thus, “JOIN” refers to the exported join
operator, and “JOIN CONC” refers to the imported join operator.

3.2 Composing Layers

As mentioned earlier, Prairie is a front-end to the Volcano search engine [10]. DBIs specify high-
level rule sets in Prairie, and a preprocessor (described below) compacts and optimizes this rule set
into a (low-level) form that can be efficiently processed by Volcano. The extension that we have
made to Prairie is to offer an alternative to specifying monolithic rule sets. Instead, complex Prairie
rule sets can be generated from a linear composition of predefined layers that implement primitive
features common to many DBMSs.

Figure 3(a) presents a schematic overview of Prairie. A linear4 composition of layers is fed into

4A more general model of composition (one that is advocated by GenVoca) is to allow nonlinear compositions of lay-
ers. Linear compositions are sufficient for most applications that we have encountered for generating rule sets for query
optimizers.
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the P2V (Prairie-to-Volcano) preprocessor, and a monolithic (and optimized) Volcano rule set is pro-
duced. Operator trees are then optimized by this Volcano rule set.

The Prairie syntax for specifying rules in individual layers and specifying layer compositions is
shown in Figure 3(b). The composition shown in this figure, for example, represents an optimizer
with the SEQUENTIAL, MERGE, SORT, and RET layers stacked in that order. (The semantics
of these layers will be discussed shortly; for now, we briefly describe their operational functionality.)

Given an expression to optimize, the rule engine applies rules to the expression in the order that
layers are composed. Thus, rules in a layer are applied to an expression until no further rule ap-
plications are possible; the rule engine then applies rules in the next layer, and so on. Thus, layer
composition defines a sequence of rule sets to be applied to an expression, and it is this sequence
that defines the search space of the optimizer.

Although the semantics of layer composition can be understood as a pipeline of optimizations,
optimizing expressions in phases is not the most efficient implementation of layered rule sets. (Lay-
ered specifications of rule sets tend to have many rules, and typically the greater the number of rules
in a rule set, the longer it takes to optimize an expression.) To generate high-performance rule sets
in Volcano requires layered specifications to be reduced (i.e., optimized and compacted) into mono-
lithic rule sets that are suitable for Volcano execution. This is the role of the P2V preprocessor. As
currently implemented, it has four key responsibilities:� Establishing the correspondence between the various concepts of Prairie to similar ones in

Volcano. Specifically, this means that the P2V preprocessor must translate relations, streams,
operators, algorithms, operator trees, access plans, and descriptors into Volcano format.� Translating T-rules into Volcano transformation rules. This includes translating the actions
(tests and property transformations). Note that because descriptors are translated into Volcano
property structures, Prairie rule actions that reference descriptor properties must also be trans-
lated into Volcano rule actions that reference the appropriate Volcano structures.� Translating I-rules into Volcano implementation rules. As above, this includes translating an
I-rule’s actions into Volcano format.� Generating a compact Volcano rule set from a Prairie specification. This means that the P2V
preprocessor transforms a layered rule specification into a monolithic rule set, removes unused
rules, and consolidates rules that generate a transitive closure of operator tree transformations.
This step is not necessary for the correct generation of Volcano specifications; it is, however,
a means of generating smaller rule sets, and consequently, faster optimizers.

Details are found in [7].
A question that might arise is the faithfulness of our layer compaction algorithm; that is, whether

compacted layered optimizers have the same search space as a monolithic hand-coded optimizer.
While it is difficult to prove this in a formal sense (since the rule actions for layered optimizers are
different from those in a monolithic optimizer because the P2V preprocessor adds additional state-
ments to preserve the hierarchical ordering of layers), all the layered optimizers that we constructed
resulted in exactly the same rule set as the corresponding monolithic optimizer. Moreover, although
the corresponding rule actions are not exactly the same (since the P2V preprocessor adds some extra
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SEQUENTIAL

JOIN(S1; S2) =)! JOIN(S2 ; S1)
JOIN(JOIN(S1; S2); S3) =) JOIN(S1 ; JOIN(S2; S3))
JOIN(S1; S2) =) JOIN CONC(S1; S2)
SORT(S1) =) SORT CONC(S1)
RET(R1) =) RET CONC(R1) SORT

SORT(S1) =) Merge sort(S1)
SORT(S1) =) Null(S1)
JOIN(S1; S2) =) JOIN CONC(S1; S2)
SORT(S1) =) SORT CONC(S1)
RET(R1) =) RET CONC(R1)

MERGE

/* operator JOPR is local to this layer */
JOIN(S1; S2) =) JOPR(SORT(S1); SORT(S2))
JOPR(S1; S2) =) Merge join(S1; S2)
JOIN(S1; S2) =) JOIN CONC(S1; S2)
SORT(S1) =) SORT CONC(S1)
RET(R1) =) RET CONC(R1) DISTRIBUTION

/* operator XFER is local to this layer */
JOIN(S1; S2) =) JOIN CONC(XFER(S1);XFER(S2))
XFER(S1) =) Ship(S1)
XFER(S1) =) Null(S1)
JOIN(S1; S2) =) JOIN CONC(S1; S2)
SORT(S1) =) SORT CONC(S1)
RET(R1) =) RET CONC(R1)

REPLICATION

RET(R1) =) RET CONC(R11)
RET(R1) =) RET CONC(R12) RET

RET(R1) =) File scan(R1)
Figure 4: Example layers. For clarity, all rule actions are omitted. Local operators (i.e., those neither
exported nor imported) are identified in a comment.

statements) in the two approaches, the number of expressions in the search spaces were exactly the
same for all the queries that we optimized using the layered optimizers and their monolithic coun-
terparts. This lends credence to the hypothesis that a properly specified layered optimizer is seman-
tically equivalent to a monolithic (non-layered) specification. In other words, we believe that any
monolithic optimizer can be expressed as a composition of layered rule sets. The question is whether
these layers are general enough to be reusable. It is always possible to start from a monolithic rule
set and decide which rules can be encapsulated as a single layer or which rules already exist in a pre-
defined layer. Once a DBI has decided on specific layer definition, the layer compaction algorithm
then compacts the layered rule set which can then be compared to the original monolithic rule set
to verify that it specifies an equivalent rule set. Our experiences suggest that it is possible to design
general layers that, when composed, yield practical monolithic optimizers; any differences between
the layered specification and a desired optimizer are ignorable.

3.3 Examples of Layered Optimizers

This section describes several variations of traditional relational optimizers constructed using layers.
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3.3.1 Example Layers

Some examples of layers in a Prairie specification are shown in Figure 4.5 These layers specify trans-
formations typically found in traditional relational databases. There are six different layers shown,
SEQUENTIAL, SORT, MERGE, RET, DISTRIBUTION, and REPLICATION.

The SEQUENTIAL layer encapsulates transformations that are typically found in centralized
optimizers. Join commutativity and associativity T-rules are included in this layer. The remaining
rules simply transform the abstract operators into their concrete counterparts, to be transformed by
lower layers.

The SORT layer encapsulates implementations of the SORT operator. In Figure 4, the SORT
operator is transformed to either the Merge sort or the Null algorithm. Other sort algorithms can
either be introduced in this or other SORT layers. The remaining rules transform abstract operators
into concrete operators.

The MERGE layer transforms the JOIN operator into the Merge join algorithm. Other join al-
gorithms can either be encapsulated in the MERGE layer, or in a separate layer.

The DISTRIBUTION layer encapsulates the distribution of relations in distributed databases.
It transforms the JOIN operator such that if its inputs are located at different sites, they are first trans-
fered to the home site (i.e., the site where the JOIN was issued) before the join is performed. The
XFER operator denotes the transfer of streams between sites; one algorithm that implements the
XFER operator is Ship. The Ship algorithm here is assumed to be a block transfer of streams (as
in R� [6]); other transfer strategies (e.g., tuple-at-a-time) could be defined in this or other layers en-
capsulating rewrites of distributed query processing.

The REPLICATION layer models replicated databases. Its imported interface is a RET operator
that simulates a centralized, non-replicated database. That is, it gives the illusion of a single relation
for each relation in the database. The REPLICATION layer translates a relation reference into a
reference to one of the physical replicas of the relation. (In Figure 4, we assume each relation is
replicated twice.)

The RET layer transforms a RET operator into the File scan algorithm. Note that there are no
other rules transforming abstract operators into other concrete operators. This means that the RET
layer is not symmetric, i.e., it exports the RET operator, but doesn’t import any concrete operator.
This, in turn, implies that the RET layer, as defined, is always the last in a layer composition.

In the following sections, we will show how these layers can be used to construct rule sets for
simple optimizers. As mentioned earlier, symmetric layers admit more composition possibilities,
since the exported and imported interfaces are the same.

3.3.2 An Optimizer for a Centralized Database

An optimizer for a centralized database is shown in Figure 5. It is formed by the composition SE-
QUENTIAL [ MERGE [ SORT [ RET ] ] ]. The SEQUENTIAL layer applies the join associativ-
ity and commutativity T-rules to a join expression. The joins of this expression are then transformed
into the Merge join algorithm by the MERGE layer. The SORT layer then transforms the SORT
operator into the Merge sort algorithm, and finally the RET layer transforms the RET operator into
the File scan algorithm. An example of such a transformation is shown in Figure 5. (Horizontal

5For clarity, we omit all rule actions in the descriptions of these layers.
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SEQUENTIAL

JOIN(S1; S2) =)! JOIN(S2; S1)
JOIN(JOIN(S1; S2); S3) =) JOIN(S1; JOIN(S2; S3))
JOIN(S1; S2) =) JOIN CONC(S1; S2)
SORT(S1) =) SORT CONC(S1)
RET(R1) =) RET CONC(R1)
MERGE

/* operator JOPR is local to this layer */
JOIN(S1; S2) =) JOPR(SORT(S1); SORT(S2))
JOPR(S1; S2) =) Merge join(S1; S2)
JOIN(S1; S2) =) JOIN CONC(S1; S2)
SORT(S1) =) SORT CONC(S1)
RET(R1) =) RET CONC(R1)
SORT

SORT(S1) =) Merge sort(S1)
SORT(S1) =) Null(S1)
JOIN(S1; S2) =) JOIN CONC(S1; S2)
SORT(S1) =) SORT CONC(S1)
RET(R1) =) RET CONC(R1)
RET

RET(R1) =) File scan(R1)
SORT

JOIN

RET RET

dept emp

SORT

JOIN

RET RET

emp dept

SORT

Merge join

RET RET

emp dept

Merge sort

Merge join

RET RET

emp dept

Merge sort

Merge join

File scan File scan

emp dept

Figure 5: An optimizer for a centralized database and an example transformation

lines separate the input and output operator trees for each layer.) Note that each of the layers has
“dummy” T-rules that transform abstract operators into concrete operators. Thus, for instance, the
SEQUENTIAL layer can either apply the join commutativity rule to a join expression, or pass the
expression unchanged to the MERGE layer. The example transformation shown in Figure 5 is, thus,
one of many in the search space produced by the centralized layered optimizer.

Note that some operators (e.g., JOIN CONC and SORT CONC in the SORT layer) have no im-
plementations in lower layers. The rules that generate these operators are discarded by the P2V pre-
processor for reasons to be explained later; this optimization or rule-set simplification is described
in Section 3.4.

3.3.3 An Optimizer for a Distributed Database System

A distributed database consists of relations at various sites. An optimizer for such a database must
ensure that the required relations and streams are transfered to a common site before a join opera-
tion can be performed. A possible layer composition that captures the semantics of a rule set for a
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distributed query optimizer is SEQUENTIAL [ DISTRIBUTION [ MERGE [ SORT [ RET ] ] ]
]. In other words, it is obtained by adding the DISTRIBUTION layer to the centralized optimizer
in Figure 5. The SEQUENTIAL layer applies the join associativity and commutativity T-rules to a
join expression. The DISTRIBUTION layer then ensures that join streams are shipped to the join
site by using the Ship algorithm. The JOIN operator is then transformed into the Merge join algo-
rithm by the MERGE layer. The SORT layer then transforms the SORT operator into the Merge sort
algorithm, and finally the RET layer transforms the RET operator into the File scan algorithm.

3.3.4 An Optimizer for a Replicated Database

An optimizer specification for a replicated DBMS is obtained from the centralized optimizer in Fig-
ure 5 by inserting the REPLICATION layer to form the composition SEQUENTIAL [ MERGE [
SORT [ REPLICATION [ RET ] ] ] ]. The SEQUENTIAL layer applies the join associativity and
commutativity T-rules to a join expression. The MERGE layer transforms the JOIN operator into
the Merge join algorithm. The SORT layer then transforms the SORT operator into the Merge sort
algorithm. The REPLICATION layer transforms references to logical relations into their physical
replicas. Finally, the RET layer transforms the RET operator into the File scan algorithm.

3.4 Compacting Layered Optimizers

In the previous sections, we described how layers can be used to define small rule sets for optimizers,
and how these layers can be composed to construct an optimizer. However, as seen from the example
layers in Section 3.3, even simple layered optimizers can consist of a large number of rules. A naive
implementation of such a specification can result in an inefficient optimizer if the implementation
contains a large number of identity transformations (i.e., an operator transformed into its concrete
counterpart). In this section, we discuss how the P2V preprocessor can be used to compact layered
specifications of rule sets to obtain a monolithic rule set.

Layers have two primary goals: to translate abstract operators into concrete ones, and to define
a hierarchy of rules (i.e., to establish rule precedence). Any compaction of layers has to preserve
the semantics of these two goals. The P2V preprocessor accomplishes both of these goals. Broadly
speaking, there are two responsibilities of the P2V preprocessor in compacting layers. The first is to
compact the rules themselves, and the second is to ensure that the compaction of rule actions gener-
ates a semantically equivalent rule set. Below, we discuss these two steps in greater detail.

The translation of abstract operators into concrete ones by a layer implies that there is a one-to-
one correspondence between a concrete operator of one layer and an abstract operator of the layer
immediately below it. Thus, in the centralized optimizer of Figure 5, the JOIN CONC operator in
the SEQUENTIAL layer corresponds to the JOIN operator in the MERGE layer. Once this corre-
spondence is established, the P2V preprocessor can use the rule compaction techniques described in
[7] to combine all the layers together into a single, monolithic rule specification. The complexity of
the compaction algorithm lies primarily in the process of combining rule actions; for more details,
see [7]. For the centralized optimizer shown in Figure 5, the compaction process results in the layer
shown in Figure 6. It is interesting to note that the monolithic rule set obtained by layer compaction
is the same6 (except for rule actions; see [7]) as one that might have been hand-written by a DBI; the

6Note, especially, that rules (e.g., the JOIN to JOIN CONC transformation in the MERGE layer) that simply transform
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SEQUENTIAL

JOIN(S1; S2) =)! JOIN(S2; S1)
JOIN(JOIN(S1; S2); S3) =) JOIN(S1; JOIN(S2; S3))
JOIN(S1; S2) =) JOIN CONC(S1; S2)
SORT(S1) =) SORT CONC(S1)
RET(R1) =) RET CONC(R1)
MERGE

/* operator JOPR is local to this layer */
JOIN(S1; S2) =) JOPR(SORT(S1); SORT(S2))
JOPR(S1; S2) =) Merge join(S1; S2)
JOIN(S1; S2) =) JOIN CONC(S1; S2)
SORT(S1) =) SORT CONC(S1)
RET(R1) =) RET CONC(R1)
SORT

SORT(S1) =) Merge sort(S1)
SORT(S1) =) Null(S1)
JOIN(S1; S2) =) JOIN CONC(S1; S2)
SORT(S1) =) SORT CONC(S1)
RET(R1) =) RET CONC(R1)
RET

RET(R1) =) File scan(R1)
MONOLITHIC(JOIN (?1 ?2)) �!! (JOIN (?2 ?1))(JOIN ((JOIN (?1 ?2)) ?3)) �! (JOIN (?1 (JOIN (?2 ?3))))(JOIN (?1 ?2)) �! (Merge join (?1 ?2))(RET ()) �! (File scan ())

Figure 6: Compacting the layered centralized Prairie rule set in Figure 5. Rule actions are again
omitted for clarity.

layered specification, however, affords more degrees of extensibility and easier customizability.
Another aspect of a layered optimizer specification that must be preserved by compaction is that

of the hierarchical nature of rules. That is, the semantics of layered rule sets (rules in a layer applied
before rules in a lower layer) must be maintained when the layers are compacted. This is accom-
plished by introducing an annotation for each node in an expression that tracks the last layer that
transformed the node. Rules in a layer above this last layer are not applied to the node again. Thus,
in the centralized optimizer of Figure 5, an expression that has been transformed by the MERGE
layer cannot be transformed by the SEQUENTIAL layer subsequently.

4 Benchmarking Layered Optimizers

In the previous section, we described the compaction of layered rule set specifications to generate
monolithic rule sets. The question that naturally arises is whether this method of rule set construction
(layered specification followed by compaction) results in slower optimization times as compared to a
monolithic (i.e., non-layered) optimizer. In this section, we present preliminary experimental results

abstract operators to concrete operators are discarded as a direct consequence of the compaction process.
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(d) Query optimization time for the replicated
DBMS optimizer (Section 3.3.4)

Figure 7: Benchmarking layered optimizers

that demonstrate that the efficiency of an optimizer is not sacrificed.
Consider the layered centralized optimizer shown in Figure 5. As shown in Figure 6, this can be

compacted to a monolithic rule set. To verify that the efficiency of optimizers generated from lay-
ered specifications is not sacrificed, we conducted experiments involvingoptimizer specifications for
centralized, distributed, and replicated DBMSs. Each optimizer was specified in three ways: layered
Prairie, non-layered Prairie, and hand-coded Volcano. Each resulting optimizer was benchmarked
using a set of randomly generated queries. The results are reported below.

The experiments consisted of optimizing left-deepN -way join operator trees, for varying values
of N , as shown in Figure 7(a). Random queries were generated using a uniform random number
generator. The set of relations, along with their attributes, cardinalities, and record widths was fixed.
The order of relations in the left-deep tree was varied. Each join had a single equijoin predicate,
with the two join attributes chosen at random from the set of eligible attributes of the outer and inner
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streams. For the distributed DBMS optimizer, we simulated a database with four sites; each relation
was randomly assigned to a site. For the replicated DBMS, each relation had two replicas; each
replica was assumed to be sorted on different attributes.

For each valueN of the number of joins, we generated 10 different queries,7 and optimized each
query using optimizers generated from three different specifications: layered Prairie, non-layered
Prairie, and hand-coded Volcano. The run times were measured using the GNUtime command, and
averaged over the 10 queries to generate the per-query optimization time. Each point in the graph,
thus, represents the average CPU time for optimizing the queries. All experiments were performed
on a lightly loaded DECstation 5000/200 running Ultrix 4.2.

The optimization times for the layered Prairie, non-layered Prairie, and hand-coded Volcano opti-
mizers are shown in Figures 7(b), 7(c), and 7(d) for the centralized, distributed, and replicated DBMS
optimizers described earlier, respectively. In each case, we can see that the three specifications are
virtually equally efficient, supporting the hypothesis that compacted layered rule sets need not sac-
rifice any performance. More experiments are needed, however, to verify that the performance is
good when scaled to compositions of a large number of layers (i.e., compositions of 10-20 layers
[4]).

Another metric useful in measuring the benefits of layered rule set specifications is the ease with
which they can be tailored to different applications. In this case, the layered approach is very helpful
because it helps a DBI to clearly see the effects of any change on the search space of an optimizer.
For instance, the Open OODB optimizer [5] results in an extremely large search space for certain
queries. If it were implemented using layers, then the DBI could more easily experiment with adding
new rules and layers in various configurations. It is in this respect that we believe that the layered
approach will yield the most productivity gains.

5 Related Work

Optimizer design and implementation using pre-defined building-blocks has been proposed by other
researchers. All follow a rule-based paradigm. In this section, we briefly review some of these ap-
proaches. With notable exceptions (e.g., Starburst and Open OODB), the main problem with these
approaches is that they are paper designs, so it is not immediately clear how well they might work.
Moreover, from our work, it would seem to be important in all such building-block approaches that
there should be a compiler that can generate efficient, compact rule sets from specifications of com-
ponent compositions. None of the proposals discussed in this section (except, again, for Starburst
and Open OODB) describe how that is done, or even if it is possible.

Starburst [15] is an optimizer that uses functional rules to allow DBIs to specify transforma-
tions of user-queries. It has two phases. The query rewrite phase generates a search space for the
optimizer based on heuristic, non-cost-based transformations. This is followed by the optimization
phase that uses cost-based rules to transform operator trees into access plans. This suggests a form
of component-based optimization, but has the drawback that the goals, number, and order of the two
phases are not changeable by the DBI. Moreover, there are limitations on the types of rules that can
occur in each phase; for example, cost computations are not permitted in the rewrite phase.

7We chose 10 instead of a larger number since the average run time was not substantially different for more queries.
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Starburst and Open OODB [5] do not provide a framework for DBI-defined components that can
be composed to generate a rule set. The result is that rule sets in current optimizers defined using
these models are monolithic consisting of a large number of rules. For example, the Open OODB
optimizer [5] contains 26 rewrite rules without any mechanism to define more manageable rule set
modularizations. The result is a cumbersome rule specification scheme that is highly error-prone and
hard to modify in a streamlined manner. Without a mechanism to add or remove sets of rules and
automatically generate new rule sets quickly, such systems are extremely limited in the scope and
speed of customization.

Sciore and Sieg [18] describe an optimizer generator model that allows a DBI to construct a rule-
based optimizer using modules. Each module consists of term rewrite rules (with conditions) to
transform terms in a relational algebra. Each module has exported and imported interfaces which
consist of terms.

Each module in Sciore and Sieg’s framework is allowed to have rewrite rules in its own relational
algebra. A module can also specify its search space, cost model, individual search strategy (e.g.,
heuristic, exhaustive, simulated annealing, etc.), termination policy, and rule properties (e.g., rule
priorities that define the order in which rules are applied in each module). There are also knobs that a
DBI can set before optimizationstarts. These knobs are essentially initializationsteps that set various
parameters of a module.

An optimizer is constructed by stacking various modules together. The order of modules defines
the order of term rewrite rules that are applied to a term. A module can request another to optimize
a term and return its results. Thus, communication between modules is bi-directional.

In theory, Sciore and Sieg propose a very general framework for optimizer design. However,
since this model has not been implemented (to our knowledge), it is unclear whether this approach
is used as an interpreter (thus degrading performance), or to generate a monolithic optimizer. The
algorithm for the latter is not described, so the performance of the resulting optimizer is hard to pre-
dict. Also, it is not evident whether the general nature of the framework makes it hard and difficult
to use.

Mitchell, Dayal, and Zdonik [16, 17] propose a framework called Epoq in which optimizers are
constructed using extensible regions. A region is defined by a stated goal (e.g., lower cost, join re-
order, etc.). Each region defines a control strategy that transforms a query into alternative forms
based on its internal transformation rules. A region can also call a child region to transform a sub-
query. In this approach, an optimizer is specified as a rooted, directed, acyclic graph of regions.

The root region is responsible for optimizing a user query. A parent region controls which of its
child regions transforms a query. Thus, the expansion of the search space depends on two factors: the
internal transformations of a region, and the parent’s determination of the most appropriate region
(based on its stated goal) to effect a transformation.

The transformation rules in a region consist of applicability conditions together with a test to
check whether a transformed query meets the region’s stated goal. If not, then transformation rules
are applied repeatedly (perhaps based on some heuristic) until either the goal is satisfied, or the region
fails and returns to its parent.

As in the Sciore and Sieg approach, the model proposed by Mitchell, Dayal, and Zdonik has not
been implemented. Thus, it is not clear whether such a general framework can generate optimizers
that are efficient and that encompass a large domain of commonly available optimizers. It is also
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not clear whether the interaction between regions can be expressed in a compact framework so that
regions can be reused in various optimizer configurations.

6 Conclusion and Future Work

Current rule-based query optimizers do not provide a very intuitive and conceptually streamlined
framework to define rules and actions. Our experiences with the Volcano optimizer generator suggest
that its model of rules and the expression of these rules is much more complicated and too low-level
than it needs to be. As a consequence, rule sets in Volcano are fragile, hard to write, and debug.
Similar problems may exist in other contemporary rule-based query optimizers.

In this paper, we presented a general approach to constructing optimizers using pre-fabricated
components (layers). We also presented preliminary experimental evidence from simple layered op-
timizers that demonstrate that optimizer performance is not sacrificed by using reusable and exten-
sible layers. More experiments are necessary to validate conclusively that a layered optimizer can
be just as efficient as (and more extensible than) monolithic optimizers. Our primary goal in this
paper was to quickly design and implement a practical framework for specifying layered optimiz-
ers. Future work can add more generality to this approach. An important goal is to use Prairie to
automatically generate efficient optimizers in P2 [3, 4].

We believe that rule-based query optimizers will be standard tools of future database systems.
The pragmatic difficulties of using conventional rule-based optimizers led us to develop Prairie and
its philosophy of using small, well-defined building-blocks for rule set specification. This results in
several improvements over existing rule-based optimizers:

1. it offers a conceptually more streamlined model for rule specification;

2. optimizer specification and generation is simplified;

3. and it has efficient implementations.

The primary motivation behind Prairie’s building-blocks technology is to make the process of opti-
mizer construction as automated, simple, and error-proof as possible. Our experiences suggest that
Prairie is a very useful step in that direction. These advantages greatly enhance optimizer extensi-
bility and make rule sets less brittle. A consequence is that Prairie rules are simpler and more robust
than rules of existing optimizers (e.g., Volcano).

Our future work will concentrate on generalizing the layer paradigm to allow non-linear compo-
sitions and the generation of non-relational (e.g., object-oriented) DBMS optimizers.
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[5] José A. Blakeley, William J. McKenna, and Goetz Graefe. Experiences building the Open
OODB query optimizer. In Proceedings 1993 ACM SIGMOD International Conference on
Management of Data, pages 287–296, Washington, May 1993.

[6] Dean Daniels, Pat Selinger, Laura Haas, Bruce Lindsay, C. Mohan, Adrian Walker, and Paul
Wilms. An introduction to distributed query compilation in R�. In Proceedings 2nd Interna-
tional Conference on Distributed Databases, pages 291–309, Berlin, September 1982.

[7] Dinesh Das. Making Database Optimizers More Extensible. PhD thesis, The University of
Texas at Austin, 1995.

[8] Dinesh Das and Don Batory. Prairie: A rule specification framework for query optimizers.
In Proceedings 11th International Conference on Data Engineering, pages 201–210, Taipei,
March 1995.

[9] Johann Christoph Freytag. A rule-based view of query optimization. In Proceedings 1987 ACM
SIGMOD International Conference on Management of Data, pages 173–180, San Francisco,
May 1987.

[10] Goetz Graefe. Volcano, an extensible and parallel query evaluation system. Technical Report
CU–CS–481–90, University of Colorado at Boulder, July 1990.

[11] Goetz Graefe. Query evaluation techniques for large databases. ACM Computing Surveys,
25(2):73–170, June 1993.

[12] Goetz Graefe and David J. DeWitt. The EXODUS optimizer generator. In Proceedings 1987
ACM SIGMOD International Conference on Management of Data, pages 387–394, San Fran-
cisco, May 1987.

[13] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh. Extensible query processing in
Starburst. Research Report RJ 6610, IBM Almaden Research Center, December 1988.

[14] Won Kim, David S. Reiner, and Don S. Batory, editors. Query Processing in Database Systems.
Springer-Verlag, 1985.

[15] Guy M. Lohman. Grammar-like functional rules for representing query optimization alterna-
tives. In Proceedings 1988 ACM SIGMOD International Conference on Management of Data,
pages 18–27, Chicago, June 1988.

[16] Gail Mitchell, Umeshwar Dayal, and Stanley B. Zdonik. Control of an extensible query op-
timizer: A planning-based approach. In Proceedings 19th International Conference on Very

Large Data Bases, pages 517–528, Dublin, August 1993.

18



[17] Gail Mitchell, Stanley B. Zdonik, and Umeshwar Dayal. An architecture for query processing
in persistent object stores. In Proceedings of the Hawaii International Conference on System
Sciences, volume II, pages 787–798, January 1992.

[18] Edward Sciore and John Sieg, Jr. A modular query optimizer generator. In Proceedings 6th
International Conference on Data Engineering, pages 146–153, Los Angeles, February 1990.

[19] C. T. Yu and C. C. Chang. Distributed query processing. ACM Computing Surveys, 16(4):399–
433, December 1984.

19


