Synthesizing Rule Setsfor Query Optimizers
from Components’

Dinesh Das' Don Batory
Department of Computer Sciences
The University of Texasat Austin

Austin, Texas 78712-1188
{ddas,batory } @cs.utexas.edu

Abstract

Query optimizers are complex subsystems of database management systems. Modifying
guery optimizersto admit new agorithmsor storage structuresis quite difficult, but partly ale-
viated by extensible approaches to optimizer construction. Rule-based optimizersare astep in
that direction, but from our experience, therule sets of such optimizersare rather monolithicand
brittle. Conceptually minor changes often require wholesale modificationsto arule set. Conse-
guently, much can be done to improve the extensibility of rule-based optimizers.

Asaremedy, we present atool called Prairiethat is based on an algebra of layered optimiz-
ers. Thisalgebranaturally leadsto abuilding-blocksapproach to rule-set construction. Defining
customized rule sets and evolving previously defined rule sets is accomplished by composing
building-blocks. We explain an implementation of Prairie and present experimental resultsthat
show how classical relational optimizers can be synthesized from building-blocks, and that the
efficiency of query optimization is not sacrificed.

1 Introduction

Query optimization[11, 14, 19] isafundamental part of database systems. It isthe process of gener-
ating an efficient accessplan (i.e., an execution strategy) for adatabase query. Thereare threeaspects
that define and influence query optimization: the search space, the cost model, and the search strat-
egy.

The search space is the set of logically equivalent access plans that can be used to evaluate a
query. All plansin a query’s search space return the same result; however, some plans are more
efficient than others. The cost model assigns a cost to each plan in the search space. The cost of a
plan isan estimate of the resources used when the plan is executed; the lower the cost, the better the
plan. The search strategy is a specification of which plansin the search space are to be examined.

Traditionally, query optimizers have been built as monoalithic subsystems of database manage-
ment systems (DBMSs). This simply reflects the fact that traditional database systems are them-
selvesmonolithic: the algorithmsthat are used for storing and retrieving dataare hard-wired and are

*This research was supported in part by grantsfrom The University of Texas Applied Research L aboratories, Schlum-
berger, and Digital Equipment Corporation.
fCurrent address; Oracle Corporation, 500 Oracle Parkway, Box 659413, Redwood City, CA 94065, USA

difficult to change. Customizability of such optimizers is almost impossible without an enormous
effort by the database implementor (DBI). This difficulty has|lead to the devel opment of rule-based
guery optimizers, whose primary purposeis to achieve query optimizer extensibility [9, 10, 12, 13].
The basic ideais that the actions of a query optimizer are defined as a set of rewrite rules that pro-
gressively optimize expressions which define how queries can be evaluated.

From our experience, the rule sets of such optimizers are rather brittle. If a new feature (e.g.,
retrieval or join algorithm) isto be added to an optimizer, it isnot quiteasimple matter of adding one
or more rules. For example, in the Vol cano rule-based optimizer [10], rule implementations are not
encapsulated. Consequently, conceptually simplemodificationsto arule set often require significant
effort including new function definitionsto characterize the new feature.

Modifyingrule setsis actually quite important for systemslike Starburst [15], Open OODB [5],
or P2 [3, 4] where adding anew featureto a DBMS involves plugging a component into the DBMS
itself.1 For obvious reasons, updating a DBMS in such a manner should not require DBIs to hack
rule setsin order to make the resulting DBM S execute correctly; rule sets should be automatically
updated as a consequence of the addition or remova of a component. Thus, it is imperative that
better waysto structure rule sets be found that make rule sets themselves more easily extensibleand
automatically updatable.

In this paper, we describe extensionsto the Prairie tool and rule specificationlanguage[7, 8] that
meet thisdemand for rule-set extensibility. Monolithicrule sets can be modul arized as compositions
of primitiverule sets. By encapsulating primitive rule sets into components called layers, and by
composing layersin different ways, we are able to generate large families of customized rule sets,
where each family member targets a different DBMS implementation. We describe the process of
rule set generation as one of compacting and optimizing alayered specification. Experimental results
are presented that show that a layered optimizer can be just as efficient as a monalithic one. We
conclude by discussing related work.

2 Prairie: A Rule Specification Language

Prairie is afront-end to the Volcano [10] optimizer generator. Prairie issimilar to Starburst [15] in
using a rule-based approach to optimizer design in that both rely on amodel of rewrite rules with
corresponding actions. Prairie is different than Starburst and Volcano in using a building-blocks
methodology (as described in this paper). We have based our work on Volcano becauseit is freely
available and because of Prairie’'s demonstrated usefulness[8] in re-engineering large Volcano rule
sets such as the Open OODB optimizer [5].

Asdescribed in [8], Prairie provides three key features that simplify the effort in writing rules.
First, abstractions(likerulesand actions) capture the design and semanticsof an optimizer. Thishas
the advantage that changes to an optimizer consists of changing the implementation of its abstrac-
tions, not the abstractionsthemselves. Second, the extensibility (i.e., modifying the optimizer when
its target DBMS changes) of Prairie optimizers isfacilitated not only by the abstractions, but also
by the uniform treatment of the rules and actions.? Third, good performance of Prairie optimizers

1Components are called extensionsin Starburst, policies in Open OODB, and layersin P2.
2In Volcano, for example, there are two different kinds of rules: implicit and explicit. Implicit rules are inferred by the
Volcano model; explicit rules are thosethat DBIs must define. The distinction of implicit vs. explicit rules can be asource

(i.e., thetimeto optimizeaquery) isensured by having efficient implementations of the abstractions.
Experimental results demonstrating these goal s were achieved are presented in [7, 8].

This paper describes a fourth important enhancement to the Prairie model, namely to generate
reconfigurable rule setsfrom components. That is, rule setsare modularized as building-blocksthat
can be arranged in various ways to construct a customized rule set. These building-blocksencapsu-
late primitive implementations of basic optimizer abstractions. This means that the rule set of an
optimizer can be modified quickly, simply by changing the compoasition of building-blocksthat de-
fine the optimizer’srule set. The ability to generate reconfigurable rule sets amost “on-the-fly” not
only means that Prairie can be used to construct highly customized rule sets, but also that it can be
used to build “throw-away” optimizersfor one-of-a-kind applications (something that isnot possible
with monolithic optimizers) [3, 4].

In[7, 8], wediscussed how Prairie achievesthefirst threegoals. Inthispaper, wedescribehow an
extensionto Prairieachievesthefourth goal: namely, how reconfigurabl e rul e sets can be constructed
from building-blocks. Before doing this, however, we begin with a brief presentation of the concepts
and notation employed by Prairie.

2.1 Notation and Assumptions

Relationsand Streams. Relationsresideon disk and aredenoted by R;. A streamisasequence of
tuplesand istheresult of acomputation on one or more streams or relations. Streams can be named
(denoted by .5;) or unnamed.

Database Operators. An operator isa computation on one or more streams or relations. There
aretwo typesof operatorsin Prairie. Abstract (or conceptual) operator sare computationson streams
or relations; they are denoted by al capital letters (e.g., JOIN). Algorithmsare concrete implemen-
tations of abstract operators; they are represented in lower case with thefirst letter capitalized (e.g.,
Merge_join). There can be, and usually are, several agorithmsfor a particular operator.

Operator Trees. An operator tree isarooted tree whose non-leaf, or interior, nodes are abstract
operators or agorithms, and whose leaf nodes are relations. The children of an interior node in an
operator tree are the inputs (i.e., streams or relations) of the node. Algebraically, operator trees are
compositions of database operators. Thus, we will also call operator trees expressions; both terms
will be used interchangeably.

EXAMPLE1 A simpleexpressionis SORT (JOIN (RET (R;), RET (R3))). Tuplesof relations
Ry and R, arefirst RETrieved, and then JOINed, and finally SORTed resulting in astream sorted on
a specific attribute. O

Descriptors. A property of anodeis a (DBI-defined) variable that contains information used by
an optimizer. For example, the tuple order of a stream or the number of tuplesof arelation or stream
are properties. An annotationisa (property, value) pair that is assigned to anode. A descriptor isa
list of annotationsthat describes a node of an operator tree; every node has its own descriptor. The

of confusion, particularly when debugging rule sets. Prairie, in contrast, has no implicit rules.

E(z1,...,25) : D1 = E'(z1,...,2,) : D2 E(x1,...,zn) : D1 = A(z1,... ,2p) : D2
{{ test

pre-test statements {{
1} pre-opt statements
test 1}
H H

post-test statements post-opt statements
1} 1}

(a) General form of a T-rule (b) General form of an I-rule

Figure 1: Prairierewrite rules

following notations will be useful in our subsequent discussions. If .5; is a stream, then D; is its
descriptor. Also, let F' be an expression and let D be its descriptor. We will writethisas F : D.

ExamMpPLE 2 Theexpression of Example 1 that isannotated with descriptorsis:
SORT(JOIN(RET(R;y) : D3, RET(R3) : Dy4) : D5) : Dg

Dj; and D4 arethe descriptorsof thetwo RETrievasrespectively, D5 isthe descriptor of the JOIN,
and Dy isthe descriptor of the SORT. O

AccessPlans. An access plan is an operator treein which al interior nodes are algorithms.

EXAMPLE 3 A possibleaccess plan for the expressionin Example 1 is:
Merge_sort(Nested_loops(File_scan(R,), File_scan(R;)))

Relations iy and R, are each retrieved using the File_scan algorithm, joined using Nested_|oops,
and finally sorted using Merge_sort. O

2.2 RulesinPrairie

There are two types of algebraic transformations (or rewriterules) in Prairie: T-rules (“transforma-
tion rules’) and I-rules (“implementation rules’). Each rule transforms an expression into another
conditionally; the transformation also results in a mapping of descriptors between expressions. T-
rules and I-rules are defined in the foll owing sections.

2.2.1 Transformation Rules

Transformation rules, or T-rules for short, define equivalences among pairs of expressions; they
define mappings from one operator tree to another. Let £/ and £’ be expressions that involve only
abstract operators. Figure 1(a) showsthe general form of a T-rule. The actions of a T-ruledefine the
equivalences between the descriptors of nodes of the original operator tree ' with the nodes of the

output tree F’; these actions consist of a series of (C or C++) assignment statements that define the
descriptorsof F’.

A test is used to determine if the transformations of a T-rule are applicable. Purely as an opti-
mization, it is usualy the case that not al statementsin a T-rule's actions need to be executed prior
toaT-rule’stest. For thisreason, the actionsof a T-rule are split into two groups; those that need to
be executed prior to the T-rule's test, and those that can be executed after a successful test. These
groups of statements comprise, respectively, the pre-test and post-test statements of a T-rule.

2.2.2 Implementation Rules

Implementation rules, or I-rulesfor short, define equival ences between expressions and their imple-
menting algorithms. Let £’ be an expressionand A be an algorithm that implements F. The genera
form of an I-ruleis shown in Figure 1(b).

Theactionsassociated with an I-rule are defined in three parts. Thefirst part, or test, isaboolean
expression whose val ue determines whether or not the rule can be applied.

The second part, or pre-opt statements, is a set of descriptor assignment statementsthat are exe-
cuted only if thetest istrue and before any of theinputsx; of £ are optimized. Additional properties
of nodesare usually assigned in the pre-opt section. Thisisnecessary before any of the nodes on the
right side can be optimized.

Thethird part, or post-opt statements, is a set of descriptor assignment statements that are exe-
cuted after al x; are optimized. Normally, the post-opt statements compute cost properties that can
only bedetermined oncetheinputsto thealgorithm are completely optimized and their costsknown.

3 Layered Rule-Based Optimizers

31 Layers

In the Prairie framework described in Section 2, optimizers are specified using rules (T-rules and
I-rules). Therule enginetreats al rules as belonging to a single set, so at any given stage, therule
engine transforms an expression using al applicable rules. Rule conditions determine the search
space to be generated. A shortcoming of this modd is that the behavior of the optimizer can be
changed only by the modification of individual rules; thereis no simpleway to selectively modify a
set of rules.

This section describes a building-blocks approach to the construction of rule sets for rule-based
optimizersusing Prairie. Thegoa istogeneratefamiliesof rule setsquickly and automatically where
each family member correspondsto a DBMS with a unique set of features (e.g., retrieval and join
algorithms). We discussthe model, together with afew simple exampl es, and describe how efficient
implementations can be quickly generated from primitive Prairie specifications.

Rulesthat implement a basic feature of database system construction (e.g., relation distribution,
relation replication, relation implementation) are encapsulated in components called layers. Layers
can either be defined by aDBI, or can exist in pre-defined component libraries. Each layerisacollec-
tion of T-rulesand I-rules and has well-defined import and export interfaces that consist of database
operators. The genera form of alayer is shown in Figure 2(a). By applying rewriterules, a layer
translates an abstract expression consisting of abstract operators {O;, ... ,0,} to aset of concrete

C;: Concrete operators

O;: Abstract operators]

o Oy, JOIN SORT RET
LAYER] ‘ ‘ MERGEI‘
JOIN(Sy, S3) == JOPR(SORT(S7), SORT(Sz))

Prairie Rules JOPR(Sy, Sg) == Mergejoin(S1, S2)
JOIN(Sy, S3) == JOIN.CONC(S7, S2)
SORT(S1) == SORT_CONC(S1)

RET(R;) == RET-CONC(R;)
o Ch JOIN SORT RET

(a) General form of alayer (b) An example layer

Figure 2: General form of aPrairie layer and an example

expressions, each consisting of one or more concrete operators {C', ... , C,,} or agorithms. This
represents a one-to-many mapping between expressions, and istypically the method used by an op-
timizer to construct its search space. The term concrete refers to the fact that they are obtained by
transforming abstract operators through the use of rules; concrete operators of a layer can aso be
viewed as calls to abstract operators of lower layers.

Viewing complex rule sets as compositions of primitive layers is an example of the GenVoca
paradigm of software generation [2]. In GenVoca, building-blocks of software systems are layers
that import and export standardized interfaces; alayer transforms abstract programs (operator trees)
that call operatorsof itsexport interface into more concrete programs (operator trees) that call opera-
torsof itsimport interface. Importing and exporting standardized interfaces enableslayersto* snap”
together like legos. Different compositions of building-blocks define different systems (or, in our
case, different optimizer rule sets). A key feature of GenVocais the use of symmetric layers; i.e.,
layers that export and import the same interface. Symmetric layers have the important feature that
they can be composed invirtually arbitrary orders. Inthecase of Prairie, symmetry offers DBIsmany
ways to construct different rule setsusing asmall set of layers.®

To alow optimizer specifications using layers, the Prairie specification language of Section 2
was extended in two ways. First, rules can now be declared as belonging to a specific layer (alayer
declaration demarcates rule definitions). Second, the rule set of an optimizer can be defined as a
linear composition of layers. Layer compositionsare described in more detail in the next section.

An example layer is shown in Figure 2(b). Thislayer, caled MERGE, transforms three ab-
stract operators, JOIN, SORT, and RET into onea gorithm (Merge_join) and three concrete operators
(JOIN, SORT, and RET). The MERGE layer consists of four T-rules and one I-rule. The purpose
of the layer isto either transform the JOIN operator into the Merge_join algorithm, or to a concrete

3Not all the compositions of GenVoca layers are necessarily meaningful or correct. Methods for validating the consis-
tency of compositionsare discussedin [1].

Operator Tree % optimizer SEQUENTIAL [MERGE [SORT [RET1]]

%layer SEQUENTIAL
%trule JOIN(Sy, Sp) ==! JOIN(S5, S1)
%trule JOIN(JOIN(Sy, S3), S3) == JOIN(Sy, JOIN(Sz, S5))
%trule JOIN(Sy, Sp) == JOIN.CONC(Sy, Sa)
%trule SORT(S;) == SORT_CONC(S;)
%truleRET(R;) == RET-CONC(R)

%]layer SORT
%irule SORT(S1) == Merge.sort(Sq)
%irule SORT(S1) == Null(Sy)
%truleJOIN(Sy, S3) == JOIN.CONC(S7, S3)
%trule SORT(S;) == SORT-CONC(S7)
%truleRET(R;) == RET.CONC(R)

%layer MERGE
%trule JOIN(Sy, Sg) == JOPR(SORT(S7), SORT(Sz))
%irule JOPR(S, S2) == Mergejoin(51, S3)
%truleJOIN(Sy, S3) == JOIN.CONC(S7, S3)
%trule SORT(S;) == SORT-CONC(S7)
%truleRET(R;) == RET.CONC(R)

%layer DISTRIBUTION
%trule JOIN(Sy, Sg) == JOIN.CONC(XFER(S), XFER(Sz))
%iruleXFER(S1) == Ship(S1)
%irule XFER(S7) == Null(S7)
%truleJOIN(Sy, S3) == JOIN.CONC(S7, S3)
%trule SORT(S;) == SORT.CONC(S7)
%truleRET(R;) == RET.CONC(R1)

can H %]layer REPLICATION

Vol oRule Engl ne %truleRET(R;) == RET.CONC(R11)
%truleRET(R;) == RET.CONC(R13)

%layer RET

Access Plan %iruleRET(R) == Filescan(Rq)

() Schematic represerttation (b) Syntactic specification. Rule actionsare omitted

for clarity.

Figure 3: The Prairie layered optimizer paradigm

JOIN operator that will be transformed into an a gorithm by another (lower) layer.

Note that MERGE is symmetric, i.e., it exports the same set of operators that it imports. To
distinguish exported operators from imported operators in rules, Prairie requires a DBI to append
“_CONC” to an operator to refer to an imported operator. Thus, “JOIN” refers to the exported join
operator, and “JOIN_CONC” refers to the imported join operator.

3.2 Composing Layers

Asmentioned earlier, Prairieisafront-end to the Vol cano search engine[10]. DBIsspecify high-
level rule setsin Prairie, and a preprocessor (described bel ow) compacts and optimizesthis rule set
into a (low-level) form that can be efficiently processed by Volcano. The extension that we have
made to Prairieisto offer an aternativeto specifying monolithicrule sets. Instead, complex Prairie
rule sets can be generated from alinear composition of predefined layers that implement primitive
features common to many DBMSs.

Figure 3(a) presents a schematic overview of Prairie. A linear* composition of layersisfedinto

4A more general model of composition (onethat is advocated by GenVoca) isto allow nonlinear compositions of lay-
ers. Linear compositions are sufficient for most applications that we have encountered for generating rule setsfor query
optimizers.

the P2V (Prairie-to-Vol cano) preprocessor, and amonolithic (and optimized) Vol cano rule set ispro-
duced. Operator trees are then optimized by this Volcano rule set.

The Prairie syntax for specifying rulesin individual layers and specifying layer compositionsis
shown in Figure 3(b). The composition shown in this figure, for example, represents an optimizer
with the SEQUENTIAL, MERGE, SORT, and RET layers stacked in that order. (The semantics
of theselayerswill be discussed shortly; for now, we briefly describetheir operational functionality.)

Given an expression to optimize, the rule engine appliesrulesto the expression in the order that
layers are composed. Thus, rulesin alayer are applied to an expression until no further rule ap-
plications are possible; the rule engine then applies rulesin the next layer, and so on. Thus, layer
composition defines a sequence of rule sets to be applied to an expression, and it is this sequence
that defines the search space of the optimizer.

Although the semantics of layer composition can be understood as a pipeline of optimizations,
optimizing expressionsin phasesis not the most efficient implementation of layered rule sets. (Lay-
ered specifications of rule setstend to have many rules, and typically the greater the number of rules
inarule set, the longer it takes to optimize an expression.) To generate high-performance rule sets
in Vol cano requires layered specificationsto be reduced (i.e., optimized and compacted) into mono-
lithic rule sets that are suitable for Volcano execution. Thisisthe role of the P2V preprocessor. As
currently implemented, it has four key responsibilities:

o Establishing the correspondence between the various concepts of Prairie to similar ones in
Volcano. Specificaly, this means that the P2V preprocessor must translate rel ations, streams,
operators, algorithms, operator trees, access plans, and descriptors into Vol cano format.

e Trandating T-rules into Volcano transformation rules. This includes translating the actions
(testsand property transformations). Notethat because descriptorsare trand ated into Vol cano
property structures, Prairie rule actionsthat reference descriptor properties must also be trans-
lated into Vol cano rule actions that reference the appropriate Vol cano structures.

e Trandating I-rules into Volcano implementation rules. As above, thisincludestranslating an
I-rule’s actionsinto Volcano format.

e Generating a compact Vol cano rule set from a Prairie specification. This means that the P2V
preprocessor transforms alayered rul e specificationinto amonolithic rule set, removes unused
rules, and consolidatesrulesthat generate atransitive closure of operator tree transformations.
This step is not necessary for the correct generation of Volcano specifications; it is, however,
ameans of generating smaller rule sets, and consequently, faster optimizers.

Detailsare foundin [7].

A question that might ariseisthe faithfulnessof our layer compaction agorithm; that is, whether
compacted layered optimizers have the same search space as a monolithic hand-coded optimizer.
Whileit isdifficult to prove thisin aformal sense (since the rule actionsfor layered optimizers are
different from those in a monolithic optimizer because the P2V preprocessor adds additional state-
mentsto preserve the hierarchical ordering of layers), all the layered optimizersthat we constructed
resulted in exactly the same rul e set as the corresponding monolithic optimizer. Moreover, although
the corresponding rule actions are not exactly the same (sincethe P2V preprocessor adds some extra

SEQUENTIAL | SORT

JOIN(Sy, S3) ==»! JOIN(S3, S1) SORT(S;) == Merge.sort(Sy)
JOIN(JOIN(Sy, S3), 85) == JOIN(Sy, JOIN(S3, S3)) SORT(S7) == Nul(S})

JOIN(Sy, S3) == JOIN.CONC(S1, Sa) JOIN(S, S3) == JOIN.CONC(S1, Sa)
SORT(S;) == SORT.CONC(S;) SORT(S;) == SORT.CONC(S;)
RET(R;) == RET_CONC(R;) RET(R;) == RET-CONC(R;)

DISTRIBUTION |

MERGEI

/* operator XFER islocal to thislayer */
/* operator JOPRis local to this layer */ JOIN(S1, S3) == JOIN.CONC(XFER(S}), XFER(Sz))
JOIN(Sy, S3) == JOPR(SORT(S7), SORT(Sz)) XFER(S1) == Ship(S1)
JOPR(571, S2) == Mergejoin(Sy, S3) XFER(S1) == Null(S7)
JOIN(S1, S3) == JOIN.CONC(Sy, S3) JOIN(S1, S3) == JOIN.CONC(Sy, S3)
SORT(1) == SORT-CONC(S7) SORT(1) == SORT-CONC(S7)
RET(R;) == RET_CONC(R;) RET(R;) == RET_CONC(R;)

REPLICATION |

RET
RET(R;) == RET.CONC(R;;)
RET(R;) == RET_.CONC(R15) RET(R;) == Filescan(R;)

Figure4: Examplelayers. For clarity, al rule actionsare omitted. L ocal operators(i.e., those neither
exported nor imported) are identified in acomment.

statements) in the two approaches, the number of expressionsin the search spaces were exactly the
same for all the queries that we optimized using the layered optimizers and their monolithic coun-
terparts. Thislends credence to the hypothesisthat a properly specified layered optimizer is seman-
tically equivalent to a monolithic (non-layered) specification. In other words, we believe that any
monoalithic optimizer can be expressed as acomposition of layered rule sets. The questioniswhether
these layers are genera enough to be reusable. It isaways possibleto start from a monalithic rule
set and decide which rules can be encapsul ated asasinglelayer or which rulesalready existinapre-
defined layer. Once a DBI has decided on specific layer definition, the layer compaction algorithm
then compacts the layered rule set which can then be compared to the original monalithic rule set
to verify that it specifies an equivaent rule set. Our experiences suggest that it is possibleto design
genera layersthat, when composed, yield practica monalithic optimizers; any differences between
the layered specification and a desired optimizer are ignorable.

3.3 Examplesof Layered Optimizers

Thissection describes several variationsof traditional rel ational optimizersconstructed usinglayers.

3.3.1 ExamplelLayers

Some examples of layersin aPrairie specification are shownin Figure4.> Theselayers specify trans-
formations typically found in traditional relational databases. There are six different layers shown,
SEQUENTIAL, SORT, MERGE, RET, DISTRIBUTION, and REPLICATION.

The SEQUENTIAL layer encapsulates transformations that are typically found in centralized
optimizers. Join commutativity and associativity T-rules are included in this layer. The remaining
rules simply transform the abstract operators into their concrete counterparts, to be transformed by
lower layers.

The SORT layer encapsulates implementations of the SORT operator. In Figure 4, the SORT
operator is transformed to either the Merge sort or the Null algorithm. Other sort algorithms can
either beintroduced in thisor other SORT layers. The remaining rules transform abstract operators
into concrete operators.

The MERGE layer transforms the JOIN operator into the Merge_join algorithm. Other join al-
gorithms can either be encapsulated in the MERGE layer, or in a separate layer.

The DISTRIBUTION layer encapsulates the distribution of relationsin distributed databases.
It transformsthe JOIN operator such that if itsinputsare located at different sites, they arefirst trans-
fered to the home site (i.e., the site where the JOIN was issued) before the join is performed. The
XFER operator denotes the transfer of streams between sites; one agorithm that implements the
XFER operator is Ship. The Ship algorithm here is assumed to be a block transfer of streams (as
in R* [6]); other transfer strategies (e.g., tuple-at-a-time) could be defined in thisor other layers en-
capsulating rewrites of distributed query processing.

TheREPLICATION layer modelsreplicated databases. ItsimportedinterfaceisaRET operator
that simulates a centralized, non-replicated database. That is, it givestheillusion of asinglerelation
for each relation in the database. The REPLICATION layer trandates a relation reference into a
reference to one of the physical replicas of the relation. (In Figure 4, we assume each relation is
replicated twice.)

The RET layer transforms a RET operator into the File_scan algorithm. Note that there are no
other rules transforming abstract operators into other concrete operators. This means that the RET
layer is not symmetric, i.e., it exports the RET operator, but doesn’'t import any concrete operator.
This, inturn, impliesthat the RET layer, as defined, is always thelast in alayer composition.

In the following sections, we will show how these layers can be used to construct rule sets for
simple optimizers. As mentioned earlier, symmetric layers admit more composition possibilities,
since the exported and imported interfaces are the same.

3.3.2 An Optimizer for a Centralized Database

An optimizer for a centralized database is shown in Figure 5. It isformed by the composition SE-
QUENTIAL [MERGE [SORT [RET]]]- The SEQUENTIAL layer appliesthe join associativ-
ity and commutativity T-rulesto ajoin expression. Thejoinsof thisexpression are then transformed
into the Merge_join algorithm by the MERGE layer. The SORT layer then transforms the SORT
operator into the Merge_sort algorithm, and finally the RET layer transformsthe RET operator into
the File_scan agorithm. An example of such a transformation is shown in Figure 5. (Horizontal

SFor clarity, we omit all rule actionsin the descriptions of these layers.

10

SEQUENTIAL | JOIN
VRN
RET RET
l [
JOIN(Sy, S3) == JOIN(Sa, S1)
JOIN(IOIN(51, 52), 53) =5 JOIN(S1, JOIN(Ss, 5a)) dept emp
JOIN(S1, S2) == JOIN.CONC(S1, Sa)
SORT(S) == SORT.CONC(S1) SORT
RET(R;) == RET.CONC(R;) I
JOIN
VRN
MERGE | RET RET
I I
/* operator JOPR islocal to thislayer */ emp dept

JOIN(Sy, S3) == JOPR(SORT(S;), SORT(S5))
JOPR(51, S3) == Mergejoin(Sy, Sa)

JOIN(Sy, S3) == JOIN.CONC(S1, Sa)
SORT(S1) == SORT.CONC(S}) SORT
RET(R;) == RET.CONC(R;) |

Mergejoin
SORT /N
RET RET
| |
em|
SORT(S1) == Merge_sort(Sy) P dept
SORT(S;) == Null(Sy)
Jom(sll, S5) == JOI;\I_CONC(SL 55) Merge_sort
SORT(S;) == SORT_CONC(S}) .
RET(R;) == RET_CONC(R;) Mergejoin
/7 N\
RET RET
RET I |
emp dept
RET(R;) == Filescan(Rq)
Merge_sort
1
Mergejoin
VAN

File_scan File_scan
| |
emp dept

Figure 5: An optimizer for a centralized database and an exampl e transformation

lines separate the input and output operator trees for each layer.) Note that each of the layers has
“dummy” T-rules that transform abstract operators into concrete operators. Thus, for instance, the
SEQUENTIAL layer can either apply the join commutativity rule to ajoin expression, or pass the
expression unchanged to the M ERGE layer. The exampletransformation showninFigure5is, thus,
one of many in the search space produced by the centralized layered optimizer.

Note that some operators (e.g., JOIN_CONC and SORT_CONC inthe SORT layer) havenoim-
plementationsin lower layers. Therulesthat generate these operators are discarded by the P2V pre-
processor for reasons to be explained later; this optimization or rule-set simplification is described
in Section 3.4.

3.3.3 An Optimizer for a Distributed Database System

A distributed database consists of relations at various sites. An optimizer for such a database must
ensure that the required relations and streams are transfered to a common site before ajoin opera-
tion can be performed. A possible layer composition that captures the semantics of arule set for a

11

distributed query optimizer is SEQUENTIAL [DISTRIBUTION [MERGE [SORT [RET]]]
]. In other words, it is obtained by adding the DISTRIBUTION layer to the centralized optimizer
in Figure 5. The SEQUENTIAL layer appliesthejoin associativity and commutativity T-rulesto a
join expression. The DISTRIBUTION layer then ensures that join streams are shipped to thejoin
site by using the Ship algorithm. The JOIN operator isthen transformed into the Merge_join ago-
rithmby theM ERGE layer. The SORT layer then transformsthe SORT operator intothe Merge_sort
algorithm, and finally the RET layer transforms the RET operator into the File_scan a gorithm.

3.34 An Optimizer for a Replicated Database

An optimizer specification for areplicated DBMS is abtained from the centralized optimizer in Fig-
ure 5 by insertingthe REPLICATION layer to form the composition SEQUENTIAL [MERGE |
SORT [REPLICATION[RET]]]1]. TheSEQUENTIAL layer appliesthejoin associativity and
commutativity T-rulesto ajoin expression. The MERGE layer transforms the JOIN operator into
the Merge_ join agorithm. The SORT layer then transforms the SORT operator into the Merge_sort
algorithm. The REPLICATION layer transforms references to logical relationsinto their physical
replicas. Findly, the RET layer transforms the RET operator into the File_scan agorithm.

3.4 Compacting Layered Optimizers

In the previous sections, we described how | ayers can be used to define small rule setsfor optimizers,
and how theselayers can be composed to construct an optimizer. However, as seen from the example
layersin Section 3.3, even simplelayered optimizers can consist of alarge number of rules. A naive
implementation of such a specification can result in an inefficient optimizer if the implementation
contains a large number of identity transformations (i.e., an operator transformed into its concrete
counterpart). In this section, we discuss how the P2V preprocessor can be used to compact layered
specifications of rule sets to obtain a monolithic rule set.

Layers have two primary goals: to translate abstract operators into concrete ones, and to define
a hierarchy of rules (i.e., to establish rule precedence). Any compaction of layers has to preserve
the semantics of these two goals. The P2V preprocessor accomplishes both of these goals. Broadly
speaking, there are two responsibilitiesof the P2V preprocessor in compacting layers. Thefirstisto
compact the rules themselves, and the second isto ensure that the compaction of rule actions gener-
ates a semantically equivalent rule set. Below, we discuss these two steps in greater detail.

Thetranglation of abstract operators into concrete onesby alayer impliesthat thereisa one-to-
one correspondence between a concrete operator of one layer and an abstract operator of the layer
immediately below it. Thus, in the centralized optimizer of Figure 5, the JOIN_CONC operator in
the SEQUENTIAL layer correspondsto the JOIN operator in the MERGE layer. Once this corre-
spondenceis established, the P2V preprocessor can use the rule compaction techniquesdescribed in
[7] to combine all the layerstogether into a single, monolithic rule specification. The complexity of
the compaction agorithm lies primarily in the process of combining rule actions; for more details,
see[7]. For the centralized optimizer shown in Figure 5, the compaction process resultsin the layer
shownin Figure 6. It isinteresting to note that the monolithic rule set obtained by |ayer compaction
isthe same® (except for rule actions; see[7]) as onethat might have been hand-written by a DBI; the

5Note, especially, that rules (e.g., the JOIN to JOIN_CONC transformation in the M ERGE layer) that simply transform

12

SEQUENTIAL |

JOIN(S1, S3) ==! JOIN(Sz, S1)

JOIN(JOIN(Sy, S3), S3) == JOIN(S7, JOIN(Sz, S3))
JOIN(S7, S3) == JOIN.CONC(S{, S5)

SORT(S;1) == SORT.CONC(S)

RET(R;) == RET_CONC(R;)

MERGEI

/* operator JOPR islocal to thislayer */ MONOL'TH'C I

JOIN(Sy, S2) == JOPR(SORT(S1), SORT(S2))

JOPR(51, S3) == Mergejoin(Sy, Sa)

JOIN(S7, S3) == JOIN.CONC(S{, S3)

SORT(S;) == SORT.CONC(S) (JOIN (21 72)) —! (JOIN (72 71))

RET(R;) == RET.CONC(Rj) (JOIN ((JOIN (71 72)) ?3)) — (JOIN (71 (JOIN (22 73)))
(JOIN (71 72)) — (Mergejoin (71 72))
(RET () — (Filesean ()

SORT

SORT(S1) == Mergesort(S1)
SORT(S}) == Null(Sy)

JOIN(Sy, S3) == JOIN.CONC(S1, Sa)
SORT(S1) == SORT.CONC(S})
RET(R;) == RET.CONC(R;)

RET

RET(R;) == Filescan(Ry)

Figure 6: Compacting the layered centralized Prairie rule set in Figure 5. Rule actions are again
omitted for clarity.

layered specification, however, affords more degrees of extensibility and easier customizability.

Another aspect of alayered optimizer specification that must be preserved by compaction isthat
of the hierarchical nature of rules. That is, the semantics of layered rule sets (rulesin alayer applied
before rulesin alower layer) must be maintained when the layers are compacted. Thisis accom-
plished by introducing an annotation for each node in an expression that tracks the last layer that
transformed the node. Rulesin alayer abovethislast layer are not applied to the node again. Thus,
in the centralized optimizer of Figure 5, an expression that has been transformed by the MERGE
layer cannot be transformed by the SEQUENTIAL layer subsequently.

4 BenchmarkingLayered Optimizers

In the previous section, we described the compaction of layered rule set specifications to generate
monoalithicrule sets. The questionthat naturally arisesiswhether thismethod of rule set construction
(layered specification followed by compaction) resultsin slower optimization timesascompared toa
monalithic (i.e., non-layered) optimizer. In thissection, we present preliminary experimental results

abstract operatorsto concrete operators are discarded as a direct consequence of the compaction process.

13

N-way Join Queries
Average CPU Time

600 " " : :)
@@ Prairie (Layered)
JOIN & B—8 Prairie (Non-layered)
/7 '\ k= ¢—e Volcano
_ RET § 400 |
/s | B
JOIN Ry, E
VRN T
RET RET £ 200!
| | 3
Ry Ry 5

0 1 2 3 4 5 6 7 8
Number of joins

(&) N-way join benchmark query (b) Query optimization time for the centralized

DBMS optimizer (Section 3.3.2)

N-way Join Queries N-way Join Queries
Average CPU Time Average CPU Time
6000 " " " " " " 1500 ; : : . . .
©®—@ Prairie (Layered) ®—@ Prairie (Layered)
& B— Prairie (Non-layered) & B— Prairie (Non-layered)
k= ¢—e Volcano k= ¢—e Volcano
g 4000 § 1000 |
E E
g g
S 2000 S 500
o) o)
[l [l
O O
0 0 ‘ : : :
o 1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8
Number of joins Number of joins
(c) Query optimization time for the distributed (d) Query optimization time for the replicated
DBMS optimizer (Section 3.3.3) DBMS optimizer (Section 3.3.4)

Figure 7: Benchmarking layered optimizers

that demonstrate that the efficiency of an optimizer is not sacrificed.

Consider thelayered centralized optimizer shownin Figure 5. Asshownin Figure 6, thiscan be
compacted to a monolithic rule set. To verify that the efficiency of optimizers generated from lay-
ered specificationsisnot sacrificed, we conducted experimentsinvol ving opti mi zer specificationsfor
centralized, distributed, and replicated DBM Ss. Each optimizer was specified in threeways: layered
Prairie, non-layered Prairie, and hand-coded Volcano. Each resulting optimizer was benchmarked
using a set of randomly generated queries. Theresults are reported bel ow.

The experiments consi sted of optimizing left-deep N -way join operator trees, for varying values
of NV, asshown in Figure 7(a). Random queries were generated using a uniform random number
generator. The set of relations, along withtheir attributes, cardinalities, and record widthswasfixed.
The order of relations in the left-deep tree was varied. Each join had a single equijoin predicate,
with the two join attributes chosen at random from the set of digibleattributesof the outer and inner

14

streams. For the distributed DBMSS optimizer, we simulated a database with four sites; each relation
was randomly assigned to a site. For the replicated DBMS, each relation had two replicas; each
replicawas assumed to be sorted on different attributes.

For each value N of the number of joins, we generated 10 different queries,” and optimized each
guery using optimizers generated from three different specifications: layered Prairie, non-layered
Prairie, and hand-coded Volcano. Therun timeswere measured usingthe GNU t i me command, and
averaged over the 10 queries to generate the per-query optimization time. Each point in the graph,
thus, represents the average CPU time for optimizing the queries. All experiments were performed
on alightly loaded DECstation 5000/200 running Ultrix 4.2.

Theoptimizationtimesfor thelayered Prairie, non-layered Prairie, and hand-coded Vol cano opti-
mizersareshowninFigures7(b), 7(c), and 7(d) for the centralized, distributed, and replicated DBM S
optimizers described earlier, respectively. In each case, we can see that the three specifications are
virtually equally efficient, supporting the hypothesis that compacted layered rule sets need not sac-
rifice any performance. More experiments are needed, however, to verify that the performance is
good when scaled to compositions of a large number of layers (i.e., compositions of 10-20 layers
[4]).

Another metric useful in measuring the benefits of layered rule set specificationsisthe ease with
whichthey can betailored to different applications. In thiscase, thelayered approachisvery helpful
because it helpsa DBI to clearly see the effects of any change on the search space of an optimizer.
For instance, the Open OODB optimizer [5] resultsin an extremely large search space for certain
gueries. If it wereimplemented using layers, then the DBI could more easily experiment with adding
new rules and layers in various configurations. It isin this respect that we believe that the layered
approach will yield the most productivity gains.

5 Related Work

Optimizer design and implementation using pre-defined buil ding-bl ockshas been proposed by other
researchers. All follow arule-based paradigm. In this section, we briefly review some of these ap-
proaches. With notable exceptions (e.g., Starburst and Open OODB), the main problem with these
approachesisthat they are paper designs, so it is not immediately clear how well they might work.
Moreover, from our work, it would seem to be important in al such building-block approaches that
there should be acompiler that can generate efficient, compact rule sets from specifications of com-
ponent compositions. None of the proposals discussed in this section (except, again, for Starburst
and Open OODB) describe how that is done, or even if it is possible.

Starburst [15] is an optimizer that uses functiona rules to allow DBIs to specify transforma-
tions of user-queries. It hastwo phases. The query rewrite phase generates a search space for the
optimizer based on heuristic, non-cost-based transformations. Thisis followed by the optimization
phase that uses cost-based rules to transform operator trees into access plans. This suggestsaform
of component-based optimization, but has the drawback that the goals, number, and order of thetwo
phases are not changeabl e by the DBI. Moreover, there are limitations on the types of rulesthat can
occur in each phase; for example, cost computations are not permitted in the rewrite phase.

"We chose 10 instead of a larger number since the average run time was not substantially different for more queries.

15

Starburst and Open OODB [5] do not provideaframework for DBI-defined componentsthat can
be composed to generate arule set. The result is that rule sets in current optimizers defined using
these model's are monolithic consisting of a large number of rules. For example, the Open OODB
optimizer [5] contains 26 rewrite rules without any mechanism to define more manageable rule set
modul arizations. Theresult isacumbersome rule specification scheme that ishighly error-proneand
hard to modify in a streamlined manner. Without a mechanism to add or remove sets of rules and
automatically generate new rule sets quickly, such systems are extremely limited in the scope and
speed of customization.

Sciore and Sieg [18] describe an optimizer generator model that allowsaDBI to construct arule-
based optimizer using modules. Each module consists of term rewrite rules (with conditions) to
transform terms in arelationa algebra. Each module has exported and imported interfaces which
consist of terms.

Eachmodulein Sciore and Sieg’'sframework isallowed to haverewriterulesinitsownrelational
algebra. A module can aso specify its search space, cost model, individual search strategy (e.g.,
heuristic, exhaustive, simulated annealing, etc.), termination policy, and rule properties (e.g., rule
prioritiesthat definethe order inwhich rulesare applied in each module). Thereare also knobsthat a
DBI can set before optimizationstarts. Theseknobsare essentially initialization stepsthat set various
parameters of amodule.

An optimizer isconstructed by stacking various modul estogether. The order of modul esdefines
the order of term rewrite rules that are applied to aterm. A module can reguest another to optimize
aterm and return its results. Thus, communication between modulesis bi-directional.

In theory, Sciore and Sieg propose a very general framework for optimizer design. However,
since this model has not been implemented (to our knowledge), it is unclear whether this approach
isused as an interpreter (thus degrading performance), or to generate a monolithic optimizer. The
algorithmfor thelatter is not described, so the performance of the resulting optimizer is hard to pre-
dict. Also, it isnot evident whether the general nature of the framework makes it hard and difficult
to use.

Mitchell, Dayal, and Zdonik [16, 17] propose aframework called Epoqg in which optimizers are
constructed using extensibleregions. A region is defined by a stated goal (e.g., lower cost, join re-
order, etc.). Each region defines a control strategy that transforms a query into alternative forms
based oniitsinterna transformation rules. A region can also call a child region to transform a sub-
guery. In thisapproach, an optimizer is specified as a rooted, directed, acyclic graph of regions.

Theroot region isresponsiblefor optimizing a user query. A parent region controlswhich of its
childregionstransformsaquery. Thus, theexpansion of the search space dependsontwo factors: the
internal transformations of aregion, and the parent’s determination of the most appropriate region
(based on its stated goal) to effect a transformation.

The transformation rules in a region consist of applicability conditions together with a test to
check whether atransformed query meets the region’s stated goal. If not, then transformation rules
areapplied repeatedly (perhaps based on someheuristic) until either thegoal issatisfied, or theregion
fails and returnsto its parent.

Asin the Sciore and Sieg approach, the model proposed by Mitchell, Dayal, and Zdonik has not
been implemented. Thus, it is not clear whether such a general framework can generate optimizers
that are efficient and that encompass a large domain of commonly available optimizers. It isaso

16

not clear whether the interaction between regions can be expressed in a compact framework so that
regions can be reused in various optimizer configurations.

6 Conclusion and Future Work

Current rule-based query optimizers do not provide a very intuitive and conceptually streamlined
framework to define rulesand actions. Our experienceswith the Vol cano optimizer generator suggest
that itsmodel of rules and the expression of these rulesis much more complicated and too low-level
than it needs to be. As a conseguence, rule sets in Volcano are fragile, hard to write, and debug.
Similar problems may exist in other contemporary rule-based query optimizers.

In this paper, we presented a general approach to constructing optimizers using pre-fabricated
components (layers). We also presented preliminary experimenta evidence from simplelayered op-
timizers that demonstrate that optimizer performance is not sacrificed by using reusable and exten-
sible layers. More experiments are necessary to validate conclusively that a layered optimizer can
be just as efficient as (and more extensible than) monoalithic optimizers. Our primary god in this
paper was to quickly design and implement a practical framework for specifying layered optimiz-
ers. Future work can add more generdity to this approach. An important goa isto use Prairie to
automatically generate efficient optimizersin P2 [3, 4].

We believe that rule-based query optimizers will be standard tools of future database systems.
The pragmatic difficulties of using conventional rule-based optimizersled usto develop Prairie and
its philosophy of using small, well-defined building-blocksfor rule set specification. Thisresultsin
severa improvements over existing rule-based optimizers:

1. it offers a conceptually more streamlined model for rule specification;
2. optimizer specification and generation is simplified;
3. and it has efficient implementations.

The primary motivation behind Prairie's building-blockstechnology isto make the process of opti-
mizer construction as automated, simple, and error-proof as possible. Our experiences suggest that
Prairie isavery useful step in that direction. These advantages greatly enhance optimizer extensi-
bility and make rule setslessbrittle. A consequenceisthat Prairie rulesare simpler and more robust
than rules of existing optimizers (e.g., Volcano).

Our futurework will concentrate on generalizing thelayer paradigm to alow non-linear compo-
sitionsand the generation of non-relational (e.g., object-oriented) DBMS optimizers.

References

[1] Don Batory and Bart Geraci. Validating component compositionsin software system genera-
tors. Technical Report TR 95-03, The University of Texas at Austin, 1995.

[2] Don Batory and Sean O’ Malley. The design and implementation of hierarchical software sys-
tems with reusable components. ACM Transactions on Software Engineering and Methodol -
ogy, 1(4):355-398, October 1992.

17

[3] Don Batory, Vivek Singha, Marty Sirkin, and Jeff Thomas. Scalable software libraries. In
Proceedings 1993 ACM S GSOFT Conference, pages 191-199, L os Angeles, December 1993.

[4] Don Batory, Vivek Singhal, Jeff Thomas, Sankar Dasari, Bart Geraci, and Marty Sirkin. The
GenVocamodel of software-system generators. |EEE Software, 11(5):89-94, September 1994.

[5] Jost A. Blakeley, William J. McKenna, and Goetz Graefe. Experiences building the Open
OODB query optimizer. 1n Proceedings 1993 ACM SIGMOD International Conference on
Management of Data, pages 287—296, Washington, May 1993.

[6] Dean Daniels, Pat Selinger, Laura Haas, Bruce Lindsay, C. Mohan, Adrian Walker, and Paul
Wilms. An introduction to distributed query compilationin R*. In Proceedings 2nd Interna-
tional Conference on Distributed Databases, pages 291-309, Berlin, September 1982.

[7] Dinesh Das. Making Database Optimizers More Extensible. PhD thesis, The University of
Texas at Austin, 1995.

[8] Dinesh Das and Don Batory. Prairie: A rule specification framework for query optimizers.
In Proceedings 11th International Conference on Data Engineering, pages 201-210, Taipei,
March 1995.

[9] Johann Christoph Freytag. A rule-based view of query optimization. In Proceedings1987 ACM
SIGMOD International Conference on Management of Data, pages 173—180, San Francisco,
May 1987.

[10] Goetz Graefe. Volcano, an extensibleand parallel query evaluation system. Technical Report
CU—-CS-481-90, University of Colorado at Boulder, July 1990.

[11] Goetz Graefe. Query evaluation techniques for large databases. ACM Computing Surveys,
25(2):73-170, June 1993.

[12] Goetz Graefe and David J. DeWitt. The EXODUS optimizer generator. In Proceedings 1987
ACM S GMOD International Conference on Management of Data, pages 387—394, San Fran-
cisco, May 1987.

[13] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh. Extensible query processing in
Starburst. Research Report RJ 6610, IBM Almaden Research Center, December 1988.

[14] WonKim, David S. Reiner, and Don S. Batory, editors. Query Processing in Database Systems.
Springer-Verlag, 1985.

[15] Guy M. Lohman. Grammar-like functional rules for representing query optimization aterna-
tives. In Proceedings 1988 ACM S GMOD International Conference on Management of Data,
pages 18-27, Chicago, June 1988.

[16] Gail Mitchell, Umeshwar Dayal, and Stanley B. Zdonik. Control of an extensible query op-
timizer: A planning-based approach. In Proceedings 19th International Conference on Very
Large Data Bases, pages 517-528, Dublin, August 1993.

18

[17] Gail Mitchell, Stanley B. Zdonik, and Umeshwar Dayal. An architecture for query processing
in persistent object stores. In Proceedings of the Hawaii Inter national Conference on System
Sciences, volumell, pages 787—798, January 1992.

[18] Edward Sciore and John Sieg, Jr. A modular query optimizer generator. In Proceedings 6th
International Conference on Data Engineering, pages 146—153, Los Angeles, February 1990.

[19] C.T.YuandC. C. Chang. Distributed query processing. ACM Computing Surveys, 16(4):399—
433, December 1984.

19

