
A Multiframe Model for Real-Time Tasks �Aloysius K. Mok, Deji ChenDepartment of Computer SciencesUniversity of Texas at AustinAustin, TX 78712fmok,cdjg@cs.utexas.eduAbstractThe well-known periodic task model of Liu and Layland [1] assumes a worst-case executiontime bound for every task and may be too pessimistic if the worst-case execution time of atask is much longer than the average. In this paper, we give a multiframe real-time task modelwhich allows the execution time of a task to vary from one instance to another by specifying theexecution time of a task in terms of a sequence of numbers. We investigate the schedulabilityproblem for this model for the preemptive �xed priority scheduling policy. We show that asigni�cant improvement in the utilization bound can be established in our model.
�This work is supported by a grant from the O�ce of Naval Research under grant number N00014-94-1-0582.1

1 INTRODUCTION 21 IntroductionThe well-known periodic task model by Liu and Layland(L&L) [1] assumes a worst-case executiontime bound for every task. While this is a reasonable assumption for process-control-type real-timeapplications, it may be overly conservative [4] for situations where the average-case executiontime of a task is signi�cantly smaller than that of the worst-case. In the case where it is criticalto ensure the completion of a task before its deadline, the worst-case execution time is used atthe price of excess capacity. Other approaches have been considered to make better use of systemresources when there is substantial excess capacity. For example, many algorithms have been devel-oped to schedule best-e�ort tasks for resources unused by hard-real-time periodic tasks; aperiodictask scheduling has been studied extensively and di�erent aperiodic server algorithms have beendeveloped to schedule them together with periodic tasks [6, 7, 8, 9]. In [10], etc., the imprecisecomputation model is used when a system cannot schedule all the desired computation. We havealso investigated an adaptive scheduling model where the timing parameters of a real-time task maybe parameterized [3]. However, none of the work mentioned above addresses the scheduleability ofreal-time tasks when the execution time of a task may vary greatly but follows a known pattern.In this paper, we propose a multiframe task model which takes into account such execution timepatterns; we shall show that better schedulability bounds can be obtained.In the multiframe model, the execution time of a task is speci�ed by a �nite list of numbers. Byrepeating this list, a periodic sequence of numbers is generated such that the execution time of eachinstance (frame or job) of the task is bounded above by the corresponding number in the periodicsequence. Consider the following example. Suppose a computer system is used to track vehicles byregistering the status of every vehicle every 3 time units. To get the complete picture, the computertakes 3 time units to perform the tracking execution, i.e., the computer is 100% utilized. Supposein addition, the computer is required to execute some routine task which takes 1 time unit andthe task is to be executed every 5 time units. Obviously, the computer cannot handle both tasks.

1 INTRODUCTION 30 5 10 15 20 25 30Routine:Tracking: Figure 1: Schedule of the Vehicle Tracking SystemHowever, if the tracking task can be relaxed so that it requires only 1 time unit to execute everyother period, then the computer should be able to perform both the tracking and routine tasks (seethe timing diagram in �gure 1).This solution cannot be obtained by the L&L model since the worst-case execution time of thetracking task is 3, so that the periodic task set in the L&L model is given by f(3; 3); (1; 5)g (the �rstcomponent in a pair is the execution time and the second the period). This task set has utilizationfactor of 1:2 and is thus unscheduleable. Also notice that we cannot replace the tracking task by apair of periodic tasks f(3; 6); (1; 6)g since a scheduler may defer the execution of the (3; 6) task sothat its �rst execution extends past the interval [0,3], while in fact it must be �nished by time=3.In this paper, we shall investigate the schedulability of tasks for our multiframe task modelunder the preemptive �xed priority scheduling policy. For generality, we allow tasks to be sporadicinstead of periodic. A sporadic task is one whose requests may not occur periodically but there isa minimum separation between any two successive requests from the same task. A periodic taskis the limiting case of a sporadic task whose requests arrive at the maximum allowable rate. Weshall establish the utilization bounds for our model which will be shown to subsume the L&L result[1]. To obtain these results, however, we require the execution times of the multiframe tasks tosatisfy a fairly liberal constraint. It will be seen that the schedulability bounds can be improvedsubstantially if there is a large variance between the peak and non-peak execution time of a task.Using the multiframe model, we can safely admit more real-time tasks than the L&L model.The paper is organized as follows. Section 2 presents our multiframe real-time task model,

2 THE MULTIFRAME TASK MODEL 4de�nes some terminology, and prove some basic results about scheduling multiframe tasks. Section3 investigates the schedulability bound of the �xed priority scheduler for the multiframe model.Section 4 is the conclusion.2 The Multiframe Task ModelFor the rest of the paper, we shall assume that time values have the domain the set of non-negativereal numbers. All timing parameters in the following de�nitions are non-negative real numbers.We remark that all our results will still hold if the domain of time is the non-negative integers.De�nition 1 A multiframe real-time task is a tuple (�; P), where � is an array of N executiontimes (C0; C2; : : : ; CN�1) for some N � 1, and P is the minimum separation time, i.e., the readytimes of two consecutive frames (requests) must be at least P time units apart. The execution timeof the ith frame of the task is C((i�1) mod N), where 1 � i. The deadline of each frame is P afterits ready time.For example, T1 = ((2; 1); 2) is a multiframe task with a minimum separation time of 2. Itsexecution time alternates between 2 and 1. When the separation between two consecutive readytimes is always P and the ready time of the �rst frame of a task is at time=0, the task reduces toa periodic task.In the proofs to follow, we shall often associate a multiframe task whose � has only one element(i.e., N=1) with a periodic task in the L&L model which has the same execution time and whoseperiod is the same as the minimum separation of the multiframe task. For example, task T1 =((1); 5) has only one execution time and its corresponding L&L task is (1; 5). We shall call aperiodic task in the L&L model an L&L task, and whenever there is no confusion, we shall call amultiframe task simply a task.Consider a task T = ((C0; C1; : : : ; CN�1); P) which has more than one execution time. LetCm = maxN�1i=0 Ci. We shall call Cm the peak execution time of task T . We shall call the pair

2 THE MULTIFRAME TASK MODEL 5(Cm; P) the corresponding L&L task of the multiframe task T .De�nition 2For a set S of n tasks fT1; T2; : : : ; Tng:We call Um = �ni=1Cmi =Pi, the peak utilization factor of S.We call Uv = �ni=1((�N�1j=0 Cji)=(Ni � Pi)), the maximum average utilization factor of S:Given a scheduling policy A, we call UmA the utilization bound of A if for any task set S, S isscheduleable by A whenever Um � UmA ,We note that Um is also the utilization factor of S's corresponding L&L task set.Example 1 Consider the task set S = fT1; T2g = f((3; 1); 3); ((1); 5)g. Its corresponding L&L taskset S0isfT 01; T 02g = f(3; 3); (1; 5)g. The peak utilization factor of S is Um = 1:2. The maximumaverage utilization factor of S is Uv = 0:867.A pessimistic way to analyze the scheduleability of a multiframe task set is to consider theschedulability of its corresponding L&L task set. This, however, may result in rejecting many tasksets which actually are scheduleable. For example, the task set in Example 1 will be rejected if weuse the L&L model, whereas it is actually scheduleable by a �xed priority scheduler under RMA(Rate Monotonic Assignment), as we shall show later.De�nition 3 With respect to a scheduling policy A, a task set is said to be fully utilizing theprocessor if it is scheduleable by A, but increasing the execution time of any frame of any task willresult in the modi�ed task set being unscheduleable by A.We note that UmA is the greatest lower bound of all fully utilizing task sets with respect to thescheduling policy A.Lemma 1 For any scheduling policy A, UmA � 1.

2 THE MULTIFRAME TASK MODEL 6Proof. We shall prove this by contradiction. Suppose there is an UmA larger than 1, we arbitrarilyform a task set S = f(�1; P); (�2; P); : : : ; (�n; P)g with �ni=1Cmi =P = UmA where Cmi is the peakexecution time of Ti. So we have �ni=1Cmi > P . When the peak frames of all the tasks start at thesame time, they cannot be all �nished within P by any scheduler, which violates the de�nition ofUmA . So UmA cannot exceed 1. QED.Lemma 2 Suppose A is a scheduling policy which can be used to schedule both multiframe andL&L task sets. Let the utilization bound of A be UmA for multiframe task sets. Let the utilizationbound of A for the corresponding L&L task sets be U cA. Then UmA � U cA.Proof. Proof is by contradiction. Consider a task set S of size n. Suppose Um � U cA and the setis unscheduleable. Its corresponding L&L task set S 0 has the same utilization factor as Um. S 0 isscheduleable.Suppose the ith frame of task Tj miss its deadline at time tj . For every task Tk; 1 � k � n,locate the time point tk which is the ready time of the latest frame of Tk such that tk � tj . Wetransform the ready time pattern as follows. In the interval from 0 to tk , we push the ready timesof all frames toward tk so that the separation times of all consecutive frames are all equal to Pk.We now set all execution times to be the peak execution time. If tj � tk > Pk for some k, we addmore peak frames of Tk at its maximum rate in the interval between tk and tj . The transformedready time pattern is at least as stringent as the original case. So the ith frame of Tj still missesits deadline. However, the transformed case is actually a ready time pattern of S 0 which should bescheduleable, hence a contradiction QED.Is the inequality in Lemma 2 strict? Intuitively, if Um of a task set is larger than U cA and thereis not much frame-by-frame variance in the execution times of the tasks in the set, then the task setis unlikely to be scheduleable. However, if the variance is su�ciently big, then the same schedulingpolicy will admit more tasks. This can be quanti�ed by determining the utilization bound for ourtask model. We shall show how to establish an exact bound if the execution times of the tasks

3 FIXED PRIORITY SCHEDULING 7satisfy a rather liberal restriction.De�nition 4 Let Cm be the maximum in an array of execution times (C0; C1; : : : ; CN�1). Thisarray is said to be AM (Accumulatively Monotonic) if �m+jk=mC(k mod N) � �i+jk=iC(k mod N), 1 � i �N � 1, 1 � j < N � 1. A task T = f(C0; C1; : : : ; CN�1); P)g is said to be AM if its array ofexecution times is AM.Intuitively, an AM task is a task whose total execution time for any sequence of L � 1 framesis the largest among all size-L frame sequences when the �rst frame in the sequence is the framewith the peak execution time. For instance, all tasks in Example 1 are AM. We note that tasks inmultimedia applications usually satisfy this restriction.In the following section, we assume that all tasks satisfy the AM property. It will be seen thatwithout loss of generality, we can assume that the �rst component of the array of execution timeof every task is its peak execution time, i.e., Cm=C03 Fixed Priority SchedulingIn this section, we shall show that, for the preemptive �xed-priority scheduling policy, the mul-tiframe task model does have a higher utilization bound than the L&L model if we consider theexecution time variance explicitly. The utilization bound for the L&L model is given by the follow-ing theorem in the much cited paper [1].Theorem 1 (Theorem 5 from [1]) For L&L task sets of size n, the utilization bound of thepreemptive �xed priority schuduling policy is n(21=n � 1).De�nition 5 The critical instance of a multiframe task is the period when its peak execution timeis requested simultaneously with the peak execution times of all higher priority tasks, and all higherpriority tasks request execution at the maximum rate.

3 FIXED PRIORITY SCHEDULING 8Theorem 2 For the preemptive �xed priority scheduling policy, a multiframe task is scheduleableif it is scheduleable in its critical instance.Proof. Suppose a task Tk = (�k; Pk) is scheduleable in its critical instance. We shall prove thatall its frames are scheduleable regardless of their ready times.First, we prove that the �rst frame of Tk is scheduleable. Let Tk be ready at time t and its �rstframe �nishes at tend. We trace backward in time from time=t to locate a point t0 when none ofthe higher priority tasks was being executed. t0 always exists, since at time 0 no task is scheduled.Let us pretend that Tk's �rst frame becomes ready at time t0. It will still �nish at time tend . Nowlet us shift the ready time pattern of each higher priority task such that its frame which becomesready after t0 now becomes ready at t0. This will only postpone the �nish time of Tk's �rst frameto a point no earlier than tend , say t0end. In other words, Tend � t0end . Then for each higher prioritytask, we shift the ready time of every frame after t0 toward time=0, so that the separation betweentwo consecutive frames is always the minimum separation time. This will further postpone the�nish time of Tk's �rst frame to no earlier than T 0end, say T 00end. In other words, t0end � t00end. Now,we shift all higher priority tasks by by frames until the peak frame starts at t0. Since �k is AM,this shifting has the e�ect of postponing the �nish time of Tk to t000end , t00end � t000end. By construction,the resulting request pattern is the critical instance for Tk. Since T is scheduleable in its criticalinstance, we have t000end � t0 � Pk , so tend � t � Pk , which means Tk's �rst frame is scheduleable.Next, we prove that all other frames of Tk are also scheduleable. This is done by induction.Induction base case: The �rst frame of Tk is scheduleable.Induction step: Suppose �rst i frames of Tk are scheduleable. Let us consider the (i+1)th frameand apply the same argument as before. Suppose that this frame starts at time t and �nishes attend. Again, we trace backward from t along the time line until we hit a point t0 when no higherpriority tasks is being executed. t0 always exists, since no higher priority task is being executedat the �nish time of the ith frame. Let the (i + 1)th frame start at time t0. It will still �nishat time tend. Now shift the requests of each higher priority task such that its frame which starts

3 FIXED PRIORITY SCHEDULING 9after t0 now starts at t0. This will only postpone the �nish time of Tk's (i+ 1)th frame to a pointin time no earlier than tend , say t0end where tend � t0end. Then for each higher priority task, weshift the ready time of every frame after t0 toward time=0 so that the separation time betweenany two consecutive frames is always the minimum separation time of the task. This will furtherpostpone the �nish time of Tk's (i+ 1)th frame to no earlier than T 0end, say T 00end. In other words,t0end � t00end. Now for all higher priority tasks, we shift them by frames until the peak frames startat t0. Again, since � is AM, this further postpones the �nish time of Tk's (i + 1)th frame to t000endwhere t00end � t000end. This last case is actually the critical instance for Tk. Since Tk is scheduleable inits critical instance, we have t000end � t0 � Pk, so tend � t � Pk , which means Tk's (i+ 1)th frame isalso scheduleable. We have thus proved the theorem. QED.We shall say that a task passes its critical instance test if it is scheduleable in its critical instance.Corollary 1 A task set is scheduleable by a �xed priority scheduler if all its tasks pass the criticalinstance test.From now on, we can assume, without loss of generality that C0 is the peak execution time ofa task without a�ecting the schedulability of the task set. This is because we can always replacea task T whose peek execution time is not in the �rst frame by one whose execution time array isobtained by rotating T 's array so that the peek execution time is C0. From the argument in theproof of theorem 2, it is clear that such a task replacement does not a�ect the result of the criticalinstance test.Example 2 Task set f((2; 1); 3); ((3); 7)g is scheduleable under rate-monotonic assignment. Um =2=3 + 3=7 = 1:095; Uv = 0:929. Both tasks pass their critical instance test. However, its corre-sponding L&L task set f(2; 3); (3; 7)g is unscheduleable under any �xed priority assignment.Example 3 The L&L task set f(3; 3); (1; 5)g with utilization factor 1:2 is obviously unscheduleableby any scheduling policy. However, if the requirement of the �rst task is relaxed such that every

3 FIXED PRIORITY SCHEDULING 10other frame needs only 1 time unit, the task set becomes scheduleable by RMA. This is becausethe relaxed case is given by the multiframe task set f((3; 1); 3); ((1); 5)g which passes the criticalinstance test.We remark that the Example 3 above speci�es the vehicle tracking system mentioned atthe beginning of this paper. From the above argument, we can now establish its schedulability.These examples also show that even if the total peak utilization exceeds 1, a task set may still beschedulable. Of course, the average utilization must not be larger than 1 for scheduleability.The complexity of the scheduleability test based on Corollary 1 is O(P), where P is the biggestperiod.Theorem 3 If a feasible priority assignment exists for some multiframe task set, the rate-monotonicpriority assignment is feasible for that task set.Proof. Suppose a feasible priority assignment exists for a task set. Let Ti and Tj be two tasksof adjacent priority in such an assignment with Ti being the higher priority one. Suppose thatPi > Pj . Let us interchange the priorities of Ti and Tj. It is not di�cult to see that the resultantpriority assignment is still feasible by checking the critical instances. The rate-monotonic priorityassignment can be obtained from any priority ordering by a �nite sequence of pairwise priorityreordering as above. QED.To compute the utilization bound, we need the following lemma.De�nition 6 Let 	(n; �) denote the minimum of the expression �n�1i=1 (Pi+1 � Pi)=Pi + (� � P1 �Pn)=Pn, subject to the constraint: P1 � ::: � Pn � � � P1 and 1 < � � 2.Lemma 3 	(n; �) = n � (�1=n � 1):Proof. With the substitution xi = log2 Pi+1Pi where 1 � i < n; xn = log2 �P1Pn , we can compute	(n; �) by:

3 FIXED PRIORITY SCHEDULING 11minimize �ni=1(2xi � 1) subject to xi � 0 and �ni=1xi = log2 �:This is a strictly convex problem. There is a unique critical point which is the absolute minimum.The symmetry of the minimization problem in its variables means that all xi's are equal in thesolution. So we have xi = (log2 �)=n. So 	(n; �) = �ni=1(2xi � 1) = �ni=1(2(log2 �)=n � 1) =n � (�1=n � 1). QED.De�nition 7 A task set is said to be extremely utilizing the processor if it is scheduleable butincreasing peak execution time of the lowest priority task by any amount will result in a task setwhich is unscheduleable.We shall use U e to denote the greatest lower bound of all extremely utilizing task sets.It is important to note the distinction between fully utilizing and extremely utilizing task sets.It is crucial to the proof of Lemma 4 and Lemma 5.Lemma 4 Consider all task sets of size n satisfying the restriction P1 < P2 < ::: < Pn < 2 � P1.Let r = minni=1(C0i =C1i). Then U e = r � n � ((r+1r)1=n � 1).Proof. From Theorem 2 and Theorem 3, we only need to consider the case where all tasksstart at time 0 and request at their maximum rates thereafter. We can use rate-monotonic priorityassignment and check for scheduleability in the interval from time 0 to Pn. Since P1 < P2 < ::: <Pn < 2 � P1, we know that only C0 and C1 are involved in all the critical instance tests.First, the utilization bound corresponds to the case where every C0=C1 equals r, since we canincrease C1 without changing Um. And increasing C1 will only take more CPU time. So in thefollowing proof we assume that all the ratios are equal to r.For any scheduleable and extremely utilizing task set S with Um = U e, we shall prove fourclaims.Claim 1: The second request of Ti; 1 � i < n must be �nished before Pn.

3 FIXED PRIORITY SCHEDULING 12Suppose � of C1i is scheduled after Pn, we can derive a new task set S 0 by only changing thefollowing execution times of Ti and Tn, C00i = C0i � � � rC01i = C1i � �C00n = C0n + � � rC01n = C1n + �and arbitrarily reducing other execution times of Ti to maintain the AM property of the executiontime arrays. It is easy to show that S0 is schedulable and also extremely utilizes the processor.U 0m = Um + (C 00i � C0i)=Pi + (C 00n � C0n)=Pn= Um + � � r � (1=Pn � 1=Pi)< Um= U eThis contradicts the assumption that U e is the minimum of all extremely utilizing task set. Sothe second request of any Ti 1 � i < n should be completed before Pn.Claim 2: If Pi < (rr+1)Pn, then C0i = 0If Cmi 6= 0, we can derive a new task set S 0 by only changing the following execution times of Tiand Tn, and arbitrarily reducing other execution times of Ti to maintain the AM property of theexecution time arrays. C 00i = 0C 01i = 0C 00n = C0n + C1i � (r+ 1)C 01n = C1n + C1i � (r+ 1)=r

3 FIXED PRIORITY SCHEDULING 13It is easy to check that S0 is scheduleable and also extremely utilizes the processor.U 0m = Um + (C00i � C0i)=Pi + (C00n � C0n)=Pn= Um + (Pi � (rr+ 1))Pn) � C1i =((r+ 1) � Pi � Pn)< Um= U eThis contradicts the assumption that U e is the minimum. So C0i = 0.Claim 3: If Pi > (rr+1)Pn, then C0n should be �nished before Pi.Instead of proving claim 3, we prove the following equivalent claim:Consider an extreme utilizing task set S satisfying claim 1 and claim 2. If the last part of C0n�nishes between Pi and Pi+1, and Pi > (rr+1)Pn, then S does not correspond to the minimal case.As in claim 2, we can derive a new task set S 0 by only changing the following execution timesof Ti and Tn, and arbitrarily reducing other execution times of Tn to maintain the AM property ofthe execution time arrays. C00i = C0i + r � �=(r + 1)C01i = C1i + �=(r+ 1)C00n = C0n � �C01n = C1n � �=rSuppose Pj is the smallest value satisfying Pj < (rr+1)Pn. Pj � Pi. According to claim 1 andclaim 2, the second requests of all tasks other than Tn are scheduled between Pj and Pn. SincePn � Pj < Pj , we know the �rst requests of all tasks other than Tn are all scheduled before Pj .Since S extremely utilizes the CPU, we know that the part of Cn scheduled before Pj is largerthan that scheduled after Pj . This guarantees that the new task set S 0 is still scheduleable andextremely utilizes the CPU.

3 FIXED PRIORITY SCHEDULING 14U 0m = Um + (C 00i � C0i)=Pi + (C 00n � C0n)=Pn= Um + �((rr+ 1)Pn � Pi)=(Pi � Pn)< Um= U eHence, the task set S cannot be the minimal case. This establishes claim 3.Claim 4: If Pi > (rr+1)Pn, then the second request of Ti; i < n should be completed exactlyat time Pi+1.If the second request of Ti; 1 � i < n completes ahead of Pi+1, the processor will idle betweenits completion time and Pi+1, which shows S does not extremely utilize processor. So this cannotbe true.If � of the second request of Ti; i < n completes after Pi+1, we can derive a new task set S 0 byonly changing the following execution times of Ti and Ti+1, and arbitrarily reducing other executiontimes of Ti to maintain the AM property of the execution time arrays.C00i = C0i � r � �C01i = C1i � �C 00i+1 = C0i+1 + r � �C 01i+1 = C1i+1 + �Again it is easy to check that S0 is schedulable and also extremely utilizes the process.U 0m = Um + (C 00i � C0i)=Pi + (C 00i+1 � C0i+1)=Pi+1= Um + r � � � (1=Pi+1 � 1=Pi)< Um= U e

3 FIXED PRIORITY SCHEDULING 15This contradicts the assumption that U e is the minimum.So the second request of Ti; i < n should be completed exactly at time Ti+1.From these four claims and Lemma 3, we can conclude:U e = minnk=1(r �	(k; r+1r)) = r �	(n; r+1r) = r � n � ((r+1r)1=n � 1). QEDLemma 5 Let r = minni=1(C0i =C1i). For task sets of size n, U e = r � n � ((r+1r)1=n � 1).Proof. Again, we assume all C0=C1 equals r, and all tasks request at the maximum rate. Forany task Ti in an extremely utilizing task set with Pi � 2 < Pn, let Pn = pi � Pi + qi; pi > 1 andqi � 0. We replace Ti with T 0i such that P 0i = pi � Pi and C 0ji = Cji for 0 � j � Ni � 1, and weincrease C0n by the amount needed to again extremely utilize the processor. This increase is smallerthan C1i � (pi � 1). Let the old and new utilization factors be Um and U 0m respectively.U 0m � Um + (pi � 1) �C0i =Pn + C0i =P 0i � C0i =Pi= Um + C0i � (pi � 1)=(1=(pi � Pi + qi)� 1=(pi � Pi))� UmTherefore we can conclude that the minimum utilization occurs among task sets in which the longestperiod is no larger than twice of the shortest period. This establishes Lemma 5. QEDTheorem 4 Let r = minni=1(C0i =C1i). For task sets of size n, the utilization bound is given byr � n � ((r+1r)1=n � 1).Proof. By de�nition, the least upper bound is the minimum of the U e for task sets of sizeranging from 1 to n, and we have minni=1(r � i � ((r+1r)1=i � 1)) = r � n � ((r+1r)1=n � 1). QEDWe observe that Liu and Layland's Theorem 1 is a special case of Theorem 4 with r = 1 andthe frame separation time equals the period.The following tables summarize the relative advantage of using the multiframe model over theL&L model in determining whether a set of task is scheduleable. The column under UL&L givesthe utilization bound in the L&L model.

3 FIXED PRIORITY SCHEDULING 16
UL&L r=2 3 4 5 6 7 8 9 10 1n=2 0.828 8.5 12.0 14.0 15.2 16.1 16.7 17.2 17.5 17.8 20.73 0.780 11.4 16.2 18.8 20.5 21.7 22.6 23.2 23.8 24.2 28.24 0.757 12.8 18.2 21.3 23.2 24.6 25.6 26.4 27.0 27.4 32.15 0.743 13.6 19.5 22.8 24.9 26.3 27.4 28.2 28.9 29.4 34.510 0.718 15.3 22.0 25.8 28.2 29.9 31.1 32.1 32.8 33.4 39.320 0.705 16.2 23.3 27.3 29.8 31.6 33.0 34.0 34.8 35.5 41.830 0.701 16.4 23.7 27.8 30.4 32.2 33.6 34.6 35.5 36.1 42.640 0.699 16.6 23.9 28.0 30.7 32.5 33.9 35.0 35.8 36.5 43.050 0.698 16.7 24.0 28.2 30.8 32.7 34.1 35.2 36.0 36.7 43.3100 0.696 16.8 24.3 28.5 31.2 33.1 34.5 35.5 36.4 37.1 43.81 0.693 17.0 24.5 28.8 31.5 33.4 34.9 35.9 36.8 37.5 44.3Table 1: Utilization Bound Percentage Improvement

4 CONCLUSION AND FUTURE RESEARCH 17Table 1 shows the percentage improvement of our bound over the Liu and Layland bound.Speci�cally, the table entries denote 100 � (Um=UL&L� 1), for di�erent combination of r (the ratioof the peak execution time to the execution time of the second frame) and n (the number of tasksin the task set). For example, suppose we have a system capable of processing one Gigabyte of dataper second, and a set of tasks each of which needs to process one Megabyte of data per second.Using a utilization bound of ln 2, we can only allow 693 tasks. By Theorem 4, we can allow atleast 863 tasks (over 24% improvement) when r � 3.As r increases, the bound improvement increases. Actually, as r ! 1, a simple calculationshows that the bound ! 1. This says that our model excels when the execution time of the taskvaries sharply.It is also interesting to compare the maximum average utilization with L&L bound. However,the maximum average utilization factor may be arbitrarily low even if the maximum utilizationfactor is very high. One simple example is f((10; 5; 1; 1; : : : ; 1); 10)g. So, we take instead theaverage of the �rst two frames of the task. In Table 2 we calculate 100 � (12(Um + Umr))=UL&L,which is the ratio of the biggest possible maximum average utilization factor to Liu and Laylandbound. Table 3 shows we can still maintain good overall system utilization when task executiontime varies.4 Conclusion and Future ResearchIn this paper, we give a multiframe model for real-time tasks which is more amenable to specifyingtasks whose execution time varies from one instance to another. In our model, the execution timesof successive instances of a task is speci�ed by a �nite array of numbers rather than a single numberwhich is the worst-case execution time of the classical Liu and Layland model.Using the new model, we derive the utilization bound for the preemptive �xed priority scheduler,under the assumption that the execution time array of the tasks satis�es the AM (Accumulative

4 CONCLUSION AND FUTURE RESEARCH 18
UL&L r=2 3 4 5 6 7 8 9 10 1n=2 0.828 81.4 74.7 71.2 69.1 67.7 66.7 65.9 65.3 64.8 60.43 0.780 83.5 77.4 74.3 72.3 71.0 70.0 69.3 68.8 68.3 64.14 0.757 84.6 78.8 75.8 73.9 72.7 71.8 71.1 70.5 70.1 66.15 0.743 85.2 79.7 76.7 74.9 73.7 72.8 72.1 71.6 71.2 67.310 0.718 86.5 81.3 78.6 76.9 75.8 74.9 74.3 73.8 73.4 69.720 0.705 87.1 82.2 79.5 77.9 76.8 76.0 75.4 74.9 74.5 70.930 0.701 87.3 82.4 79.9 78.2 77.1 76.3 75.7 75.3 74.9 71.340 0.699 87.4 82.6 80.0 78.4 77.3 76.5 75.9 75.4 75.1 71.550 0.698 87.5 82.7 80.1 78.5 77.4 76.6 76.0 75.6 75.2 71.6100 0.696 87.6 82.8 80.3 78.7 77.6 76.8 76.2 75.8 75.4 71.91 0.693 87.7 83.0 80.5 78.9 77.8 77.1 76.5 76.0 75.6 72.1Table 2: Ratio of maximum average to L&L bound

REFERENCES 19Monotonic) property. This property is rather liberal and is consistent with common encodingschemes in multimedia applications, where one of the execution times in an array \dominates" theothers. We show that signi�cant improvement in the utilization bound over the Liu and Laylandmodel results from using our model. This is useful in dynamic applications where the number oftasks can vary and the �gure of merit for resource allocation is the number of tasks that the systemcan admit without causing timing failures.Work is under way to apply this model to real-life applications such as video stream schedulingand will be reported in the future.References[1] C. L. Liu and James W. Layland, Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment, Journal of ACM, Vol. 20, No. 1, January 1973.[2] Al. Mok, Fundamental Design Problems of Distributed systems for the Hard-Real-Time Envi-ronment, Ph.D. Thesis, MIT, 1983[3] Tei-Wei Kuo and Aloysius K. Mok, Load Adjustment in Adaptive Real-Time Systems, IEEE12th Real-Time Systems Symposium, December 1991.[4] J. Lehoczky, L. Sha, and Y. Ding, The Rate Monotonic Scheduling Algorithm - Exact Char-acterization and Average Case Behavior, Proceedings of the IEEE Real-Time System Sympo-sium, 1989[5] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son, Assigning Real-Time Tasks to HomogeneousMultiprocessor Systems, Technical Report CS-94-01, University of Virginia, Computer ScienceDepartment, January 1994

REFERENCES 20[6] Jay K. Strosnider, John P. Lehoczky, and Lui Sha, The Deferrable Server Algorithm for En-hanced Aperiodic Responsiveness in Hard Real-Time Environments, IEEE Transactions onComputers, Vol. 44, No. 1 January 1995[7] A. Burns and A. J. Welling, Dual Priority Assignment: A Practical Method for IncreasingProcessor Utilization, Proceedings of Fifth Euromicro Workshop on Real-Time Systems, Oulu,pp. 48-55, 1993[8] T. M. Ghazalie, T. P. Baker, Aperiodic Servers in a Deadline Scheduling Environment, Real-Time Systems, Vol. 9, No. 1, July 1995[9] B. Sprunt, L. Sha, and J. Lehoczky, Aperiodic Task Scheduling for Hard Real-Time Systems,Real-Time Systems: The International Journal of Time-Critical Computing Systems, Vol. 1,pp. 27-60, 1989[10] Jen-Yao Chung, J.W. S. Liu, and Kwei-Jay Lin, Scheduling Periodic Jobs That Allow ImpreciseResults, IEEE Transactions on Computer, Vol. 39, No. 9, September 1990

