Copyright
by
Almadena Yurevna Chtchelkanova

1996

The Application of Object-Oriented Analysis to Sockets

System Calls Library Testing

by

Almadena Yurevna Chtchelkanova, M.S., Ph.D.

Thesis
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Master of Arts

The University of Texas at Austin

May 1996

The Application of Object-Oriented Analysis to Sockets

System Calls Library Testing

Approved by
Supervising Committee:

The effort of completion of this research work was possible by the support of my

loving family

Acknowledgments

I'd like to acknowledge faculty and staff members of the Department of Computer
Sciences, University of Texas at Austin for providing a great environment for study
and research.

I am very greatful to Professor Robert van de Geijn for his continuous support.

I am also grateful to Professor James C. Browne for his invaluable advice when

supervising my research.

ALMADENA YUREVNA CHTCHELKANOVA

The University of Texas at Austin
May 1996

The Application of Object-Oriented Analysis to Sockets

System Calls Library Testing

Almadena Yurevna Chtchelkanova, M.A.
The University of Texas at Austin, 1996

Supervisor: J.C. Browne

Object-oriented analysis (OOA) is an orderly and systematic approach for the
development of software systems. Software systems developed in the OOA method
are readily tested and validated. There are, however, many systems that were
developed either previous to the availability of the OOA methodology or without
its use. Many of these systems still exist, are frequently modified and thus must be
retested after modification. There is a significant need for a capability for organized
and systematic testing of existing software.

In this thesis we show how the OOA methodology can be used to develop
a test suite for existing software to facilitate maintenance and modification of the
existing software. The current practice in testing existing software systems is largely
an ad hoc process of trial and error, ranging from random testing to exhaustive
testing. Use of the OOA methodology provides an orderly and systematic process
for hierarchical development of test suites, even for existing software. This concept
is illustrated by development of a test suite for the Unix Sockets Library system.
Sockets are abstract objects which implement interprocess communication between
unrelated processes in Unix.

Test development for the socket library using the OOA methodology can be

defined in four steps:

vi

(1) Construct an information and state model for the socket system from the
existing documentation.

(2) Construct a state model for a test process object based upon the state
model for the socket object. Each instance of a test process object will generate
events, driving a socket object through a pre- defined set of states.

(3) Derive a main driver program which will instantiate multiple copies of
the test process object which will then instantiate and drive multiple instances of
the socket object.

These first three steps are executed using the SES Objectbench tool to create
the objects and state models and to verify their consistency and validity.

(4) Generate actual test code by coding the main test object and translat-
ing the process object models to C code or any other programming language. In
this translation the events in the action language programs of the state model are
replaced by appropriate system calls to the socket system. Validation checks are
placed after each system call to insure that each step is properly executed.

A detailed statement of the problem, an overview of functional testing, and
an overview of Berkeley Unix Sockets are given in Chapter 1. An OOA Shlaer—Mellor
approach is described in Chapter 2. In Chapter 3, abstract models of a connection-
based socket and a test process are constructed based on the socket system call
specifications provided by the Berkeley Unix System. Implementation of the test
suite is described in Chapter 4. Sample test programs, and results of testing sockets

are presented in Appendix A.

vii

Contents

Acknowledgments
Abstract
List of Figures

Chapter 1 Problem Overview
1.1 Problem Statement
1.2 Functional Test Design Strategies Overview

1.3 Sockets Overview

Chapter 2 Shlaer/Mellor Approach to OOA
2.1 OOA Overview,
2.2 Identifying Objects
2.3 Identifying Relationships
2.4 Specification of Behavior: State Model . . .

2.5 Object Communication Model

Chapter 3 Building a Socket Model
3.1 Information Model
3.2 Public_Socket State Model
3.3 Regular_Socket State Model

viii

vi

10
11
12

3.4 Building Test_Process State Model,
3.5 Object Communication Model 0.

Chapter 4 Implementing a Test Suite

Chapter 5 Conclusion and Future Plans

Appendix A Test Code
Al clienttest.c . . . oL L L
A2 server_test.c . ..o L L L e
A3 dnet.h oo
A clientrun ..o oL

AD SEIVEI TUN .+ v v v v o e e e e e e e e e e e s

Bibliography

Vita

ix

27

31

33
33
39
45
46
50

53

55

3.1
3.2
3.3
3.4
3.5

List of Figures

Socket Information Model00 Lo 14
Public Socket State Model Lo 17
Regular Socket State Model oL 20
Test Process State Modelo o oo 22
Object Communication Model 26

Chapter 1

Problem Overview

1.1 Problem Statement

There is a vast body of existing software which is modified and extended
on a regular basis. Testing of these modified and extended software systems is a
major problem. Most of the time the testing is done on a black box basis, that
is the software is invoked through its external interface using a broad spectrum of
parameters. This form of testing is both uncertain as to its result and tedious in
execution.

The purpose of this paper is to demonstrate that an object-oriented analysis
methodology can be used to derive a covering set of tests for existing software
systems. OOA provides a systematic approach to specification of the existing system
at a high level of abstraction so that entire families of behavioral tests can be
designed and executed. This approach is especially important when the source code
of a software system is not available or the structure is complex and difficult to
understand.

The requirement for deriving an appropriate test suite is knowledge of the
structure and behavior of the system. It is the fuzzy understanding of structure and

behavior (as well as complexity) which makes testing difficult.

OOA begins by specifying a system as a collection of objects and relationships
between the objects, [12], [13], [11], and [3]. Every object is described by a set of
attributes. At every moment, an object is in some well defined state which can be
fully described by the values of its attributes. All possible states of an object are
defined in the information model of this object at an abstract level. Associated with
each state there exists an event which causes a transition of an object from this
state to another (possibly the same) state. There is also associated with each state
of the object an action which is executed upon arrival at the state. Events may be
generated either by other objects comprising the system, or may come from external
objects. Objects can be created (instantiated) and destroyed. Upon creation, each
instance of an object gets and begins to execute its own private copy of its state
model — a state machine.

The critical factor in the use of the OOA methodology to develop a test suite
is that it provides an orderly and systematic means of defining the structure and
behavior, even of an existing system. The procedure is to take the requirements
statement and/or the documentation describing an existing software system and to
construct an object-oriented analysis level model which reflects the structure and
behavior of the system and to then use this model to define the tests. This thesis
demonstrates this approach to test suite generation through a case study.

For our case study we select a BSD Unix socket as a test object. Sockets
are used for interprocess communications. Sockets system calls have a very well
defined and relatively simple interface. The sockets system calls library is constantly
under construction. Adding new communication protocols and new socket types
requires testing the full functionality of the library. A major part of the interprocess
communication software (IPC) is machine independent, but there is a hardware-
dependent part which must be tested when the OS is ported to a new hardware
platform.

Socket system library calls represent events which cause a socket to make a

transition from one state to another, and invoke some actions associated with the
transitions. To test a socket object we need another object, a test driver, to generate
system calls for the socket. Our system thus will consist of two objects, a socket
and a driver. To develop a model of this system we used the SES/objectbench tool
based on the Shlaer/Mellor approach to OOA. This tool allows one to capture a
model of a system, to simulate and animate interactions of model objects, and to
easily analyze and validate the dynamic behavior of the system.

Our first aim is to construct an information and state model of a socket at a
high level of abstraction, based on the description of the UNIX socket call library.
The model needs to be expressed in terms of the SES/objectbench graphical and
action language. Having a model of a socket object, it is then conceptually easy
to construct a state model of a test driver generating an appropriate sequence of
valid events navigating the socket model through a sequence of allowed states. The
driver object model has to be expressed in terms of the same action language. The
SES/objectbench is then used to debug both models and to verify that the model
driver correctly steers the model socket through a pre-defined sequence of states.
The benefit of using SES/objectbench is obvious - creation and validation of a driver
is first made on a high level of abstraction, before actual software design starts.
Using the SES/objectbench and a code generator CodeGenesis, developed for using
with it, it would be possible to automate a functional test process design and to
reduce the time spent on test creation.

After the model of the test is developed and validated using SES/objectbench,
we have to translate it into a desirable target code. This can be done by hand or
by using a code generator. For large models, the second approach has obvious
advantages. The overhead is in writing the code generator for a target language.

Once written, the code generator can be reused for subsequent models.

1.2 Functional Test Design Strategies Overview

More than 80% of the lifecycle time of a software product is spent on
debugging and testing [2]. This is why proper organization and design of tests is
very important. There is no single systematic way for generating test programs.
Methods vary from random tests to exhaustive tests. There is no systematic way to
test the testing software.

In this paper, we show how to apply Object-Oriented Analysis to the func-
tional testing of a software system as an orderly and systematic way for generating
sets of covering tests. We assume that there exists a usable specification of the
software system from which an OOA model can be constructed.

Functional (black-box), or behavioral testing, checks if a software system
conforms to its specification. Functional testing doesn’t test the correctness of the
specification of the software. It is assumed that a model is correct, and that bugs
are in the software implementation of the model. Functional testing checks, if in the
response of a given input, the state of the system is changed according to the spec-
ifications, and proper actions are executed after arriving at a new state. Functional
testing drives the system with inputs, and all outputs are verified for conformance
to specified behavior. Functional testing takes the users’ point of view. We don’t
need to know anything about actual design and implementation of software in order
to be able to test it. Behavioral testing is based on a model of software, not on the
software. Verification of the model includes the testing of the control flow, the state
transitions and changing of state-related attributes. The key part of the verification
is that the model properly reflects the behavior embedded in the actual software.

In the case of testing the correctness of the system call library we have to

distinguish

e testing of the return value of the system call. The library calls are tested
for both success and failure conditions. Failure is expected when incorrect

parameters are passed to a system call, or a system condition under which

the failure is expected is simulated (example - exhausting a per-process file

descriptors number by opening a number of files);

e testing whether the state of the system is changed according to the specifica-

tions and proper actions are associated with each state.

We start with the second approach. When a state model for a software system
is constracted based on its specifications there is a finite number of events which
can be accepted in every state of the model. That means that our problem space
is partitioned into small well-defined problems. By covering all possible state/event
combinations, we derive exhaustive tests on each state of the model, and thus the
model itself.

Description of the testing techniques can be found in [2], [6], [5], [9], [10], [4],
], [15].

1.3 Sockets Overview

In this section a brief overview of sockets is given.

Sockets were introduced as a part of Interprocess Communication Facilities
(IPC) implemented in 4.3 BSD Unix. Sockets became a part of the standard IPC
in the System V and all modern flavors of Unix. Sockets allow unrelated processes
to communicate regardless of whether they are running on the same host or across
a network.

A socket is an abstract object from which messages are sent and received. All
sockets are typed according to their communication semantics. Types are defined

by the subset of properties a socket supports. These properties are:
e in-order delivery of data;
e unduplicated delivery of data;

e reliable delivery of data;

e preservation of message boundaries;
e support of out-of-band messages;
e connection-oriented communication.

Sockets are created within a communication domain much as files are created within
a filesystem. Sockets exist only as long as they are referenced. A communication
domain embodies the standard semantics of communication and naming.

A socket must be created with a socket() system call. We are going to skip the
parameters for the following system calls. The type of socket is selected according
to the characteristic properties required by the application. The next step depends
on the type of socket being used. The most commonly used type of socket requires
a connection before it can be used. Creation of a connection between two sockets
requires that each socket have an address bound to it. The format of addresses
can vary among domains. Socket addresses may be reused if the communication
domain permits, although domains normally ensure that a socket address is unique
on each host, so that the association between two sockets is unique within the
communication domain. To bind an address to a socket a system call bind() is used.
A system call, connect(), initiates a connection with another socket. A system call,
listen(), marks a socket as receiving connection requests. A system call, accept(),
creates a new socket which is connected to a socket requesting a connection, and
the original socket is listening for new connections to come. The system calls listed
above are used for establishing connections between two sockets.

The main use of sockets is sending and receiving data. For connected sockets,
send() and recv() calls are used.

Inquiry system calls give information about socket attributes without chang-
ing a state of a the socket: getsockname() returns a socket address, and getpeer-
name() returns a name of a peer socket (the socket on the other end of a connection).

The shutdown() system call is used to terminate data transmission or reception at a

socket. Getsockopt() and setsockopt() are used to set and retrieve various parame-
ters that control the operation of a socket or underlying network protocols. Sockets
are discarded with the normal close() system call. A detailed description of socket
system calls can be found in [14].

The interprocess-communication facilities are layered on the top of the net-
working facilities. Data flows from the application through the socket layer to the
networking support, and vice versa. Sockets and network facilities are implemented
within the kernel. A description of the implementation of the sockets can be found

in [7].

Chapter 2

Shlaer /Mellor Approach to
OOA

2.1 OOA Overview

Object-Oriented Analysis (OOA) is a method for identifying significant
entities in a real-world problem and for understanding and explaining how they
interact with each other [12], [13], [3], [11].

An Object-Oriented Analysis process defines

e the conceptual entities of the system as objects with semantics defined by

attributes (Object Information Model);

e the relationships among the conceptual entities in terms of binary relationships

or associative objects (Object Information Model);

e the behavior of the conceptual entities as a response to events (or incidents)

causing state transitions and actions associated with arrival in each state

(State Model);

e the interaction between conceptual entities in terms of events generated and

accepted (Object Communication Model);

e the fundamental and reusable processes into which actions can be dissected.
An Object-Oriented Design process defines

e a set of templates for realizing objects as entities in a programming language;

e a set of data structures corresponding to the attributes of the object defini-

tions;
e realizations for actions as executable entities in the form of methods;

e mechanisms for definition of control flow among the actions of the realized

objects.

If OOA provides an execution environment specified separately from the

application, the design representation of the model can be obtained by translation.

2.2 Identifying Objects

An Object in OOA represents a single typical but unspecified instance of a
conceptual entity. Most of the objects fall into the following categories: tangible
objects, roles, incidents, interactions, specifications.

Each object has a set of attributes. An attribute is an abstraction of a single
characteristic possessed by all entities that were themselves abstracted as an object
(a logical state variable). The range of legal values that an attribute can take is

called its domain. There are three types of attributes:

e naming attributes - to establish identity of the object;
e descriptive - to provide intrinsic facts to each instance of the object;

e referential - to establish relationship.

To separate instances of the same object an identifier is used. An identifier
is a set of one or more attributes whose values uniquely distinguish each instance of

an object.

2.3 Identifying Relationships

A relationship is an abstraction of a set of associations that systematically hold
between different kinds of things in the real world. The relation can be formalized
by their multiplicity and conditionality. The three basic types of multiplicity are:
one-to-one, one-to-many and many-to-many. The three types of conditionality are:
unconditional, conditional and biconditional. If every instance of both objects is
required to participate, the relationship has unconditional form. If there are some
instances of one object that do not participate, the relationship has conditional form.
If there are some instances of both objects that do not participate, the relationship
has biconditional form.

The relationship has a unique identifier. To formalize a one-to-one rela-
tionship, referential attributes may be added to either object (but not both). In
a one-to-many relationship, referential attributes must be added to the object on
the "many” side. To formalize a many-to-many relationship, a separate associative
object must be created that contains references to the identifiers of each of the par-
ticipating instances. The associative object is then treated as a regular object, with
a name, object description, additional attributes (if any) and may participate in
relationships with other objects.

An associative object may be used to formalize any relationship, not only
many-to-many relationships. A relationship with dynamic behavior must be formal-
ized by means of an associative object.

In many problems, distinct specialized objects that have certain common
attributes can be found. In this case, a more general object can be abstracted to
represent common characteristics shared by the specialized objects. These objects

are related through a subtype-supertype relationship.

10

2.4 Specification of Behavior: State Model

The abstraction of the behavioral pattern of an object includes creation and
deletion of the object and changes in values assigned to attributes of object instance.
Each instance of an object is always in some well defined state. A state represents
a condition of the object in which a defined set of rules, policies, and physical laws
applies. Transitions among these states are specified by a State Model. In the
Shlaer/Mellor approach to OOA, a State Model is formalized as the Moore State

machine and includes:
e a set of states;
e a set of allowed transitions between states;
e events which cause transitions among the states;
e actions which are executed when a state is entered.

An event or incident models changes in the external environment or the
system resources. Event data must include the target of an event. Every state
transition is initiated by one or more events.

An action models a program executed by an instance of an object upon entry
to a state. One action is associated with each state. Actions include receiving event
data, creating object instances, accessing object instances, generating events, and
modification of object instances. Actions must be context free.

There are some rules for State Models:

A given state machine executes only one action at a time.

Multiple state machines can be simultaneously active (for different objects or dif-
ferent instances of the same object).

An action takes time to execute.

Actions are atomic.

Events are never lost.

11

Events are consumed by the execution of the receiving action.

Generated events are instantaneously available.

There exists a state machine for each object instance. A state machine is a private
copy of the state model executed by an object instance. A state machine always
accepts pending events as quickly as possible.

Events from a given source are received in the order generated.

Event receipt from multiple sources is nondeterministic.

There is always only one recipient for any event.

Although all objects have lifecycles, it is necessary to build state models to
formalize the lifecycles for only some objects which show dynamic behavior.

To construct the State Model one must define initial state for each object,
list all reachable states for the top level objects, construct state transition diagrams
where each node is an assignment of values to dynamic attributes and each arc
carries the event which causes a state transition. Also, one must define for each arc

the methods (actions) triggered by the event which affects the change of state.

2.5 Object Communication Model

An Object Communication Model (OCM) provides a summary of event
communication between state models and external entities. An OCM is a directed
graph where external agents are included as sources of events, objects are nodes,
and arcs carry events across objects.

The OCM is typically the top level of observation of a simulated execution.
To execute a model, the initial object population must be established, the starting
state of the system must be specified, and starting events generated.

During simulation, evaluation of the execution behavior can be monitored in
terms of state consistency, concurrency among state model instances, proper event
generation and consumption, and values of attributes which determine the path

through the state model.

12

Chapter 3

Building a Socket Model

3.1 Information Model

In this section we describe the Information Model of our system in Fig. 3.1. We
build a model for the socket which is used in connection-oriented communication.
This type of socket can be used for sending and receiving information only after a
connection with another socket (peer) is established.

We excluded the network communication level from our consideration by
assuming that it works properly, and that an instance of a socket generates an event
to another instance of a socket.

In SES/objectbench notation each object has an abbreviation indicated in
parentheses after the object name.

There are two objects in our Model — Socket (S) and Test_Process (TP). Sock-
ets and Test_Processes can be uniquely distinguished by their identifiers Socket_ 1D
and Process_ID, respectively.

There is a class of sockets used only for accepting communication — Pub-
lic_Socket (PS) and a class of sockets used for sending and receiving data — Reg-
ular_Socket (RS). The specialization of the Socket Object is formalized as an R2

supertype/subtype relationship. For a subtype/supertype object both a supertype

13

P8 108auu0d s |

pa108uU0d S |

o 13 }ing

ur Jejing

weoyw
(ed) ssoippy load -
(24) @1 194905 «
(S4) 19)20S Je |nbay ‘g

sey

ysanba 1™ Jua 1unQ
sisanbai jJo N
SuO0 1103uuo0d Jo N
Twn

ssalppy -

(2d) a1 193908 «

(Sd) 1990s o 1jand ‘¥

Vs

74 -+
(Td) @I ssev0.d
al 193205 «
(S) 11005 T
sey
™
_ abessapn
(vd) @1 19905 8A 110V
SSa Ippy umouy | |\
01 sbuo |aq ER[eY]

:uo 11ed207

[WNO |
[15/Ae7 19)00S ERVEREISIS

al sssed%0.id «
(d1) ssed0ud 1s8l T

2 "¢ Yyouasq1as I

EER XL

Figure 3.1: Information Model

14

and subtype instances must be created. In the case of a Socket Object, subtype

instances are active and have a lifecycle. Supertype instances are passive and just

store information. More about supertype/subtype objects can be found in [12], [1].
The attributes of a Public_Socket are:

Address — an address to which a Public Socket is bound.

Limit — the number of incoming connections allowed to be queued for processing

imposed by the operating system.

N_of_connections — a number of connections queued for processing in a given time.

N_ of requests — a number of connections accepted for processing during the Pub-

lic_Socket lifetime.

Current_request — a number of an accepted request which is currently being pro-

cessed.

A Regular_Socket is connected to another Regular_Socket. This relationship,
R3, is formalized by adding an attribute Peer_Address.

Other attributes of a Regular_Socket Object are:

Whoami defines the role a socket plays in establishing the connection — an Ac-
tive_Client or an Active_Server.

A Regular_Socket has two buffers - for sending and receiving messages, Buffer_in
and Buffer_out. In our Model buffers are represented by integers for simplicity.

A Test_Process has a Role it is playing in the communication between two
processes — a Client or a Server. A Client is an initiator of the communication and
a Server is a recipient of a communication request.

Each process knows a Well_ Known_Address — a Socket_ID of the instance of
the Socket accepting connections. When referring to the address of the Socket we
have in mind Socket_ID. To simplify our model, we assumed that the address space
of the socket has a one-to one correspondence to the identifier space.

A Test_Process can have many Sockets. This one-to-many relationship, R1,

is formalized by adding a referential attribute Process_ID to the Socket Object.

15

In our model, each Test_Process has one instance of Socket connected to
another instance of Socket belonging to another Test Process. We describe it as a
relationship R4. The attribute Active_Socket_ID of the Test_Process formalizes this
relationship.

A Test_Process receives from and sends messages to another Test_Process.

To simplify our model, we assume that a Message is some integer.

3.2 Public_Socket State Model

Each event in OOA indicates a recipient to which this event is addressed. In
SES/objectbench notation an event has a form

{object abbreviation }{event number} : {event name}({event data}).

In our state model, every socket library call is represented by at least two
events. The first event models the execution of a system call by a driver process.
The last event models the return of the control back to the driver.

There are two subtypes of a Socket Object — a Public_Socket and a Reg-
ular_Socket (see above). A Public_Socket State Model is shown in Fig. 3.2. A
Regular_Socket State Model is shown in Fig. 3.3.

An instance of a Public_Socket in the state Created(1l) is created by the
event PS1: Socket_create(). The state Created(1) is a creation state. A transition
into a creation state is depicted as a transition from a special "dot” state. A newly
created instance of a Public_Socket generates an event T'P1: Created_socket() to the
instance of the Test_Process which generated the event PS1: Socket_create(). These
two events correspond to the actual system call socket().

A system call bind() is represented by the two events, PS16: Socket_bind()
and TP2: Binded_socket(). The event PS16 changes the state of a Public_Socket
from the state Created(1) to the state Binded(2). And the event T'P2 returns control
to the Test_Process.

A Public_Socket changes its state from Binded(2) to Listeningi(3) after re-

16

$(@17ss990.d , " (@17 18%90S 'S 141) 193905)UO 1108UU0D ON :ZTdL @lelouad 3s o

{
_ T =- SUO]99UU0D™ JON 'S 1Y)
t(1senba Ew_:o.m_ffw:mm bu11e1adp (STSY 9 e ssusd
‘T =+ 1senba’ 81D 'Sy}

}

(0 =i Su01108UUOY JON'SIYl) }1I

Bu 11dasoy

0

— N

@1 19008) 7 e
1deooe 19)00S #Sd ~3 S

o R 29
o - -

ol]

28 o8

= g

$(@I”19%20S 'S 1yl ‘SsaUppy uliniay)pa1oe [U0 1199UU0) : TISY 91eJBUD 8S |9 mw »2

A ~=| o>

SN TINN C18AISSTEA 110y 'SS8UppY udn iy w mr

‘(331ys + sisanbal JO N'SIy}))a1eaid 133205 TSY 3 jelaun o S22

$(@17ss9904d . " (@17 194905 'S 141)193%90S * (14 1Ys + S1SaNba s Jo N 'S 1Y1))19X00S 8188 O S 5

pPa1ea 0 8lJaw S18)20S Mau Auau moy// ‘T=+ s1senbal JO N'SIYyl - 4]

Suo 1198uu0d bu |puad Auau moy// T=+ SUO 1]1289UUOD JO N 'S Ea
(JWi7°s1yl > suo 1108Uu0d Jo N'sIyl) 41 2
. - . — . — . _ _ ‘00T = 1JI1ys w1 »n
1(.@17ss820ud . " (@ 17185905 'S 1U1) 193005)UO 1108UUOITON 1ZTdL 8 I8 18UBD 555 1ppyuiniay ‘Q |~ 1954005) =

1S8nba 1 U0 |1108UU0D :6Sd

1d900e” Jouurd g | @w
39
@1 194008) (& ar =
> SS9uppy UJniay ‘gl 19%20S) -
1deooe 18%20S ¥Sd 1senba 1 uo 1128UU0) 6Sd ,Im
oo
£(.Q17ss8204d , " (@17 181905 'S 1) 183005) 184008 UB1S 1T © $dL B JeIsusd 8s
_ ‘bo pjoeq = 1W IS Iyl jag
@1 1008) Se
1deooe 193208 :pSd Bu lue1s 17 22
28
g-
]
173
L

(6o |yoeq ‘Q | 19%400S)
uais || 19)20S :ZSd

t(@17ssa201d , (@1 183208 s Y1) 193908) 19>00s™papu g zdl @ Jesaux)
!SS9 IPpPY 19%90S = SS9IPPY 'S Iy)

papuig ‘¢

(ssa1ppy™ 193905 Q| 19%90S)
puIg 193908 :9TSd
@17 1900S 'S 1Yl 17SS8004d ., T (@17 19908 "S 1Y 1) 19%00S) 193008 pajes 0 TdL @ e laum
(bais weu1Ind ‘bai N
‘UDO N ‘1w || ‘ssalppe paisod ‘p1)18)20S 2

1qand ®1ea n

(beus"ua1ind ‘bas N ‘UODN ‘Jw | ‘ssalppe pajsod ‘pi)
918912 19320S :ISd

9 [90A28 J 17 18X90S 9 | |nd [EHICEBI-EIR] EENELE] moH | veun Jf xepu|
IELCRIEEEEES wa 1sAsqns 109 [0 Z 'C Yyoua(q1aa [

Public Socket State Model
17

Figure 3.2

ceiving an event PS2: Socket_listen(), and returns control to the Test_Process by
generating an event T'P/: Listen_socket(). These two events model listen() system
call.

When a Public_Socket is in the state Listening(3), it can accept two events:
PSJ: Socket_accept() generated by a Test_Process and PS9: Connection_request gen-
erated by an instance of a Regular_Socket. The first event changes a state of a Pub-
lic_Socket to Cannot_accept(6) where an event T'P12: No_connection is generated.
SP4 and TP12 model non-blocking accept() system call. It returns a negative inte-
ger if there are no pending connections. After receiving P59, a Public_Socket changes
state from Listening(3) to Non_empty(4). Upon arrival in the state Non_empty(4),
a Public_Socket processes the connection request — creates a new Regular_Socket
by generating an event RS! and updates the values of the attributes. The action
for this state includes if-logic because the state Non_empty(4) can be reached from
many states by receiving an event PS59. If a number of pending connections is less
than a Limit a connection is processed, and is otherwise rejected by generating
RS11.

A Public_Socket remains in the state Non_empty(4) when receiving an event
P59, or makes a transition to the state Accepting(5) by receiving event PS4. Upon
arrival in this state a Public_Socket updates its attributes and transfers control to
a previously created instance of a Regular_Socket by generating an event RS15. A
system call accept() is modeled by a sequence of events. The return of control to the
Test_Process when a system call succeeds is done by a Regular_Socket by generating

an event TP5.

3.3 Regular_Socket State Model

To refer to an instance of an object having some defined value of an attribute
the following notation is used:

{object name}({attribute name} = {attribute value}).

18

An instance of a Regular_Socket in the creation state Created(1) is created
by an event RS1: Socket_create(). In this section refer to Fig. 3.3. An event RSI can
be generated by an instance of a Test_Process (Role = Client), or by an instance of
a Public_Socket. We will refer to an instance of a Test_Process (Role = Client) as a
Client, and a Test_Process (Role = Server) as a Server. We will refer to an instance of
a Regular_Socket (Whoami = Active_Server) as an Active_Server, and to an instance
of a Regular_Socket (Whoami = Active_Client) as an Active_Client. A newly created
instance of an Active_Client generates an event T'P1: Created_socket() to the instance
of the Client which generated the event PS1. Events RS1 and P57 model the actual
system call socket(). After receiving an event RS3: Socket_connect(), an instance
of a Active_Client changes its state from Created(1) to Connecting(3). Upon arriv-
ing in the state Connecting(3) it generates an event PS9: Connection_request to a
Public_Socket.

An Active_Server changes its state from Created(1) to ls_connected(2) af-
ter receiving an event RS15: Operating_server() from a Public_Socket. Note that
Active_Server and Public_Socket belong to the same Server. An event RS15 trans-
fers control from a Public_Socket to an Active_Server. An Active_Server proceeds
with establishing a connection with an Active_Client. Upon arriving at the state
Is_connected(2), an Active_Server generates two events. An event RS10: Connec-
tion_accepted() is directed to an instance of an Active_Client requesting a connec-
tion. Another event T'P5: Accepted_socket() returns control to an instance of the
Server. After receiving an event RS10, an instance of an Active_Client changes its
state from the state Connecting(3) to the state Connected(4). Upon arriving at the
state Connected(4), an Active_Client generates an event T'P3: Connected_socket()
which returns control to the Client. At this point a connection between two Regu-
lar_Sockets is established and processes can send and receive messages. From Fig. 3.3
it is clear that state machines for an Active_Client and an Active_Server are iden-

tical and we can again refer to both instances as a Regular_Socket. From the state

19

@1 19%008)
19005 1Sy

9s0 |2

$(@17ssa20.d ., (@1 19%90S 'S 1Y 1) 19)20S) 193208 Paso D : 8dl 3 Ielsux)

1 Buisop 01!

S(uitueygng syl ‘gl

@1 19x00s)

950 |9 193905 :/SY

@17 19x008)
(ebessau ‘g | 19%20S) 89S0 |2 18008 :/SH
puss 'Z21sd

{(ssalppy” 18ad 'S Iy1)pAday ETSH 9 e lauxd)
‘abessau = ul Jajjng sy
o Jdl 91elsux)

$800.d , * (@ 17183905 'S 1y 1) 183008) 183005~ A0ay

@1 19%00s)
9S0 |0 18)90S :/SY

(ebessau ‘g | 193205)

‘(@i ssevoud ., "

pa1dadoe uo 1108UU0D 0TS

1 6Sd 91elauD

£(@1 19)20S "SIyl ‘ssalppy J8ad "SIyl)isanba i uo 1198uu0)

6 K = { - puss :zTsM
pan 1829y ‘6 @ 199003) Bu 1n 19084 '8 L
AJ9 1 19205 :9SY
i
gy
@1 19%008) (sbessau ‘g 18320S) =
AJ91 193005 ‘9sd puss :ZTSY (ebessau ‘g | 19%20S) 29
puss :Z1sd -2
o
“t(Q17sse201d , (@1 19%20S 'S 1Y) 19)20S)abessau"oN :(ETL d IeIaud) —
owhﬁhw_v_o.cm. RS : = g i)
d on 190947 jouue)d L A AJ31 19X90S 19SY
@)1~ 193005) 12 4
AJ91 193905 :9SY _ ® _ _
@1 1820s 'S Iy) " al ssS8%0.d . (@1 I9)00S 'S 1Y1)19X20S
_ _ B ' ())
t(N0" 18)yng "SIyl ‘Ssalppy 19ed 'S IY1)puas : gISY o lelaux ,, _ 19)00S pa1ddddy :Gdl dIeJIduD
‘abessau = no Jayng-siyl @l ,mxomw.m_f ‘ssa Ippy J488d 'S 1Y1)
— . — . @ 1" 19%008) pa1dasoe uo 1199UU0) OTSH @ Je Jaux)
93905 'S | 93905) 193905 pu : ERLFENT
al ; S 'S 141) 19908) 18400S7pUSS © 9dL e lBum Ao et
*] uss 9 4mc Ipuss ‘g
(ebessau ‘g | 19320S) pa1oauuod”s| g
N,M puss 19%00S :GSH
_ (ebessau ‘g | 18)00S) Q
(sbessau ‘g |~ 18%20S) puas 18005 oSy Wm
PuUss 19X90S5 :GSY =
- o
(@1 ssa%0ud ., (@1 18%20S 'S 1Y 1) 19)20S) 19390 ” pa 199UU0) €dl @1lelausn "o _ @ _|Hmv_“wowv
— !SS9 UpPPY UJIN18Y = SS9 IPPY JIdad ‘S 1yl 33 18n18sBu 1R 18D STSY
@1” w4505 a
_ AJ91 19905 :9SY Tum T A
@71 19408) (117195908 SIY1 * Q17SS9904d , (a7 193908 'S 1) 19005) 18490 PB 1S 0 TdL 8 I8 1D
950 |2 193905 /S — R 31 . | :
o (ss.uppy”un 1y g ~19405) ((1oAIoS A 119V == WeOWA'S Iyl)i) 4!

t(IN0 yng ‘ul jng ‘ weoyw
(sseippy uiniay ‘q(19%005) ‘SS9ippe paisod ‘p1)19xN00S e [nbay 91es o

108UU0D 183208
193205 €S petes 0 T

bu 1198uu0) '€

(sselppy uiniay ‘| 18%20S)
pa19a la) U0 1198UUCD TTSH

(o~ 4ng ‘ulyng ‘weoyw ‘ssalppe pailsod ‘p1)
91910 19%20S TSY

JUEYE] moH | reua Jf xspu |

9 |0A29 J 17 193905 Je [Ny [EHVEBERIE] S
19AeT 19)00S wa 1sAsqns 109 [0

2 'z_Uduaq19a [

Regular Socket State Model

Figure 3.3

20

Connected(3) and the state Is_connected(2), allowed transitions are the same. A
Regular_Socket can accept four events: RS5: Socket_send(), RS6: Socket_recv, and
RS7: Socket_close(), generated by a Test_Process, and RS12: Send(), generated by
its peer. A peer is a Regular_Socket on the other end of the connection as we already
mentioned. The transitions between states, and actions of a Regular_Socket upon

arrival in a new state are strightforward.

3.4 Building Test Process State Model

At this point, constructed State Models for a Regular_Socket (Fig. 3.2) and a
Public_Socket (Fig. 3.3) allow derivation of a Test_Process State Model, see Fig. 3.4.

When an instance of a socket is in a certain state, only a few allowable
transitions can change its current state. By bringing an instance of a socket into
each state, and testing all allowable transitions leading from this state, we cover
all possible legal state/event combinations for our abstract model. The number of
this transitions is finite, and, by executing them all, we completely test the model.
To achieve complete node coverage, multiple copies of a Socket driven by multiple
copies of a Test_Process are required.

In the State Model for a Test_Process, each state of the Test_Process corre-
sponds to a certain state of a Socket. A Test _Process generates only those events
which can be accepted by the Socket in a given state. (Tests of filtering of events
can be implemented in a similar way to verify that each state rejects invalid events).
When receiving an event from a Socket, an instance of a Test_Process changes its
state, which corresponds to the new state of a Socket, and in which another finite
number of events can be generated.

The method of mapping state machines executed by instances of a Test_Process
can be any method allowing coverage of all possible state/event combinations. In

our State Model for the Test_Process, we use the value of the attribute Process_ID, a

21

(17199905 AN 1107 'S 11)A08 1T 19%00S (9SH 8 1e JuED)

~s5220.1d) 912231 10UUR) ", @1e1S U1 S| 124005 /]
arssos) L I T
199905 Paso D ‘gL . ¢ ~3 (@ 55090 1 g
- - - fea 1q “yea 1q bl abessau oN €TdL 8z
(@171949078A 119y 'S 1411)950 |97 19005 : /Sy 3 1B JAUD 1 e jop £(@ 17194005 T8N 119y °S 141)850 (97199005 /S 9)¢ JauzD 1 e Jop m% ar) 2
o - biea g 00 1 8 @ sse00.1g 2
(@1719%90873A 119 'S 141)A92 1194908 ¢ 95y 2peleu g, oseo (@1 19490579 1107 S 14 1)A09 1719908 95y “_m.m,@ Z. ases ne bessau o gTdl am {
- - - e 3 I [0 =
. 1(17194905 7aA 119y 'S 1U1)as0 [0 194205 _: /SH 3 leJauaD as 3 vs 1m0 =H seaiq {
$(oBessay 'S 14101 194905 9A 119V 'S 11)pUds 193005 © SR 9IeIAUR £ (@ 71900575 119y S 143950 |97 19005 - 2% 78 JoUD 35 [O essan s 11
(€5 SSWn09) 41 1T, 280 (apodeay o 321005 31399 'S 141)PUS 1005 S 910IUBD T, aseD
- - — . ~ ‘a1 195005 BA 110y 'S 1Y1)PUSS 12300 : GSY 9 18 IBULD) & t¥ea iq
(7% (.SS@1ppy™~ 18ad , " (@ 17194205 @A 119y 'S 1y 1) 194205~ 1e Sm&:;u;hw,w‘ (z > $1UN02) 41 :,0, ased g o iomum\:_% S1U1)A0217 193205 9SY @1eUBUM (.0, 8SED
- - _ }oe }
1@ rmeos it mm_uumwm_uv 08 Lsd @R iou® (v 9% .SSe1ppy” 193d , (0 I 19%90S73A 1197 °S 14 1) 19205 Je smwmfu_;m @ELE 183d . (@ 17124908734 119y 'S 141) 193005 1B _zm,&:ﬁ_gm }
- = 5 19| es 1o
(£ == (.559ppy™ 133d . " (1 194905 OA119Y 'S 141)19420S e Inbay))) 1 (@ 1719990878 170y 'S 141)950 |97 194908 : /SY @ Je1uaD i i (@ 19905 0R 1197 S 141)050 (37 19208 15 b 1e soue)
_ _ T = SSIUN0D 1 D1lels _((T == siwnod) ®p (z ==(.s53ippy J9ad . (01 194905 BA 119v 'S 141) 1205 Je |nbay)) J1
JOAIBS 1USSTIAI0S 79 MB1S AT UL S| IDA0S /g —= (,ssauppy” sead . (@1 194205 BA119Y 'S 1y1)18400S 1B ba))) || ‘gl @ne s = dl 194205 aA 130V 'S 1yl

£(@ 17558904 'S 141)u 1ebe BU 1B 1S 1]

1(.552ppY 199d . (@1 19908 9A 119 'S 11) 193008 Je |nbay
U0 1193uled) J I 1d

*,U\P3SO [S| @6 19208 U1

: OTdL 1B Isu

@"ss9901d)

[ouoa 6]

1an19S” Juas™

7= S41Un09 U1 2 11e |
6 2181S 8y} Ul S1 193j00s /|

@ sse20ud)

193905 '8

199005 PasO D 8L’

19A19SPAA 1999 47 192205
1920 puas :9dL (s

(ebessau_q[7ss200.d)

@1 ss990.d)
193905 puas :9dL

(@1 ssa20ud)

X (sbessau 'q|~ss2001d)
193008 A%3Y 2dL 194905 A9RY :dL

@i755990 1)

P2198UU0D" S | Z 21815 U1 UL S1 184208 [/

pa1dasoe” 194205 'g

Sau_1q [59001d)
19400 Aoa iLdL

134005 puss :9dL’

199005 Paso D :8dl

+(SS91ppy UMOUN " | 1A 'S 11) 1de0de 195905

(@ ssa%04d)

u rebe Bu 191 1T :0TdL

(@raneis ‘gi ssa%0id)
19205 pa1daddy :Gdl|

¥Sd @18 18U

buuais 1714008 v

£(@ 17184905 7BA 1197 S Iy] *,U\paso [2" me 193905 ,) Ju 1d

t

- - Sfea 1q
1(@17 194908 @A 110V 'S 1Y)
)850 19 19%905 © /S 31elauzD 1 Ine jop
jea 1q
“4+17un00

t(sS2Uppy UMOUy | | S Iy
‘abessal)a jeduod :,T, ased
yea i
$(9beSSaN 'S 11 'Q 1T 19905 A 119%°S 11
)PUBS 18205 : GSY 9 B JaUED
{(obessau ‘abessay s 141)a jeduod g, 9B
}
(7% Q17S5204d S 1U1)y2 1 ms

(('12= 1n0o) F8’ (€ == A $$2901d 'S 141))

T = 1jun0d jui 9 l%els
PaA 1993 '6 18 1S 841 U1 S 1 19905 //

108 | 197 PaA 1998 17

19390578 1197 'S 141)3S0 |97 193905 :/SY 8 18 1D

194905 2T

£ (6o 149eq 'sS3 1ppy UMOUN ™

@17sse001d)

950197 199905 ¥T & Qrsse00d)

luos 9 21018 3 U1 81 1awo0s. /7

(705 peso D 84l

““““““““ 193205 Paso D :gdl (
_ - - fea 1q
$(01719%90578A 119y 'S 141)350 |97 193305 © /Sy e I3UBD (1 Ine jop .
Hyea iq
, [s A
19%00S 73 119y S 1111)350 [97 193005 1 /S 2 1B JBULD S o fealq 1 ne jap
(abessay s 1) _ _ yea iq
11 184905 8A 119y 'S 14 1)puas 124005 : SS 1B JauaD) 3110y 'S 14})A22 1719005 © 95y 21e AU T, ased
(2> sun0d) J1 .0, ased yes iq
| fea iq 4 .
£(@ 1719905 78A 119y 'S 141)A03 4719905 9S4 81BJAUD :.Z, 95D aA 110y 'S 14})pUSs 19%20S © S 1LIAUD [0, BSED
Qr)
3 (@1 s59901d) (- .
b 9% Q17SS8204d S W1)ud 1 ms } (@ 5% q"s5090 14 'S 141401 M nwwm
Suay 1oA00s paso D igdL as 1o i5bessan s 1) = Tebessau w1} ‘g
Il £(@ 17124905 78A 119V S 141)350 |97 193005 _: /S 9 le Jau)
((1== sn0d) 33 (== 6_ $5900.d°S 141))) 411(Q171949057aA 119y 'S 141)as0 97194205 © JSY 2 1eduaD)
| = Sun0d Wi 21lels (2 == QI 5S800.d S 141)

Pa19auuD 'y 3781 BUY U I S| 184208

(sbessau g $52204d)
18)00s MDY :ldLl

Larr

= - R 19 wes 108 T1 { pa10auu0a 103005 01 palea o 193905 2
abessau_q | $s200d o - _ —
194005 A9Rd L ~3 33 o34 sen20d), (p 17199905 155990 1d)
p o 19%00S palean Tdl
- 8 28
@i"s5900.4d) S8z 3 {
185908 puss :9dL’) i . . . - . . _
23 = (TN 1N W8 1 DTN 119y $S2 UppY Umowy
. — ob o3 (sbessau ‘g |7ss220.d) Pl U3 1|2)aleald 13005 TISY 31BIAuAD)
19905 79A 119 'S 1y1)A23 4719905 © 95y e ssunT o = 193005 A0S :ldL 1(@1 $S8201d°S 1Y) 'PI B 1[9) 1834205 B 1ed O
aA 19031 joUUED L 91B1S Byl Ul 195005 [/ |& 2 @ 5900 1) 3
- o abessau oy £TdL es |
(@1755890 1d) P — {
abEssau ON €TdL S(TOT T ‘0 'T ‘0PI ianiss)a1eaioT 194005 i1Sd 818 JauaD
(sbessau ' 1"s59904d) @1 $5990.d "SIyl P1 JaA19s) 193905 188 D
193905 A9@ :2dL }

< (@17559901d) 3o a1 Jou
U iFoutios o ZTdL | Tanied o="a 1 el1) 41

)
1)

e (2 1oy ooty L1 S
‘A1 18905 BA 11 'S 1Y)

LT

@1 sse20ud)
194908 UB1S 1T pdl

Papu Iq” 183205 ‘€

(@r"s5990 1d)
193005 papU 1g :zdL

1ppy”Umouy|
UG 194208 : 9TSd @ 1B JaUD 85 |9

)193UU02 19005 (ESY 9 16 JouaD)

_ (WaIp == a4 'sIyl) 1
(@ 17559901 1P 17193908 = Q| 14905 A 119V 'S I}
122057 Pa 108UUCD Edl

@r-ss890 id)
abessau oy €TdL

(zsau 1abaju|

‘Tsau 1abaiu|
) @1eduos p jon

(eBessau *1o300s7aA 1108 ‘sS2IppEPaUS 1 qnd ‘adA1 p1) $59901d 1991 3188 O

(ebessau 190087

o woot ERIEIEN
ToReT 199905 wa) | 105 T |

(1onsos == a0 s1d1) 41
P aua I Jul 31telS
= pi Janiss i diels

(oo 7]

an 1108 ‘ssauppe pays i jgnd ‘adA1 'p1)
$S3001d 1S3 @1ed D TIdL

EER

Test Process State Model

Figure 3.4

22

unique identifier, to map different generated events on instances of the Test_Process.

We constructed a model of a socket used for communication between two
processes. Communication includes establishing a connection and an exchange of
messages between processes. To test communication, at least one instance of a
Test_Process (Role = Server) generating events for the Public_Socket and for the
Regular_Socket (Whoami = Active_Server) is required. The State Model for the
Server includes states 1 through 9 in Fig. 3.4. The State Model for the Client
includes states 1, 2, and 10 through 14 in Fig. 3.4. In order to establish a connection,
a Public_Socket, listening for a connection request, must be created first. This can
be achieved by creating a Public_Socket, binding it to some Well_Known_Address,
and then executing listen(), accept().

Consider the state Socket_connected(10) of the Test_Process on Fig. 3.4.
It corresponds to the state Connected(4) of a Regular_Socket (Whoami = Ac-
tive_Client). In the state Connected(4), an Active_Client can accept three events
generated by an external entity, Test_Process, and one event generated by another
instance of a Regular_Socket (Whoami = Active_Server). In our model, to test the
transitions of the Active_Client from the state Connected(4), a Test_Process (Pro-
cess_ID = 2), generates an event RS7: Socket_close(), instances of the Test_Process
with even Process_ID generate an event RS5: Socket_send(), and instances of the
Test_Process with odd Process_ID generate an event RS6: Socket_recv(). One of the
attributes of the Test_Process is an attribute Active_Socket_ID. Each Test_Process
generates events to the instance of an Active_Client (Socket_ID = this.Active_Socket_ID).
The keyword this identifies a special type of pointer to a currently active in-
stance of an object. Any of these events causes an instance of Active_Client to
change state from Connected(4) to some other state. For example, an event RS7:
Socket_close(), brings an instance of Active_Client (Socket_ID = 2) to the state Clos-
ing(10). Upon arrival in this state, Active_Client (Socket_ID = 2) generates an event

TP8: Closed_socket() which returns control back to the Test_Process. The instance

23

of the Test_Process changes its state to the terminal state Socket_closed(14), where
no further events are generated.

An event RS5: Socket_send() forces an instance of an Active_Client to make a
transition from the state Connected(4) to the state Sending(5), in which only event,
RS13: Recvd, generated by an instance of an Active_Server, can be accepted. After
accepting this event, an instance of an Active_Client arrives in the state Sent(6),
and returns control to the Test_Process by generating an event TP6: Send_socket().

After receiving an event RS6: Socket_recv(), an instance of a Regular_Socket
changes its state from the state Connected(4) to the state Cannot_receive(7), where
it generates an event T'P13: No_message() to return control to the Test_Process.

At this point, we have completely covered the allowable transitions from
the state Connected(4). The same approach is used to cover all states of a Regu-
lar_Socket and a Public_Socket, and to complete the state model for the Test_Process.

By instantiating multiple copies of the Test_Process object, which will instan-
tiate and drive multiple copies of the Socket object through all possible state/event
combinations, we test the Socket model for consistency and validity.

If a system was modified, and the modifications are proven to be confined to
a given state or a set of states in the OOA State Model then test generation can be

focused on that state or those states.

3.5 Object Communication Model

The Object Communication Model is shown on Fig. 3.5. It captures interactions
between objects.
Ovals represent objects and arrows represent events sent from a source object
to a recipient. Events’ labels include abbreviations of recipient objects.
According to the OOA notation, events, generated and consumed by the
same object, are not depicted. This is why events modeling interactions between

two different instances of a Regular_Socket are not shown.

24

The Object Communication Model was very useful at the stage of debugging
the model.

The Models of the Socket and the Test_Process Objects described in this
chapter were compiled into SES/objectbench simulation language, and animated. It
has been verified that the model of test driver correctly navigates the model of the
socket through a pre-defined sequence of states.

The next step — translation of the model of the test driver into the test suite

is described in the following chapter.

25

Socket

& 7
4 g g

\
{7\ & T
o 3 o
© o
- —_
o] ©
(] [
X c
2 5
3 8
5129197195205 :TSY T/F’a‘/:/Oo)nnect ed_socket @

— . TP6: Send_socket
29UU0D 1332 : —
Jo8uu 19 OS/E}SH YA

puas™ 18)20S :GSY TP7: Recv_socket

Subsyst em
Locat i on:

_ /.
A3 17 19X20S [9sy
S S S S

_ TP1: Created_socket
89S0 |0 18)20S :/SY

TP8: C osed_socket

(]
(%]
(4} el
3K 2
& B g
S B&R T
o ,’00 bt
z o KX |
~13 " 5
N X P5: Accept ed_socket =
< N\ i 34
2l TP4:_ Li sten_socket 2
[y c
3 TP2:_Bi nded_socket 8
5 AS\N y
—x _ TP1: Created_socket b
8l pu 19183205 19TSd o
= AN
ua1s || 19%4920S :ZSd

_ NN\
1dadoe™ 18%90S $Sd
_ N\

9189407 19%90S :TSd

Publ i c_Socket

Figure 3.5: Object Communication Model

26

Chapter 4

Implementing a Test Suite

In this chapter the translation of a Test_Process State Model into a test suite
for conectioin-oriented sockets is described. C code for the test suite and sample
outputs of tests are presented in Appenix A.

Our Test_Process State Model was constructed to test the socket abstraction
with the assumption that execution environment for sockets is correct: communi-
cation protocols, communication domains, addressing schemes in communication
domains, buffer management, memory management.

In order to translate the model into a test program, however, we need to re-
solve all these matters. Useful examples of how to use network routines are presented
in [14].

We translated our model for a particular case of of connection-oriented sock-
ets created with the system call socket(AF_INET, SOCK_STREAM, 0). Parameters
supplied for this particular system call indicate that a socket ought to be created
in the Internet communication domain, be connection-oriented (SOCK_STREAM),
and use the TCP protocol - a default protocol for connection-oriented sockets in the
Internet communication domain.

The following system header files define socket-related utility functions and

data structures used when operating on sockets:

27

<sys/socket.h>
<sys/socketvar.h>
<netinet/in.h>

<arpa/inet.h>

Many of the socket calls require a pointer to a socket address structure as an argu-

ment. The definition of this structure is in

<sys/socket.h>
struct sockaddr {
u_short sa_family; /* address family */

char sa_datal14]; /* protocol-specific address */

};

The contents of a protocol-specific address are interpreted according to the type of

address. For the Internet family the following structures are defined in

<netinet/in.h>:
struct sockaddr_in {
u_char sin_len;
u_char sin_family; /* AF_INET =/
u_short sin_port; /* 16-bit port number */
struct in_addr sin_addr; /* 32-bit netid/hostid */

char sin_zero[8]; /* unused */

To operate on the socket address structure the following standard C library
functions are used:
bzero — writes the specifies number of null bytes to a specified destination.
htonl — converts an unsigned long integer from host byte order to Internet network

byte order.

28

htons — converts an unsigned short integer from host byte order to Internet network
byte order.

Address conversion routines between Internet addresses are written in dotted-
decimal format XXX.XX.XXX.XXX and in_addr structure.
inet_addr — converts an Internet address into Internet numbers.
inet_ntoa — converts an Internet address into an ASCII string. C definitions and

data type definitions are given in the header file
<sys/types.h>.

It has already been mentioned, that at least two events in our model cor-
respond to each system call. A Test_Process generates an event to a subtype of a
Socket object and waits for return of control — an event generated by a subtype
of a Socket object. A system call returns a non-negative integer if successful. A
correspondence between system calls and modeling events can be found in Sections
3.2 and 3.3.

After addressing and networking issues were resolved the rest of implemen-
tation of a test suite was very easy.

The scenario for testing was as follows: a server starts on foghorn.cs.utexas.edu.
The network address of a server’s host and a port of its Well_Known _Socket is hard-
coded in 7inet.h” file (see Appendix A.3). Clients from another machine request
connection, send and receive messages, and quit. Each client process executes its
own sequence of system calls corresponding to the possible state machines for the
Test_Process State Model.

For the Socket object to cover all possible state/event combinations at least
7 different instances of the Client process must be invoked. A number is assigned to
each instance of a Client process. Depending on this number a Client process exe-
cutes its own sequence of system calls, corresponding to the possible state machines
for the Test_Process (Role = Client) State Model. Validating checks are placed after

each systen call to insure that each step is properly executed.

29

We are testing communication between two processes using sockets. We
designed our test suite such that client and server complement each other’s actions.
If a client executes a send() system call, a server executes a receive(), and vice versa.
Received messages are printed out. The cases when Client number 5 executes or
Server serves Client number 6 are used for testing the connection — a message that
was sent by one process is received by its peer, and sent back. The first process
compares the message it sent against the received message and prints both messages.

Testing was performed on a network of AIX and Sun workstations at the
Computer Science Department of the University of Texas at Austin.

In Appendix A.1, a C code for a client part of the test suite is given. In
Appendix A.2 a C code for a server part of the test suite is given. A header file
used by both programs is given in Appendix A.3. In Appendix A.4 a sample output
of running the server part of the test suite is presented. In Appendix A.5 a sample

output of running the client part of the test suite is presented.

30

Chapter 5

Conclusion and Future Plans

In this thesis we used the Shlaer/Mellor approach to the OOA methodology
to develop a test suite for existing software. We used this approach to create a test
suite for the Unix Sockets system calls.

We showed that that black-box testing of a system can be partitioned into a
subset of small tests which cover all possible state/event combinations for the model
of the system, and that there is no need to perform random or exhaustive testing.

First, a model of an existing software system (Socket) was constructed at a
high level of abstraction using the software documentation.

Second, a state model for a driver (Test_Process) based upon the state model
for the socket object was constructed. Each instance of a test process object gener-
ates events, driving a socket object through a pre-defined set of states.

The model was captured, animated, and the dynamic behavior of the model
was verified using the SES/objectbench tool. Different scenarios (main driver pro-
gram) were executed to validate te correctness of the Test_Process State Model.

Third, the state model for the test process was translated into C language
code by replacing ”create” object instances and ”generate” event statements of the
OOA with the appropriate calls to socket library routines, and generating loops

over state variables. Appropriate tests for validation at different points in action

31

language programs associated with each state were added.

Fourth, a developed test suite was tested on a network of workstations.

In future we plan to create a complete test suite for sockets library system
calls by adding more system calls and taking into account datagram (connectionless)
sockets. We are also planning to add testing of filtering of events to verify whether a
given state rejects invalid events. We would like to use the code generator CodeGe-
nesis recently developed to use with SES/objectbench2.2 for automatic translation

of a driver state machine into C4++4 language code.

32

Appendix A

Test Code

A.1 client_test.c

[R R Rk koo ook ok sk ok sk sk sk skok ok ok ok ok ok ok ok ok sk sk ok sk sk ok ok ok ok ok ok sk sk sk sk sk sk skok ok ok ok ok ok ko o
* Connection-oriented Client.
* Communication Domain - AF_INET.
* Communication Protocol - TCP.
KRRk koo ko ko ok sk sk ok sk sk skok ok ok ok ok ok ok ok ok sk sk sk sk sk ko ok ok ok ok ok kok sk sk sk sk sk sk skok ok ok ok ok ok ok ok ok /
#include <stdio.h>
int main(int argc, char *argv[])
{
int howmany; /* how many clients are connecting */
int j;
int client(int number);
printf ("How many clients:");
scanf ("%d", &howmany); /* get number of clients */
printf ("\n");
for (j = 1; j <= howmany; j++)
{

33

Printf (Mkkksskkkrskkkxkokkrkkkkkkkkkkxx\n") ;

printf("Client %d\n", j);

client(j); /* invoke a client */
+

exit (0);

int client(int number)

[ok Kk ok ok sk ok ok ok sk ok ok ok ok ok ok s ok ok ok sk ok ok sk K ok ok oK ok ok ok ok ok ok ok ok ok ok s ok ok ok ok sk ok K ok ok ok ok ok ok ok ok ok ok ok ok
¥ Client initiates connection with a server.

¥ Different instances of client execute different state machines.

***/

{

#include "inet.h"

#define MAXSIZE 512 /* buffer size */
int sockfd;

struct sockaddr_in serv_addr; /* Well-Known-Socket address*/
char sendbuf[512], recvbuf[512]; /* buffers for data */
static char message[] = "0ld McDonalds had a farm";
static char message_server[] = "Frosty, the snowman, had a soul";
int msglength, msgserlength, k; /* length of the messages */
void print_message(char *buffer, int count); /* prints buffer */
int send_client(int sockfd, char * buffer, int message_length,
char *message) ;
int recv_client(int sockfd, char * buffer, int message_length);
[o ok ok ok sk ok K o o ok ok ok K K K ok ok oK ok K K K K o ok ok ok ok oK K K K o ok ok ok ok ok K K K K ok ok ok ok ok ok K K K o ok ok ok ok ok ok K K ok Kk

* Specify Well-Known-Socket address.

34

**/

bzero((char *) &serv_addr, sizeof(serv_addr));

serv_addr.sin_family AF_INET;

serv_addr.sin_addr.s_addr = inet_addr(SERV_HOST_ADDR);

serv_addr.sin_port htons (SERV_TCP_PORT) ;

[KoK ok Kok ok ok sk o ok ok ok ok o ok ok K oK oK o K oK ok ok ok ok ok ok o ok ook o sk ok ok o ok ok o ok ok ok ok K oK o K oK K oK o K oK K K K o
* Create a socket.
sk ok ok K oK o oK ok o o KoK ok K ok ok o oK o K oK oK o K oK oK ok oK oK ok ok K ok o ok o ok ok sk ok ok ok ok ok ok ok ok Kok oK KK ok ok oK
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)

printf("Client: error opening stream socket\n");

else printf('"Client: opened stream socket\n");

msgserlength = strlen(message_server);
msglength = strlen(message);

[ks ok o ok s ok sk ok sk ok sk sk o ok ok ok sk ok sk ko ok ok ok sk ok skok sk ok sk sk sk ok sk sk o sk sk sk sk sk sk sk s sk ok ok sk o sk ok ok ok sk ok

* Connect to the server.

sk ok sk sk o ok o ok ok ok sk ok sk sk o sk o ok ok ok ok ok sk ok ok ok ok ok sk ok ok sk ok sk sk ok o sk sk o sk ok sk sk ok sk ok sk sk sk sk sk sk ok ok sk ok
if (connect(sockfd, (struct sockaddr *) &serv_addr,

sizeof(serv_addr)) < 0)
printf("Client: error connecting to server\n");

else

printf("Client: connected to server\n");

/**

* Execute state machine for a given instance of a client

S KKK oK oK K oK K oK K K K oK K oK K oK KK oK K oK o oK ok o oK oK K oK o oK oK KoK KK oK KK kK sk ok K kK ok ok o
printf("Client: my number is %d\n', number);

if (number == 1) ;

35

else if (number == 2) recv_client(sockfd, recvbuf, msgserlength);

3)

else if (number =
send_client(sockfd, sendbuf, msglength, message);
else if (number == 4) {
for (k = 1; k<=2; k++)
recv_client(sockfd, recvbuf, msgserlength);
}
else if (number == 5) {
send_client(sockfd, sendbuf, msglength, message);
recv_client(sockfd, recvbuf, msglength);
}
else if (number == 6) {
recv_client(sockfd, recvbuf, msgserlength);
send_client(sockfd, sendbuf, msgserlength, recvbuf) ;
}
else if (number == 7) {
for (k = 1; k<=2; k++)

send_client(sockfd, sendbuf, msglength, message);

}
else {
for (k = 1; k<= (number/2); k++)
{
send_client(sockfd, sendbuf, msglength, message);
recv_client(sockfd, recvbuf, msglength);
}
}

/***

36

* Close socket.
sk sk ok sk o ok o ok ok ok sk ok sk sk sk o ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok sk ok sk ok ok sk ok sk sk sk ok sk sk ok sk ok sk sk sk ok sk sk ok ok
if (close(sockfd) < 0)
printf("Client: error closing socket\n");

else printf("Client: socket closed\n");

void print_message(char *buffer, int count)

[ks sk ok sk ok sk ok sk ok sk ok sk sk o ok ok ok sk ko ok o ok sk ok sk ok ok ok sk ok sk ok skok sk ok sk ok sk ok ok sk ok sk ok skok sk ok sk sk sk ok ok ok o

* Prints the content of the buffer

sk ks sk o ok o ok ok ok sk ok sk sk sk o ok ok ok ok ok sk ok ok sk ok sk ok skok sk ok sk ok sk sk sk ok sk sk ok ok sk sk sk sk sk sk ok ok sk sk ok
char *p = buffer;

int i = 0;

while ((xp != °\0’) && (i < count))
{

putchar (*p);

pt+;

i++;

¥

putchar(’\n’);

int send_client(int sockfd, char * buffer,
int message_length, char *message)

/***

37

* Copies a message to the buffer, and sends it

**/

{
void print_message(char xbuffer, int count);

if (strcpy(buffer, message) < 0)
printf("Client: problem copying a message\n");

if (send(sockfd, buffer, message_length, 0) < 0)
printf("Client: error sending message\n");

else {
printf("Client: message sent\n");

print_message(buffer, message_length) ;

int recv_client(int sockfd, char * buffer, int message_length)

/***

* Receives a message of a length message_lengt in the buffer

sk ok ok ok ook ok sk ok ok ok ook ook ok ok oK ok ok o ok ok ok ok ok ok o ok ok ook ok ok o sk ok ok ok sk ok ok ok ok ok ok ok ook ok o sk ok ok ok ok ok K ok ok
{
void print_message(char xbuffer, int count);
if (recv(sockfd, buffer, message_length, 0) < 0)
printf("Client: error receiving message\n");
else A
printf("Client: message received\n");

print_message(buffer, message_length) ;

38

A.2 server_test.c

[ok Kk ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok s ok ok ok ok s ok sk ok sk ok sk K ok ok sk ok ok ok ok ok ok ok ok ok ok ok s ok ok ok s ok Kok ok ok K
* Connection-oriented ITERATIVE Server.
* Communication Domain - AF_INET.
* Communication Protocol - TCP.

**/

#include "inet.h"

#define MAXSIZE 512 /* buffer size */

#define DEBUG

int main(int argc, char *argv[])

int sockfd, newsockfd, clilen, childpid;

struct sockaddr_in cli_addr, serv_addr;

static char messagel[] = "Frosty, the snowman, had a soul";
static char message_client[] = " 01d McDonalds had a farm";
char sendbuf[512], recvbuf[512]; /* buffers for data */
int msglength, msgclilength; /* length of the messages */

int counter = 1;

int howmany, j; /* how many clients will connect */

void print_message(char xbuffer, int count);

int send_server(int sockfd, char * buffer, int message_length,
char *message) ;

int recv_server(int sockfd, char * buffer, int message_length);

39

printf ("How many clients:");
scanf ("%d",&howmany) ;
printf ("\n");
[Kok ok ok ok ok ok ok o ok ok sk ok ok ok ook ok o ok ok ook ok ok o ok ook ok o oK ok K oK oK ok oK o K oK K oK oK K oK oK ok K oK K ok K K o
* Create a socket.
sk ok ok ok ok ok K oK o oK ok ok ok ook o ook ok o ok ok ok ok ok ok o ok ok ok ok o ok ok K oK oK oK ok oK o Kok oK KK oK oK ok K oK K ok ok ok
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
printf("Server: error opening stream socket\n");
else printf('"Server: stream socket opened\n");
[Kok ok ok sk ok ok ok o ok ok sk ok sk ok ok ok o ok ok ok o ok ok o sk ook ok o ok ok K oK ok ok o oK o K oK oK oK ok K oK o K ok K oK o K ok KR K oK
* Bind socket to a Well-Known-Socket address.
sk ok ok K ok ok K oK o oK ok ok ok oK o ook ok o ok ook o ok ok o ok ok sk ok o ok ok oK K ok ok o oK o Kok o oK ok K oK oK ok K oK K ok oK K ok

bzero((char *) &serv_addr, sizeof(serv_addr));

serv_addr.sin_family AF_INET;

serv_addr.sin_addr.s_addr = htonl (INADDR_ANY);

serv_addr.sin_port htons (SERV_TCP_PORT) ;
if (bind(sockfd, (struct sockaddr *) &serv_addr,
sizeof(serv_addr)) < 0)
printf("Server: error binding local address\n");
else printf("Server: stream socket binded\n");
[Kok ok ok ok ok ok ok o ok ok sk ok ok ok ook ok o ok ok ook ok ok o ok ook ok o oK ok K oK oK ok oK o K oK K oK oK K oK oK ok K oK K ok K K o
* Listen for connections
sk ok ok ok ok ok K oK o oK ok ok ok ook o ook ok o ok ok ok ok ok ok o ok ok ok ok o ok ok K oK oK oK ok oK o Kok oK KK oK oK ok K oK K ok ok ok
if (listen(sockfd, 5) < 0)
printf("Server: listen error\n");
else printf("Server: stream socket is listening\n");

/***

* Accept a connection

40

ok ok o ok o Kok ok ok ok o K Kok ok ok o R Kok ok ok K Kok ok o K sk ok ok o ok sk ok ok ok sk sk ok ok ok ok ok ok ok ok o ok ok ok
msgclilength = strlen(message_client);
msglength = strlen(message);
while (counter <= howmany)
clilen = sizeof(cli_addr);
newsockfd = accept(sockfd,
(struct sockaddr *) &cli_addr, &clilen);
if (newsockfd < 0)
printf ("Server: accept error");
else
{
printf("Server: stream socket accepted\n");
printf ("Counter %d\n", counter);
if (counter == 1) ;
else if (counter == 2)
send_server(sockfd, sendbuf, msglength, message);
else if (counter == 3)
recv_server (newsockfd, recvbuf, msgclilength);
else if (counter == 4) {
for (j = 1; j<=2; j++)
send_server(newsockfd, sendbuf, msglength, message);
}
else if (counter == 5)
{
recv_server (newsockfd, recvbuf, msgclilength);
send_server(newsockfd, sendbuf, msglength, recvbuf) ;

¥

else if (counter == 6)

41

send_server(newsockfd, sendbuf, msglength, message);
recv_server (newsockfd, recvbuf, msglength);
+
else if (counter == 7) {
for (j = 1; j<=2; j++)
recv_server (newsockfd, recvbuf, msgclilength);
+
else {
for (j = 1; j<= (counter/ 2); j++)
{
recv_server (newsockfd, recvbuf, msgclilength);

send_server(newsockfd, sendbuf, msgclilength, recvbuf) ;

¥

counter++;

¥

[33K ok ok ok ok ok ok ok ok ok o ok ok ok 3 ok oK ok o ok 3K ok ok 3 ok ok 3 ok K ok 3 ok ok 3 ok ok ok o ok 3 ok 3 ok ok o ok ok ok o ok ok ok K
* Close socket.

**/

close(newsockfd);
printf ("Server: stream socket closed\n");

/* end else statement */

close(sockfd);

exit (0);

42

void print_message(char *buffer, int count)

[ks sk ok sk ok sk ok sk ok sk ok sk sk o ok ok ok sk ko ok o ok sk ok sk ok ok ok sk ok sk ok skok sk ok sk ok sk ok ok sk ok sk ok skok sk ok sk sk sk ok ok ok o
* Prints the content of the buffer

sk ks sk o ok o ok ok ok sk ok sk sk sk o ok ok ok ok ok sk ok ok sk ok sk ok skok sk ok sk ok sk sk sk ok sk sk ok ok sk sk sk sk sk sk ok ok sk sk ok

{

char *p = buffer;

int i = 0;
while ((xp != °\0’) && (i < count))
{
putchar (*p);
p++;
i++;
+

putchar(’\n’);

int send_server(int sockfd, char * buffer,
int message_length, char *message)
[3ok s ok stk sk oo o ok sk sk oo s ok sk stk s ok sk stk ok sk sk sk sk o sk sk sk sk o sk sk sk sk o o ks sk o o ok okok o o o ok
* Copies a message to the buffer, and sends it
s sk sk o o o ok sk sk ok oo o ok sk stk sk o o ok sk stk o e kok sk sk s ok stk sk ook sk sk sk s o o sk sk sk s o sk sk sk sk o o ok sk o ok o /

{

void print_message(char xbuffer, int count);

43

if (strcpy(buffer, message) < 0)
printf("Server: problem copying a message\n");
if (send(sockfd, buffer, message_length, 0) < 0)
printf("Server: error sending message\n");
else {
printf("Server: message sent\n");

print_message(buffer, message_length) ;

int recv_server(int sockfd, char * buffer, int message_length)

/***

* Receives a message of a length message_lengt in the buffer

**/

{

void print_message(char xbuffer, int count);

if (recv(sockfd, buffer, message_length, 0) < 0)
printf("Server: error receiving message\n");
else {
printf("Server: message received\n");

print_message(buffer, message_length) ;

44

A.3 1inet.h

/**

* Definitions are taken from [14444].

***/

#include <stdio.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#include <arpa/inet.h>
#define SERV_TCP_PORT 4001 /* TCP port */

#define SERV_HOST_ADDR '"128.83.143.205"

/* host addr for server, foghorn.cs.utexas.edu */

45

A4

client_run

owl), script client_run

Script started, file is client_run

% cli_test

How many clients:8

%k 3k 3k %k 3k >k %k 3k 3k %k ok 3k %k 3k >k %k %k *k %k %k %k 5k %k >k %k %k %k *k

Client

Client:
Client:
Client:

Client:

1

opened stream socket
connected to server
my number is 1

socket closed

%k 3k 3k %k 3k >k %k 3k 3k %k ok 3k %k 3k >k %k %k *k %k %k %k 5k %k >k %k %k %k *k

Client

Client:
Client:
Client:
Client:
Frosty,

Client:

2

opened stream socket
connected to server

my number is 2

message received

the snowman, had a soul

socket closed

%k 3k 3k %k 3k >k %k 3k 3k %k ok 3k %k 3k >k %k %k *k %k %k %k 5k %k >k %k %k %k *k

Client

Client:
Client:
Client:
Client:

Client:

3

opened stream socket
connected to server
my number is 3
message sent

socket closed

%k 3k 3k %k 3k >k %k 3k 3k %k ok 3k %k 3k >k %k %k *k %k %k %k 5k %k >k %k %k %k *k

46

Client 4

Client: opened stream socket
Client: connected to server
Client: my number is 4

Client: message received
Frosty, the snowman, had a soul
Client: message received
Frosty, the snowman, had a soul
Client: socket closed

ok Kok oK
Client 5

Client: opened stream socket
Client: connected to server
Client: my number is 5

Client: message sent

01d McDonalds had a farm
Client: message received

01d McDonalds had a farm
Client: socket closed

ok Kok oK
Client 6

Client: opened stream socket
Client: connected to server
Client: my number is 6

Client: message received
Frosty, the snowman, had a soul
Client: message sent

Frosty, the snowman, had a soul

47

Client: socket closed

ok Kok oK
Client 7

Client: opened stream socket
Client: connected to server
Client: my number is 7
Client: message sent

0ld McDonalds had a farm
Client: message sent

0ld McDonalds had a farm
Client: socket closed

ok Kok oK
Client 8

Client: opened stream socket
Client: connected to server
Client: my number is 8
Client: message sent

0ld McDonalds had a farm
Client: message received
0ld McDonalds had a farm
Client: message sent

0ld McDonalds had a farm
Client: message received
0ld McDonalds had a farm
Client: message sent

0ld McDonalds had a farm
Client: message received

01d McDonalds had a farm

48

Client: message sent

0l1d McDonalds had a farm
Client: message received
0l1d McDonalds had a farm
Client: socket closed

h

script done on Mon Apr

8 17:24:41 1996

49

A.5

server_run

foghorny, script server_run

Script started, file is server_run

% ser_test

How many clients:8

Server:

Server:

Server:

Server:

Counter

Server:

Server:

Counter

Server:

Server:

Server:

Counter

Server:

stream socket

stream socket
stream socket
stream socket
1
stream socket
stream socket
2

message sent
stream socket
stream socket

3

opened
binded
is listening

accepted

closed

accepted

closed

accepted

message received

01d McDonalds had a farm

Server:

Server:

Counter

Server:

Server:

Server:

Server:

Counter

stream socket
stream socket
4

message sent
message sent
stream socket
stream socket

5

closed

accepted

closed

accepted

50

Server: message received
Server: message sent

01d McDonalds had a farm
Server: stream socket closed
Server: stream socket accepted
Counter 6

Server: message sent

Frosty, the snowman, had a soul
Server: message received
Frosty, the snowman, had a soul
Server: stream socket closed
Server: stream socket accepted
Counter 7

Server: message received

01d McDonalds had a farm
Server: message received

01d McDonalds had a farm
Server: stream socket closed
Server: stream socket accepted
Counter 8

Server: message received

01d McDOld McDonalds had a farm
Server: stream socket closed
Server: stream socket accepted
Counter 8

Server: message received

01d McDonalds had a farm

Server: message sent

51

0l1d McDonalds had a farm
Server: message received
0l1d McDonalds had a farm
Server: message sent

0l1d McDonalds had a farm
Server: message received
0l1d McDonalds had a farm
Server: message sent

0l1d McDonalds had a farm
Server: message received
0l1d McDonalds had a farm
Server: message sent

0l1d McDonalds had a farm
Server: stream socket closed

% Script done, file is server_run

Bibliography

[1] SES/objectbench User’s Guide. 1993.

[2] Boris Beizer. Black-Box Testing. Techniques for Functional Testing of Software
and Systems. Wiley, 1992.

[3] Grady Gooch. Object-Oriented Analysis and Design with Applications. Ben-
jamin/Cummings, 1994.

[4] Infotech. Software Testing. Maidenhead, 1979.
[5] Cem Kaner. Testing Computer Software. Blue Rigde Sum, 1988.

[6] Edward Kit. Software Testing in the Real World: Improwing the Process. Wok-
ingham, 1995.

[7] Samuel Leffler. 4.3 BSD UNIX Operating System. Addison-Wesley, 1988.
[8] Clenford Myers. The Art of Software Testing. New York, 1979.
[9] William Perry. Effective Methods for Software Testing. New York, 1995.

[10] Thomas Royer. Software Testing Management: Life on the Critical Path. En-
glewood, 1993.

[11] James Rumbaugh. Object-Oriented Modeling and Design. Prentice-Hall, 1991.

[12] Sally Shlaer and Steven Mellor. Object-Oriented Systems Analysis. Modeling
the World in Data. Prentice-Hall, 1988.

53

[13] Sally Shlaer and Steven Mellor. Object Lifecycles. Modeling the World in States.
Prentice-Hall, 1992.

[14] Richard Stevens. UNIX Network Programming. Prentice-Hall, 1990.

[15] Pavan Vohra. Software Testing with a Test Data Generation Tool. THESIS,
1987.

54

Vita

Almadena Yurevna Chtchelkanova was born in Tashkent, USSR on March 11,
1962, the daughter of Svetlana Y. Chtchelkanova and Yury A. Chtchelkanov. After
completing her work at 187 High School, Tashkent, USSR, in 1978, she entered
Moscow Lomonosov State University in Moscow, USSR. She received her degree of
Master of Science in Astronomy, in January, 1984, and her Ph.D. in Physics and
Mathematics, in November, 1988 from Moscow Lomonosov State University.

During 1987 - 1991 she was employed as a Research Scientist in the Intstitute
of Scientific and Technical Information of Academy of Sciences in Moscow, USSR.
She published 12 papers in russian astronomical journals. In January, 1995, she

entered The Graduate School at The University of Texas.

Permanent Address: 3355-D Lake Austin Blvd.
Austin, TX 78703

This thesis was typeset with IATEX 22! by the author.

'ATEX 2¢ is an extension of IATEX. BTEX is a collection of macros for TEX. TEX is a trademark
of the American Mathematical Society. The macros used in formatting this thesis were written by
Dinesh Das, Department of Computer Sciences, The University of Texas at Austin.

55

