
CopyrightbyAlmadena Yurevna Chtchelkanova1996

The Application of Object-Oriented Analysis to SocketsSystem Calls Library TestingbyAlmadena Yurevna Chtchelkanova, M.S., Ph.D.ThesisPresented to the Faculty of the Graduate School ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofMaster of ArtsThe University of Texas at AustinMay 1996

The Application of Object-Oriented Analysis to SocketsSystem Calls Library Testing
Approved bySupervising Committee:

The e�ort of completion of this research work was possible by the support of myloving family

AcknowledgmentsI'd like to acknowledge faculty and sta� members of the Department of ComputerSciences, University of Texas at Austin for providing a great environment for studyand research.I am very greatful to Professor Robert van de Geijn for his continuous support.I am also grateful to Professor James C. Browne for his invaluable advice whensupervising my research. Almadena Yurevna ChtchelkanovaThe University of Texas at AustinMay 1996
v

The Application of Object-Oriented Analysis to SocketsSystem Calls Library TestingAlmadena Yurevna Chtchelkanova, M.A.The University of Texas at Austin, 1996Supervisor: J.C. BrowneObject-oriented analysis (OOA) is an orderly and systematic approach for thedevelopment of software systems. Software systems developed in the OOA methodare readily tested and validated. There are, however, many systems that weredeveloped either previous to the availability of the OOA methodology or withoutits use. Many of these systems still exist, are frequently modi�ed and thus must beretested after modi�cation. There is a signi�cant need for a capability for organizedand systematic testing of existing software.In this thesis we show how the OOA methodology can be used to developa test suite for existing software to facilitate maintenance and modi�cation of theexisting software. The current practice in testing existing software systems is largelyan ad hoc process of trial and error, ranging from random testing to exhaustivetesting. Use of the OOA methodology provides an orderly and systematic processfor hierarchical development of test suites, even for existing software. This conceptis illustrated by development of a test suite for the Unix Sockets Library system.Sockets are abstract objects which implement interprocess communication betweenunrelated processes in Unix.Test development for the socket library using the OOA methodology can bede�ned in four steps: vi

(1) Construct an information and state model for the socket system from theexisting documentation.(2) Construct a state model for a test process object based upon the statemodel for the socket object. Each instance of a test process object will generateevents, driving a socket object through a pre- de�ned set of states.(3) Derive a main driver program which will instantiate multiple copies ofthe test process object which will then instantiate and drive multiple instances ofthe socket object.These �rst three steps are executed using the SES Objectbench tool to createthe objects and state models and to verify their consistency and validity.(4) Generate actual test code by coding the main test object and translat-ing the process object models to C code or any other programming language. Inthis translation the events in the action language programs of the state model arereplaced by appropriate system calls to the socket system. Validation checks areplaced after each system call to insure that each step is properly executed.A detailed statement of the problem, an overview of functional testing, andan overview of Berkeley Unix Sockets are given in Chapter 1. An OOA Shlaer{Mellorapproach is described in Chapter 2. In Chapter 3, abstract models of a connection-based socket and a test process are constructed based on the socket system callspeci�cations provided by the Berkeley Unix System. Implementation of the testsuite is described in Chapter 4. Sample test programs, and results of testing socketsare presented in Appendix A.
vii

ContentsAcknowledgments vAbstract viList of Figures xChapter 1 Problem Overview 11.1 Problem Statement . 11.2 Functional Test Design Strategies Overview 41.3 Sockets Overview . 5Chapter 2 Shlaer/Mellor Approach to OOA 82.1 OOA Overview . 82.2 Identifying Objects . 92.3 Identifying Relationships . 102.4 Speci�cation of Behavior: State Model 112.5 Object Communication Model . 12Chapter 3 Building a Socket Model 133.1 Information Model . 133.2 Public Socket State Model . 163.3 Regular Socket State Model . 18viii

3.4 Building Test Process State Model 213.5 Object Communication Model . 24Chapter 4 Implementing a Test Suite 27Chapter 5 Conclusion and Future Plans 31Appendix A Test Code 33A.1 client test.c . 33A.2 server test.c . 39A.3 inet.h . 45A.4 client run . 46A.5 server run . 50Bibliography 53Vita 55

ix

List of Figures3.1 Socket Information Model . 143.2 Public Socket State Model . 173.3 Regular Socket State Model . 203.4 Test Process State Model . 223.5 Object Communication Model . 26

x

Chapter 1Problem Overview1.1 Problem StatementThere is a vast body of existing software which is modi�ed and extendedon a regular basis. Testing of these modi�ed and extended software systems is amajor problem. Most of the time the testing is done on a black box basis, thatis the software is invoked through its external interface using a broad spectrum ofparameters. This form of testing is both uncertain as to its result and tedious inexecution.The purpose of this paper is to demonstrate that an object-oriented analysismethodology can be used to derive a covering set of tests for existing softwaresystems. OOA provides a systematic approach to speci�cation of the existing systemat a high level of abstraction so that entire families of behavioral tests can bedesigned and executed. This approach is especially important when the source codeof a software system is not available or the structure is complex and di�cult tounderstand.The requirement for deriving an appropriate test suite is knowledge of thestructure and behavior of the system. It is the fuzzy understanding of structure andbehavior (as well as complexity) which makes testing di�cult.1

OOA begins by specifying a system as a collection of objects and relationshipsbetween the objects, [12], [13], [11], and [3]. Every object is described by a set ofattributes. At every moment, an object is in some well de�ned state which can befully described by the values of its attributes. All possible states of an object arede�ned in the information model of this object at an abstract level. Associated witheach state there exists an event which causes a transition of an object from thisstate to another (possibly the same) state. There is also associated with each stateof the object an action which is executed upon arrival at the state. Events may begenerated either by other objects comprising the system, or may come from externalobjects. Objects can be created (instantiated) and destroyed. Upon creation, eachinstance of an object gets and begins to execute its own private copy of its statemodel { a state machine.The critical factor in the use of the OOA methodology to develop a test suiteis that it provides an orderly and systematic means of de�ning the structure andbehavior, even of an existing system. The procedure is to take the requirementsstatement and/or the documentation describing an existing software system and toconstruct an object-oriented analysis level model which re
ects the structure andbehavior of the system and to then use this model to de�ne the tests. This thesisdemonstrates this approach to test suite generation through a case study.For our case study we select a BSD Unix socket as a test object. Socketsare used for interprocess communications. Sockets system calls have a very wellde�ned and relatively simple interface. The sockets system calls library is constantlyunder construction. Adding new communication protocols and new socket typesrequires testing the full functionality of the library. A major part of the interprocesscommunication software (IPC) is machine independent, but there is a hardware-dependent part which must be tested when the OS is ported to a new hardwareplatform.Socket system library calls represent events which cause a socket to make a2

transition from one state to another, and invoke some actions associated with thetransitions. To test a socket object we need another object, a test driver, to generatesystem calls for the socket. Our system thus will consist of two objects, a socketand a driver. To develop a model of this system we used the SES/objectbench toolbased on the Shlaer/Mellor approach to OOA. This tool allows one to capture amodel of a system, to simulate and animate interactions of model objects, and toeasily analyze and validate the dynamic behavior of the system.Our �rst aim is to construct an information and state model of a socket at ahigh level of abstraction, based on the description of the UNIX socket call library.The model needs to be expressed in terms of the SES/objectbench graphical andaction language. Having a model of a socket object, it is then conceptually easyto construct a state model of a test driver generating an appropriate sequence ofvalid events navigating the socket model through a sequence of allowed states. Thedriver object model has to be expressed in terms of the same action language. TheSES/objectbench is then used to debug both models and to verify that the modeldriver correctly steers the model socket through a pre-de�ned sequence of states.The bene�t of using SES/objectbench is obvious - creation and validation of a driveris �rst made on a high level of abstraction, before actual software design starts.Using the SES/objectbench and a code generator CodeGenesis, developed for usingwith it, it would be possible to automate a functional test process design and toreduce the time spent on test creation.After the model of the test is developed and validated using SES/objectbench,we have to translate it into a desirable target code. This can be done by hand orby using a code generator. For large models, the second approach has obviousadvantages. The overhead is in writing the code generator for a target language.Once written, the code generator can be reused for subsequent models.3

1.2 Functional Test Design Strategies OverviewMore than 80% of the lifecycle time of a software product is spent ondebugging and testing [2]. This is why proper organization and design of tests isvery important. There is no single systematic way for generating test programs.Methods vary from random tests to exhaustive tests. There is no systematic way totest the testing software.In this paper, we show how to apply Object-Oriented Analysis to the func-tional testing of a software system as an orderly and systematic way for generatingsets of covering tests. We assume that there exists a usable speci�cation of thesoftware system from which an OOA model can be constructed.Functional (black-box), or behavioral testing, checks if a software systemconforms to its speci�cation. Functional testing doesn't test the correctness of thespeci�cation of the software. It is assumed that a model is correct, and that bugsare in the software implementation of the model. Functional testing checks, if in theresponse of a given input, the state of the system is changed according to the spec-i�cations, and proper actions are executed after arriving at a new state. Functionaltesting drives the system with inputs, and all outputs are veri�ed for conformanceto speci�ed behavior. Functional testing takes the users' point of view. We don'tneed to know anything about actual design and implementation of software in orderto be able to test it. Behavioral testing is based on a model of software, not on thesoftware. Veri�cation of the model includes the testing of the control
ow, the statetransitions and changing of state-related attributes. The key part of the veri�cationis that the model properly re
ects the behavior embedded in the actual software.In the case of testing the correctness of the system call library we have todistinguish� testing of the return value of the system call. The library calls are testedfor both success and failure conditions. Failure is expected when incorrectparameters are passed to a system call, or a system condition under which4

the failure is expected is simulated (example - exhausting a per-process �ledescriptors number by opening a number of �les);� testing whether the state of the system is changed according to the speci�ca-tions and proper actions are associated with each state.We start with the second approach. When a state model for a software systemis constracted based on its speci�cations there is a �nite number of events whichcan be accepted in every state of the model. That means that our problem spaceis partitioned into small well-de�ned problems. By covering all possible state/eventcombinations, we derive exhaustive tests on each state of the model, and thus themodel itself.Description of the testing techniques can be found in [2], [6], [5], [9], [10], [4],[8], [15].1.3 Sockets OverviewIn this section a brief overview of sockets is given.Sockets were introduced as a part of Interprocess Communication Facilities(IPC) implemented in 4.3 BSD Unix. Sockets became a part of the standard IPCin the System V and all modern
avors of Unix. Sockets allow unrelated processesto communicate regardless of whether they are running on the same host or acrossa network.A socket is an abstract object from which messages are sent and received. Allsockets are typed according to their communication semantics. Types are de�nedby the subset of properties a socket supports. These properties are:� in-order delivery of data;� unduplicated delivery of data;� reliable delivery of data; 5

� preservation of message boundaries;� support of out-of-band messages;� connection-oriented communication.Sockets are created within a communication domain much as �les are created withina �lesystem. Sockets exist only as long as they are referenced. A communicationdomain embodies the standard semantics of communication and naming.A socket must be created with a socket() system call. We are going to skip theparameters for the following system calls. The type of socket is selected accordingto the characteristic properties required by the application. The next step dependson the type of socket being used. The most commonly used type of socket requiresa connection before it can be used. Creation of a connection between two socketsrequires that each socket have an address bound to it. The format of addressescan vary among domains. Socket addresses may be reused if the communicationdomain permits, although domains normally ensure that a socket address is uniqueon each host, so that the association between two sockets is unique within thecommunication domain. To bind an address to a socket a system call bind() is used.A system call, connect(), initiates a connection with another socket. A system call,listen(), marks a socket as receiving connection requests. A system call, accept(),creates a new socket which is connected to a socket requesting a connection, andthe original socket is listening for new connections to come. The system calls listedabove are used for establishing connections between two sockets.The main use of sockets is sending and receiving data. For connected sockets,send() and recv() calls are used.Inquiry system calls give information about socket attributes without chang-ing a state of a the socket: getsockname() returns a socket address, and getpeer-name() returns a name of a peer socket (the socket on the other end of a connection).The shutdown() system call is used to terminate data transmission or reception at a6

socket. Getsockopt() and setsockopt() are used to set and retrieve various parame-ters that control the operation of a socket or underlying network protocols. Socketsare discarded with the normal close() system call. A detailed description of socketsystem calls can be found in [14].The interprocess-communication facilities are layered on the top of the net-working facilities. Data
ows from the application through the socket layer to thenetworking support, and vice versa. Sockets and network facilities are implementedwithin the kernel. A description of the implementation of the sockets can be foundin [7].

7

Chapter 2Shlaer/Mellor Approach toOOA2.1 OOA OverviewObject-Oriented Analysis (OOA) is a method for identifying signi�cantentities in a real-world problem and for understanding and explaining how theyinteract with each other [12], [13], [3], [11].An Object-Oriented Analysis process de�nes� the conceptual entities of the system as objects with semantics de�ned byattributes (Object Information Model);� the relationships among the conceptual entities in terms of binary relationshipsor associative objects (Object Information Model);� the behavior of the conceptual entities as a response to events (or incidents)causing state transitions and actions associated with arrival in each state(State Model);� the interaction between conceptual entities in terms of events generated andaccepted (Object Communication Model);8

� the fundamental and reusable processes into which actions can be dissected.An Object-Oriented Design process de�nes� a set of templates for realizing objects as entities in a programming language;� a set of data structures corresponding to the attributes of the object de�ni-tions;� realizations for actions as executable entities in the form of methods;� mechanisms for de�nition of control
ow among the actions of the realizedobjects.If OOA provides an execution environment speci�ed separately from theapplication, the design representation of the model can be obtained by translation.2.2 Identifying ObjectsAn Object in OOA represents a single typical but unspeci�ed instance of aconceptual entity. Most of the objects fall into the following categories: tangibleobjects, roles, incidents, interactions, speci�cations.Each object has a set of attributes. An attribute is an abstraction of a singlecharacteristic possessed by all entities that were themselves abstracted as an object(a logical state variable). The range of legal values that an attribute can take iscalled its domain. There are three types of attributes:� naming attributes - to establish identity of the object;� descriptive - to provide intrinsic facts to each instance of the object;� referential - to establish relationship.To separate instances of the same object an identi�er is used. An identi�eris a set of one or more attributes whose values uniquely distinguish each instance ofan object. 9

2.3 Identifying RelationshipsA relationship is an abstraction of a set of associations that systematically holdbetween di�erent kinds of things in the real world. The relation can be formalizedby their multiplicity and conditionality. The three basic types of multiplicity are:one-to-one, one-to-many and many-to-many. The three types of conditionality are:unconditional, conditional and biconditional. If every instance of both objects isrequired to participate, the relationship has unconditional form. If there are someinstances of one object that do not participate, the relationship has conditional form.If there are some instances of both objects that do not participate, the relationshiphas biconditional form.The relationship has a unique identi�er. To formalize a one-to-one rela-tionship, referential attributes may be added to either object (but not both). Ina one-to-many relationship, referential attributes must be added to the object onthe "many" side. To formalize a many-to-many relationship, a separate associativeobject must be created that contains references to the identi�ers of each of the par-ticipating instances. The associative object is then treated as a regular object, witha name, object description, additional attributes (if any) and may participate inrelationships with other objects.An associative object may be used to formalize any relationship, not onlymany-to-many relationships. A relationship with dynamic behavior must be formal-ized by means of an associative object.In many problems, distinct specialized objects that have certain commonattributes can be found. In this case, a more general object can be abstracted torepresent common characteristics shared by the specialized objects. These objectsare related through a subtype-supertype relationship.10

2.4 Speci�cation of Behavior: State ModelThe abstraction of the behavioral pattern of an object includes creation anddeletion of the object and changes in values assigned to attributes of object instance.Each instance of an object is always in some well de�ned state. A state representsa condition of the object in which a de�ned set of rules, policies, and physical lawsapplies. Transitions among these states are speci�ed by a State Model. In theShlaer/Mellor approach to OOA, a State Model is formalized as the Moore Statemachine and includes:� a set of states;� a set of allowed transitions between states;� events which cause transitions among the states;� actions which are executed when a state is entered.An event or incident models changes in the external environment or thesystem resources. Event data must include the target of an event. Every statetransition is initiated by one or more events.An action models a program executed by an instance of an object upon entryto a state. One action is associated with each state. Actions include receiving eventdata, creating object instances, accessing object instances, generating events, andmodi�cation of object instances. Actions must be context free.There are some rules for State Models:A given state machine executes only one action at a time.Multiple state machines can be simultaneously active (for di�erent objects or dif-ferent instances of the same object).An action takes time to execute.Actions are atomic.Events are never lost. 11

Events are consumed by the execution of the receiving action.Generated events are instantaneously available.There exists a state machine for each object instance. A state machine is a privatecopy of the state model executed by an object instance. A state machine alwaysaccepts pending events as quickly as possible.Events from a given source are received in the order generated.Event receipt from multiple sources is nondeterministic.There is always only one recipient for any event.Although all objects have lifecycles, it is necessary to build state models toformalize the lifecycles for only some objects which show dynamic behavior.To construct the State Model one must de�ne initial state for each object,list all reachable states for the top level objects, construct state transition diagramswhere each node is an assignment of values to dynamic attributes and each arccarries the event which causes a state transition. Also, one must de�ne for each arcthe methods (actions) triggered by the event which a�ects the change of state.2.5 Object Communication ModelAn Object Communication Model (OCM) provides a summary of eventcommunication between state models and external entities. An OCM is a directedgraph where external agents are included as sources of events, objects are nodes,and arcs carry events across objects.The OCM is typically the top level of observation of a simulated execution.To execute a model, the initial object population must be established, the startingstate of the system must be speci�ed, and starting events generated.During simulation, evaluation of the execution behavior can be monitored interms of state consistency, concurrency among state model instances, proper eventgeneration and consumption, and values of attributes which determine the paththrough the state model. 12

Chapter 3Building a Socket Model3.1 Information ModelIn this section we describe the Information Model of our system in Fig. 3.1. Webuild a model for the socket which is used in connection-oriented communication.This type of socket can be used for sending and receiving information only after aconnection with another socket (peer) is established.We excluded the network communication level from our consideration byassuming that it works properly, and that an instance of a socket generates an eventto another instance of a socket.In SES/objectbench notation each object has an abbreviation indicated inparentheses after the object name.There are two objects in our Model { Socket (S) and Test Process (TP). Sock-ets and Test Processes can be uniquely distinguished by their identi�ers Socket IDand Process ID, respectively.There is a class of sockets used only for accepting communication { Pub-lic Socket (PS) and a class of sockets used for sending and receiving data { Reg-ular Socket (RS). The specialization of the Socket Object is formalized as an R2supertype/subtype relationship. For a subtype/supertype object both a supertype13

1
.

T
e
s
t
_
P
r
o
c
e
s
s

(
T
P
)

*

P
r
o
c
e
s
s
_
I
D

.

R
o
l
e

.

W
e
l
l
_
K
n
o
w
n
_
A
d
d
r
e
s
s

.

A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D

(
R
4
)

.

M
e
s
s
a
g
e

2
.

S
o
c
k
e
t

(
S
)

*

S
o
c
k
e
t
_
I
D

.

P
r
o
c
e
s
s
_
I
D

(
R
1
)

4
.

P
u
b
l
i
c
_
S
o
c
k
e
t

(
P
S
)

*

S
o
c
k
e
t
_
I
D

(
R
2
)

.

A
d
d
r
e
s
s

.

L
i
m
i
t

.

N
_
o
f
_
c
o
n
n
e
c
t
i
o
n
s

.

N
_
o
f
_
r
e
q
u
e
s
t
s

.

C
u
r
r
e
n
t
_
r
e
q
u
e
s
t

3
.

R
e
g
u
l
a
r
_
S
o
c
k
e
t

(
R
S
)

*

S
o
c
k
e
t
_
I
D

(
R
2
)

.

P
e
e
r
_
A
d
d
r
e
s
s

(
R
3
)

.

W
h
o
a
m
i

.

B
u
f
f
e
r
_
i
n

.

B
u
f
f
e
r
_
o
u
t

R
1 h
a
s

R
4

h
a
s

b
e
l
o
n
g
s

t
o

R
3

i
s

c
o
n
n
e
c
t
e
d

i
s

c
o
n
n
e
c
t
e
d

i
s
A

R
2

S
u
b
s
y
s
t
e
m
:

L
o
c
a
t
i
o
n
:

O
b
j
e
c
t
b
e
n
c
h

2
.
2

I
n
d
e
x

W
h
a
t

H
o
w

S
o
c
k
e
t
_
L
a
y
e
r

O
I
M

Figure 3.1: Information Model14

and subtype instances must be created. In the case of a Socket Object, subtypeinstances are active and have a lifecycle. Supertype instances are passive and juststore information. More about supertype/subtype objects can be found in [12], [1].The attributes of a Public Socket are:Address { an address to which a Public Socket is bound.Limit { the number of incoming connections allowed to be queued for processingimposed by the operating system.N of connections { a number of connections queued for processing in a given time.N of requests { a number of connections accepted for processing during the Pub-lic Socket lifetime.Current request { a number of an accepted request which is currently being pro-cessed. A Regular Socket is connected to another Regular Socket. This relationship,R3, is formalized by adding an attribute Peer Address.Other attributes of a Regular Socket Object are:Whoami de�nes the role a socket plays in establishing the connection { an Ac-tive Client or an Active Server.A Regular Socket has two bu�ers - for sending and receiving messages, Bu�er inand Bu�er out. In our Model bu�ers are represented by integers for simplicity.A Test Process has a Role it is playing in the communication between twoprocesses { a Client or a Server. A Client is an initiator of the communication anda Server is a recipient of a communication request.Each process knows a Well Known Address { a Socket ID of the instance ofthe Socket accepting connections. When referring to the address of the Socket wehave in mind Socket ID. To simplify our model, we assumed that the address spaceof the socket has a one-to one correspondence to the identi�er space.A Test Process can have many Sockets. This one-to-many relationship, R1,is formalized by adding a referential attribute Process ID to the Socket Object.15

In our model, each Test Process has one instance of Socket connected toanother instance of Socket belonging to another Test Process. We describe it as arelationship R4. The attribute Active Socket ID of the Test Process formalizes thisrelationship.A Test Process receives from and sends messages to another Test Process.To simplify our model, we assume that a Message is some integer.3.2 Public Socket State ModelEach event in OOA indicates a recipient to which this event is addressed. InSES/objectbench notation an event has a formfobject abbreviationgfevent numberg : fevent nameg(fevent datag).In our state model, every socket library call is represented by at least twoevents. The �rst event models the execution of a system call by a driver process.The last event models the return of the control back to the driver.There are two subtypes of a Socket Object { a Public Socket and a Reg-ular Socket (see above). A Public Socket State Model is shown in Fig. 3.2. ARegular Socket State Model is shown in Fig. 3.3.An instance of a Public Socket in the state Created(1) is created by theevent PS1: Socket create(). The state Created(1) is a creation state. A transitioninto a creation state is depicted as a transition from a special "dot" state. A newlycreated instance of a Public Socket generates an event TP1: Created socket() to theinstance of the Test Process which generated the event PS1: Socket create(). Thesetwo events correspond to the actual system call socket().A system call bind() is represented by the two events, PS16: Socket bind()and TP2: Binded socket(). The event PS16 changes the state of a Public Socketfrom the state Created(1) to the state Binded(2). And the event TP2 returns controlto the Test Process.A Public Socket changes its state from Binded(2) to Listeningi(3) after re-16

1
.

C
r
e
a
t
e
d

3
.

L
i
s
t
e
n
i
n
g

4
.

N
o
n
_
e
m
p
t
y

5
.

A
c
c
e
p
t
i
n
g

6
.

C
a
n
n
o
t
_
a
c
c
e
p
t

2
.

B
i
n
d
e
d

P
S
1
6
:

S
o
c
k
e
t
_
b
i
n
d

(
S
o
c
k
e
t
_
I
D
,

S
o
c
k
e
t
_
A
d
d
r
e
s
s
)

C
r
e
a
t
e

P
u
b
l
i
c
_
S
o
c
k
e
t
(
i
d
,

p
o
s
t
e
d
_
a
d
d
r
e
s
s
,
l
i
m
i
t
,

N
_
c
o
n
,

N
_
r
e
q
,

c
u
r
r
e
n
t
_
r
e
q

)
;

G
e
n
e
r
a
t
e

T
P
1
:

C
r
e
a
t
e
d
_
s
o
c
k
e
t
(
S
o
c
k
e
t
(
t
h
i
s
.
S
o
c
k
e
t
_
I
D
)
.
’
P
r
o
c
e
s
s
_
I
D
’
,

t
h
i
s
.
S
o
c
k
e
t
_
I
D
)
;

P
S
9
:

C
o
n
n
e
c
t
i
o
n
_
r
e
q
u
e
s
t

(
S
o
c
k
e
t
_
I
D
,

R
e
t
u
r
n
_
A
d
d
r
e
s
s
)

P
S
4
:

S
o
c
k
e
t
_
a
c
c
e
p
t

(
S
o
c
k
e
t
_
I
D
)

t
h
i
s
.
L
i
m
i
t

=

b
a
c
k
l
o
g
;

G
e
n
e
r
a
t
e

T
P
4

:

L
i
s
t
e
n
_
s
o
c
k
e
t
(
S
o
c
k
e
t
(
t
h
i
s
.
S
o
c
k
e
t
_
I
D
)
.
’
P
r
o
c
e
s
s
_
I
D
’
)
;

PS4: Socket_accept
 (Socket_ID)

PS9: Connection_request
 (Socket_ID, Return_Address)

i
n
t

s
h
i
f
t

=

1
0
0
;

i
f

(
t
h
i
s
.
N
_
o
f
_
c
o
n
n
e
c
t
i
o
n
s

<

t
h
i
s
.
L
i
m
i
t
)

{

t
h
i
s
.
N
_
o
f
_
c
o
n
n
e
c
t
i
o
n
s

+
=
1
;

/
/
h
o
w

m
a
n
y

p
e
n
d
i
n
g

c
o
n
n
e
c
t
i
o
n
s

t
h
i
s
.
N
_
o
f
_
r
e
q
u
e
s
t
s

+
=
1
;

/
/
h
o
w

m
a
n
y

n
e
w

s
o
c
k
e
t
s

w
e
r
e

c
r
e
a
t
e
d

C
r
e
a
t
e

S
o
c
k
e
t
(
(
t
h
i
s
.
N
_
o
f
_
r
e
q
u
e
s
t
s

+

s
h
i
f
t
)
,
S
o
c
k
e
t
(
t
h
i
s
.
S
o
c
k
e
t
_
I
D
)
.
’
P
r
o
c
e
s
s
_
I
D
’
)
;

G
e
n
e
r
a
t
e

R
S
1
:

S
o
c
k
e
t
_
c
r
e
a
t
e
(

(
t
h
i
s
.
N
_
o
f
_
r
e
q
u
e
s
t
s

+

s
h
i
f
t
)
,

R
e
t
u
r
n
_
A
d
d
r
e
s
s
,

A
c
t
i
v
e
_
S
e
r
v
e
r
,

N
U
L
L
,

N
U
L
L

)
;

}

e
l
s
e

G
e
n
e
r
a
t
e

R
S
1
1

:

C
o
n
n
e
c
t
i
o
n
_
r
e
j
e
c
t
e
d
(

R
e
t
u
r
n
_
A
d
d
r
e
s
s
,

t
h
i
s
.
S
o
c
k
e
t
_
I
D

)
;

P
S
4
:

S
o
c
k
e
t
_
a
c
c
e
p
t

(
S
o
c
k
e
t
_
I
D
)

PS9: Connection_request
 (Socket_ID, Return_Address)

i
f

(
t
h
i
s
.
N
_
o
f
_
c
o
n
n
e
c
t
i
o
n
s

!
=

0

)

{

t
h
i
s
.
C
u
r
r
e
n
t
_
r
e
q
u
e
s
t

+
=

1
;

G
e
n
e
r
a
t
e

R
S
1
5
:

O
p
e
r
a
t
i
n
g
_
s
e
r
v
e
r
(
t
h
i
s
.
C
u
r
r
e
n
t
_
r
e
q
u
e
s
t
)
;

t
h
i
s
.
N
_
o
f
_
c
o
n
n
e
c
t
i
o
n
s

-
=

1
;

} e
l
s
e

G
e
n
e
r
a
t
e

T
P
1
2
:

N
o
_
c
o
n
n
e
c
t
i
o
n
(
S
o
c
k
e
t
(
t
h
i
s
.
S
o
c
k
e
t
_
I
D
)
.
’
P
r
o
c
e
s
s
_
I
D
’
)
;

P
S
9
:

C
o
n
n
e
c
t
i
o
n
_
r
e
q
u
e
s
t

(
S
o
c
k
e
t
_
I
D
,

R
e
t
u
r
n
_
A
d
d
r
e
s
s
)

P
S
4
:

S
o
c
k
e
t
_
a
c
c
e
p
t

(
S
o
c
k
e
t
_
I
D
)

G
e
n
e
r
a
t
e

T
P
1
2
:

N
o
_
c
o
n
n
e
c
t
i
o
n
(
S
o
c
k
e
t
(
t
h
i
s
.
S
o
c
k
e
t
_
I
D
)
.
’
P
r
o
c
e
s
s
_
I
D
’
)
;

P
S
2
:

S
o
c
k
e
t
_
l
i
s
t
e
n

(
S
o
c
k
e
t
_
I
D
,

b
a
c
k
l
o
g
)

t
h
i
s
.
A
d
d
r
e
s
s

=

S
o
c
k
e
t
_
A
d
d
r
e
s
s
;

G
e
n
e
r
a
t
e

T
P
2
:

B
i
n
d
e
d
_
s
o
c
k
e
t
(
S
o
c
k
e
t
(
t
h
i
s
.
S
o
c
k
e
t
_
I
D
)
.
’
P
r
o
c
e
s
s
_
I
D
’
)
;

P
S
1
:

S
o
c
k
e
t
_
c
r
e
a
t
e

(
i
d
,

p
o
s
t
e
d
_
a
d
d
r
e
s
s
,

l
i
m
i
t
,

N
_
c
o
n
,

N
_
r
e
q
,

c
u
r
r
e
n
t
_
r
e
q
)

S
u
b
s
y
s
t
e
m
:

L
o
c
a
t
i
o
n
:

O
b
j
e
c
t
b
e
n
c
h

2
.
2

I
n
d
e
x

W
h
a
t

H
o
w

S
o
c
k
e
t
_
L
a
y
e
r

P
u
b
l
i
c
_
S
o
c
k
e
t

L
i
f
e
c
y
c
l
e

O
b
j
e
c
t

E
v
e
n
t
s

Figure 3.2: Public Socket State Model17

ceiving an event PS2: Socket listen(), and returns control to the Test Process bygenerating an event TP4: Listen socket(). These two events model listen() systemcall. When a Public Socket is in the state Listening(3), it can accept two events:PS4: Socket accept() generated by a Test Process and PS9: Connection request gen-erated by an instance of a Regular Socket. The �rst event changes a state of a Pub-lic Socket to Cannot accept(6) where an event TP12: No connection is generated.SP4 and TP12 model non-blocking accept() system call. It returns a negative inte-ger if there are no pending connections. After receiving PS9, a Public Socket changesstate from Listening(3) to Non empty(4). Upon arrival in the state Non empty(4),a Public Socket processes the connection request { creates a new Regular Socketby generating an event RS1 and updates the values of the attributes. The actionfor this state includes if-logic because the state Non empty(4) can be reached frommany states by receiving an event PS9. If a number of pending connections is lessthan a Limit a connection is processed, and is otherwise rejected by generatingRS11. A Public Socket remains in the state Non empty(4) when receiving an eventPS9, or makes a transition to the state Accepting(5) by receiving event PS4. Uponarrival in this state a Public Socket updates its attributes and transfers control toa previously created instance of a Regular Socket by generating an event RS15. Asystem call accept() is modeled by a sequence of events. The return of control to theTest Process when a system call succeeds is done by a Regular Socket by generatingan event TP5.3.3 Regular Socket State ModelTo refer to an instance of an object having some de�ned value of an attributethe following notation is used:fobject nameg(fattribute nameg = fattribute valueg).18

An instance of a Regular Socket in the creation state Created(1) is createdby an event RS1: Socket create(). In this section refer to Fig. 3.3. An event RS1 canbe generated by an instance of a Test Process (Role = Client), or by an instance ofa Public Socket. We will refer to an instance of a Test Process (Role = Client) as aClient, and a Test Process (Role = Server) as a Server. We will refer to an instance ofa Regular Socket (Whoami = Active Server) as an Active Server, and to an instanceof a Regular Socket (Whoami = Active Client) as an Active Client. A newly createdinstance of an Active Client generates an event TP1: Created socket() to the instanceof the Client which generated the event PS1. Events RS1 and PS1 model the actualsystem call socket(). After receiving an event RS3: Socket connect(), an instanceof a Active Client changes its state from Created(1) to Connecting(3). Upon arriv-ing in the state Connecting(3) it generates an event PS9: Connection request to aPublic Socket.An Active Server changes its state from Created(1) to Is connected(2) af-ter receiving an event RS15: Operating server() from a Public Socket. Note thatActive Server and Public Socket belong to the same Server. An event RS15 trans-fers control from a Public Socket to an Active Server. An Active Server proceedswith establishing a connection with an Active Client. Upon arriving at the stateIs connected(2), an Active Server generates two events. An event RS10: Connec-tion accepted() is directed to an instance of an Active Client requesting a connec-tion. Another event TP5: Accepted socket() returns control to an instance of theServer. After receiving an event RS10, an instance of an Active Client changes itsstate from the state Connecting(3) to the state Connected(4). Upon arriving at thestate Connected(4), an Active Client generates an event TP3: Connected socket()which returns control to the Client. At this point a connection between two Regu-lar Sockets is established and processes can send and receive messages. From Fig. 3.3it is clear that state machines for an Active Client and an Active Server are iden-tical and we can again refer to both instances as a Regular Socket. From the state19

1
.

C
r
e
a
t
e
d

3
.

C
o
n
n
e
c
t
i
n
g

4
.

C
o
n
n
e
c
t
e
d

5
.

S
e
n
d
i
n
g

8
.

R
e
c
e
i
v
i
n
g

9
.

R
e
c
e
i
v
e
d

6
.

S
e
n
t

2
.

I
s
_
c
o
n
n
e
c
t
e
d

7
.

C
a
n
n
o
t
_
r
e
c
e
i
v
e

1
0
.

C
l
o
s
i
n
g

R
S
3
:

S
o
c
k
e
t
_
c
o
n
n
e
c
t

(
S
o
c
k
e
t
_
I
D
,

R
e
t
u
r
n
_
A
d
d
r
e
s
s
)

R
S
1
5
:

O
p
e
r
a
t
i
n
g
_
s
e
r
v
e
r

(
S
o
c
k
e
t
_
I
D
)

C
r
e
a
t
e

R
e
g
u
l
a
r
_
S
o
c
k
e
t
(
i
d
,

p
o
s
t
e
d
_
a
d
d
r
e
s
s
,

w
h
o
a
m
i
,

b
u
f
_
i
n
,

b
u
f
_
o
u
t
)
;

i
f

(

!
(

t
h
i
s
.
W
h
o
a
m
i

=
=

A
c
t
i
v
e
_
S
e
r
v
e
r

)
)

G
e
n
e
r
a
t
e

T
P
1
:

C
r
e
a
t
e
d
_
s
o
c
k
e
t
(
S
o
c
k
e
t
(
t
h
i
s
.
S
o
c
k
e
t
_
I
D
)
.
’
P
r
o
c
e
s
s
_
I
D
’
,

t
h
i
s
.
S
o
c
k
e
t
_
I
D
)
;

R
S
1
0
:

C
o
n
n
e
c
t
i
o
n
_
a
c
c
e
p
t
e
d

(
S
o
c
k
e
t
_
I
D
,

R
e
t
u
r
n
_
A
d
d
r
e
s
s
)

R
S
1
1
:

C
o
n
n
e
c
t
i
o
n
_
r
e
j
e
c
t
e
d

(
S
o
c
k
e
t
_
I
D
,

R
e
t
u
r
n
_
A
d
d
r
e
s
s
)

G
e
n
e
r
a
t
e

P
S
9

:

C
o
n
n
e
c
t
i
o
n
_
r
e
q
u
e
s
t
(

t
h
i
s
.
P
e
e
r
_
A
d
d
r
e
s
s
,
t
h
i
s
.
S
o
c
k
e
t
_
I
D

)
;

RS5: Socket_send
 (Socket_ID, message)

R
S
6
:

S
o
c
k
e
t
_
r
e
c
v

(
S
o
c
k
e
t
_
I
D
)

RS12: Send
 (Socket_ID, message)

R
S
7
:

S
o
c
k
e
t
_
c
l
o
s
e

(
S
o
c
k
e
t
_
I
D
)

t
h
i
s
.
P
e
e
r
_
A
d
d
r
e
s
s

=

R
e
t
u
r
n
_
A
d
d
r
e
s
s
;

G
e
n
e
r
a
t
e

T
P
3

:

C
o
n
n
e
c
t
e
d
_
s
o
c
k
e
t
(
S
o
c
k
e
t
(
t
h
i
s
.
S
o
c
k
e
t
_
I
D
)
.
’
P
r
o
c
e
s
s
_
I
D
’
)
;

R
S
1
3
:

R
e
c
v
d

(
S
o
c
k
e
t
_
I
D
)

t
h
i
s
.
B
u
f
f
e
r
_
o
u
t

=

m
e
s
s
a
g
e
;

G
e
n
e
r
a
t
e

R
S
1
2

:

S
e
n
d
(
t
h
i
s
.
P
e
e
r
_
A
d
d
r
e
s
s
,

t
h
i
s
.
B
u
f
f
e
r
_
o
u
t
)
;

R
S
6
:

S
o
c
k
e
t
_
r
e
c
v

(
S
o
c
k
e
t
_
I
D
)

R
S
7
:

S
o
c
k
e
t
_
c
l
o
s
e

(
S
o
c
k
e
t
_
I
D
)

t
h
i
s
.
B
u
f
f
e
r
_
i
n

=

m
e
s
s
a
g
e
;

G
e
n
e
r
a
t
e

R
S
1
3
:

R
e
c
v
d
(
t
h
i
s
.
P
e
e
r
_
A
d
d
r
e
s
s
)
;

R
S
1
2
:

S
e
n
d

(
S
o
c
k
e
t
_
I
D
,

m
e
s
s
a
g
e
)

R
S
6
:

S
o
c
k
e
t
_
r
e
c
v

(
S
o
c
k
e
t
_
I
D
)

R
S
5
:

S
o
c
k
e
t
_
s
e
n
d

(
S
o
c
k
e
t
_
I
D
,

m
e
s
s
a
g
e
)

R
S
7
:

S
o
c
k
e
t
_
c
l
o
s
e

(
S
o
c
k
e
t
_
I
D
)

G
e
n
e
r
a
t
e

T
P
7

:

R
e
c
v
_
s
o
c
k
e
t
(
S
o
c
k
e
t
(
t
h
i
s
.
S
o
c
k
e
t
_
I
D
)
.
’
P
r
o
c
e
s
s
_
I
D
’
,

t
h
i
s
.
B
u
f
f
e
r
_
i
n
)
;

R
S
5
:

S
o
c
k
e
t
_
s
e
n
d

(
S
o
c
k
e
t
_
I
D
,

m
e
s
s
a
g
e
)

R
S
7
:

S
o
c
k
e
t
_
c
l
o
s
e

(
S
o
c
k
e
t
_
I
D
)

R
S
1
2
:

S
e
n
d

(
S
o
c
k
e
t
_
I
D
,

m
e
s
s
a
g
e
)R
S
6
:

S
o
c
k
e
t
_
r
e
c
v

(
S
o
c
k
e
t
_
I
D
)

G
e
n
e
r
a
t
e

T
P
6

:

S
e
n
d
_
s
o
c
k
e
t
(
S
o
c
k
e
t
(
t
h
i
s
.
S
o
c
k
e
t
_
I
D
)
.
’
P
r
o
c
e
s
s
_
I
D
’
)
;

R
S
5
:

S
o
c
k
e
t
_
s
e
n
d

(
S
o
c
k
e
t
_
I
D
,

m
e
s
s
a
g
e
)

R
S
6
:

S
o
c
k
e
t
_
r
e
c
v

(
S
o
c
k
e
t
_
I
D
)

R
S
1
2
:

S
e
n
d

(
S
o
c
k
e
t
_
I
D
,

m
e
s
s
a
g
e
)

R
S
7
:

S
o
c
k
e
t
_
c
l
o
s
e

(
S
o
c
k
e
t
_
I
D
)

G
e
n
e
r
a
t
e

R
S
1
0
:

C
o
n
n
e
c
t
i
o
n
_
a
c
c
e
p
t
e
d

(
t
h
i
s
.
P
e
e
r
_
A
d
d
r
e
s
s
,

t
h
i
s
.
S
o
c
k
e
t
_
I
D
)
;

G
e
n
e
r
a
t
e

T
P
5
:

A
c
c
e
p
t
e
d
_
s
o
c
k
e
t

(
S
o
c
k
e
t
(
t
h
i
s
.
S
o
c
k
e
t
_
I
D
)
.
’
P
r
o
c
e
s
s
_
I
D
’
,

t
h
i
s
.
S
o
c
k
e
t
_
I
D
)
;

R
S
1
2
:

S
e
n
d

(
S
o
c
k
e
t
_
I
D
,

m
e
s
s
a
g
e
)

R
S
6
:

S
o
c
k
e
t
_
r
e
c
v

(
S
o
c
k
e
t
_
I
D
)

G
e
n
e
r
a
t
e

T
P
1
3
:

N
o
_
m
e
s
s
a
g
e
(

S
o
c
k
e
t
(
t
h
i
s
.
S
o
c
k
e
t
_
I
D
)
.
’
P
r
o
c
e
s
s
_
I
D
’
)
;

R
S
1
:

S
o
c
k
e
t
_
c
r
e
a
t
e

(
i
d
,

p
o
s
t
e
d
_
a
d
d
r
e
s
s
,

w
h
o
a
m
i
,

b
u
f
_
i
n
,

b
u
f
_
o
u
t
)

G
e
n
e
r
a
t
e

T
P
8

:

C
l
o
s
e
d
_
s
o
c
k
e
t
(
S
o
c
k
e
t
(
t
h
i
s
.
S
o
c
k
e
t
_
I
D
)
.
’
P
r
o
c
e
s
s
_
I
D
’
)
;

S
u
b
s
y
s
t
e
m
:

L
o
c
a
t
i
o
n
:

O
b
j
e
c
t
b
e
n
c
h

2
.
2

I
n
d
e
x

W
h
a
t

H
o
w

S
o
c
k
e
t
_
L
a
y
e
r

R
e
g
u
l
a
r
_
S
o
c
k
e
t

L
i
f
e
c
y
c
l
e

O
b
j
e
c
t

E
v
e
n
t
s

Figure 3.3: Regular Socket State Model20

Connected(3) and the state Is connected(2), allowed transitions are the same. ARegular Socket can accept four events: RS5: Socket send(), RS6: Socket recv, andRS7: Socket close(), generated by a Test Process, and RS12: Send(), generated byits peer. A peer is a Regular Socket on the other end of the connection as we alreadymentioned. The transitions between states, and actions of a Regular Socket uponarrival in a new state are strightforward.3.4 Building Test Process State ModelAt this point, constructed State Models for a Regular Socket (Fig. 3.2) and aPublic Socket (Fig. 3.3) allow derivation of a Test Process State Model, see Fig. 3.4.When an instance of a socket is in a certain state, only a few allowabletransitions can change its current state. By bringing an instance of a socket intoeach state, and testing all allowable transitions leading from this state, we coverall possible legal state/event combinations for our abstract model. The number ofthis transitions is �nite, and, by executing them all, we completely test the model.To achieve complete node coverage, multiple copies of a Socket driven by multiplecopies of a Test Process are required.In the State Model for a Test Process, each state of the Test Process corre-sponds to a certain state of a Socket. A Test Process generates only those eventswhich can be accepted by the Socket in a given state. (Tests of �ltering of eventscan be implemented in a similar way to verify that each state rejects invalid events).When receiving an event from a Socket, an instance of a Test Process changes itsstate, which corresponds to the new state of a Socket, and in which another �nitenumber of events can be generated.The method of mapping state machines executed by instances of a Test Processcan be any method allowing coverage of all possible state/event combinations. Inour State Model for the Test Process, we use the value of the attribute Process ID, a21

1
.

C
r
e
a
t
e
d

3
.

S
o
c
k
e
t
_
b
i
n
d
e
d

4
.

S
o
c
k
e
t
_
l
i
s
t
e
n
i
n
g

1
0
.

S
o
c
k
e
t
_
c
o
n
n
e
c
t
e
d

1
1
.

S
o
c
k
e
t
_
s
e
n
t
_
c
l
i
e
n
t

1
2
.

S
o
c
k
e
t
_
r
e
c
e
i
v
e
d
_
c
l
i
e
n
t

1
4
.

S
o
c
k
e
t
_
c
l
o
s
e
d

5
.

S
o
c
k
e
t
_
a
c
c
e
p
t
e
d

7
.

S
o
c
k
e
t
_
r
e
c
e
i
v
e
d
_
s
e
r
v
e
r

8
.

S
o
c
k
e
t
_
s
e
n
t
_
s
e
r
v
e
r

9
.

D
o
n
e

6
.

N
o
_
m
e
s
s
a
g
e
_
s
e
r
v
e
r

2
.

S
o
c
k
e
t
_
c
r
e
a
t
e
d

v
o
i
d

c
o
m
p
a
r
e

(

I
n
t
e
g
e
r

m
e
s
1
,

I
n
t
e
g
e
r

m
e
s
2

)

1
3
.

N
o
_
m
e
s
s
a
g
e

T
P
1
:

C
r
e
a
t
e
d
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
,

s
o
c
k
e
t
_
i
d
)

C
r
e
a
t
e

T
e
s
t
_
P
r
o
c
e
s
s

(

i
d
,

t
y
p
e
,

p
u
b
l
i
s
h
e
d
_
a
d
d
r
e
s
s
,

a
c
t
i
v
e
_
s
o
c
k
e
t
,

m
e
s
s
a
g
e
)
;

s
t
a
t
i
c

i
n
t

s
e
r
v
e
r
_
i
d

=

1
;

s
t
a
t
i
c

i
n
t

c
l
i
e
n
t
_
i
d

=

2
;

i
f

(
t
h
i
s
.
R
o
l
e

=
=

S
e
r
v
e
r
)

{

C
r
e
a
t
e

S
o
c
k
e
t

(
s
e
r
v
e
r
_
i
d
,

t
h
i
s
.
P
r
o
c
e
s
s
_
I
D
)
;

G
e
n
e
r
a
t
e

P
S
1
:

S
o
c
k
e
t
_
c
r
e
a
t
e
(

s
e
r
v
e
r
_
i
d
,

0
,

1
,

0
,

1
,

1
0
1

)
;

}

e
l
s
e

{

C
r
e
a
t
e

S
o
c
k
e
t

(
c
l
i
e
n
t
_
i
d
,

t
h
i
s
.
P
r
o
c
e
s
s
_
I
D
)
;

G
e
n
e
r
a
t
e

R
S
1
:

S
o
c
k
e
t
_
c
r
e
a
t
e
(

c
l
i
e
n
t
_
i
d
,

t
h
i
s
.
W
e
l
l
_
K
n
o
w
n
_
A
d
d
r
e
s
s
,

A
c
t
i
v
e
_
C
l
i
e
n
t
,

N
U
L
L
,

N
U
L
L

)
;

c
l
i
e
n
t
_
i
d
+
+
;

}

T
P
4
:

L
i
s
t
e
n
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
)

i
f

(

t
h
i
s
.
R
o
l
e

=
=

S
e
r
v
e
r

)

G
e
n
e
r
a
t
e

P
S
2

:

S
o
c
k
e
t
_
l
i
s
t
e
n
(

t
h
i
s
.
W
e
l
l
_
K
n
o
w
n
_
A
d
d
r
e
s
s
,

b
a
c
k
l
o
g
)
;

T
P
5
:

A
c
c
e
p
t
e
d
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
,

S
l
a
v
e
_
I
D
)

T
P
1
2
:

N
o
_
c
o
n
n
e
c
t
i
o
n

(
P
r
o
c
e
s
s
_
I
D
)

G
e
n
e
r
a
t
e

P
S
4

:

S
o
c
k
e
t
_
a
c
c
e
p
t
(

t
h
i
s
.
W
e
l
l
_
K
n
o
w
n
_
A
d
d
r
e
s
s

)
;

T
P
6
:

S
e
n
d
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
)

T
P
7
:

R
e
c
v
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
,

m
e
s
s
a
g
e
)

T
P
1
3
:

N
o
_
m
e
s
s
a
g
e

(
P
r
o
c
e
s
s
_
I
D
)

T
P
8
:

C
l
o
s
e
d
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
)

/
/

s
o
c
k
e
t

i
s

i
n

t
h
e

s
t
a
t
e

4
.
C
o
n
n
e
c
t
e
d

i
f

(
t
h
i
s
.
P
r
o
c
e
s
s
_
I
D

=
=

2
)

G
e
n
e
r
a
t
e

R
S
7

:

S
o
c
k
e
t
_
c
l
o
s
e
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

e
l
s
e

{

i
n
t

m
e
s
s
a
g
e
1

=

t
h
i
s
.
M
e
s
s
a
g
e
;

s
w
i
t
c
h
(
t
h
i
s
.
P
r
o
c
e
s
s
_
I
D

%

2
)

{

c
a
s
e

’
0
’
:

G
e
n
e
r
a
t
e

R
S
5

:

S
o
c
k
e
t
_
s
e
n
d
(

t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
,

m
e
s
s
a
g
e
1
)
;

b
r
e
a
k
;

c
a
s
e

’
1
’
:

G
e
n
e
r
a
t
e

R
S
6

:

S
o
c
k
e
t
_
r
e
c
v
(

t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

b
r
e
a
k
;

d
e
f
a
u
l
t
:

b
r
e
a
k
;

}

}

T
P
7
:

R
e
c
v
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
,

m
e
s
s
a
g
e
)

TP6: Send_socket
 (Process_ID)

TP13: No_message
 (Process_ID)

T
P
8
:

C
l
o
s
e
d
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
)

/
/

s
o
c
k
e
t

i
s

i
n

t
h
e

s
t
a
t
e

6
.
S
e
n
t

s
t
a
t
i
c

i
n
t

c
o
u
n
t
s

=

1
;

i
f

(
(
(
t
h
i
s
.
P
r
o
c
e
s
s
_
I
D
)

=
=

4
)

&
&

(
c
o
u
n
t
s

=
=
1
)
)

G
e
n
e
r
a
t
e

R
S
7

:

S
o
c
k
e
t
_
c
l
o
s
e
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

e
l
s
e

{

s
w
i
t
c
h
(
t
h
i
s
.
P
r
o
c
e
s
s
_
I
D

%

4
)

{

c
a
s
e

’
2
’
:

G
e
n
e
r
a
t
e

R
S
6

:

S
o
c
k
e
t
_
r
e
c
v
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

b
r
e
a
k
;

c
a
s
e

’
0
’
:

i
f

(

c
o
u
n
t
s

<

2
)

G
e
n
e
r
a
t
e

R
S
5

:

S
o
c
k
e
t
_
s
e
n
d
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
,

t
h
i
s
.
M
e
s
s
a
g
e
)
;

e
l
s
e

G
e
n
e
r
a
t
e

R
S
7

:

S
o
c
k
e
t
_
c
l
o
s
e
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

c
o
u
n
t
s
+
+
;

b
r
e
a
k
;

d
e
f
a
u
l
t
:

G
e
n
e
r
a
t
e

R
S
7

:

S
o
c
k
e
t
_
c
l
o
s
e
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

b
r
e
a
k
;

}

}

T
P
6
:

S
e
n
d
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
)

T
P
8
:

C
l
o
s
e
d
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
)

T
P
7
:

R
e
c
v
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
,

m
e
s
s
a
g
e
)

T
P
1
3
:

N
o
_
m
e
s
s
a
g
e

(
P
r
o
c
e
s
s
_
I
D
)

/
/
s
o
c
k
e
t

i
s

i
n

t
h
e

s
t
a
t
e

9
.
R
e
c
e
i
v
e
d

s
t
a
t
i
c

i
n
t

c
o
u
n
t
r

=

1
;

i
f

(
(
t
h
i
s
.
P
r
o
c
e
s
s
_
I
D

=
=

3
)

&
&

(
c
o
u
n
t
r

=
=
1

)
)

G
e
n
e
r
a
t
e

R
S
7
:

S
o
c
k
e
t
_
c
l
o
s
e
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

e
l
s
e

{

s
w
i
t
c
h
(
t
h
i
s
.
P
r
o
c
e
s
s
_
I
D

%

4
)

{

c
a
s
e

’
3
’
:

c
o
m
p
a
r
e
(
t
h
i
s
.
M
e
s
s
a
g
e
,

m
e
s
s
a
g
e
)
;

G
e
n
e
r
a
t
e

R
S
5

:

S
o
c
k
e
t
_
s
e
n
d
(

t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
,

t
h
i
s
.
M
e
s
s
a
g
e
)
;

b
r
e
a
k
;

c
a
s
e

’
1
’
:

c
o
m
p
a
r
e
(
m
e
s
s
a
g
e
,

t
h
i
s
.
W
e
l
l
_
K
n
o
w
n
_
A
d
d
r
e
s
s
)
;

i
f

(

c
o
u
n
t
r

<
=

2

)

G
e
n
e
r
a
t
e

R
S
6

:

S
o
c
k
e
t
_
r
e
c
v
(

t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

e
l
s
e

G
e
n
e
r
a
t
e

R
S
7

:

S
o
c
k
e
t
_
c
l
o
s
e
(

t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

c
o
u
n
t
r
+
+
;

b
r
e
a
k
;

d
e
f
a
u
l
t
:

G
e
n
e
r
a
t
e

R
S
7

:

S
o
c
k
e
t
_
c
l
o
s
e
(

t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

b
r
e
a
k
;

}

}
p
r
i
n
t
f
(
"
S
o
c
k
e
t

%
d

c
l
o
s
e
d
\
n
"
,

t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

T
P
7
:

R
e
c
v
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
,

m
e
s
s
a
g
e
)

TP13: No_message
 (Process_ID)

T
P
8
:

C
l
o
s
e
d
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
)

T
P
6
:

S
e
n
d
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
)

/
/

s
o
c
k
e
t

i
s

i
n

t
h
e

s
t
a
t
e

2
.
I
s
_
c
o
n
n
e
c
t
e
d

t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D

=

S
l
a
v
e
_
I
D
;

i
f

(
(
R
e
g
u
l
a
r
_
S
o
c
k
e
t
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
.
’
P
e
e
r
_
A
d
d
r
e
s
s
’
)
=
=

2
)

G
e
n
e
r
a
t
e

R
S
7

:

S
o
c
k
e
t
_
c
l
o
s
e
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

e
l
s
e

{

s
w
i
t
c
h
(
(
R
e
g
u
l
a
r
_
S
o
c
k
e
t
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
.
’
P
e
e
r
_
A
d
d
r
e
s
s
’
)

%

2
)

{

c
a
s
e

’
0
’
:

G
e
n
e
r
a
t
e

R
S
6

:

S
o
c
k
e
t
_
r
e
c
v
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

b
r
e
a
k
;

c
a
s
e

’
1
’
:

G
e
n
e
r
a
t
e

R
S
5

:

S
o
c
k
e
t
_
s
e
n
d
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
,

t
h
i
s
.
M
e
s
s
a
g
e
)
;

b
r
e
a
k
;

}

}

T
P
6
:

S
e
n
d
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
)

T
P
1
3
:

N
o
_
m
e
s
s
a
g
e

(
P
r
o
c
e
s
s
_
I
D
)

T
P
7
:

R
e
c
v
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
,

m
e
s
s
a
g
e
)

T
P
8
:

C
l
o
s
e
d
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
)

/
/

s
o
c
k
e
t

i
s

i
n

t
h
e

s
t
a
t
e

9
.

s
t
a
t
i
c

i
n
t

c
o
u
n
t
r
s

=

1
;

i
f

(
(
(
R
e
g
u
l
a
r
_
S
o
c
k
e
t
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
.
’
P
e
e
r
_
A
d
d
r
e
s
s
’
)

=
=

3

)

&
&

(

c
o
u
n
t
r
s

=
=

1
)
)

G
e
n
e
r
a
t
e

R
S
7

:

S
o
c
k
e
t
_
c
l
o
s
e
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

e
l
s
e

s
w
i
t
c
h
(
R
e
g
u
l
a
r
_
S
o
c
k
e
t
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
.
’
P
e
e
r
_
A
d
d
r
e
s
s
’

%

4
)

{

c
a
s
e

’
0
’
:

i
f

(
c
o
u
n
t
r
s

<

2
)

G
e
n
e
r
a
t
e

R
S
5

:

S
o
c
k
e
t
_
s
e
n
d
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
,

t
h
i
s
.
M
e
s
s
a
g
e
)

e
l
s
e

G
e
n
e
r
a
t
e

R
S
7

:

S
o
c
k
e
t
_
c
l
o
s
e
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

c
o
u
n
t
r
s
+
+
;

b
r
e
a
k
;

c
a
s
e

’
2
’
:

G
e
n
e
r
a
t
e

R
S
6

:

S
o
c
k
e
t
_
r
e
c
v
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

b
r
e
a
k
;

d
e
f
a
u
l
t
:

G
e
n
e
r
a
t
e

R
S
7

:

S
o
c
k
e
t
_
c
l
o
s
e
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

b
r
e
a
k
;

}

T
P
6
:

S
e
n
d
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
)

T
P
8
:

C
l
o
s
e
d
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
)

T
P
7
:

R
e
c
v
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
,

m
e
s
s
a
g
e
)

T
P
1
3
:

N
o
_
m
e
s
s
a
g
e

(
P
r
o
c
e
s
s
_
I
D
)

/
/

s
o
c
k
e
t

i
s

i
n

t
h
e

s
t
a
t
e

6
.
S
o
c
k
e
t
_
s
e
n
t
_
s
e
r
v
e
r

s
t
a
t
i
c

i
n
t

c
o
u
n
t
s
s

=

1
;

i
f

(
(
(
R
e
g
u
l
a
r
_
S
o
c
k
e
t
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
.
’
P
e
e
r
_
A
d
d
r
e
s
s
’
)

=
=

3
)

&
&

(

c
o
u
n
t
s
s

=
=

1
)
)

G
e
n
e
r
a
t
e

R
S
7

:

S
o
c
k
e
t
_
c
l
o
s
e
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

e
l
s
e

{

s
w
i
t
c
h
(
(
R
e
g
u
l
a
r
_
S
o
c
k
e
t
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
.
’
P
e
e
r
_
A
d
d
r
e
s
s
’
)
%

4
)

{

c
a
s
e

’
1
’
:

i
f

(
c
o
u
n
t
s
s

<

2
)

G
e
n
e
r
a
t
e

R
S
5

:

S
o
c
k
e
t
_
s
e
n
d
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
,
t
h
i
s
.
M
e
s
s
a
g
e
)
;

e
l
s
e

G
e
n
e
r
a
t
e

R
S
7

:

S
o
c
k
e
t
_
c
l
o
s
e
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

c
o
u
n
t
s
s
+
+
;

c
a
s
e

’
3
’
:

G
e
n
e
r
a
t
e

R
S
6

:

S
o
c
k
e
t
_
r
e
c
v
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

b
r
e
a
k
;

d
e
f
a
u
l
t
:

G
e
n
e
r
a
t
e

R
S
7

:

S
o
c
k
e
t
_
c
l
o
s
e
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

b
r
e
a
k
;

}

}

T
P
1
0
:

L
i
s
t
e
n
i
n
g
_
a
g
a
i
n

(
P
r
o
c
e
s
s
_
I
D
)

p
r
i
n
t
f
(
"
C
o
n
n
e
c
t
i
o
n

w
i
t
h

s
o
c
k
e
t

%
d

i
s

c
l
o
s
e
d
\
n
"
,

R
e
g
u
l
a
r
_
S
o
c
k
e
t
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
.
’
P
e
e
r
_
A
d
d
r
e
s
s
’
)
;

G
e
n
e
r
a
t
e

T
P
1
0

:

L
i
s
t
e
n
i
n
g
_
a
g
a
i
n
(
t
h
i
s
.
P
r
o
c
e
s
s
_
I
D
)
;

T
P
1
3
:

N
o
_
m
e
s
s
a
g
e

(
P
r
o
c
e
s
s
_
I
D
)

TP7: Recv_socket
 (Process_ID, message)

/
/

s
o
c
k
e
t

i
s

i
n

s
t
a
t
e

7
.
C
a
n
n
o
t

r
e
c
e
i
v
e

G
e
n
e
r
a
t
e

R
S
6
:

S
o
c
k
e
t
_
r
e
c
v
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

T
P
2
:

B
i
n
d
e
d
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
)

T
P
3
:

C
o
n
n
e
c
t
e
d
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
)

t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D

=

s
o
c
k
e
t
_
i
d
;

i
f

(
t
h
i
s
.
R
o
l
e

=
=

C
l
i
e
n
t

)

G
e
n
e
r
a
t
e

R
S
3
:

S
o
c
k
e
t
_
c
o
n
n
e
c
t
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
,

t
h
i
s
.
W
e
l
l
_
K
n
o
w
n
_
A
d
d
r
e
s
s
)
;

e
l
s
e

G
e
n
e
r
a
t
e

P
S
1
6

:

S
o
c
k
e
t
_
b
i
n
d
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
,

t
h
i
s
.
W
e
l
l
_
K
n
o
w
n
_
A
d
d
r
e
s
s
)
;

T
P
1
1
:

C
r
e
a
t
e
_
T
e
s
t
_
P
r
o
c
e
s
s

(
i
d
,

t
y
p
e
,

p
u
b
l
i
s
h
e
d
_
a
d
d
r
e
s
s
,

a
c
t
i
v
e
_
s
o
c
k
e
t
,

m
e
s
s
a
g
e
)

T
P
7
:

R
e
c
v
_
s
o
c
k
e
t

(
P
r
o
c
e
s
s
_
I
D
,

m
e
s
s
a
g
e
)

T
P
1
3
:

N
o
_
m
e
s
s
a
g
e

(
P
r
o
c
e
s
s
_
I
D
)

/
/

s
o
c
k
e
t

i
n

t
h
e

s
t
a
t
e

7
.
C
a
n
n
o
t

r
e
c
e
i
v
e

G
e
n
e
r
a
t
e

R
S
6

:

S
o
c
k
e
t
_
r
e
c
v
(
t
h
i
s
.
A
c
t
i
v
e
_
S
o
c
k
e
t
_
I
D
)
;

S
u
b
s
y
s
t
e
m
:

L
o
c
a
t
i
o
n
:

O
b
j
e
c
t
b
e
n
c
h

2
.
2

I
n
d
e
x

W
h
a
t

H
o
w

S
o
c
k
e
t
_
L
a
y
e
r

T
e
s
t
_
P
r
o
c
e
s
s

L
i
f
e
c
y
c
l
e

O
b
j
e
c
t

E
v
e
n
t
s

Figure 3.4: Test Process State Model22

unique identi�er, to map di�erent generated events on instances of the Test Process.We constructed a model of a socket used for communication between twoprocesses. Communication includes establishing a connection and an exchange ofmessages between processes. To test communication, at least one instance of aTest Process (Role = Server) generating events for the Public Socket and for theRegular Socket (Whoami = Active Server) is required. The State Model for theServer includes states 1 through 9 in Fig. 3.4. The State Model for the Clientincludes states 1, 2, and 10 through 14 in Fig. 3.4. In order to establish a connection,a Public Socket, listening for a connection request, must be created �rst. This canbe achieved by creating a Public Socket, binding it to some Well Known Address,and then executing listen(), accept().Consider the state Socket connected(10) of the Test Process on Fig. 3.4.It corresponds to the state Connected(4) of a Regular Socket (Whoami = Ac-tive Client). In the state Connected(4), an Active Client can accept three eventsgenerated by an external entity, Test Process, and one event generated by anotherinstance of a Regular Socket (Whoami = Active Server). In our model, to test thetransitions of the Active Client from the state Connected(4), a Test Process (Pro-cess ID = 2), generates an event RS7: Socket close(), instances of the Test Processwith even Process ID generate an event RS5: Socket send(), and instances of theTest Process with odd Process ID generate an event RS6: Socket recv(). One of theattributes of the Test Process is an attribute Active Socket ID. Each Test Processgenerates events to the instance of an Active Client (Socket ID = this.Active Socket ID).The keyword this identi�es a special type of pointer to a currently active in-stance of an object. Any of these events causes an instance of Active Client tochange state from Connected(4) to some other state. For example, an event RS7:Socket close(), brings an instance of Active Client (Socket ID = 2) to the state Clos-ing(10). Upon arrival in this state, Active Client (Socket ID = 2) generates an eventTP8: Closed socket() which returns control back to the Test Process. The instance23

of the Test Process changes its state to the terminal state Socket closed(14), whereno further events are generated.An event RS5: Socket send() forces an instance of an Active Client to make atransition from the state Connected(4) to the state Sending(5), in which only event,RS13: Recvd, generated by an instance of an Active Server, can be accepted. Afteraccepting this event, an instance of an Active Client arrives in the state Sent(6),and returns control to the Test Process by generating an event TP6: Send socket().After receiving an event RS6: Socket recv(), an instance of a Regular Socketchanges its state from the state Connected(4) to the state Cannot receive(7), whereit generates an event TP13: No message() to return control to the Test Process.At this point, we have completely covered the allowable transitions fromthe state Connected(4). The same approach is used to cover all states of a Regu-lar Socket and a Public Socket, and to complete the state model for the Test Process.By instantiating multiple copies of the Test Process object, which will instan-tiate and drive multiple copies of the Socket object through all possible state/eventcombinations, we test the Socket model for consistency and validity.If a system was modi�ed, and the modi�cations are proven to be con�ned toa given state or a set of states in the OOA State Model then test generation can befocused on that state or those states.3.5 Object Communication ModelThe Object Communication Model is shown on Fig. 3.5. It captures interactionsbetween objects.Ovals represent objects and arrows represent events sent from a source objectto a recipient. Events' labels include abbreviations of recipient objects.According to the OOA notation, events, generated and consumed by thesame object, are not depicted. This is why events modeling interactions betweentwo di�erent instances of a Regular Socket are not shown.24

The Object Communication Model was very useful at the stage of debuggingthe model.The Models of the Socket and the Test Process Objects described in thischapter were compiled into SES/objectbench simulation language, and animated. Ithas been veri�ed that the model of test driver correctly navigates the model of thesocket through a pre-de�ned sequence of states.The next step { translation of the model of the test driver into the test suiteis described in the following chapter.

25

T
e
s
t
_
P
r
o
c
e
s
s

P
u
b
l
i
c
_
S
o
c
k
e
t

R
e
g
u
l
a
r
_
S
o
c
k
e
t

PS2: Socket_listen

PS1: Socket_create

PS16: Socket_bind

PS4: Socket_accept

RS1: Socket_create

RS3: Socket_connect

RS5: Socket_send

RS6: Socket_recv

RS7: Socket_close

R
S
1
1
:

C
o
n
n
e
c
t
i
o
n
_
r
e
j
e
c
t
e
d

TP2: Binded_socket

TP4: Listen_socket

TP5: Accepted_socket

TP1: Created_socket

P
S
9
:

C
o
n
n
e
c
t
i
o
n
_
r
e
q
u
e
s
t

TP6: Send_socket

TP7: Recv_socket

TP1: Created_socket

TP8: Closed_socket

TP3: Connected_socket

S
u
b
s
y
s
t
e
m
:

L
o
c
a
t
i
o
n
:

O
b
j
e
c
t
b
e
n
c
h

2
.
2

I
n
d
e
x

W
h
a
t

H
o
w

S
o
c
k
e
t
_
L
a
y
e
r

O
C
M

Figure 3.5: Object Communication Model26

Chapter 4Implementing a Test SuiteIn this chapter the translation of a Test Process State Model into a test suitefor conectioin-oriented sockets is described. C code for the test suite and sampleoutputs of tests are presented in Appenix A.Our Test Process State Model was constructed to test the socket abstractionwith the assumption that execution environment for sockets is correct: communi-cation protocols, communication domains, addressing schemes in communicationdomains, bu�er management, memory management.In order to translate the model into a test program, however, we need to re-solve all these matters. Useful examples of how to use network routines are presentedin [14].We translated our model for a particular case of of connection-oriented sock-ets created with the system call socket(AF INET, SOCK STREAM, 0). Parameterssupplied for this particular system call indicate that a socket ought to be createdin the Internet communication domain, be connection-oriented (SOCK STREAM),and use the TCP protocol - a default protocol for connection-oriented sockets in theInternet communication domain.The following system header �les de�ne socket-related utility functions anddata structures used when operating on sockets:27

<sys/socket.h><sys/socketvar.h><netinet/in.h><arpa/inet.h>Many of the socket calls require a pointer to a socket address structure as an argu-ment. The de�nition of this structure is in<sys/socket.h>struct sockaddr {u_short sa_family; /* address family */char sa_data[14]; /* protocol-specific address */};The contents of a protocol-speci�c address are interpreted according to the type ofaddress. For the Internet family the following structures are de�ned in<netinet/in.h>:struct sockaddr_in {u_char sin_len;u_char sin_family; /* AF_INET */u_short sin_port; /* 16-bit port number */struct in_addr sin_addr; /* 32-bit netid/hostid */char sin_zero[8]; /* unused */}; To operate on the socket address structure the following standard C libraryfunctions are used:bzero { writes the speci�es number of null bytes to a speci�ed destination.htonl { converts an unsigned long integer from host byte order to Internet networkbyte order. 28

htons { converts an unsigned short integer from host byte order to Internet networkbyte order.Address conversion routines between Internet addresses are written in dotted-decimal format XXX.XX.XXX.XXX and in addr structure.inet addr { converts an Internet address into Internet numbers.inet ntoa { converts an Internet address into an ASCII string. C de�nitions anddata type de�nitions are given in the header �le<sys/types.h>.It has already been mentioned, that at least two events in our model cor-respond to each system call. A Test Process generates an event to a subtype of aSocket object and waits for return of control { an event generated by a subtypeof a Socket object. A system call returns a non-negative integer if successful. Acorrespondence between system calls and modeling events can be found in Sections3.2 and 3.3.After addressing and networking issues were resolved the rest of implemen-tation of a test suite was very easy.The scenario for testing was as follows: a server starts on foghorn.cs.utexas.edu.The network address of a server's host and a port of its Well Known Socket is hard-coded in "inet.h" �le (see Appendix A.3). Clients from another machine requestconnection, send and receive messages, and quit. Each client process executes itsown sequence of system calls corresponding to the possible state machines for theTest Process State Model.For the Socket object to cover all possible state/event combinations at least7 di�erent instances of the Client process must be invoked. A number is assigned toeach instance of a Client process. Depending on this number a Client process exe-cutes its own sequence of system calls, corresponding to the possible state machinesfor the Test Process (Role = Client) State Model. Validating checks are placed aftereach systen call to insure that each step is properly executed.29

We are testing communication between two processes using sockets. Wedesigned our test suite such that client and server complement each other's actions.If a client executes a send() system call, a server executes a receive(), and vice versa.Received messages are printed out. The cases when Client number 5 executes orServer serves Client number 6 are used for testing the connection { a message thatwas sent by one process is received by its peer, and sent back. The �rst processcompares the message it sent against the received message and prints both messages.Testing was performed on a network of AIX and Sun workstations at theComputer Science Department of the University of Texas at Austin.In Appendix A.1, a C code for a client part of the test suite is given. InAppendix A.2 a C code for a server part of the test suite is given. A header �leused by both programs is given in Appendix A.3. In Appendix A.4 a sample outputof running the server part of the test suite is presented. In Appendix A.5 a sampleoutput of running the client part of the test suite is presented.

30

Chapter 5Conclusion and Future PlansIn this thesis we used the Shlaer/Mellor approach to the OOA methodologyto develop a test suite for existing software. We used this approach to create a testsuite for the Unix Sockets system calls.We showed that that black-box testing of a system can be partitioned into asubset of small tests which cover all possible state/event combinations for the modelof the system, and that there is no need to perform random or exhaustive testing.First, a model of an existing software system (Socket) was constructed at ahigh level of abstraction using the software documentation.Second, a state model for a driver (Test Process) based upon the state modelfor the socket object was constructed. Each instance of a test process object gener-ates events, driving a socket object through a pre-de�ned set of states.The model was captured, animated, and the dynamic behavior of the modelwas veri�ed using the SES/objectbench tool. Di�erent scenarios (main driver pro-gram) were executed to validate te correctness of the Test Process State Model.Third, the state model for the test process was translated into C languagecode by replacing "create" object instances and "generate" event statements of theOOA with the appropriate calls to socket library routines, and generating loopsover state variables. Appropriate tests for validation at di�erent points in action31

language programs associated with each state were added.Fourth, a developed test suite was tested on a network of workstations.In future we plan to create a complete test suite for sockets library systemcalls by adding more system calls and taking into account datagram (connectionless)sockets. We are also planning to add testing of �ltering of events to verify whether agiven state rejects invalid events. We would like to use the code generator CodeGe-nesis recently developed to use with SES/objectbench2.2 for automatic translationof a driver state machine into C++ language code.

32

Appendix ATest CodeA.1 client test.c/** Connection-oriented Client.* Communication Domain - AF_INET.* Communication Protocol - TCP.***/#include <stdio.h>int main(int argc, char *argv[]){ int howmany; /* how many clients are connecting */int j;int client(int number);printf("How many clients:");scanf("%d", &howmany); /* get number of clients */printf("\n");for (j = 1; j <= howmany; j++){ 33

printf("****************************\n");printf("Client %d\n", j);client(j); /* invoke a client */}exit (0);}int client(int number)/*** Client initiates connection with a server.* Different instances of client execute different state machines.***/{#include "inet.h"#define MAXSIZE 512 /* buffer size */int sockfd;struct sockaddr_in serv_addr; /* Well-Known-Socket address*/char sendbuf[512], recvbuf[512]; /* buffers for data */static char message[] = "Old McDonalds had a farm";static char message_server[] = "Frosty, the snowman, had a soul";int msglength, msgserlength, k; /* length of the messages */void print_message(char *buffer, int count); /* prints buffer */int send_client(int sockfd, char * buffer, int message_length,char *message);int recv_client(int sockfd, char * buffer, int message_length);/*** Specify Well-Known-Socket address.34

/bzero((char *) &serv_addr, sizeof(serv_addr));serv_addr.sin_family = AF_INET;serv_addr.sin_addr.s_addr = inet_addr(SERV_HOST_ADDR);serv_addr.sin_port = htons(SERV_TCP_PORT);/* Create a socket.**/if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)printf("Client: error opening stream socket\n");else printf("Client: opened stream socket\n");msgserlength = strlen(message_server);msglength = strlen(message);/*** Connect to the server.**/if (connect(sockfd, (struct sockaddr *) &serv_addr,sizeof(serv_addr)) < 0)printf("Client: error connecting to server\n");else{ printf("Client: connected to server\n");/*** Execute state machine for a given instance of a client**/printf("Client: my number is %d\n", number);if (number == 1) ; 35

else if (number == 2) recv_client(sockfd, recvbuf, msgserlength);else if (number == 3)send_client(sockfd, sendbuf, msglength, message);else if (number == 4) {for (k = 1; k<=2; k++)recv_client(sockfd, recvbuf, msgserlength);}else if (number == 5) {send_client(sockfd, sendbuf, msglength, message);recv_client(sockfd, recvbuf, msglength);}else if (number == 6) {recv_client(sockfd, recvbuf, msgserlength);send_client(sockfd, sendbuf, msgserlength, recvbuf);}else if (number == 7) {for (k = 1; k<=2; k++)send_client(sockfd, sendbuf, msglength, message);}else {for (k = 1; k<= (number/2); k++){ send_client(sockfd, sendbuf, msglength, message);recv_client(sockfd, recvbuf, msglength);}}/***36

* Close socket.***/if (close(sockfd) < 0)printf("Client: error closing socket\n");else printf("Client: socket closed\n");}}void print_message(char *buffer, int count)/** Prints the content of the buffer**/{ char *p = buffer;int i = 0;while ((*p != '\0') && (i < count)){ putchar(*p);p++;i++;}putchar('\n');}int send_client(int sockfd, char * buffer,int message_length, char *message)/***37

* Copies a message to the buffer, and sends it**/{ void print_message(char *buffer, int count);if (strcpy(buffer, message) < 0)printf("Client: problem copying a message\n");if (send(sockfd, buffer, message_length, 0) < 0)printf("Client: error sending message\n");else {printf("Client: message sent\n");print_message(buffer, message_length);}}int recv_client(int sockfd, char * buffer, int message_length)/** Receives a message of a length message_lengt in the buffer**/{ void print_message(char *buffer, int count);if (recv(sockfd, buffer, message_length, 0) < 0)printf("Client: error receiving message\n");else { printf("Client: message received\n");print_message(buffer, message_length);}} 38

A.2 server test.c/** Connection-oriented ITERATIVE Server.* Communication Domain - AF_INET.* Communication Protocol - TCP.**/#include "inet.h"#define MAXSIZE 512 /* buffer size */#define DEBUGint main(int argc, char *argv[]){ int sockfd, newsockfd, clilen, childpid;struct sockaddr_in cli_addr, serv_addr;static char message[] = "Frosty, the snowman, had a soul";static char message_client[] = " Old McDonalds had a farm";char sendbuf[512], recvbuf[512]; /* buffers for data */int msglength, msgclilength; /* length of the messages */int counter = 1;int howmany, j; /* how many clients will connect */void print_message(char *buffer, int count);int send_server(int sockfd, char * buffer, int message_length,char *message);int recv_server(int sockfd, char * buffer, int message_length);39

printf("How many clients:");scanf("%d",&howmany);printf("\n");/** Create a socket.***/if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)printf("Server: error opening stream socket\n");else printf("Server: stream socket opened\n");/*** Bind socket to a Well-Known-Socket address.**/bzero((char *) &serv_addr, sizeof(serv_addr));serv_addr.sin_family = AF_INET;serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);serv_addr.sin_port = htons(SERV_TCP_PORT);if (bind(sockfd, (struct sockaddr *) &serv_addr,sizeof(serv_addr)) < 0)printf("Server: error binding local address\n");else printf("Server: stream socket binded\n");/** Listen for connections***/if (listen(sockfd, 5) < 0)printf("Server: listen error\n");else printf("Server: stream socket is listening\n");/** Accept a connection 40

***/msgclilength = strlen(message_client);msglength = strlen(message);while (counter <= howmany){ clilen = sizeof(cli_addr);newsockfd = accept(sockfd,(struct sockaddr *) &cli_addr, &clilen);if (newsockfd < 0)printf("Server: accept error");else{printf("Server: stream socket accepted\n");printf("Counter %d\n", counter);if (counter == 1) ;else if (counter == 2)send_server(sockfd, sendbuf, msglength, message);else if (counter == 3)recv_server(newsockfd, recvbuf, msgclilength);else if (counter == 4) {for (j = 1; j<=2; j++)send_server(newsockfd, sendbuf, msglength, message);}else if (counter == 5){ recv_server(newsockfd, recvbuf, msgclilength);send_server(newsockfd, sendbuf, msglength, recvbuf);}else if (counter == 6)41

{ send_server(newsockfd, sendbuf, msglength, message);recv_server(newsockfd, recvbuf, msglength);}else if (counter == 7) {for (j = 1; j<=2; j++)recv_server(newsockfd, recvbuf, msgclilength);}else {for (j = 1; j<= (counter/ 2); j++){recv_server(newsockfd, recvbuf, msgclilength);send_server(newsockfd, sendbuf, msgclilength, recvbuf);}}counter++;}/*** Close socket.**/close(newsockfd);printf("Server: stream socket closed\n");/* end else statement */} close(sockfd);exit (0); 42

}void print_message(char *buffer, int count)/** Prints the content of the buffer**/{ char *p = buffer;int i = 0;while ((*p != '\0') && (i < count)){ putchar(*p);p++;i++;}putchar('\n');}int send_server(int sockfd, char * buffer,int message_length, char *message)/** Copies a message to the buffer, and sends it**/{ void print_message(char *buffer, int count);43

if (strcpy(buffer, message) < 0)printf("Server: problem copying a message\n");if (send(sockfd, buffer, message_length, 0) < 0)printf("Server: error sending message\n");else {printf("Server: message sent\n");print_message(buffer, message_length);}}int recv_server(int sockfd, char * buffer, int message_length)/** Receives a message of a length message_lengt in the buffer**/{ void print_message(char *buffer, int count);if (recv(sockfd, buffer, message_length, 0) < 0)printf("Server: error receiving message\n");else {printf("Server: message received\n");print_message(buffer, message_length);}}
44

A.3 inet.h/*** Definitions are taken from [14444].***/#include <stdio.h>#include <sys/types.h>#include <sys/socket.h>#include <netinet/in.h>#include <arpa/inet.h>#define SERV_TCP_PORT 4001 /* TCP port */#define SERV_HOST_ADDR "128.83.143.205"/* host addr for server, foghorn.cs.utexas.edu */

45

A.4 client runowl% script client_runScript started, file is client_run% cli_testHow many clients:8****************************Client 1Client: opened stream socketClient: connected to serverClient: my number is 1Client: socket closed****************************Client 2Client: opened stream socketClient: connected to serverClient: my number is 2Client: message receivedFrosty, the snowman, had a soulClient: socket closed****************************Client 3Client: opened stream socketClient: connected to serverClient: my number is 3Client: message sentClient: socket closed**************************** 46

Client 4Client: opened stream socketClient: connected to serverClient: my number is 4Client: message receivedFrosty, the snowman, had a soulClient: message receivedFrosty, the snowman, had a soulClient: socket closed****************************Client 5Client: opened stream socketClient: connected to serverClient: my number is 5Client: message sentOld McDonalds had a farmClient: message receivedOld McDonalds had a farmClient: socket closed****************************Client 6Client: opened stream socketClient: connected to serverClient: my number is 6Client: message receivedFrosty, the snowman, had a soulClient: message sentFrosty, the snowman, had a soul 47

Client: socket closed****************************Client 7Client: opened stream socketClient: connected to serverClient: my number is 7Client: message sentOld McDonalds had a farmClient: message sentOld McDonalds had a farmClient: socket closed****************************Client 8Client: opened stream socketClient: connected to serverClient: my number is 8Client: message sentOld McDonalds had a farmClient: message receivedOld McDonalds had a farmClient: message sentOld McDonalds had a farmClient: message receivedOld McDonalds had a farmClient: message sentOld McDonalds had a farmClient: message receivedOld McDonalds had a farm 48

Client: message sentOld McDonalds had a farmClient: message receivedOld McDonalds had a farmClient: socket closed%script done on Mon Apr 8 17:24:41 1996

49

A.5 server runfoghorn% script server_runScript started, file is server_run% ser_testHow many clients:8Server: stream socket openedServer: stream socket bindedServer: stream socket is listeningServer: stream socket acceptedCounter 1Server: stream socket closedServer: stream socket acceptedCounter 2Server: message sentServer: stream socket closedServer: stream socket acceptedCounter 3Server: message receivedOld McDonalds had a farmServer: stream socket closedServer: stream socket acceptedCounter 4Server: message sentServer: message sentServer: stream socket closedServer: stream socket acceptedCounter 5 50

Server: message receivedServer: message sentOld McDonalds had a farmServer: stream socket closedServer: stream socket acceptedCounter 6Server: message sentFrosty, the snowman, had a soulServer: message receivedFrosty, the snowman, had a soulServer: stream socket closedServer: stream socket acceptedCounter 7Server: message receivedOld McDonalds had a farmServer: message receivedOld McDonalds had a farmServer: stream socket closedServer: stream socket acceptedCounter 8Server: message receivedOld McDOld McDonalds had a farmServer: stream socket closedServer: stream socket acceptedCounter 8Server: message receivedOld McDonalds had a farmServer: message sent 51

Old McDonalds had a farmServer: message receivedOld McDonalds had a farmServer: message sentOld McDonalds had a farmServer: message receivedOld McDonalds had a farmServer: message sentOld McDonalds had a farmServer: message receivedOld McDonalds had a farmServer: message sentOld McDonalds had a farmServer: stream socket closed% Script done, file is server_run

52

Bibliography[1] SES/objectbench User's Guide. 1993.[2] Boris Beizer. Black-Box Testing. Techniques for Functional Testing of Softwareand Systems. Wiley, 1992.[3] Grady Gooch. Object-Oriented Analysis and Design with Applications. Ben-jamin/Cummings, 1994.[4] Infotech. Software Testing. Maidenhead, 1979.[5] Cem Kaner. Testing Computer Software. Blue Rigde Sum, 1988.[6] Edward Kit. Software Testing in the Real World: Improwing the Process. Wok-ingham, 1995.[7] Samuel Le�er. 4.3 BSD UNIX Operating System. Addison-Wesley, 1988.[8] Clenford Myers. The Art of Software Testing. New York, 1979.[9] William Perry. E�ective Methods for Software Testing. New York, 1995.[10] Thomas Royer. Software Testing Management: Life on the Critical Path. En-glewood, 1993.[11] James Rumbaugh. Object-Oriented Modeling and Design. Prentice-Hall, 1991.[12] Sally Shlaer and Steven Mellor. Object-Oriented Systems Analysis. Modelingthe World in Data. Prentice-Hall, 1988.53

[13] Sally Shlaer and Steven Mellor. Object Lifecycles. Modeling the World in States.Prentice-Hall, 1992.[14] Richard Stevens. UNIX Network Programming. Prentice-Hall, 1990.[15] Pavan Vohra. Software Testing with a Test Data Generation Tool. THESIS,1987.

54

VitaAlmadena Yurevna Chtchelkanova was born in Tashkent, USSR on March 11,1962, the daughter of Svetlana Y. Chtchelkanova and Yury A. Chtchelkanov. Aftercompleting her work at 187 High School, Tashkent, USSR, in 1978, she enteredMoscow Lomonosov State University in Moscow, USSR. She received her degree ofMaster of Science in Astronomy, in January, 1984, and her Ph.D. in Physics andMathematics, in November, 1988 from Moscow Lomonosov State University.During 1987 - 1991 she was employed as a Research Scientist in the Intstituteof Scienti�c and Technical Information of Academy of Sciences in Moscow, USSR.She published 12 papers in russian astronomical journals. In January, 1995, sheentered The Graduate School at The University of Texas.Permanent Address: 3355-D Lake Austin Blvd.Austin, TX 78703This thesis was typeset with LATEX2"1 by the author.1LATEX2" is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademarkof the American Mathematical Society. The macros used in formatting this thesis were written byDinesh Das, Department of Computer Sciences, The University of Texas at Austin.55

