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Abstract
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parallel libraries. A number of contributions are made, including a new approach
to matrix distribution, new insights into layering parallel linear algebra libraries, and
the application of “object based” programming techniques which have recently become
popular for (parallel) scientific libraries. We present an overview of a prototype library,
the SL_Library, which incorporates these ideas. Preliminary performance data shows
this more application-centric approach to libraries does not necessarily adversely impact
performance, compared to more traditional approaches.
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1 Introduction

Design of parallel implementations of linear algebra algorithms and libraries traditionally
starts with the partitioning and distribution of matrices to the nodes (processors) of a dis-
tributed memory architecture!. It is this partitioning and distribution that then dictates the
interface between an application and the library.

While this appears to be convenient for the library, this approach creates an inherent
conflict between the needs of the application and the library. It is the vectors in linear
systems that naturally dictate the partitioning and distribution of work associated with
(most) applications that lead to linear systems. Notice that in a typically application, the
linear system is created to compute values for degrees of freedom, which have some spatial
significance. In finite element or boundary element methods, we solve for force, stress, or
displacement at points in space. For the application, it is thus more natural to partition
the domain of interest into subdomains, like domain decomposition methods do, and assign
those subdomains to nodes. This is equivalent to partitioning the vectors and assigning the
subvectors to nodes.

In this paper, we describe a parallel linear algebra library development effort, the PLA-
PACK project at the University of Texas at Austin, that starts by partitioning the vectors
associated with the linear system, and assigning the subvectors to nodes. The matrix distri-
bution is then induced by the distribution of these vectors. While this effort was started as
an attempt to create more reasonable interfaces between applications and libraries, the sur-
prising discovery is that this approach greatly simplifies the implementation of the library,
allowing much more generality while simultaneously reducing the amount of code required
when compared to more traditional parallel libraries such as ScaLAPACK.

This paper is meant to be an overview of all aspects of this library: underlying philoso-
phy, techniques, building blocks, programming interface, and application interface. Because
it is an overview, the reader should not expect a complete document: For further details on
why this approach is more application friendly than traditional approaches, we refer to our
paper “Parallel Matrix Distributions: have we been doing it all wrong” [10]. For further de-
tails on the underlying techniques for data distribution and duplication, see our unpublished
manuscript prepared for the BLAS workshop ”A Comprehensive Approach to Parallel Lin-
ear Algebra Libraries” [5]. For further details on parallel implementation of matrix-matrix
multiplication and level 3 BLAS, see our papers “SUMMA: Scalable Universal Matrix Mul-
tiplication Algorithm” [23] and “Parallel Implementation of BLAS: General Techniques for
Level 3 BLAS” [4]. A reference manual for this library is maintained at the website given in
Section 8.

I'This statement is less true for sparse iterative libraries.



2 Physically Based Matrix Distribution

The discussion in this section applies equally to dense and sparse linear systems.

We postulate that one should never start by considering how to decompose the matrix.
Rather, one should start by considering how to decompose the physical problem to be solved.
Notice that it is the elements of vectors that are typically associated with data of physical
significance and it is therefore their distribution to nodes that is directly related to the
distribution of the problem to be solved. A matrix (discretized operator) merely represents
the relation between two vectors (discretized spaces):

y= Az (1)

Since it is more natural to start with distributing the problem to nodes, we partition = and
y and assign portions of these vectors to nodes. The matrix A should then be distributed to
nodes in a fashion consistent with the distribution of the vectors, as we shall show next. We
will call a matrix distribution physically based if the layout of the vectors which induce
the distribution of A to nodes is consistent with where an application would naturally want
them.

As discussed, we must start by describing the distribution of the vectors, = and y, to
nodes, after which we will show how the matrix distribution should be induced (derived
from the vector distribution.) Let P, and P, be permutations so that
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Here P, and P, are the permutations that order the elements of x and y, respectively, that
are to be assigned to the first node first, then the ones assigned to the second node, and so
forth. Thus if the nodes are labeled Py, ..., P,_1, z; and y; are assigned to P;. Notice that
the above discussion links the linear algebra object “vector” to a mapping to the nodes. In
most other approaches to matrix distribution, vectors appear as special cases of matrices, or
as somehow linked to the rows and columns of matrices, after the distribution of matrices is
already specified. We will also link rows and columns of matrices to vectors, but only after
the distribution of the vectors has been determined, as prescribed by the application. We
again emphasize that this means we inherently start with the (discretized) physical problem,
rather than the (discretized) operator.



Next, we partition matrix A conformally:
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This exposes a natural tie between subvectors of P,z and corresponding blocks of columns

of PyAPxT. Also
p—1
yi = Aije;
7=0

so there is a natural tie between subvectors of P,y and corresponding blocks of rows of
P,APT.

It has been well documented [16] that for scalability reasons, it is often important to assign
matrices to nodes of a distributed memory architecture using a so-called two-dimensional
matrix distribution. To do so, the p = re nodes are viewed as a logical r x ¢ mesh, P; ;, with
0 <:<rand 0 <j <c This requires us to decide how to distribute the subvectors to the
two-dimensional mesh. We will assume this is done in column-major order?, as illustrated
in Figure 1.

Often, for load balancing reasons, it becomes important to overdecompose the vectors or
matrices, and wrap the result. This can be described by now partitioning = and y so that
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T = - and y = :
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*Notice that by appropriate choice of P, and Py, this can always be enforced
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Figure 1: Inducing a matrix distribution from vector distributions. Top: The subvectors of
x and y are assigned to a logical 3 x 4 mesh of nodes. Top-left: By projecting the indices
of y to the left, we determing the distribution of the matrix row-blocks of A. Top-right: By
projecting the indices of = to the top, we determing the distribution of the matrix column-
blocks of A. The resulting distribution of the subblocks of A is given in the bottom picture,
where the indices refer to the indices of the subblocks of A given in Eqn. (2).
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Figure 2: Inducing a wrapped matrix distribution from wrapped vector distributions. Left:
By projecting the indices of y to the left, we determing the distribution of the matrix
row-blocks of A. Top-right: By projecting the indices of = to the top, we determing the
distribution of the matrix column-blocks of A. The resulting distribution of the subblocks
of A gives a tight wrapping of row blocks of A, and a coarser wrapping of column blocks of

A.



where N >> p. Partitioning A conformally yields the blocked matrix

Ao Aor || Aon-a
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A wrapped distribution can now be obtained by wrapping the blocks of = and y, which
induces a wrapping in the distribution of A, as illustrated in Figure 2. Notice that in some
sense, this second distribution is equivalent to the first, since the appropriate permutations
P, = P, will take one vector distribution to the other. However, exposing the wrapping
explicitly will become important for the library implementation.

3 Impact of PBMD on library implementation

In this section, we will show how the existence of an inducing vector distribution allows us
to parallelize the accepted basic building blocks for dense linear algebra libraries, the Basic
Linear Algebra Subprograms (BLAS). We will do so, by first showing how the inducing
vector distribution helps us organize necessary data movements, which we will subsequently
show allow us to conveniently parallelize matrix-vector multiplication and rank-1 updates.
Next, we will argue how the operations performed by matrix-vector multiplication and rank-1
update are fundamental to the implementation of more complex BLAS such as matrix-matrix
multiplication.

3.1 Vectors, matrix-rows, and -columns

We start by showing how matrix distributions that are induced by vector distributions nat-
urally permit redistribution of rows and columns of matrices to the inducing vector distri-
bution, as well as redistribution of matrix rows to columns, and visa versa.

Vector to matrix row, matrix row to vector: Consider a vector, z, distributed to
nodes according to an inducing vector distribution for matrix A. Notice that the as-
signment of blocks of columns of A is determined by a projection of the indices of
the corresponding subvectors of the inducing vector distribution. Thus, transforming
a vector = into a row of A is equivalent to projecting onto that matrix row, or, equiva-
lently, gathering the subvectors of x within columns of nodes to the row of nodes that
holds the desired row of A. Naturally, redistributing a row of the matrix to a vector
reverses this process, requiring a scatter within columns of A, as illustrated in Fig. 3.



Column Indices Column Indices
012 345 678 91011 012 345 678 91011
0 0 0
3 3 3
6 6 ()
9 9 9
g 1 g1 i
247 To12 11345 (678 [ 191011 | e 4 4
s 7 3.7 7
£10 310 10
14
2 2 2
5 5 5
8 8 8
11 11 11
(a) (b)
Column Indices Column Indices
012 345 678 91011 012 345 678 91011
0 [0 0 }o;
3 3 3 3.
6 o 6 6!
9 9 9 9
8. T g1 T
£7 ‘ - E7 7
£ 10 10 10 10!
14 04 =
2 2 2 2
5 5 5 5
8 -8 8 8!
11 11 11 11
(c) (d)

Figure 3: Top: transforming a matrix row to inducing vector distribution. Bottom: trans-
forming a vector in inducing vector distribution to matrix column. All: transforming a
matrix row to matrix column.
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Figure 4: Spreading a vector in inducing vector distribution within columns of nodes.

Vector to matrix column, matrix column to vector: The vector to matrix column
operation is similar to the redistribution of a vector to a matrix row, except that the
gather is performed within rows of nodes, as illustrated in Fig. 3. Again, the matrix
column to vector operation is reverses this process.

Matrix row to matrix column, matrix column to matrix row: Redistributing a
matrix row to become a matrix column, i.e. transposing a matrix row to become a
matrix column, can be achieved by redistributing from matrix row to inducing vector
distribution, followed by a redistribution from vector distribution to matrix column,
as illustrated in Fig. 3. Naturally, reversing this process takes a matrix column to a
matrix row.

3.2 Spreading vectors, matrix rows, and matrix columns

A related operation is the spreading of vectors, matrix rows, and matrix columns within
rows or columns of nodes. Given a vector, matrix row, or matrix column, these operations
result in a copy of a row or column vector being owned by all rows of nodes or all columns
of nodes.

Spreading a vector within rows (columns) of nodes: Notice that while gathering a
vector within rows (columns) to a specified column (row) of nodes can be used to yield
a column (row) vector. If we wish to have a copy of this column (row) vector within



each column (row) of nodes, we need merely collect the vector within rows (columns)
of nodes, as illustrated in Fig. 4.

Spreading a matrix row (column) within columns (rows) of nodes: Given a matrix
row, we often require a copy of this matrix row to exist within each row of nodes, an
operation that we will call spreading a matrix row within columns of nodes. One
approach is to redistribute the matrix row like the inducing vector distribution, and
spreading the resulting vector, requiring a scatter followed by a collect, both within
columns. Since a scatter followed by a collect is equivalent to a broadcast, broadcast-
ing the pieces of the matrix row within columns can be viewed as a shortcut. Similarly,
spreading a matrix column within rows of nodes can be accomplished by broadcasting
the appropriate pieces of the matrix column within rows of nodes.

Spreading a matrix row (column) within rows (columns) of nodes: Spreading a
matrix row within rows of nodes is logically equivalent to redistributing the matrix
row like the inducing vector distribution, followed by a spreading of the vector witin
row of nodes. Notice that this requires a scatter within columns of nodes, followed by
a collect within rows of nodes. Spreading a matrix column within columns of nodes
can be accomplished similarly.

3.3 Discussion

It is important to note that the above observations expose an extremely systematic approach
to the required data movement. It naturally exposes the inducing vector distribution as an
intermediate step through which redistribution of rows and columns of matrices can be
implemented in a building-block approach.

4 Implementation of basic matrix-vector operations

We now have the tools for the implementation of the basic matrix-vector operations. We will
concentrate on the most widely used: the matrix-vector multiplication and rank-1 update.

4.1 Matrix-vector multiplication

The basic operation to be performed is given by Az = y.

Ax — y, * and y distributed like vectors: For this case, assume that @ and y are
identically distributed according to the inducing vector distribution that induced the
distribution of matrix A. Notice that by spreading vector x within columns, we
duplicate all necessary elements of x so that local matrix vector multiplication can
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commense on each node. After this, a summation within rows of nodes of the local
partial results yields the desired vector y. However, since only a portion of vector
y needs to be known to each node, a distributed summation (MPI_Reduce_scatter)
within rows of nodes suffices. This process is illustrated in Fig. 5.

Ax — y, matrix row ¢ and matrix column y: Again, we wish to perform Ax = y, but

this time we assume that = and y are a row and column of a matrix, respectively, where
the distribution of that matrix is induced by the same inducing vector distribution as
that of matrix A. Notice that by spreading matrix row x within columns, we duplicate
all necessary elements of & so that local matrix vector multiplication can commense on
each node. After this, a summation within rows of nodes of the local partial results
yields the desired vector y. Since y is a column, existing on only one column of nodes,
a summation to one node (MPI_Reduce) within each row of nodes can be utilized.

Ax — y, matrix column = and matrix row y: Now we assume that « and y are a column

and row of a matrix, respectively, where the distribution of that matrix is induced by
the same inducing vector distribution as that of matrix A. Notice that by spreading
matrix column x within rows of nodes, we duplicate all necessary elements of x so
that local matrix vector multiplication can commense on each node. After this, a
summation within rows of nodes (MPI_Reduce_scatter) must occur, leaving the result
in inducing vector distribution. The final operation is to redistribute the result to the
row of the target matrix.

4.2 Rank-1 update

The basic operation to be performed is given by A = A + ya?.

A= A+yz2T, 2 and y distributed like vectors: For this case, assume that « and y are

identically distributed according to the inducing vector distribution that induced the
distribution of matrix A. Notice that by spreading vectors # and y within columns
and rows of nodes, respectively, we duplicate all necessary elements of x and y so that
local rank-1 updates can commense on each node.

A = A+yz”, other cases: The case where z and y start as row or column of a matrix can

5

be derived similar to the special cases of matrix-vector multiplication. For simplicity,
we will concentrate on the square matrix case, but the techniques generalize.

Implementation of basic matrix-matrix operations

We now show how the parallel matrix-vector multiplication and rank-1 update can be used

to implement matrix-matrix multiplication, and other level-3 BLAS. In all our explanations,
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Figure 5: Parallel matrix-vector multiplication.
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we will use the following partitionings:
X:(l’o‘l'l""‘l'n_l) (3)

with X € {A, B,C} and « € {a,b,c} where x; represents the jth column of X. Also,

&g
Ty
X=|" (4)
Tt
where 27 represents the sth row of matrix X.

5.1 Matrix-matrix multiplication
C' = AB: Parallelizing €' = AB becomes straight-forward when one observes that
C =AB = Cloi)g + Clli)? + -4 an—lijz_l

Thus the parallelization of this operation can proceed as a sequence of rank-1 updates,
with the vectors y and = equal to the appropriate column and row of matrices A and
B, respectively.

C = ABT: For this case, we note that
¢; :AIA)jT,j:O,...,n—l

This time, the parallelization of the operation can proceed as a sequence of matrix-
vector multiplications, with the vectors y and = equal to the appropriate column and
row of matrices C' and B, respectively.

C = ATB: Notice that €' = AT B is equivalent to computing CT = BT A, and thus the
computation can proceed by computing

éi:BTai,i:(),...,n—l

The matrix-vector multiplication schemes described earlier can be easily adjusted to
accomodate for this special case.

C = ATBT: On the surface, this operation appears quite straight-forward:

C = ATBY = aobl + arbl 4+ -+ a,_1b7_,

13



Thus the parallelization of this operation can proceed as a sequence of rank-1 updates,
with the vectors y and x equal to the appropriate row and column of matrices A
and B, respectively. However, notice that the required spreading of vectors is quite
different, as described in Section 3.2. It should be noted that without the observations
made about spreading matrix rows and columns by first redistributing like the inducing
vector distribution, this operation is by no means trivial when the mesh of nodes is
nonsquare.

5.2 Attaining better performance

The above approach, while simple, will not yield high performance, since all local operations
are performed using level-2 BLAS. Better (near peak) performance can be attained by re-
placing matrix-vector multiplication by matrix-panel-of-vectors multiplication, and rank-1
updates by rank-k updates. The algorithms outlined above can be easily altered to accomo-
date this.

5.3 Other level 3 BLAS

In [4], we describe how all level 3 BLAS can be implemented using variations of the above
scheme, attaining within 10-20% of peak performance on the Intel Paragon.

6 A Simple Library

As part of the PLAPACK project at the University of Texas at Austin, we have set out to
investigate the implications of the above mentioned observations. In order to do so, we have
implemented a prototype library, the SL_Library, that incorporates the techniques.

In addition to layering the library using these techniques, we have adopted an “object
based” approach to programming. This approach has already popularized for high perfor-
mance parallel computing by libraries like the Toolbox being developed at Mississippi State
University [1], the PETSc library at Argonne National Laboratory [15] and the Message-
Passing Interface [14].

6.1 Scope

The goal of our scaled down effort is to demonstrate how the observed techniques simplify
the implementation of linear algebra libraries by providing a systematic (building-block)
approach. We emphasize here that it is the systematic nature of the techniques that is of
great importance to comprehensive library development. While we hint at the fact that
starting with vector distributions can yield any arbitrary cartesian matrix distribution, we
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restricted ourselves to the case there the inducing vectors are identically partitioned into
subvectors of constant length, with permutation matrices P, = P, = I, and are identically
distributed to nodes. While this may appear to be considerable restriction, the resulting
library has functionality and generality that is not dissimilar to ScaLAPACK. We will later
argue that extending the library to the totally general case does not require massive changes,
nor will it result in unacceptable added complexity in the code.

6.2 MPI

We assume that the reader is familiar with the Message-Passing Interface[14], and its use of
opaque objects. To understand our interface, it suffices to understand some very rudimen-
tary aspects of MPI, including communicators with topologies, MPI data types, and MPI
reduction operations.

6.3 Templates

We will assume that all computations are to be done within a group of nodes using a given
communicator with a two-dimensional topology.

All of our library routines will operate assuming that all vectors are aligned to a single
vector distribution. Imagine an infinite length vector ¢, which is partitioned like

21
2

s

with all ¢; of uniform length nb. Subvectors are assigned to the logical two-dimensional
mesh corresponding to by the communicator mentioned above by wrapping in row-major
order: ; is assigned to P|(;_1)/c| modr,(i—1)modc, as illustrated in Fig. 2, with x and y replaced
by t. Here r and ¢ denote the row and column dimension of the mesh of nodes. We will
call this the template vector. A distributed vector is then aligned to this vector by
indicating the element of the template vector with which the first element of the vector
to be distributed is aligned. In our discussion, we will start our indexing at 1, like in the
FORTRAN programming language. Our library actually allows one to specify whether to
start counting at 1 or 0.

The distribution of matrices is now induced by this vector template. More specifically,

15



let T' be an infinite matrix, partitioned like

Tii|Tig|Tis

T Toi | To | Tos
T s | 152 T3

where T} ; are nb x nb submatrices. Then this template matrix is distributed to nodes
as induced by the template vector, ¢, which is the inducing vector distribution as described
earlier in this paper. A given matrix to be distributed is now aligned to this template by
indicating the element of 7" with which the (1,1) element of the matrix to be distributed is
aligned.

Initializing the template is accomplished with a call to the routine

int SL_Temp_create( MPI_Comm comm,
int nb,
int zero_or_one
SL_Template *template )

where comm passes the MPI communicator with two-dimensional topology, and nb equals the
blocking size for the vector template. The value in zero_or_one specifies what index to give
the first element in a matrix. A value of 1 means that matrix and vector indicies start at 1.
A value of 0 means that matrix and vector indicies start at zero. The result of this operation
is an opaque object, a data structure that encodes the information about the mapping of
vectors and matrices to the node mesh.

Rather than accessing the data structure directly, the library provides a large number of
inquiry routines, which can be used to query information about the mesh of nodes and the
distribution of the template.

6.4 Linear Algebra Objects

Vector and matrix, in general Linear Algebra Objects (LAODbj), distributution is now
given with respect to the above described distribution template. Again, we use opaque
objects to encode all information, which includes the template, and how the given object is
aligned to the template. Thus, in order to create a vector object, which includes creation of
the data structure that holds the information and space for the local data to be stored, a
call to the following routine is made:

int SL_Vector_create (MPI_Datatype datatype,
int global_length,
SL_Template template,
int global_align,
SL_LAObj *new_vector)

16



Here datatype indicates the data type (MPI_INT, MPI_REAL, MPI_DOUBLE, etc.) of the object,
global length passes in the global vector length, template passes in the template with
which to align, and global_align indicates the position in the template vector with which

the first (global) element of the vector is to be aligned.
Often, it will be convenient to work with a number of vectors simultaneously, a discription

for which can be created by calling

int SL_Mvector_create (MPI_Datatype datatype,
int global_length,
int global_width
SL_Template template,
int global_align,
SL_LAObj *new_mvector)

Finally, matrices are aligned to the matrix template T', encoded in template, with the

call

int SL_Matrix_create (MPI_Datatype datatype,
int global_length,
int global_width,
SL_Template template,
int global_align_row,
int global_align_col,
SL_LAObj *new_matrix)

Here global_length and global width indicate the row and column dimension of the ma-
trix, and global_align row/col indicate the row and column indices of T" with which the
upper left element of the matrix object being created, new matrix, is aligned.

Finally, we have the notion of a multiscalar, which is a LAObj that exists entirely within

one node.

int SL_Mscalar_create (MPI_Datatype datatype,
int global_length,
int global_width,
SL_Template template,
SL_LAObj *new_mscalar)

It should be noted that duplicated versions of these objects also exist within our library.
Details go beyond the scope of this paper.

Inquiry routines: A large number of inquiry routines exists for Templates and LAObjs,
which return information about the objects. For details, see the SL_Library webpage,

given in Section 8.
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Views: Next, we introduce the notion of views into linear algebra objects. To motivate
this, consider a typical description of a right-looking blocked LU factorization: A = LU.
We typically start by partitioning A into a 2 x 2 blocked matrix:

A
A= 00 | Aot
Ao | An
Views allow us to derive descriptions from the original data for matrix A, encoded

in LAODbj a, which describe the different submatrices Agg, Aoy, etc. This can be
accomplished by four calls to the routine

int SL_Matrix_submatrix (SL_LAObj old_matrix,

int global_length,
int global_width,
int matrix_align_row,
int matrix_align_col,

SL_LAObj *new_matrix)

where old matrix is the original LAObj, global_length/width are the row and col-
umn dimensions of the submatrix, and matrix_align row/col are the row and col-
umn alignments with respect to the original LAObj. The call creates a new LAObj,
new matrix. Notice that this new object references the original data in the original
LAODbj. Thus, changing the value of data (e.g. an element in a matrix) described by
the thus created LAObj will change the value in the original LAODj.

For convenience and efficiency, we have a single routine to create all four submatrices,

given by
int SL_LAObj_split_4 ( SL_LAODb]j laobject,

int upper_length,
int left_width,
SL_LAODb]j *upper_left_obj,
SL_LAODb]j *upper_right_obj,
SL_LAODb]j *lower_left_obj,
SL_LAObj *lower_right_obj);

In our above example, to split A into four submatrix, we make the call

SL_LAObj_split_4 ( a, m_a00, n_a00, a00, a01,
al0, alil)

where A is given by LAObj a, m/n_a00 are the global row and column dimensions of
Ago, and Agp, ... Ayy are given by LAObjs a00,...,al1.
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6.5 Parallel Basic Linear Algebra Subprograms

Given that all information about vectors and matrices is now encoded in LAObjs, the calling
sequences for routines like the Basic Linear Algebra Subprograms now becomes relatively
straight forward. We give examples for one from each of the level 1, 2, and 3 BLAS.

Level 1 BLAS: The level 1 BLAS include operations like the gaxpy, which adds a multiple
of a vector to a vector: y + ax + y. The double precision sequential call is

void daxpy (int *n, double *alpha, double *x, int *incx,
double #*y, int *incy )

The SL_Library call becomes

int SL_Axpy (SL_LAOBJ alpha,
SL_LAODb]j aobj_x,
SL_LAOb aobj_y)

Naturally, we no longer need to restrict ourselves to requiring = and y to be only
vectors. The call will also work for multiscalars, multivectors and matrices.

Level 2 BLAS: The level 2 BLAS include operations like the ggemv, which adds a multiple
of a matrix-vector product to a vector: y « aAx + y. The SL_Library call is given by

int SL_Gemv (int trans,
SL_LAObj alpha,
SL_LAOb a,
SL_LAOb X,
SL_LAODb]j beta,
SL_LAObj y)

Level 3 BLAS: The level 3 BLAS include operations like the ggemm, which adds a multiple
of a matrix-matrix product to a matrix: C' < aAB+ 3C. The SL_Library call is given

by

int SL_Gemm (int transa,
int transb,
SL_LAObj alpha,
SL_LAOb a,
SL_LAODb]j b,
SL_LAODb]j beta,
SL_LAOb c)
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6.6 Communication in the library

Our library has only two communication routines; the copy routine, which copies from one
LAOQOD]j to another, and the reduce operator, which consolidates contributions from different

LAODbjs.

int SL_Copy  (SL_LAODbj aobj_from,
SL_LAObj aobj_to)

int SL_Reduce (SL_LAODbj aobj_from,
MPI_Op op,
SL_LAObj aobj_to)

6.7 Sample implementation: matrix-matrix multiplication

As described above, parallel matrix-matrix multiplication can be implemented as a sequence
of rank-k updates. In this section, we again describe that process, except this time as a
recursive algorithm.

Algorithm: Let C' = o AB + C. Partitioning

A=(A|A) and B:(g;)

we see that if we start by overwriting C' + [C, we subsequently must form ¢ =
C + oAy By + oAy By. The algorithm thus becomes

1. O« pC
2. Repeat until A and B are empty

(a) A= (A [4;) and B:(g;)

(b) C OéAlBQ
(c) A=Az and B = By

Here the width of A; and height of By is chosen so that both conform, and both these
panels of matrices exist in one column of nodes and one row of nodes, respectively.

Code: The code, as written in the SL_Library is now given in Fig. 6. Given the above
algorithm, we believe the code to be largely self-explanatory. It is meant to give an
impression of what can be done with the infrastructure we have put together as part

of the SL_Library.

The only line of code that does require some detailed explanation is line 33:
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SL_Gemm_pan( alpha, al, bl, SL_One, c);

This call performs a rank-size update to matrix C'. It is in this routine that all data
movements, and calls to local BLAS on each node, are hidden.

Performance: The performance of the above matrix-matrix routine on an Intel Paragon
system and an IBM SP-2 is given in Figs. 7 and 8. It should be noted that the
peak performance on the Intel Paragon for matrix-matrix multiplication is around 46
MFLOPS on a single node. On a single node of our SP-2, the matrix-matrix multiply
BLAS routine attains around 240 MFLOPS. Thus, our parallel library routine attains
very good performance, once the matrices are reasonably large. While our preliminary
performance numbers are only for a small number of nodes, the techniques are perfectly
scalable and thus very high performance can be expected, even for very large numbers
of nodes. We justify this statement in [4] and other papers.

While the given data is by no means conclusive, we should note that much more extensive
data for the techniques is given in a previous paper of ours [4], where we show how indeed all
level 3 BLAS can be implemented in this fashion. In that paper, we also show the techniques
to be scalable. Thus, the presented data should be interpreted to show that the infrastructure
we have created, even without tuning, does not create unreasonable performance degradation.

Ideally, we would have included a performance comparison with other available parallel
linear algebra libraries, like ScaLAPACK. However, ScaLAPACK is due for a release of a
major revision, thus no reasonable data could be collected at this time for that package. We
intend to include such a comparison in the final document.

7 Conclusion

As mentioned, the SL_Library is a prototype library, which is meant to illustrate the benefits
of the described approaches. Design of this library, and its extention, PLAPACK, was started
in Fall 1995. Coding commensed in mid-March. At this time, the infrastructure is essentially
complete, and a few of the parallel BLAS have been implemented. A large number of
routines, including LU/Cholesky/QR factorization, reduction to banded or condensed form
and Jacobi’s method for dense eigenproblems, have been designed and implemented, but not
yet debugged. Essentially all of these implementations exploit some aspect of the library that
allows for new and presumably higher performance algorithms. By the end of summer 1996,
our limited implementation library will have functionality and scope that will be essentially
equivalent to that of the more established ScaLAPACK library. It is important to note that
this will be attained in approximately 5,000 lines of code, which represents a two order-of-
magnitude reduction in code.
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int SL_Gemm_notransa_notransb ( int nb_alg,

{

SL_LAObj alpha, SL_LAObj a, SL_LAObj b, SL_LAObj beta, SL_LAObj c )

SL_LAObj acur = NULL, bcur = NULL,
al = NULL, a2 = NULL,
bl = NULL, b2 = NULL,
SL_Template Template = NULL;
int currow, curcol;

int size_a, size_b, size;
/* scale C by beta
SL_Scal( beta, c );
/* Take a view of all of both A and B
SL_Matrix_submatrix( a, SL_DIM_ALL, SL_DIM_ALL,
SL_ALIGN_FIRST, SL_ALIGN_FIRST, &acur );
SL_Matrix_submatrix( b, SL_DIM_ALL, SL_DIM_ALL,
SL_ALIGN_FIRST, SL_ALIGN_FIRST, &bcur );
/* Loop until no more of A and B
while ( TRUE ) {
/* determine width of next update
SL_LAObj_left( acur, &size_a, &curcol );
SL_LAObj_top( bcur, &size_b, &currow );
size = ( size_a < nb_alg ? size_a : nb_alg );

size = ( size_b < size ? size_b : size )
if ( size == 0 ) break;

/* split off first col panel of Acur
SL_LAObj_vert_split_2( acur, size, &al, &a2 );

/* split off first row panel of Bcur
SL_LAObj_horz_split_2( bcur, size, &bl, &b2 );

/* annotate the work buffers
SL_LAObj_matrix_annotate_set( al, SL_COL_PANEL);
SL_LAObj_matrix_annotate_set( bl, SL_ROW_PANEL);

/* perform rank-size update
SL_Gemm_pan( alpha, al, bl, SL_One, c);

/* update views of A and B
SL_LAObj_swap( &a2, &acur ); SL_LAObj_swap( &b2, &bcur );

/* Free the views
SL_LAObj_free( &acur ); SL_LAObj_free( &bcur );
SL_LAObj_free( &al ); SL_LAObj_free( &a2 );
SL_LAObj_free( &bl ); SL_LAObj_free( &b2 );

Figure 6: SL_Library code for forming C' = o« AB + 5C.
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In [1] and other references, it is pointed out that parallel linear algebra libraries should
allow for highly irregular distributions. In [5, 10], we show how all two-dimensional cartesian
matrix distributions can be viewed as being induced by vector distributions and how this
allows for even more flexible libraries. It is this ability to work with highly general and
irregular blockings and distributions of matrices that will ultimately allow us to implement
more general libraries than previously possible, as part of the full PLAPACK library. Also
in the planning are out-of-core extensions [17].

It is often questioned whether the emphasis on dense linear algebra is misplaced in the
first place [9]. It is our position that the future of parallel dense linear algebra is in a
support role for parallel sparse linear solvers, to solve dense subproblems that are part of
very large sparse problems (e.g. exploited by parallel supernodal methods [21, 22]). It is
thus important that the approach to distributing and manipulating the dense matrices is
conformal with how they naturally occur as part of the sparse problem. Since our matrix
distribution starts with the vector, we believe the described approach meets this criteria.
For details, see [10]. Ultimately, we will build on the presented infrastructure, including the
support for parallel dense linear algebra, and incorporate sparse iterative and sparse direct

methods into PLAPACK.

8 Further information

This paper is meant to be a pointer to the web sites for the SL_Library and PLAPACK
project:

http://www.cs.utexas.edu/users/rvdg/SL 1ibrary/library.html
http://www.cs.utexas.edu/users/rvdg/paper/plapack.html
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