
Loop Optimizations for Acyclic Object-Oriented QueriesVasilis Samoladas Daniel P. MirankerThe University of Texas at AustinDepartment of Computer SciencesTaylor Hall 2.124Austin, TX 78712-1188fvsam,mirankerg@cs.utexas.eduTel: (512){471{9541AbstractNested loop execution of object-oriented queries retainsthe promise of maintaining the full generality of the ob-ject paradigm, independent of the speci�cs of any singleobject model. Thus, from this starting point we havedeveloped an object-oriented query optimizer and execu-tion engine. The methods, developed to date for onlyacyclic queries, augment nested loops structures with asimple marking mechanism such that unnecessary loopiterations are not repeated. In the case of acyclic queries,the executions are asymptotically optimal. In contrast tooptimal query methods based on semijoin reductions ourmethod involves no preprocessing step and thus avoidsthe extra I/O associated with semijoins and prevents theformal bene�ts of semijoin reduction from appearing as apractical improvement. Empirical results comparing ourquery environment with a commercially available productdemonstrate signi�cant performance improvement.1 IntroductionWe develop a technique for the optimization and com-putation of acyclic multi-join queries that deviates frommainstream techniques. The basis of the method is themapping of a query and a database schema to a querygraph, omitting an algebraic representation. The sys-tem develops a query plan in conjunction with a searchfor a minimum-cost spanning tree of the graph. Weare developing this approach in the context of Object-Oriented Databases (OODBs) where the lack of univer-sally accepted algebraic and semantic models makes thisapproach particularly advantagous.It is convenient to think of our approach as a methodof optimizing nested loops. Despite the commonly heldbelief that there is little opportunity to optimize nestedloops [20] we present simple bookkeeping methods withwhich to augment loops and that eliminatemany unneces-

sary loop iterations. For acyclic queries, we have achievedbetter performance than a traditional query evaluationengine used in a commercial OODB. In fact our approachcaptures all the formal advantages of query optimizationusing semijoin reductions and cures the practical disad-vantages. In particular, we are able to compute a rep-resentation of an acyclic n-way join in optimal time andspace, O(nk2), where k is a bound on the size of collec-tions. A key element of the technique is that it performsreductions \on-the-y". The output can be materializedeither during this computation, or later, in time linearwith the size of the output. Thus, the additional passthrough the data normally associated with semi-join re-duction can be avoided, skipping the additional I/O thatlimits the use of semi-join reductions.Query plans derived from nested loops have other ad-vantages. We will show that such query plans are easyto produce and execute, producing only a small amountof code per query. Good locality and caching behaviorshould be witnessed, as objects are accessed in a depth-�rst manner (in terms of the object-schema) as opposedto the breadth-�rst manner of relational primitives. Thisbecomes important in client-server OODB systems, wherequery processing usualy takes place on the client, ratherthan on the server. The asymptotic impact on cost of on-the-y reduction results in very fast execution for acyclicqueries.An important consideration in our work has been thedevelopment of techniques that would be widely appli-cable to OODBs. We adopt instantiation semantics forabstract conjunctive queries. A successful query instanti-ation is an assignment of object instances to the variablesof the query, such that all navigational and propositionalelements are satis�ed. Formally, we understand the resultof such a query to be the set of all successful query instan-tiations. These de�nitions allow us to exploit a cursor-based interface to access collections - again allowing usto ignore the vagaries of individual systems. We will em-1

phasize that our technique is orthogonal to, and can in-corporate most of the existing elements and techniquesof query processing; access path selection, attribute andpath indices, other join algorithms etc.2 De�nitionsIn part, the added di�culty in the optimization and eval-uation of OOQs is the integration of both the purelypropositional elements that de�ne a query and the physi-cal elements that can be exploited to improve query per-formance. These, so called, physical elements manifest inpath expressions which can be used to navigate throughthe compositions used to form complex objects. In thissection we develop the de�nition of a query graph forobject-oriented queries such that both the propositionaland navigational elements are represented in a uni�edfashion.2.1 Some OOQ De�nitionsFor the sake of brevity, we provide intuitive de�nitions fora number of query-related terms. Consider the schema ofFig.1.A simple query in an SQL-like language might be thefollowing:QUERY Example1 =SELECT <...>FROM s IN Student::extent,c IN s.coursesp IN Professor::extentWHEREs.FirstName == "John"&& Q(c,p) ;The FROM clause declares a number of range variables.Two of these, s and p, are de�ned on base collections.These we will call independent variables. Variable c how-ever, is de�ned on a \nested" domain. Such a variablewill be called a dependent variable, and we shall use theterm domain variable for the variable that de�nes its do-main. In the above example, s is the domain variable ofc. Navigational elements of the query, i.e. the domainsand dependencies of variables with respect to the schema,are de�ned in the FROM clause.The WHERE clause of the above query is a boolean con-junction of two predicates. The �rst of these predicatesrefers to a single variable. Predicates that refer to a singlevariable will be called s-predicates (for \selection"). Thesecond of these predicates refers to two variables. Suchpredicates will be called j-predicates (for \join"). In thispaper, we restrict to predicates of arity at most 2.

The WHERE clause de�nes the propositional elementsof a query. We restrict our attention to queries wherethe WHERE clause is a conjunction of s-predicates and j-predicates. Such queries will be called abstract conjunc-tive queries.2.2 An OOQ GraphFor an abstract conjunctive query Q, we de�ne the querydependency graph (QDG) G(Q) = (V;N; P) as follows: Vis the set of nodes, one for each variable of the query. Letu; v be nodes. (u; v) 2 N is a directed arc from u to v, i� uis the domain variable of v, where of course v is a depen-dent variable (we identify nodes with the correspondingvariables from now on). (u; v) 2 P is an undirected arcbetween u and v i� there exists at least one j-predicatenaming both u and v. The query dependency graph forquery Example1 is shown in Fig.2.������������-S C PFigure 2: The query dependency graph G(Example1).The directed arcs in a QDG represent the navigationalelements of the query, whereas the undirected arcs denotepropositional elements. Notice that between two nodes uand v there may exist both a directed and and undirectedarc.Let G = (V;N; P) be a QDG.We de�ne G0 = (V;N[P)to be the lumped graph. G0 is a regular, undirected graph.De�nition 1 G is cycle-free i� the lumped graph G0 isacyclic (i.e. G0 is a tree).Let u 2 V be a node of G = (V;N; P).De�nition 2 u is a potential root i� there exists asimple pseudo-directed path (i.e. one respecting the direc-tion of arcs in N , even in the presense of both a directedand a directed arc between two nodes) from u to everyother node of G.De�nition 3 G is dependency-directed i� there ex-ists a node u which is a potential root.We de�ne acyclicity of a query Q in terms of the QDGG. In particular, Q is acyclic i� G is cycle-free anddependency-directed. Of these two requirements, the �rstis natural for acyclicity. The second requirement, al-though not directly related to acyclicity, is however use-ful. To see why, we must give a �nal de�nition. Let thenodes of G be ordered in a depth-�rst fashion, v1; : : : ; vn,2

Studentcourses Professorsalarycourses? ?6...........6.........
-. .--������/ SS SS SSw Single-valued referenceSet-valued referenceSubclass-ofPerson

Courseget name()get instructor()get TA()
FirstNameLastNameSSN

Figure 1: A simple OODB schema, consisting of 4 classes, 2 of which have nested collection attributes.where v1 is a potential root. We then refer to G as an or-dered query dependency tree (OQDT). Dependency-directedness is a necessary and su�cient condition for anydepth-�rst ordering to have the following property:Proposition 1 Let X be a variable of an OQDT G. IfX is a dependent variable, then its domain variable is itsparent in G.This proposition suggests that a backtracking depth-�rst traversal of the OQDT will respect the navigationalelements of the query, i.e. will instantiate a domain vari-able before it attempts to instantiate the dependent vari-able.3 Optimization of Nested loopsWe prefer a new term, naive nested-loops for the construc-tion commonly known as nested-loops evaluation. Naivenested-loops is the simplest form of depth-�rst evalua-tion. More intelligent forms of depth-�rst query evalu-ation have been around for a long time. Perhaps, themost familiar instance is the Prolog execution engine (seeUllman[23] for an extensive treatment of top-down eval-uation).The easiest optimization for depth-�rst query evalua-tion is intelligent backtracking. Naive nested loops canbe thought of as naive backtracking. The variables of aquery are ordered so that for each dependent variable,its domain variable precedes it in the ordering. Con-sider the OQDT of Fig.3. Suppose that we attempt toinstantiate X4 and fail to instantiate an object (because

no object would satisfy the j-predicates with X1). Naivebacktracking {see Fig.3(b){ returns to X3 and tries an-other instantiation of it, before retrying to instantiateX4.However, instantiation of X4 will fail again. The cause offailure is not the current instantiation of X3, but that ofX1. In other words, the current instantiation of X1 doesnot join with any value in X4's domain, thus it will notappear in the result. Naive backtracking eventually doesthe right thing, but with a high performance penalty. Byemploying intelligent backtracking, we backtrack to X1{see Fig.3(c), and we save an order of magnitude of ex-traneous work.Another optimization of backtracking query executioninvolves recording information on the success or failureof a computation, so that the computation won't haveto be repeated in subsequent iterations. The recordedinformation amounts to a marking of objects. We callthis optimization marking, and comes in two variants,reduction marking and support marking.Consider the join between X2 and X3 in the query ofFig.3. Assume that we have instantiated X2 with objectx2 and we proceed to instantiate X3. It is possible thatno object of X3's domain joins with x2. In this case, wemark x2 as a failing instantiation, so that if x2 becomesinstantiated in the future, the algorithm will not have torepeat the failing computation. We call this optimizationreduction marking.We can also record successful computations. Consideragain the previous scenario, only this time X3 does suc-cessfully join with X2. We can mark x2 as a successfullinstantiation. Then, if x2 is instantiated again in thefuture, we can defer instantiatingX3, and try to instanti-3

�������� ��������

� JJJJX1X2 X4X3 (b)(a) (c)
X1X2X3X4 X1X2X3X4Figure 3: Intelligent backtracking: (a) query dependency graph (b) naive backtracking (c) intelligent backtrackingate X4 �rst. Since we know that instantiation of X3 willsucceed, there is no point in performing it eagerly, andmaybe having X4 fail. If X4 does also succeed, we cancome back to X3 and complete the processing. We callthis optimization support marking.The ideas of marking and intelligent backtracking canbe combined, and lead to very powerful optimizations ofnested-loops query evaluation. In fact, these two kinds ofoptimizations, if applied correctly, are su�cient to guar-antee asymptotically optimal performance in the compu-tation of the �rst solution on acyclic queries [5]. In the fol-lowing sections we present a speci�c algorithm that usesthese ideas to deliver asymptotically optimal performanceon acyclic queries, and discuss the database-speci�c issuesthat are involved, most notably implementation in an ob-ject data model and I/O performance.4 Evaluating Acyclic QueriesIn general, determining the set of successful query instan-tiations of an acyclic query takes exponential time in theworst case, simply because the size of the result S, i.e.the number of successful instantiations, can be exponen-tial to the size of the database and the size of the query.Because of this, the lower bound is
(nk2 + S).However, it is possible to represent the result of anacyclic conjunctive query in polynomial space. Let Q bean acyclic conjunctive query, and G(Q) be an OQDT. LetXi and Xj be variables of Q such that Xi is the parentof Xj in the OQDT. Let xi be an object that instantiatesXi in some successful query instantiation. With xi weassociate a set xi:Lj of objects. An object xj belongsto xi:Lj i� for some successful query instantiation, xiinstantiates Xi and xj instantiates Xj . Also, de�ne L1to be the set of all objects x1 that instantiate X1 (theroot of the OQDT) in some successful query instantiation.Let these sets be called goodlists. Then, the result of the

query can be enumerated by straight-forward applicationof naive nested loops.foreach(X1 2 L1)foreach(X2 2 X1:L2): : :foreach(Xi 2 Xparent(i):Li): : :foreach(Xn 2 Xparent(n):Ln)f // process instantiationEmit Successful Instantiation(X1; : : : ; Xn);gThe number of iterations will be equal to the size S ofthe query result. So, the computation of the goodlists ofa given query can be viewed as optimized query evalu-ation, prior to naive nested-loop enumeration of the re-sult. This is not a contradiction with our claim in theintroduction that our technique does not require prepro-cessing, for the following two reasons. First, in semi-joinreduction techniques, semi-join reduction is followed by ajoin phase, which in fact will compute the output. Ourscheme does not require that. The nested loops above justenumerate the result of the query, which {for all practicalpurposes{ is the set of goodlists. Second, this enumera-tion is not necessarily an after-step, but can be dispersedin the computation of the goodlists, in order to eliminateI/O overhead.Although the above de�nition of goodlists is set-theoretic, it has a direct implementation in OODBs, byexploiting OID semantics. So, in practice, goodlists aresets of OIDs. Further, as the name suggests, they can beimplemented as lists. More details about the implemen-tation will follow.The space requirements for goodlists are polynomialin the size of the database. If no domain contains morethan k objects, the worst-case space complexity is O(nk2)4

(there are O(nk) objects in the database, and each objectcan appear in at most k goodlists). Additionally, the totalspace is bounded by O(nS), which can be much betterthan O(nk2) for small values of S. Notice that thesespace complexities are based on the fact that goodlists canbe implemented as lists of OIDs to objects. Thus, eachgoodlist will require space proportional to the number ofgoodlist elements, independent of the size of the objectspointed at.Under this context, the computation of query eval-uation is reduced to the e�cient computation of thegoodlists for a given query and OQDT. We will describean optimal backtracking algorithm for the computationof goodlists, postponing any system-related issues for thefollowing sections. The algorithm incorporates markingand intelligent backtracking, as they were described inthe previous section. Marking is implemented by associ-ating a status marking with each object. 1 We assumea generic cursor interface, where we have a cursor perquery variable. We will use the term \instantiates" torefer to cursor operation, assuming that all navigationaland/or propositional constraints with the parent cursor'sinstantiation are enforced.At any time, the status marking of an object is one ofunknown, supported, completed and deleted. Thesigni�cance of these markings is the following:deleted An object x instantiating X is marked deletedas the result of reduction marking. This will happenif the algorithm fails to instantiate some child of X.Once an object is marked as deleted, it is (conceptu-ally) removed from the domain of X.supported An object x instantiating variable X be-comes supported as a result of support marking.Intuitively, supportedness means that the backtrack-ing computation is known to succeed in the subtreeof X with respect to x, and can be deferred in fu-ture instantiations of x, in the spirit of the previoussection.completed An object x instantiating variable X be-comes completed when all the goodlists associatedwith x have been fully computed. Notice that onlysupported objects can become completed. If X isa leaf, then x is initialized to this marking (becauseit is supported and it does not have any goodlists tocompute).unknown If nothing is known about an object, it ismarked unknown. Initially, all objects |except1Technically, a status marking is associated with a pair(OID,variable), as some object may instantiate multiple varibales.This technicality is important in the implementation, but not in thepresentation of the technique

those instantiating leaf nodes| are marked un-known.It is most convenient to understand the functioning ofthe algorithm with respect to the root variable. For eachinstantiation x1 of the root variable X1, the algorithmexecutes a top-down phase and a bottom-up phase.In the top-down phase, the algorithm attempts to de-termine whether x1 is supported, by �nding a �rst suc-cessful query instantiation. This computation is recur-sively reduced to instantiating the children of X1, andthen computing supportedness of these instantiations.This evaluation is done depth-�rst, by taking advantage ofprevious support marking, and applying intelligent back-tracking and reduction marking when appropriate.If a successful query instantiation is found, object x1 ismarked supported and a bottom-up phase begins, thatwill result in computing the goodlists of x1 and marking itcompleted. In the case of failure, x1 is marked deletedand the algorithm attempts to get the next instantiationof X1.The bottom-up phase is straightforward. Its purposeis to compute goodlists of current instatiations. For thequery of �g.3(a) , suppose that x1 has been markedsupported, right after a successful instantiation of X4.The bottom-up phase begins by building x1:L4 (one ofthe goodlists of x1), and then continuing backwards, i.e.building the goodlist for the current instantiation of X2,and then getting another instatiation for X2 that joinswith x1, and so on.This algorithm can be implemented simply, by split-ting up the processing into three operators, implementedas co-routines, called Advance, Backtrack and Re-treat. These co-routines encompass the logic of theiteration. Advance implements the top-down phaseand support marking. Backtrack implements reduc-tion marking. Retreat implements the bottom-upphase. Our implementation reects the ususal architec-ture of the back-end of a query optimizer. The threeoperators,Advance, Backtrack and Retreat, can betreated as templates, instantiated together with speci�cjoin algorithms during code generation. The query pro-gram reects a pipeline structure.4.1 Asymptotic complexity analysisLet X and Y be variables in a query, such that X is theparent of Y . For objects x and y in the domains of Xand Y respectively, let x ! y denote the event that yinstantiates Y and x instantiates X.With respect to the complexity of the algorithm, thefollowing proposition applies:Proposition 2 During the execution of the algorithm,for variables X and Y , such that X is the parent of Y ,5

and for some instantiations x of X and y of Y respec-tively, the number of times that x ! y will occur is atmost twice. Further, for any given x, there is at mostone y for which x! y will occur more than once.Sketch of proof: The �rst time that y instantiates Ywhile x instantiates X, will either be during a top-downphase, or during a bottom-up phase w.r.t. X.If during a bottom-up phase, then y will be inserted intothe appropriate goodlist, and x will eventually be markedcompleted. Thus, if x instantiates X in the future, noneof X's descendants (including Y) will be iterated over.If during a top-down phase, three outcomes are possible:(a) x will be deleted, (b) y will be deleted, (c) x willbecome supported. Cases (a) and (b) are trivial. If thecase is (c), then it is possible in the future that x andy will instantiate X and Y . But, because x is alreadysupported, it will have to be during a bottom-up phase.So, in this case, we may have x and y being instantiatedtwice.2The complete proof is by quite straightforward butelaborate case analysis, and is omitted. By virtue of thisproposition, we compute the asymptotic complexity ofthe algorithm in a straightforward way: There are exactlyn� 1 parent-child pairs of variables. Each of these pairsof variables de�nes O(k2) pairs of instantiations. By theabove proposition, each of the j-predicates between thesetwo nodes will be applied O(k2) times. So, there willbe at most O(nk2) j-predicate invocations. Also, fromthe proposition we infer that each object will be instan-tiated O(k) times. Then, there will be at most O(nk2)s-predicate applications. Finally, each operator performsconstant work for every instantiation (adding an elementto the head of a goodlist is constant work). Thus, theoverall asymptotic complexity of the algorithm is O(nk2).Here, we do not include the inherent complexities of thepredicate evaluations, we are just bounding the overallnumber of predicate applications.5 Implementation issuesWe have chosen to present the concept of intelligent back-tracking with learning in a system-independent manner.However, if this technique is applicable to database sys-tems, it must {and will{ be supported by arguments ofits suitability in and environment where I/O costs are themajor performance burden. Also, it must be shown to beintegrable with real OODBMS systems. We will �rst thenaddress a number of implementation issues.5.1 Markings and goodlistsFor a given query, some object may instantiate more thanone variable. So, an implementation would associate a

marking and a number of goodlists with a pair of theform (OID,variable), instead of just an OID. However,markings and goodlists, because of their use, are transientvalues, and need not be stored on secondary storage. Inany case, a marking can be stored in just 2 bits, and ingeneral does not pose a problem. Goodlists on the otherhand have the semantics of sets. An important point isthat the only operation performed on the goodlists duringthe execution of the algorithm is insertion. Thus, it ispossible to allocate space on the secondary storage andstore them there in an e�cient manner, by some simplebatch-writing technique.In our implementation, markings and goodlists werestored in transient memory. The association of OIDs tothis data, was implemented by simply adding a \pointerto transient memory" attribute to every object in ourschema. During the course of a transaction, these point-ers pointed to small arrays of markings and goodlists.This is not the best strategy, because it involves access-ing the object to obtain its marking. More sophisticatedtechniques should be used in heavyweight database ap-plications.5.2 Selections and indicesIn our scheme, domains of independent variables with s-predicates were materialized as new collections (exceptfor the domain of the root). This simplistic strategy hadsome advantage in sequential scans, by physically deletingobjects from these collections, instead of just markingthem deleted. Selection predicates were applied duringthis stage, using any available indices to speed up theprocess. This is analogous to the well-known heuristic ofpushing selections as low as possible in an algebraic queryexpression.5.3 Joins and query programsAlthough we have based our algorithmon a generic cursorinterface, we anticipate the practicality of more sophisti-cated join algorithms. A careful study of our technique re-veals that, with modest alterations, most join algorithmscan be integrated with our algorithm. The performancesavings of our approach do not come from the use of spe-cialized access techniques, but from intelligent schedulingduring what can considered as a pipelined query execu-tion. Once suitable join algorithms are selected by theoptimizer, the code generator will produce specialized ver-sions of the Advance, Retreat and Backtrack oper-ators, one version per variable.6

5.4 Data accessApart from access mechanisms used in relational systems,a number of OODB-speci�c techniques have been pro-posed, most notably path indices and function (method)materialization. As with all other access mechanisms weknow about, our technique can take full advantage of suchsupport from the storage manager.5.4.1 Query optimizationA typical query optimizer architecture is shown in �g.4.A declarative query is parsed and type-checked, and thenDeclarativequery ParserInformationSchema Cost-basedoptimizerCodegenerator LogicalPlanPhysicalplan
AbstractConjunctiveQuery- --.? ?�� 6 ?

Figure 4: Architecture of a query optimization enginetranslated into an abstract conjunctive query. This is fedinto an optimizer. For reasons to be discussed, a cost-based optimizer is most suitable for our acyclic query ex-ecution approach. The output of this stage is a logicalplan for execution, consisting of an ordering of the vari-ables, a set of access paths, and a selection of join algo-rithms. The logical plan is input to the code generationstage, which is responsible for producing suitable oper-ators on a per-variable basis, and perform code-relatedoptimizations. The code generation would probably tar-get an abstract instruction set at the lowest possible levelof the data management system.The development of a query optimizer, whether cost-based or rule-based, requires an analytical cost model, toderive conclusions on the performance of alternate execu-tion plans. We provide a minimal analytical model, whichwas shown to be pretty accurate in our experiments.Consider a query of n variables. It will involve n � 1joins between these variables. Here, we are using the term\joins" liberally, to denote both data access on naviga-tional elements (i.e. accessing the data of \precomputed"joins), and on propositional elements (i.e. selections andactual joins). By Ji we denote the joins in a logical query

plan. Then, the overall cost of the query isCost = CL + n�1Xi=1 Cost(Ji)where CL is the cost of storing the goodlists. This cost ofstoring goodlists depends on the ordering, but {for rea-sons mentioned before{ it is negligible with respect to thecost of the joins.This expression for the cost is a consequence of prop.2.What is important is that the cost expression does nothave a recursive form. The most important choice of anoptimizer is the choice of the root (as it may constrainthe options for some of the join algorithms). Once a rootis selected, joins and access paths of minimum cost canbe selected on a per-variable basis. Since there are atmost n potential roots, optimization in polynomial timeis feasible.6 Experimental resultsWe have implemented a simple query engine along thelines described so far. We used the ObjectStore commer-cial OODBMS, running on an HP 900/735 workstation,with remote disk access over a local area network. Queriesare input in the conjunctive abstract query form. We onlyimplemented block-nested-loop joins and indexed-nested-loop joins. Cost-based optimization is manual, so that weperform evaluation experiments of the cost model. Due tothe unavailability of a benchmark suite for OODB mul-tijoin queries, we synthesized random data for our ex-periments. We present two groups of results. The �rstgroup involves 3 queries on databases of di�erent sizes,that �t into the main memory. For these queries, in-dexes were unusable, because the j-predicates involvedarbitrary function calls. These queries test the e�ciencyof the approach in lieu of any acceleration mechanisms.The second group of results involves 3 queries over a largedatabase, with full index support, and equalities as joinpredicates. These results demonstrate the performance ofthe algorithm in traditional, data-intensive queries.Table 1 presents the results of the �rst group of exper-iments, shows the performance characteristic of 3 querieson 3 synthesized databases of di�erent sizes, with theschema of �g.1. Table 2 presents the second group of re-sults. The database was twice the size of physical mem-ory. The schema was constructed after the Wisconsinbenchmark paradigm, with integer unique or uniformly-distributed values in the various attributes.For comparison, we used ObjectStore's internal queryfacility to perform similar query processing on our data.As reported in [17], the ObjectStore query facility exe-cutes neted loops with intelligent backtracking, and opti-mizes access paths, using any available indexes. Because7

Small database: 10000 students, 100 professors, 500 coursesQuery 1 Query 2 Query 3CPU time (sec) 142 2.6 153Total time (sec) 156 16 166CPU Utilization 91.4% 26.1% 92.3%Total of goodlist nodes 132 10 3419Size of output S 44 5 1498ObjectStore CPU time (sec) 216 3.0 603Cost model estimate 151.8 1.2 161.7�i estimate (�sec) 28.1 107.5 28.4Medium database: 10000 students, 200 professors, 1000 coursesQuery 1 Query 2 Query 3CPU time (sec) 262 2.7 298Total time (sec) 283 22 310CPU Utilization 92.5% 34.7% 96.1%Total of goodlist nodes 303 4 6733Size of output S 101 2 2997ObjectStore CPU time (sec) 412 3.2 1156Cost model estimate 306.3 1.2 313.2�i estimate (�sec) 25.5 85.3 28.5Large database: 30000 students, 1000 professors, 5000 coursesQuery 1 Query 2 Query 3CPU time (sec) 3975 12.5 4965Total time (sec) 4033 44 5000CPU Utilization 98.5% 28.4% 99.2%Total of goodlist nodes 1587 6 32787Size of output S 531 3 14994ObjectStore CPU time (sec) 9876 14.5 18796Cost model estimate 4650 3.6 4953�i estimate (�sec) 25.6 104.2 30.1Table 1: Experiment results on three queries. Query 1 is a 3-way join, query 2 is simple unnesting, query 3 is a4-way join with unnesting. The cost model estimate was based on the assumption that �i = 30�secwe incorporate marking, we expected to achieve betterperformance, and indeed our results indicate that. Noticethat the ObjectStore query facility does not perform ex-plicit joins. The result shown are for computation that isroughly analogous to the top-down pass of our algorithm(i.e. attempt to establish supportedness of instantiationsof the root variable). The numbers for ObjectStore repre-sent just that computation. On the contrary, the numbersfor our algorithm represent the full computation. Ad-ditionally, we are fairly certain that the physical accesspaths generated by ObjectStore's query optimizer werebetter than those our optimizer generated. Even so, theresults indicate that marking can introduce substantialsavings to the execution time.A few comments are in order. In the �rst group, theimprovement in runtime by augmenting intelligent back-tracking with marking is impressive. Also interesting isthe minimal space overhead, which can be assessed as 8bytes per goodlist node. Contrast that with the size of the
output (in terms of number of successful instantiations)and with the large space overhead sometimes exhibitedby set-oriented processing.For the second group of results, observe how perfor-mance is a�ected by marking, even in the full presense ofindices. Indeed, in query 1, which was large, we achievedbetter performance than ObjectStore, while actually com-puting more. In query 2, the great di�erence in perfor-mance came from reduction marking. The selectivities ofthis query were unusually low, and our approach took ad-vantage of this easily, whereas intelligent backtracking byitself, was consumed in repeating the same failures overand over. An interesting point -no data shown here- hadto do with the breakups of these times into I/O timesand memory management times. Our implementationwas much less sophisticated than ObjectStore's, in termsof resource management and index access. Thus, much ofour CPU time was spent in memory allocation. Object-Store spent minimal time in such tasks. This fact shows8

Large database: 48 Mbytes of data per queryQuery 1 Query 2 Query 3Our CPU time (sec) 115 19 3.9Total time (sec) 199 35 9Utilization (%) 58 54 38ObjectStore CPU time (sec) 442 432 2.64Table 2: Performance on a large, fully indexed database. Query 1 is a 4-way join, query 2 is a 3-way join, query 3 isa join between a base table and an unnested variable.even greater savings of our approach. Finally, the depth�rst approach did indeed exhibit good locality, as shownby our utilization �gures (the fact that we wasted CPUtime ine�ciently should be countered by the fact that wedid not run on a local disk).Most important for our optimizer was the veri�cationof our cost model. As proposed, the cost model accu-rately computed the CPU cost of query execution. Moreprecise modeling of I/O costs is de�nitely necessary ina real system, but it is dependent on the storage man-ager's implementation, and was outside the scope of thisresearch. Below we present the speci�c naive cost modelthat we used; joins are computed either by nested loops ofthrough indices. Assume a speci�c query of n variablesXi, and an ordering of these variables. The followingquantities are de�ned:si is the average size of the domain ofXi, i.e. the numberof objects in Domain(Xi) (for dependent variables,this is an average).Di is the virtual domain size, i.e. the number of distinctobjects instantiating Xi. For independent variables,Di = si. For dependent variables, Di is at most thesize of the unnesting, but can be much smaller.�i is the composite selectivity of s-predicates namingXi.�i is the composite selectivity of indices on Xi. If thereare no indices de�ned on the domain Xi, �i = 1.bi is the average object size for objects in the domain ofXi.ti is the number of scans performed on the domain of Xi.More precisely, it is the average number of times thateach object instantiates Xi.�i is the average access time for objects in the domain ofXi.Of these quantities, si; Di; �i; �i and bi would come fromthe database catalog. To simplify things, introduce Si tobe the e�ective virtual domain size of Xi, asSi = �i�iDi

The average access time �i is strongly dependent on thestorage management architecture and characteristics. Fortypical client-server OODBMS systems, where data is be-ing fetched from the server and cached to the client, weuse a formula of the following sort:�i = h�m + (1� h)�sbiwhere h represents the cache hit ratio. This is a verycoarse model of the I/O and predicate costs involved, butproved su�cient for the queries mentioned herein.Based on the above quantities, the overall time cost Tof the query execution is given byT = nXi=1 ti�isi�iThe value of ti is data dependent, since the algorithm isdata-driven. However, from proposition 2 we can derivebounds for the value of ti. Let X� and X� be variables,X� being the parent of X�. Then,S� � t� � 2S�Of course, t1 = 1. Let � be the repetition ratio, so thatt� = �S�Clearly, 1 � � � 2. In practice, � is very close to 1, andfor some queries (depending on the query graph) it is ex-actly 1. Typical values of � for large queries on uniformlyrandom data sets range from 1 to 1.05.7 DiscussionWe claim the ideas presented in this paper are especiallyadvantageous for the object data model. However, thesame techniques have potential on relational databasesystems as well. One avenue may be to exploit semanticinformation derived from the declaration of foreign keysas a precomputation of support markings. The ultimatesuccess in this context remains to be seen. Given thematurity and power of RDB technology these techniqueswill have to be evaluated in the context of better re�ned9

cost models and optimizations that are not applicable toOODBs. In addition, these loop optimization techniquesare convenient with respect to the methods OODBs pro-vide for iterating over collection. Similar interfaces toRDBs typically incur substantial overhead. Also, our ap-proach handles in a uniform manner various aspects ofOODB query processing that have been problematic, suchas joins on method values, unnesting, and optimization.It is often argued that explicit joins are not as impor-tant in OODBs as they are in RDBs, because in an in-tuitive schema they would be already \precomputed" inthe form of nested collections. This is true for OODBapplications that resemble traditional RDB applications.However, OODBs are becoming the platform of choice fora variety of new database applications, that are compute-intensive as well as data-intensive. These include CADsystems, distributed systems, and the Internet. In someof these applications, join queries between tens of collec-tions are not uncommon. We particularly have in minddata mining queries which assemble complex barter op-portunities among players on the internet.Both RDB and OODB query languages support quan-ti�ed (e.g. existential) predicates. In terms of execution,quanti�cation is evaluated by iteration. Query strategiesto optimize such iteration are important, and we shouldnot ignore them in our approach. It so turns out that ouralgorithm can be extended in a straightforward mannerto handle existential predicate evaluation, provided thatthe query graph of the predicate is acyclic. The exten-sion would simply be to represent existential iteration by\hidden" variables in the query. For these variables, thebottom-up phase of the iteration should be omitted. Inother words, goodlists will not be built for the instanti-ations of these variables, but markings will be recorded.Negation (i.e. universal quanti�cation) can be supported,by simply reversing the meanings of deleted and sup-ported markings for appropriate variables. We have notyet implemented this however, so we will not expand anyfurther.The obvious extension to this research is of course theextension of these techniques to non-acyclic queries, andto queries with query graphs that are not dependency-directed. For both of these directions there are obviousextensions, but we do not yet have concrete results. Con-sider however the following simple approach to querieswith only a few (1 or 2) cycles: select a spanning tree ofthe query graph, and compute the goodlists for it. Then,iterate over the goodlists, and discard any instantiationsthat do not satisfy the predicates that are not part of theselected tree. Although this approach seems naive, it maybe that for queries with only 1 or 2 cycles, and with in-telligent backtracking in the iteration over the goodlists,it is a good strategy. This is because (a) the computa-tion of the goodlists is very fast, (b) the space required is

small (c) in many cases, careful selection of the spanningtree will reduce the successful instantiations (to be testedagainst the extra predicates) to a small number.8 Related workThe techniques we present in this work, were derived froma recent result in Contraint Satisfaction (CSP). This well-studied AI problem roughly corresponds to the problemof non-emptiness of a relational database query. A searchof the CSP literature reveals a number of results andtechniques analogous to results and techniques in rela-tional query execution. However, the transition from aCSP result to a database result is non-trivial at the least.In the light of this work, we emphasize that an analo-gous technique to semijoin reduction did exist in the CSPworld, under the term Directed Arc Consistency. A re-cent development in this area has been the TreeTrackeralgorithm[5], from which we have derived the results ofthis work.9 Conclusions and future workWe have developed and evaluated a new approach toOODB query execution, based on intelligent backtrack-ing and a form of nested-loop optimization, which we callmarking. We advocate the suitability of this approachto the object-oriented model, as it is algorithmic in na-ture, and poses very few semantic restrictions to the datamodel. We have applied these ideas to a solution to theimportant subproblem of acyclic query evaluation. Theresulting algorithm is asymptotically optimal, and has ex-perimentally been demonstrated to deliver excellent per-formance. The nature of the approach results in a simplebut accurate cost mode; one that can be used to select anear-optimal execution plan in time quadratic to the sizeof the query. Based on our experimental data, we ad-vocate the depth-�rst approach to query execution, anddemonstrate it to alleviate some of the problems of per-forming unnesting on the data.As a formal foundation, our approach relates to theConstraint Satisfaction Problem[11, 5]. Toward this goalwe have developed a nearly uniform representation of el-ements of the object schema and the query in the formof a query graph. This form of a query graph retains thedeclarative form of a query. It follows from this graph def-inition that query evaluation can be de�ned with respectto a set of cursors, one cursor per vertex of the querygraph, such that these cursors iterate over collections ofobjects. There is no restrictions on the implementation ofthe cursors. Thus, the approach simultaneously remainsexible with respect to physical access methods and may10

generalize over many di�ereent OODB data models andarchitectures.The results reported are part of work in progress. Weintend to investigate the generality of these techniques,by developing algorithms for more general problems thanacyclic queries. Immediate goals are an algorithm fordependency-directed non-acyclic queries, a systematichandling of quanti�ed predicates, and implementationunder di�erent OODBMS systems, to study system-related issues under di�erent architectural choices.References[1] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dit-trich, D. Maier, and S. Zdonik. The object-orienteddatabase manifesto. In Proceedings of the Int'l Con-ference on Deductive and Object-Oriented Databases,Kyoto, Japan, December 1994.[2] Francois Bancilhon, Claude Delobel, and ParisKanellakis, editors. Building an Object-OrientedDatabase System - The Story Of O2. Morgan Kauf-mann Publishers, San Mateo, CA, 1992.[3] Roberto J. Bayardo Jr. Enhancing query plans formany-way joins. Unpublished article.[4] Roberto J. Bayardo Jr. and Daniel P. Miranker.Backtrack-bounded search in polynomial space. Un-published article.[5] Roberto J. Bayardo Jr. and Daniel P. Miranker. Anoptimal backtrack algorithm for tree-structured con-straint satisfaction problems. Arti�cial Intelligence,1994.[6] Catriel Beeri, Ronald Fagin, David Maier, and Mi-halis Yannakakis. On the desirability of acyclicdatabase schemes. Journal of the ACM, 30(3):479{513, July 1983.[7] Elisa Berino, Mauro Negri, Giuseppe Pelagatti, andLicia Sbattella. Object-oriented query languages:The notion and the issues. IEEE Trans. on Knowl-edge and Data Engineering, 4(3):223{237, June 1992.[8] Elisa Bertino and Lorenzo Martino. Object-OrientedDatabase Systems: Concepts and Architectures.International Computer Science Series. Addison-Wesley, 1993.[9] Jos�e A. Blakeley, W. J. McKenna, and G. Graefe.Experiences building the open oodb query optimizer.In Proceedings of the SIGMOD COnference on theManagement of Data, pages 287{296, Washington,DC, May 1993. ACM.

[10] M. Carey, D. DeWitt, G. Graefe, D. Haight,J. Richardson, D. Schuh, E. Shekita, and S. Van-denberg. The exodus extensible dbms project: Anoverview. In S. Zdonik and D. Maier, editors,Readings in Object-Oriented Databases. Morgan-Kaufman, 1990.[11] Rina Dechter. Constraint networks. in Encyclopediaof Arti�cial Intelligence, 2nd Ed., 1992.[12] Goetz Graefe. Volcano-an extensible and parallelquery evaluation system. IEEE Trans. on Knowl-edge and Data Engineering, 6(1):120{135, February1994.[13] Matthias Jarke and J�urgen Koch. Query opti-mization in database systems. Computing Surveys,16(2):111{152, June 1984.[14] Alfons Kemper, Christoph Kilger, and Guido Mo-erkotte. Function materialization in object bases:Design, realization, and evaluation. IEEE Trans. inKnowledge and Data Engineering, 6(4):587{608, Au-gust 1994.[15] Michael Kifer, W. Kim, and Y. Sagiv. Queryingobject-oriented databases. In Proc. of 1992 ACMSIGMOD, pages 393{402, CA, USA, June 1992.ACM.[16] Jos�e Meseguer and Xiaolei Qian. A logical seman-tics for object-oriented databases. SIGMOD Record,22(2):89{98, June 1993.[17] Jack Orenstein, Sam Haradhvala, Benson Margulies,and Don Sakahara. Query processing in the object-store database system. In Proc. of 1992 ACM SIG-MOD, pages 403{412, CA, USA, June 1992. ACM.[18] M. Tamer �Ozsu and Jos�e Blakeley. Query process-ing in object-oriented database systems. In W. Kim,editor, Modern Database Management - Object-Oriented and Multidatabase Technologies, pages 146{174. Addison-Wesley/ACM Press, 1994.[19] M. Tamer �Ozsu, Adriana Munoz, and DuaneSzafron. An extensible query optimizer for an ob-jectbase management system. In Proc. Fourth Int.Conf. on Information and Knowledge Management,Baltimore, October 1995. (CIKM'95). (to appear).[20] Hennie J. Steenhagen, Peter M. G. Apers, Henk M.Blanken, and Rolf A. de By. From nested-loop to joinqueries in oodb. In Proceedings of the 20th VLDBConference, pages 618{629, Sandiago, Chile, 1994.11

[21] Dave D. Straube and M. Tamer �Ozsu. Query op-timization and execution plan generation in object-oriented data management systems. IEEE Transac-tions on Knowledge and Data Engineering, 7(2):210{227, April 1995.[22] Stanley Y. W. Su, Mingsen Guo, and Herman Lam.Association algebra: A mathematical foundation forobject-oriented databases. IEEE Trans. in Knowl-edge and Data Engineering, 5(5):775{798, October1993.[23] Je�rey Ullman. Principles of Database andKnowledge-Base Systems. Computer Science Press,Inc., 1988.[24] Scott Lee Vandenberg. Algebras for Object-OrientedQuery Languages. PhD thesis, University ofWisconsin-Madison, 1993.[25] Carlo Zaniolo. The representation and deductive re-trieval of complex objects. In Proc. of VLDB '85,pages 458{469, Stockholm, 1985.

12

