Loop Optimizations for Acyclic Object-Oriented Queries

Vasilis Samoladas

Daniel P. Miranker

The University of Texas at Austin
Department of Computer Sciences
Taylor Hall 2.124
Austin, TX 78712-1188

{vsam,miranker}0@cs.utexas.edu

Tel: (512)-471-9541

Abstract

Nested loop execution of object-oriented queries retains
the promise of maintaining the full generality of the ob-
ject paradigm, independent of the specifics of any single
object model. Thus, from this starting point we have
developed an object-oriented query optimizer and execu-
tion engine. The methods, developed to date for only
acyclic queries, augment nested loops structures with a
simple marking mechanism such that unnecessary loop
iterations are not repeated. In the case of acyclic queries,
the executions are asymptotically optimal. In contrast to
optimal query methods based on semijoin reductions our
method involves no preprocessing step and thus avoids
the extra I/O associated with semijoins and prevents the
formal benefits of semijoin reduction from appearing as a
practical improvement. Empirical results comparing our
query environment with a commercially available product
demonstrate significant performance improvement.

1 Introduction

We develop a technique for the optimization and com-
putation of acyclic multi-join queries that deviates from
mainstream techniques. The basis of the method is the
mapping of a query and a database schema to a query
graph, omitting an algebraic representation. The sys-
tem develops a query plan in conjunction with a search
for a minimum-cost spanning tree of the graph. We
are developing this approach in the context of Object-
Oriented Databases (OODBs) where the lack of univer-
sally accepted algebraic and semantic models makes this
approach particularly advantagous.

It is convenient to think of our approach as a method
of optimizing nested loops. Despite the commonly held
belief that there is little opportunity to optimize nested
loops [20] we present simple bookkeeping methods with
which to augment loops and that eliminate many unneces-

sary loop iterations. For acyclic queries, we have achieved
better performance than a traditional query evaluation
engine used in a commercial OODB. In fact our approach
captures all the formal advantages of query optimization
using semijoin reductions and cures the practical disad-
vantages. In particular, we are able to compute a rep-
resentation of an acyclic n-way join in optimal time and
space, O(nk?), where k is a bound on the size of collec-
tions. A key element of the technique 1s that it performs
reductions “on-the-fly”. The output can be materialized
either during this computation, or later, in time linear
with the size of the output. Thus, the additional pass
through the data normally associated with semi-join re-
duction can be avoided, skipping the additional I/O that
limits the use of semi-join reductions.

Query plans derived from nested loops have other ad-
vantages. We will show that such query plans are easy
to produce and execute, producing only a small amount
of code per query. Good locality and caching behavior
should be witnessed, as objects are accessed in a depth-
first manner (in terms of the object-schema) as opposed
to the breadth-first manner of relational primitives. This
becomes important in client-server OODB systems, where
query processing usualy takes place on the client, rather
than on the server. The asymptotic impact on cost of on-
the-fly reduction results in very fast execution for acyclic
queries.

An important consideration in our work has been the
development of techniques that would be widely appli-
cable to OODBs. We adopt instantiation semantics for
abstract conjunctive queries. A successful query instanti-
ation is an assignment of object instances to the variables
of the query, such that all navigational and propositional
elements are satisfied. Formally, we understand the result
of such a query to be the set of all successful query instan-
tiations. These definitions allow us to exploit a cursor-
based interface to access collections - again allowing us
to ignore the vagaries of individual systems. We will em-



phasize that our technique is orthogonal to, and can in-
corporate most of the existing elements and techniques
of query processing; access path selection, attribute and
path indices, other join algorithms etc.

2 Definitions

In part, the added difficulty in the optimization and eval-
uation of OOQs is the integration of both the purely
propositional elements that define a query and the physi-
cal elements that can be exploited to improve query per-
formance. These, so called, physical elements manifest in
path expressions which can be used to navigate through
the compositions used to form complex objects. In this
section we develop the definition of a query graph for
object-oriented queries such that both the propositional
and navigational elements are represented in a unified
fashion.

2.1 Some O0OQ Definitions

For the sake of brevity, we provide intuitive definitions for
a number of query-related terms. Consider the schema of
Fig.1.

A simple query in an SQL-like language might be the
following:

QUERY Examplel =

SELECT <...>

FROM s IN Student::extent,
¢ IN s.courses
p IN Professor::extent

WHERE
s.FirstName ==

2& Q(c,p) ;

"John"

The FROM clause declares a number of range variables.
Two of these, s and p, are defined on base collections.
These we will call independent variables. Variable ¢ how-
ever, is defined on a “nested” domain. Such a variable
will be called a dependent variable, and we shall use the
term domain variable for the variable that defines its do-
main. In the above example, s 1s the domain variable of
c.

Navigational elements of the query, 1.e. the domains
and dependencies of variables with respect to the schema,
are defined in the FROM clause.

The WHERE clause of the above query is a boolean con-
junction of two predicates. The first of these predicates
refers to a single variable. Predicates that refer to a single
variable will be called s-predicates (for “selection”). The
second of these predicates refers to two variables. Such
predicates will be called j-predicates (for “join”). In this
paper, we restrict to predicates of arity at most 2.

The WHERE clause defines the propositional elements
of a query. We restrict our attention to queries where
the WHERE clause is a conjunction of s-predicates and j-
predicates. Such queries will be called abstract conjunc-
live queries.

2.2 An 00Q Graph

For an abstract conjunctive query @, we define the query
dependency graph (QDG) G(Q) = (V, N, P) as follows: V
1s the set of nodes, one for each variable of the query. Let
u, v be nodes. (u,v) € N is a directed arc from u to v, iff u
1s the domain variable of v, where of course v is a depen-
dent variable (we identify nodes with the corresponding
variables from now on). (u,v) € P is an undirected arc
between u and v iff there exists at least one j-predicate
naming both u and v. The query dependency graph for
query Examplel is shown in Fig.2.

O~(—0

Figure 2: The query dependency graph G(Examplel).

The directed arcs in a QDG represent the navigational
elements of the query, whereas the undirected arcs denote
propositional elements. Notice that between two nodes u
and v there may exist both a directed and and undirected
arc.

Let G = (V, N, P) be a QDG. We define G/ = (V, NUP)
to be the lumped graph. G’ is a regular, undirected graph.

Definition 1 G is cycle-free iff the lumped graph G’ is
acyclic (i.e. G’ is a tree).

Let w € V be a node of G = (V, N, P).

Definition 2 u is ¢ potential root iff there exists a
simple pseudo-directed path (i.e. one respecting the direc-
tion of arcs in N, even in the presense of both a directed
and a directed arc between two nodes) from u to every

other node of Gi.

Definition 3 G is dependency-directed iff there ex-
1sts a node u which is a potential root.

We define acyclicity of a query ) in terms of the QDG
G. In particular, @ is acyclic iff G is cycle-free and
dependency-directed. Of these two requirements, the first
is natural for acyclicity. The second requirement, al-
though not directly related to acyclicity, is however use-
ful. To see why, we must give a final definition. Let the
nodes of G be ordered in a depth-first fashion, vy, ...

avna



Person

= Single-valued reference

FirstName

Set-valued reference

\ —

LastName

\

- -

/" [SSN

Subclass-of

N

Y
Student

courses
A

Y l A

Professor

salary

courses

Course

get_name()

get_instructor()

get_TA()

Figure 1: A simple OODB schema, consisting of 4 classes, 2 of which have nested collection attributes.

where vy 1s a potential root. We then refer to GG as an or-
dered query dependency tree (OQDT). Dependency-
directedness is a necessary and sufficient condition for any
depth-first ordering to have the following property:

Proposition 1 Let X be a variable of an OQDT G. If
X 1s a dependent variable, then its domain variable is its
parent i G.

This proposition suggests that a backtracking depth-
first traversal of the OQDT will respect the navigational
elements of the query, i.e. will instantiate a domain vari-
able before it attempts to instantiate the dependent vari-

able.

3 Optimization of Nested loops

We prefer a new term, naive nested-loops for the construc-
tion commonly known as nested-loops evaluation. Naive
nested-loops is the simplest form of depth-first evalua-
tion. More intelligent forms of depth-first query evalu-
ation have been around for a long time. Perhaps, the
most familiar instance is the Prolog execution engine (see
Ullman[23] for an extensive treatment of top-down eval-
uation).

The easiest optimization for depth-first query evalua-
tion is intelligent backtracking. Naive nested loops can
be thought of as naive backtracking. The variables of a
query are ordered so that for each dependent variable,
its domain variable precedes it in the ordering. Con-
sider the OQDT of Fig.3. Suppose that we attempt to
instantiate X, and fail to instantiate an object (because

no object would satisfy the j-predicates with X;). Naive
backtracking —see Fig.3(b)— returns to X3 and tries an-
other instantiation of it, before retrying to instantiate X,.
However, instantiation of X4 will fail again. The cause of
failure is not the current instantiation of X3, but that of
X1. In other words, the current instantiation of X; does
not join with any value in X4’s domain, thus it will not
appear in the result. Naive backtracking eventually does
the right thing, but with a high performance penalty. By
employing wntelligent backtracking, we backtrack to X;
—see Fig.3(c), and we save an order of magnitude of ex-
traneous work.

Another optimization of backtracking query execution
involves recording information on the success or failure
of a computation, so that the computation won’t have
to be repeated in subsequent iterations. The recorded
information amounts to a marking of objects. We call
this optimization marking, and comes in two variants,
reduction marking and support marking.

Consider the join between X» and X3 in the query of
Fig.3. Assume that we have instantiated X with object
x5 and we proceed to instantiate X3. It is possible that
no object of X3’s domain joins with z5. In this case, we
mark z» as a failing instantiation, so that if x5 becomes
instantiated in the future, the algorithm will not have to
repeat the failing computation. We call this optimization
reduction marking.

We can also record successful computations. Consider
again the previous scenario, only this time X3 does suc-
cessfully join with X5. We can mark z» as a successfull
instantiation. Then, if zs is instantiated again in the
future, we can defer instantiating X3, and try to instanti-



X1

X1
— X2
— X3 X3
X4
X4

()

Figure 3: Intelligent backtracking: (a) query dependency graph (b) naive backtracking (c) intelligent backtracking

ate X4 first. Since we know that instantiation of X3 will
succeed, there is no point in performing it eagerly, and
maybe having X4 fail. If X, does also succeed, we can
come back to X3 and complete the processing. We call
this optimization support marking.

The ideas of marking and intelligent backtracking can
be combined, and lead to very powerful optimizations of
nested-loops query evaluation. In fact, these two kinds of
optimizations, if applied correctly, are sufficient to guar-
antee asymptotically optimal performance in the compu-
tation of the first solution on acyclic queries [5]. In the fol-
lowing sections we present a specific algorithm that uses
these ideas to deliver asymptotically optimal performance
on acyclic queries, and discuss the database-specific issues
that are involved, most notably implementation in an ob-
ject data model and 1/O performance.

4 Evaluating Acyclic Queries

In general, determining the set of successful query instan-
tiations of an acyclic query takes exponential time in the
worst case, simply because the size of the result S, i.e.
the number of successful instantiations, can be exponen-
tial to the size of the database and the size of the query.
Because of this, the lower bound is Q(nk? + S).
However, it is possible to represent the result of an
acyclic conjunctive query in polynomial space. Let @) be
an acyclic conjunctive query, and G(Q) be an OQDT. Let
X; and X; be variables of @) such that X; is the parent
of X; in the OQDT. Let x; be an object that instantiates
X; in some successful query instantiation. With z; we
associate a set x;.L; of objects. An object x; belongs
to x;.L; iff for some successful query instantiation, z;
instantiates X; and z; instantiates X;. Also, define L;
to be the set of all objects #; that instantiate X; (the
root of the OQDT) in some successful query instantiation.
Let these sets be called goodlists. Then, the result of the

query can be enumerated by straight-forward application
of naive nested loops.

foreach( Xy € L)
foreach( X; € X;.L2)

foreach( X; € Xyurent(i)-Li )

foreach( X, € Xparent(n)-Ln )

{
// process instantiation
Emit_Successful_Instantiation(Xy, . ..

1

The number of iterations will be equal to the size S of
the query result. So, the computation of the goodlists of
a given query can be viewed as optimized query evalu-

ation, prior to naive nested-loop enumeration of the re-
This is not a contradiction with our claim in the
introduction that our technique does not require prepro-
cessing, for the following two reasons. First, in semi-join

sult.

reduction techniques, semi-join reduction is followed by a
join phase, which in fact will compute the output. Our
scheme does not require that. The nested loops above just
enumerate the result of the query, which —for all practical
purposes— s the set of goodlists. Second, this enumera-
tion is not necessarily an after-step, but can be dispersed
in the computation of the goodlists, in order to eliminate
I/0 overhead.

Although the above definition of goodlists is set-
theoretic, it has a direct implementation in OODBs, by
exploiting OID semantics. So, in practice, goodlists are
sets of OIDs. Further, as the name suggests, they can be
implemented as lists. More details about the implemen-
tation will follow.

The space requirements for goodlists are polynomial
in the size of the database. If no domain contains more
than k objects, the worst-case space complexity is O(nk?)



(there are O(nk) objects in the database, and each object
can appear in at most k goodlists). Additionally, the total
space is bounded by O(nS), which can be much better
than O(nk?) for small values of S. Notice that these
space complexities are based on the fact that goodlists can
be implemented as lists of OIDs to objects. Thus, each
goodlist will require space proportional to the number of
goodlist elements, independent of the size of the objects
pointed at.

Under this context, the computation of query eval-
uation 1s reduced to the efficient computation of the
goodlists for a given query and OQDT. We will describe
an optimal backtracking algorithm for the computation
of goodlists, postponing any system-related issues for the
following sections. The algorithm incorporates marking
and intelligent backtracking, as they were described in
the previous section. Marking is implemented by associ-
ating a status marking with each object. ' We assume
a generic cursor interface, where we have a cursor per
query variable. We will use the term “instantiates” to
refer to cursor operation, assuming that all navigational
and/or propositional constraints with the parent cursor’s
instantiation are enforced.

At any time, the status marking of an object is one of
unknown, supported, completed and deleted. The
significance of these markings is the following:

deleted An object z instantiating X is marked deleted
as the result of reduction marking. This will happen
if the algorithm fails to instantiate some child of X.
Once an object is marked as deleted, it is (conceptu-
ally) removed from the domain of X.

supported An object z instantiating variable X be-
comes supported as a result of support marking.
Intuitively, supportedness means that the backtrack-
ing computation is known to succeed in the subtree
of X with respect to x, and can be deferred in fu-
ture instantiations of x, in the spirit of the previous
section.

completed An object z instantiating variable X be-
comes completed when all the goodlists associated
with x have been fully computed. Notice that only
supported objects can become completed. If X is
a leaf, then x is initialized to this marking (because
it 1s supported and it does not have any goodlists to
compute).

unknown If nothing is known about an object, it is
marked unknown. Initially, all objects —except

ITechnically, a status marking is associated with a pair
(OID,variable), as some object may instantiate multiple varibales.
This technicality is important in the implementation, but not in the
presentation of the technique

those instantiating leaf nodes— are marked un-
known.

It is most convenient to understand the functioning of
the algorithm with respect to the root variable. For each
instantiation z; of the root variable X;, the algorithm
executes a top-down phase and a bottom-up phase.

In the top-down phase, the algorithm attempts to de-
termine whether z; is supported, by finding a first suc-
cessful query instantiation. This computation is recur-
sively reduced to instantiating the children of X;, and
then computing supportedness of these instantiations.
This evaluation is done depth-first, by taking advantage of
previous support marking, and applying intelligent back-
tracking and reduction marking when appropriate.

If a successful query instantiation is found, object x1 is
marked supported and a bottom-up phase begins, that
will result in computing the goodlists of 7 and marking it
completed. In the case of failure, #; is marked deleted
and the algorithm attempts to get the next instantiation
of X1 .

The bottom-up phase is straightforward. Its purpose
is to compute goodlists of current instatiations. For the
query of fig.3(a) , suppose that z; has been marked
supported, right after a successful instantiation of X,.
The bottom-up phase begins by building #1.L4 (one of
the goodlists of x1), and then continuing backwards, i.e.
building the goodlist for the current instantiation of X,
and then getting another instatiation for X, that joins
with z1, and so on.

This algorithm can be implemented simply, by split-
ting up the processing into three operators, implemented
as co-routines, called ADVANCE, BACKTRACK and RE-
TREAT. These co-routines encompass the logic of the
iteration. ADVANCE implements the top-down phase
and support marking. BACKTRACK implements reduc-
tion marking. RETREAT implements the bottom-up
phase. Our implementation reflects the ususal architec-
ture of the back-end of a query optimizer. The three
operators, ADVANCE, BACKTRACK and RETREAT, can be
treated as templates, instantiated together with specific
join algorithms during code generation. The query pro-
gram reflects a pipeline structure.

4.1

Let X and Y be variables in a query, such that X 1is the
parent of Y. For objects # and y in the domains of X
and Y respectively, let z — y denote the event that y
instantiates Y and x instantiates X.

With respect to the complexity of the algorithm, the
following proposition applies:

Asymptotic complexity analysis

Proposition 2 During the execution of the algorithm,
for variables X and Y, such that X 1s the parent of Y,



and for some instantiations © of X and y of Y respec-
twvely, the number of times that x — y will occur s at
most twice. Further, for any given x, there ts at most
one y for which x — y will occur more than once.

Sketch of proof: The first time that y instantiates Y
while # instantiates X, will either be during a top-down
phase, or during a bottom-up phase w.r.t. X.
If during a bottom-up phase, then y will be inserted into
the appropriate goodlist, and & will eventually be marked
completed. Thus, if z instantiates X in the future, none
of X’s descendants (including V') will be iterated over.
If during a top-down phase, three outcomes are possible:
(a) = will be deleted, (b) y will be deleted, (c) = will
become supported. Cases (a) and (b) are trivial. If the
case is (c), then it is possible in the future that z and
y will instantiate X and Y. But, because z is already
supported, it will have to be during a bottom-up phase.
So, in this case, we may have z and y being instantiated
twice.O

The complete proof is by quite straightforward but
elaborate case analysis, and is omitted. By virtue of this
proposition, we compute the asymptotic complexity of
the algorithm in a straightforward way: There are exactly
n — 1 parent-child pairs of variables. Each of these pairs
of variables defines O(k?) pairs of instantiations. By the
above proposition, each of the j-predicates between these
two nodes will be applied O(k?) times. So, there will
be at most O(nk?) j-predicate invocations. Also, from
the proposition we infer that each object will be instan-
tiated O(k) times. Then, there will be at most O(nk?)
s-predicate applications. Finally, each operator performs
constant work for every instantiation (adding an element
to the head of a goodlist is constant work). Thus, the
overall asymptotic complexity of the algorithm is O(nk?).
Here, we do not include the inherent complexities of the
predicate evaluations, we are just bounding the overall
number of predicate applications.

5 Implementation issues

We have chosen to present the concept of intelligent back-
tracking with learning in a system-independent manner.
However, if this technique is applicable to database sys-
tems, i1t must —and will- be supported by arguments of
its suitability in and environment where I/O costs are the
major performance burden. Also, it must be shown to be
integrable with real OODBMS systems. We will first then
address a number of implementation issues.

5.1 Markings and goodlists

For a given query, some object may instantiate more than
one variable. So, an implementation would associate a

marking and a number of goodlists with a pair of the
form (OID,variable), instead of just an OID. However,
markings and goodlists, because of their use, are transient
values, and need not be stored on secondary storage. In
any case, a marking can be stored in just 2 bits, and in
general does not pose a problem. Goodlists on the other
hand have the semantics of sets. An important point is
that the only operation performed on the goodlists during
the execution of the algorithm is insertion. Thus, it is
possible to allocate space on the secondary storage and
store them there in an efficient manner, by some simple
batch-writing technique.

In our implementation, markings and goodlists were
stored in transient memory. The association of OIDs to
this data, was implemented by simply adding a “pointer
to transient memory” attribute to every object in our
schema. During the course of a transaction, these point-
ers pointed to small arrays of markings and goodlists.
This is not the best strategy, because it involves access-
ing the object to obtain its marking. More sophisticated
techniques should be used in heavyweight database ap-
plications.

5.2 Selections and indices

In our scheme, domains of independent variables with s-
predicates were materialized as new collections (except
for the domain of the root). This simplistic strategy had
some advantage in sequential scans, by physically deleting
objects from these collections, instead of just marking
them deleted. Selection predicates were applied during
this stage, using any available indices to speed up the
process. This is analogous to the well-known heuristic of
pushing selections as low as possible in an algebraic query
expression.

5.3 Joins and query programs

Although we have based our algorithm on a generic cursor
interface, we anticipate the practicality of more sophisti-
cated join algorithms. A careful study of our technique re-
veals that, with modest alterations, most join algorithms
can be integrated with our algorithm. The performance
savings of our approach do not come from the use of spe-
cialized access techniques, but from intelligent scheduling
during what can considered as a pipelined query execu-
tion. Once suitable join algorithms are selected by the
optimizer, the code generator will produce specialized ver-
sions of the ADVANCE, RETREAT and BACKTRACK oper-
ators, one version per variable.



5.4 Data access

Apart from access mechanisms used in relational systems,
a number of OODB-specific techniques have been pro-
posed, most notably path indices and function (method)
materialization. As with all other access mechanisms we
know about, our technique can take full advantage of such
support from the storage manager.

5.4.1 Query optimization

A typical query optimizer architecture is shown in fig.4.
A declarative query is parsed and type-checked, and then

. Abstract
Declarative
. .
query Parser [ Conjunctive
T Querir
Schema ] Cost-based
Information .
l optimizer
Physical Code Logical
| generator Plan
plan

Figure 4: Architecture of a query optimization engine

translated into an abstract conjunctive query. This is fed
into an optimizer. For reasons to be discussed, a cost-
based optimizer is most suitable for our acyclic query ex-
ecution approach. The output of this stage 1s a logical
plan for execution, consisting of an ordering of the vari-
ables, a set of access paths, and a selection of join algo-
rithms. The logical plan is input to the code generation
stage, which is responsible for producing suitable oper-
ators on a per-variable basis, and perform code-related
optimizations. The code generation would probably tar-
get an abstract instruction set at the lowest possible level
of the data management system.

The development of a query optimizer, whether cost-
based or rule-based, requires an analytical cost model, to
derive conclusions on the performance of alternate execu-
tion plans. We provide a minimal analytical model, which
was shown to be pretty accurate in our experiments.

Consider a query of n variables. It will involve n — 1
joins between these variables. Here, we are using the term
“joins” liberally, to denote both data access on naviga-
tional elements (i.e. accessing the data of “precomputed”
joins), and on propositional elements (i.e. selections and
actual joins). By J; we denote the joins in a logical query

plan. Then, the overall cost of the query 1is

n—1

Cost = Cr + Z Cost(J;)

i=1

where (' is the cost of storing the goodlists. This cost of
storing goodlists depends on the ordering, but —for rea-
sons mentioned before— it is negligible with respect to the
cost of the joins.

This expression for the cost is a consequence of prop.2.
What is important is that the cost expression does not
have a recursive form. The most important choice of an
optimizer is the choice of the root (as it may constrain
the options for some of the join algorithms). Once a root
is selected, joins and access paths of minimum cost can
be selected on a per-variable basis. Since there are at
most n potential roots, optimization in polynomial time
1s feasible.

6 Experimental results

We have implemented a simple query engine along the
lines described so far. We used the ObjectStore commer-
cial OODBMS, running on an HP 900/735 workstation,
with remote disk access over a local area network. Queries
are input in the conjunctive abstract query form. We only
implemented block-nested-loop joins and indexed-nested-
loop joins. Cost-based optimization is manual, so that we
perform evaluation experiments of the cost model. Due to
the unavailability of a benchmark suite for OODB mul-
tijoin queries, we synthesized random data for our ex-
periments. We present two groups of results. The first
group involves 3 queries on databases of different sizes,
that fit into the main memory. For these queries, in-
dexes were unusable, because the j-predicates involved
arbitrary function calls. These queries test the efficiency
of the approach in lieu of any acceleration mechanisms.
The second group of results involves 3 queries over a large
database, with full index support, and equalities as join
predicates. These results demonstrate the performance of
the algorithm in traditional, data-intensive queries.

Table 1 presents the results of the first group of exper-
iments, shows the performance characteristic of 3 queries
on 3 synthesized databases of different sizes, with the
schema of fig.1. Table 2 presents the second group of re-
sults. The database was twice the size of physical mem-
ory. The schema was constructed after the Wisconsin
benchmark paradigm, with integer unique or uniformly-
distributed values in the various attributes.

For comparison, we used ObjectStore’s internal query
facility to perform similar query processing on our data.
As reported in [17], the ObjectStore query facility exe-
cutes neted loops with intelligent backtracking, and opti-
mizes access paths, using any available indexes. Because



Small database: 10000 students, 100 professors, 500 courses

Query 1 | Query 2 Query 3
CPU time (sec) 142 2.6 153
Total time (sec) 156 16 166
CPU Utilization 91.4% 26.1% 92.3%
Total of goodlist nodes 132 10 3419
Size of output S 44 5 1498
ObjectStore CPU time (sec) 216 3.0 603
Cost model estimate 151.8 1.2 161.7
7; estimate (usec) 28.1 107.5 28.4
Medium database: 10000 students, 200 professors, 1000 courses

Query 1 | Query 2 Query 3
CPU time (sec) 262 2.7 298
Total time (sec) 283 22 310
CPU Utilization 92.5% 34.7% 96.1%
Total of goodlist nodes 303 4 6733
Size of output S 101 2 2997
ObjectStore CPU time (sec) 412 3.2 1156
Cost model estimate 306.3 1.2 313.2
7; estimate (usec) 25.5 85.3 28.5
Large database: 30000 students, 1000 professors, 5000 courses

Query 1 | Query 2 Query 3
CPU time (sec) 3975 12.5 4965
Total time (sec) 4033 44 5000
CPU Utilization 98.5% 28.4% 99.2%
Total of goodlist nodes 1587 6 32787
Size of output S 531 3 14994
ObjectStore CPU time (sec) 9876 14.5 18796
Cost model estimate 4650 3.6 4953
7; estimate (usec) 25.6 104.2 30.1

Table 1: Experiment results on three queries. Query 1 is a 3-way join, query 2 is simple unnesting, query 3 is a
4-way join with unnesting. The cost model estimate was based on the assumption that 7, = 30usec

we incorporate marking, we expected to achieve better
performance, and indeed our results indicate that. Notice
that the ObjectStore query facility does not perform ex-
plicit joins. The result shown are for computation that is
roughly analogous to the top-down pass of our algorithm
(i.e. attempt to establish supportedness of instantiations
of the root variable). The numbers for ObjectStore repre-
sent just that computation. On the contrary, the numbers
for our algorithm represent the full computation. Ad-
ditionally, we are fairly certain that the physical access
paths generated by ObjectStore’s query optimizer were
better than those our optimizer generated. Even so, the
results indicate that marking can introduce substantial
savings to the execution time.

A few comments are in order. In the first group, the
improvement in runtime by augmenting intelligent back-
tracking with marking is impressive. Also interesting is
the minimal space overhead, which can be assessed as 8
bytes per goodlist node. Contrast that with the size of the

output (in terms of number of successful instantiations)
and with the large space overhead sometimes exhibited
by set-oriented processing.

For the second group of results, observe how perfor-
mance 1s affected by marking, even in the full presense of
indices. Indeed, in query 1, which was large, we achieved
better performance than ObjectStore, while actually com-
puting more. In query 2, the great difference in perfor-
mance came from reduction marking. The selectivities of
this query were unusually low, and our approach took ad-
vantage of this easily, whereas intelligent backtracking by
itself, was consumed in repeating the same failures over
and over. An interesting point -no data shown here- had
to do with the breakups of these times into I/O times
and memory management times. Qur implementation
was much less sophisticated than ObjectStore’s; in terms
of resource management and index access. Thus, much of
our CPU time was spent in memory allocation. Object-
Store spent minimal time in such tasks. This fact shows



Large database: 48 Mbytes of data per query
Query 1 | Query 2 | Query 3
Our CPU time (sec) 115 19 3.9
Total time (sec) 199 35 9
Utilization (%) 58 54 38
ObjectStore CPU time (sec) 442 432 2.64

Table 2: Performance on a large, fully indexed database. Query 1 is a 4-way join, query 2 is a 3-way join, query 3 is

a join between a base table and an unnested variable.

even greater savings of our approach. Finally, the depth
first approach did indeed exhibit good locality, as shown
by our utilization figures (the fact that we wasted CPU
time inefficiently should be countered by the fact that we
did not run on a local disk).

Most important for our optimizer was the verification
of our cost model. As proposed, the cost model accu-
rately computed the CPU cost of query execution. More
precise modeling of I/O costs is definitely necessary in
a real system, but it is dependent on the storage man-
ager’s implementation, and was outside the scope of this
research. Below we present the specific naive cost model
that we used; joins are computed either by nested loops of
through indices. Assume a specific query of n variables
X;, and an ordering of these variables. The following
quantities are defined:

s; 1s the average size of the domain of X;, i.e. the number
of objects in Domain(X;) (for dependent variables,
this is an average).

D; 1s the virtual domain size, i.e. the number of distinct
objects instantiating X;. For independent variables,
D; = s;. For dependent variables, D; 1s at most the
size of the unnesting, but can be much smaller.

o; 18 the composite selectivity of s-predicates naming X;.
f; 1s the composite selectivity of indices on X;. If there
are no indices defined on the domain X;, 6; = 1.

; 18 the average object size for objects in the domain of
X;.

; 18 the number of scans performed on the domain of X;.
More precisely, it is the average number of times that
each object instantiates Xj;.

7; 18 the average access time for objects in the domain of

X;.

Of these quantities, s;, D;, 0, 6; and b; would come from
the database catalog. To simplify things, introduce S; to
be the effective virtual domain size of X;, as

SZ' = O'ZHZDZ

The average access time 7; 1s strongly dependent on the
storage management architecture and characteristics. For
typical client-server OODBMS systems, where data is be-
ing fetched from the server and cached to the client, we
use a formula of the following sort:

T = h7m + (1 — h)7sb;

where h represents the cache hit ratio. This 1s a very
coarse model of the I/O and predicate costs involved, but
proved sufficient for the queries mentioned herein.

Based on the above quantities, the overall time cost T'
of the query execution is given by

n
T= Ztigisﬂ—i
i=1

The value of ¢; is data dependent, since the algorithm is
data-driven. However, from proposition 2 we can derive
bounds for the value of #;. Let X, and Xz be variables,
X being the parent of Xg. Then,

Sa < tﬁ < 25,
Of course, t; = 1. Let p be the repetition ratio, so that
t@ = /JSOC

Clearly, 1 < p < 2. In practice, p is very close to 1, and
for some queries (depending on the query graph) it is ex-
actly 1. Typical values of u for large queries on uniformly
random data sets range from 1 to 1.05.

7 Discussion

We claim the ideas presented in this paper are especially
advantageous for the object data model. However, the
same techniques have potential on relational database
systems as well. One avenue may be to exploit semantic
information derived from the declaration of foreign keys
as a precomputation of support markings. The ultimate
success in this context remains to be seen. Given the
maturity and power of RDB technology these techniques
will have to be evaluated in the context of better refined



cost models and optimizations that are not applicable to
OODBs. In addition, these loop optimization techniques
are convenient with respect to the methods OODBs pro-
vide for iterating over collection. Similar interfaces to
RDBs typically incur substantial overhead. Also, our ap-
proach handles in a uniform manner various aspects of
OODB query processing that have been problematic, such
as joins on method values, unnesting, and optimization.

It is often argued that explicit joins are not as impor-
tant in OODBs as they are in RDBs, because in an in-
tuitive schema they would be already “precomputed” in
the form of nested collections. This is true for OODB
applications that resemble traditional RDB applications.
However, OODBs are becoming the platform of choice for
a variety of new database applications, that are compute-
intensive as well as data-intensive. These include CAD
systems, distributed systems, and the Internet. In some
of these applications, join queries between tens of collec-
tions are not uncommon. We particularly have in mind
data mining queries which assemble complex barter op-
portunities among players on the internet.

Both RDB and OODB query languages support quan-
tified (e.g. existential) predicates. In terms of execution,
quantification is evaluated by iteration. Query strategies
to optimize such iteration are important, and we should
not ignore them in our approach. It so turns out that our
algorithm can be extended in a straightforward manner
to handle existential predicate evaluation, provided that
the query graph of the predicate 1s acyclic. The exten-
sion would simply be to represent existential iteration by
“hidden” variables in the query. For these variables, the
bottom-up phase of the iteration should be omitted. In
other words, goodlists will not be built for the instanti-
ations of these variables, but markings will be recorded.
Negation (i.e. universal quantification) can be supported,
by simply reversing the meanings of deleted and sup-
ported markings for appropriate variables. We have not
yet implemented this however, so we will not expand any
further.

The obvious extension to this research is of course the
extension of these techniques to non-acyclic queries, and
to queries with query graphs that are not dependency-
directed. For both of these directions there are obvious
extensions, but we do not yet have concrete results. Con-
sider however the following simple approach to queries
with only a few (1 or 2) cycles: select a spanning tree of
the query graph, and compute the goodlists for it. Then,
iterate over the goodlists, and discard any instantiations
that do not satisfy the predicates that are not part of the
selected tree. Although this approach seems naive, it may
be that for queries with only 1 or 2 cycles, and with in-
telligent backtracking in the iteration over the goodlists,
it is a good strategy. This is because (a) the computa-
tion of the goodlists is very fast, (b) the space required is

10

small (¢) in many cases, careful selection of the spanning
tree will reduce the successful instantiations (to be tested
against the extra predicates) to a small number.

8 Related work

The techniques we present in this work, were derived from
a recent result in Contraint Satisfaction (CSP). This well-
studied Al problem roughly corresponds to the problem
of non-emptiness of a relational database query. A search
of the CSP literature reveals a number of results and
techniques analogous to results and techniques in rela-
tional query execution. However, the transition from a
CSP result to a database result is non-trivial at the least.
In the light of this work, we emphasize that an analo-
gous technique to semijoin reduction did exist in the CSP
world, under the term Directed Arc Consistency. A re-
cent development in this area has been the TreeTracker
algorithm[B], from which we have derived the results of
this work.

9 Conclusions and future work

We have developed and evaluated a new approach to
OODB query execution, based on intelligent backtrack-
ing and a form of nested-loop optimization, which we call
marking. We advocate the suitability of this approach
to the object-oriented model, as it is algorithmic in na-
ture, and poses very few semantic restrictions to the data
model. We have applied these ideas to a solution to the
important subproblem of acyclic query evaluation. The
resulting algorithm is asymptotically optimal, and has ex-
perimentally been demonstrated to deliver excellent per-
formance. The nature of the approach results in a simple
but accurate cost mode; one that can be used to select a
near-optimal execution plan in time quadratic to the size
of the query. Based on our experimental data, we ad-
vocate the depth-first approach to query execution, and
demonstrate it to alleviate some of the problems of per-
forming unnesting on the data.

As a formal foundation, our approach relates to the
Constraint Satisfaction Problem[11, 5]. Toward this goal
we have developed a nearly uniform representation of el-
ements of the object schema and the query in the form
of a query graph. This form of a query graph retains the
declarative form of a query. It follows from this graph def-
inition that query evaluation can be defined with respect
to a set of cursors, one cursor per vertex of the query
graph, such that these cursors iterate over collections of
objects. There is no restrictions on the implementation of
the cursors. Thus, the approach simultaneously remains
flexible with respect to physical access methods and may



generalize over many differeent OODB data models and
architectures.

The results reported are part of work in progress. We
intend to investigate the generality of these techniques,
by developing algorithms for more general problems than
acyclic queries. Immediate goals are an algorithm for
dependency-directed non-acyclic queries, a systematic
handling of quantified predicates, and implementation
under different OODBMS systems, to study system-
related issues under different architectural choices.

References

[1] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dit-
trich, D. Maier, and S. Zdonik. The object-oriented
database manifesto. In Proceedings of the Int’l Con-
ference on Deductive and Object-Oriented Databases,
Kyoto, Japan, December 1994.

[2] Francois Bancilhon, Claude Delobel, and Paris
Kanellakis, editors. Building an Object-Oriented
Database System - The Story Of Os. Morgan Kauf-
mann Publishers, San Mateo, CA, 1992.

[3] Roberto J. Bayardo Jr. Enhancing query plans for
many-way joins. Unpublished article.

[4] Roberto J. Bayardo Jr. and Daniel P. Miranker.
Backtrack-bounded search in polynomial space. Un-
published article.

[5] Roberto J. Bayardo Jr. and Daniel P. Miranker. An
optimal backtrack algorithm for tree-structured con-
straint satisfaction problems. Artificial Intelligence,

1994.

[6] Catriel Beeri, Ronald Fagin, David Maier, and Mi-
halis Yannakakis. On the desirability of acyclic
database schemes. Journal of the ACM, 30(3):479-
513, July 1983.

[7] Elisa Berino, Mauro Negri, Giuseppe Pelagatti, and
Licia Sbattella. Object-oriented query languages:
The notion and the issues. IEEE Trans. on Knowl-
edge and Data FEngineering, 4(3):223-237, June 1992.

[8] Elisa Bertino and Lorenzo Martino. Object-Oriented
Database Systems:  Concepts and Architectures.
International Computer Science Series. Addison-

Wesley, 1993.
[9] José A. Blakeley, W. J. McKenna, and G. Graefe.

Experiences building the open oodb query optimizer.
In Proceedings of the SIGMOD COnference on the
Management of Data, pages 287-296, Washington,
DC, May 1993. ACM.

11

[t}

[10] M. Carey, D. DeWitt, G. Graefe, D. Haight,

J. Richardson, D. Schuh, E. Shekita, and S. Van-
denberg. The exodus extensible dbms project: An
overview. In S. Zdonik and D. Maier, editors,
Readings i Object-Oriented Databases. Morgan-
Kaufman, 1990.

Rina Dechter. Constraint networks. in Encyclopedia

of Artificial Intelligence, 2nd Ed., 1992.

Goetz Graefe. Volcano-an extensible and parallel
query evaluation system. I[IEFEE Trans. on Knowl-
edge and Data Engineering, 6(1):120-135, February
1994.

Matthias Jarke and Jurgen Koch. Query opti-
mization in database systems. Computing Surveys,

16(2):111-152, June 1984.

Alfons Kemper, Christoph Kilger, and Guido Mo-
erkotte. Function materialization in object bases:
Design, realization, and evaluation. IEEE Trans. in
Knowledge and Data Engineering, 6(4):587-608, Au-
gust 1994.

Michael Kifer, W. Kim, and Y. Sagiv. Querying
object-oriented databases. In Proc. of 1992 ACM
SIGMOD, pages 393-402, CA, USA, June 1992.
ACM.

José Meseguer and Xiaolei Qian. A logical seman-
tics for object-oriented databases. SIGMOD Record,
22(2):89-98, June 1993.

Jack Orenstein, Sam Haradhvala, Benson Margulies,
and Don Sakahara. Query processing in the object-
store database system. In Proc. of 1992 ACM SIG-
MOD, pages 403-412, CA, USA, June 1992. ACM.

M. Tamer Ozsu and José Blakeley. Query process-
ing in object-oriented database systems. In W. Kim,
editor, Modern Database Management - Object-
Oriented and Multidatabase Technologies, pages 146—
174. Addison-Wesley /ACM Press, 1994.

M. Tamer Ozsu, Adriana Munoz, and Duane
Szafron. An extensible query optimizer for an ob-
jectbase management system. In Proc. Fourth Int.
Conf. on Information and Knowledge Management,
Baltimore, October 1995. (CIKM’95). (to appear).

Hennie J. Steenhagen, Peter M. G. Apers, Henk M.
Blanken, and Rolf A. de By. From nested-loop to join
queries in oodb. In Proceedings of the 20th VLDB
Conference, pages 618-629, Sandiago, Chile, 1994.



[21]

Dave D. Straube and M. Tamer Ozsu. Query op-
timization and execution plan generation in object-
oriented data management systems. IEEE Transac-
tions on Knowledge and Data Engineering, 7(2):210-
227, April 1995.

Stanley Y. W. Su, Mingsen Guo, and Herman Lam.
Association algebra: A mathematical foundation for
object-oriented databases. IEEE Trans. in Knowl-
edge and Data Engineering, 5(5):775-798, October
1993.

Jeffrey  Ullman. Principles of Database and
Knowledge-Base Systems. Computer Science Press,

Inc., 1988.

Scott Lee Vandenberg. Algebras for Object-Oriented
Query Languages. PhD thesis, University of
Wisconsin-Madison, 1993.

Carlo Zaniolo. The representation and deductive re-
trieval of complex objects. In Proc. of VLDB ’85,
pages 458469, Stockholm, 1985.

12



