
[MPS92] C. Martel, A. Park, and R. Subramonian. Work-optimal asynchronous algorithms forshared memory parallel computers. SIAM Journal on Computing, 21(6):1070{1099,1992.[MR96] P.D. MacKenzie and V. Ramachandran. ERCW PRAMs and optical communication.In Proc. of EURO-PAR'96, Springer LNCS, August 1996. To appear.[MV91] Y. Matias and U. Vishkin. Converting high probability into nearly-constant time|withapplications to parallel hashing. In Proc. 23rd ACM Symp. on Theory of Computing,pages 307{316, May 1991.[Nis90] N. Nishimura. Asynchronous shared memory parallel computation. In Proc. 2nd ACMSymp. on Parallel Algorithms and Architectures, pages 76{84, July 1990.[PN85] G. F. P�ster and V. A. Norton. \Hot spot" contention and combining in multistageinterconnection networks. IEEE Trans. on Computers, C-34(10):943{948, 1985.[Pre92] L. Prechelt. Measurements of MasPar MP-1216A communication operations. Technicalreport, Institut f�ur Programmstrukturen und Datenorganisation, Universit�at Karlsruhe,Karlsruhe, Germany, November 1992.[Ran89] A. G. Ranade. Fluent parallel computation. PhD thesis, Department of ComputerScience, Yale University, New Haven, CT, May 1989.[Rei93] J. H. Reif, editor. A Synthesis of Parallel Algorithms. Morgan-Kaufmann, San Mateo,CA, 1993.[Sny86] L. Snyder. Type architecture, shared memory and the corollary of modest potential.Annual Review of CS, I:289{317, 1986.[SV94] M. Schmidt-Voigt. E�cient parallel communication with the nCUBE 2S processor.Parallel Computing, 20(4):509{530, 1994.[Val90a] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,33(8):103{111, 1990.[Val90b] L. G. Valiant. General purpose parallel architectures. In J. van Leeuwen, editor, Hand-book of Theoretical Computer Science, Volume A, pages 943{972. Elsevier Science Pub-lishers B.V., Amsterdam, The Netherlands, 1990.[Val92] L. G. Valiant. A combining mechanism for parallel computers. Technical Report TR-24-92, Harvard University, Cambridge, Massachusetts, November 1992.[Yao77] A.C. C. Yao. Probabilistic computations: Towards a uni�ed measure of complexity. InProc. 18th IEEE Symp. on Foundations of Computer Science, pages 222{227, 1977.
36

[GMR96b] P.B. Gibbons, Y. Matias, and V. Ramachandran. The queue-read queue-write asyn-chronous PRAM model. In Proc. of EURO-PAR'96, Springer LNCS, August 1996. Toappear. Preliminary version appears in QRQW: Accounting for Concurrency in PRAMsand Asynchronous PRAMs, AT&T Bell Laboratories Technical Report, March 1993.[GMV91] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant time parallelalgorithms. In Proc. 32nd IEEE Symp. on Foundations of Computer Science, pages698{710, October 1991.[Goo91] M.T. Goodrich. Using approximation algorithms to design parallel algorithms that mayignore processor allocation. In Proc. 32nd IEEE Symp. on Foundations of ComputerScience, pages 711{722, 1991.[Gre82] A.G. Greenberg. On the time complexity of broadcast communication schemes. In Proc.14th ACM Symp. on Theory of Computing, pages 354{364, 1982.[Hoe63] W. Hoe�ding. Probability inequalities for sums of bounded random variables. Journalof the American Statistical Association, 58:13{30, 1963.[IBM94] IBM Corporation. IBM Scalable POWERparallel Systems 9076 SP2 and Enhancementsfor SP1, April 1994. Hardware announcement.[J�aJ92] J. J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, MA, 1992.[KR90] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines.In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume A, pages869{941. Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 1990.[KS93] R. E. Kessler and J. L. Schwarzmeier. CRAY T3D: A new dimension for Cray research.In Proc. 1993 IEEE Compcon Spring, pages 176{182, February 1993.[LAB93] P. Liu, W. Aiello, and S. Bhatt. An atomic model for message-passing. In Proc. 5thACM Symp. on Parallel Algorithms and Architectures, pages 154{163, June-July 1993.[Lei92a] F. T. Leighton. Methods for message routing in parallel machines. In Proc. 24th ACMSymp. on Theory of Computing, pages 77{96, May 1992. Invited paper.[Lei92b] C. E. Leiserson et al. The network architecture of the Connection Machine CM-5. InProc. 4th ACM Symp. on Parallel Algorithms and Architectures, pages 272{285, June-July 1992.[LF80] R. E. Ladner and M. J. Fischer. Parallel pre�x computation. Journal of the ACM,27(4):831{838, 1980.[LLG+90] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The directory-based cache coherence protocol for the DASH multiprocessor. In Proc. 17th InternationalSymp. on Computer Architecture, pages 148{159, May 1990.[LLG+92] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy,M. Horowitz, and M. S. Lam. The Stanford DASH multiprocessor. IEEE Computer,25(3):63{79, 1992.[Mac94] P. D. MacKenzie. Personal communication, August 1994.[Mas91] MasPar Computer Corporation, 749 North Mary Avenue, Sunnyvale, CA 94086. MasParSystem Overview, document 9300-0100, revision A3, March 1991.[Mat92] Y. Matias. Highly Parallel Randomized Algorithmics. PhD thesis, Tel Aviv University,Israel, 1992. 35

[DKN93] W. J. Dally, J. S. Keen, and M. D. Noakes. The J-Machine architecture and evaluation.In Proc. 1993 IEEE Compcon Spring, pages 183{188, February 1993.[DKR94] M. Dietzfelbinger, M. Kuty lowski, and R. Reischuk. Exact lower time bounds for com-puting boolean functions on CREW PRAMs. Journal of Computer and System Sciences,48(2):231{254, 1994.[DS92] R. Drefenstedt and D. Schmidt. On the physical design of buttery networks for PRAMs.In Proc. 4th IEEE Symp. on the Frontiers of Massively Parallel Computation, pages202{209, October 1992.[FBR93] S. Frank, H. Burkhardt III, and J. Rothnie. The KSR1: Bridging the gap between sharedmemory and MPPs. In Proc. 1993 IEEE Compcon Spring, pages 285{294, February1993.[FKL+92] F. Fich, M. Kowaluk, K. Lory�s, M. Kutylowski, and P. Ragde. Retrieval of scatteredinformation by EREW, CREW, and CRCW PRAMs. In Proc. 3rd Scandinavian Work-shop on Algorithm Theory, Springer LNCS 621, pages 30{41, 1992.[FMRW85] F.E. Fich, F. Meyer auf der Heide, P.L. Ragde, and A. Wigderson. One, two, three,...,in�nity: Lower bounds for parallel computation. In Proc. 17th ACM Symp. on Theoryof Computing, pages 48{58, 1985.[FW78] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proc. 10th ACMSymp. on Theory of Computing, pages 114{118, May 1978.[Gib89] P. B. Gibbons. A more practical PRAM model. In Proc. 1st ACM Symp. on ParallelAlgorithms and Architectures, pages 158{168, June 1989. Full version in The Asyn-chronous PRAM: A semi-synchronous model for shared memory MIMD machines, PhDthesis, U.C. Berkeley 1989.[Gib93] P. B. Gibbons. Asynchronous PRAM algorithms. In J. H. Reif, editor, A Synthesisof Parallel Algorithms, chapter 22, pages 957{997. Morgan-Kaufmann, San Mateo, CA,1993.[GM91] J. Gil and Y. Matias. Fast hashing on a PRAM|designing by expectation. In Proc.2nd ACM-SIAM Symp. on Discrete Algorithms, pages 271{280, 1991.[GM96] J. Gil and Y. Matias. An e�ective load balancing policy for geometric decaying algo-rithms. Journal of Parallel and Distributed Computing, 1996. To appear.[GMR93] P. B. Gibbons, Y. Matias, and V. Ramachandran. QRQW: Accounting for concurrencyin PRAMs and Asynchronous PRAMs. Technical report, AT&T Bell Laboratories,Murray Hill, NJ, March 1993.[GMR94a] P. B. Gibbons, Y. Matias, and V. Ramachandran. E�cient low-contention parallelalgorithms. In Proc. 6th ACM Symp. on Parallel Algorithms and Architectures, pages236{247, June 1994.[GMR94b] P. B. Gibbons, Y. Matias, and V. Ramachandran. The QRQW PRAM: Accounting forcontention in parallel algorithms. In Proc. 5th ACM-SIAM Symp. on Discrete Algo-rithms, pages 638{648, January 1994.[GMR94c] L. A. Goldberg, Y. Matias, and S. Rao. An optical simulation of shared memory. InProc. 6th ACM Symp. on Parallel Algorithms and Architectures, pages 257{267, June1994.[GMR96a] P. B. Gibbons, Y. Matias, and V. Ramachandran. E�cient low-contention parallelalgorithms. Journal of Computer and System Sciences, 1996. To appear. Preliminaryversion appears in Proc. 6th ACM Symp. on Parallel Algorithms and Architectures, pages236-247, June 1994. 34

References[ACC+90] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porter�eld, and B. Smith. TheTera computer system. In Proc. 1990 International Conf. on Supercomputing, pages1{6, June 1990.[AKP91] F. Abolhassan, J. Keller, and W. J. Paul. On the cost-e�ectiveness of PRAMs. InProc. 3rd IEEE Symp. on Parallel and Distributed Processing, pages 2{9, December1991.[AR92] Y. Aumann and M. O. Rabin. Clock construction in fully asynchronous parallel systemsand PRAM simulation. In Proc. 33rd IEEE Symp. on Foundations of Computer Science,pages 147{156, October 1992.[BCH+93] G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha. Implementa-tion of a portable nested data-parallel language. In Proc. 4th ACM SIGPLAN Symp. onPrinciples and Practices of Parallel Programming, pages 102{111, May 1993.[Bel92] G. Bell. Ultracomputers: A teraop before its time. Communications of the ACM,35(8):26{47, 1992.[BKK94] P. Beame, M. Kik, and M. Kuty lowski. Information broadcasting by exclusive-writePRAMs. Parallel Processing Letters, 4(1&2):159{169, 1994.[Ble89] G. E. Blelloch. Scans as primitive parallel operations. IEEE Trans. on Computers,C-38(11):1526{1538, 1989.[Ble93] G. E. Blelloch. Pre�x sums and their applications. In J. H. Reif, editor, A Synthesis ofParallel Algorithms, chapter 1, pages 35{60. Morgan-Kaufmann, San Mateo, CA, 1993.[BM76] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Elsevier SciencePublishing Co., Inc., New York, 1976.[Bre74] R. P. Brent. The parallel evaluation of general arithmetic expressions. Journal of theACM, 21(2):201{208, 1974.[CDR86] S. A. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds for parallelrandom access machines without simultaneous writes. SIAM Journal on Computing,15(1):87{97, 1986.[CKP+93] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian,and T. von Eicken. LogP: Towards a realistic model of parallel computation. In Proc.4th ACM SIGPLAN Symp. on Principles and Practices of Parallel Programming, pages1{12, May 1993.[Cyp88] R. Cypher. Valiant's maximum algorithm with sequential memory accesses. Techni-cal Report TR 88-03-08, Department of Computer Science, University of Washington,Seattle, Washington, April 1988.[CZ89] R. Cole and O. Zajicek. The APRAM: Incorporating asynchrony into the PRAM model.In Proc. 1st ACM Symp. on Parallel Algorithms and Architectures, pages 169{178, June1989.[DHW93] C. Dwork, M. Herlihy, and O. Waarts. Contention in shared memory algorithms. InProc. 25th ACM Symp. on Theory of Computing, pages 174{183, May 1993.[DK92] S. R. Dickey and R. Kenner. Hardware combining and scalability. In Proc. 4th ACMSymp. on Parallel Algorithms and Architectures, pages 296{305, June-July 1992.33

Proof. The lower bound for deterministic algorithms follows by the lower bound in [BKK94] andLemma 8.2 since the size of the input domain for the broadcasting problem is 2. The lower boundfor randomized algorithms follows by Lemma 8.3.Since a crew pram can broadcast into n memory locations in constant time, Theorem 8.4immediately implies the following separation results:Corollary 8.5 There is an
(lgn) time separation between a (deterministic or randomized) qrqwpram with arbitrarily many processors and a (deterministic or randomized) crqw pram. The sameseparation result holds for a Queue-Read, Exclusive-Write (qrew) pram relative to a crew pram.In the section on load balancing we will make use of the following generalization of the broad-casting problem.Theorem 8.6 Any deterministic or randomized algorithm that broadcasts the value of a bit to anysubset of k processors in a qrqw pram requires expected time
(lg k).Proof. Let Algorithm A be a qrqw algorithm that succeeds in broadcasting the value of a bitto some subset of k processors in time t. We use Algorithm A to derive a (non-uniform) qrqwpram algorithm for the broadcasting problem into k �xed memory locations as follows. We �rst runAlgorithm A to broadcast the value of the bit to some subset of k processors. We then transmit thevalue of the bit from the ith processor in the subset to the ith output memory location, 1 � i � k.This can be performed in one step with time cost 1 since we can precompute from Algorithm A theexact indices of the k processors to which the value of the bit will be transmitted. Thus we can solvethe broadcasting problem in t + 1 steps. It follows from Theorem 8.4 that t =
(lg k).9 ConclusionsThis paper has proposed a new model for shared memory machines, the qrqw pram model, thattakes into account the amount of contention in memory accesses. This model is motivated by thecontention characteristics of currently available commercial machines. We have presented severalresults for this model, including a fast, work-preserving emulation of the qrqw pram on hypercube-type, noncombining networks, a work-time framework and some automatic processor allocationschemes for the model, several linear work, sub-logarithmic time algorithms for the fundamentalproblems of leader election on a crqw pram and linear compaction on a qrqw pram, and somelower bounds.In a companion paper [GMR96a], we present many new results for the qrqw pram. Among thealgorithmic results presented are low-contention, fast, work-optimal qrqw algorithms for multiplecompaction, load balancing, generating a random permutation and parallel hashing. These resultsand the results presented in this paper demonstrate the advantage of the qrqw over the erew. To-gether with the penalty in running high-contention crcw or crew algorithms on existing machines,this supports the qrqw pram as a more appropriate model for high-level algorithm design.Finally, in related work [GMR96b] we explore the properties of the asynchronous qrqw pram.AcknowledgementsRichard Cole, Albert Greenberg, Maurice Herlihy, Honghua Yang, and the anonymous refereesprovided useful comments on this work. 32

Proof. We show how to handle the read steps of Algorithm A; write steps are treated similarly.Consider the ith read step in Algorithm A on input b. Let the time cost of this step be ti. Let Rkbe the set of reads for processor pk, and let Mj be the set of read requests for memory location mjin step i on input b. Note that ti is the maximum cardinality of the sets Rk;Mj, over all processorand memory indices k; j.We construct a bipartite graph Bi;b = (P;M;Ei;b), where P contains a vertex for each processor,M contains a vertex for each memory location, and there is an edge (pk;mj) 2 Ei;b if and only ifprocessor pk reads memory location mj in step i on input b.The maximum degree of any vertex in the graph Bi;b is ti. Since Bi;b is bipartite it has a properedge coloring with ti colors (Theorem 6.1 in [BM76]), i.e. a mapping c : Ei;b ! f1; 2; : : : ; tig suchthat for any pair of edges e; f incident on the same vertex, c(e) 6= c(f). Thus for a given input bwe can serialize the ith step of Algorithm A into ti exclusive read substeps by performing the readcorresponding to the edges colored l in the lth substep.Since the input domain is of size 2, b can take on only two values, say 0 and 1, and eachprocessor can be in at most two di�erent states at a given time step, no matter what the input is.In Algorithm B for each step, we run the serialization of the step on input b = 0 followed by theserialization of the step on input b = 1. If processor pk is in a state that corresponds only to inputb̂ 2 f0; 1g then it performs the read only in the serialization for b = b̂. If pk is in the same statewhether b = 0 or b = 1, then pk performs the read only in the serialization for b = 1. This results ina (non-uniform) erew pram algorithm that performs the same computation as Algorithm A, usingthe same number of processors and the same working space, and runs in time O(T). The length ofthe program is the length of the serialization, which is O(T).There was no attempt to minimize the constants in the above algorithm. Techniques similar tothose applied in the proof of Lemma 8.1 can be used here to reduce the constants.We now show that randomization cannot help too much when the input domain is small.Lemma 8.3 Let Td be a lower bound on the time required by a deterministic algorithm to solve aproblem P with input taken from a domain of size jIj. Then, for any randomized algorithm thatsolves P , the expected running time Tr on any input is bounded by Tr � Td=jIj.Proof. Let Ta be the average running time for the uniform input distribution, minimized overall possible deterministic algorithms, to solve P . Clearly, since the number of possible inputs is jIj,Ta � Td=jIj. Further, by a classic result of Yao [Yao77], Tr � Ta. (Yao's result is more general; fora short proof of this claim see [FMRW85].) Therefore, Tr � Ta � Td=jIj.8.2 Lower bounds for broadcasting and related problemsBeame, Kik and Kutylowski [BKK94] showed that computing the broadcasting problem on a non-uniform erew pram with unbounded program size, an unbounded number of processors, and un-bounded space requires
(lgn) time. The results of the previous subsection give us the followingtheorem.Theorem 8.4 Any deterministic or randomized algorithm that computes the broadcasting probleminto n memory locations on a qrqw pram with an unbounded number of processors and unboundedspace requires expected time
(lgn). 31

Lemma 8.1 Let T be the running time for an algorithm A that solves a problem P with inputdomain of size 2 on a simd-qrqw pram. Then, there exists an algorithm B that solves P in time Ton an erew pram, using the same number of processors and the same working space. Algorithm Bis non-uniform and its description is of size O(T) memory locations per processor.Proof. Assume, without loss of generality, that the input domain is f0; 1g. The lemma is provedby constructing the erew pram AlgorithmB from Algorithm A. Consider the ith step in AlgorithmA, and let �i(b) be the maximum contention in this step on input b. Let �0i = minf�i(0); �i(1)g(if minf�i(0); �i(1)g = 0 then �0i = 1). Step i will be implemented in Algorithm B in at most�0i substeps, as described below. Therefore, the running time of algorithm B is at most Pi �0i =Pi minf�i(0); �i(1)g � T . We describe �rst the construction for the read step.Let �i;j;b be the set of processors that read from memory cell j in step i on input b 2 f0; 1g.Let �i;j = �i;j;0 \ �i;j;1. For processors in each set �i;j;b n �i;j, we can prepare a priori copies ofthe contents of memory cell j, c(i; b), so that they can do the read operation from their appropriatecopies without conict, as described below.For processors in each set �i;j, we serialize their computation by providing an a priori rankingfrom [1::j�i;jj] to all the processors in �i;j, and scheduling the processors according to their ranks.The program for Algorithm B includes for each processor a sequence hi;M (i; b); r(i; b); �i; c(i; b)i,i = 1; : : : ; T , b 2 f0; 1g, where M (i; b) is the memory cell from which the processor reads in step i oninput b; r(i; b) is the rank of the processor at step i if the processor is in �i;M(i;b), and is null otherwise;c(i; b) is the contents at step i of memory cell M (i; b) if the processor is in �i;M(i;b);b n�i;M(i;b), andis null otherwise; and �i = maxj j�i;jj. (Note that the processor does not need to know the valueof b. If, however, M (i; 0) 6= M (i; 1) or r(i; 0) 6= r(i; 1) then it implicitly knows the value of b atthis stage; this knowledge can be made explicit by replacing the quintuple above by the sextuplehi;M (i; b); r(i; b); �i; c(i; b); b0i where b0 2 f0; 1; �g.) This sequence can be speci�ed in O(T) memorylocations; the program is non-uniform and of unbounded size. In step i, each processor whose r(i; b)is not null will execute its read operation from memory location M (i; b) in substep r(i; b). Eachprocessor whose r(i; b) is null will read c(i; b). After a total of �i substeps, all processors proceed tostep i + 1.It remains to show how to handle the write steps. Consider a memory location j in step i, andlet �i;j , �i;j;0, and �i;j;1 be de�ned as for the read step. On input b, it is su�cient to select apriori one processor from �i;j;b that will do the write step to location j. If �i;j is not empty thenone of the processors in �i;j will be arbitrarily selected. If �i;j is empty, one of the processors in�i;j;b will be arbitrarily selected, unless it is empty. The write operation will be executed by theselected processor at substep �i. Thus, all the read operations will be completed before the writeoperation is executed; moreover, there is no additional time overhead due to the execution of thewrite operations.With this scheme, the ith step of Algorithm A is executed in �i � �0i steps by Algorithm B, thusgiving the desired result.We now strengthen the above result for the simd-qrqw pram to work for the qrqw pram withonly a constant factor increase in the running time of the simulating erew pram algorithm.Lemma 8.2 Let T be the running time for an algorithm A that solves a problem P with inputdomain of size 2 on a qrqw pram. Then, there exists an algorithm B that solves P in time O(T)on an erew pram, using the same number of processors and the same working space. Algorithm Bis non-uniform and its description is of size O(T) memory locations per processor.30

Proof. We describe the algorithm for n=plgn processors. Let an item denote a nonempty inputcell. Note that we make no assumption on the distribution of the items within the input array.1. View the n input cells as partitioned into subarrays of size 2 lg2 n. Assign 2 lg1:5 n processorsper subarray. In parallel for all subarrays compact the items in each subarray, using parallelpre�x.2. For subarrays with at most 2 lgn items, we assign plgn processors per item, and applyLemma 7.5.3. For subarrays with more than 2 lgn items, we view the items as partitioned into blocks of sizelgn. There are at most 2 lgn such blocks in a subarray, so we assign plgn processors perblock. Viewing each block as a \super-item", apply Lemma 7.5 to compact the super-itemsinto an array of size O(k= lgn). Then we transfer the items in each block to the output arrayof size O(k), in the obvious way.Each of steps 1{3 takes O(plgn) time w.h.p.8 BroadcastingGiven b 2 f0; 1g in a single memory location, the broadcasting problem is to copy b into n �xedmemory locations. There is a simple linear work, O(lgn) time erew pram algorithm for thisproblem. In this section we show that this algorithm is the best possible even for the (randomized)qrqw pram by providing an
(lgn) lower bound on the expected running time of any deterministicor randomized qrqw pram algorithm for this problem.Our lower bound exploits the fact that the input domain for the broadcasting problem has onlytwo values. We show that for any problem with an input domain of size 2, a simd-qrqw pramalgorithm is no faster than the best erew pram algorithm for the problem, and even a qrqwpram algorithm is at most two times faster than the best erew pram algorithm for the problem.We also show that a randomized algorithm for the problem is at most two times faster than thebest deterministic algorithm for the problem. These results, in turn, imply our lower bound forbroadcasting and related problems due to a lower bound for broadcasting on the erew pram givenby [BKK94].Our simulation of the simd-qrqw pram and the qrqw pram on the erew pram results in anon-uniform algorithm on the erew pram. An algorithm is non-uniform if it consists of di�erentprograms for di�erent input sizes, and the program for a given input size i cannot be generatedeasily simply by specifying the value of i. Most algorithms used in practice are uniform (i.e., notnon-uniform), in which a single program works for all input sizes. A non-uniform algorithm is notdesirable from a practical point of view, since the time bound for the algorithm is not guaranteedto be achieved on a given input unless we have already generated the program for that input size.However, the lower bound of [BKK94] holds for both uniform and non-uniform algorithms (as is thecase with most lower bounds), and hence our simulation result gives the desired lower bound for thesimd-qrqw pram and the qrqw pram.8.1 Constant size input domain problemsWe �rst deal with the simd-qrqw pram. We show that any simd-qrqw pram algorithm for aproblem de�ned on a domain with only two values that runs in time T can be converted into anerew pram algorithm that also runs in time T . The erew pram may be non-uniform and mayhave a description that is of unbounded size. For an exact de�nition of the model see [CDR86].29

Proof. Let an item denote a nonempty input cell. Let r = plgn, the number of processorsassigned to each item. Let A be an auxiliary array of size m = c1rk2c2plg n, for constants c1 � 2,c2 � 1 determined by the analysis. View the array A as partitioned into k= lgn subarrays of sizem0 = c1r2c2plgn lgn.1. For each item, select a subarray of A uniformly at random. Each processor assigned to theitem selects a cell in that subarray uniformly at random and tries to claim that cell.2. At this point, between zero and r cells of A have been claimed on behalf of each item. Denotean item successful if at least one cell of A has been claimed on its behalf. For each successfulitem, select one of its cells in A, and mark the rest as unclaimed.3. In parallel for all subarrays, compact the claimed cells within each subarray using Observa-tion 7.4. We compact within subarrays here since, for large k, compacting all of A is tooslow.4. View the output array as partitioned into k= lgn subarrays of size c1 lgn. For each j, if thereare nj unclaimed cells in subarray j of the output, then the contents of (up to) nj claimed cellsin subarray j of A are transferred to output subarray j. (In the �rst pass of the algorithm,nj = c1 lgn, but in any subsequent pass, nj may be smaller.) If there are more than nj claimedcells in a subarray j, then for i > nj , the item associated with the ith claimed cell in subarrayj of A is denoted unsuccessful.5. For each unsuccessful item, each of its r processors returns to step 1.Since the processors assigned to an item repeat the algorithm until at least one of them hassuccessfully claimed an output cell, this is a Las Vegas algorithm. (Note that processors maycomplete their participation in the algorithm at di�erent times, not knowing when all processorshave terminated.) Let Xj be the number of items selecting subarray j of A in step 1. ThenE[Xj] = k=dk= lgne � lgn. By Cherno� bounds, for c1 � 2 de�ned above,PrfXj � c1 lgng � e(1�1=c1�ln c1)c1 lgn < e=cc1 lgn1 < 1=nc1 :After step 2, there is at most one claimed cell for each item, so w.h.p., there are at most c1 lgnclaimed cells in a subarray. A processor tries to claim a cell in step 1 by �rst writing its index to thecell, then reading the cell: if it reads its index, it has claimed the cell, and it writes the contents ofits input cell to the claimed cell. For each subarray j, let Yj;i be the number of processors selectingcell i of subarray j of A in step 1. Then E[Yj;i] � r � c1 lgn=m0 � 1=2c2plgn. It follows fromObservation 6.1 that the time for step 1 is O(plgn) w.h.p.Step 2 can be done in O(lg r) time. Step 3 applies Observation 7.4, and runs in O(lgm0) time,which is O(plgn) time. For step 4, for each j, the current value of nj, as well as the index of the�rst unclaimed output cell in subarray j, can be broadcast in O(lg lgn) time; the transferring takesconstant time.As for step 5, there are two types of unsuccessful items. As argued above, w.h.p., there are atmost c1 lgn claimed cells in a subarray. It follows that the probability that an item is unsuccessfulin step 1 is less than (r � c1 lgn=m0)r = (1=2c2plgn)plgn < 1=nc2. Moreover, it follows that, w.h.p.,no cells are marked unsuccessful in step 4. So w.h.p., all cells are successful in the �rst pass of thealgorithm.Theorem 7.6 There is a Las Vegas simd-qrqw pram algorithm for linear compaction that runsin O(plgn) time with O(n) work w.h.p. 28

Observation 7.1 There is a deterministic simd-erqw pram algorithm for the k-compaction prob-lem that runs in O(k2) time with O(n) work.Proof. The input is partitioned into subarrays of k2 cells. Each of the n=k2 processors reads thecells in its subarray and creates a linked list of the items in its nonempty cells. Since there areonly k nonempty cells, no processor can have more than k items in its linked list. The algorithmproceeds in k rounds, in which processors attempt to place each item on their list. At round i, eachprocessor with an unplaced item writes its index to cell i of the array. A designated processor thenreads the cell, and if the index found is j, it signals processor j (by writing to a cell designated forj), which then transfers the contents of its current item to the cell and continues to the next roundwith its next unplaced item (if any). All other processors continue with the same item as before.The contention in round i is at most k � i + 1, so the algorithm runs in O(k2) time.By taking k = 2, and recalling the lower bounds mentioned earlier for the erew and crewpram, we obtain the following two results, which are cited in Table 1 and Table 2 in Section 2:Corollary 7.2 There is an
(plgn) time separation between a (deterministic or randomized) erewpram with arbitrarily many processors and a (deterministic or randomized) simd-erqw pram.Corollary 7.3 There is an
(lg lgn) time separation between a deterministic fqr,crgew pramwith n processors and a deterministic simd-fqr,crgqw pram with n processors.In the remainder of this section, we develop a simd-qrqw pram algorithm for the linear com-paction problem that runs in O(plgn) time with linear work w.h.p. Within our algorithm, we willemploy the following well-known technique for k-compaction, which runs in O(lgn) time using onlyk processors on an erew pram.Observation 7.4 The k-compaction problem with one processor assigned to each nonempty cell canbe solved by an erew pram algorithm in O(lgn) time.Proof. View the n elements as leaves of a full binary tree. At the ith step we work at level i abovethe leaves, and inductively, for each node v at this level, we have the solution (in the form of a linkedlist) for the leaves in the subtrees rooted at the two children of v. To combine these solutions at v weonly need to make the last distinguished element in the subtree of the left child of v as the successorof the �rst distinguished element in the right subtree of v. This can be performed by a constanttime erew computation. Finally we perform list ranking on the linked list of distinguished elements(using Wyllie's pointer jumping approach [KR90]) and transfer the elements to their location in theoutput array.Note that the input array need not be initialized: since we have an active processor for eachdistinguished element, we can detect distinguished elements by a change in the value of a memorycell.To prove our simd-qrqw pram result, we start by proving the following lemma, which showshow to achieve the desired time bound. However, the algorithm performs superlinear work when kis large. We then show how to use this lemma to obtain a linear work algorithm with the same timebound.Lemma 7.5 There is a Las Vegas simd-qrqw pram algorithm for linear compaction that runs inO(plgn) time w.h.p. if plgn processors are assigned to each nonempty cell.27

a write step, 1 � k � n. Let t � 0 be an integer such that n=st � k > n=st+1. Consider iterationt + 1, if it occurs. The probability that no processor writes is at most(1 � pt+1)k lg lgn < (1=e)pt+1k lg lgn= (1=e)kst+2 lg lgn=n< (1=e)s lg lgn < (1=e)c lgn= (1=e)c0� ln n = 1=nc0;for some constant c0. Hence, if k > 0, there will be no iteration t + 2 w.h.p.Let W be the number of active processors at iteration t + 1, if it occurs. ThenE[W] = pt+1k lg lgn = st+2k lg lgn=n:By the choice of t, s � st+1k=n > 1, and hence s2 lg lgn � E[W] > s lg lgn. Let Xi be the numberof writers to cell i of A in iteration t + 1. ThenE[Xi] = E[W]=s2 lg lgn � 1:By Observation 6.1, and since there are s2 lg lgn = o(n) cells, the maximum contention for this writeis O(lgn= lg lgn) w.h.p.This bounds as well the contention of any iteration less than t + 1 in which a write to A occurs(and hence is the last iteration). Since there is at most one winner from each cell of A and exactlys cells of A that map to one cell of A0, the maximum contention to a cell of A0 is s. Likewise, themaximum contention to a cell of A00 is s and the maximum contention to cell x is lg lgn.It follows that the overall running time is O(lgn= lg lgn) w.h.p.Finally, in order to make the algorithm work-optimal, we should achieve the same time boundusing only n � lg lgn= lgn processors. For this we use an initial computation phase in which we reducethe size of the input from n to n= lgn. For this we divide the processors into n= lgn groups of lg lgnprocessors, and assign to each group the simple task of �nding the or of a block of lgn input bits inO(lgn= lg lgn) time. We then apply the algorithm described above to the reduced array of n= lgnbits. This gives us the desired work-optimal randomized algorithm for the or function on n bits inO(lgn= lg lgn) time w.h.p.We note that the only large concurrent-read in the previous algorithm is the reading of x in step3 of the algorithm.Corollary 6.9 There is an
(lg lgn) time separation between a randomized crew pram with ar-bitrarily many processors and a randomized simd-crqw pram.7 Linear compactionConsider an array of size n with k nonempty cells, with k known, but the positions of the k nonemptycells not known. The k-compaction problem is to move the contents of the nonempty cells to the �rstk locations of the array. The linear compaction problem is to move the contents of the nonemptycells to an output array of O(k) cells. The best known erew pram algorithms for both problemstake �(lgn) time, using parallel pre�x sums [LF80]. Even for the case k = 2, there is a randomized
(plgn) expected time lower bound for the erew pram ([Mac94], following [FKL+92]), and adeterministic lower bound of
(lg lgn) for an n-processor crew pram [FKL+92].The simple deterministic simd-erqw pram algorithm for leader election discussed in Section 6.1can be trivially extended to the k-compaction problem as follows:26

zeros (note that m = O(n)). Each processor selects a leader from among its input bits that are 1, ifany. Then each processor with a leader writes to a cell of A selected uniformly at random. Finally,m of the processors participate to select a nonzero index from among those written to A. The �rstand third steps take O(lg kmax +plgn) time. In the second step, the expected contention to a celli in A is at most 1=2plgn. It follows from Observation 6.1 that the maximum contention over allcells of A is O(plgn) w.h.p.6.3 A general randomized algorithmIt is shown in [DKR94] that the or function on n bits requires
(lgn) time on a randomized crewpram. (This lower bound is for randomized algorithms that have zero probability of a concurrentwrite, and correctly compute the or with probability bounded away from 1/2.) In contrast to thislower bound, we show in this subsection that a randomized simd-crqw pram can compute the orfunction on n bits in O(lgn= lg lgn) time and linear work w.h.p.Theorem 6.8 There is a Las Vegas simd-crqw pram algorithm for the leader election problem(and the or function) that runs in O(lgn= lg lgn) time and linear work w.h.p.Proof. We �rst show the time bound using n lg lgn processors. We describe the algorithm for theor function, which can be trivially modi�ed to solve the leader election problem. Since the number,k, of contending 1-bits is unknown, we will search for the true value of k. We take larger and largersamples until we either �nd a sample that contains at least one input bit that is 1, or learn that allinput bits are 0. We must ensure that w.h.p., there will be at least one writer (with a 1) prior tothe iteration in which there are too many writers (i.e. the iteration where the contention would notbe O(lgn= lg lgn)). The new algorithmic result below is a technique for amplifying probabilities onthe simd-qrqw model so that this occurs.1. Let s = c lgn= lg lgn, with c � 1 a constant determined by the analysis. Let A be an array ofs2 lg lgn memory cells, A0 be an array of s lg lgn memory cells, and A00 be an array of lg lgnmemory cells, each initialized to all zeros. The output is to be written in memory cell x. Weassign lg lgn processors to each input bit. Each processor reads its input bit. Let p = s2=n.2. Each processor with input bit 1 is active with probability p. Each such active processor writesits index to some cell i of A chosen uniformly at random, and then reads that cell. If the cellcontains its index (i.e. no other processor overwrote it), then it writes its index to cell i0 ofA0, i0 = i mod s lg lgn, and then reads that cell. If the cell contains its index, then it writesits index to cell i00 of A00, i00 = i0 mod lg lgn, and then reads that cell. If the cell contains itsindex, then it writes a 1 into memory cell x.3. Each processor reads x. If x = 0, repeat steps 2 and 3 with p = ps. If p � 1, repeat one lasttime with p = 1 and then stop.Note that x is set to 1 only if there is a processor with a 1. Conversely, each processor whose inputbit is 1 either writes a 1 into x, writes its index in a cell of A in the iteration that x is set to 1, orstops when x = 1; hence the algorithm always outputs the correct answer. There are O(lgn= lg s)iterations. If no processor writes to A in an iteration, then the iteration takes O(1) time. Else thereis one last iteration in which writes to A, A0, A00, and x occur.We now analyze the contention of these last four write steps. Let pj be the probability used atiteration j; i.e. pj = sj+1=n. Let k be the number of (original) input bits that are `1'. Since we have25

Monte Carlo simd-erqw pram algorithm that, w.h.p., elects a leader in O(plgn) time with O(n)work. On the simd-crqw pram, or if k̂ � 2plgn, the same bounds can be obtained for a Las Vegasalgorithm.Proof. We describe the algorithm for n=plgn processors. Let p = min(1; 2cplgn=k̂), for a constantc � 1, to be determined by the analysis. Let A be an array of size m = 2(c+2)plgn, initialized toall zeros. The input bits are partitioned among the processors such that each processor is assignedplgn bits.Step 1. Each processor selects a leader from among its input bits that are 1, if any.Step 2. Each processor with a leader writes, with probability p, the index of the leader bit to a cellof A selected uniformly at random.Step 3. m of the processors participate to select a nonzero index from among those written to A.If k̂ � 2plgn then p = 1 and this is a Las Vegas algorithm. Else a Las Vegas algorithm is obtainedby repeating steps 2 and 3 until there is a nonzero index in A. Termination is detected by using theconcurrent-read capability.Step 1 takes O(plgn) time. Since m = 2O(plgn), an erew binary fanin approach can be usedto obtain the same time bounds for step 3. For step 2, we will show that the contention is O(plgn)w.h.p. Let Xi be the number of writers to cell i of A. ThenE[Xi] � kp=m � k2cplgn=k̂m � k=k̂22plg n � 1=2plgn :It follows from Observation 6.1 that the maximum contention over all cells of A is O(plgn) w.h.p.It remains to show that w.h.p., there is at least one writer to A (assuming that k > 0). Ifk̂ � 2cplgn, then p = 1 and hence there will be one writer to A for each processor that has an inputbit that is 1. Else k̂ > 2cplgn, and the probability that there are no writers to A is at most(1 � p)k=plgn = ((1� 1=(1=p))1=p)pk=plgn < (1=e)pk=plgn;= (1=e)(k=k̂)2cplg n=plgn � (1=e)2(c�1)plgn=plgn:It follows that c can be chosen so that there is at least one writer w.h.p.Given an upper bound on k. We next consider the case where we only have an upper bound,kmax, on the number of input bits that are 1; the results we obtain are not quite as good as when kis known to within a factor of 2plgn, but better than the case when no bound on k (other than n)is known. The algorithm is a straightforward modi�cation of the previous algorithm (Theorem 6.6).Theorem 6.7 Consider the problem of electing a leader bit from among k out of n bits that are 1,given an upper bound, kmax, on k. There is a Las Vegas simd-erqw pram algorithm that runs inO(lgkmax + plgn) time with O(n) work w.h.p.Proof. We describe the algorithm for n=(lg kmax+plgn) processors. The input bits are partitionedamong the processors such that each processor is assigned lg kmax +plgn bits. If kmax =
(n�) forsome constant 0 < � � 1, apply the erew parallel pre�x algorithm, as mentioned in Section 6.1, toobtain the stated bounds. Otherwise, let A be an array of size m = kmax � 2plgn, initialized to all24

Proof. Dietzfelbinger, Kutylowski and Reischuk [DKR94] proved an
(lgn= lg�) lower bound forthe or function on the �-write pram. Let T be the time for the or function on the crqw pram.Then by Observation 6.2, the or function can be computed on the T -write pram in O(T) time. ThusT =
(lgn= lgT), and hence T lgT =
(lgn). Now if T = o(lgn= lg lgn), then lgT = o(lg lgn),contradicting T lgT =
(lgn). Thus T =
(lgn= lg lgn).Since the ercw pram can compute the or function in constant time, Theorem 6.3 implies thefollowing separation result:Corollary 6.4 There is an
(lgn= lg lgn) time separation between a deterministic fer,qr,crgqwpram with arbitrarily many processors and a deterministic fer,qr,crgcw pram.Cook, Dwork and Reischuk [CDR86] proved that any deterministic algorithm for computing theor function on a crew pram with arbitrarily many processors requires
(lgn) time. Dietzfelbinger,Kutylowski and Reischuk [DKR94] later proved a similar lower bound for randomized crew pramalgorithms. The di�culty in extending either of these results to the crqw pram is that in thecrqw pram, the running time of a step may be di�erent on di�erent inputs. Thus in a crqw writestep with contention k for a given input I, the lower bound argument of [CDR86, DKR94] will allowprocessors to gain knowledge about input I as a function of the maximum contention, K, for thestep over all inputs, and K could be much larger than k.6.2 Randomized algorithms for special casesIn this subsection, we present a series of randomized leader election algorithms, under various sce-narios. First, consider the leader election problem when the value of k is known. On the simd-qrqwpram, a simple, fast, randomized algorithm for this problem is to have the k processors whose inputbits are 1 write to the output cell with probability 1=k. This runs in constant time on the simd-qrqw, and, as a low-contention algorithm, will run fast in practice. The failure probability can bereduced by repeating the algorithm.Observation 6.5 Consider the problem of electing a leader bit from among the k out of n bits thatare 1, where k is known. There is a (randomized) Monte Carlo simd-erqw pram algorithm thatruns in O(1) expected time and O(n) expected work, and probability of failure less than 1=e. Thereis a (randomized) Las Vegas simd-crqw pram algorithm that runs in O(1) expected time and O(n)expected work.Proof. The index of each bit whose value is 1 is written into the output cell with probability1=k. This has constant expected contention, and the probability that no value is written is (1 �1=k)k < 1=e. To obtain a Las Vegas algorithm, the write step is repeated until there is at leastone writer. Termination is detected by using the concurrent-read capability. The expected time isO(1 + 1=e + 1=e2 + 1=e3 + : : :) which is O(1).The expected time for this algorithm is constant; however, we are interested in high probabilityresults. The next two theorems deal with high probability randomized algorithms for the case whena good estimate for k is known, and the case when a good upper bound for the value of k is known.Given a good estimate for k. In the following, we describe a fast leader election algorithm whenthe number of bits competing for leadership is known to within a multiplicative factor of 2plgn.Theorem 6.6 Consider the problem of electing a leader bit from among the k out of n bits thatare 1. Let k̂ be known to be within a factor of 2plgn of k, i.e. k̂=2plgn � k � k̂2plg n. There is a23

answer, and obtains the stated bounds with some stated probability. A Monte Carlo algorithm, incontrast, is a randomized algorithm that outputs a correct answer with some stated probability. Inthe analysis of some of our randomized algorithms, we apply the Cherno� bound stated in Section 5:PrfX � �E[X]g � e(1�1=��ln �)�E[X] ; for all � > 1:In particular, we use the following corollary to this Cherno� bound:Observation 6.1 Let X be a binomial random variable. For all f = O(lgn), if E[X] � 1=2f , thenX = O(lgn=f) w.h.p. Furthermore, if E[X] � 1 then X = O(lgn= lg lgn) w.h.p.Proof. Let � = c lgn=fE[X], for a constant c > maxf2; f= lgng to be determined. Then � >1=E[X] � 2f . By the Cherno� bound,PrfX � c lgn=fg � e(1�1=��ln �)�(c=f) lgn < e�(c=2f) ln � lgn= e�(c=2f) lg ��ln n = 1=n(c=2f) lg � < 1=nc=2 :Hence for any � > 1, there exists a constant c = maxf2�; f= lgng such that PrfX � c lgn=fg < 1=n�.If E[X] � 1, we take � = c lgn= lg lgnE[X], for a constant c > 2 to be determined. Thenlg� � lg lgn� lg lg lgn � 2 lg lgn=3. By the Cherno� bound,PrfX � c lgn= lg lgng � e(1�1=��ln �)�(c= lg lgn) lgn < e�(c=2 lg lg n) ln � lgn= e�(c=2 lg lgn) lg ��ln n = 1=n(c=2 lg lgn) lg � � 1=nc=3 :Hence for any � > 1, there exists a constant c = 3� such that PrfX � c lgn= lg lgng < 1=n�.6.1 Deterministic algorithmsBy having each processor whose input bit is 1 write the index of the bit in the output memory cell,we obtain a simple deterministic simd-erqw pram algorithm for leader election (and similarly forthe or function) that runs in maxf1; kg time using n processors, where k is the number of inputbits that are 1 (k unknown). This is a fast algorithm if we know in advance that the value of kis small. However, for the general leader election problem, a better algorithm is the natural erewpram algorithm for leader election which uses a parallel pre�x algorithm to compute the locationof the �rst 1 in the input; this takes �(lgn) time and �(n) work.We can derive an
(lgn= lg lgn) lower bound for the or function using a lower bound resultof Dietzfelbinger, Kutylowski and Reischuk [DKR94] for the few-write pram. Recall that the few-write pram models are parameterized by the number of concurrent writes to a location permittedin a unit-time step. (Exceeding this number is not permitted.) Let the �-write pram denote thefew-write pram model that permits concurrent writing of up to � writes to a location, as well asunlimited concurrent reading. We begin by proving a more general result for emulating the crqwon the few-write pram, and then provide the or lower bound.Observation 6.2 A p-processor crqw pram deterministic algorithm running in time t can beemulated on a p-processor t-write pram in time O(t).Proof. Since the crqw algorithm runs in time at most t on all inputs, then the maximum writecontention is at most t on all inputs. Hence the t-write pram can be used to emulate each writesubstep, and the emulation proceeds as was done for the crcw (Observation 2.2).Theorem 6.3 Any deterministic algorithm for computing the or function on a crqw pram witharbitrarily many processors requires
(lgn= lg lgn) time.22

provided z < min(�; 1� �). Let z = �=2. ThenPr(X > 3�d0=2) � e��d0=12 = e�(�+1) lg p=12 = 1=p�(�) :By choosing � su�ciently large, we have that each component receives at most 3�d0ki=2 = �(ki lgp)messages in the ith qrqw step w.h.p.Each bsp component emulates lg p qrqw pram processors. It sends O(ki lgp) \read" messagesand receives O(ki lg p) (w.h.p.) such messages. In the next superstep, it sends O(ki lg p) (w.h.p.)\read reply" messages and receives O(ki lg p) such replies. Finally, in the next superstep, it performsO(ki lg p) local ram operations, sends O(ki lg p) \write" messages, and receives O(ki lg p) (w.h.p.)such messages, updating the values of the appropriate locations. Since the periodicity L is �(lg p)and the gap g is constant, the time taken to complete the ith step on the bsp is O(ki lg p) w.h.p.Thus, w.h.p. the bsp completes the emulation of the qrqw computation in O(Pmi=1 ki lgp) time,i.e. in O(t lgp) time.Note that unlike Valiant's emulation of the erew pram on standard bsp, the emulation abovemay result in a rather uneven distribution of messages among the components whenever there isan uneven distribution of contention among the locations. This raises concerns regarding possiblecontention in routing the messages between the components. However, the (standard) bsp modelignores all issues of routing other than the number of messages sent and received at each component,and hence the proof of Theorem 5.1 addresses only these same routing issues.Further issues in routing do arise in emulating the pram or bsp on models such as the multiporthypercube. Valiant de�nes the slackness of a parallel algorithm being emulated to be the ratio ofthe number of virtual processors in the algorithm to the number of \physical" processors in theemulating model. In [Val90a], Valiant showed that a p-component standard bsp algorithm withslackness at least lg p and running in time t can be emulated on a p-node multiport hypercube inO(t) time w.h.p. Since the slackness in the emulation in Theorem 5.1 is lgp, we have the following:Theorem 5.2 A p-processor qrqw algorithm (or simd-qrqw pram algorithm) running in time tcan be emulated on a (p= lg p)-node multiport hypercube in O(t lg p) time w.h.p.Thus the uneven distribution of messages that may result from emulating a qrqw pram algo-rithm on the standard bsp does not prevent a fast, work-preserving emulation of the qrqw pramon the multiport hypercube.6 Leader election and computing the ORGiven a Boolean array of n bits, the or function is the problem of determining if there is a bit withvalue 1 among the n input bits. The leader election problem is the problem of electing a leader bitfrom among the k out of n bits that are 1 (k unknown). The output is the index in [1::n] of the bit,if k > 0, or 0, if k = 0. This generalizes the or function, as long as k = 0 is possible.In this section we present several randomized and deterministic algorithms for solving theseproblems on queue-write prams. Our main result is a randomized algorithm for the two problemson the crqw pram that performs linear work and runs in O(lgn= lg lgn) time with high probability.This result is somewhat surprising since it improves on the best possible time bound (which is�(lgn)) for any deterministic or randomized crew pram algorithm for the two problems.Most of the randomized algorithms we present are of the Las Vegas type, while a few are of theMonte Carlo type. A Las Vegas algorithm is a randomized algorithm that always outputs a correct21

machines. This approach is supported in [Val90a, Val90b] by providing a fast, work-preservingemulation of the standard bsp model on hypercube-type non-combining networks on the one hand,and a fast, work-preserving emulation of the erew pram on the standard bsp on the other hand.In particular, it is shown that the erew pram can be emulated in a work-preserving manner withlogarithmic slowdown on the standard bsp, while the standard bsp can be emulated in a work-preserving manner with constant slowdown on, e.g., the multiport hypercube. In the multiporthypercube on p nodes, each node can receive a message on each of its lg p incoming wires androute them along the appropriate outgoing wires in constant time, subject to the constraint that atmost one message can be sent along each outgoing wire. These emulations show that the choice ofL = �(lg p) and g = �(1) used in the standard bsp is su�cient to hide the latency, synchronization,and memory granularity overheads occurring in the emulations.Valiant [Val90a] shows that a v-processor pram step with contention � can be simulated on ap-processor standard bsp in O(v=p + � lg p) time w.h.p. It follows readily from this result that ap-processor simd-qrqw pram algorithm running in time t can be emulated on a (p= lgp)-componentstandard bsp model in O(t lgp) time w.h.p.In this section we show that the more powerful qrqw pram can also be emulated in a work-preserving manner with only logarithmic slowdown on the standard bsp as well as on hypercube-typenetworks. The proof of this result is complicated by the fact that a qrqw step with time cost kmay have up to 2kp reads and writes, whereas in the previous emulation results, the pram stepbeing emulated had at most 2p reads and writes, independent of k. As in the previous emulationsof pram models on the standard bsp given in [Val90a], we apply a random hash function to mapthe pram shared memory onto the bsp components; this function is assumed to map each sharedmemory location to a component chosen uniformly and independently at random.Theorem 5.1 A p-processor qrqw pram algorithm (or simd-qrqw pram algorithm) running intime t can be emulated on a (p= lgp)-component standard bsp model in O(t lgp) time w.h.p.Proof. Consider the ith step of the qrqw pram algorithm, with time cost ki. For simplicity ofexposition, we assume that each processor has exactly ki shared memory accesses, where an access iseither a read or a write. Let m1; : : : ;md be the di�erent memory locations accessed in this step, andlet qj be the number of accesses to location mj , 1 � j � d. For the purpose of this analysis we add�pki memory accesses to this step, for a constant � � 23, consisting of accesses with contention kito locations md+1; : : : ;md0 , where d0 = d+ �p. With this addition, the ith step has vi0 = (� + 1)pkiconcurrent accesses to d0 di�erent memory locations, and the maximum contention is ki. We setqj = ki for d + 1 � j � d0 and note that v0 = Pd0j=1 qj. We now show that the bound stated inthe theorem holds for this augmented problem. Clearly, this implies that the bound holds for theoriginal problem.We assume that the memory has been randomly hashed onto the p= lgp components of the BSP.Consider a �xed component C. As in [Val90a], we de�ne a random variable xj ; 1 � j � d0, wherexj = qj=ki if mj is hashed onto C and zero otherwise. Let X =Pd0j=1 xj . We note that xj = qj=kiwith probability lg p=p, and ki �X is the number of messages sent to C in the ith step. ThenE(xj) = qj lgp=(pki); 1 � j � d0 :Let � be the mean of the expectations of the xj:� = d0Xj=1(qj lg p)=(pkid0) = vi0 lg p=(pkid0) = (� + 1)pki lg p=(pkid0) :So � = (� + 1) lg p=d0. By Hoe�ding's inequality [Hoe63],Pr(X > (� + z)d0) � e�z2d0=3� ;20

time overhead incurred by SA is thus tA = O(t0 � Tlc(n)) and the work overhead is wA = p � tA.Hence by Lemma 4.2 algorithm A0 runs in time O(n=p) on a p-processor qrqw pram providedp = O(n=(t + t0 � Tlc(n))).If AlgorithmB is not predicted then, as in the case of the task-decaying algorithm of Theorem 4.6,each application of the linear compaction algorithm must be followed by a detection of whether ornot there was a successful termination. Similar arguments to the above imply that the correspondingalgorithmA can be adapted to a p-processor qrqw pram algorithm running in timeO(n=p) providedp = O(n=(t + t0 � Tlcd(n))), and to a p-processor crqw pram algorithm running in time O(n=p)provided p = O(n=(t + t0 � T 00lcd(n))).Corollary 4.9 Algorithm A in Theorem 4.8 can be implemented to run in time O(n=p) w.h.p. ona p-processor qrqw pram when p = O(n=(t + t0 � lgn)) and on a p-processor crqw pram whenp = O(n=(t+ t0 � lgn= lg lgn)). If Algorithm A is predicted then it can be implemented to run in timeO(n=p) w.h.p. on a p-processor qrqw pram when p = O(n=(t + t0 � plgn)).The spawning model can be further generalized to include a start operation in which one taskmay spawn n new tasks to begin in the next time step. This extended model is called v-pram in[Goo91] where it was suggested. It was shown in [Goo91] that the work-preserving scheme for thespawning model can be extended to the v-pram model as well, with the same overhead. Accordingly,Theorem 4.8 and Corollary 4.9 apply to the v-pram model.A more general type of spawning algorithm, the L-spawning algorithm, is studied in [GMR96a].In the L-spawning model, each task can spawn up to L � 1 additional tasks at each step. It isshown in [GMR96a] that an L-spawning algorithm with time t, work n, and t0 parallel steps canbe implemented on a p-processor qrqw pram to run in time O(n=p) w.h.p. when p = O(n=(t +t0plgn lg lgL+ t0 lgL)). This implementation applies a more general load balancing algorithm givenin [GMR96a].5 Realization on feasible networksThe Bulk-Synchronous Parallel (bsp) model was introduced by Valiant [Val90a, Val90b] as a modelof parallel computation that takes into account overheads incurred by latency, synchronization andmemory granularity. It consists of components that can perform local ram computations and com-municate with one another through a router which delivers messages between pairs of components.Messages to a component are serviced one-at-a-time. The bsp provides facilities for synchronizingthe components at regular intervals. There are three parameters to the model: p, the number ofcomponents, periodicity L, the number of time units between synchronizations, and throughput g, ameasure of the bandwidth limitations of the router. A particular case studied by Valiant is one thatsets g to be a constant and L to be �(lg p), and has each synchronization involve all the components;we denote this the standard bsp model.A standard bsp computation consists of a sequence of supersteps, with each superstep separatedfrom the next by a global synchronization point among all the components. In each superstep,each component sends messages, receives messages, and performs local ram steps. Operations ata component (message initiations, message receipts, ram operations) are assumed to take constanttime. No assumption is made about the relative delivery times of messages within a superstep, andlocal operations may only use data values locally available to the component prior to the start ofthe superstep. If the operations in a superstep, including message deliveries, do not complete in Ltime units, additional intervals of L time units are allocated to the superstep until it completes.The bsp model has been advocated as one that forms a bridge between software and hardwarein parallel machines; that is, between abstract models for algorithm design and realistic parallel19

implies that the cost of all but lg(n=p) applications of the linear compaction algorithm can beamortized against the execution of Algorithm A, with only a constant factor overhead. The timeoverhead of SA is therefore tA = O(Tlc(n) lg(n=p)), and hence tA = O(Tlc(n) lg(Tlc(n))), and thework overhead is p � tA. Hence for p = O(n=(Tlc(n) lg(Tlc(n))) this schedule has a work overhead ofO(n). By Lemma 4.2 the scheduling scheme SA maps A into a p-processor qrqw pram in O(n=p)time provided p = O(n=(t + Tlc(n) lg(Tlc(n)))).If Algorithm B is not predicted then each application of the linear compaction algorithm mustbe followed by a detection of whether or not there was a successful termination. In such case,the underestimation is by at most a factor of 2. Similar arguments to the above imply that thecorresponding algorithm A can be adapted to a qrqw pram algorithm with running time O(n=p)provided p � n=(t + Tlcd(n) lg(Tlcd(n))) and to a crqw pram algorithm with running time O(n=p)provided p � n=(t + T 00lcd(n) lg(T 00lcd(n)))By the result stated above we have:Corollary 4.7 Algorithm A in Theorem 4.6 can be implemented to run in time O(n=p) w.h.p. ona p-processor qrqw pram when p = O(n=(t + lgn lg lgn)) and on a p-processor crqw pram whenp = O(n=(t+ lgn)). If Algorithm A is predicted then it can be implemented on a p-processor qrqwpram t run in time O(n=p) w.h.p. when p = O(n=(t + plgn lg lgn)).Spawning algorithms. A spawning algorithm starts with a collection of unit tasks, and at eachstep of the algorithm, each task cani. progress to the next step of the algorithm;ii: progress to the next step of the algorithm and spawn another new task; oriii: not progress to the next step and die.The total number of tasks in a spawning algorithm may increase or decrease in each step. Thus,the spawning model generalizes the model for task-decaying algorithms. As in the task-decayingmodel, a spawning algorithm is predicted if an approximate bound on the sequence of work loadsfwig is known in advance; speci�cally, if a sequence fw0ig is given such that for all i, w0i � wi andPiw0i = O(Piwi).Theorem 4.8 Let A be a spawning algorithm in a qrqw work-time presentation running in time tand work n, and let t0 be the number of parallel steps in A. Then Algorithm A can be implementedto run in time O(n=p) on a p-processor qrqw pram when p = O(n=(t + t0 � Tlcd(n))) and on a p-processor crqw pram when p = O(n=(t+ t0 � T 00lcd(n))). If Algorithm A is also predicted then it canbe implemented to run in time O(n=p) on a p-processor qrqw pram when p = O(n=(t+t0 �Tlc(n))).Proof. Let B be a predicted spawning algorithm in a crcw work-time presentation to whichAlgorithmA corresponds. Then, the running time of AlgorithmB is t0. A work-preserving schedulingscheme SB that can adapt Algorithm B into a p-processor crcw pram algorithm B0 is givenin [Mat92]. The scheduling scheme SB consists of applying an algorithm for a linear compactionproblem of size p a constant number of times after each parallel step. The time overhead of SB istherefore O(t0 � T 0lc(n)).Consider a scheduling scheme SA, corresponding to SB, which adapts Algorithm A to a p-processor qrqw pram algorithm A0. The scheduling scheme SA consists of applying an algorithmfor a linear compaction problem of size p a constant number of times after each parallel step. The18

Geometric-decaying algorithms: A decaying algorithm in either the qrqw or the crcw work-timepresentation is geometric-decaying if the sequence of work loads fwig is upper bounded by a de-creasing geometric series. Typically the work w of such algorithms is O(n) where n is the problemsize. Let A and B be the class of geometric-decaying algorithms in the qrqw and crcw work-timepresentations respectively. Using techniques from [GM91, GM96, MV91] and Lemma 4.2 we have:Theorem 4.4 Let A be a geometric-decaying algorithm in a qrqw work-time presentation withtime t and work n. Then Algorithm A can be implemented on a p-processor qrqw pram to run intime O(n=p) when p = O(n=(t + Tlc(n) lg(Tlc(n)))).Proof. Let B be a geometric decaying algorithm in the crcw work-time presentation to whichAlgorithm A corresponds. A work-preserving scheduling scheme SB that can adapt Algorithm Binto a p-processor crcw pram algorithm B0 is given in [MV91]. The scheduling scheme SB consistsof lg(n=p) applications of an algorithm for linear compaction problem of size p. On the qrqw pramwe will use a scheduling scheme SA corresponding to SB. When mapping into a p-processor qrqwpram, scheduling scheme SA will consist of lg(n=p) applications of a qrqw pram algorithm forlinear compaction problem of size p. The time overhead incurred by scheduling scheme SA is tA =O(Tlc(p) lg(n=p)), and the work overhead is p � tA. We observe, as in [MV91], that if Tlc(p) lg(n=p) �n=p, then lg(n=p) = O(lg(Tlc(n))), and hence for p � n=(Tlc(p) lg(Tlc(n))), scheduling scheme SAhas a work overhead of O(n). Therefore, by Lemma 4.2, SA maps algorithm A into a p-processorqrqw pram algorithm A0 to run in time O(n=p) provided p = O(n=(t + Tlc(p) lg(Tlc(n))).By Theorem 7.6 we obtainCorollary 4.5 Algorithm A in Theorem 4.4 can be implemented on a p-processor qrqw pram torun in time O(n=p) w.h.p. when p = O(n=(t +plgn lg lgn)).General task-decaying algorithms: Recall that in a task-decaying algorithm in either the qrqw orthe crcw work-time presentation, the sequence of work loads fwig is a monotonically non-increasingseries. Thus, task-decaying algorithms generalize geometric-decaying algorithms. A task-decayingalgorithm is predicted if an approximate bound on the sequence of work loads fwig is known inadvance; speci�cally, if a sequence fw0ig is given such that for all i, w0i � wi andPiw0i = O(Piwi).Let A and B be the class of general task-decaying algorithms in the qrqw and crcw work-timepresentations respectively.Theorem 4.6 Let A be a task-decaying algorithm in a qrqw work-time presentation with timet and work n. Then Algorithm A can be implemented to run in time O(n=p) on a p-processorqrqw pram when p = O(n=(t + Tlcd(n) lg(Tlcd(n)))) and on a p-processor crqw pram whenp = O(n=(t+ T 00lcd(n) lg(T 00lcd(n)))). If Algorithm A is also predicted then it can be implemented on ap-processor qrqw pram to run in time O(n=p) when p = O(n=(t + Tlc(n) lg(Tlc(n)))).Proof. Let B be a predicted task-decaying algorithm in a crcw work-time presentation to whichAlgorithm A corresponds. A work-preserving scheduling scheme SB that can adapt Algorithm Binto a p-processor crcw pram algorithm B0 is given in [MV91]. The scheduling scheme SB isbased on several applications of an algorithm for the linear compaction problem of size p. Theanalysis in [MV91] is based on showing that the cost of all but lg(n=p) applications of the linearcompaction algorithm can be amortized against the execution of Algorithm B, with only a constantfactor overhead. Hence the time overhead of SB is tB = O(T 0lc(n) lg(n=p)). As for the geometricdecaying-algorithm, the time overhead can be shown to be tB = O(T 0lc(n) lg(T 0lc(n))).Consider a scheduling scheme SA, corresponding to SB, which adapts Algorithm A to a p-processor qrqw pram algorithm A0. An amortization argument similar to the one used for SB17

Note that we can always transform a crcw pram scheduling scheme into an equivalent qrqwpram scheduling scheme simply by viewing the overhead of the crcw scheduling scheme in thework-time framework and interpreting it as a (possibly slower) qrqw scheduling scheme with thesame work overhead. This leads to the following corollary to the above lemma.Corollary 4.3 Let B be a class of algorithms given in a crcw work-time presentation and let A bea class of algorithms in the qrqw work-time presentation corresponding to B. Let SB be a crcwscheduling scheme for B and let SA be the equivalent qrqw scheduling scheme for A. If SB iswork-preserving on the crcw pram then SA is work-preserving on the qrqw pram.The above corollary shows that it is always possible to derive a work-preserving qrqw schedulingscheme for a class of qrqw work-time algorithms corresponding to a class of crcw work-timealgorithms that have a work-preserving schedule. However, such a qrqw scheduling scheme canbe very slow. In particular if the algorithm for the crcw scheduling scheme has a read or writewith concurrency �(wB), where wB is the work overhead of the crcw scheduling scheme, then thework-preserving qrqw scheduling scheme degenerates into a sequential algorithm. A more usefulway to apply Lemma 4.2 is to substitute a fast work-preserving qrqw pram algorithm for the qrqwscheduling scheme in place of the crcw scheduling scheme.In what follows, we give three examples of general classes of algorithms for which automaticprocessor allocation techniques can be applied to advantage: geometric-decaying algorithms, generaltask-decaying algorithms, and spawning algorithms. Processor allocation is done by a schedulingscheme that uses an algorithm for linear (approximate) compaction. The linear compaction problemgeneralizes the 2-compaction problem, as follows: Given k nonempty cells at unknown positions inan array of size n, with k known, move the contents of the nonempty cells to an output array ofO(k) cells. The linear compaction problem can be solved by a randomized crcw pram algorithm intime T 0lc(n) = O(lg� n) time and linear work w.h.p. [GMV91]. In Section 7 (Theorem 7.6) we showthat the linear compaction problem can be solved by a randomized simd-qrqw pram algorithm intime Tlc(n) = O(plgn) and linear work w.h.p.Sometimes the linear compaction algorithm is used under the assumption that the number of non-empty cells is at most k. An unsuccessful termination of the algorithm is used to determine that theinput consists of more than k non-empty cells. To make such determination possible, it is necessaryto employ an algorithm for computing the or function, as well as an algorithm for the broadcastingproblem. Furthermore, recall that a subtle property of the qrqw models is that unsuccessful stepsmay turn out to be overly expensive if they incur (unexpected) high contention. (This is a rathersigni�cant technical issue in the algorithms of Section 6.) We assume here that the number of non-empty cells never exceeds �k for some constant � > 0, where k is the estimated upper bound. Insuch cases, the running time of the linear compaction algorithm of Theorem 7.6 will increase by atmost a constant factor. Let Tlcd(n) be the running time of a linear compaction algorithm followedby a determination of whether the algorithm was successful or not on an n-processor qrqw pram,and let T 00lcd(n) be the corresponding running time on a crqw pram.In Section 8 we show that on the qrqw pram broadcasting requires
(lgn) expected time.Therefore when it is necessary to determine if a run of linear compaction was unsuccessful on theqrqw pram, it is best to use a �(lgn) time erew pram algorithm for pre�x sums [LF80]. Hence,Tlcd(n) = �(lgn). Performing a broadcast on the simd-crqw pram is trivial in constant time. InSection 6 (Theorem 6.8) we show that the or problem can be solved by a simd-crqw pram in timeO(lgn= lg lgn) and linear work w.h.p. Hence, T 00lcd(n) = O(lgn= lg lgn) w.h.p.Task-decaying algorithms. A task-decaying algorithm (or simply a decaying algorithm) is onethat starts with a collection of unit tasks. Each of these tasks progresses for a certain number ofsteps of the algorithm, and then dies. A task is said to be a live task until it dies. No other tasksare created during the course of the algorithm. The work load wi is the number of live tasks at stepi of the algorithm. 16

such as the CM-5, then the processor allocation issue can be resolved with only small overhead.The rest of this section deals with the standard pram models that do not incorporate the scanoperation.Traditionally, the processor allocation needed to implement Brent's scheduling principle has beendevised in an ad-hoc manner. However, it is known that in several common situations an e�cientautomatic implementation is feasible, especially on the crcw, often using linear compaction andload balancing algorithms as essential tools (see [Mat92] and references therein). In this section, weadapt these techniques to the qrqw pram model.Rather than tracing the details of each technique, it would be helpful to show that in general thecontention parameter on the qrqw does not change the validity of these crcw techniques. Indeed,the fact that time evaluation and work evaluation are done independently in the qrqw work-timepresentation suggests that scheduling techniques on the crcw pram should be useful for the qrqwpram as well. Next we elaborate on this issue.Let A be a class of algorithms given in the qrqw work-time presentation. A qrqw schedulingscheme SA for A is a scheme that maps any algorithm A in A into a qrqw pram algorithm. Ifalgorithm A has work-time bounds of w and t, then SA will convert A into a p-processor qrqwpram algorithm for some suitable number of processors p that runs in time � = t+ tA+ (w+wA)=pand work � � p, where tA and wA are the overhead in time and work for the scheduling scheme SA.The scheduling scheme SA is work preserving if � � p = O(w).Similar de�nitions hold for a scheduling scheme for a class of crcw pram algorithms given inthe work-time presentation.Consider a class of algorithms B given in a crcw work-time presentation, and let SB be ascheduling scheme that adapts each algorithm B in B into a crcw pram algorithm B0. Let Abe the class of algorithms in the qrqw work-time presentation corresponding to B. That is, eachalgorithmA in A is identical to an algorithmB in B except that the time of each parallel step is takento be the maximum contention of that step. Thus algorithms A and B perform the same amountof work, though the running time of algorithm A could be larger. Let SA be a scheduling schemeon a qrqw pram corresponding to the crcw pram scheduling scheme SB. That is, the schedulingscheme SA adapts each algorithm A in A into a qrqw pram algorithm A0 which, except for thescheduling overhead, is identical in execution (but not necessarily in time complexity) to the crcwpram algorithm B0 derived by SB from the algorithm B in B to which algorithm A corresponds.Lemma 4.2 Let wA; tA and wB; tB be the work-time overhead of SA and SB respectively. If SB iswork-preserving on the crcw pram and wA = O(wB) then SA is work-preserving on the qrqwpram. In particular, an algorithm A in A with work-time bounds of w and t will run optimally ona qrqw pram in time O(w=q) using q processors when q � w=(t + tA).Proof. Let A correspond to a crcw work-time algorithm B in B that runs in time t0 with workw0. Note that t � t0 and w = w0 since A corresponds to B. On a p-processor crcw pram, SB mapsalgorithm B to run in time t0 + tB + (w + wB)=p. Thus p � (t0 + tB + (w + wB)=p) = O(w) for somevalue of p, since SB is work-preserving. This implies that wB = O(w), and hence wA = O(w).Now let SA map algorithm A into a qrqw pram algorithm A0 with q � w=(t + tA) processors.Then algorithm A0 will run in time � = t+ tA + (w + wA)=q on the q-processor qrqw pram whichgives the desired work preserving schedule sinceq � � = q � (t + tA) + w + wA � w + w + O(w) = O(w):15

4 Adding contention to the work-time frameworkIn the work-time presentation, a parallel algorithm is described in terms of a sequence of steps,where each step may include any number of concurrent read, compute, or write operations [J�aJ92].In this context, the work is the total number of operations, and the time is the number of steps.This is sometimes the most natural way to express a parallel algorithm, and forms the basis of manydata parallel languages (e.g. Nesl [BCH+93]). For standard pram models, Brent's schedulingprinciple [Bre74] can often be applied to obtain an e�cient O(work=p + time) time algorithm for ap-processor pram.4.1 The QRQW work-time frameworkWe show here that the work-time paradigm can be used to advantage for the qrqw pram. Itis extended into a qrqw work-time presentation by adding at each parallel step i the additionalparameter ki, the maximum contention at this step. Given an algorithm A in the qrqw work-timepresentation, de�ne the work to be the total number of operations6 and the time to be the sum overall steps of the maximum contention ki of each step (as in the simd-qrqw pram model). We notethat one of the useful features of the traditional work-time presentation is that the time evaluationis independent of the work evaluation. Perhaps somewhat surprisingly, in the qrqw work-timepresentation, too, the time evaluation (which is based on the contention at each step) is independentof the work evaluation: there is no bene�t or loss in having steps with high contention also have highwork, as long as the total contention and work remain the same. An algorithm given in the qrqwwork-time presentation can be transformed into an e�cient qrqw pram algorithm, as follows:Theorem 4.1 Assume processor allocation is free. Any algorithm in the qrqw work-time presen-tation with x operations and time t (where t is the sum of the maximum contention at each step)runs in at most x=p + t time on a p-processor qrqw pram.Proof. Let the number of parallel steps in the algorithm be r. Let xi be the number of operationsin the ith parallel step, and let ki � 1 be the maximum contention in the ith parallel step, 1 �i � r. Hence t = Pri=1 ki. We map the operations in the ith step uniformly onto the p qrqwpram processors. Thus each qrqw pram processor will receive at most ni = dxi=pe operations.The maximum contention at any memory location remains the same as in the original work-timealgorithm, i.e. at most ki. Hence the time cost for the ith step on a p processor qrqw pram ismaxfni; kig. The overall algorithm, therefore, takes timerXi=1 maxfdxi=pe; kig � rXi=1((xi=p) + ki) = x=p + t:Thus Brent's scheduling principle can indeed be extended to the qrqw work-time framework.4.2 Automatic processor allocationThe mechanism of translating an algorithm from a work-time presentation into a pram descriptionis not addressed by Theorem 4.1, which assumes processor allocation is free. If the pram model isextended to include a unit time scan operation [Ble89], as may be appropriate for some machines6This contrasts with the work in a qrqw pram or simd-qrqw algorithm, which is the processor-time product.14

3.4 Related workIn an early related work, Greenberg [Gre82] considered broadcast communication schemes, such asthe Ethernet, that have queues for submitted messages. More recently, Cypher [Cyp88] analyzedthe performance of a maximum-�nding algorithm under assumptions similar to the simd-qrqwpram. Dietzfelbinger, Kutylowski and Reischuk [DKR94] de�ned the few-write pram, that permitsone-step concurrent writing of up to � writes, where � is a parameter of the model, as well asunlimited concurrent reading. Valiant [Val90a] introduced the bsp model (see Section 5), and studieda specialization of the model with logarithmic periodicity and constant throughput, which we callhere the standard bsp model. In [Val90a] it is shown that a v-processor pram step with contention� can be simulated on a p-processor standard bsp in O(v=p + � lg p) time w.h.p. A large number ofpapers have studied the Distributed Memory Machine, in which the shared memory is partitionedinto modules such that at most one memory location within each module can be accessed at a time.Concurrent reads and writes may or may not be allowed depending on the model. (See [Lei92a,Val90b] and the references therein.) An early example is the CTA (or Candidate Type Architecture)machine model proposed by Snyder [Sny86] which consists of a set of processors connected by asparse communication network of unspeci�ed topology and linked to a controller. The CTA isparametrized by the number of processors and the latency of interprocessor communication. Aumannand Rabin [AR92] showed that a pram algorithm can be simulated on a very general asynchronousparallel system that permits O(lgn) contention to a location in unit time.There have been several recent papers presenting independent work in related areas. Culleret al. [CKP+93] proposed the LogP model, a lower-level message-passing model in which there islimited communication bandwidth: a processor can send or receive at most one message every gcycles, where g is a parameter of the model. There is also a limit on the number of messages inthe network at the same time. The LogP model permits general asynchronous algorithms. Liu,Aiello and Bhatt [LAB93] studied a message-passing model in which messages destined for the sameprocessor are serviced one-at-a-time in an arbitrary order. Their model permits general asynchronousalgorithms, but each processor can have at most one message outstanding at a time. Dwork, Herlihyand Waarts [DHW93] de�ned an asynchronous shared memory model with a stall metric: If severalprocesses have reads or writes pending to a location, v, and one of them receives a response, then allthe others incur a stall. Hence the charge for contention is linear in the contention, with requests toa location being serviced one-at-a-time. Their model permits general asynchronous algorithms, buteach processor can have at most one read or write outstanding at a time. Unlike their model, theqrqw models capture directly how the contention delays the overall running time of the algorithm,and are proposed as alternatives to other pram models for high-level algorithm design. Unlike eachof these models, the qrqw pram does not explicitly limit the number of outstanding requests. Thesimd-qrqw pram, on the other hand, has the same restriction as the Liu et al. and Dwork et al.models, namely, one request per processor.In contrast to many of the models mentioned above, the qrqw model focuses on the contentionto locations, rather than to memory modules or processors. Any algorithm with high locationcontention will perform poorly on machines with non-combining networks, regardless of the numberof memory modules; any lower bound on location contention is a lower bound on memory modulecontention. By focusing on locations, the qrqw model is independent of the particular layoutof memory on the machine, e.g. the number of memory modules. Moreover, it is more relevantto cache-only memory architectures (coma), such as the KSR1, that dynamically map memorylocations to processors as the computation proceeds. Location contention is also a relevant metricfor cache coherence overhead, since the number of invalidates or updates that must be sent on awrite is often proportional to the number of processors concurrently accessing the location beingwritten [LLG+90]. The qrqw models, like the standard pram and other similar models, are trueshared memory models, providing a simple view of the shared memory as a collection of independentcells. 13

MasPar running times (in milliseconds)contention 1024 processors 16384 processorsin step write read write read1 0.563 0.518 7.321 6.8492 0.595 0.554 7.435 6.9574 0.755 0.703 7.415 6.9448 1.414 1.332 7.449 6.97616 2.765 2.589 7.870 7.36932 5.445 5.090 10.283 9.63664 10.784 10.116 15.354 14.391128 21.503 20.167 25.952 24.329256 42.922 40.271 47.127 44.205512 85.761 80.459 89.746 84.1941024 171.441 160.846 175.485 164.6352048 | | 346.781 325.3574096 | | 689.218 646.6568192 | | 1374.849 1289.97016384 | | 2744.192 2574.748
0

2

4

6

8

0 2 4 6 8 10

write time, 1024 procs
read time, 1024 procs

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

write time, 16384 procs
read time, 16384 procs

Figure 2: Performance measurements on the MasPar MP-1 for a read or write step, under increasingcontention to a location: Top, timing measurements. Bottom, plot of the measurements on a log-log scale, showing the running time (y-coordinate) as a function of the contention in the step (x-coordinate). Results for 210 and 214 processors are shown. In the base experiment (contention 1,x-coordinate 0), each processor reads (writes) according to a random permutation. In the generalexperiment (contention 2i, x-coordinate i), the �rst 2i processors read (write) the same location M ,while the remaining processors read (write) according to the original random permutation. Shownare the cumulative times of repeating the experiment on 20 di�erent random permutations. In theplots, the y-coordinate depicts the base 2 logarithm of the number of milliseconds needed.The experiments show that high contention steps are several orders of magnitude slower thanrandom permutations, and moreover, that doubling the contention nearly doubles the running time, atleast for medium to high contention steps. The dependence of the running time on the contention ismore dramatic in the experiments with 1024 processors than with 16,384 processors, for the followingreason. In the 16,384 processor MasPar MP-1, each global router port is shared by 16 processors,creating an additional serial bottleneck. The experiments with 1024 processors use only one processorper port, thereby avoiding this serial bottleneck. 12

Contention Rules of Some Existing MultiprocessorsCray T3D [KS93] $ A qrqwIBM SP2 [IBM94] $ A qrqwIntel Paragon [Bel92] $ A qrqwKendall Square KSR1 [FBR93] $ A crqwMasPar MP-1 [Mas91], MP-2 $global router S qrqwxnet S limited crewnCUBE 2S [SV94] $ A qrqwThinking Machines CM-5 [Lei92b] $data network A qrqwcontrol network S fast scan opsBus-based machines $ A limited crqwFluent [Ran89, AKP91] P S crcwMIT J-Machine [DKN93] P A qrqwStanford DASH [LLG+92] P A qrqwTera Computer [ACC+90] P A qrqwTable 3: Contention rules of some existing multiprocessors. We have included message-passingmachines, as well as shared memory ones, since they are often used to run (slightly modi�ed versionsof) shared memory algorithms or programs. The second column indicates commercial product ($) orworking prototype (P). The third column indicates synchronous (S) or asynchronous (A) machines.In the last column, ER or EW denotes that programs for the machine are forbidden from havingmultiple requests for a location. QR or QW denotes that multiple requests to a location may beissued, and requests are generally serviced one-at-a-time. CR or CW denotes that multiple requeststo a location may be issued, and requests are combined in the network.A few entries do not quite �t the taxonomy and require further explanation. In the xnet of theMP-1 and MP-2, processors are limited to reading or writing values stored at nodes a given distanceaway in a given compass direction; each processor may broadcast a value to all intermediate nodeson the path. The control network of the CM-5 provides fast scan primitives [Ble89]; such primitivesprovide concurrent reading and writing and more (only) for well-structured sets of requests that �tthe segmented-scan paradigm [Ble93]. In bus-based machines, the bus typically services only oneshared memory location at a time; all processors requesting to read the location can be serviced atthe same time without penalty. Finally, a number of these machines provide caches that permit fastconcurrent re-reading of shared memory locations: once a set of processors have read a location,they may subsequently re-read the location without incurring a penalty for contention, as long as noprocessor has written to the location in the meantime.
11

writing (reading, respectively) and may be too powerful for reading (writing, respectively).3.3 Most existing machines are QRQWTable 3 classi�es some existing multiprocessors according to the concurrent read and write capa-bilities of their interprocessor communication. As seen from the table, the contention rule for mostof these machines, including the CRAY T3D, IBM SP2, Intel Paragon, MIT J-Machine, nCUBE 2S,Stanford DASH, and Tera Computer, is well-approximated by the qrqw rule. For the synchronousMasPar MP-1 and MP-2, the contention rule is well-approximated by the simd-qrqw rule.For the Kendall Square KSR1, the contention rule is well-approximated by the crqw rule.The Thinking Machines CM-5 provides a second network that can be used to perform fast scanoperations [Ble89]. An appropriate model for this machine would be a qrqw model with unit-timescan operations.Note that each of the asynchronous machines (marked A in Table 3) allow for general asyn-chronous algorithms. Thus their contention rule in its full generality is well-approximated by theasynchronous queue contention rule provided by the qrqw asynchronous pram [GMR96b] (ex-cept for the KSR1, which is well-approximated by an asynchronous crqw contention rule). On theother hand, their contention rule with respect to bulk-synchronous algorithms is well-approximatedby the (bulk-synchronous) queue contention rule provided by the simpler qrqw or crqw pram.A number of these machines, such as Stanford DASH, provide caches local to each processor;on reading a shared memory location, a copy is stored in the processor's cache for future reuse.Multiple processors with cached copies of a location may then request to read the location, and willbe serviced in parallel from their local caches. To maintain a single consistent value for a location,these machines typically invalidate all cached copies of the location before permitting a processorto write to the location. This fast concurrent re-reading of memory locations is not modeled inthe qrqw models, due to the following. If the contents of a shared memory location is stored in aprivate memory location when �rst read by a processor, then there is no need to issue a subsequentshared memory read for this location unless some other processor may have changed the value: theprivate copy may be used instead. Moreover, if some other processor did change the value, then fastre-reading is not possible and there will be a penalty for high contention with or without the caches.Thus fast re-reading of memory locations seems to have only a secondary e�ect on the contentionencountered in parallel algorithms, and hence has been omitted from the model, for simplicity.We have conducted experiments to measure the e�ect of contention on a 16,384 processor MasParMP-1. The results of these experiments are given in Figure 2. The experiments show that the simd-qrqw rule is a far more accurate reection of running time on the MasPar MP-1 than a crcwcontention rule. Indeed, the overall time for the read (write) step is dominated by the cost ofcontention at a fairly small value for the contention, and then the time grows nearly linearly withthe contention. In contrast, the crcw contention rule would predict that the overall time would notchange with the contention. The di�erences between the left and right plots in the �gure demonstratethat charging k for contention k, as in the simd-qrqw rule, becomes an accurate reection of therunning time only when each processor has its own global router port; otherwise, a more complicatedmetric would be more accurate. Note that the MasPar MP-2, the successor of the MP-1, providesadditional router ports, to help alleviate the bottleneck in the MP-1 caused by having one portfor every 16 processors. Thus we would expect the MP-2 to behave more like the plot on the left,i.e. more according to the simd-qrqw rule. 10

unnecessarily slow algorithms. A simple example is the 2-compaction problem, in which there aretwo nonempty cells at unknown positions in an array of size n, and the contents of these cells mustbe moved to the �rst two locations of the array. An erew pram requires
(plgn) time to solvethe 2-compaction problem; an n-processor crew pram requires
(lg lgn) time [FKL+92]. However,as shown in Section 7, there is a trivial constant time n-processor qrqw pram algorithm for thisproblem.The exclusive contention rule eliminates many randomized algorithmic techniques. Random-ization used to determine where a processor should read or write (e.g. random sampling, randomhashing) cannot avoid some small likelihood of concurrent reading or writing, and hence cannotbe incorporated directly into erew algorithms.4 Likewise, most asynchronous algorithms cannotavoid scenarios in which concurrent reading or writing occur. Hence existing asynchronous prammodels (e.g. [CZ89, Gib89, Nis90, MPS92]) do not enforce the exclusive rule, assuming instead acrcw cost measure.53.2 CRCW may be too powerfulAt the other extreme, the concurrent contention rule may be too powerful. In the crcw pram, eachstep takes unit time, independent of the amount of contention in the step. Thus no distinction is madebetween low contention and high contention algorithms. On parallel machines with non-combiningnetworks, high contention read steps or write steps can be quite slow, as each of the requests for ahighly contended location is serviced one-by-one, creating a serial bottleneck or \hot spot" [PN85].Moreover, intermediate nodes on the path to the contended destination become congested as well, soa single hot spot can even delay requests destined for other nodes in the network. If all p processorsrequest the same location, a common occurrence in crcw pram algorithms, a direct implementationof the algorithm can incur a p-fold loss in speedup due to contention, sometimes becoming no betterthan a sequential algorithm.An active area of research is how to execute a crcw step that includes high contention reads orwrites without creating hot spots. Software approaches, e.g. using sorting [Val90a], may incur anoverhead considered unacceptable in practice, even on machines that support them. This is arguablytrue of the MasPar MP-1, for example, where the concurrent-write primitive provided for the MP-1is around 20 times slower than writing according to a random permutation [Pre92]. As indicated inSection 1, the asymptotically best work-preserving emulation known for simulating the crcw pramon machines with non-combining networks su�ers polynomial slowdown [Val90a, Val92]. Thus, therunning time on the parallel machine will be a polynomial factor slower than the running timeindicated by the crcw model.Hardware approaches for executing high contention crcw steps without hot spots incorporatecombining logic into the interconnection network. Ranade's work [Ran89] shows that any crcw stepcan be simulated on certain hypercube-based networks in the same asymptotic time as an erew step,and development of machines based on his technique have been reported (e.g. [AKP91, DS92]). Itis an open question whether the system cost of supporting crcw e�ciently in hardware is justi�ed,particularly on mimd machines, and work continues in this area (e.g. [DK92]). Existing commercialmachines are primarily designed to process low contention steps e�ciently; high contention stepsare slow operations.Note that the weaknesses of the exclusive and concurrent contention rules apply independentlyto reading and writing. Thus hybrids such as the crew pram or the ercw pram are too strict for4These techniques can be incorporated into crcw algorithms, and emulated on the erew, but at logarithmic costin time and work.5An exception is the erew variant of Gibbons' asynchronous pram model [Gib89], which permits contention insynchronization primitives, at a cost, but enforces the exclusive rule on reads and writes occurring between synchro-nization points. 9

CRCW. &crqw qrcw. & . &crew QRQW ercw& . & .qrew erqw& .EREWFigure 1: The relative power of various pram concurrency rules. The same relationships hold for thesimd versions of the queue models. For concurrent write, we assume an arbitrary processor succeedsin writing. In this �gure an arrow denotes that the pram model, M1, at the tail of the arrow cansimulate the pram model, M2, at its head with at most a small constant loss in performance (andpossibly some improvement), i.e. M2 � M1. Our results characterize more precisely the relativepower of some of the concurrency rules.in the literature, it is reasonable to ask if there is a need for yet another contention rule, and inparticular, whether the qrqw pram is an important new pram model.The qrqw pram is a fundamental departure from standard pram models because it is the�rst pram model to properly account for contention, as reected in most current commercial andresearch machines. By permitting contention, it reects the realities of current machines, and enablessimpler and more e�cient algorithms for many basic problems. By charging for contention, it reectsthe realities of machines with non-combining networks, i.e. most current commercial and researchmachines. In the remainder of this section, we elaborate on these points, and then compare theqrqw models to related work. We begin with a critique of the exclusive and concurrent rules.3.1 EREW is too strictThe exclusive contention rule is almost universally considered by pram proponents to be a realisticrule for parallel machines. In the erew pram, it is forbidden to have two or more processors attemptto read or write the same location in the same step. We know of no existing shared memory parallelmachine with this restriction on its global communication. Moreover, the exclusive rule leads toSeparation Results for Hybrid Modelsweaker model stronger model time separation problem referencefdet.,rand.g erew fdet.,rand.g erqw
(plgn) 2-compaction x7det. fqr,crgew det. fqr,crgqw
(lg lgn) 2-compaction x7with n procsrand. crew rand. crqw
(lg lgn) or function x6.3det. fer,qr,crgqw det. fer,qr,crgcw
(lgn= lg lgn) or function x6.1det. qrfew,qwg det. crfew,qwg
(lgn) broadcasting x8rand. qrfew,qwg rand. crfew,qwg
(lgn) broadcastingTable 2: Separation results for the hybrid queue models, including both deterministic time (det.) andrandomized expected time or w.h.p. time (rand.). All results listed above hold for the simd versionsas well. 8

QRQW Separation Resultsweaker model stronger model time separation problem referencefdet.,rand.g erew fdet.,rand.g simd-qrqw
(plgn) 2-compaction x7det. qrqw det. crcw
(lgn= lg lgn) or function x6.1fdet.,rand.g qrqw fdet.,rand.g crcw
(lgn) broadcasting x8Table 1: Results separating the qrqw from the erew and crcwmodels, including both deterministictime (det.) and randomized expected or w.h.p. time (rand.).Proof. By straightforward emulation. For the crcw emulating a qrqw step of time cost t: (1)for j = 1; : : : ;maxifrig, perform the jth read operation (if any) at each processor in one step usingcr, then (2) for j = 1; : : : ;maxifcig, perform the jth compute operation (if any) at each processor,then (3) for j = 1; : : : ;maxifwig, perform the jth write operation (if any) at each processor in onestep using cw. This takes time maxifrig+ maxifcig+ maxifwig � 3t.Results separating the qrqw from the erew and crcw models appear in Table 1.2.4 A family of queue modelsThe de�nitions of simd-qrqw pram and qrqw pram can be generalized so that the charge formaximum contention � is f(�), a non-decreasing function of �. When f(�) = 1 for all �, bothmodels are equivalent to the crcw pram. Likewise, when f(1) = 1 and f(�) = 1 for � � 2, bothmodels are equivalent to the erew pram. Note that the distinction between the simd-qrqw pramand the qrqw pram arises only when f(�) > 1 and is �nite for some �.Another possible cost function is f(�) = lg�; such a function may occur in a hypothetical variantof combining networks, but it is not known to be relevant to any existing machines (there are noknown techniques for achieving this cost function for an arbitrary set of readers/writers). Thelog cost function may prove to be relevant to future machines that employ an optical crossbar tointerconnect the processors [GMR94c, MR96]. However, in this paper, we will focus our attentionon the cost function, f(�) = �, that reects the realities of proven technologies. (For some machinesthat do not handle contention well, super-linear functions such as f(�) = � lg� may be appropriate;such cost functions are not considered in this paper.) Other possible variants of the model permitwrite-conict rules other than arbitrary; however, we note that the arbitrary rule reects the realitiesof most current commercial and research machines.As the queue rule can be applied independently to reads or writes, we can also consider modelssuch as the simd-crqw or crqw pram. For each such hybrid model, the pram version can triviallysimulate the simd version with no loss. Figure 1 depicts the relative power of the various modelsimmediately apparent from the de�nitions, extending the results in Observation 2.2 to the hybridmodels. Likewise, Table 2 presents additional separation results for the hybrid models.3 Why QRQW?The pram model was introduced in 1978 [FW78], with the crew contention rule. Since that time,a variety of contention rules have been proposed and studied, with the most-widely studied beingthe erew, crew and crcw rules. Variants of the crcw pram such as arbitrary, collision,common, priority, robust, and tolerant have been proposed and studied (see e.g., [Mat92] forde�nitions); these di�er in their write-conict rules. Given the plethora of contention rules already7

2.3 Relations between modelsThe primary advantage of the qrqw pram model over the simd-qrqw pram model is that theqrqw permits processors each to perform a series of reads and writes in a step while incurringonly a single penalty for the contention of these reads and writes. In the simd-qrqw, a penalty ischarged after each read or write in the series; often the resulting aggregate charge for contentionis far greater than the single charge under the qrqw model. On the other hand, by adding moreprocessors to the simd-qrqw, we can match the time bounds (but not the work bounds) obtainedfor the qrqw:Observation 2.1 A p-processor qrqw pram algorithm running in time t can be emulated on apt-processor simd-qrqw pram in time O(t).Proof. For each qrqw processor i 2 [1::p], we assign a team, Ti, of t simd-qrqw processors, witheach team having a leader, li. Each leader li maintains the entire local state of qrqw processor iduring the emulation. For each team Ti, we have an auxiliary array, Ai, of size t for communicationsbetween li and each member of its team. Consider the jth step of a qrqw pram algorithm, withtime cost tj and maximum contention kj � tj. For each qrqw processor i, let ri, ci, and wi bethe number of reads, ram operations, and writes performed by processor i this step. Processor iis emulated as follows: (1) The leader li writes the ri locations to be read to Ai, one location percell. (2) Each member of Ti reads its cell in Ai, reads the designated location (if any) in the sharedmemory, and then writes the value read to its cell in Ai. (3) The leader li reads the values in Ai,performs the ci ram operations, and then writes the wi locations and values to be written to Ai,one per cell. Finally, (4) each member of Ti reads its cell in Ai, and then writes the designatedvalue to the designated location (if any) in the shared memory. Step 1 takes O(ri) time, step 2 takesO(kj) time, step 3 takes O(ri + ci + wi) time, and step 4 takes O(kj) time. Thus the overall timeto emulate the jth qrqw step is O(tj), and the observation follows.Note that in fact only p � � processors are needed in the above emulation, where � � t is themaximum time for any one step of the qrqw pram algorithm.The simd-qrqw pram model permits each processor to have at most one shared memory requestoutstanding at a time, as in the standard pram model. This places an upper bound on the numberof requests that must be handled by the interconnection network of the parallel machine. For mostmimd machines, permitting only one request per processor is arti�cially restrictive, and the qrqwpram model has no such restriction. On the other hand, since there is no bound in the qrqw pramon the number of outstanding requests, there is a danger that qrqw pram algorithms will oodthe network with requests beyond its capacity to e�ciently process them. One approach towardsalleviating this potentially serious problem is to divide steps with many shared memory requestsinto a sequence of steps with fewer requests per step. In general one could indicate, for each qrqwpram algorithm, the maximum number of requests in any one step of the algorithm. Then whenimplementing the algorithm on a given parallel machine, this number could be compared with themaximum e�ective network capacity of the machine to determine if the memory requests can bee�ciently processed by the network.Let M1 and M2 be two models. We de�ne M1 � M2 to denote that any one step of M1 with timecost t � 1 can be emulated in O(t) time on M2 using the same number of processors. For concurrentand queue writes we assume throughout this paper that an arbitrary processor succeeds in the write;however, the relations stated below hold as long as both machines use the same write-conict rule.Observation 2.2 erew pram � simd-qrqw pram � qrqw pram � crcw pram6

Concurrent reads and writes to the same location are permitted in a step. In the case of multiplewriters to a location x, an arbitrary write to x succeeds in writing the value present in x at the endof the step.De�nition 2.4 Consider a qrqw pram step with maximum contention �, and let m = maxifri; ci;wig for the step, i.e. the maximum over all processors i of its number of reads, computes, and writes.Then the time cost for the step is maxfm;�g. The time of a qrqw pram algorithm is the sumof the time costs for its steps. The work of a qrqw pram algorithm is its processor-time product.This cost measure models, for example, a mimd machine such as the Tera Computer [ACC+90],in which each processor can have multiple reads/writes in progress at a time, and reads/writes toa location queue up and are serviced one at a time. Neither the erew pram nor the crcw prammodel allows a processor to have multiple reads/writes in progress at a time, as this generalizationis unnecessary when reads/writes complete in unit time. This feature, which distinguishes theqrqw pram from the simd-qrqw pram as well as the erew pram and crcw pram, enables theprocessors to do useful work while awaiting the completion of reads/writes that encounter contention.Nevertheless, as we show below, the crcw pram can simulate the qrqw pram to within constantfactors.The restriction that the processors in a read substep know, at the beginning of the substep, thelocations to be read reects the intended emulation of the qrqw pram model on a mimd machinein which the reads are issued in a pipelined manner, to amortize against the delay (latency) on suchmachines in reading the shared memory. Likewise writes in a write substep are to be pipelined inthe intended emulation. On the other hand, each of the local operations performed in a computesubstep can depend on compute operations in the same substep; since these operations are assumedto take constant time in the intended emulation, there is no need for pipelining (to within constantfactors). The emulation inserts a barrier synchronization among all the processors between everyread and write substeps, so that the processors notify each other when it is safe to proceed with thenext substep. This synchronization is accounted for in the emulation. A formal description of theintended emulation and its performance appears in Section 5.On existing parallel machines, there are a number of factors that determine the time to processshared memory read and write requests, including contention in the interconnection network andat the memory modules. Often, reads and writes to distinct shared memory locations may delayone another. Moreover, issued memory requests cannot be withdrawn. To reect these realities ofexisting machines, the qrqw pram (as well as the simd-qrqw pram) does not permit processorsto make inferences on the contention encountered based on the delays incurred. In addition, issuedmemory requests may not be withdrawn, and an algorithm has not completed until all issued memoryrequests have been processed. In this way, the qrqw models, although explicitly accounting onlyfor the delays resulting from multiple requests to the same locations, can be e�ciently emulated onmodels that account for these additional concerns, as shown in Section 5.As with the simd-qrqw pram, the work is not the number of operations since operationsencountering non-constant contention may be charged non-constant time. (In fact, the only situationwhere the work is a good reection of the number of operations is when pipelining is extensivelyemployed, i.e. when the average over i of (ri + ci + wi) is
(�).)Also, as with the simd-qrqw pram, there is no explicit metric for the number of steps in analgorithm. As we show in Section 5, there is no need for such a metric in the context of the intendedemulation. On the other hand, the synchronization at the end of each bulk-synchronous step is asource of overhead on existing machines, and hence one may wish to include this additional metricwhen analyzing algorithms on the qrqw models.5

the asynchronous nature of mimd machines to be exploited, at the cost of more complexity in themodel.The complexity metric for the qrqw models will use the notion of maximum contention, de�nedas follows.De�nition 2.1 Consider a single step of a pram, consisting of a read substep, a compute substep,and a write substep. The maximum contention of the step is the maximum, over all locationsx, of the number of processors reading x or the number of processors writing x. For simplicity inhandling a corner case, a step with no reads or writes is de�ned to have maximum contention `one'.2.1 The SIMD-QRQW PRAM modelDe�nition 2.2 The SIMD-QRQW PRAM model is a (synchronous) pram in which concurrentreads and writes to the same location are permitted, and the time cost for a step with maximumcontention � is �. If there are multiple writers to a location x in a step, an arbitrary write to xsucceeds in writing the value present in x at the end of the step. The time of a simd-qrqw pramalgorithm is the sum of the time costs for its steps. The work is its processor-time product.This cost measure models, for example, a simd machine such as the MasPar MP-1 [Mas91] orMP-2, in which each processor can have at most one read/write in progress at a time, reads/writesto a location queue up and are serviced one at a time, and all processors await the completionof the slowest read/write in the step before continuing to the next step. Existing simd machinesprovide for the required synchronization of all processors at each step, regardless of the varyingcontention encountered by the individual processors. Unlike previous pram models, the work isnot the number of operations, because with the simd-qrqw time metric, operations encounteringnon-constant contention are charged non-constant time.If a pram model is to be used to design bulk-synchronous algorithms on mimd machines, thenthe simd-qrqw pram is unnecessarily restrictive. A better model for this scenario is the qrqwpram, de�ned next.2.2 The QRQW PRAM modelDe�nition 2.3 The QRQW PRAM model consists of a number of processors, each with its ownprivate memory, communicating by reading and writing locations in a shared memory. Processorsexecute a sequence of synchronous steps, each consisting of the following three substeps:1. Read substep: Each processor i reads ri shared memory locations, where the locations are knownat the beginning of the substep.2. Compute substep: Each processor i performs ci ram operations involving only its private stateand private memory.33. Write substep: Each processor i writes to wi shared memory locations (where the locations andvalues written are known at the beginning of the substep).3As in the existing pram models, each processor is assumed to be a sequential random access machine. See,e.g. [Rei93]. For the qrqw pram, a processormay performmultipleram operations in a compute substep, e.g. summingci numbers stored in its private memory, and is charged accordingly.4

Important technical issues arise in designing algorithms for the queue models, that are present inneither the concurrent nor the exclusive pram models. For example, much of the e�ort in designingalgorithms for the qrqw is in estimating the maximumcontention in a step; our algorithms for leaderelection illustrate this point. In the qrqw, one high contention step can dominate the running timeof the algorithm: we cannot a�ord to underestimate the contention signi�cantly.In a companion paper [GMR96a], we present a number of other algorithmic results for the qrqwpram. Our algorithmic results include linear work, logarithmic or sublogarithmic time randomizedqrqw algorithms for the fundamental problems of multiple compaction, load balancing, generatinga random permutation, parallel hashing, and sorting from U (0; 1). These algorithms improve uponthe best known erew algorithms for these problems, while avoiding the high-contention steps typicalof crcw algorithms. Additionally, we present new algorithms for integer sorting and general sorting.Most of the results in [GMR96a], and some of the results in this paper, are obtained \withhigh probability". A probabilistic event occurs with high probability (w.h.p.), if, for any prespeci�edconstant � > 0, it occurs with probability 1� 1=n�, where n is the size of the input. Thus, we say arandomized algorithm runs in O(f(n)) time w.h.p. if for every prespeci�ed constant � > 0, there isa constant c such that for all n � 1, the algorithm runs in c � f(n) steps or less with probability atleast 1� 1=n�.The rest of this paper is organized as follows. Section 2 de�nes the qrqw pram and simd-qrqw pram models. Section 3 gives further motivation for the queue models, and comparisonwith related work. Section 4 describes the extension of the work-time framework to the qrqwmodels. Section 5 presents our results for realizing the qrqw pram on feasible networks. Section 6gives upper and lower bounds for computing the or and leader election under various scenarios.Section 7 presents our linear work, sublogarithmic time algorithm for linear compaction on a simd-qrqw pram. Section 8 presents tight
(lgn) expected time lower bounds on the qrqw pram forbroadcasting and related problems. Concluding remarks appear in Section 9.The results in this paper appeared in preliminary form in [GMR93, GMR94a, GMR94b].2 The queue modelsThis section de�nes our two queue-read queue-write (qrqw) models:� The simd-qrqw pram, for algorithms running on simd machines.� The qrqw pram, for bulk-synchronous algorithms2 running on mimd machines.In both of the qrqw models, the time cost for reading or writing a shared location, x, is propor-tional to the number of processors concurrently reading or writing x. This cost measure modelsmachines in which accesses to a location queue up and are serviced one at a time, i.e. most currentcommercial and research machines. The simd-qrqw models machines in which processors syn-chronize at every step, awaiting for all the queues to clear. The qrqw models machines in whichprocessors synchronize less frequently, awaiting for all the queues to clear only at synchronizationpoints. In a subsequent paper [GMR96b] we de�ne the qrqw asynchronous pram model, forgeneral asynchronous algorithms running on mimd machines (see also [GMR93]). This model hasan asynchronous queue contention rule in which processors read and write locations at their ownpace, without waiting for the queues encountered by other processors to clear. This model allows2In a bulk-synchronous algorithm [Val90a, Gib89, Gib93], synchronization among the processors is limited to globalsynchronization barriers involving all the processors; between such barriers, processors execute asynchronously usingshared memory values written prior to the preceding barrier.3

The qrqw pram, like the other pram models mentioned above, abstracts away many featuresof real machines, including the latency or delay in accessing the shared memory, the cost of synchro-nizing the processors, and the fact that memory is partitioned into modules that service requestsserially. A model that incorporates these features is the Bulk-Synchronous Parallel (bsp) model ofValiant [Val90a]. In its general form this model is parameterized by its number of processing/memorycomponents p, throughput g, and periodicity L. A particular case studied by Valiant sets g to be aconstant and L to be �(lg p); we denote this the standard bsp model. We show in this paper that theqrqw pram can be e�ectively emulated on the standard bsp model: A p-processor qrqw pram al-gorithm running in time t can be emulated on a p= lgp-processor standard bsp in O(t lgp) time withhigh probability. It follows by Valiant's simulation of the standard bsp on hypercubes that the qrqwpram can be emulated in a work-preserving manner on parallel machines with hypercube-type, non-combining networks with only logarithmic slowdown, even when latency, memory granularity, andsynchronization overheads are taken into account. This matches the best known emulation for theerew pram on these networks given in [Val90a]. In contrast, work-preserving emulations for thecrcw pram on such networks are only known with polynomial slowdown (i.e. O(p�) slowdown, fora constant � > 0).Note that the standard �(lg p) time emulation of crcw on erew (see, e.g. [KR90]) is notwork-preserving, in that the erew performs �(lg p) times more work than the crcw it emulates.Since we consider work-preserving speed-ups to be the primary goal in parallel algorithms, withfast running times the secondary goal, this emulation is unacceptable: The �(lg p) overhead in workensures that the algorithms will not exhibit linear or near-linear speedups. Similarly, the best knownemulations for the crew pram (or ercw pram) on the erew pram (or standard bsp or hypercube)require logarithmic work overhead for logarithmic slowdown or, alternatively, polynomial slowdownfor constant work overhead.Since the qrqw pram is strictly more powerful than the erew pram, e�ectively emulated onhypercube-type non-combining networks (unlike the crcw, crew, or ercw pram models), and abetter match for real machines, we advocate the qrqw pram with its queue contention rule as amore appropriate model for high-level algorithm design than a pram with either the exclusive orconcurrent contention rules. The queue contention rule can also be incorporated into lower-levelshared memory models, trading model simplicity for additional accuracy in modeling the cost ofcommunication (e.g. explicitly modeling the communication bandwidth). In this initial paper on thequeue contention rule, we restrict our focus to high-level algorithm design on pram models.In addition to the qrqw pram model, we de�ne in this paper the simd-qrqw pram model,a strictly weaker model suitable for simd machines, in which all processors execute in lock-stepand each processor can have at most one read/write in progress at a time. In a subsequent pa-per [GMR96b] we de�ne the qrqw asynchronous pram model, for general asynchronous algo-rithms running on mimd machines (see also [GMR93]).We present several algorithms and a lower bound for leader election and for computing theor function. The lower bound is
(lgn= lg lgn) time for the deterministic computation of the orfunction on a concurrent-read, queue-write (crqw) pram with arbitrarily many processors. Thealgorithms for both problems take linear work, O(lgn= lg lgn) time with high probability. In con-trast, the or function requires
(lgn) expected time on a randomized crew pram with arbitrarilymany processors ([DKR94], following [CDR86]). Also presented is a linear work, O(plgn) timew.h.p. algorithm for the linear compaction problem. This problem has applications to automaticprocessor allocation for algorithms that are given in the qrqw work-time presentation. In contrast,the best linear compaction algorithm known on the erew pram is the logarithmic time pre�x sumsalgorithm [LF80]. On the other hand, for the problem of broadcasting the value of a bit to n pro-cessors, we show that we can do no better on the qrqw pram than the simple �(lgn) time erewpram algorithm. Speci�cally, we show a tight
(lgn) expected time lower bound for the qrqwpram. 2

1 IntroductionThe Parallel Random Access Machine (pram) model of computation is the most-widely used modelfor the design and analysis of parallel algorithms (see, e.g. [KR90, J�aJ92, Rei93]). The pram modelconsists of a number of processors operating in lock-step and communicating by reading and writinglocations in a shared memory. Existing pram models can be distinguished by their rules regardingcontention for shared memory locations. These rules are generally classi�ed into two groups:� Exclusive read/write: Each location can be read or written by at most one processor in eachunit-time pram step.� Concurrent read/write: Each location can be read or written by any number of processorsin each unit-time pram step. For concurrent writing, the value written depends on the write-conict rule of the model, e.g. in the arbitrary concurrent-write pram, an arbitrary processorsucceeds in writing its value.These two rules can be applied independently to reads and writes; the resulting models are denotedin the literature as the erew, crew, ercw, and crcw pram models.In this paper, we argue that neither the exclusive nor the concurrent rules accurately reectthe contention capabilities of most commercial and research machines, and propose a new pramcontention rule, the queue rule, that permits concurrent reading and writing, but at an appropriatecost:� Queue read/write: Each location can be read or written by any number of processors in eachstep. Concurrent reads or writes to a location are serviced one-at-a-time.Thus the worst case time to read or write a location is linear in the number of concurrent readersor writers to the same location.The queue rule more accurately reects the contention properties of machines with simple, non-combining interconnection networks1 than either the exclusive or concurrent rules. The exclusive ruleis too strict, and the concurrent rule ignores the large performance penalty of high contention steps.Indeed, for most existing machines, including the CRAY T3D, IBM SP2, Intel Paragon, MasParMP-2 (global router), MIT J-Machine, nCUBE 2S, Stanford DASH, Tera Computer, and ThinkingMachines CM-5 (data network), the contention properties of the machine are well-approximated bythe queue-read, queue-write rule. For the Kendall Square KSR1, the contention properties can beapproximated by the concurrent-read, queue-write rule. Further details are in Section 3.This paper de�nes the queue-read, queue-write (qrqw) pram model, a variation on the standardpram that employs the queue rule for both reading and writing. In addition, the processors arepermitted to each have multiple reads or writes in progress at a time. We show that the power ofthe qrqw pram model falls strictly between the crcw and erew models. We show separationresults between the models by considering the 2-compaction problem, the broadcasting problem,and the problem of computing the or function. To illustrate some of the techniques used to de-sign low-contention algorithms that improve upon the best known zero-contention algorithms, weconsider algorithms for two fundamental problems, leader election and linear compaction, undervarious scenarios. Finally, this paper extends the work-time framework for parallel algorithms (see,e.g. [J�aJ92]) into a qrqw work-time framework that considers the contention at each step, andrelates the qrqw pram model to the qrqw work-time framework.1In a combining network, when two messages destined for the same memory locationmeet at an intermediate nodein the network, the messages are \combined" so that only one message continues towards the destination. For example,if two writes meet, then only a single write is sent on. In a non-combining network, messages are not combined, sothat all messages destined for the same memory location are delivered to the home node for that location.1

The Queue-Read Queue-Write PRAM Model:Accounting for Contention in Parallel AlgorithmsPhillip B. GibbonsAT&T Bell Laboratories600 Mountain AvenueMurray Hill NJ 07974gibbons@research.att.com Yossi MatiasAT&T Bell Laboratories600 Mountain AvenueMurray Hill NJ 07974matias@research.att.com Vijaya Ramachandran�Dept. of Computer SciencesUniversity of Texas at AustinAustin TX 78712vlr@cs.utexas.eduMay 21, 1996AbstractThis paper introduces the queue-read, queue-write (qrqw) parallel random accessmachine (pram) model, which permits concurrent reading and writing to shared mem-ory locations, but at a cost proportional to the number of readers/writers to any onememory location in a given step. Prior to this work there were no formal complexitymodels that accounted for the contention to memory locations, despite its large impacton the performance of parallel programs. The qrqw pram model reects the contentionproperties of most commercially available parallel machines more accurately than eitherthe well-studied crcw pram or erew pram models: the crcw model does not ade-quately penalize algorithms with high contention to shared memory locations, while theerew model is too strict in its insistence on zero contention at each step.The qrqw pram is strictly more powerful than the erew pram. This paper showsa separation of plgn between the two models, and presents faster and more e�cientqrqw algorithms for several basic problems, such as linear compaction, leader elec-tion, and processor allocation. Furthermore, we present a work-preserving emulation ofthe qrqw pram with only logarithmic slowdown on Valiant's bsp model, and henceon hypercube-type non-combining networks, even when latency, synchronization, andmemory granularity overheads are taken into account. This matches the best knownemulation result for the erew pram, and considerably improves upon the best knowne�cient emulation for the crcw pram on such networks. Finally, the paper presentsseveral lower bound results for this model, including lower bounds on the time requiredfor broadcasting and for leader election.
�Supported in part by NSF grant CCR-90-23059 and Texas Advanced Research Projects Grants 003658480 and003658386.

