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8 ConclusionsIn this paper we have presented highly parallel work-optimal algorithms for several fundamentalproblems for the qrqw pram. These include linear work, logarithmic time algorithms for multiplecompaction, generating a random permutation, and hashing; a sublogarithmic time, linear workalgorithm for load balancing when the maximum initial load is small; and a sublogarithmic timelinear work algorithm for generating a random cyclic permutation. We have also presented severalsimple algorithms for the sorting problem that improve on algorithms known for exclusive memoryaccess pram models. Complementing these algorithmic results, we have shown an 
(lgL) time lowerbound on the qrqw pram for the load balancing problem with maximum load L. All of the algo-rithms we have presented in this paper are randomized algorithms with high probability performanceguarantees, and our lower bound applies to randomized as well as deterministic algorithms.We have also provided experimental results from an implementation, on the MasPar MP-1, ofour qrqw pram algorithm for generating a random permutation as well as the best erew pramalgorithm for this problem; our experimental results show that the qrqw pram algorithm does,indeed, run faster than the erew pram algorithm.The qrqw pram models the mechanism used by a number of currently available commercialshared memory machines to handle memory contention. As has been illustrated in the algorithmspresented in this paper, novel techniques may be needed in the design of e�cient algorithms inthe qrqw models. We expect that further research will help obtain a clearer understanding of thecapabilities of this model and its applicability to the design of e�cient and cost e�ective parallelalgorithms that can be implemented on currently available parallel machines.Among the important open problems remaining are to obtain tight upper and lower boundsfor the running times of (additional) fundamental problems on the qrqw pram, and to obtain awork-optimal, polylog time simulation of the crcw pram on a qrqw pram (or prove that such asimulation does not exist).AcknowledgementsThe authors thank the anonymous referees for their helpful comments.References[ACC+90] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porter�eld, and B. Smith. TheTera computer system. In Proc. 1990 International Conf. on Supercomputing, pages 1{6,June 1990.[AH92] S. Albers and T. Hagerup. Improved parallel integer sorting without concurrent writing.In Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms, pages 463{472, January 1992.[AKS83] M. Ajtai, J. Komlos, and E. Szemeredi. Sorting in c lgn parallel steps. Combinatorica,3(1):1{19, 1983.[Bat68] K. E. Batcher. Sorting networks and their applications. In Proc. AFIPS Spring JointSummer Computer Conference, pages 307{314, 1968.[BGMZ95] G. E. Blelloch, P. B. Gibbons, Y. Matias, and M. Zagha. Accounting for memory bankcontention and delay in high-bandwidth multiprocessors. In Proc. 7th ACM Symp. onParallel Algorithms and Architectures, pages 84{94, July 1995.35



7. Compact the items in B into an array of size n.By Observation 2.6, the maximum contention in step 1 is O(lgn= lg lgn) w.h.p. For step 2, wecan apply Theorem 7.2 (or use any other algorithm that sorts n keys in O(lgn) time and at mostO(n lg2 n) work on a crqw pram). Steps 3, 4, 5, and 7 can be done in O(lgn) time and linearwork using pre�x sums computations. For step 6, we replace the procedure used in [RR89] withour algorithm for \relaxed" heavy multiple compaction (Lemma 4.2). Thus w.h.p., the total timeis O(lgn) and the total work is O(n). Processor allocation is straightforward, yielding the desiredresult.We observe that, with the exception of step 5 above, the entire algorithm can be adapted torun on the qrqw pram within the same resource bounds. In step 5, each item needs to learn theestimate of the set size for its key, and the pointer to its allocated subarray; we use the concurrent-read capability to stay within the desired resource bounds.Theorem 7.4 matches the bounds obtained for the crcw pram in [RR89]. (There is also a moreinvolved, optimal crcw pram algorithm that runs in O(lgn= lg lgn) time and linear work w.h.p.;see, e.g. [Mat92].)We conclude this section with the following application of integer sorting to emulating the pow-erful fetch&add pram on the crqw pram.Emulating Fetch&Add PRAM on CRQW PRAMThe fetch&add pram model [GGK+83, Vis83] is stronger than the crcw pram; for instance,the parity and the pre�x sums problems with input size n can be solved in constant time on afetch&add using n processors, while requiring 
(lgn= lg lgn) time on a crcw pram when usingnc processors, for any constant c > 0. The following lemma gives a reduction from the problem ofemulating one step of a fetch&add pram on an erew pram, to the integer sorting problem.Lemma 7.5 ([MV95]) Emulating one step of a fetch&add pram with n processors and memoryof arbitrary size m on an erew pram can be reduced to [1; n]-integer sorting in O(j lgn) timeand O(n) work w.h.p., using O(n lg(j) n) space, for any j = 1; : : : ; lg� n. In particular, it can bereduced:(ii) to [1; n]-integer sorting, in O(lgn lg� n) time and O(n) operations with high probability, usingO(n) space; and(iii) to [1; n]-integer sorting, in O(lgn) time and O(n) operations with high probability, usingO(n lg(j) n) space, for any constant j > 0.By using the crqw integer sorting algorithm of Theorem 7.4 we obtain:Theorem 7.6 One step of an n-processor fetch&add pram can be emulated on an n= lgn-processor crqw pram in O(j lgn) time w.h.p., and O(n lg(j) n) space, for any j = 1; : : : ; lg� n.In particular, the emulation takes linear work and O(lgn lg� n) time w.h.p., using O(n) space; andfurthermore, for any constant j the emulation takes linear work and O(lgn) time w.h.p., usingO(n lg(j) n) space. 34



The total work is, w.h.p., X1�i��O(n lgni) = O(n lgn):The time for bitonic sort on groups of size at most 2plgn is O(lgn), while the total workperformed is O(n lgn) over all groups. Broadcasting whether any failure has occurred is done onlyafter the bitonic sort, and takes O(lgn) time and linear work.It follows that the entire algorithm runs in O(lg2 n= lg lgn) time and O(n lgn) work w.h.p., usingO(n) space.In [GMR96b], we consider the qrqw asynchronous pram model, a more asynchronous qrqwmodel in which individual processors may proceed at their own pace without waiting for the con-tention encountered by other processors. We show how to adapt the above qrqw pram sortingalgorithm to obtain a fairly simple randomized sorting algorithm on the qrqw asynchronouspram that runs in O(lgn) time with O(n lgn) work w.h.p.7.3 Integer sortingThe �nal class of sorting problems we consider is that of sorting an arbitrary collection of n integersin the range [1::n lgc n], for a constant c. For this problem, we obtain an O(lgn) time, linearwork randomized algorithm for the crqw pram. In contrast, no algorithm with O(lgn) time andsimultaneously o(n lgn) work is known for the crew pram.Theorem 7.4 Sorting n integers in the range [1::n lgc n], for any constant c, can be done in O(lgn)time and linear work w.h.p. on a crqw pram.Proof. The integer sorting algorithm follows the steps of the Rajasekaran and Reif algorithmfor the crcw pram [RR89]. The main phase of the algorithm sorts the input keys based on theirlg(n= lg3 n) least signi�cant bits. Then Fact 4.3 can be applied to stably-sort the resulting sequencebased on the lg(lgc+3 n) most signi�cant bits of the input keys, to obtain the �nal sorted sequence.In what follows, we list the steps of the main phase of the Rajasekaran-Reif algorithm, and thendiscuss how to implement the steps on a crqw pram within the bounds stated in the theorem.Let D = n= lg3 n and for each input item, let its lgD least signi�cant bits be its label.1. Select in parallel n= lg2 n input items drawn uniformly at random.2. Sort these sample items according to their labels.3. For each label j 2 [1::D], compute the number, Nj, of items in the sample with label j. Letcountj = d(lg2 n)max(Nj ; lgn), for a constant d. Rajasekaran and Reif show that for a suitabled, countj is an upper bound on the number of input items with label j andPDj=1 countj � 2dn,w.h.p.4. Let B be an array of size 8dn. Partition array B into subarrays such that the jth subarray isof size 4countj. Let pointerj be the starting point in B of the jth subarray.5. Each item with label j reads countj and pointerj .6. Apply a multiple compaction algorithm to place each item into a private cell in the subarrayfor its label. 33



tree ensures that, if n searches are performed in parallel such that not too many searches result inthe same leaf of the (non-fat) tree, then each step of the search will encounter low contention.The process of fattening a search tree can be done in O(lgn) time and O(n lgn) work usingbinary broadcasting.In the case of our sorting algorithm, at the ith level of recursion we make ni copies of the mediansplitter, ni=2 copies of the 1/4 and 3/4 splitters, and so forth, down to n1=2+�i copies of the n1=2��isplitters in the leaves of the tree.8 Since there are �(n1=2+�i ) items per splitter bucket w.h.p., it canbe shown that at each step in the binary search, an item selecting a random copy of the splitterencounters constant expected contention. Thus by Observation 2.6, the maximum contention overall items at each step in the search is O(lgn= lg lgn) w.h.p. Thus each item can determine its bucketin O(lgni lgn= lg lgn) time and O(lgni) work w.h.p.At the ith level of recursion, there are n=ni fat-trees, each of which uses O(ni lgni) space. Toreduce the space per fat-tree to O(ni), we initially make only some of the copies, and then reuse thespace as needed. Speci�cally, we make ni copies of the median splitter stored in an array A0, ni=4copies of the 1/4 and 3/4 splitters stored in an array A1, and in general ni=4j copies of each splitterat the jth level of the fat-tree, for a total of ni=2j copies of splitters stored in an array Aj . This isO(ni) copies in all. The processors begin by probing A0, encountering constant expected contention.Then for each array Aj , j > 0, the contents of Aj are duplicated and stored in array Aj�1, in constanttime and O(ni) work. The processors again probe A0, which contains ni=2 copies of the 1/4 and3/4 splitters, followed by the duplication of all splitter copies, and so forth, alternating probe stepsand duplication steps, until �nally probing the n1=2+�i copies of the n1=2��i splitters placed in A0 inthe previous duplication step. In this way, the maximum contention over all items at each step inthe search is O(lgn= lg lgn) w.h.p. as before, while the space for all the fat-trees is O(n).This leads to the following theorem.Theorem 7.3 Algorithm A for sorting n arbitrary keys can be implemented on a qrqw pram inO(lg2 n= lg lgn) time and O(n lgn) work w.h.p., using O(n) space.Proof. The analysis proceeds as in Theorem 7.2. Since ni � (1+ 1= lgn)i �n(1=2+�)i for all i, thereexists a � = �(lg lgn) such that n� < 2plgn. Moreover, since ni � lgc n, we have that, w.h.p.,ni+1 will be an upper bound on the number of items with the same label, the subarrays designatedfor each label are of su�cient size, and the heavy multiple compaction will succeed | therefore thealgorithm will complete without restarting.We now analyze the qrqw pram complexity of AlgorithmA. Consider all O(n=ni) subproblemsat the ith level of recursion. By Observation 2.6 and since ni > 2plgn, the maximum contentionin step 1 is O(plgn) w.h.p. The work is O(n=pni). Step 2 can be done in O(lgni) time and O(n)work by �rst making pni copies of each item in the sample. For step 3, we build a binary searchfat-tree of depth lg(n1=2��i ), and then label each item using a random search into the fat-tree, asdescribed above. This takes O(lgni � lgn= lg lgn) time w.h.p. and O(n lgni) work. Step 4 can bedone in O(lg� ni lgn= lg lgn) time and O(n) work w.h.p. Thus the total time spent on all recursivecalls is, w.h.p., X1�i�� O(lgni lgn= lg lgn) = O(lg2 n= lg lgn):8A similar idea was used implicitly in [RV87] in the context of sorting on the cube-connected cycles network.In [RV87], multiple copies of the splitters are placed at nodes in the network. These are used to direct the routing ofeach item to a subnetwork designated for the splitter bucket in which its key belongs.32



Proof. We �rst show that ni < n1= lg lgn after � = �(lg lg lgn) recursive calls to Algorithm A. Weclaim that for all i: ni � (1 + 1= lgn)i � n( 12+�)i :The proof of this claim is by induction on i. The case i = 0 is straightforward. Assume that theclaim holds for an arbitrary i � 0. We have that ni+1 = (1 + 1= lgn) � n 12+�i , which by the inductivehypothesis is at most (1 + 1= lgn)((1 + 1= lgn)i � n( 12+�)i ) 12+�. Since � < 1=2, we have that ni+1 <(1 + 1= lgn)i+1 � n( 12+�)i+1 , and the claim is proved. It follows that there exists a � = �(lg lg lgn)such that n� < n1= lg lgn. Also, for all i � � , we have that (1 + 1= lgn)i < (1 + 1=� )� < e.Algorithm A applies the technique of oversampling as used in [RV87] to obtain a sample B0 withbetter performance guarantees. Speci�cally, let Xi be the size of the largest group created for agiven subproblem (of size at most ni) at the ith level of recursion. Then from Lemma 7.1 in [RV87],we have PrfXi > (1 + n��=6i )n 12+�i g = (n�=2i 2n�=2i )�!(1) (1)Since ni � lgc n and c > 6=�,PrfXi > ni+1g = PrfXi > (1 + 1= lgn)n 12+�i g < PrfXi > (1 + lg�c�=6 n)n 12+�i g� PrfXi > (1 + n��=6i )n 12+�i g = o(n�c�=2) (by 1).Thus w.h.p., ni+1 will be an upper bound on the number of items with the same label, the subarraysdesignated for each label are of su�cient size, and the heavy multiple compaction will succeed |therefore the algorithm will complete without restarting.We now analyze the crqw pram complexity of Algorithm A. Consider all O(n=ni) subproblemsat the ith level of recursion. Step 1 takes O(1) time and O(n=pni) work. Step 2 takes O(lgni) timeand O(n) work. Step 3 takes O(lgni) time and O(n lgni) work. By Lemma 4.2 and the analysisin the previous paragraph, step 4 can be done in O(lg� ni lgn= lg lgn) time and O(n) work w.h.p.Thus the total time spent on all recursive calls is, w.h.p.,P1�i�� O(lgni+ lg� ni lgn= lg lgn): Sincelgni = O((1=2 + �)i lgn) and lg� ni < lg� n, the total time is, w.h.p.,O((� lg� n= lg lgn) lgn) + X1�i��O((1=2 + �)i lgn) = O(lgn):The total work is, w.h.p., X1�i��O(n lgni) = O(n lgn):The time for mergesort on groups of size at most n1= lg lgn is O(lgn), while the total workperformed is O(n lgn) over all groups. Broadcasting whether any failure has occurred is done onlyafter the mergesort, and takes O(lgn) time and linear work.It follows that the entire algorithm runs in O(lgn) time and O(n lgn) work w.h.p. Moreover, allsteps can be done in O(n) space.To implement Algorithm A on a qrqw pram, we must replace all the high-contention readsteps with techniques that use only low-contention steps. The main obstacle is step 3, in which eachitem needs to learn its position relative to the sorted sample. A straightforward binary search onB0 would encounter �(n) contention. Instead, for the qrqw, we employ the following novel datastructure:Binary search fat-tree. In a binary search fat-tree, there are n copies of the root node, n=2copies of the two children of the root node, and in general, n=2j copies of each of the 2j distinctnodes at level j down from the root of the tree. The added fatness over a traditional binary search31



� For the crqw pram, we improve the space bound (to O(n) space) over the crew pram whilemaintaining the O(lgn) time, O(n lgn) work bounds.These algorithms are arguably as simple as the ones cited earlier.To obtain these improved results, we modify the pn-sample sort algorithm given above. In thelast phase of our algorithm, we use a work-ine�cient, but simple deterministic sorting algorithm.For our qrqw result, we use bitonic sorting [Bat68]; this runs in O(lg2 n) time and O(n lg2 n) workon an erew pram. For our crqw result, we use a parallelization of mergesort that applies Valiant'sO(lg lgn) time merging algorithm [Val75, BH85] at each round; this runs in O(lgn lg lgn) time withn processors on a crew pram. (The work can be improved to O(n lgn), see e.g. [J�aJ92].) AlgorithmA below describes the generic modi�ed algorithm.Algorithm A.Let � be any constant such that 0 < � < 1=2. Let n = n0 be the number of input items, and fori � 1, let ni = (1 + 1= lgn) � n 12+�i�1 :W.h.p., ni is an upper bound on the number of items in each subproblem at the ith recursive callto A.For subproblems at the ith level of recursion:1. Let S be the set of at most ni items in this subproblem. Select in parallel pni items drawnuniformly at random from S.2. Sort these sample items by comparing all pairs of items, using summation computations tocompute the ranks of each item, and then storing the items in an array B in sorted order.Move every (n�i)th item in B to an array B0.3. For each item v 2 S, determine the largest item, w, in B0 that is smaller than v, using a binarysearch on B0. Label v with the index of w in B0.4. Place all items with the same label into a subarray of size �(n1=2+�i ) designated for the label,using heavy multiple compaction. W.h.p., the number of items with the same label is at mostni+1 and thus the heavy multiple compaction succeeds in placing all items in each such groupinto its designated subarray.5. Recursively sort the items within each group, for all groups in parallel. When ni+1 is at mostn1= lg lg n, �nish sorting the group using the crew pram mergesort algorithm. Alternatively,for our qrqw pram result, when ni+1 is at most 2(lgn)1=2 , �nish sorting the group using theerew pram bitonic sort algorithm. These cut-o� points su�ce for n su�ciently large; forgeneral n, the cut-o� points are max�n1= lg lgn; lgc n	 and maxn2(lgn)1=2 ; lgc no, respectively,for c > 6=� a suitable constant.We use \relaxed" heavy multiple compaction, which reports failure if a set size exceeds its upperbound count (recall the discussion at the end of Section 4.1). If failure is reported for any subproblem,we restart the algorithm from the beginning.Algorithm A is readily implemented on a crqw pram, as follows.Theorem 7.2 Algorithm A for sorting n arbitrary keys can be implemented on a crqw pram inO(lgn) time and O(n lgn) work w.h.p., using O(n) space.30



To obtain a sorted output it remains to sort within each subinterval. Each subinterval containsO(lgn) items w.h.p., and we assign one processor to the items in each subinterval. Each subin-terval can be sequentially sorted in O(lgn) expected time by further dividing the subintervals intolgn buckets (sub-subintervals), having each processor assign its items to the appropriate bucket,and then having each processor use heapsort to sort within the buckets [MA80]. A more preciseanalysis [Hag89] shows that each processor fails to complete its sorting in O(lgn) time with proba-bility less than 1= lgn (the failure probability is in fact much smaller). We can achieve O(lgn) timew.h.p., as follows. Each processor applies the sequential sorting algorithm for O(lgn) steps. Weexpect O(n= lgn) processors to fail to complete their sorting, and by Fact 2.5, this occurs w.h.p. Usea parallel pre�x sums algorithm to compact the unsuccessful subintervals and then assign O(lgn)processors to each such subinterval; each processor gets a constant number of unsorted items. InO(lgn) time, each processor compares its items against the other items in its assigned subinterval,computes their ranks within the subinterval, and places the items in the appropriate positions in theoutput array. Finally, the output array is compacted to size n using a parallel pre�x sums algorithm.At this point, w.h.p., the n numbers drawn from U (0; 1) are successfully sorted, and the statedtime and work bounds are achieved w.h.p. However, for some inputs, e.g. when the number ofitems in a subinterval exceeds 4c lgn, we will have failed to sort the items. To obtain a Las Vegasalgorithm, in such cases, we sort the input using a single processor; this does not a�ect the time andwork bounds for the algorithm.Theorem 7.1 matches the bounds obtained for the crcw pram in [Chl89, Hag89]. (There isalso a more involved O(lgn= lg lgn) time crcw pram algorithm as implied by applying �rst theO(lg lgn) padded-sorting algorithm of [MS91], followed by the O(lgn= lg lgn) pre�x sums algorithmof [CV89].)7.2 General SortingIn this section we consider the problem of general sorting, i.e. sorting an arbitrary collection ofn keys from some totally-ordered set. On the erew pram, there are two known O(lgn) time,O(n lgn) work algorithms for general sorting [AKS83, Col88]; these deterministic algorithms matchthe asymptotic lower bounds for general sorting on the erew and crew pram models. Unfor-tunately, these two algorithms are not as simple and practical as one would like. Simple parallelO(n lgn) work algorithms for sorting include a simple straightforward parallelization of mergesortthat runs in O(lg2 n) time on a crew pram and an O(lg2 n) time randomized quicksort algorithmon an erew pram (see, e.g. [J�aJ92]).Another relatively simple parallel sorting algorithm is a randomized pn-sample sort algorithmfor the crew pram that runs in O(lgn) time, O(n lgn) work, and O(n1+�) space [Rei85].7 Thisalgorithm consists of the following high-level steps: (1) randomly sample pn keys, (2) sort thesample by comparing all pairs of keys, (3) each item determines by binary search its position amongthe sorted sample and labels itself accordingly, (4) sort the items based on their labels using integersorting, and (5) recursively sort within groups with the same label. When the size of a group is atmost lgn, �nish sorting the group by comparing all pairs of items.We build on this pn-sample sort algorithm and obtain the following two results:� For the qrqw pram, we obtain an O(lg2 n= lg lgn) time, O(n lgn) work, O(n) space random-ized sorting algorithm, thus improving the time bound by a factor of lg lgn over the erewpram quicksort algorithm.7The algorithm in [Rei85] uses �(n) memory locations of size O(pn lgn) bits. Under the standard assumption forthe pram, adopted as well in this paper, that each memory location is of size O(lgn) bits, the algorithm in [Rei85]uses �(n1:5) space. This has been improved to O(n1+�) space, for any constant � > 0 (see, e.g. [J�aJ92]).29



number of active buckets is, w.h.p., smaller than the number of memory blocks. In such cases, thecontention to a memory block in step 2(a) is a binomial random variable with an expected valueless than 1. It follows by Observation 2.6 that w.h.p., the maximum contention to a memory blockis O(lgn= lg lgn). By Fact 6.3, all buckets contain O(lgn= lg lgn) keys w.h.p. Thus, in a constantnumber of steps of O(lgn= lg lgn) contention w.h.p., keys of each active bucket can learn if theirbucket is allocated with a memory block, read the random linear function selected by their bucket,and test for injectiveness.The work for an iteration of step 2 is bounded by the number of keys in active buckets; Giland Matias [GM94a] show that w.h.p. this number decreases faster than a geometric series. Thusstep 2 of the algorithm can be described in a qrqw work-time presentation as a geometric decayingalgorithm with O(n) work, consisting of O(lg lgn) steps, each with contention O(lgn= lg lgn) w.h.p.This implies an O(lgn) time O(n) work algorithm that, by using Theorem 2.3 and Theorem 2.4,can be implemented on a qrqw pram in O(lgn) time, using n= lgn processors.We now analyze the lookup queries algorithm. By Lemma 6.4, h(x) can be computed foreach query key in parallel in O(lgn= lg lgn) time and linear work w.h.p. By Fact 6.3, at mostO(lgn= lg lgn) query keys map to any single bucket w.h.p. Thus the contention encountered fora query key to read its block address, its secondary hash function, and its hash table location isO(lgn= lg lgn) w.h.p.This completes the proof of Theorem 6.1.7 SortingIn this section, we present results for three classes of sorting algorithms. First, we consider sortingkeys drawn uniformly at random, and present an O(lgn) time, linear work w.h.p. algorithm. Second,we consider sorting general keys, and present two simple, work-optimal, comparison-based sortingalgorithms, one running in O(lg2 n= lg lgn) time w.h.p. and the other running in O(lgn) time w.h.p.Third, we consider sorting small integer keys, and present an O(lgn) time, linear work w.h.p. algo-rithm. We apply this result to obtain an O(lgn) time, linear work w.h.p. algorithm for emulatingthe powerful fetch&add pram. The �rst two results are for the qrqw pram model; the latterthree are for the stronger crqw pram model.7.1 Distributive SortingThe sorting from U (0; 1) problem is to sort n numbers chosen uniformly at random from the range(0; 1). As indicated in Table 1, the best known linear work erew pram algorithm for this problemruns in O(n�) time, for �xed � > 0. erew pram algorithms that run in polylog time are workine�cient by at least a plgn lg lgn factor. We obtain the following:Theorem 7.1 Sorting from U (0; 1) can be done in O(lgn) time and linear work w.h.p. on a qrqwpram.Proof. First partition the real interval (0; 1) into n= lgn subintervals. It follows from Fact 2.5 thatthe number of input items in each subinterval is with high probability at most c lgn for some constantc. We allocate to each subinterval an array of size 4c lgn and employ our multiple compactionalgorithm (Theorem 4.1) to place each input item in a private cell in the subarray allocated to itssubinterval. 28



The Gil and Matias algorithm sketched above requires a careful selection of its constants andparameters, so that O(lg lgn) iterations provably su�ce. Likewise, our adaptation of their algorithmrequires a careful selection of its constants and parameters to leverage their analysis and obtain thedesired result, as follows. In selecting the hash function that de�nes the buckets, it su�ces to takeR0 = Rd1 ;d2(k; n) with d1 = 7, d2 = 11, and k = n3=7. Let � = 18=13, and let t� = 2 lg lgn= lg� bethe number of iterations. Let t0 = dt=2e. For t = 1; 2; : : : ; t�, let xt, the block size at iteration t, andmt, the number of blocks at iteration t, be:xt = 2a�t0+b1t0+c1mt = n2�a�t0�b2t0+c2 ;where a = 8=13, b1 = 1=5, b2 = 9=20, c1 = 73=25, and c2 = 89=20 (these are the same constantsused in the Gil and Matias algorithm). Then the qrqw hashing algorithm is:Constructing a hash table.1. Select a random hash function h from R0, duplicate the parameters of h, and partition theinput set into n buckets according to h.2. For t := 1 to t� do(a) Allocation: Allocate mt memory blocks, each of size xt. Let each bucket select a block atrandom, and try to claim it by writing the bucket number in a designated memory cell.(b) Hashing: Each bucket that successfully claimed an allocated block in the previous steptries to injectively map its keys into the block using a random linear hash function fromH1xt. If it succeeds, record the description of the hash function and the address of thememory block for that bucket. Buckets that fail carry on to the next iteration. For thelast iteration, t = t�, repeat this hashing substep a total of 8 times.3. If there are any buckets that have yet to succeed, return to step 1 and restart the algorithmfrom the beginning.Lookup queries for n distinct keys are performed as follows:Lookup queries.1. For each query key x, h(x) is computed to locate the memory block for this bucket and thesecondary hash function hi, i = h(x), used within this block.2. The key x is in the hash table if and only if location hi(x) of this memory block contains thekey x.Proof of Theorem 6.1. We �rst analyze the hash table construction algorithm, then the lookupqueries algorithm.By Lemma 6.4, step 1 of the hash table construction algorithm takes O(lgn) time and linearwork w.h.p. As for step 2, Gil and Matias [GM94a] show that, for their algorithm, the numberof active buckets decreases more rapidly than the number of memory blocks, and hence w.h.p.,all buckets have become inactive after O(lg lgn) iterations. A straightforward adaptation of theiranalysis to our algorithm (which uses hash functions from R0), shows that w.h.p., all buckets havebecome inactive after t� iterations. Thus w.h.p., the algorithm will not be restarted. Step 3 can beperformed in O(lgn) time and linear work, using an or computation.To complete the analysis for the qrqw pram, we determine the contention encountered instep 2. For each active bucket we have a processor standing by that acts in step 2(a) in claiminga memory block, and in step 2(b) in selecting a random function from H1xt . As argued above, the27



6.2 The hashing algorithmOur algorithm is based on an O(lg lgn) time crcw hashing algorithm of Gil and Matias [GM94a,GM94b] (see also [GM91]). Their algorithm uses a technique of oblivious execution that circumventsthe need to learn the bucket sizes bhi , in order to allocate appropriately-sized memory blocks andconstruct the second level functions hi. We �rst sketch the high-contention crcw algorithm andthen derive our low-contention qrqw algorithm.1. Partition the input set into n buckets by a random hash function from Hdn, where d is anappropriate constant.2. For t := 1 to O(lg lgn) do(a) Allocation: Allocate mt memory blocks, each of size xt, where mt and xt are carefullyselected parameters (xt behaves as 2�t for some constant � and mt � n=2txt). Let eachbucket select a block at random, and try to claim it by writing the bucket number in adesignated memory cell.(b) Hashing: Each bucket that successfully claimed an allocated block in the previous steptries to injectively map its keys into the block using a random linear hash function fromH1xt. If it succeeds, it records the description of the hash function and the address of thememory block for that bucket. Buckets that fail carry on to the next iteration.The algorithm above is a high-contention one, since the bucket sizes when using a hash function fromHdn may be polynomially large, while the memory block sizes xt are small (e.g. x0 is a constant). Toobtain an e�cient low-contention algorithm, we �rst replace the polynomial class Hdn in step 1 withthe class R de�ned above, taking k = n1��, 0 < � < 1=2; functions from this class have relativelysmall bucket sizes (Fact 6.3). The disadvantage of using functions from R is that each functionh 2 R is represented by n1��+�(1) numbers that need to be selected at random in an initializationstep, and then used to evaluate in parallel h(x) for x 2 S as well as any subsequent query set. Astraightforward implementation of this evaluation results in polynomial contention. We devise alow-contention scheme for the evaluation, yielding the following result:Lemma 6.4 A function h can be selected at random from R and preprocessed for e�cient evaluationin O(lgn) time and linear work w.h.p. Subsequently, for any set S � U of size n, h(x) can beevaluated in parallel for all x 2 S on a qrqw pram in O(lgn= lg lgn) time and linear work w.h.p.Proof. Recall that h = hf; g; a1; a2; : : : ; an1��i, for some constant �, where each aj is selected atrandom from f0; : : : ; n� 1g. These n1�� +�(1) parameters are selected by as many processors andthen duplicated in O(lgn) time and linear work, using a simple binary broadcasting algorithm: thefunctions f and g are duplicated n times and each of the aj is duplicated 4n=n1�� = 4n� times. Thetotal representation requires linear space.Recall that for a key x 2 S, we compute h(x) := (g(x) + af(x)) mod n. Thus, for each key weneed to read the values of f , g, and af(x). Reading f and g is easy: the i'th key reads the i'thcopies of these two functions. The main di�culty is in reading af(x) as contention cannot be entirelyavoided. For each key x 2 S, a processor allocated to the key evaluates f(x) and then chooses atrandom one of the copies of af(x) and reads it. By Fact 6.2,Prob�bfi � 2n� for 0 � i < n1��� � 1�O(n1����d1=2) :Therefore, w.h.p. the contention distribution obtained in the read step of af(x) is upper boundedby a distribution obtained by n1�� instances of throwing 2n� balls into 4n� urns at random. Inparticular, it follows from Fact 2.5 that the maximum contention is O(lgn= lg lgn) w.h.p.26



Theorem 6.1 A hash table for S can be constructed in O(lgn) time and linear work w.h.p. ona qrqw pram. Subsequently, lookup queries for n given distinct keys can be completed inO(lgn= lg lgn) time and linear work w.h.p. on a qrqw pram.The set S of keys to be stored in the hash table as well as the set of keys appearing in lookupqueries can be arbitrary subsets of U:We assume that the choice of sets is independent of the randombits used by the algorithm. Our result is for distinct keys. As shown in Table 1, the best knownlinear work erew pram algorithm for this problem runs in O(n�) time.6.1 BasicsConsider the universe U = f0; 1; : : :; q � 1g where q is some prime. A hash function h, U h7![0; : : : ; s� 1]; maps the universe U into a smaller universe of size s. Given a set S � U of size n, thehash function h splits S into buckets Bhi := fx 2 S jh(x) = ig of sizes bhi = jBhi j, 0 � i < s. Thefunction h is c-perfect for S if bhi � c for all 0 � i < s; h is perfect for S if it is 1-perfect for it.Let d be a constant. The class of d-degree polynomial hash functions is de�ned as follows:Hds := (h ���� h(x) := � dXi=0 aixi mod q� mod s; ai 2 U) :Fact 6.2 ([KRS90]) Let h be selected at random from Hdn1�� . Then, for each i, i = 1; : : : ; n1��Prob�bhi > 2n�� = O(n��d=2) :The class H1s is denoted the class of linear hash functions.Siegel [Sie89] and then Dietzfelbinger and Meyer auf der Heide [DM90] showed how polynomialhash functions can be combined to create a new class of hash functions. The class R = Rd1 ;d2(k; n)of hash functions, de�ned in [DM90], is the set of all (k + 2)-tuples h = hf; g; a1; a2; : : : ; aki, wheref 2 Hd1k , for some constant d1, g 2 Hd2n , for some constant d2, and a1; a2; : : : ; ak 2 f0; : : : ; n� 1g.The action of h 2 R on x 2 U is de�ned as h(x) := (g(x) + af(x)) mod n.With high probability, a random hash function from R has a distribution of bucket sizes that isvery close to that of a truly random function. In particular:Fact 6.3 ([DM90]) Let 0 < � < 1=2 and let k = n1��. For h randomly chosen from R, h isO(lgn= lg lgn)-perfect with high probability.The two-level hashing scheme. Fredman, Komlos, and Szemeredi [FKS84] introduced a simpleand elegant two-level scheme for constructing a perfect hash function: a �rst-level hash function hpartitions the input set S into n buckets Bhi , 0 � i < n; this function is constructed in a �rst phaseand is assumed to imply a certain distribution on the bucket sizes bhi . For each bucket Bhi , a privatememory block of appropriate size is allocated and a second-level function hi maps the elements ofBhi injectively into its block; these functions are constructed in a second phase. Fredman, Komlos,and Szemeredi showed that both the �rst level and the second level can be constructed in linearexpected time, by using linear hash functions only, and by allocating to each bucket Bhi a memoryblock of quadratic size O((bhi )2). 25



in Table 2 on the choice resulting in the best performance, namely, an initial subarray of size 4n�1.Note that the inactive 15K processors are used solely for the extra memory they provide; only theactive 1K processors execute useful steps in the program.The second column of timings in Table 2 shows the results of these experiments. As can be seenfrom this table, the qrqw algorithm is over three times faster than the erew algorithm, and thedart-throwing with scans algorithm is in between.Asymptotic analysis of the implemented algorithms. We provide an asymptotic analysis ofthe implemented algorithms to determine if the relative order of the analyzed bounds correspondsto the relative order of the measured performance on the MP-1. We consider two possible modelson which to base our analysis: the simd-qrqw pram described at the end of Section 2.1, andthe scan-simd-qrqw pram, de�ned to be a simd-qrqw pram augmented with a unit time scanoperation. As mentioned above, features of the MP-1 are more closely re
ected in the simd-qrqwpram model. Considering both the simd-qrqw pram and scan-simd-qrqw pram models allowsus to explore whether the builtin scan operations on the MP-1 should be considered unit timeoperations when modeling the MP-1.We analyze the three implemented algorithms in turn.The sorting-based algorithm uses bitonic sorting (the sorting method employed by the MP-1system sort routines), and hence takes O(lg2 n) time w.h.p. on the n-processor simd-qrqw pramor scan-simd-qrqw pram (same bounds as for the erew pram).The �rst dart-throwing algorithm takes O(lgn lg lgn) time w.h.p. on the n-processor simd-qrqwpram, and is readily shown to take O(lgn) time w.h.p. on the n-processor scan-simd-qrqw pram.(A more careful analysis for the scan-simd-qrqw pram yields a time bound that is slightly sublog-arithmic.)The random permutation algorithm given in Theorem 5.1 takes O(lgn) time w.h.p. on the n-processor simd-qrqw pram. On the n-processor scan-simd-qrqw pram, the time is again slightlysublogarithmic.We conclude that for the particular implementations studied above, the relative order accordingto the simd-qrqw pram matches the observed performance, and to a lesser extent, the same canbe said for the scan-simd-qrqw pram. The simd-qrqw pram has the advantage over the scan-simd-qrqw pram in predicting the faster of the two dart-throwing algorithms.Related experimental results. Recall that the random permutation algorithm described inTheorem 5.1 permitted each processor to have multiple reads/writes in progress at a time, and thatthis pipelining feature was exploited to obtain a work-optimal algorithm on the qrqw pram. On theMasPar, however, each processor can have at most one read/write in progress at a time, so we werenot able to exploit this aspect of the algorithm (and in fact the resulting implemented algorithmis not work-optimal). Recently, the random permutation algorithm described in Theorem 5.1 wasimplemented on an 8-processor cray J90, a parallel vector machine that permits this pipeliningfeature. This algorithm was compared with the fastest known sorting-based random permutationalgorithm on the cray J90, and was shown to be considerably faster over a range of problem sizes(e.g. a factor of 2.5 faster in generating a random permutation for n = 16; 384) [BGMZ95].6 Parallel hashingGiven a �nite universe U and a set S � U of size n, the hashing problem is to construct a linear-size data structure (a \hash table") that can support lookup operations, i.e. queries of the type \isx 2 S," for any x 2 U: We show: 24



A number of builtin library routines are provided with the MPL language, including primitivesfor routing on the multistage network or the X-Net, for various scan operations, and for randomnumber generation. The timings were done using the timing functions provided with MPL, anddid not include the cost of generating an initial random seed for each processor at the start of theexperiments.In our �rst set of experiments, we compare the following three randomized Las Vegas algorithms,for 16; 384 processors (n = p = 16; 384):� A sorting-based algorithm: Each processor selects a random number between 1 and 231�1.These numbers are sorted, and �(i) = the rank of i's number in the sorted order. In the unlikelyevent that two processors select the same number, we repeat the algorithm.We use a builtin library routine for the sorting and ranking (rank32) and for detecting if thealgorithm needs to be repeated (globalor). This is arguably the simplest and most popularerew pram algorithm for random permutation.� A dart-throwing algorithm using scan: At each iteration, until all items have been placed:Each unplaced item selects a random cell from an array A of size n � 1; an item succeeds inclaiming a cell if no other item selects the same cell this iteration. (This is detected usingthe \write,read,write,read" procedure outlined at the beginning of Section 5.1.) Compact thesuccessful items in A and transfer them to locations �(K + 1); �(K + 2); : : : ; �(K + k), whereK is the number of items that succeeded in previous iterations and k is the number of itemsthat succeeded in this iteration. Array � will contain the random permutation.We use a builtin scan-type routine for the compaction (enumerate) and for detecting whenall items have been placed (globalor).� A dart-throwing algorithm for the qrqw: We implement the algorithm described inTheorem 5.1, using n processors (and no reallocation), and taking the initial subarray size tobe 2n� 1.We use a builtin library routine for detecting when all items have been placed (globalor) andfor the compaction at the end (scanAdd16).The MP-1 provides for single-step data parallel operation on plural variables, i.e. parallel opera-tion on p data items, one per processor. In the initial iterations of the dart-throwing algorithm forthe qrqw, p processors throw darts into a subarray of size m, for some m greater than p; howeverparallel operation on p data items out of a larger set m of possible data items is not e�cientlysupported by the MP-1. We employ m=p plural variables to represent the subarray of size m. Weemulate each dart throwing step by m=p substeps cycling through these plural variables, such thateach processor throws its dart only during the substep for the plural variable containing its randomlyselected cell. This overhead increases with m; on the other hand, decreasing m results in a lowersuccess probability for each item and hence extra iterations may be needed before all items succeedin claiming a cell. With this trade-o� in mind, we have explored a range of possible array sizes foreach of the dart-throwing algorithms, and selected the one that resulted in the best performance.The �rst column of timings in Table 2 shows the results of these experiments. Both dart-throwingalgorithms outperform the erew algorithm, with the qrqw algorithm the fastest.In our second set of experiments, we explore the performance of the three algorithms on anoptimistic con�guration of the MP-1. In particular, we employ only 1024 processors of the MP-1,one per cluster, so that each processor has its own input port and output port to the multistagenetwork. Moreover, we use plural variables that are the full size of the machine, permitting one-stepparallel operation on p = 1024 data items out of a larger set m � 16; 384 of possible data items(overcoming the bottleneck described above). This improves the relative performance of the qrqwalgorithm. For this con�guration, we again explored a range of possible initial array sizes, and report23



The implementation of the algorithm described above on a qrqw pram is similar to the imple-mentation of the heavy multiple compaction algorithm. That is, it can be described in an O(lgn)-spawning model and be implemented using Corollary 3.8, or it can be implemented directly as inthe proof of Lemma 4.2. The theorem follows.5.2 Preliminary experimental resultsWe have performed several illustrative experiments comparing random permutation algorithms;these experiments were performed on a 16,384 processor MasPar MP-1 [Mas91]. The goal was tosee whether a good qrqw algorithm would outperform the popular erew algorithm. We haveimplemented the random permutation algorithm given in Theorem 5.1, as well as a variant ofthis algorithm that uses more extensively the builtin library routine provided by the MP-1 forperforming scan operations, and compared their performance to the popular sorting-based erewrandom permutation algorithm.6We perform two sets of experiments. In the �rst set, we use all 16,384 processors to generaterandom permutations of f1; : : : ; 16384g, i.e. we study the case where n = p = 16; 384. Then in thesecond set, we use only 1024 processors of the full machine to generate random permutations off1; : : : ; 1024g, i.e. we study the case where n = p = 1024. The results are shown in Table 2. In bothcases, the qrqw algorithm described in Theorem 5.1 is the fastest. In the rest of this section, wepresent the details of our experiments. We begin with a brief description of the MasPar MP-1.Random Permutation on the MasPar MP-1algorithm 16K proc. 1K proc.sorting-based (erew) 11.25 ms 10.01 msdart-throwing with scans 8.02 ms 6.05 msdart-throwing for qrqw 7.57 ms 2.88 msTable 2: Each running time represents the average of generating 1000 random permutations off1; : : : ; pg, where p is the number of processors. The experiments with 1K processors were run onthe same machine as the experiments with 16K processors, but using only one processor per routercluster. See the text for more details.In the MasPar MP-1, the 16,384 processors are connected by a mesh-like point-to-point networkcalled the X-Net, as well as by a multistage network used for global routing. Processors are parti-tioned into clusters, such that the 16 processors in a cluster share a single output port and a singleinput port to the multistage network. Each processor has 16K bytes of local memory; processorscan read or write to locations in each other's local memories using either network. The MP-1 is asimd machine.In simd machines, the processors execute in lock-step; thus if any processor is delayed due tocontention at a location, all processors are delayed. On the MasPar, processors wait after eachread/write for the read/write with the maximum contention. This feature is captured by the simd-qrqw pram model.Our implementations were done using version 2.0 of the system software provided for the MP-1.The programs were written in the MPL language, an extension of C that permits data paralleloperations. MPL provides \plural" versions of many C data types, for de�ning variables suitable fordata parallel operation. A plural int for example is a data type with an integer on each processor;adding two plural int variables results in a plural int variable that is the component-wise sum.6Random cyclic permutation algorithms (such as those given in Theorem 5.2 and Theorem 5.3) were not consideredin our comparison. 22



Note that detecting whether we are done and notifying all the processors requires 
(lgn) time, byTheorem 3.1, so this cannot be done. We can ensure, however, that the algorithm always produces avalid random cyclic permutation, by adding the following steps to handle the unlikely scenario wherethere are unplaced items or items whose successors have not been determined. Let x be a memorylocation apart from the array A. Any processor assigned an item that remains unplaced or withouta known successor writes its ID to x; the resulting value in x designates the processor that willcomplete the work sequentially. The designated processor checks each item to see if it is unplaced,and if so, attempts to place the item into a random cell of A until it succeeds in �nding an unclaimedcell. Finally, after all the items have been placed, the processor steps through A to determine thesuccessors for all items, and �lls in the output array. Thus we have a Las Vegas algorithm, but sincewe do not inform all the processors when the algorithm completes, some processors may not knowwhen it is safe to use the output.To complete the proof of the theorem, we show that the time and work for the algorithmmatchesthe bounds stated in the theorem. Step 1 is O(nf) work and, by Observation 2.6, O(f) contentionw.h.p. Step 2 is O(n) work and O(1) contention. Step 3 is O(f) substeps of O(n) work and O(1)contention each. Step 4 is O(n) work and O(1) contention. The sequential cleanup phase describedin the previous paragraph occurs with polynomially small probability, and can be ignored in theanalysis.5.1.3 An e�cient random cyclic permutation algorithmWe next show how to solve the random cyclic permutation problem in sublogarithmic time and linearwork. The algorithm is based on an O(lg� n) time crcw pram algorithms for linear compactionand random permutation [MV91a].Theorem 5.3 The random cyclic permutation problem can be solved by a qrqw pram algorithmin O(lgn lg� n= lg lgn) time and linear work w.h.p.Proof. We adapt the heavy multiple compaction algorithm from Section 4.1 as follows. First, weconsider the special case where there is but a single label. Second, we permit an item to claim a cellonly if it is the only item attempting to claim the cell, to ensure that the items are placed at randominto the array. Third, after completing all the rounds of the log-star paradigm, we determine thesuccessor for each item, using the approach described in Theorem 5.2, as follows. Consider a binarytree imposed on A and walk up the tree 2 lg lgn levels: At each node, v, maintain a linked list of theitems in the subtree rooted at v by linking the rightmost item in v's left subtree with the leftmostitem in v's right subtree. Then for each node, v, at level 2 lg lgn, link v's rightmost item to theleftmost item of the next node to v's right at this level (with wrap-around). This �nds successorsfor all items whose successors are within a distance of lg2 n cells. We complete the algorithm byhaving each item, i, with successor j, write j to the ith output cell. A Las Vegas algorithm can beobtained by following the procedure given in Theorem 5.2.The analysis of the heavy multiple compaction algorithm using the qi0-spawning model givenin Section 4.1 can be readily adapted to show that the time for each of the O(lg� n) rounds isO(lgn= lg lgn) w.h.p., that the overall work is O(n) w.h.p., and that w.h.p., all items are placedprior to �nding the successors. Walking up the tree takes O(lg lgn) time and O(n) work (the workis linear here since the tree has only O(n) nodes). To analyze the probability that all successors willbe found in walking up the tree, consider an arbitrary subarray of A of size lg2 n. Each dart hitsa cell in the subarray with probability p = lg2 n=cn, where cn is the size of A, c a constant. Theprobability that no item is in the subarray is less than (1� p)n < 1=elg2 n=c. It follows that w.h.p.,all subarrays of A of size lg2 n have at least one item. In particular, for any given item, the subarraystarting just to its right in A (with wrap-around) will contain its successor w.h.p.21



compression step) then the time is sublogarithmic, and can be somewhat improved if the algorithmfrom [MV91a] is used. Such an algorithm is actually described in the proof of Theorem 5.3.5.1.2 A fast random cyclic permutation algorithmFor random cyclic permutation, we observe that the contention during the dart throwing can bereduced by using a larger array; this was the technique used in the linear compaction algorithmgiven in [GMR96a]. However, this reduction in contention due to throwing into a larger array mustbe balanced against the additional time spent by an item �nding its successor in the larger array.Consider an array of size O(n2f ), for lg lgn � f � lgn, into which n random darts are thrown.By Observation 2.6, the maximum contention will be O(lgn=f) w.h.p.; the maximum gap betweendarts can be shown to be O(2f ) w.h.p. Successors can be found in time logarithmic in the maximumgap. Hence we have an O(lgn=f + f) time requirement for this approach, which is minimized whenf = plgn. The algorithm given below is based on this approach. Since the contention at eachround of dart throwing is O(plgn), even after many of the items have been placed, we aim for onlya constant number of rounds.Theorem 5.2 The random cyclic permutation problem can be solved by an n-processor qrqw pramalgorithm in O(plgn) time w.h.p.Proof. Let A be an auxiliary array of size m = nf2c�f , where f = plgn, for a constant c � 1determined by the analysis.1. Each item attempts to claim f random cells in A; an attempt succeeds if there is no otherclaim on that cell.2. W.h.p., each item will have at least one claimed cell. Each item marks all but its �rst suchclaimed cell as unclaimed.3. Each item �nds its successor in A (with wrap-around), as follows. Consider a binary treeimposed on A. Each item begins at its leaf and walks up the tree level by level for at most 2cflevels, until it encounters an item to its left and to its right in A. In particular, at each node,v, we maintain a linked list of the items in the subtree rooted at v by linking the rightmostitem in v's left subtree with the leftmost item in v's right subtree. Then, for each item that isthe rightmost item in its subtree at level 2cf (and hence has failed to �nd its successor), linkthe item to the leftmost item (if any) in the subtree immediately to its right at this level. Notethat this �nds successors for all items whose successors are within a distance of 22cf cells.4. For each item, i, with successor j, write j to the ith output cell.The probability of an item failing to be placed in step 1 is less than(nf=m)f = (1=2cf )f = 1=2c lgn = 1=nc:To analyze the probability that all successors will be found in step 3, consider an arbitrary subarrayof A of size 22cf . Each dart hits a cell in the subarray with probability p = 22cf=m. The probabilitythat no item is in the subarray is less than(1 � p)n < (1=e)pn = 1=e22cf=f2cf = 1=e2cplg n=plgn :It follows that w.h.p., all subarrays of A of size 22cf have at least one item. In particular, for anygiven item, the subarray starting just to its right in A will contain its successor w.h.p. Thus w.h.p.,the above algorithm outputs a random cyclic permutation.20



failures; this ensures that the policy for arbitrating between multiple writers to a cell does not biasthe random permutation. At the end of this �rst step, the relative order of the items in the arraygives an implicit random permutation. In the second step, the items are compressed into an array[1::n], in order to compute the permutation explicitly.A simple compression can be obtained by compacting the items using a pre�x sums algo-rithm [MR89, RR89]. An alternative compression technique that circumvents the need for com-paction was presented in [MV91a]: each item in the linear size array �nds its neighboring item,and points to it; using the pointers all items can be placed in an array [1::n] in constant time, re-sulting with a random cyclic permutation. (A general random permutation is obtained in [MV91a]by breaking the global cycle into smaller cycles in an appropriate manner, using a pre�x-minimacomputation.)The di�erence between the two compression techniques is illustrated by the following example.Let n = 5, and consider the items placed at random into an array of size 10, as follows:4 5 2 1 3In the �rst technique, the items are compacted in order, yielding the permutation on the right in Fig-ure 1. In the second technique, the items specify the cycle representation, yielding the permutationon the left in Figure 1.In each of the qrqw pram algorithms in this section, we need to detect whether a processorattempting to claim a cell x succeeds, i.e. whether the attempt is the only claim on cell x. This isaccomplished for all attempts over all cells in a constant number of steps as follows. Each processor�rst writes its index into its selected cell, then reads the cell. Any processor that does not read itsown index has detected multiple claims on that cell and hence has failed to claim the cell; it writesagain to the cell. Finally, each processor that did read its own index reads again the cell; if the cellno longer contains its index, it has failed to claim the cell, otherwise it has succeeded.5.1.1 A random permutation algorithmTheorem 5.1 The random permutation problem can be solved by a qrqw pram algorithm inO(lgn) time and linear work w.h.p.Proof. We use an algorithm adapted from a randomized crcw algorithm of Gil [Gil91] for therenaming problem, in which the processors in an anonymous set of at most n processors are givendistinct names from [1::O(n)]. For each of c lg lgn rounds, for a constant c � 1, each unplaced itemselects a random cell from a subarray of an array A (a new subarray is used for each round); if noother item selects the same cell, the item has been successfully placed. The size of the subarray usedin the �rst round is d � n, for some constant d > 1, and the size decreases by a factor of two at eachround. If, after c lg lgn rounds, not all items have been placed, restart from the beginning. After allitems have been placed, the array A is compacted to size n.Gil [Gil91] shows that, w.h.p., the algorithm completes without restarting. Moreover, w.h.p., thenumber of active items decreases more rapidly than the subarray size. In such cases, the contentionto a memory cell at each round is a binomial random variable with an expected value less than 1.It follows by Observation 2.6 that w.h.p., the maximum contention is O(lgn= lg lgn) at each round,and hence the total time is O(lgn) w.h.p. The total work is O(n) w.h.p. Processor allocation canbe done directly or by applying Theorem 2.4.We note that there are other crcw algorithms that may also give similar complexity bounds.Also, if the output may consist of an implicit (or \padded") random permutation (i.e. without the19



order as in the input; (iii) the p processors compute the pre�x sums of the numbers N [i; j] (in rowmajor order) into the two-dimensional array Slgn;p; (iv) each processor j traverses its group j, andcomputes the global rank r of each element in its group; if x is an element in a subgroup i that isranked ri(x) in its subgroup's list, then the global rank of x is r(x) = S[i; j�1]+ ri(x); and (v) eachprocessor copies all the items in its group into the output array in sorted order by their global rank.All steps can be easily implemented in O(lgn) time.This gives us the following lemma.Lemma 4.4 The multiple compaction problem in which the count of each set is at most � � lg2 n forthe constant � in Lemma 4.2 (i.e. the light multiple compaction problem) can be solved on a qrqwpram in O(lgn) time and linear work w.h.p.5 Random permutationThe random permutation problem is to generate a permutation of f1; : : : ; ng such that all permuta-tions are equally likely. The random cyclic permutation problem is to generate a cyclic permutation(one that consists of a single cycle) of f1; : : : ; ng such that all such permutations are equally likely.Examples of cyclic and noncyclic permutations are given in Figure 1. As indicated in Table 1, thebest known linear work random permutation algorithm for the erew pram run in O(n�) time, for�xed � > 0. This is also the best bound known for the random cyclic permutation problem. Polylogtime erew algorithms known for both problems are work ine�cient by at least a plgn lg lgn factor.i 1 2 3 4 5 i 1 2 3 4 5�(i) 3 1 4 5 2 �(i) 4 5 2 1 3(45213) (41)(253)Figure 1: Permutations. On the left, a cyclic permutation, �, and a corresponding cycle representation. On theright, a noncyclic permutation, �, and a corresponding cycle representation.In this section, we present three qrqw pram algorithms that signi�cantly improve upon the besterew algorithms. The �rst, an adapted crcw algorithm, solves the random permutation problemin O(lgn) time, linear work w.h.p. The second, a newly designed algorithm, solves the randomcyclic permutation problem in O(plgn) time w.h.p., using n processors. The third, an adaptedcrcw algorithm, solves the random cyclic permutation problem in O(lgn lg� n= lg lgn) time, linearwork w.h.p. This section concludes with some results obtained from running random permutationalgorithms on the MasPar MP-1 [Mas91].5.1 AlgorithmsDart throwing is a popular technique for random permutation on the crcw pram [MR89, RR89,MV91a, Hag91, Mat92]. The random permutation algorithms in the cited references all essentiallyconsist of two basic steps. First, the items 1; : : : ; n are placed at random into a linear size array,by a process in which each item attempts to claim a random cell in the array until it succeeds (inlater rounds, multiple processors may work on behalf of each item). If multiple items attempt toclaim the same cell in the same step (by writing to the cell), all such attempts are considered to be18



4.2 The light multiple compaction algorithmIn this section we present an O(lgn) time, linear work qrqw pram algorithm for the multiple com-paction problem when the count of every set is at most � lg2 n, i.e. for the light multiple compactionproblem. The main steps in the algorithm are as follows.(i) Elect a leader for every set �j as follows: Write each item into a random location in its outputsubarray. Then use a simple pre�x sums computation on the output array to identify the itemwritten in the �rst non-empty location in each subarray. Designate this item as the leader forits set.(ii) Have the leader of every set �j write the value of nj in location j of an array C[1::n]. Forevery empty set �j write the value 1 (empty sets are assumed to have one dummy member).(iii) Let each subarray of size � lg2 n in C de�ne a superset containing the sets represented in thissubarray. Note that each superset is of size between � lg2 n and (� lg2 n)2.(iv) Process the data for the supersets de�ned in step (iii) to serve as an input for the heavymultiple compaction problem as follows: Compute pre�x sums in array C to determine thestarting position of the subarray for each superset in the (new) output array for the supersets.The leader for each set in the superset writes the label of the superset, its count, and its pointerin the starting position of the output subarray for its set. The processors then apply a simplebroadcast computation to broadcast this information to all locations within each subarrayin an optimal logarithmic time erew pram computation. Each item then reads a randomlocation in its output subarray to determine the label of its superset, its count, and its pointer.(v) Apply the heavy multiple compaction algorithm of Lemma 4.2 to place each superset item inthe appropriate subarray.(vi) Within each superset, sort the items with the keys being the input labels modulo � lg2 n. Thisplaces items with the same input label consecutively within the subarray.(vii) Rank each item within the consecutive subarray for its input label, using a pre�x sums com-putation. Then move each item, say with rank i, to the ith position in the original outputsubarray for its input label, using its input pointer.The maximumcontention in steps (i) and (iv) is O(lgn= lg lgn) w.h.p., by Observation 2.6. Thuseach of the steps (i){(v) and (vii) above is easily seen to run on a qrqw pram in O(lgn) time andlinear work w.h.p. For step (vi), we apply the following result.Fact 4.3 (see, e.g. [Rei93]) The erew pram can stably-sort n integers in the range [1:: lgc n],for any integer constant c, in O(lgn) time and linear work.Proof. The following steps stably-sort integer keys in the range [1:: lgn]; the desired result isobtained by repeating these steps c times on increasingly signi�cant bits of the input integers.We use p = n= lgn processors. The input items are partitioned into p groups of size lgn, by theirlocation in the input array. Each group consists of lgn subgroups (some of them perhaps empty),according to the key values. We use a two-dimensional array Nlgn;p; N [i; j] will represent the numberof keys with value i in group j. Thus, each row i in N will represent the sizes of subgroups of keyswith value i, whereas each column j in N will represent the subgroups of group j. The algorithmconsists of the following steps: (i) each processor j, j = 1; : : : ; p, traverses its group j, counts thenumber of items in each subgroup i, and records them intoN [i; j], i = 1; : : : ; lgn; (ii) each processor jtraverses its group and puts the items of each subgroup in a separate list, ordered in the same relative17



the number of items that fail is less than lgm w.h.p. in m. This establishes the claim on the numberof active items remaining at the end of each round.Thus at the beginning of round i0, the number of active items in each set �j is at mostmax(nj=(2i0�1qi0); lgm) w.h.p. in m, i.e. at most nj=� lgm (recall that nj � � lg2m). Sinceqi0 = � lgm processors are allocated to each item in round i0, all active items succeed in thisround w.h.p. in m. A Las Vegas algorithm can be obtained by repeating this last round on theremaining active items until all such items have been placed.Now we describe an implementation of this algorithm on the qrqw pram. The algorithmcan be easily implemented on the L-spawning model of Section 3.3, taking L = qi0 = � lgm.Moreover, the L-spawning algorithm is predicted. The number of parallel steps is t0 = O(lg� n). Theexpected contention at each deactivation step is less than 1, so by Observation 2.6, the maximumcontention at each deactivation step is O(lgm= lg lgm) w.h.p. in m, and the time of the algorithm istherefore t = O(lg� n lgm= lg lgm). The work of the algorithm is O(Pi0i=1 n=2i) which is O(n). ByCorollary 3.8, the algorithm described above can be implemented on the qrqw pram in O(n) workand O(lg� n lgm= lg lgm + lg� nplgm lg lg lgm) time, i.e. O(lg� n lgm= lg lgm) time, w.h.p. in m.We next describe a more direct implementation of the L-spawning algorithm above, which doesnot require the use of the linear compaction algorithm (as in Corollary 3.8). Consider a partition ofthe input elements in array A into groups of size lg2m. Since the expected number of active itemsin each group is 
(lgm) in each round, by Cherno� bounds (Fact 2.5), the number of active itemswithin each group is, w.h.p. in m, within a constant factor of the expected value. Therefore, theallocation step can be implemented within each group. Speci�cally, within each group a linear-workO(lg(lg2m))-time pre�x sum algorithm is used to(i) identify successful copies and select one of them to deactivate their item;(ii) count the number of active items in the group;(iii) duplicate each active item into qi copies; and(iv) partition the set of copies into equal-sized chunks, one chunk per processor.Thus, the deactivation step of round i can be implemented in O(lg lgm) time and O(n=2i) workw.h.p. in m. This leads to the following lemma.Lemma 4.2 The multiple compaction problem in which the count of each set is at least � � lg2m fora suitable constant � > 0 can be solved by a qrqw pram algorithm in O(lg� n lgm= lg lgm) timeand O(n) work w.h.p. in m. The heavy multiple compaction problem (the case n = m) can be solvedin O(lgn lg� n= lg lgn) time and linear work w.h.p. in n.In Section 7, we will use a relaxed version of the heavy multiple compaction problem in whichthe input assumption that all counts nj are upper bounds on the sizes of their respective sets �j istrue w.h.p. only . When some set �j has more than nj items, the algorithm is permitted to reportfailure. The algorithm given above can be readily adapted to handle this relaxed version, withinthe same time and work bounds, as follows: After round i0, use the output subarray to count thenumber of items in each set �j; if there exists a set �j with more than nj items, report failure. Thiscan be done in O(lgn) time and linear work using pre�x sum computations. Repeat round i0 andthis test until either all items are placed or failure is reported.16



describe our algorithm for heavy multiple compaction, and prove that it runs in O(lgn) time andlinear work w.h.p. on a qrqw pram (Lemma 4.2). Then in Section 4.2 we describe our algorithmfor light multiple compaction, and prove that it also runs in O(lgn) time and linear work w.h.p. on aqrqw pram (Lemma 4.4). To solve the overall multiple compaction problem, it su�ces to performone application each of the heavy and light multiple compaction algorithms. Thus the theoremfollows from Lemma 4.2 and Lemma 4.4.4.1 The heavy multiple compaction algorithmWe follow the general strategy used in the multiple compaction algorithm given in [GMV91] forthe crcw pram, and the log-star paradigm of [MV91a, Mat92]. To highlight and distinguish thedependence of our algorithm on the input size and the con�dence bounds, we consider an input ofsize n and show a Las Vegas algorithm that, for any m, obtains its time bounds (which are a functionof n and m) with high probability in m (i.e. with probability 1� 1=m� for any constant � > 0).The log-star paradigm as adapted to our algorithm consists of O(lg� n) basic rounds. An itemis initially active and becomes inactive when it is moved into a private cell in the subarray for itsset. The number of active items in set �j at the beginning of round i > 1 is at most nj=(2i�1qi),where fqig is a sequence de�ned by qi+1 = minf2qi ; � � lgmg;with q1 a su�ciently large constant. Round 1 is repeated a constant number of times to establishthe base case of this invariant. The number of rounds is de�ned as i0 = minfi : qi = � lgmg.Round i consists of two steps:(i) Allocation, where each active item in �j is allocated with a set of qi processors (a \team");and(ii) Deactivation, where a processor handling an active item of a set �j tries to get hold of a privatecell in the subarray assigned to �j, by selecting a cell in the subarray at random and writingits index into that cell. An active item is deactivated if any one of the processors assigned toit is able to obtain a private cell for the item.In each round, the number of processors trying to write to the subarray for �j (of size 4nj) is atmost nj . A processor fails in a write attempt if there is already a value written in that location froma previous step. To simplify the analysis, we will also consider a write attempt to be a failure ifanother processor tries to write into the location in the same step; this only increases the probabilityof failure. Then, the failure probability of each processor is at most 1=2; moreover, these probabilitiesare \pseudo-independent" in the sense that the bound on the failure probability of an item is validno matter what happens with other items. If any of the processors for an active item succeeds inclaiming a cell, then the item becomes inactive by selecting one of its successful processors. Since qiprocessors are allocated to each item, the probability that an entire team for an item fails is atmost 2�qi .We claim that the number of active items in each set �j at the end of round i < i0 is at mostmax(nj=(2iqi+1); lgm) w.h.p. in m. Assume inductively that at the end of round i� 1, the numberof active items in each set �j is at most max(nj=(2i�1qi); lgm); the base case can be easily obtainedby repeating the �rst round for a constant number of times. If nj=(2i�1qi) > lgm then the expectednumber of items that fail is at most (nj=(2i�1qi)) � 2�qi : If this expected number is 
(lgm), thenby Cherno� bounds (Fact 2.5), the number of items that fail is O(nj=(qi � 2i�1qi+1)) w.h.p. in m,i.e. no more than nj=(2iqi+1); if this expected number is o(lgm), then again by Cherno� bounds,15



which is de�ned to be the same as the qrqw work-time presentation except that time is accountedfor using the crqw metric instead of the qrqw metric. An algorithm A in the crqw work-timepresentation obeying the L-spawning model with time t, work n, and number of parallel steps t0can be implemented on a p-processor crqw pram to run in time O(n=p) when p = O(n=(t + t0 �Tlb(n; L;M))), whereM is the crqw pram model. The proof is similar to the proof of Theorem 3.6,and is omitted.4 Multiple compactionIn this section we present a logarithmic time, linear work qrqw pram algorithm for the multiplecompaction problem. We start by recalling the de�nitions of the compaction and linear compactionproblems, which we studied in the context of the qrqw pram in [GMR96a].Compaction Problem. Given an array A[1::n] with k nonzero cells, where k is known but thepositions of the k nonzero cells are not known, move the contents of the nonzero cells to the �rst klocations of array A.Linear Compaction Problem. Given an input to the compaction problem (i.e. an array A[1::n]with k nonzero cells, where k is known but the positions of the k nonzero cells are not known), movethe contents of the nonzero cells to an output array of size O(k).In [GMR96a] we give a randomized algorithm for linear compaction on the qrqw pram that,w.h.p., runs in O(plgn) time while performing linear work. The same algorithm with an additionalsimple post-processing step solves the compaction problem in O(plgn+ lgk) time and linear work,w.h.p.The multiple compaction problem that we consider in this section is a generalization of the linearcompaction problem. The input consists of n items given in an array A[1::n]; each item has a label,a count, and a pointer, all from [1::O(n)]. The labels partition the items into k sets �1; : : : ;�k,k � n, where �j is the set of items labeled with j. For simplicity we will let k = n, and allow someof the �j to be empty. The count of an item belonging to �j is an upper bound, nj = count(�j), onthe number of items in �j, such thatPnj=1 nj � c �n for some constant c > 0. Also given is an arrayB[1::c0n], where c0 � 4c is a constant. Array B is partitioned into subarrays such that each set �jhas a private subarray of size at least 4nj; the subarrays are assigned in some arbitrary order. Thepointer of an item belonging to a set �j is the starting point in B of the subarray assigned to �j.Multiple Compaction Problem. Given an input of the form stated in the above paragraph,move each item in array A into a private cell in the subarray for its set in array B.An important application of multiple compaction is in a randomized crcw pram algorithm forinteger sorting [RR89]. In Section 7, we will use the algorithm for multiple compaction given in thissection to obtain a logarithmic time, linear work crqw pram algorithm for integer sorting, as wellas to obtain e�cient qrqw or crqw algorithms for general sorting and sorting from U (0; 1).Our main result in this section is a qrqw pram algorithm for multiple compaction that runs inO(lgn) time and linear work w.h.p. as stated in the following theorem.Theorem 4.1 The multiple compaction problem can be solved by a qrqw pram algorithm inO(lgn) time and linear work w.h.p.Proof. We consider two special cases of the multiple compaction problem: In the heavy multiplecompaction problem, the count of each set is at least � � lg2 n, for a suitable constant � > 0, and inthe light multiple compaction problem, the count of each set is at most � � lg2 n. In Section 4.1 we14



Theorem 3.6 Let A be an algorithm in the qrqw work-time presentation obeying the L-spawningmodel with time t and work n, and let t0 be the number of parallel steps in A. If Algorithm Ais predicted then it can be implemented on a p-processor qrqw pram to run in time O(n=p) ifp = O(n=(t+ t0 � Tlb(n; L;M))), where M is the qrqw pram model.Proof. The processor allocation technique extends the techniques for the 2-spawning model usedin [Mat92] for the crcw pram and in [GMR96a] for the qrqw pram. Let p be the number of qrqwpram processors. Let wi be the total number of tasks at the beginning of step i of AlgorithmA, andlet ni be the approximate bounds on wi, as de�ned above. Thus,Pt0i=1wi = n andPt0i=1 ni = O(n).In order to get an O(n)-work implementation on the qrqw pram, we keep the invariant that at eachstep the tasks are evenly distributed among the p processors; i.e. the number of tasks per processorat the beginning of step i is at most cni=p, for some constant c > 0.Step i of Algorithm A is implemented as in the algorithm of Theorem 2.3, using the p-processorqrqw pram. After step i, each task may spawn at most L � 1 new tasks. Therefore, the totalnumber of tasks, ni+1, becomes at most Lni, and the number of tasks per processor becomes atmost cLni=p. A load balancing algorithm is used to redistribute the tasks among the processors sothat the number of tasks per processor becomes at most cni+1=p. If ni+1 � ni=2, then the maximumnormalized load is at most 2cL, and hence the time for load balancing is at most Tlb(p; 2cL;M),which is O(Tlb(p; L;M)). So consider the general case where ni+1 may drop below ni=2. In suchcases, we will add (for the sake of analysis only) dummy tasks to increase ni+1 so that the maximumnormalized load is at most 2cL, and then argue that the addition of these dummy tasks increasesthe time and work bounds by at most a factor of 2 over the original algorithm.In more detail, we partition the steps of Algorithm A into phases, where a phase consists ofa maximal subsequence of steps for which the ni's each decrease by more than a factor of 2. Let�1 = n1, and for i = 2; : : : ; t0, let �i = maxfni; �i�1=2g. For each step i, we add maxf0; �i � nigdummy tasks. Consider any phase, comprised of steps j through k. Then �j = nj , and �j ; : : : ; �kconstitute a decreasing geometric series. ThusPki=j �i < 2nj, so adding the dummy tasks increasesthe time and work bounds for the algorithm by at most a factor of 2.By Theorem 2.3 and the invariant, the implementation of all steps i, i = 1; 2; : : :; t0, when dummytasks are included, takes O(n=p+ t) time. The implementation of all the load balancing steps whendummy tasks are included adds an additive overhead of O(t0 � Tlb(p; L;M)). Hence the algorithmruns in time O(n=p) when p = O(n=(t+ t0 � Tlb(p; L;M)). The theorem follows.By Theorem 3.4 we obtain:Corollary 3.7 Algorithm A in Theorem 3.6 can be implemented on a p-processor qrqw pram torun in time O(n=p) w.h.p. when p = O(n=(t+ t0plgn lg lgL+ t0 lgL)).In particular,Corollary 3.8 Let A be an algorithm in the qrqw work-time presentation obeying the L-spawningmodel with time t and work n, and let t0 be the number of parallel steps in A. Then, if L =2O(plgn lg lgn), and Algorithm A is predicted, then A can be implemented on a p-processor qrqwpram to run in time O(n=p) w.h.p. when p = O(n=(t+ t0 � plgn lg lgL)).An application of Corollary 3.8 is given in the next section.The above results can be extended to algorithms obeying the L-spawning model that are notpredicted, if the crqw pram model is used. Speci�cally, consider a crqw work-time presentation,13



5. We now have a load balancing problem on O(p) super-tasks using p processors, with an initialmaximum load of O(g) super-tasks per physical processor and with the initial size of eachpointer array being w0 = O(g). We solve this problem in O(lg lg g) stages using the linearprocessor algorithm given earlier. Since the initial pointer array is as large as the maximumload per processor, we need to be careful about the processing of the pointer arrays andthe task distribution step in order to stay within the time and work bounds. We perform thiscomputation as follows: We add the pointer array for each new set of tasks added to a processoras a separate pointer array, and the processors in the team assigned to distribute the tasksin this processor will search serially through the di�erent pointer arrays in this processor todetermine the ones that contain its collection of tasks. Since we have at most O(pg) processorsin a team and 2lg lg g = O(lg g) di�erent pointer arrays in any processor at any stage, this stepcan be performed in O(pg � lg g) time per stage leading to a total of O(pg � lg g � lg lg g), whichis O(g) time for processing the pointer arrays through all stages of the algorithm. At the endof this step, each physical processor has O(g) tasks as required.It is straightforward to see that the above algorithm runs in time O(lgL + Tlc(P;M) � lg lgL) (forstep 3) + O(lg g + Tlc(P;M) � lg lg g + g) (for step 5), which is O(lgL + Tlc(n;M) � lg lgL + n=p).Finally, if needed, each physical processor Pj can distribute its O(g) tasks in O(g = n=p) time tothe 2n=p virtual processors in its group by a sequential algorithm.By using the linear compaction algorithm given in [GMR96a], where forM being a simd-qrqwpram Tlc(n;M) = O(plgn) w.h.p., we obtainTheorem 3.4 The load balancing problem with maximum normalized load L can be solved by ap-processor simd-qrqw pram algorithm in O(plgn lg lgL + lgL) time and linear work w.h.p.In particular,Corollary 3.5 The load balancing problem with maximum normalized load L = 2O(plgn lg lgn) canbe solved by a p-processor simd-qrqw pram algorithm in O(plgn lg lgn) time and linear workw.h.p.3.3 Application to automatic processor allocationAs mentioned in Section 2, the paper [GMR96a] gave a few examples of general classes of algorithmsfor which automatic processor allocation techniques can be applied to advantage. Such classesinclude geometric-decaying algorithms, general task-decaying algorithms, and spawning algorithms.Processor allocation is done by a scheduling scheme using an algorithm for linear compaction.We show now that load balancing can be used to provide automatic processor allocation to amore general class of algorithms: the L-spawning algorithms. In an L-spawning model , at eachstep each task can spawn at most L � 1 more tasks. The total number of tasks may increaseor decrease at each step. Thus, the L-spawning model generalizes the spawning model (whichis equivalent to the 2-spawning model), as well as the models for task-decaying algorithms andgeometric-decaying algorithms. Let wi be the total number of tasks at the beginning of step i of anL-spawning algorithmA. Similarly to the task-decaying and to the spawning models, an L-spawningalgorithm A is predicted if an approximate bound on the sequence of work loads fwig is known inadvance. Speci�cally, if a sequence fnig is given such that for all i, ni � wi andPi ni = O(Piwi).Furthermore, it is required that for all i, ni � L � ni�1.12



The time for step 2 is dominated by the broadcasting substep and the time needed to computethe pre�x sums on the array of pointers Qj as well as to construct the array of pointers Qj+1 for thenext stage. It is straightforward to see that the broadcasting substep can be implemented in O(lgui)time, and the computations on array Qj can be performed in O(lgwi) time. The overall time forthe ith stage is O(lgui) as long as ui � wi, which holds for all but the last �(lg lg lgL) stages of thealgorithm. Let i+ = lg lgL � lg lg lgL. The time taken by the �rst i+ steps of the algorithm is(to within a constant factor)i+�1Xi=0 lgui = i+�1Xi=0 lg(22�1=2i�1L2�(i+1) ) < i+�1Xi=0 (2 + 2�(i+1) lgL) < lgL+ 2i+ ;which is O(lgL). The total running time for the �rst i+ stages of the algorithm is therefore O(lgL+Tlc(n;M) lg lgL), using n processors.It is not di�cult to see that at the end of step i+, ui+ = O(lgL) and wi+ = O(lgL= lg lgL)= O(lgL). Since each processor has a total of O(lgL) tasks arranged in a collection of wi+ = O(lgL)arrays, each processor can sequentially collect together all of the tasks in all of its task arrays into asingle task array in O(lgL) time. Now we have a new load balancing problem on n processors withmaximum load O(lgL). We apply steps 1 and 2 repeatedly to this problem until the load balancingis completed. This second phase clearly takes no more time than the �rst phase. Hence, the overallrunning time of the algorithm is O(lgL + Tlc(n;M) lg lgL), using n processors.Finally, each processor can convert its task representation from the array of array format to thesingle array format in constant time since it has only a constant number of tasks assigned to it atthe end of the algorithm.Reducing the number of processors. It remains to show how to implement the above algorithm(which assumes 2n virtual processors) on p � n processors with an additive time overhead ofO(n=p).The 2n virtual processors are partitioned into p groups of g = 2n=p processors each, and the jthgroup is assigned to the jth physical processor, 1 � j � p. We will combine the tasks in the virtualprocessors into `super-tasks' that contain g original tasks (with possibly a few smaller super-tasks)and perform load balancing on these super-tasks. For this, the jth real processor Pj will performthe following computation on the virtual processors in the jth group, 1 � j � p:1. Designate the virtual processors in the jth group whose load is at least g = 2n=p as \heavyprocessors" and the remaining processors in the jth group as \light processors".2. For each heavy processor Hi;j in the jth group, let its load be mi. Combine its tasks into super-tasks of size g, with possibly one smaller super-task by setting its new load to be dmi=(2n=p)e,and setting its `normalizing' factor to be g.3. Perform load balancing on the super-tasks in the heavy processors using the linear processoralgorithm given earlier. This is a load balancing problem on p processors with O(p) super-tasksand an initial maximum load of O(L) super-tasks per processor.4. At this stage each physical processor has O(g2) original tasks consisting of a constant numberof super-tasks (of size g) from heavy processors and tasks from up to g light processors, eachof which has at most g tasks. These tasks are organized in a pointer array of size O(g). Eachphysical processor processes this pointer array and its array(s) of tasks so that the tasks areonce again grouped into super tasks of size g (and possibly one smaller super-task in the jthgroup), and such that a chunk of r super-tasks, starting with `th super-task can be retrievedin constant time, given r and `. This preprocessing can be performed in O(g) time sequentiallyby each physical processor. 11



Lemma 3.3 Let M be a model at least as strong as the erew pram. ThenTlb(n; L;M) = O(lgL+ Tlc(n;M) � lg lgL) :Proof. Assume �rst that the number of available processors is 2n. We later show how to reducethe number of processors to n=Tlb(n; L;M), as required.Our algorithm is based on a crcw load balancing algorithm by [Gil91], which consists ofO(lg lgL) applications of a dispersal stage. Each dispersal stage uses a linear compaction algo-rithm as a main building block.Let u0; u1; : : : be a sequence de�ned by ui+1 = 2pui and u0 = pL. It is straightforward toverify by induction on i that ui = 22�1=2i�1L2�(i+1) for i � 1, and hence uk becomes constant fori = O(lg lgn). For simplicity, we will assume that the numbers pui, i = 0; 1; : : :, as well as otheroutcomes of calculations below, are integers; it is straightforward, albeit somewhat tedious, to adaptthe setting of parameters and the analysis to handle the general case.As an invariant, we let u2i be an upper bound on the maximum load among the processors at thebeginning of the (i + 1)st dispersal stage. A processor is said to be overloaded if it has at least 2uitasks. The (i + 1)st dispersal stage reduces the upper bound on the maximum load per processorto u2i+1 = 4ui, as follows:Step 1. The overloaded processors are injectively mapped into an auxiliary array of size 2n=ui.Step 2. For each cell of the auxiliary array there is a team of ui processors standing by: each ofthem adopts up to 2ui tasks of the overloaded processor that was mapped into this cell, therebyfreeing the overloaded processor from all its tasks. Each processor has now at most 2ui oldtasks and at most 2ui new tasks. Therefore, the upper bound on the maximum load amongthe processors becomes 4ui = u2i+1, as required.Clearly, after i� = lg lgL stages , ui� is reduced to a constant, and we are done.Implementation of step 1. An injective mapping is obtained by using a linear compactionalgorithm, in O(Tlc(n;M)) time. Note that since the total number of tasks is at most 2n, thereare at most n=ui overloaded processors. The contribution of step 1 to the entire algorithm istherefore O(Tlc(n;M) lg lgL) time.Implementation of step 2. Each processor Pj keeps an array of pointers Qj to the arrays oftasks which currently belong to the processor. In each stage, the size of this pointer array at mostdoubles, so in the ith stage, the size of this pointer array is no more than wi = g � 2i, where g is theinitial size of the pointer array. Since the initial size of the pointer array is 1 (by our convention forthe input representation), the size of this array in the ith stage is bounded by 2i for each processor.Processor Pj also keeps an additional array Tj which represents the pre�x sums Tj [`] =Pk̀=1 tj;k,1 � ` � wi, where tj;k is the number of tasks in the kth task array of processor Pj. The tasks ofthe `th subarray of an overloaded processor Pj are to be adopted by dtj;`=uie processors. Thepointer to the `th subarray of Pj is broadcast together with Tj [` � 1] and Tj[`] to processors Pv,v 2 fdTj [`� 1]=uie + 1; : : : ; dTj[`]=uieg, in the team which is allocated to Pj (here v is the numberingof processors within the team). Each processor can infer from this information the pointer(s) to thesubarray(s) of tasks it needs to adopt and hence perform the appropriate updates. Note that anoverloaded processor Pj may also be part of a team allocated to another overloaded processor.Therefore, before the above update takes place, each overloaded processor Pj updates both itspointers array Qj and its pre�x sums array Tj to null.10



m = !(n) our load balancing algorithm continues to have the time bound of O(lgL+plgn � lg lgL),but the output representation of tasks will be an array of `super-tasks', each of size dm=ne, whereeach super-task is represented by a pointer into the input task arrays.3.1 A lower boundIn this section we show that the load balancing problem requires 
(lgL) time on the qrqw pram,where L is the maximum load on any processor. The lower bound uses the following lower boundon the `broadcasting' problem, which is given in [GMR96a].Theorem 3.1 ([GMR96a]) Any deterministic or randomized algorithm that broadcasts the valueof a bit to any subset of k processors in a qrqw pram requires expected time 
(lg k), regardless ofthe number of processors used.We now present our lower bound for the load balancing problem.Theorem 3.2 Any deterministic or probabilistic qrqw pram algorithm for the load balancing prob-lem with maximum initial load L requires 
(lgL) time regardless of the number of processors used.Proof. Let the load balancing algorithm guarantee that each processor has at most c(1 + m=n)tasks, for a suitable constant c � 1. Our proof is based on showing a constant time erew pramreduction from the problem of broadcasting the value of a bit to any subset of (1=c) � L processorsout of a total of n processors to the following load balancing problem: one processor P has L tasks,and the remaining n � 1 processors have 0 tasks. If the value of the bit to be broadcast is 0 thenthe L tasks are located in an array starting at memory location n + 1; if the value of the bit to bebroadcast is 1 then the L tasks are located in an array starting at memory location 2n+ 1. All ofthe tasks are `dummy' tasks, with constant size representation. This reduction can be implementedin constant time by having the ith processor enter the task representation for the ith dummy taskto the array starting at location n + 1 and to the array starting at location 2n + 1. Processor Pinitializes the pointer to the array of task representations to n+ 1 or 2n+ 1 depending on whetherits bit value is 0 or 1, and sets its load to be L.The solution to the above load balancing problem consists of a subset S of at least L=c processors,each receiving a pointer to a subarray consisting of at most c tasks. These subarrays are either inthe block of memory between n+1 and 2n or between 2n+1 and 3n. Depending on which range thepointer lies, each of the processors in S can determine whether the value b of the bit in processor Pis 0 or 1. Hence by Theorem 3.1 it follows that the load balancing problem requires 
((1=c) � lgL)expected time, i.e. 
(lgL) expected time.3.2 An algorithmLet Tlb(n; L;M) be the time needed to solve the load balancing problem of size n with maximumnormalized load L, using linear work on a modelM. By Theorem 3.2, if M is a qrqw pram, thenTlb(n; L;M) = 
(lgL).A problem related to load balancing is the previously studied linear compaction problem: Con-sider an array of size n with k nonempty cells, with k known. The linear compaction problem is tomove the contents of the non-empty cells to an output array of O(k) cells. Let Tlc(n;M) be the timefor solving the linear compaction problem of size n, using n processors on a model M. Our loadbalancing algorithm is primarily based on repeated applications of a linear compaction algorithm:9



Fact 2.5 PrfX � �E[X]g � e(1�1=��ln �)�E[X] ; for all � > 1 :A convenient corollary to this Cherno� bound is the following (see, e.g. [GMR96a]):Observation 2.6 Let X be a binomial random variable. For all f = O(lgn), if E[X] � 1=2f , thenX = O(lgn=f) w.h.p. Furthermore, if E[X] � 1 then X = O(lgn= lg lgn) w.h.p.3 Load balancingLet m independent tasks be distributed among n virtual processors, and let L be the maximumnumber of tasks (i.e. the maximum \load") on any of the processors. In the load balancing problem,the input to each processor Pi consists of mi, the number of tasks allocated to this processor (its\load"), together with a pointer to an array of task representations; no other information about theglobal partition is available, except form and L. The load balancing problem asks for a redistributionof the tasks among the processors so that each processor has O(1 +m=n) tasks.Our load balancing algorithms will use a more general representation for the tasks during thecourse of the computation. In this representation, which we call the array of arrays format, thetasks assigned to each processor are speci�ed by an array of pointers to arrays of tasks, so that eachtask is in exactly one of those task arrays. The format speci�ed for the input to the load balancingproblem is a speci�c instance of the array of arrays format in which the array of pointers containsonly one element. Note that if the input is speci�ed in the more general array of arrays format, thenwe can convert it into the prescribed input format in O(lgL) time with O(m) work as follows: Weconvert the task arrays into linked lists. We then link these linked lists for the di�erent arrays for agiven processor into a single linked list. Both of these steps can be performed in constant time andO(m) work over all processors. We then perform list ranking on the linked list for each processor,and transfer the tasks in the linked list into an array of suitable size. This can be performed inO(lgL) time and O(m) work. In view of this conversion procedure, we assume, for convenience, thatthe input is in the form prescribed above.We note the following property of the array representation for tasks. Given the array represen-tation for tasks for each processor as speci�ed above for the input, a given processor Pi can acquirea block of k tasks assigned to processor Pj starting at a given location r in Pj's task representationin constant time, given the values of i, k and r. If Pj's task representation is the array of arraysformat, then Pi can access a block of k tasks starting at position r of the sth array of Pi in constanttime, given the values of i, k, r and s.We will assume that m � 2n, and that L � n. This assumption is justi�ed below, by showing aconstant time reduction from the general load balancing problem.Consider a general load balancing problem. The tasks at each processor Pi can be grouped intosuper-tasks of dm=ne tasks each, with possibly one smaller super-task. The number of super-tasksper processor is dmi=dm=nee. Therefore, the total number of super-tasks isPni=1 dmi=dm=nee � 2nand the maximum load per processor is dmi=dm=nee � n. A load balancing algorithm for the super-tasks will allocate a constant number of super-tasks per processor. Therefore, the number of tasksallocated per processor will be O(dm=ne), as required. We refer to the maximum load in the newinput, dmi=dm=nee as the normalized maximum load .In this section we show that 
(lgL) time is required to solve the load balancing problem withmaximum load L on a qrqw pram. We then present a qrqw pram algorithm for this problem onn processors with m = O(n) tasks that runs in time O(lgL+plgn � lg lgL). The plgn term in thetime bound arises from the use of an algorithm for the `linear compaction' problem, for which weuse the qrqw pram algorithm in [GMR96a], which runs in O(plgn) time w.h.p. In the case when8



In the previous paper, we showed that the work-time framework is well-suited to the qrqwpram. In the qrqw work-time presentation, a parallel algorithm is described as a sequence of steps,where each step may include any number of concurrent read, compute, or write operations. In thiscontext, the work is de�ned to be the total number of operations, and the time is de�ned to be thesum over all steps of the maximum contention of the step. Then Brent's scheduling principle [Bre74]can be applied to give a qrqw pram algorithm running in O(work=p+ time) time on p processors:Theorem 2.3 ([GMR96a]) Assume processor allocation is free. Any algorithm in the qrqwwork-time presentation with x operations and t time (t is the sum of the maximum contentionat each step) runs in at most x=p+ t time on a p-processor qrqw pram.We further showed a number of general scenarios under which automatic techniques can be used toe�ciently handle processor allocation issues. Consider, for instance, geometric-decaying algorithms,in which the sequence of work loads (i.e. operations per step), fwig, is upper bounded by a decreasinggeometric series, and each task at step i was appointed by one task at the preceding step i� 1. Forthis scenario, we have shown a technique for automatic processor allocation that yields the followingresult:Theorem 2.4 ([GMR96a]) Let A be a geometric-decaying algorithm in a qrqw work-time pre-sentation with time t and work n. Then Algorithm A can be implemented on a p-processor qrqwpram in time O(n=p) w.h.p. if p = O(n=(t+plgn lg lgn))For ease of exposition, most of the qrqw algorithms in this paper are presented using the qrqwwork-time framework; Theorem 2.4 is used as appropriate.Among the algorithmic results in our previous paper [GMR96a] are sublogarithmic time random-ized algorithms on the queue-write pram model for two problems for which the fastest algorithmknown on the corresponding exclusive-write pram model takes �(lg n) time. The two results are anO(lgn= lg lgn) time, linear work w.h.p. simd-crqw pram algorithm for computing the or of n bitsand an O(plgn) time, linear work w.h.p. simd-qrqw pram algorithm for the linear compactionproblem.In addition, we present an 
(lgn) expected time lower bound on a qrqw pram with an un-bounded number of processors for the problem of broadcasting the contents of a given memorylocation to n memory locations.2.3 Probability facts and notationsA Las Vegas algorithm is a randomized algorithm that always outputs a correct answer, and obtainsthe stated bounds with some stated probability. All of the randomized algorithms in this paper areLas Vegas algorithms, obtaining the stated qrqw pram bounds with high probability. Recall thata probabilistic event occurs with high probability (w.h.p.), if, for any prespeci�ed constant � > 0,it occurs with probability 1 � 1=n�, where n is the size of the input. Thus, we say a randomizedalgorithm runs in O(f(n)) time w.h.p. if for every prespeci�ed constant � > 0, there is a constant csuch that for all n � 1, the algorithm runs in c � f(n) steps or less with probability at least 1� 1=n�.Often, we can test whether the algorithm has succeeded, and if not repeat it. In this case, it su�cesto design an algorithm that succeeds with probability 1 � 1=n� for some positive constant �, sincewe can repeat the algorithm �=� times if necessary, to boost the algorithm success probability to thedesired 1� 1=n�. With this in mind, we will freely use \with high probability" in this paper to referto events or bounds that occur with probability 1� 1=n� for some positive constant �.In the results that follow, we apply the following Cherno� bound on the tail of a binomial randomvariable X ([Lei92], p.168): 7



Concurrent reads and writes to the same location are permitted in a step. In the case of multiplewriters to a location x, an arbitrary write to x succeeds in writing the value present in x at the endof the step.De�nition 2.3 Consider a qrqw pram step with maximum contention �, and let m = maxifri; ci;wig for the step, i.e. the maximum over all processors i of its number of reads, computes, and writes.Then the time cost for the step is maxfm;�g. The time of a qrqw pram algorithm is the sumof the time costs for its steps. The work of a qrqw pram algorithm is its processor-time product.This cost measure models, for example, a mimd machine such as the Tera Computer [ACC+90],in which each processor can have multiple reads/writes in progress at a time, and reads/writes toa location queue up and are serviced one at a time. Note that as a pure shared memory model,the qrqw pram model is independent of the particular layout of memory on the machine, e.g. thenumber of memory modules, and can be used to model even cache-based (coma) machines, e.g. theKSR1 [FBR93], in which the mapping of memory cells to machine nodes varies dynamically as thecomputation proceeds.Our previous paper also de�ned the simd-qrqw pram model, a restricted version of the qrqwpram in which ri = ci = wi = 1 for all processors i at each step. This model is suitable forsimd machines such as the MasPar MP-1 or MP-2, in which each processor can have at most oneread/write in progress at a time, reads/writes to a location queue up and are serviced one at a time,and all processors await the completion of the slowest read/write in the step before continuing to thenext step. Another variant is the crqw pram, in which unlimited concurrent reading is permitted;for this model, the maximum contention for a step is de�ned to be the maximum over all locationsof the number of writers to the location. Several of our results in Section 7 are for the crqw pram.2.2 Previous resultsIn addition to de�ning the qrqw models, our previous paper [GMR96a] presented a number ofresults characterizing the power of the qrqw models relative to other models. For two models, M1and M2, let M1 � M2 denote that one step of M1 with time cost t � 1 can be emulated in O(t)time on M2 using the same number of processors. We have:Fact 2.1 ([GMR96a]) erew pram � simd-qrqw pram � qrqw pram � crqw pram � crcwpram.Moreover, we have characterized the relative power of these models as follows:Theorem 2.2 ([GMR96a]) The following relations hold:1. There is an 
(plgn) time separation between an erew pram with arbitrarily many processorsand an n-processor simd-qrqw pram.2. A simd-qrqw pram can emulate a qrqw pram to within constant time factors, given su�-ciently many extra processors.3. There is an 
(lgn) time separation between a qrqw pram with arbitrarily many processorsand an n-processor crqw pram.4. There is an 
(lgn= lg lgn) time separation between a deterministic crqw pram with arbitrar-ily many processors and a deterministic n-processor crcw pram.6



It appears that coordination among processors may occasionally be quite expensive on the qrqwpram, as implied by the lower bounds for broadcasting [GMR96a] and load balancing, and shouldbe avoided if at all possible. Fast crcw pram algorithms tend to have very little such coordination,which makes them good candidates as basis for adaptation to qrqw pram algorithms. Indeed,one of the main features in the O(lg lgn) time crcw pram hashing algorithm [GM94b] which isthe basis for our qrqw pram algorithm is the \oblivious execution" technique, which allows thecomputation to proceed without coordination among processors. By contrast, an O(lgn) time crcwpram hashing algorithm [MV91b] makes extensive use of (semi-)sorting for processor coordination,which on the qrqw pram would be both slow and ine�cient.Finally, we remark on the role that randomization plays for our qrqw pram algorithms. Werecall that the power of the qrqw pram model, in comparison with the erew pram model, is inthe fact that it is not necessary to schedule the memory accesses explicitly so as to avoid concurrentaccess. There are two natural ways to leverage on this power. One way is the use of irregularsmall contention (deterministic) memory accesses, as illustrated in [GMR96a] in the context of the2-compaction problem. Another way is to use randomization as a technique for random assignmentof resources, be it read operations as in the hashing algorithm and in the fat-tree data structure,or write operations as in the linear compaction, multiple compaction, load balancing and randompermutation algorithms. This technique has been essentially used in all the algorithms presented inthis paper, and has proved to be a simple and e�ective tool for low-contention parallel algorithms.The rest of this paper is organized as follows. In Section 2 we review the de�nition of the qrqwmodel and some previous results for the model. Then, as indicated above, Sections 3{7 consider loadbalancing, multiple compaction, generating a random permutation, hashing, and sorting. Finally,Section 8 contains concluding remarks.The results in this paper appeared in preliminary form in [GMR93, GMR94a, GMR94b].2 Preliminaries2.1 The QRQW PRAM modelWe begin by reviewing the de�nition of the qrqw pram model [GMR96a].De�nition 2.1 Consider a single step of a pram, consisting of a read substep, a compute substep,and a write substep. The maximum contention of the step is the maximum, over all locationsx, of the number of processors reading x or the number of processors writing x. For simplicity inhandling a corner case, a step with no reads or writes is de�ned to have maximum contention `one'.De�nition 2.2 The QRQW PRAM model consists of a number of processors, each with its ownprivate memory, communicating by reading and writing locations in a shared memory. Processorsexecute a sequence of synchronous steps, each consisting of the following three substeps:1. Read substep: Each processor i reads ri shared memory locations, where the locations are knownat the beginning of the substep.2. Compute substep: Each processor i performs ci ram operations, involving only its private stateand private memory.3. Write substep: Each processor i writes to wi shared memory locations (where the locations andvalues written are known at the beginning of the substep).5



the MasPar MP-1 parallel machine [Mas91]. Recently, the qrqw random permutation algorithmwas also implemented on a cray J90, and was shown to be considerably faster than the best known(sorting-based) erew algorithm [BGMZ95].In Section 6 we present a linear work, O(lgn) time randomized qrqw pram algorithm forconstructing a hash table and for parallel membership queries into the table. Our algorithm is basedon an O(lg lgn) time crcw algorithm of [GM94b], which uses an oblivious execution techniqueto keep to minimum the required \bookkeeping" operations. In order to obtain a fast, e�cientqrqw algorithm, we replace the polynomial hash functions used in the crcw algorithm by hashfunctions [DM90] which have collision behavior that looks quite random. To implement an e�cientaccess to these hash functions, we devise a low-contention qrqw pram algorithm which is based onthe following simple, yet useful, idea: if a program variable is to be read by k (a priori unknown)processors, then we replace the program variable with k copies of the same value; we then let eachof the k processors select one of the copies at random and read the selected copy.Our sorting algorithms are given in Section 7. We present linear work, O(lgn) time randomizedalgorithms for sorting from U (0; 1) on the qrqw pram, and for integer sorting on the crqw pram.We use the latter result in a fast, e�cient emulation of the powerful fetch&add pram on thecrqw pram. In addition, we adapt the pn-sample sort crew pram algorithm of Reischuk [Rei85]to obtain a simple, work-optimal qrqw pram algorithm for general sorting. The qrqw algorithmemploys a novel binary search fat-tree data structure;5 the added fatness over a traditional binarysearch tree ensures that, with high probability, each step of the search encounters low contention.1.2 Techniques for QRQW PRAM algorithmsImportant technical issues arise in designing algorithms for the queue models, that are present inneither the concurrent nor the exclusive pram models. For example, much of the e�ort in designingalgorithms for the qrqw models is in estimating the maximumcontention in a step, and occasionallyidentifying the number of processors that try to access the same memory address. As one highcontention step can dominate the running time of the algorithm, we cannot a�ord to underestimatethe contentions signi�cantly.There are several techniques for replacing a high contention step with a sequence of a few lowcontention steps. One such technique is to replace concurrent read operations by local broadcastingsteps, as done in the algorithms for load balancing, multiple compaction, and random permutation.Another technique is using larger arrays into which processors are \compacted", so as to reduce thesize of collision sets; this is used in the linear compaction algorithm in [GMR96a], as well as in analgorithm for random cyclic permutation. A third important technique is that of duplicating thecontents of one or more program variables, and then having each processor access a random copy ofsuch a variable, thereby reducing contention. Algorithms that use this technique include the hashingand the general sorting algorithms.Some qrqw pram algorithms consist of iterations that include a random scatter step, in whichprocessors access a random cell in a linear size array; this is an example of the duplication schemementioned above. The maximum contention in such steps is �(lg n= lg lgn) w.h.p., implying that toobtain O(lgn) time the number of iterations must not exceed O(lg lgn). Indeed, some of the O(lgn)time qrqw pram algorithms are based on \highly parallel" crcw pram randomized algorithms,whose running time on the crcw is w.h.p. O(lg lgn) or O(lg� n) [Mat92]. Algorithms that use the\doubly-logarithmic paradigm" include those for load balancing, random permutation, and hashing.Algorithms that use the \log-star paradigm" include those for multiple compaction and randomcyclic permutation.5The term fat-tree was previously used by Leiserson [Lei85] in the context of interconnection networks, to describea tree that becomes thicker as it gets closer to the root. 4



Summary of Algorithmic Resultsproblem previous result (erew) new result (qrqw)random O(lg n) time, O(n lg n) work [Hag91] O(lg n) time, linear work w.h.p.permutation O(lg n lg lg n) time, O� n lg nlg lg n� work [AH92]O� lg1:5 nplg lg n� time, O(nplg n lg lg n) work [AH92]O(n�) time, constant � > 0, linear work [KRS90]multiple same as above O(lg n) time, linear work w.h.p.compactionsorting from same as above O(lg n) time, linear work w.h.p.U (0; 1)parallel same as above O(lg n) time, linear work w.h.p.hashing with lg� n slowdown [GMV91, MV95]load balancing, O(lg n) time, linear work [LF80] O(plg n lg lg L+ lgL) time,max load L linear work w.h.p.Table 1: Fast, e�cient low-contention parallel algorithms for several fundamental problems. For the�rst four problems above, we obtain work-optimal low-contention (qrqw pram) algorithms runningin logarithmic time, whereas the best known work-optimal zero-contention ( erew pram) algorithmsrun in polynomial time. For load balancing, we improve upon the erew result whenever the ratioof the maximum to the average load is not too large. The erew results shown are the best knownfor either deterministic or randomized algorithms. The erew results for the �rst three problems areobtained by easy reductions to the integer sorting problem. The result for the fourth is obtained usinga crcw hashing algorithm and a general simulation of the crcw pram on the erew pram. Theload balancing erew pram result is a simple application of a pre�x sums algorithm.to the load balancing problem, and using the lower bound for broadcasting presented in [GMR96a].The load balancing algorithm is a useful tool for processor allocation. We use it to obtain analgorithm that automatically handles processor allocation for any algorithm that can be describedwithin certain speci�cations (such algorithms are called \L-spawning algorithms"). We use thisgeneral result in our work-optimal algorithms for the multiple compaction problem and for theproblem of generating a random cyclic permutation.In Section 4 we consider the multiple compaction problem, which has an important applicationin a crcw pram algorithm for integer sorting [RR89]. We present a linear work, O(lgn) timerandomized qrqw pram algorithm, which is quite di�erent than the known crcw pram algorithmsfor the problem. Some parts of the algorithm follow a general strategy used in a crcw pramalgorithm that runs in O(lg� n) time [GMV91], and in particular the log-star paradigm [Mat92].The qrqw pram algorithm for multiple compaction has applications for qrqw or crqw algorithmsfor integer sorting, general sorting, and sorting from U (0; 1).The problem of generating a random permutation is considered in Section 5. We present a linearwork, O(lgn) time randomized qrqw pram algorithm that is essentially the same as the O(lg lgn)time crcw pram algorithm of [Gil94], analyzed for the qrqw metric. Two algorithms are presentedfor the problem of generating random cyclic permutations. A linear work, O(lgn lg� n= lg lgn) timerandomized algorithm is adapted (with some modi�cations) from an O(lg� n) time crcw pramalgorithm of [MV91a]. A faster qrqw pram algorithm, which takes O(plgn) time w.h.p. but usesn processors, is based on the linear compaction algorithm presented in [GMR96a]. The idea behindthe algorithm is to use a relatively large array into which processors are \compacted", so that thenumber of processors accessing the same array location is not too large.We also demonstrate in Section 5 the e�ciency of a qrqw pram low-contention random per-mutation algorithm, compared with the popular erew algorithm, through several experiments on3



The qrqw pram is strictly more powerful than the erew pram, while being as e�cientlyemulated on a bsp or a hypercube-type, non-combining network, and is also a better match forreal machines. Hence an important theoretical and practical question is the extent to which fast,work-optimal, low-contention (qrqw) algorithms can be designed for problems for which there areno known fast, work-optimal, zero-contention (erew) algorithms. This paper considers �ve suchproblems | generating a random permutation, multiple compaction, distributive sorting, parallelhashing, and load balancing | and presents fast, work-optimal qrqw pram algorithms for thesefundamental problems. These results are summarized in Table 1, and are contrasted with the bestknown erew pram algorithms for the same problems. All of our algorithms are randomized, andare of the \Las Vegas" type; they always output correct results, and obtain the stated bounds withhigh probability.Another important question is the extent to which erew pram algorithms can be replaced byqrqw pram algorithms that are simpler, and therefore perhaps more appealing for implementation.In this context we would allow the theoretical e�ciency of the simpler qrqw pram algorithmto be similar or even somewhat inferior to that of the erew pram algorithms as long as theresulting algorithm is simpler. This paper considers such algorithms for the general sorting problem.It presents a qrqw pram algorithm that is considerably simpler than the known erew pramalgorithms with comparable asymptotic performance. The new algorithm is arguably as simple asthe known crcw pram algorithms.All of the algorithms we present in this paper are randomized, and many of our results areobtained \with high probability" (w.h.p.). A probabilistic event occurs with high probability (w.h.p.),if, for any prespeci�ed constant � > 0, it occurs with probability 1� 1=n�, where n is the size of theinput. Thus, we say a randomized algorithm runs in O(f(n)) time w.h.p. if for every prespeci�edconstant � > 0, there is a constant c such that for all n � 1, the algorithm runs in c � f(n) steps orless with probability at least 1� 1=n�.We provide next a summary of our algorithmic results, and point out a few technical issues thatare relevant for qrqw pram algorithms.1.1 Summary of resultsOur �rst results are for the load balancing problem, considered in Section 3. We present a linearwork randomized algorithm whose running time is O(plgn lg lgL+lgL), where L is the ratio of themaximum to the average load per processor. Our load balancing algorithm is an adaptation of acrcw pram algorithm by Gil [Gil94], which runs in O(lg lgn) time w.h.p. Gil's algorithm uses as asubroutine an algorithm for the so-called \renaming" problem. Our low-contention implementationis essentially obtained by substituting this subroutine with a qrqw pram algorithm for linearcompaction, presented in [GMR96a], and by replacing concurrent read operations executed duringbookkeeping steps with local broadcasting steps.For small values of L, our load balancing algorithm can be much faster than the �(lg n) time,pre�x-sum based erew pram algorithm. However, for L = 
(n�) with constant � > 0, the lgL termimplies a running time of O(lgn). In contrast, load balancing on n processors can be performed ona crcw pram in O(lg� n) time4 w.h.p., independent of L [GMV91]. We show that the lgL term isunavoidable by presenting a lower bound of 
(lgL) expected time on the qrqw pram for the loadbalancing problem. Our lower bound result is based on a reduction from the broadcasting problemthe erew performs�(lg p) times more work than the crcw it emulates. Hence, it cannot be used to obtain erew pramalgorithms, much less hypercube algorithms, with linear or near-linear speedups. Similarly, the best known emulationsfor the crew pram (or ercw pram) on the erew pram (or standard bsp or hypercube) require logarithmic workoverhead for logarithmic slowdown or, alternatively, polynomial slowdown for constant work overhead.4The function lg(j)(�) is de�ned as the j'th iterate of lg: lg(1) x � lgx, and for j > 1, lg(j) x � lg lg(j�1) x. Thefunction lg�(�) is de�ned as lg� x � min�j : lg(j) x � 2	. 2



1 IntroductionThe Parallel Random Access Machine (pram) model of computation is the most-widely used modelfor the design and analysis of parallel algorithms (see, e.g. [KR90, J�aJ92, Rei93]). The prammodel consists of a number of processors operating in lock-step and communicating by readingand writing locations in a shared memory. Standard pram models can be distinguished by theirrules regarding contention for shared memory locations. These rules are generally classi�ed into theexclusive read/write rule in which each location can be read or written by at most one processor ineach unit-time pram step, and the concurrent read/write rule in which each location can be read orwritten by any number of processors in each unit-time pram step. These two rules can be appliedindependently to reads and writes; the resulting models are denoted in the literature as the erew,crew, ercw, and crcw pram models.In a previous paper [GMR96a], we argued that neither the exclusive nor the concurrent rules ac-curately re
ect the contention capabilities of most commercial and research machines, and proposeda new pram contention rule, the queue rule, that permits concurrent reading and writing, but at anappropriate cost:Queue read/write: Each location can be read or written by any number of processors ineach step. Concurrent reads or writes to a location are serviced one-at-a-time.Thus the worst case time to read or write a location is linear in the number of concurrent readersor writers to the same location.The queue rule more accurately re
ects the contention properties of machines with simple, non-combining interconnection networks than either the exclusive or concurrent rules. The exclusive ruleis too strict, and the concurrent rule ignores the large performance penalty of high contention steps.Indeed, for most existing machines, including the CRAY T3D, IBM SP2, Intel Paragon, MasParMP-1 and MP-2 (global router), MIT J-Machine, nCUBE 2S, Stanford DASH, Tera Computer,and Thinking Machines CM-5 (data network), the contention properties of the machine are well-approximated by the queue-read, queue-write rule. For the Kendall Square KSR1, the contentionproperties can be approximated by the concurrent-read, queue-write rule.1In [GMR96a] we de�ned the Queue-Read, Queue-Write (qrqw) pram model, a model for thedesign and analysis of coarsely-synchronized parallel algorithms running on mimd machines, andinvestigated some of its capabilities. In particular, we showed that the qrqw pram can be e�ectivelyemulated on the Bulk-Synchronous Parallel (bsp) model of Valiant [Val90]:Theorem 1.1 ([GMR96a]) A p-processor qrqw pram algorithm running in time t can be emu-lated on a (p= lgp)-component standard bsp model2 in O(t lg p) time with high probability.It follows from Valiant's work [Val90] and Theorem 1.1 that the qrqw pram can be emulatedin a work-preserving manner on hypercube-type, non-combining networks with only logarithmicslowdown, even when latency, memory granularity, and synchronization overheads are taken intoaccount. This matches the best known emulation for the erew pram on these networks givenin [Val90]; in contrast, work-preserving emulations for the crcw pram on such networks are onlyknown with polynomial slowdown.3 We refer the reader to [GMR96a] for further details relating theqrqw pram to existing models and machines.1In the KSR1, multiple requests to read the same location are combined in the network, so there is no penalty forhigh contention steps. Note that caches have only a secondary e�ect on the contention rule; see [GMR96a] for details.2We denote as the standard bsp model a particular case studied by Valiant in which the model's throughputparameter, g, is taken to be a constant and its periodicity parameter, L, is taken to be �(lg p).3Note that the standard �(lg p) time emulation of crcw on erew (see, e.g. [KR90]) is not work-preserving, in that1
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