
ERCW PRAMs and Optical CommunicationPhilip D. MacKenzie� Vijaya RamachandranyDept. of Computer SciencesUniversity of TexasAustin, TX 78712-1188June 7, 1996AbstractThis paper presents algorithms and lower bounds for several fundamental problems on theExclusive Read, Concurrent Write Parallel Random Access Machine (ERCW PRAM) and someresults for unbounded fan-in, bounded fan-out (or `BFO') circuits. Our results for these two modelsare of importance because of the close relationship of the ERCW model to the OCPC model, amodel of parallel computing based on dynamically recon�gurable optical networks, and of BFOcircuits to the OCPC model with limited dynamic recon�guration ability.Topics: Parallel Algorithms, Theory of Parallel and Distributed Computing.
�This research was supported by Texas Advanced Research Projects Grant 003658480. (philmac@cs.utexas.edu)yThis research was supported in part by Texas Advanced Research Projects Grants 003658480 and 003658386,and NSF Grant CCR 90-23059. (vlr@cs.utexas.edu) 1



1 IntroductionIn this paper we develop algorithms and lower bounds for fundamental problems on the ExclusiveRead Concurrent Write (ERCW) Parallel Random Access Machine (PRAM) model. The ERCWPRAM model has not received much attention, due in part to a general belief that concurrentwriting does not add much power to a model without concurrent reading. We show that this isnot always the case by presenting algorithms that solve problems on the ERCW PRAM muchfaster than they could be solved on the EREW PRAM. (See [34] for more details on the di�erentPRAM models.) We further motivate the ERCW PRAM by its relation to parallel computerswith optical communication networks. Since there is no `queue' delay in optical communicationnetworks, the ERCW PRAM is a better model for parallel machines with such networks than therecently proposed QRQW (or ERQW) model [23].Many results for the ERCWPRAM follow directly from results for the EREW PRAM or CRCWPRAM. For instance, the global OR of n bits can be found in constant time on an n processorERCW PRAM, as on a CRCW PRAM, but broadcasting 1 bit to n processors requires �(logn)steps, as on an EREW PRAM. The result for broadcasting implies that computing the pre�x sumsof n inputs and merging two lists of size n both require �(logn) time also. However, some resultsobtained directly from EREW PRAM and CRCW PRAM results do not give tight bounds. Forinstance, the problem of computing the parity of n bits on the ERCW PRAM has a lower bound of
(logn= log logn) from the result for the CRCW PRAM, and an upper bound of O(logn) from theEREW PRAM. Tight bounds are not known for the ERCW PRAM. Furthermore, tight boundsare not known for many other problems, including the problems of compaction and �nding themaximum. In this paper, however, we make signi�cant progress towards developing tighter boundsfor these and other problems.Our results for the ERCW PRAM (here n is the size of the input, and all algorithms performlinear work except as noted) include a k-compaction algorithm that runs in O(log log n + log k)time; a randomized algorithm for k-compaction that runs in O(logk) expected time; a randomizedalgorithm for approximate k-compaction that runs in O(log log k) time, with failure probability 1=k;an algorithm for �nding the maximum of inputs in the range [1; n] that runs in O(log logn) time; analgorithm for chaining that runs in O(log log n) time; an algorithm for integer chain-sorting (linear-size integers) that runs in O(log logn) time; and an algorithm for integer sorting (polynomial-sizeintegers) that runs in O(logn) using almost linear work.We present two lower bounds results for the ERCW PRAM: a lower bound of 
(plog logn) timefor solving compaction, and a lower bound of 
(plogn) for �nding the maximum of general inputs.(The former was discovered independently by Goldberg and Jerrum, and led to the 
(plog logn)lower bound on h-relation routing in Goldberg, Jerrum and MacKenzie [25].)Finally, we consider unbounded fan-in, bounded fan-out (BFO) circuits. The computations onsuch circuits can be mapped optimally onto an ERCW PRAM as oblivious algorithms. We showthat any BFO circuit for adding two n-bit integers, merging a bit into an n bit sorted sequence,sorting n bits, computing the pre�x sums or parity of n bits requires 
(logn) depth. Let THk;ndenote the threshold function which outputs 1 if and only if at least k of the inputs are equal to 1.We show that THk;n can be computed by a linear size, O(log logn+ log k) depth circuit, and thatany BFO circuit which computes THk;n requires 
(log logn + log k) depth.As further motivation for studying the ERCW PRAM model we show how it is related toa model of massively parallel computing based on dynamically recon�gurable optical networks.Speci�cally, we show that the ERCW PRAM (using the `Tolerant' protocol for resolving write1



conicts) with n global memory cells and unlimited local memory is computationally equivalent tothe OCPC (Optical Communication Parallel Computer) model [1, 21, 22, 24, 43] on n processors.This is in contrast to the statement given in [1] that the OCPC model is equivalent to an EREWPRAM with n global memory cells. Since the OCPC model uses full dynamic recon�guration whichis not yet technically feasible, we are interested in developing oblivious ERCW PRAM algorithms,which only require partial dynamic recon�guration. This motivates the study of BFO circuits,which provide these oblivious ERCW PRAM algorithms.The current interest in the OCPC model, the close relation between the OCPC model and theERCW PRAM model, and the richness of results obtained so far on the OCPC, the ERCW PRAM,and the BFO circuit model, all indicate that these are important models of parallel computationwhich should be studied further.In Section 2, we de�ne the ERCWPRAM and discuss di�erent write conict protocols. Section 3gives lower and upper bounds for compaction problems, and Section 4 gives lower and upper boundsfor computing the maximum. In Section 5, we give algorithms for chaining and integer sorting.Section 6 gives lower and upper bounds for computing certain functions on unbounded fan-in,bounded fan-out circuits. In Section 7 we give relations between the di�erent ERCW models, andin Section 8, we describe the relationship of the ERCW PRAM to the OCPC model.2 PreliminariesAn Exclusive Read, Concurrent Write (ERCW) PRAM consists of a collection of processors, eachwith in�nite local memory, which operate synchronously and communicate through a global mem-ory. Each read or write to global memory takes one time step. Only one processor can read fromany memory cell at any time step, but multiple processors may write to a memory cell in a singletime step. Write conicts are handled according to one of the following standard collision resolutionprotocols: Priority, Arbitrary, Common, Collision, Tolerant and Robust [31], or according to theNice Robust protocol, in which the value of a cell after a concurrent write is either unchanged orequal to the value written by an arbitrary processor participating in the concurrent write. (Sincethe standard OCPC model uses the Tolerant protocol, we will be most concerned with developingERCW PRAM algorithms using the Tolerant protocol. We de�ne the OCPC model in Section 8.)The ERCW(ack) PRAM is an ERCW PRAM with the added feature that a processor whichsuccessfully writes to a cell receives an acknowledgement. To retain the spirit of the Common model,we assume no processor receives an acknowledgement in the Common model. To retain the spiritof the Robust model, we assume that false \successful" writes could cause bogus acknowledgementsto be sent.Often we would like to separate the issues of using the global memory as storage for inputsand outputs, and using the global memory for communication. In these cases, we will assume thatinputs and outputs are spread evenly among the local memories of the processors. For instance,given p processors and n inputs, we will assume each processor contains n=p inputs in its localmemory. With this assumption, we will be free to design algorithms which use less than n cells ofglobal memory.In our algorithms we do not require that all processors learn the output of an algorithm, forthis would force a trivial 
(logn) time lower bound on all our algorithms.Lemma 2.1 An n processor ERCW(ack) PRAM with m global memory cells can be simulated ona maxfn;mg processor ERCW PRAM with 2m+n global memory cells with the same write conict2



protocol (except Robust).Proof: On the Common model, the ERCW(ack) PRAM and ERCW PRAM are the same, sothe simulation is trivial. Otherwise, let E1 be the ERCW(ack) PRAM and let E2 be the ERCWPRAM. The �rst m cells of E2 will correspond to the m cells of E1, the second m cells of E2 willbe used for �nding the processor that succeeds in writing to the corresponding cell of E1, and thelast n cells will be used for writing acknowledgements to the successfully writing processors. Wesimulate a read of cell j by processor i of E1, by having processor i read cell j of E2. We simulatea write step as follows. First, every processor j (0 � j � m � 1) writes n to cell m + j, and thenevery processor i (0 � i � n � 1) writes 0 to cell 2m + i. For any processor i of E1 that writessome value vi to any cell ci, processor i of E2 writes i to cell m+ ci. Then processor j (1 � j � m)reads cell m + j, and if the value read, say v, is not n or \collision", processor j writes 1 to cell2m+ v. Now, for each processor i of E1 writing to some cell ci, processor i of E2 reads cell 2m+ i.If it reads a 1, then it writes vi to cell ci (with no contention). Note that we require E2 to have thesame write conict protocol as E1, so that the processor that succeeds in writing to cell m + j inE2 (for some j) is the same as the processor that succeeds in writing to cell j in E1. (Note: Thesimulation for the Collision model is slightly di�erent. We omit the details.) 2The following lemma will be useful in designing Robust ERCW PRAM algorithms.Lemma 2.2 An n processor Nice Robust ERCW(ack) PRAM with m global memory cells can besimulated on a maxfn;mg processor Robust ERCW PRAM with m(n+ 2) global memory cells.Proof: Let E1 be the ERCW(ack) PRAM and let E2 be the ERCW PRAM. For each cell of E1,we associate 1 extra cell to test for the processor which is successful, and n extra cells to be used forwriting acknowledgements. We simulate a read of cell j by processor i of E1, by having processori read cell j of E2. We simulate a write step as follows. First, every processor j (0 � j � m� 1)writes n to cell m + j. Then for any processor i of E1 that writes some value vi to any cell ci,processor i of E2 writes i to cell m + ci, and writes 0 to cell m(2 + i) + ci. Then processor j(1 � j � m) reads cell m+ j, and if the value read, say v, is such that 0 � v � n � 1, processor jwrites 1 to cell m(2+ v) + j. Now, for each processor i of E1 writing to some cell ci, processor i ofE2 reads cell m(2 + i) + ci. If it reads a 1, then it writes vi to cell ci (with no contention). 23 Compaction problemsIn this section, we study the problems of k-compaction and approximate k-compaction on theERCW PRAM. The k-compaction problem takes an array of size n with k marked elements, andplaces the marked elements into an array of size k. The approximate k-compaction problem takes anarray of size n with k marked elements, and places the marked elements into an array of size O(k).Compaction and approximate compaction are important subproblems in processor reallocation andload balancing.3.1 Lower BoundsHere we will show that 2-compaction on the Robust, Nice Robust, Tolerant, Collision, or CommonERCW PRAM requires 
(plog log n) time and that k-compaction on the Priority or ArbitraryERCW PRAM requires time k for k � p(log logn)=2 � 1. We do not place any restrictions onthe number of global memory cells, or the number of processors. (We assume that each of the �rstn global memory cells contains an input.) We will assume that concurrent writes on the Robust3



ERCW PRAM are resolved using the Tolerant protocol. We will assume that concurrent writes onthe Arbitrary ERCW PRAM are resolved using the Priority protocol.Wlog, we assume that each input is tagged by a pair (i; b), where i is its index (from 1 to n)and b is 0 if the input is unmarked, 1 if the input is marked. Then we will show a lower boundon solving compaction for the simpler problem of performing compaction on the tags which aremarked with 1s. This will obviously imply a lower bound for the general compaction problem.Let 2COMP be an algorithm for 2-compaction on the Tolerant, Collision, or Common ERCWPRAM. Let COMP be an algorithm for k-compaction on the Priority ERCW PRAM. We will usean adversary argument for our lower bound proof. A step will consist of a write followed by a read.At each step, the adversary will designate some of the inputs as unmarked (by setting b = 0) ormarked (by setting b = 1). Let Vt be the set of indices of inputs which have not been designatedby step t. These will be the live inputs. V0 = f1; : : : ; ng. Let pt be the number of processors whichcould be a�ected by a given live input. Let ct be the number of cells which could be a�ected by agiven live input. Let kt = maxfct; ptg.Lemma 3.1 We can construct an adversary such that after step t of 2COMP and COMP, (1)kt � 4t; (2) jVtj � jVt�1j1=kt�1=152k2t�1; (3) each processor and cell is a�ected by at most one liveinput; and (4) in COMP, at most t items have been designated as marked.Proof: We prove this by induction. First, p0 = 0 < 20, c0 = 1 = 20, each processor is a�ected byno inputs, and each cell is a�ected by at most one input.Now assume the lemma is true up to step t. Then we show how to make it hold for step t+ 1.Let k = kt. Let a writing function of a processor be de�ned as the cell to which it writes dependingif the live input it knows is marked or unmarked. A processor zero-writes to a cell if a processorwrites to the cell if its live input is unmarked. A processor one-writes to a cell if a processor writesto the cell if its live input is marked.First we deal with zero-writes. We say the adversary zeros a live input if it designates it asunmarked. Note that once an adversary zeros a live input, the input is not live anymore. We willmake the adversary zero some of the live inputs so that each cell is a�ected by at most one liveinput whose processor zero-writes to it in this step. To do this, we describe a simple procedurefor the adversary. Until each cell has at most one live input whose processor zero-writes to it,the adversary arbitrarily chooses a remaining live input and for each cell which the chosen input'sprocessors could write to, the adversary zeros the other live inputs whose processors zero-writeto the same cell, up to two per cell. Notice that once we zero two live inputs whose processorszero-write to a cell, the cell is �xed, and no information about live inputs is written to it. Usingthis procedure, the adversary sets at most 2pt live inputs for each one chosen. Thus we are leftwith jVtj=(2pt + 1) live inputs. Let m = jVtj=(2k+ 1).Now we deal with one-writes. We need to �nd a set of live inputs of size m1=k=k such thatif one of these inputs is one-written to a cell by a processor, then either each other live input isalso one-written to the same cell by a processor, or none are one-written to the same cell. This isequivalent to �nding a \sunower" in a group of sets, where each set contains the cells one-writtento by processors which know a given live input. By the Erd�os-Rado Theorem [14], there mustbe a sunower of size (m=k!)1=k � m1=k=k. Let m0 = m1=k=k. If we are on the Priority ERCWPRAM, we will designate the lowest numbered live input processor as marked. Note that thecells which are one-written to by a processor for each live input are now only a�ected by the lowest4



numbered processor knowing a marked input, with the possible addition of at most one zero-writingprocessor. On any of the other ERCW PRAM models, note that the cells which are one-written toby a processor for each live input are �xed, because two of the live inputs must be marked. Alsonote that m0 � jVtj1=k=2k.Now at most c0 = ct+2pt cells are a�ected by a live input after this write step. Also, since eachcell can be read by at most one processor, after the read step at most p0 = c0+ pt processors will bea�ected by a live input. Each cell could be a�ected by at most three live inputs and each processorcould be a�ected by at most four live inputs. The adversary must zero some inputs so that eachcell and processor is only a�ected by one live input. To do this, we construct a graph in whichthe vertices are the live inputs and edges between vertices exist if the live inputs are known to thesame cell or processor. There are at most 9p0m0 edges in this graph, so by Turan's Theorem, wecan �nd an independent set of vertices of size (m0)2=(m0+18p0m0) � m0=(18p0+1) � jVtj1=k=152k2.The inputs corresponding to vertices not in the independent set are then zeroed by the adversary.Now we can set pt+1 = ct + 3pt � 4t+1, ct+1 = ct + 2pt � 4t+1, Vt+1 to be the remaining set oflive inputs, where jVt+1j � jVtj1=k=152k2. 2Theorem 3.1 Solving 2-compaction on a Robust, Common, Collision, or Tolerant ERCW PRAMrequires 
(plog logn) steps, and for k � p(log log n)=2� 1, solving k-compaction on a Priority orArbitrary ERCW PRAM requires at least k steps.Proof: From lemma 3.1, we can see thatjVtj � jV0jQ0�i�t 1=4i42t152t � nQ0�i�t 1=4i3000t � n4�P0�i�t i3000t � n4�i(i+1)=23000t � n2�(t+1)23000tThus after T = p(log logn)=2)� 1 steps, we will have jVT j � 
(2plogn=3000plog logn=2). Forlarge n, jVT j � maxfk+3; 5g. For the case of 2-compaction on the Robust, Nice Robust, Collision,Common, or Tolerant models, there will be 3 live inputs which do not a�ect either of the �rst twoglobal memory cells. However, these cells contain the indices for only 2 live inputs. Therefore theadversary could designate as marked at least one of the 3 live inputs that do not a�ect either of thetwo cells, and the compaction would have failed. For the case of k-compaction on the Priority orArbitrary models, after k � 1 steps, at most k � 1 entries have been designated as marked. Therewill be 3 live inputs which do not a�ect any of the �rst k cells. Therefore, k � 1 of the cells willcontain indices for the k � 1 entries already designated as marked, and whatever index the othercell contains, the adversary could designate one of the other inputs as marked, and the compactionwould have failed. 2Since this lower bound holds for any number of processors and global memory cells, it also holdsfor the ERCW(ack) PRAM with the same write conict resolution protocols.3.2 Upper BoundsFirst we note that there is a simple algorithm which solves k-compaction in O(k) time on anArbitrary ERCW PRAM. However, this algorithm will not work unless some processor can succeedin each write. For the other write conict resolution protocols we need a di�erent approach.We construct an algorithm which runs in O(log log n+log k) time on a Tolerant ERCW PRAM.This is an adaptation of an O(logk) time algorithm for k-compaction on the Robust CRCW PRAM5



given in Fich et al. [17]. If k � n1=5, we use a simple EREW pre�x sums algorithm to performthe compaction in O(log k) time. Otherwise, as in [17] we partition the input cells into groups of lcells, where l = 8>><>>: 2k(k � 1) if k � logn4 log logn(k�1) logn3 log logn�1 if logn4 log logn < k � log n, and(k�1) logn3 log k�1 if logn < k < n1=5:We solve k-compaction within each group in O(log l) = O(logk) time using the simple EREWalgorithm.Let yj = j if the jth group contains a non-zero entry, and let yj = 0 otherwise. As in [17], if wesolve the k-compaction problem for y1; : : : ; yn=l, we can solve the original k-compaction problem inO(log l) = O(log k) more steps. To solve the k-compaction problem on y1; : : : ; yn=l, we proceed asin [17], and reduce the problem in O(log l) (i.e., O(log k)) time on a Tolerant or Collision ERCWPRAM to k-compaction in an array of size l2n(k�1)=l. If k > logn=4 log logn, then l2n(k�1)=l =kO(1), and we can easily solve this k-compaction problem in O(log k) time. If k � logn=4 log logn,then in [17] the problem is solved in constant time using a CRCW technique, but on the ERCWPRAM we will, instead, solve the problem recursively on an array of size l2n(k�1)=l � l2n1=2k. Fork � logn=4 log logn, 2l � n1=k, so we can bound the time of this recurrence byT (n) � T (n3=(2k)) + O(logk) = O � log lognlogk (log k)� = O(log log n):Hence, using the fact that the Tolerant protocol is a Nice Robust protocol, and using Lemma 2.2,we obtain the following theorem.Theorem 3.2 Let t(n; k) = log logn+log k. The k-compaction problem can be solved in O(t(n; k))time on an n=t(n; k) processor Collision or Tolerant ERCW PRAM with n=t(n; k) global memorycells, and on an n=t(n; k) processor Robust ERCW PRAM with O((n=t(n; k))2) global memorycells. It can also be solved in O(k) time on an n=k processor Arbitrary ERCW PRAM with 1 globalmemory cell.3.2.1 RandomizedWe present two results for randomized algorithms for compaction. Both results are obtained byhaving processors hash into random locations in an array. We will assume the inputs are given inthe local memories of the processors.Our �rst result is an O(log k) expected time randomized algorithm for compaction on theRobust ERCW PRAM with n processors and n memory locations. If k > n1=16, we use thesimple O(logn) = O(log k) time parallel pre�x algorithm to perform the compaction. Otherwise,let A be an array of size k4. Clear this array, and let each processor representing some markedelement write its processor number to a random location of A. We use an O(log k) time pre�xoperation to check if k processors succeeded without collision. If so, we compact them into the�rst k locations in the array using simple parallel pre�x, and inform the marked processors of theirsuccess. If any processor doesn't receive notice of success, (and so, by construction no processorreceives notice of success) it simply retries the procedure. It is easily shown that the probabilityof failure decreases geometrically with the number of attempts. Then using Lemma 2.2, we obtainthe following theorem. (We omit some details.) 6



Theorem 3.3 An n= log k processor Robust ERCW PRAM with no more than n= log k global mem-ory cells can solve k-compaction in O(log k) expected time.Now we describe an O(log log k) algorithm for approximate compaction on an n processor NiceRobust ERCW(ack) PRAM which works with probability 1� 1k and uses only O(k) global memorylocations. Each processor with a marked element writes it to a random location in an array of size8k. If a processor receives an acknowledgement, it idles. If not, the processor writes its elementinto an array of size 4k. This procedure continues for a total of log log k steps as the array sizereduces by half each time. Then we attempt for three steps to write the remaining elements intoarrays of size k.It is not di�cult to see, using a Cherno� bound, that the number of remaining elements afterstep t is at most maxfk2�(2t+t�1); k1=4g with probability 1 � te�k1=4=4. The probability of anyelement colliding in the last three steps is k1=4(1=k3=4)3 � 1=k2. Since (log log k)e�k1=4=4 � 1=k2for su�ciently large k, we can bound the total probability of not succeeding by 1=k. Then usingLemma 2.1, we obtain the following theorem. (We omit some details.)Theorem 3.4 An n=(log log k) processor Nice Robust ERCW PRAM with n=(log log k) globalmemory cells can solve approximate k-compaction in time O(log log k), with probability 1� 1=k.4 MaximumFinding the maximum of n inputs requires �(logn) time on an EREW or CREW, even when theinputs are restricted to be either 0 or 1 [11]. Finding the maximum of n inputs on a Priority CRCWwith n processors requires �(log logn) time if the inputs come from a large range and O(k) timeif the inputs are restricted to the range [1; nk] [19]. In this section we will show that �nding themaximum requires 
(plogn) time on an ERCW PRAM. If input values are restricted to the range[1; s], s � n we will show that the maximum can be found in O(log log s) time on the Common orTolerant ERCW PRAM, and that 
(plog log s) time is required to �nd the maximum.4.1 Lower BoundsOur �rst lower bound will be for the case of unrestricted input domain. Wlog, we will assumethat all the inputs are distinct. Let MAX be an algorithm on the Priority ERCW PRAM which�nds the maximum of n inputs stored one per processor in the �rst n processors. For concreteness,assume that the output of MAX is stored in the �rst global memory cell. Consider step t of MAX.Let Vt � f1; : : : ; ng be the set of indices of inputs which could still be the maximum. These will becalled the live inputs. Let St � f1; 2; 3; : : :g be the possible values for the live variables, as restrictedby the adversary. Let Ft = ffiji 2 f1; : : : ; ng�Vtg be the adversary's assignment of values to �xedvariables. Let kt be the number of processors which know any live input.As the computation proceeds, the adversary �xes the values of certain inputs and maintains aset of allowed inputs, such that, after each step, each processor knows at most one live variable.Initially V0 = f1; : : : ; ng, S0 � f1; 2; 3; : : :g and is in�nite, and F0 = ;. (S0 will be de�ned explicitlylater.)Lemma 4.1 We can construct an adversary such that after step t of MAX, the following propertieshold: (1) Vt � Vt�1 and jVtj � jVt�1j3t+1 ; (2) each processor knows at most one input in Vt; (3) kt � 3t;(4) St � St�1 and St is in�nite; (5) Ft�1 � Ft � f1; 2; 3; : : :g�St; and (6) an input in Vt is knownby at most 3t processors. 7



Proof: De�ne a processor's read (write) function at step t to be a function which maps the inputthis processor knows about at step t to the location which it reads(writes). As in [18], we useRamsey Theoretical arguments to restrict the possible inputs such that (1) for each step t, aprocessor either writes for all inputs or for no inputs; (2) for each step t, the processors read andwrite functions are either constant or one-to-one; and (3) all the read and write functions are eitheridentical or disjoint. (Let S0 is the set of possible inputs after this restriction. The fact that S0 isstill in�nite is shown in [18].) After this restriction, we can see that, because we are assuming theinputs are distinct, one-to-one read and write functions will be useless. Thus we will only considerthe constant read and write functions. Since reading and writing locations are now �xed at eachstep, a processor reading a location knows exactly which single live input it will learn about, if any.Assume the lemma is true for all steps up to t � 1. Consider step t of MAX. Each processorknows at most 1 live input. It writes to a speci�ed location, and then reads from a speci�edlocation. These locations have already been �xed by the adversary. Since we are using the Prioritymodel, only the lowest numbered processor writing to a given cell will succeed, and thus the onlyinformation obtained from that cell would be the information known by that single processor. Eachprocessor can thus learn about at most one other processor when it reads a cell. Form a graph withthe live inputs (Vt�1) as vertices and an edge between two vertices if a processor knows those twolive inputs (one from previously, and one from the cell just read). Take the largest independentset in the graph and let Vt be the inputs associated with this independent set. Fix the smallestdistinct values fi from St�1 to variables i 2 Vt�1 � Vt and remove them from St�1 to obtain St.Add these values to Ft�1 to obtain Ft. By Tur�an's Theorem, we can choose a set Vt such thatjVtj � jVt�1j2jVt�1j+2e , where e is the number of edges in the graph. The number of edges is at most thenumber of processors which can know a given live input. Since the communication has been �xed,the number of processors which knows a given live input can at most triple at this time step. (Ifit has a�ected at most p processors and c < p cells at step t� 1, then it can a�ect p+ c < 2p cellsand 2p+ p < 3p processors at step t.) Then a live input is known by at most 3kt�1 = 3(3t�1) = 3tprocessors after step t. Thus e � jVt�1j3t, so jVtj � jVt�1j2jVt�1j3t+1 � jVt�1j3t+1 . From this, it is easy to seethat jVtj � n=3(t+1)+t+(t�1)+���+2 � n=3(t+2)(t+1)=2. 2Theorem 4.1 Finding the maximum of n inputs on a Priority ERCW PRAM requires 
(plogn)communication steps.Proof: By Lemma 4.1, at step T = p2 logn= log 3� 2, VT � 2, and the �rst cell is a�ected by atmost one of these inputs. Then the adversary can simply set the other input to be higher than thevalue stored in the �rst global memory cell. 2For the case of inputs restricted to a speci�c range, we can prove the following lower bound.Theorem 4.2 Finding the maximum of n inputs drawn from the range [0; s], for s < n, requires
(plog log s) time on a Robust, Nice Robust, Tolerant, Collision, or Common ERCW PRAM.Proof: Consider an input array of size n which consists of all zeros except for two entries atlocations i; j 2 [1; s], which contain the values i and j, respectively. Solving 2-compaction in thisarray can easily be reduced to �nding the maximum of the n inputs, and thus the 
(plog log s)lower bound on 2-compaction applies to the problem of �nding the maximum. 28



4.2 Upper BoundsWe �rst show a doubly logarithmic time algorithm for Rightmost One problem, and then show analgorithm for Maximum which is doubly logarithmic in the range, up to a range of size n.Theorem 4.3 The rightmost one of n bits can be found on an n= log log n processor Common,Tolerant, or Collision ERCW PRAM in O(log log n) time, or on an n processor Priority ERCWPRAM in constant time.Proof Sketch: The algorithm for the Priority model is trivial. For the other models, we divide thearray into subarrays of size pn and recursively �nd the rightmost subarray which contains a 1 andthe rightmost one in each subarray. Note that on the CRCW PRAM, the recursion is unnecessary,since n processors can �nd the rightmost one in an array of size pn in constant time. 2Theorem 4.4 The maximum of n inputs in the range [0; s] can be found on a maxfn; sg= log log sprocessor Common, Tolerant, or Collision ERCW PRAM in O(log log s) time.Proof Sketch: We create an array of size s, place 1's at positions in the array which correspondto input values, and �nd the rightmost one in O(log logn) time. 2Using an algorithm similar to one in [16], we obtain the following result for �nding the maximumof binary inputs (i.e., the global OR) on a Robust ERCW PRAM.Theorem 4.5 An n= log log n processor Robust ERCW PRAM can �nd the global OR of n bits in�(log log n) time with error probability 1n .5 Chaining and Integer SortingOur goal is to obtain a fast ERCW PRAM algorithm to sort integers from a polynomial range. Todo this, we �rst develop algorithms for Chaining, that is, given n bits as inputs, �nding for each 1input the position of the nearest one to its left.Theorem 5.1 The Chaining problem on n bits can be solved on an n= log logn processor Common,Tolerant, or Collision ERCW PRAM in O(log logn) time.Proof: First partition the input array into consecutive groups of log2 n bits and solve the NearestOnes problem in these groups using simple pre�x operations in O(log log n) time. Now we assign a1 to each group which contained a 1, and solve the Chaining problem on n= log2 n bits. Once thisis done, the processor associated with the leftmost 1 bit in each group can simply read the positionof the rightmost 1 bit in the nearest group to the left which contains a 1, and write it to the outputarray.To solve the Chaining problem on n= log2 n bits, notice that in O(log logn) steps, we canbroadcast each bit to logn processors, so we have log n processors working for each bit. Imaginea complete binary tree formed over the n= log2 n bits. For each bit, associate one of its associatedprocessors with each of its ancestors. Now for each node in the tree, solve the Rightmost One andLeftmost One problems. Each processor will then know if its bit is the rightmost or leftmost atthat node. For each bit, use a simple pre�x operation over the processors associated with that bit9



to �nd the lowest node (closest to the leaves) for which the bit is not the leftmost bit. Then thatprocessor can look at the left child of that node to �nd the rightmost bit. This is the nearest oneto the left. There will be no read conict, because each node can have at most one child with aleftmost bit which becomes not the leftmost. 2The following theorem addresses the Chaining problem in the case when there is a processorassociated with each non-zero element in the input.Theorem 5.2 Let A[1::n] be an array of zeros and ones, with a processor associated with eachA[i] = 1 (hence the number of processors is equal to the number of ones in the input). Let thepriorities of the processors decrease with the position within A of the element to which a processor isassociated. The Chaining problem on this input can be solved in O(log logn) time on a PRIORITYERCW(ack) PRAM.Proof: The following algorithm solves the problem within the stated bounds. We create anauxiliary array of size pn and divide the input array A into pn blocks of size pn. All processorsassigned to elements in the ith block perform a concurrent write of their element's position withinA into location i of the auxiliary array. The processors that succeed delete their entry in A andrecursively solve the problem in the auxiliary array. The remaining processors recursively solvethe problem within their blocks. The recursive solutions are then combined into a solution for theoriginal problem in constant time. Since all of the recursive subproblems are of size pn, the overallalgorithm runs in O(log logn) time. 2We can now perform a stable sort of n integers in the range [0::n � 1] in O(logn) time withn log logn= logn processors and O(n2) space on a PRIORITY ERCW(ack) PRAM as follows. Asin the CRCW algorithm of [29] we use an n� n array (which is assumed to be initialized to zero).For each index i in the input, if element i has value j then a 1 is written into position (i; j) of thearray. We then solve the chaining problem on the n � n array (interpreted as a 1 � n2 array) toobtain the sorted elements in a linked list. This portion of the algorithm runs in O(log log n) timeusing n processors using the algorithm in the proof of Theorem 5.2. To obtain the sorted list in anarray form, we perform list ranking to �nd the position of each element in the output array. Sincethe sort is stable this allows us to sort n integers in the range [0::nk� 1], for any constant k, withinthe same processor-time bounds. It also allows us to reduce the space requirement to n1+�, forany constant � > 0, by viewing each value as the sum of powers of n�. This gives us the followingtheorem.Theorem 5.3 Integer chain-sorting can be performed on n integers in the range [0::n � 1] inO(log logn) time with n processors on a Priority ERCW(ack) PRAM. Integer sort into an arraycan be performed on n integers in the range [0::nk] in O(logn) time with n log logn= logn processorsand n1+� space on a Priority ERCW(ack) PRAM.6 Unbounded Fan-in, Bounded Fan-out CircuitsSince fully dynamic recon�guration between a large number of processors in optical networks doesnot yet seem to be technically feasible, we would like to �nd ways of reducing the need for it. Oneway is to design oblivious algorithms. In oblivious algorithms the pattern of transmissions is knownprior to the start of the algorithm (i.e., it is not dependent on the inputs). Therefore, we would10



be able to �x or preset the transmission elements, and we may avoid some of the recon�gurationcosts.A special type of oblivious algorithm is given by a BFO circuit. We assume standard de�ni-tions for circuits and formulas [5]. A BFO circuit with size s and depth d can be simulated ina straightforward way by an s processor, d step oblivious OCPC algorithm. Just as unboundedfan-in, unbounded fan-out circuits correspond closely to the CRCW PRAM [6], and the study ofbounded fan-in circuits often sheds light on problems on the CREW and EREW PRAM, we believethat the study of BFO circuits should enhance the understanding of the ERCW PRAMsWe now give some results on solving some fundamental problems on BFO circuits.6.1 Lower BoundsOur �rst result shows how to transform a BFO circuit into something resembling a formula, so thatwe can obtain a lower bound the depth of the circuit using known lower bounds on formula size.Theorem 6.1 Let f be a Boolean function over n variables. If a circuit of depth d with fan-out atmost c (with one input corresponding to each variable) computes f , then there is a Boolean formulaof size at most ncd which computes f .Proof: Let C be a depth d circuit in which each gate has fan-out at most c. Let C0 be the samecircuit, but with every gate with some fan-out c0 > 1 replaced by a gate with a single output leadinginto a \fan-out" gate which fans out the output to c0 other gates. Then C0 has depth at most 2d.Now consider the following percolate operation. Assume a gate g has an output which enters ac0-fan-out gate. The percolate operation replaces this with a c0-fan-out gate at each input whichfans out each input into c0 duplicates of gate g. This has the e�ect of percolating the gate g up inthe circuit.We perform percolate operations on C 0 until all standard gates are above all fan-out gates.Notice that we have not changed the result nor the depth of the circuit. Call this new circuit C00.Notice that the standard gates of C00 all have output 1, and thus correspond to a formula for f .Let F correspond to this formula, i.e., the circuit consisting of the standard gates of C 00, with theinputs corresponding to every input into a gate which is an actual input or an output from one ofthe fan-out gates. Since there are at most d levels of fan-out gates, and each of those gates hasfan-out c, each input can be fanned out to at most cd inputs of F . Thus there are at most ncdinputs to F . 2Corollary 6.1 Any BFO circuit which computes parity requires 
(logn) depth.Proof: By Khrapchenko [35], any formula for parity must have size 
(n2). By the previous lemma,ncd = 
(n2), and since c is a constant, d = 
(logn). 2Let THk;n denote the threshold function which outputs 1 if and only if at least k of the inputsare equal to 1.Corollary 6.2 Any BFO circuit which computes THk;n requires 
(log k + log logn) depth.Proof: By Khrapchenko [35] any formula for THk;n must have size 
(k(n�k+1)). By Krichevskii[36] any formula for THk;n must have size 
(n logn). By the previous lemma, ncd = maxf
(k(n�k + 1));
(n logn)g, and since c is a constant, d = 
(log k + log logn). 211



We next consider the computation of multiple-valued Boolean functions.Lemma 6.1 Let f : Rn ! Rm be a Boolean function. Consider the jth input variable for somej; 1 � j � n. Let O be a set of output variables with the property that for each o 2 O there is somen-bit input I such that the value of o is complemented when the jth bit in I is complemented. Thenany bounded fan-out circuit that computes f will require depth 
(log jOj).Proof: The circuit must contain a path from the jth input node to each of the output nodes in O.Since the circuit has bounded fan-out, the lemma follows. 2Corollary 6.3 Any bounded fan-out circuit for adding two n-bit integers, merging a bit into an nbit sorted sequence, sorting n bits, or computing the pre�x sums of n bits requires 
(logn) depth.6.2 Upper boundsThere are well known bounded fan-in circuits with O(logn) depth and linear size for parity, addition,merging, sorting binary inputs, and pre�x sums on binary inputs. By [33], these circuits can beconverted into bounded fan-out circuits of the same size and depth. By Corollaries 6.1 and 6.3,these are optimal.Next we present a BFO circuit which computes the threshold function THk;n in optimal sizen, and optimal depth O(logk + log logn). Our construction makes use of an optimal logarithmicdepth circuit for computing (in binary) the sum of n bits [39] and two constructions for monotoneformulas due to Valiant [42] and Friedman [20] which we sketch below.The monotone formula construction of Valiant [42] shows that any monotone symmetric functionon n variables can be written as a monotone formula of size O(n5:3). Implicit in the constructionof this formula, is a monotone BFO circuit of size O(n5:3) and depth O(logn).The monotone formula construction of Friedman [20] shows that THk;n can be written as amonotone formula of size O(k12:6n logn). This construction uses Valiant's construction on thresholdfunctions with 4k2 inputs, and thus has depth O(log k). The threshold function developed byFriedman has the formTHk(y1; : : : ; yn) = Wk4 lognj=1 THk �Wi2Aj1 yi;Wi2Aj2 yi; : : : ;Wi2Aj4k2 yi�,where for each j, Aj1; : : : ; Aj4k2 is a partition of the n inputs. Thus each of the n inputs must befanned out to k4 log n of Valiant's threshold circuits. This can be done in O(log k+log logn) depthand O(nk4 logn) size. The total size of all of the Valiant circuits are then k4 logn times O((4k2)5:3).We use these results for our circuit as follows. First we place the n inputs into groups of sizek15 logn and use the addition circuits to �nd the sum of the number of ones. This takes linear sizein each group, and thus linear size overall. The depth required is O(log k + log log n). Then usinga simple comparison circuit, each group can check to see if it has more than k 1's. The output tothis circuit goes into a �nal OR gate which determines the �nal outcome. Along with this, eachcircuit fans out each of its �rst dlog ke outputs into the appropriate number of ones, so that we willhave at most 2k outputs from each group, with the number of ones output equal to the numberof ones in the group (assuming the number of ones is at most k). The outputs of all the groupscan now be input into the Friedman circuit. Since there are 2kn=(k15 logn) inputs, the size of the12



Friedman circuit will be O(n). The depth will be O(log k+ log logn). The output to the Friedmancircuit is then ORed with the output of the comparator circuit at each of the groups. If any grouphad more than k inputs, then the output of the total circuit will be 1. If not, then the output fromeach group will be the correct number of ones in the group, and the output of the total circuit willbe the output of Friedman's circuit, which will be 1, if and only if the number of ones in the inputis at least k.This circuit implies the following theoremTheorem 6.2 There is a size O(n), depth O(log k+log logn) BFO circuit which computes THk;n.7 Relations between ERCW ModelsWe now discuss the relative powers of the di�erent write conict resolution protocols on theERCW(ack) PRAM. Many of our results parallel those on the CRCW PRAM. Using the resultsfrom Section 8, some of these results can be generalized to the ERCW PRAM model and the OCPCmodel.We use the notation Protocol(m) to denote a collision protocol on an ERCW(ack) PRAM withm global memory cells. If we let X � Y mean \X conict resolution protocol can be simulated onY conict resolution protocol with constant slowdown", then it is not hard to see thatRobust(m) � Collision(m) � Arbitrary(m) � Priority(m) , andRobust(m) � Nice Robust(m) � Tolerant(m) � Collision(2m):(The last simulation simply associates an extra memory cell with each memory cell of the TolerantERCW(ack) PRAM, to test whether there will be a collision at that cell, so that the value of thecell is not overwritten if there is a collision.) In addition, Common(m) � Arbitrary(m).In the next two subsections, we describe some less obvious simulation results.7.1 SeparationsIn our lower bounds, we will always assume the simulating machine has in�nite memory. Bop-pana [4] showed that solving Element Distinctness on the Common CRCW PRAM (and thusthe Common ERCW(ack) PRAM) requires 
(logn= log log n) time. However on any of the otherERCW(ack) models, Element Distinctness can be solved in constant time. This provides a sepa-ration of 
(logn= log logn) between the Common and any other model. This separation is tightfor the CRCW PRAM, but so far the best algorithm for Element Distinctness on the CommonERCW(ack) PRAM requires 
(logn) time.Grolmusz and Ragde [27] provide separations between some other CRCW PRAM models,which can be easily transferred to the ERCW(ack) PRAM. From these we get separations of
(log log logn) time between the Collision and Arbitrary models, between the Collision and Com-mon models, and between the Tolerant and Collision models. Chaudhuri improves the �rst andthird separations to 
(log logn), and these results also translate to the ERCW(ack) PRAM, giv-ing separations of 
(log logn) time between the Collision and Arbitrary models and between theTolerant and Collision models.7.2 SimulationsThe simulation of Priority(m) CRCW PRAM on Arbitrary(mn) CRCW PRAM given by Chlebuset al. [9] can be followed almost exactly to give a simulation of a Priority(m) ERCW(ack) PRAM13



on an Arbitrary(mn) ERCW(ack) PRAM. This simulation runs in O(log logn) steps.To simulate an Arbitrary(m) ERCW(ack) PRAM on a Tolerant(mn) ERCW(ack) PRAM, weuse a partition algorithm from [9], which is run with a subset of processors, and results in eitherone processor being marked, or at least one but at most half of the processors being marked. Thisuses O(n) memory cells and takes O(log logn) time. An additional feature of this algorithm isthat each marked processor has an associated unmarked processor, and thus if k processors areinitially assigned to each processor in the subset, then the algorithm can assign 2k processors toeach marked processor, k from the marked processor, and k from its associated unmarked processor.(This partition algorithm was written for the Collision CRCW PRAM, but can also be run on theTolerant ERCW(ack) PRAM.)For our simulation, we will divide the processors into groups according to the cells they write to,and run the partition algorithm plogn= log logn times (each subsequent application on the markedelements from the previous application). Then if there is more than a single processor remainingin a group, each of the remaining processors will be assigned 2plogn= log logn processors.Now we can use a technique from [10] to choose one of the remaining (marked) processorsfor each cell as follows. Let k = 2plogn= log logn. Assign each marked processor to a cell in an nelement array according to its processor number. Form a k-ary tree T over this array. Assign the kprocessors of a marked processor P to the k leaves in T with the same parent as P . Now let P writea 0 to its own location. Then let P write a 1 to its own location, and let the auxiliary processorsat positions greater than P also write 1 to their locations. Then let P read its location. P willonly read a 1 if it is the �rst (lowest numbered) child of its parent which is writing. Say a markedprocessor \wins" this level if it succeeds in writing a 1. Assume P wins this level. Then P andits associated processors move up to the next level. Notice that on the ERCW(ack) PRAM, theprocessors that lose can't inform their associated processors that they've lost, so these associatedprocessors will also move up to the next level. But they will simply mimic the associated processorsof the winner, and this will still allow only the �rst child of each parent to succeed in writing a1. We continue this procedure through the logn= log k levels, until exactly one winning processorremains. This processor then writes without contention to the appropriate cell, completing thesimulation of the Arbitrary Write step.The time for performing plog n= log logn partitions is O(plogn log logn) and the time to pro-ceed through logn= log k levels of the tree, each one taking constant time, is also O(plogn log logn).Thus the time for the simulation step is O(plog n log logn).8 Optical Communication and ERCW PRAMSHere we describe the technology for optical communication, the OCPC model which is derived fromthis technology, and its relation to the ERCW PRAM.8.1 Optical Communication TechnologyThere are two basic types of optical interconnection networks, �ber optic networks, and free-spaceoptic networks. The type of �ber optic network which allows unit time communication betweenany pairs of processors is the Passive optical star coupler network [13, 28]. In this network allprocessors are connected via optical �bers to a passive optical star coupler, which broadcastsmessages sent from one processor to all other processors. To allow more exible communication,time division multiplexing (TDM) or wavelength division multiplexing (WDM) is used. For unit14



time communication, we must use (WDM). For dynamic recon�guration ability, we must havetunable transmitters and/or receivers. Currently, tunable transmitters and receivers are too slowto be practical.The other type of optical interconnection network is a free-space optic network. In this network,we do not use wires, but instead use the directional property of light to send messages to the correctdestination. Free-space optics has the potential to reduce space requirements and to alleviate manytopological di�culties associated with more conventional routing. There are two types of free-spaceoptic networks which achieve unit time communication, the beam spreading/masking network, andthe beam steering network. The beam spreading/masking network [32, 41] (also called the crossbaror matrix multiplication network) uses an n�n array of switching elements with each row assignedto a transmitting processor and each column assigned to a receiving processor. A transmittingprocessor spreads its light encoded message out to the row of optical switches, and those switcheseither block the message or send it on to the designated receiving processor. This network hasthe disadvantages of having n2 switches, 1=n total power transfer, and slow switching time. Abeam steering network can either be made up of recon�gurable holograms [26, 2] or acousto-opticdeectors [32]. The typical recon�gurable hologram method assumes the processors are sittingon a board, and there is some holographic material above the board. To transmit a message, areecting hologram is written into the holographic substrate and the processor transmits a lightencoded message to that hologram, which then steers it to the correct receiving processor. In theacousto-optic deector method, it is assumed that each processor is connected to a two-dimensionaldeector which can be programmed to steer a light encoded message to any other processor. Interms of speed of recon�guration, the acousto-optic deector seems to be the fastest, although itis still not as fast as an electronic switch.8.2 OCPC modelOne abstraction of the beam steering model (which could also be considered an abstraction of thepassive optical star coupler with tunable transmitters) was �rst considered by Anderson and Miller[1], and has since been studied in [12, 15, 21, 22, 24, 25, 37, 43]. Various names for this model havebeen proposed, including Local Memory PRAM, S*PRAM, OMC, OCP, and OCPC. We will usethe term OCPC, denoting Optical Communication Parallel Computer.An OCPC consists of a collection of processors, each with in�nite local memory, which operatesynchronously and communicate by transmitting messages to each other. At any step, a processorcan transmit at most one message to another processor. The message will succeed in reachingthe processor if it is the only message being sent to that processor at that step. Concurrenttransmissions to the same processor will be handled according to one of the following standardcollision resolution protocols: Priority, Arbitrary, Common, Collision, Tolerant and Robust [31].(Note that the standard OCPC model uses the Tolerant protocol.)The OCPC(ack) is an OCPC with the added feature that a processor which successfully trans-mits a message to another processor receives an acknowledgement as in the ERCW PRAM (seeSection 2).The following are some relationships between OCPC and ERCW PRAM models, with andwithout acknowledgements.Lemma 8.1 An n processor OCPC can be simulated on an n processor ERCW PRAM with nglobal memory cells with the same write conict protocol.15



Proof: One step of the OCPC is simulated by a write and a read on the ERCW PRAM. Wesimulate an attempted transmission from processor i to processor j on the OCPC by processor iwriting to cell j and processor j reading cell j. Since the write conict resolution protocols are thesame, processor j receives the same value on the ERCW PRAM as on the OCPC. 2 Note that inthe next proof, the simulation of an ERCW PRAM on an OCPC requires that the OCPC has atleast as many processors as the ERCW PRAM has global memory cells. This is not necessarilybad, since only global memory cells are counted, and for many ERCW PRAM algorithms, onlyO(n) global memory cells are required.Lemma 8.2 An n processor ERCW PRAM with m global memory cells can be simulated on amaxfn;mg processor OCPC with the same write conict protocol.Proof: Assign each processor of the OCPC to a memory cell and assign the �rst n processors alsoto the n processors of the ERCW PRAM. We simulate a write from processor i to cell j on theERCW PRAM by processor i transmitting to processor j. Because the write conict resolutionprotocols are the same, processor j receives the same value on the OCPC as is written to cell j onthe ERCW PRAM. Processor j stores the value transmitted to it. We simulate processor i readingcell j in the ERCW PRAM by processor i transmitting a read request to processor j and processorj transmitting the value stored there to processor i. Note that there can never be any transmissionconicts when simulating the read step. 2Lemma 8.3 An n processor OCPC(ack) can be simulated on an n processor OCPC with the samewrite conict protocol (except Robust).Proof: On the Common model, the OCPC and the OCPC(ack) models are equivalent, since noprocessor ever succeeds in a write. On the other models we simulate a transmission of a messageM from processor i to processor j by the following procedure. Processor i �rst transmits i toprocessor j. If processor j receives a value v, then it transmits an acknowledgement to processorv. If processor i receives an acknowledgement, then it transmits M to processor j. This will beguaranteed to succeed without collision. 2Lemma 8.4 An n processor ERCW(ack) PRAM with m global memory cells can be simulated onan on a maxfn;mg processor OCPC with the same write conict protocol (except Robust).Proof: By Lemma 8.3, it su�ces to prove the theorem for the OCPC(ack) model. Assign eachprocessor of the OCPC to a memory cell and assign the �rst n processors also to the n processorsof the ERCW(ack) PRAM. A write step of the ERCW(ack) PRAM is simulated by a transmis-sion step of the OCPC(ack). We simulate a write from processor i to cell j on the ERCW(ack)PRAM by processor i attempting a transmission to processor j. If processor i is successful inwriting to the cell, then it will receive an acknowledgement. Because the OCPC(ack) is using thesame write conict resolution protocol, processor i's transmission will succeed and processor i willreceive an acknowledgement. Processor j now stores the value transmitted to it. A read step ofthe ERCW(ack) PRAM is simulated by two transmission steps of the OCPC(ack). We simulateprocessor i reading cell j in the ERCW(ack) PRAM by processor i transmitting a read request toprocessor j and processor j transmitting the value stored there to processor i. Note that there cannever be any transmission conicts when simulating the read step. 216



References[1] R. J. Anderson and G. L. Miller. Optical communication for pointer based algorithms. Tech-nical Report CRI 88-14, University of Southern California, 1988.[2] P. B. Berra, A. Ghafoor, M. Guiznani, S. J. Marcinkowski, and P. A. Mitkas. Optics andsupercomputing. Proceedings of the IEEE, 77(12):1797{1815, 1989.[3] P. C. P. Bhatt, K. Diks, T. Hagerup, V. Prasad, T. Radzik, and S. Saxena. Improved deter-ministic parallel integer sorting. Inform. and Comput., 94(1):29{47, September 1991.[4] R. B. Boppana. Optimal separations between concurrent-write parallel machines. In Proc.21st Symp. on Theory of Computing, pages 320{326, 1989.[5] R. B. Boppana and M. Sipser. The complexity of �nite functions. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, chapter 14,pages 757{804. MIT Press/Elsevier, 1990.[6] A. K. Chandra, L. J. Stockmeyer, and U. Vishkin. A complexity theory for unbounded fan-inparallelism. In Proc. 23th Symp. on Found. of Comp. Sci., pages 1{13, 1982.[7] B. S. Chlebus. A parallel bucket sort. Inform. Process. Lett., 27(2):57{61, February 1988.[8] B. S. Chlebus. Parallel iterated bucket sort. Inform. Process. Lett., 31(4):181{183, May 1989.[9] B. S. Chlebus, K. Diks, T. Hagerup, and T. Radzik. E�cient simulations between CRCWPRAMs. In Proc. 13th Symp. on Math. Found. of Comp. Sci., volume 324, pages 231{239.Springer Lecture Notes in Computer Science, 1988.[10] B. S. Chlebus, K. Diks, T. Hagerup, and T. Radzik. New simulations between CRCW PRAMs.In Proc. 7th Intl. Conf. on Fundamentals of Comp. Theory, volume 380, pages 95{104. SpringerLecture Notes in Computer Science, 1989.[11] S. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds for parallel random accessmachines without simultaneous writes. SIAM J. Comput., 15(1):87{97, February 1986.[12] M. Dietzfelbinger and F. Meyer auf der Heide. Simple, e�cient shared memory simulations.In Proc. ACM Symp. on Para. Alg. and Arch., pages 110{119, 1993.[13] P. Dowd. High performance interprocessor communication through optical wavelength divisionmultiple access channels. In Proc. 18th Symp. on Comp. Arch., pages 96{105, 1991.[14] P. Erd�os and R. Rado. Intersection Theorems for Systems of Sets. J. London Math. Soc.,35:85{90, 1960.[15] M. M. Eshaghian. Parallel algorithms for image processing on omc. IEEE Trans. Comput.,40(7):827{833, 1991.[16] F. Fich, R. Impagliazzo, B. Kapron, V. King, and M. Kutylowski. Limits on the power ofparallel random access machines with weak forms of write conict resolution. In Proc. of 10thSymp. on Theor. Aspects of Comp. Sci., page unknown, 1993.17



[17] F. Fich, M. Kowaluk, M. Kutylowski, K. Lory�s, and P. Ragde. Retrieval of scattered informa-tion by EREW, CREW, and CRCW PRAMs. In Proc. 3rd Scand. Workshop on Alg. Theory,pages 30{41. Lec. Notes in Comp. Sci., Vol. 621, 1992.[18] F. E. Fich, F. Meyer auf der Heide, P. Ragde, and A. Wigderson. One, two, three : : : in�nity:Lower bounds for parallel computation. In Proc. 17th Symp. on Theory of Computing, pages48{58, 1985.[19] F. E. Fich, P. Ragde, and A. Wigderson. Relations between concurrent-write models of parallelcomputation. SIAM J. Comput., 17:606{627, 1988.[20] J. Friedman. Construct O(n logn) size montone formulae for the kth threshold function of nboolean variables. SIAM J. Comput., 15(3):641{654, 1986.[21] A. V. Gerbessiotis and L. G. Valiant. Direct bulk-synchronous parallel algorithms. In Proc.Scandinavian Workshop on Algo. Theory, 1992.[22] M. Ger�eb-Graus and T. Tsantilas. E�cient optical communication in parallel computers. InProc. ACM Symp. on Para. Alg. and Arch., pages 41{48, 1992.[23] P. B. Gibbons, Y. Matias, V. Ramachandran. The Queue-Read Queue-Write PRAM model:Accounting for contention in parallel algorithms. In Proc. ACM-SIAM Symp. on Discrete Algs.1994, SIAM J Comput, to appear.[24] L. A. Goldberg, M. Jerrum, T. Leighton, and S. Rao. A doubly logarithmic communicationalgorithm for the completely connected optical communication parallel computer. In Proc.ACM Symp. on Para. Alg. and Arch., pages 300{309, 1993.[25] L. A. Goldberg, M. Jerrum, and P. D. MacKenzie. A lower bound for routing on a completelyconnected optical communication parallel computer. accepted to SPAA, 1994.[26] J. W. Goodman, F. Leonberger, S. Y. Kung, and R. A. Athale. Optical interconnections forvlsi systems. Proceedings of the IEEE, 72(7):850{866, 1984.[27] V. Grolmusz and P. Ragde. Incomparability in parallel computation. In Proc. 28th Symp. onFound. of Comp. Sci., pages 89{98, 1987.[28] I. M. I. Habbab, M. Kavehrad, and C. E. W. Sundberg. Protocols for very high-speed optical�ber local area networks using a passive star topology. J. Lightwave Tech., LT-5:1782{1793,1987.[29] T. Hagerup. Towards optimal parallel bucket sorting. Inform. and Comp., 75:39{51, 1987.[30] T. Hagerup. Constant-time parallel integer sorting. In Proc. 23rd ACM Symp. on Theory ofComputing, pages 299{306, 1991.[31] T. Hagerup and T. Radzik. Every robust CRCW PRAM can e�ciently simulate a PriorityPRAM. In Proc. 2nd ACM Symp. on Para. Alg. and Arch., pages 117{124, 1990.[32] A. Hartmann and S. Red�eld. Design sketches for optical crossbar switches intended for large-scale parallel processing applications. Optical Eng., 28(4):315{327, 1989.18



[33] H. J. Hoover, M. M. Klawe, and N. J. Pippenger. Bounding fan-out in logical networks. J.Assoc. Comput. Mach., 31(1):13{18, 1984.[34] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. InJ. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume A: Algorithmsand Complexity, chapter 17, pages 869{941. MIT Press/Elsevier, 1990.[35] V. M. Khrapchenko. A method for determining lower bounds for the complexity of �-schemes.Mat. Zametki, 10(1):83{92, 1971. (in Russian); English translation in: Math. Notes 10(1)(1971) 474{479.[36] R. E. Krichevskii. Complexity of contact circuits realizing a function of logical algebra. Dokl.Akad. Nauk SSSR, 151(4):803{806, 1963. (in Russian); English translation in: Soviet Phys.Dokl. 8(8) (1964) 770{772.[37] P. D. MacKenzie, C. G. Plaxton, and R. Rajaraman. On contention resolution protocols andassociated probabilistic phenomena. In Proc. 26th ACM Symp. on Theory of Computing, pages153{162, 1994.[38] P. D. MacKenzie and Q. F. Stout. Ultra-fast expected time parallel algorithms. In 2nd ACM-SIAM Symp. on Disc. Alg., pages 414{423, 1991. submitted to Journal of Algorithms.[39] D. E. Muller and F. P. Preparata. Bounds to complexities of networks for sorting and forswitching. J. Assoc. Comput. Mach., 22(2):195{201, April 1975.[40] S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic time randomized parallel sortingalgorithms. SIAM J. Comput., 18(3):594{607, June 1989.[41] A. A. Sawchuk, B. K. Jenkins, and C. S. Raghavendra. Optical crossbar networks. IEEEComputer, 20(6):50{60, 1987.[42] L. G. Valiant. Short monotone formulae for the majority function. J. Algorithms, 5:363{366,1984.[43] L. G. Valiant. General purpose parallel architectures. In J. van Leeuwen, editor, Handbookof Theoretical Computer Science, Volume A: Algorithms and Complexity, chapter 18, pages945{971. MIT Press/Elsevier, 1990.
19


