
The Queue-Read Queue-WriteAsynchronous PRAM ModelPhillip B. GibbonsBell Laboratories600 Mountain AvenueMurray Hill NJ 07974gibbons@research.bell-labs.com Yossi MatiasBell Laboratories600 Mountain AvenueMurray Hill NJ 07974matias@research.bell-labs.com Vijaya Ramachandran�Dept. of Computer SciencesUniversity of Texas at AustinAustin TX 78712vlr@cs.utexas.eduAbstractThis paper presents results for the queue-read, queue-write asynchronous parallel ran-dom access machine (qrqw asynchronous pram) model, which is the asynchronousvariant of the qrqw pram model. The qrqw pram family of models, which was intro-duced earlier by the authors, permit concurrent reading and writing to shared memorylocations, but each memory location is viewed as having a queue which can service atmost one request at a time. In the basic qrqw pram model each processor executesa series of reads to shared memory locations, a series of local computation steps, anda series of writes to shared memory locations, and then synchronizes with all otherprocessors; thus this can be viewed as a bulk-synchronous model. In contrast, in theqrqw asynchronous pram model discussed in this paper, there is no imposed bulk-synchronization between processors, and each processor proceeds at its own pace. Thus,the qrqw asynchronous pram serves as a better model for designing and analyzingtruly asynchronous parallel algorithms than the original qrqw pram.In this paper we elaborate on the qrqw asynchronous pram model, and we demon-strate the power of asynchrony over bulk-synchrony by presenting a work and time opti-mal deterministic algorithm on the qrqw asynchronous pram for the leader electionproblem and a simple randomized work and time optimal algorithm on the qrqw asyn-chronous pram for sorting. In contrast, no tight bounds are known on the qrqwpram for either deterministic or randomized parallel algorithms for leader election andthe only work and time optimal algorithms for sorting known on the qrqw pram arethose inherited from the erew pram, which are considerably more complicated. Oursorting algorithm is an asynchronous version of an earlier sorting algorithm we devel-oped for the qrqw pram, for which we use an interesting analysis to bound the runningtime to be O(lgn). We also present a randomized algorithm to simulate one step of acrcw pram on a qrqw asynchronous pram in sublogarithmic time if the maximumcontention in the step is relatively small.�Supported in part by NSF grant CCR-90-23059 and Texas Advanced Research Projects Grant 003658480.

1 IntroductionThe Parallel Random Access Machine (pram) model of computation (see, e.g., [KR90, J�aJ92, Rei93])consists of a number of processors operating in lock-step and communicating by reading and writinglocations in a shared memory. Standard pram models can be distinguished by their rules regard-ing contention for shared memory locations. These rules are generally classi�ed into the exclusiveread/write rule in which each location can be read or written by at most one processor in eachunit-time pram step, and the concurrent read/write rule in which each location can be read orwritten by any number of processors in each unit-time pram step. These two rules can be appliedindependently to reads and writes; the resulting models are denoted in the literature as the erew,crew, ercw, and crcw pram models.In a previous paper [GMR96b], we argued that neither the exclusive nor the concurrent rulesaccurately re
ect the contention capabilities of most commercial and research multiprocessors: Theexclusive rule is too strict, and the concurrent rule ignores the large performance penalty of highcontention steps. We proposed instead the queue rule, in which each memory location can be reador written by any number of processors in each step, but concurrent reads or writes to a location areserviced one-at-a-time. Thus the worst case time to read or write a location is linear in the numberof concurrent readers or writers to the same location. As discussed in [GMR96b], the contentionproperties of most existing multiprocessors are well-approximated by the queue-read, queue-writerule.In this paper we consider the Queue-Read Queue-Write (qrqw) asynchronous pram model.The qrqw asynchronous pram [GMR93] was introduced by the authors as the asynchronousvariant of the qrqw pram family of models [GMR96b], suitable for designing algorithms for asyn-chronous (mimd) multiprocessors. The qrqw family of models includes the simd-qrqw prammodel, the qrqw pram model and the qrqw asynchronous pram model. All models in theqrqw family incorporate the queue rule described above, and permit concurrent reading and writ-ing of shared memory locations at a cost that is linear in the number of such readers and writers.Each memory location is viewed as having a queue which can service at most one request at a time.Unlike related models accounting for contention (e.g. [DHW93, LAB93]), the qrqw pram and theqrqw asynchronous pram models permit pipelining: individual processors may have multiplerequests in progress concurrently. Some of the results presented here are mentioned without anydetails in earlier extended abstracts by the authors on qrqw pram results.The qrqw pram model is the basic model in the qrqw family of models and is well suited forthe design and analysis of bulk-synchronous algorithms on machines such as the Cray C90, the CrayJ90, and the forthcoming Tera MTA multiprocessor. These machines provide a qrqw contentionrule at the memory cells, support the pipelining of memory requests, and provide su�cient processor-to-memory bandwidth to support communication at each step (as is needed for prams). E�cientbulk-synchronization is an option on these machines, but is not imposed. An extensive study ofalgorithms and results for the qrqw pram can be found in [GMR96b, GMR96a]. In addition,experimental results for the qrqw pram on the Cray C90 and J90 can be found in [BGMZ95].The model we study in this paper, the qrqw asynchronous pram model, permits more asyn-chronous behavior than the bulk-synchrony imposed by the qrqw pram. Thus it can be used todesign and analyze algorithms for machines such as the MTA in contexts in which bulk-synchrony isnot employed. Indeed, Burton Smith, Chairman and Chief Scientist of Tera Computer, refers to theMTA as \roughly a qrqw asynchronous pram" [Smi95] (and to our knowledge makes no suchclaims about other models).In more detail, the di�erences between the qrqw pram and the qrqw asynchronous pramare as follows. In the (bulk-synchronous) qrqw pram, each processor executes a series of reads toshared memory locations, a series of local computation steps, a series of writes to shared memorylocations, and then synchronizes with all the other processors. The time for such a bulk-synchronous1

step is the maximum of the number of reads, compute steps, and writes by any one processor andthe maximum contention at any one location. Thus each processor waits until all queues haveemptied. In contrast, in the qrqw asynchronous pram, each processor executes reads, computesteps, and writes, but processors proceed at their own pace with no intervening synchronization.Algorithms must be correct under worst case assumptions on the �nite delays incurred by processorsand in processing memory requests. However, the running times of algorithms are analyzed using anoptimistic (synchronous) time metric in which, at each unit-time step, (1) each processor performsa local computation step or issues a shared memory request, with all requests to the same locationappended to the queue for that location, in an arbitrary order, and then (2) each nonempty queueservices the request at the head of its queue. Thus each processor may proceed as soon as its ownrequests clear their respective queues.We present a simple deterministic algorithm for computing the or of n bits on the qrqw asyn-chronous pram that exploits the lack of bulk-synchrony and runs in O(lgn= lg lgn) time, linearwork. A similar algorithm was found independently by Armen and Johnson [AJ96]. We also presenta matching lower bound. In contrast, no o(lgn) time qrqw pram algorithm is known, and even ona Concurrent-Read Queue-Write (crqw) pram, no deterministic o(lgn) time algorithm is knownfor this problem.Next, we present a simple randomized O(lgn) time, O(n lgn) work qrqw asynchronouspram algorithm to sort an array of n elements. The algorithm is almost exactly the same asthe �(lg2 n= lg lgn) time, O(n lgn) work randomized sorting algorithm we developed earlier for theqrqw pram [GMR96a], but we exploit asynchrony by allowing elements to
ow through the `binarysearch fat-tree' data structures employed by the sorting algorithm at their own pace. We describehere a new analysis that is interesting in its simplicity; it is based on a repeated use of a seeminglyquite useful lemma, regarding the sum of Poisson-like random variables.Finally, we show that one step of an n-processor fetch&add pram, and hence also a crcwpram, can be emulated on an n-processor qrqw asynchronous pram in O(lgn= lg lgn + k) timew.h.p., where k is the maximum memory contention of the crcw pram step; in this emulation, thevalue of k is not known to the emulating algorithm.The rest of the paper is organized as follows: In Section 2 we de�ne the qrqw asynchro-nous pram model, discuss its features, and show how certain qrqw pram algorithms can bereadily adapted to the qrqw asynchronous pram. In Section 3 we present our results on leaderelection. In Section 4 we present our randomized work- and time-optimal sorting algorithm onthe qrqw asynchronous pram and its analysis, and in Section 5 we present our simulation of afetch&add pram step on a qrqw asynchronous pram. Some further discussion on the qrqwasynchronous pram cost measure appears in Section 6.2 The QRQW Asynchronous PRAMIn this section, we present the de�nition of the qrqw asynchronous pram model, and someobservations on the algorithmic power of the model.A variety of asynchronous pram models have been studied in the literature (c.f. [CZ89, Gib89,Nis90, And92, MPS92]). These models account for contention in a manner most like a crcw pram,with no penalty assessed for large contention to a location.1 An erew contention rule was notconsidered,2 since most asynchronous algorithms cannot avoid scenarios in which concurrent reading1For example, models based on \time slots" permit an arbitrary number of reads/writes to a location in one timeslot. Models based on \interleaving" or \rounds" charge the same for an interleaving of reads/writes to the sameaddress as for an interleaving of reads/writes to di�erent addresses.2An exception is the erew variant of Gibbons' asynchronous pram model [Gib89], which permits contention in2

or writing occur. Since most existing parallel machines permit contention, but at a cost, the qrqwrule is a better choice for an asynchronous model than either the crcw or the erew rule.The qrqw rule can be incorporated into these previous models in a natural way. Concurrentreads and writes to a location x are queued in an arbitrary order, with each write to x updating thevalue of x when it reaches the head of the queue and each read of x returning the value present inlocation x when it reaches the head of the queue. Instead, we de�ne a new model that incorporatesthe qrqw rule, which we believe to be a better model for asynchronous parallel machines.2.1 The modelAn important feature of the qrqw asynchronous pram model is that the model separates cor-rectness issues from analysis issues: Algorithms must be correct under worst case assumptions onthe �nite delays incurred by the processors and in processing memory requests, but the runningtimes of algorithms are analyzed using an optimistic (synchronous) time metric. We elaborate onthe correctness issues and analysis issues below, and then proceed to de�ne the model.Functionality and correctness. A shared memory multiprocessor supports a consistency con-dition on its memory system. The most widely-used memory consistency condition is sequentialconsistency [Lam79, ABM93], in which the memory system appears to be a serial memory, pro-cessing one read or write at a time, in an order consistent with the individual program orders ateach processor. The SGI Challenge and the (now defunct) KSR machines are examples of multi-processors supporting sequential consistency. Relaxed consistency conditions such as release consis-tency [GLL+90, GMG91] support sequential consistency for PL programs; these are programs withtwo types of accesses, synchronization and data, such that there are no race conditions betweendata accesses. The Stanford DASH machine and the Tera MTA are examples of multiprocessorssupporting release consistency. In the qrqw asynchronous pram, the memory system is assumedto be sequentially consistent. As any program can be made PL by labeling su�ciently many accessesas \synchronization", our algorithms will work as well on machines providing release consistency.Typically, the only other guarantee on inter-processor communication provided by a multiproces-sor is that no request is delayed inde�nitely. (We are assuming that the multiprocessor is executingwithout failures.) Thus algorithms must be correct under worst case assumptions on the delaysincurred by processors and in processing memory requests, and the qrqw asynchronous pramre
ects this reality.Most asynchronous shared memory models of computation assume that a processor can haveat most one pending memory request at a time: there is no pipelining of memory requests by aprocessor (e.g. [CZ89, Nis90, And92, MPS92, DHW93]).3 On the other hand, high-performanceshared memory machines such as the Tera MTA permit the pipelining of memory accesses by aprocessor, in order to amortize the round-trip time to memory over a collection of accesses. In theqrqw asynchronous pram, pipelining of memory accesses is permitted; a processor may havemultiple shared memory operations in progress at a time. A formal de�nition of a sequentiallyconsistent shared memory that permits pipelining is given by Gibbons and Merritt [GM92].Each processor has a private local memory, and the following types of instructions: local oper-ations, shared memory reads, shared memory writes, and shared memory Test&Set operations. ATest&Set operation reads and returns the old value and writes a 1; the location is assumed to beinitialized to 0. Other synchronization constructs such as barriers can be constructed using sharedmemory reads, writes, and Test&Sets.synchronizationprimitives, at a cost, but enforces the erew rule on reads and writes occurring between synchronizationpoints.3Note that when all memory accesses take unit time, as in these models, there is no need for pipelining.3

Analysis. In de�ning how algorithms are analyzed in the model, the qrqw asynchronous pramaims for a simple cost model that captures important realities of multiprocessors. As in Gibbons'asynchronous pram model [Gib89], our cost model assumes that processors issue instructions atthe same speed, as this is presumed to be the typical scenario in a multiprocessor. A local operationtakes unit time.There is a FIFO queue associated with each memory location; only the request at the head ofthe queue is processed in a step. Thus requests to a location can pile up, causing a delay in theirprocessing. If k processors issue a request to the same location at step t of an algorithm, and thequeue for this location is empty at the beginning of step t, then one such request completes step t,another step t+ 1, another step t+ 2, and so forth, until the last one completes at step t+ k� 1. Ifadditional requests to the location arrive before step t+ k� 1, these are appended to the tail of thequeue: if there are two such requests, they will complete at steps t + k and t + k + 1, respectively,regardless of the exact step at which they are requested.Note that the cost model makes optimistic assumptions on the delays encountered by sharedmemory requests, e.g. that requests issued earlier are queued before requests issued later; theseassumptions are not a part of the correctness model. The philosophy behind models in which analysismakes optimistic assumptions while correctness does not is that (1) it makes sense to measure thecomplexity of an algorithm so as to approximate a typical performance of a machine, since thisre
ects directly in real life e�ciency, while (2) we must be strict and assume worst case situationsfor correctness, since otherwise a single unexpected event may cause the entire computation to fail.Some rami�cations of this philosophy are discussed in Section 6.Model de�nition. The qrqw asynchronous pram model consists of a collection of processorsoperating asynchronously and communicating via a global shared memory. The shared memoryis sequentially consistent and supports the pipelining of memory requests by processors (i.e. eachprocessor is permitted to have multiple pending shared memory requests; see [GM92] for a formalde�nition). Each processor has a private local memory, and the following types of instructions:RAM operations involving only its private state and private memory, requests to read the contentsof a shared memory location into a private memory location, requests to write the contents of aprivate memory location to a shared memory location, and requests to perform a Test&Set operationon a shared memory location. A processor can execute any of the shared memory requests andcontinue without waiting for them to complete (pipelining). However, the �rst subsequent RAMoperation that uses the result of such a shared memory request will wait for the value to be returned.Algorithms must be correct under worst case assumptions on the �nite delays incurred by processorsand in processing memory requests.Time is de�ned as follows. There is a FIFO queue associated with each memory location. Asingle time step consists of two substeps:1. Each processor issues an instruction. Local operations complete this step. Shared memoryrequests are appended to the tails of the queues for the requested locations, with requests tothe same location enqueued in an arbitrary order.2. Shared memory requests at the head of nonempty queues are dequeued and performed (at mostone per queue), and either a return value or an acknowledgement is received by the processorresponsible for the request.Work is de�ned as the time-processor product.Some comments on the de�nition follow. Because an algorithm must be correct regardless ofthe delays, a processor can not safely \time-out" after a certain period of time or a certain amountof polling and assume that no further reads/writes to a location are forthcoming. A processor can4

not make inferences on the queue length encountered based on the delay incurred. Once issued,a memory request can not be withdrawn; a processor has not completed its participation in analgorithm until all of its memory requests have been processed.In addition to the qrqw asynchronous pram model, one can also de�ne hybrid models suchas the crqw asynchronous pram, which permits unit time concurrent reading but applies theabove queue rule for concurrent writing. The stronger crqw asynchronous pram model is usedprimarily to prove stronger lower bounds.Two other asynchronous models of parallel computation that focus on contention are the atomicmessage passing model of Liu, Aiello and Bhatt and the \stall" model of Dwork, Herlihy andWaarts. These models were developed independently of the qrqw asynchronous pram anddi�er in several important ways. The atomic message passing model [LAB93] is a message-passingmodel in which messages destined for the same processor are serviced one-at-a-time in an arbitraryorder. The model permits general asynchronous algorithms, but each processor can have at mostone message outstanding at a time. Dwork, Herlihy and Waarts [DHW93] de�ned an asynchronousshared memory model with a stall metric: If several processes have reads or writes pending to alocation, v, and one of them receives a response, then all the others incur a stall. Hence the chargefor contention is linear in the contention, with requests to a location being serviced one-at-a-time.Their model permits general asynchronous algorithms, but each processor can have at most one reador write outstanding at a time. Unlike their model, the qrqw asynchronous pram model capturesdirectly how the contention delays the overall running time of the algorithm, and is proposed as analternative to other pram models for high-level algorithm design.2.2 Preliminary observationsAdapting qrqw pram algorithms to the qrqw asynchronous pram. The computationalpower of the qrqw pram and the qrqw asynchronous pram are incomparable: the qrqw pramhas the advantage of free global synchronization, but is restricted to bulk-synchronous operation.The naive emulation of the qrqw pram on the qrqw asynchronous pram performs a barriersynchronization at each step, at a cost of O(lg p) for p processors per barrier. The goal in adaptingalgorithms designed for the qrqw pram to the qrqw asynchronous pram is to make do withless synchronization so as to maintain the same complexity bounds. In the remainder of this section,we sketch adaptations of several qrqw pram algorithms from [GMR96b, GMR96a], showing thatthe same complexities can be obtained for the qrqw asynchronous pram. These sketches assumeknowledge of the algorithms from [GMR96b, GMR96a].Theorem 2.1 Consider the problem of electing a leader bit from among the k out of n input bitsthat are 1.� Let k̂ be known to be within a factor of 2plgn of k, i.e. k̂=2plgn � k � k̂2plgn. There is arandomized Monte Carlo qrqw asynchronous pram algorithm that, w.h.p., elects a leaderin O(plgn) time with O(n) work. On the crqw asynchronous pram, or if k̂ = O(2plgn),the same bounds can be obtained for a Las Vegas algorithm.� Consider the problem of computing the logical or (or electing a leader) of n bits, where itis known that at most kmax input bits can be 1. There is a randomized Las Vegas qrqwasynchronous pram algorithm that runs in O(lg kmax + plgn) time with O(n) work w.h.p.Proof. The modi�cations used for these results include using the Test&Set primitive to decidewhich writer claims a particular cell, inserting an explicit synchronization step among subsets of m5

processors at a cost of lgm, and using pairwise synchronization in steps characterized by a binaryfanin tree.The general leader election problem (k unknown) is discussed in Section 3.We next consider the multiple compaction problem. The input consists of n items given in anarray; each item has a label, a count, and a pointer, all from [1::O(n)]. The labels partition the itemsinto n sets �1; : : : ;�n where �i is the set of items labeled with i. The count of an item belonging to�i is an upper bound, count(�i), on the number of items in �i, j�ij, such thatPni=1 count(�i) � �nfor some constant � > 0. Also given is an array B[1::�0n], where �0 � 4� is a constant. Array B ispartitioned into sub-arrays such that each set �i has a private subarray of size at least 4 � count(�i);the sub-arrays are assigned in some arbitrary order. The pointer of an item belonging to a set �i isthe starting point in B of the sub-array assigned to �i. The goal is to move each item into a privatecell in the sub-array of its set.Theorem 2.2 There is a randomized Las Vegas qrqw asynchronous pram algorithm for mul-tiple compaction that runs in O(lgn) time with O(n) work w.h.p.Proof. As above, the modi�cations to the qrqw pram algorithm involve using the Test&Setprimitive to decide which writer claims a particular cell, and judiciously inserting explicit synchro-nizations among subsets of processors as needed.We next consider the problem of generating a random permutation.Theorem 2.3 There is a randomized Las Vegas qrqw asynchronous pram algorithm for gen-erating a random permutation that runs in O(lgn) time with O(n) work w.h.p.Proof. As above, the modi�cations to the qrqw pram algorithm involve using the Test&Setprimitive to decide which writer claims a particular cell, and judiciously inserting explicit synchro-nizations among subsets of processors as needed.Even more interesting than adapting qrqw pram algorithms to the qrqw asynchronouspram are examples of algorithms for the qrqw asynchronous pram that achieve better timebounds than the best known qrqw pram algorithms. Such algorithms exploit the computationaladvantage the qrqw asynchronous pram has by not being restricted to bulk-synchronous oper-ation. In the remainder of this paper, we discuss three such examples.3 Leader election and computing the ORGiven a Boolean array of n bits, the or function is the problem of determining if there is a bit withvalue 1 among the n input bits. The leader election problem is the problem of electing a leader bitfrom among the k out of n bits that are 1 (k unknown). The output is the index in [1::n] of the bit,if k > 0, or 0, if k = 0. This generalizes the or function, as long as k = 0 is possible.By having each processor whose input bit is 1 write the index of the bit in the output memorycell, we obtain a simple deterministic qrqw asynchronous pram algorithm for leader election(and similarly for the or function) that runs in maxf1; kg time using n processors, where k is thenumber of input bits that are 1 (k unknown). This is a fast algorithm if we know in advance thatthe value of k is small. However, for the general leader election problem, a better algorithm is tomimic the erew pram parallel pre�x algorithm to compute the location of the �rst 1 in the input;6

since only pairwise synchronizations are used, this takes �(lgn) time and �(n) work on a qrqwasynchronous pram.In this section, we present a faster (O(lgn= lg lgn) time) deterministic qrqw asynchronouspram algorithm for leader election and computing the or function, and a matching lower bound forthe stronger crqw asynchronous pram. A similar algorithm was found independently by Armenand Johnson [AJ96].Theorem 3.1 There is a deterministic qrqw asynchronous pram algorithm for the leader elec-tion problem (and the or function) that runs in O(lgn= lg lgn) time and linear work.Proof. Let s = lgn= lg lgn. We describe the algorithm for n=s processors. Each processor isassigned s inputs, and elects as leader the �rst 1-input among its inputs (if any). Consider a s-arytree, T , with one leaf per processor, with each location corresponding to a node in T initialized tozero. Each processor with a 1-input among its inputs begins to greedily traverse the path in T fromits leaf to the root. At each node on the path, it attempts to claim the node using a test&setoperation. If it returns a zero, the processor has succeeded in claiming the node, and it continueson to the next node in its path. Else it drops out. The leader elected is according to the processorclaiming the root node. No processor spends more than s steps being the �rst in the queue for anode (and hence claiming the node) and no more than s steps stuck in the queue for a node (whenit drops out). Thus the time is O(s) as claimed.We can derive a matching
(lgn= lg lgn) lower bound for the or function on the (more pow-erful) crqw asynchronous pram using a lower bound result of Dietzfelbinger, Kutylowski andReischuk [DKR94] for the few-write pram models. Recall that the few-write pram models areparameterized by the number of concurrent writes to a location permitted in a unit-time step. (Ex-ceeding this number is not permitted.) Let the �-write pram denote the few-write pram modelthat permits concurrent writing of up to � writes to a location, as well as unlimited concurrentreading. We begin by proving a more general result for emulating the crqw asynchronous pramon the few-write pram, and then provide the or lower bound. The same two-part approach is usedin [GMR96b] to prove an
(lgn= lg lgn) time lower bound for the deterministic crqw pram; herewe extend the lower bound to the asynchronous model.Lemma 3.2 A p-processor crqw asynchronous pram deterministic algorithm running in timet can be emulated on a p-processor t-write pram in time O(t).Proof. Since the crqw asynchronous pram algorithm runs in time at most t on all inputs,then at each step, the maximum number of writes to any one location initiated that step is no morethan t, regardless of the input. Thus we will use a �xed constant number of t-write pram stepsto emulate each crqw asynchronous pram instruction. For each crqw asynchronous pramprocessor pj , j 2 [1::p], we denote by p0j the few-write pram processor emulating pj . Consider eachinstruction in the asynchronous pram program in turn. We show how to handle each type ofinstruction.� For each processor pj with an instruction to issue a local operation or a shared memory read,p0j has an instruction to perform the local operation or the shared memory read, and theninstructions to idle for the rest of this step.� For each processor pj with an instruction to issue a test&set for a shared memory locationX, returning the old value into a local location r1, p0j has the following sequence of instructions:(1) read X into r1, (2) if the value is 0, then write j to X, read X into local location r2, andif the value is not j, set r1 to 1, and (3) write 1 to X.7

� For each processor pj with an instruction to issue a shared memory write, p0j has instructionsto idle and then an instruction to perform the shared memory write at the same time as (3)of the previous case.The sequence of instructions for a test&set operation ensure that if the old value is 0, then exactlyone processor returns a zero, the rest return a 1, and the location is set to 1. If the old value is not0, then all processors return the old value, and the location is set to 1. The idle steps ensure thatthe processors remain in sync, and do not interfere with a test&set emulation in progress.The t-write pram will take constant time for each crqw asynchronous pram instruction.Thus the time on the t-write pram is O(t). Since the asynchronous pram program is requiredto be correct (and terminate) regardless of the relative progress made by the processors, then inparticular it is correct (and terminates) under the speci�c timing of events used by the t-write pramemulation.The above lemma leads to the following theorem that gives the desired lower bound.Theorem 3.3 Any deterministic algorithm for computing the or function on a crqw asynchro-nous pram with arbitrarily many processors requires
(lgn= lg lgn) time.Proof. Dietzfelbinger, Kutylowski and Reischuk [DKR94] proved an
(lgn= lg�) lower bound forthe or function on the �-write pram. Let T be the time for the or function on the crqw asyn-chronous pram. Then by Lemma 3.2, the or function can be computed on the T -write pram inO(T) time. Thus T =
(lgn= lgT), and hence T lgT =
(lgn). Now if T = o(lgn= lg lgn), thenlgT = o(lg lgn), contradicting T lgT =
(lgn). Thus T =
(lgn= lg lgn).4 SortingWe consider the problem of general sorting, i.e. sorting an array of n keys from a totally-orderedset. On the erew pram, there are two known O(lgn) time, O(n lgn) work algorithms for generalsorting [AKS83, Col88]; these deterministic algorithms match the asymptotic lower bounds for gen-eral sorting on the erew and crew pram models. Unfortunately, these two algorithms are not assimple and practical as one would like.Another relatively simple parallel sorting algorithm is a randomized pn-sample sort algorithmfor the crew pram that runs in O(lgn) time, O(n lgn) work, and O(n1+�) space [Rei85]. Thisalgorithm consists of the following high-level steps: (1) randomly sample pn keys, (2) sort thesample by comparing all pairs of keys, (3) each item determines by binary search its position amongthe sorted sample and labels itself accordingly, (4) sort the items based on their labels using integersorting, and (5) recursively sort within groups with the same label. When the size of a group is atmost lgn, �nish sorting the group by comparing all pairs of items.In an earlier paper [GMR96a] we build on this pn-sample sort algorithm and obtained anO(lg2 n= lg lgn) time, O(n lgn) work, O(n) space randomized sorting algorithm, on the qrqw pram.In this section, we present a simple sorting algorithm on the qrqw asynchronous pram thatruns in O(lgn) time with O(n lgn) work w.h.p. The algorithm is almost the same as the O(n lgn)-work algorithm for the qrqw pram given in [GMR96a], but we are able to bring down the runningtime from �(lg2 n= lg lgn) to O(lgn) by making e�ective use of asynchrony. In particular we analyzethe progress of elements through the binary search fat-trees and establish that the time taken by allelements to proceed through the binary search fat-trees at all recursive levels is O(lgn) w.h.p. Ouralgorithm uses O(n lgn) space. 8

We start by reviewing the high-level algorithm, which is the same for the qrqw pram and theqrqw asynchronous pram.Algorithm A.Let � be any constant such that 0 < � < 1=2. Let n = n0 be the number of input items, and fori � 1, let ni = (1 + 1= lgn) � n 12+�i�1 :W.h.p., ni is an upper bound on the number of items in each subproblem at the ith recursive callto A [GMR96a].For subproblems at the ith level of recursion:1. Let S be the set of at most ni items in this subproblem. Select in parallel pni items drawnuniformly at random from S.2. Sort these sample items by comparing all pairs of items, using summation computations tocompute the ranks of each item, and then storing the items in an array B in sorted order.Move every (n�i)th item in B to an array B0.3. For each item v 2 S, determine the largest item, w, in B0 that is smaller than v, using a binarysearch on B0. Label v with the index of w in B0.4. Place all items with the same label into a subarray of size �(n1=2+�i) designated for the label,using heavy multiple compaction W.h.p., the number of items with the same label is at mostni+1 and thus the heavy multiple compaction succeeds in placing all items in each such groupinto its designated subarray.5. Recursively sort the items within each group, for all groups in parallel. When ni+1 is at most2(lgn)1=2 , �nish sorting the group using the erew pram bitonic sort algorithm [J�aJ92]. Thiscut-o� point su�ces for n su�ciently large; for general n, the cut-o� point is maxf2(lgn)1=2 ;lgc ng, for c > 6=� a suitable constant.In step 4 we use \relaxed" heavy multiple compaction, which reports failure if a set size exceeds itsupper bound count [GMR96a]. If failure is reported for any subproblem, we restart the algorithmfrom the beginning.To implement Algorithm A on a qrqw pram or qrqw asynchronous pram, we must incor-porate techniques that use only low-contention steps. The main obstacle is step 3, in which eachitem needs to learn its position relative to the sorted sample. A straightforward binary search onB0 would encounter �(n) contention. Instead, we employed the following data structure:Binary search fat-tree. In a binary search fat-tree, there are n copies of the root node, n=2copies of the two children of the root node, and in general, n=2j copies of each of the 2j distinctnodes at level j down from the root of the tree. The added fatness over a traditional binary searchtree ensures that, if n searches are performed in parallel such that not too many searches result inthe same leaf of the (non-fat) tree, then each step of the search will encounter low contention.The process of fattening a search tree can be done in O(lgn) time and O(n lgn) work usingbinary broadcasting.In the case of our qrqw asynchronous pram sorting algorithm, at the ith level of recursionwe make 2�ni copies of the median splitter, 2�ni=2 copies of the 1/4 and 3/4 splitters, and so forth,down to 2�n1=2+�i copies of the n1=2��i splitters in the leaves of the tree, for � > 2 a suitable constant.9

We will continue to call this a `binary search fat-tree' although the number of copies in each leveldi�ers by a constant factor from the number in the original de�nition.The key to our O(lgn) time implementation of algorithmA on the qrqw asynchronous pramis that, in the qrqw asynchronous pram, processors can proceed through the binary search fat-tree at their own pace. To obtain our result, we show that for each element, the sum of thecontentions it encounters during the binary search process is O(lgn), as shown below.Lemma 4.1 Let � > 2, c � � � 1, a � 0, and � = lg c= lg(�=2). Let x1; : : : ; xm be independentrandom variables over the positive integers so that Prob (xi = u) � c��u for all u > 0. Let Sm =x1 + � � �+ xm, for m � 1 and S0 = 0. Then,Prob (Sm � �m + a) � ��2��a : (1)Proof. The proof is by induction on m.The base case is m = 0: If a = 0 then Prob (S0 � a) = 1 = ��2��a. If a > 0 thenProb (S0 � a) = 0 < ��2��a.We assume inductively that (1) holds for m � 1 and proof the induction step for m > 0.Prob (Sm � �m + a) = 1Xi=�1Prob (xm = i ^ Sm�1 � �m + a � i)by independence= 1Xi=�1Prob (xm = i) �Prob (Sm�1 � �m + a� i)since xi > 0= (��1)m+a+1Xi=1 Prob (xm = i) �Prob (Sm�1 � �m + a� i)by assumption� (��1)m+a+1Xi=1 c��i �Prob (Sm�1 � �m + a� i)� (��1)m+a+1Xi=1 c��i �Prob (Sm�1 � �(m� 1) + a + �� i)by induction� (��1)m+a+1Xi=1 c��i ���2��(a+��i)= ��2��a � c ���2��� (��1)m+a+1Xi=1 ��i ���2�i= ��2��a � c ���2��� (��1)m+a+1Xi=1 12i< ��2��a � c ���2���� = lg c= lg(�=2)� ��2��a :10

Consider an input element e in the sorting algorithm. Let xi;j be the number of other elementsaccessing the same memory location as the location accessed by e in the ith step of the search throughthe binary search fat-tree in the jth level of recursion, i = 1; : : : ; lgnj=2, j = 0; : : : ; c0 lg lgn, wherec0 is chosen so that c0 lg lgn corresponds to the last level of recursion before we switch to bitonicsort.Lemma 4.2 There exist � > 2 and c > � � 1 such that for i = 1; : : : ; lgnj=2, j = 0; : : : ; c0 lg lgn,Prob (xi;j � u) � c��u for all u > 0.Proof. Let n0 be the number of elements in the subproblem. W.h.p., n0 � 2nj. Also, size of thefat-tree array for the ith level is 2 � �nj . We choose � > 2 and c = �.Prob (xi;j � u) � C(n0; u)(1=2�nj)u w:h:p:� ((2nj)u=u!)(1=2�nj)u = (1=u!)(1=�)u � c � ��uWe now consider the cumulative delay of any element through fat-trees at all levels of recursion.Lemma 4.3 The cumulative delay of any element through fat-trees at all levels of recursion isO(lgn) w.h.p.Proof. Consider an element k in a subproblem in the jth level of recursion. Let yi = xi;j bethe contention of element k in the ith level of the fat-tree in this subproblem. By Lemma 4.2,Prob (yi � u) < � � ��u (where we have set c = �). This assumes that the splitters are good, whichis true w.h.p. We also assume �=2 > 2.The delay of element k through all levels of the fat-tree in the subproblem at the jth level ofrecursion is Plgnji=1 yi. Let � = lg �= lg(�=2). Then, by Lemma 4.1Prob0@(lg njXi=1 yi) > (� + 2) lgnj + a1A < (�=2)�(a+2 lgnj)Let �j be the time for all elements in the subproblem to complete their search through the fat-treein a subproblem at level j.Prob (�j > � lgnj + a) < nj � (�=2)�(a+2 lgnj) < (�=2)�(a+lg nj)The cumulative delay for element k through all levels of recursion is tk = Pc0 lg lgnj=1 �j.Let � 0j = �j � � lgnj. Let t0k =Pc0 lg lgnj=1 � 0j. Thustk = c0 lg lgnXj=1 �j = c0 lg lgnXj=1 � 0j + c0 lg lg nXj=1 (� lgnj) < (w:h:p:) t0k + 2� lgn :Now, Prob�� 0j > a� < (�=2)�a11

and since �=2 > 2, we have by Lemma 4.1,Prob (t0k > �c0 lg lgn + a) < (�=4)�aand therefore Prob (t0k > �c0 lg lgn + b � lgn) < (�=4)�b lgn < n�bsince � > 4. This implies thatProb (9tl > �c0 lg lgn + (b + 2�) lgn) < n�(b�1) :Thus the cumulative delay of any element through fat-trees at all levels of recursion is O(lgn)w.h.p.Hence the qrqw asynchronous pram sorting algorithm terminates in O(lgn) time w.h.p.5 Emulating Fetch&Add PRAM on QRQW AsynchronousPRAMThe fetch&add pram model [GGK+83, Vis83] is a strong, non-standard variant of the crcwpram. In this model, if two or more processors attempt to write to the same cell in a given step,then their values are added to the value already written in the shared memory location and allpre�x sums obtained in the (virtual) serial process are recorded. The fetch&add pram is strictlystronger than the standard variants of the crcw pram. Indeed, each step of a (standard) crcw canbe easily emulated by a single step of the fetch&add pram, using the same number of processors.On the other hand, the parity and the pre�x sums problems with input size n can be solved inconstant time on a fetch&add pram using n processors, while requiring
(lgn= lg lgn) (expected)time on a crcw pram when using nc processors, for any constant c > 0 [BH89].In this section we give an emulation of one fetch&add pram step on a qrqw asynchronouspram that takes sub-logarithmic time for moderate contention. Our emulation result is:Theorem 5.1 One step of an n-processor fetch&add pram, and hence of any standard n-processor crcw pram, can be emulated on an n-processor qrqw asynchronous pram inO(lgn= lg lgn + lg k) time with high probability, where k is the maximum contention (k unknown).Proof. Assume that the fetch&add pram has memory [1::m]. In one step of a fetch&addpram the processors are partitioned into n0 � n sets �i1 ;�i2 ; : : : ;�in0 , where each set �ij consistsof the processors that read or \write" memory cell ij 2 [1::m]. The emulation algorithm deals witheach set separately, assuming that each set has an allocated memory of size O(n). The algorithm isdescribed for one such set, �ij . The same structure is used for both the read step and the write step.For either a fetch&add or a more standard concurrent write, we denote the value each processorin �ij is attempting to write to cell ij as its \contents".A leader for the set �ij is elected by establishing an interconnecting structure among the proces-sors in �ij : this structure enables combining the contents of all the processors in �ij for the writestep, and it enables broadcasting the information from memory cell ij to all the processors in �ij inthe read step. Both combining and broadcasting procedures use a structure described next.The underlying structure. Consider a full binary tree T of n leaves, and let s = lgn= lg lgn.In the tree T we consider O(s) hopping levels: the i'th hopping level in T is the level containingdn=sie nodes. Thus, the leaves are in the 0'th hopping level, and the root is in hopping level12

ir = dlgn= lg se = �(lgn= lg lgn). The interconnecting structure is a hybrid structure over T . Itsmain component is a \hopping tree" HT whose nodes are a subset of the nodes in the hopping levelsof T . The complementary structure is a \bridging tree" BT|a subtree of T whose leaves are asubset of the leaves of T and whose root is the root of T .The trees HT and BT are determined (implicitly) in the following:Initialization step:� Let each processor in �ij select at random one leaf v of T , and move to v.By \moving" into a node we mean that the processor associates itself to the node (i.e., the node'sname is written in a local register), but no other operation is being done. The bridging tree BT isde�ned to be the subtree of T consisting of the leaves that are selected in the initialization step andtheir ancestors in T . The nodes of the hopping tree HT are the nodes of BT that are in the hoppinglevels of T . The edges of HT are de�ned as follows: the parent (in HT) of a node in hopping level iis its ancestor in hopping level i + 1 of T , for i = 0; : : : ; ir � 1. Note that each node in the hoppingtree can have up to s children.The interconnection structure through which the actual combining and broadcasting proceduresoccur is a combination of the hopping tree and a subset of the bridging tree. Each processor handlestwo processes, one for each tree. The idea is to have processes advance from the leaves of T towardsits root, and have them combined whenever two or more processes arrive at the same node in T .The bridging tree consists of the nodes that would be visited if each process advances from a nodeto its parent in T . Such process would clearly take �(lg n) steps. The hopping tree is used toaccelerate the pace in which processes advance. By moving from one hopping level to the next, aprocess can reach from a leaf to the root of T in O(lgn= lg lgn) hopping steps. The problem isthat hopping steps may take non-constant time, due to contention with other processes for the samehopping nodes, and therefore using the hopping tree all the way to the root may be too expensive.A solution would be to use hopping steps up to the hopping level ik that has O(k2s) nodes (recallthat k is the maximum contention of the step), which can be shown to take O(s) time, and proceedfrom there through the bridging tree, taking O(lg(k2s)) = O(s + lg k) time. The situation howeveris complicated by the fact that k is unknown, so the hopping level ik is unknown. The combiningprocedure presented next uses both the hopping tree HT and the bridging tree BT in parallel so asto enable this combination to occur without relying on a knowledge of k.The combining procedureWe would like each processor to advance from its selected leaf in T towards the root of T . Thecombining algorithm consists of hopping steps and bridging phases. In the hopping steps processorsadvance one level on the hopping tree. In the bridging phase processors advance O(lg s) levels onthe bridging tree.The hopping step. At each step of the algorithm, a processor may try to write into some node vin HT . Let �(v) be the set of processors that try to write into the node v. If v is a leaf then �(v) isthe set of processors that selected v in the initialization step. If v is an internal node then �(v) is theset of processors that have previously accessed nodes that are a children of v in HT . Thus, for aninternal node v, j�(v)j is the number of children of v in HT . A winner from �(v) can be selected inconstant time, and in O(j�(v)j) time all the processors in �(v) can know the identity of the winner.The contents of the processors in �(v) can be combined into a single word in O(j�(v)j2) time; withinthe same time, a list of all processors in �(v) may be computed and stored at v. Winners in hoppinglevel i proceed to the next hopping level i + 1 with the combined contents; the winner of a set �(v)will now try to write into the parent of v in HT . The hopping step thus consists of the followingsubsteps: 13

� select a winner: Each processor P 2 �(v) attempts to claim the node v using the Test&Setprimitive; the winner records its index with v.� move the winner to the parent of v in HT .� combine data and create list: repeat j�(v)j times:1. select a winner;2. combine data: the winner adds its contents into the combined data;3. append list: the winner adds its index to list(v);4. remove the winner from �(v).Note that the winner moves into the next level in HT in one step. It takes however O(j�(v)j2)time to combine the data and create a list of processors, due to the contention. A slight complicationarises when taking the asynchrony into account. Some processors of �(v) may be arriving at v afterother processors had already combined their data. Late arrivals are handled separately; thus, arrivaltime partitions �(v) into subsets �1(v);�2(v); : : : such that all processors in �j(v) arrive at v afterall processors in �j�1(v) had �nished their hopping step. For each subset there is a winner thatproceeds to the next level in HT .The bridging phase. Processors can also advance in the bridging tree similarly to the hoppingtree: a winner at a node u will try to access in the next step the parent v of u in BT . Let �0(v)be the set of processors that try to write into the node v in BT . For each node v 2 BT we havej�0(v)j � 2, and therefore advancing by one level at the bridging tree takes constant time. As aresult, a node in hopping level i will receive the combined contents of all its children in hopping leveli � 1 (in HT) after O(lg s) steps; denote this as a bridging phase. Evidently, a bridging phase isfaster than a hopping step for nodes v such that j�(v)j > plg s. Dealing with asynchrony is similarto that of the hopping step.The combined strategy. During the combining procedure we do not know in advance the valuesof j�(v)j, v 2 HT , and we therefore cannot predetermine whether HT or BT should be used fromone hopping level to the other. Therefore, we let the combining procedure advance in parallel inboth trees HT and BT . The combined contents may eventually arrive at the node v in two copies,one through HT and one through BT . Due to the asynchrony among the processors, we are able toproceed when the �rst copy arrives, without waiting for the other copy to arrive. To implement thehybrid strategy, we let a winner in a node u in hopping level i spawn into two processes. One willtry to advance by a hopping step directly to u's parent v in HT (in hopping level i + 1), and theother will advance by a bridging phase in the bridging tree BT . When either process arrives at thenode v, it �rst checks if the other process has already arrived at this node. If this is the case, theprocess halts; otherwise, it marks its arrival and goes on with the combining algorithm.The spawning technique should be controlled carefully as it is implemented by only a singleprocessor as it advances through the two trees. Whenever a hopping step terminates before thecorresponding bridging phase, the terminating process halts the bridging phase and retrieves thesecond process for the next hopping step. Note that in the bridging phase, a processor only accessesmemory cells with constant contention, hence retrieving the second process takes constant time.We note that this is not quite the case with the processor implementing the hopping step, since anaccess with high contention (up to s) may occur. However, it is shown in the analysis below thatthe probability for the bridging phase to terminate before the hopping step is negligible, unless theprocess has arrived at hopping level i, in which there are ni � (k � 2s)c nodes for some constant c.Therefore, once the bridging phase terminates before the hopping step we assume that we are pastthe hopping level i and we go on with the bridging phases only; we do not wait for the hopping stepto terminate.There is one issue to be taken care of regarding the halting of a bridging process. Such processmay be already combined with another process in the bridging tree. Due to asynchrony, the other14

process may get to the next hopping level before its corresponding hopping step will terminate. Toprevent possible confusion, whenever a hopping step terminates before the corresponding bridgingphase, we make sure that all the hopping steps into the same node will also be considered as if theyhad terminated before their corresponding bridging phases. This is easy to implement regardingprocesses that have not terminated yet, by leaving an appropriate mark at the node. However, theremay be processes for which both the hopping step and bridging phase had already terminated, withthe latter being �rst. To handle such processes, we keep a list of all processes that have terminatedat a node; whenever a hopping step is terminating, it appends itself to this list. This list will enablea processor to notify all the appropriate processors about their new status; they will learn it whenneeded.AnalysisLet � > 1 be an arbitrary constant and let c; c0 > 0 be (su�ciently large) constants to be de-termined later. Consider a hopping level i with ni = (k � 2s)c nodes, and let ~�i = fP 2 �(v) :v in hopping level ig; i.e., ~�i is the set of processors trying to write into any node in hopping leveli. After the processors of ~�i arrive at hopping level i, the combining procedure for these processorswill take O(lgni) = O(lg k + s) time, using the bridging phases over the tree BT .Recall that the time it takes a processor to advance at some node w is deg(w)2, where deg(w) isthe number of children of w in HT . For a node v in HT , let Lv be the set of leaves of the sub-treeof HT rooted at v, and let Xv = jLvj. Consider a path p from a node v to a leaf u in Lv. For everypair of nodes w1 and w2 that are not on the path p but their parents are in p, the sets Lw1 and Lw2do not have any common leaf. Therefore, the total time it takes a processor to advance from theleaf u to node v along the path p isXw2p deg(w)2 = Xw2p(deg(w)� 1)2!+ Xw2p 2 deg(w)! + jpj � X2v + 2Xv + O(lgn= lg lgn) :Xv is a random variable whose outcome is determined in the initialization step. Speci�cally, if v isin hopping level i then each processor in ~�i selects a leaf in Lv with probability 1=ni. Since j~�ij � k,Xv is stochastically smaller than a binomial Yv with parameters (k; 1ni); recall that ni = (k � 2s)c.By Cherno� bounds,PrfXv > psg � PrfYv > psg � �eE(Yv)ps �ps = � e � k(k � 2s)c � ps�ps < 2�c0sps < n�� ;where the last two inequalities hold for appropriately selected constants c; c0 > 0.Therefore, with high probability all processors in ~�i arrive at hopping level i in O(s) time.Moreover, if a bridging phase terminates before its corresponding hopping step then with very highprobability the processes have arrived at hopping level i for which ni � (k � 2s)c, as required.The broadcasting procedureFor the (standard) crcw pram a read step is executed by broadcasting the datum at memory cellij to all the processors in �ij . The broadcasting procedure uses the structure that was built in thecombining procedure, and is essentially based on reversing the execution of the combining procedure,broadcasting the data backwards from the root of T to the leaves. The data is broadcasted fromthe i'th hopping level to the (i � 1)'st hopping level using either the analog to the hopping step,or the analog to a bridging phase, depending on which has terminated earlier during the combiningprocedure (this information can be recorded). 15

In case the hopping step is selected, the broadcasted datum x will be written at a node v by thewinner of �(v). Then, the processors in �(v) read x, and each processor P 2 �(v) writes x at thenode u, the child of v in HT , in which P was a winner in the combining procedure. Letting theprocessors of �(v) probe a shared memory cell in v in search for the broadcasted datum x may betoo costly. Instead, we let each processor have a designated register into which x will be written bythe winner of �(v). Thus, each processor in �(v) can repeatedly probe its designated register withonly constant time cost. The list list(v) of �(v), computed at the hopping step of the combiningprocedure and kept at the node v, will enable the winner of �(v) to distribute x to the processorsin �(v) in O(j�(v)j) time.Broadcasting for the Fetch&Add PRAM. Recall that in the fetch&add pram model pro-cessors are given arbitrary rank, a pre�x sums sequence of the written values together with the valuex (in the memory cell) is computed, and each processor receives its appropriate pre�x sum. It iseasy to see that broadcasting the appropriate pre�x sums is the reversal of the combining procedurewith minor modi�cations, except for the fact that now the list of processors is already given andthe time complexity is therefore O(j�(v)j). As in the combining procedure, asynchrony adds somecomplications due to possible late arrivals of processors. We note however that processors that arrivelate can be given higher rank in the pre�x sums sequence; hence their value will not a�ect the valuesthat are broadcasted to processors with smaller rank. Late arrivals can therefore be handled in thebroadcasting step similarly to the way they are handled in the combining step.The theorem follows.We note that the one-step emulation above cannot be used directly for multi-step emulationsince a synchronization barrier is required after each step. It is an interesting open problem to seewhether it may become useful for such emulation.6 DiscussionThe cost metric for the qrqw asynchronous pram is tailored towards ease of use and is meantto model asynchronous systems in which processors run at more or less the same rate. On theother hand, algorithms must be correct under worst case assumptions on the �nite delays incurredby processors and in processing memory requests. This separation of correctness from analysis,with correctness accounting for asynchrony but analysis assuming synchrony, was pioneered byGibbons [Gib89] and has been subsequently adapted by several other asynchronous models such asthe LogP model [CKP+93].As an example of the ease of designing algorithms under such a cost metric consider designing analgorithm to �nd the maximum of n numbers on an asynchronous parallel machine. On the qrqwasynchronous pram we have a simple linear work algorithm using n= lgn processors that basicallymimics the standard erew pram algorithm. Each processor works on a block of lgn elements inthe input and �nds their maximum. The processors then cooperate to compute the maximum ina `binary tree' computation. In case a value that is wanted by a processor is not yet available theprocessor waits for that value to be written. Under the qrqw asynchronous pram cost metricthis algorithm takes 2 lgn time. The algorithm is simple with low overheads, and correct regardlessof any asynchrony among the processors of the asynchronous parallel machine. In case of smalldelays among the machine processors the running time will increase only slightly.This algorithm can be contrasted with algorithms designed using asynchronous models whosecost metrics account for more general asynchrony among the processors. For example, Martel etal. [MPS92] describe a randomized algorithm to compute the maximum of n numbers on their a-pram model, a model whose cost metric accounts for worst case asynchrony. Despite assuming amore powerful crcw contention rule, the expected running time of this algorithm is greater than16

10 � lgn time even if all processors execute at the same rate. This extra overhead is due to designingfor a cost metric that accounts for worst case asynchrony. The advantage of this algorithm arisesonly in cases of very large delays among the machine processors.Most asynchronous models, e.g. [CZ89, CZ90, Nis90, And92, AR92, DHW93, LAB93], account formore general asynchrony among the processors in their cost metrics, and hence algorithms designedusing these models su�er from similar overheads in order to more robustly handle cases with verylarge delays.We should point out though, that the qrqw asynchronous pram cost metric is open to abuseas shown by the following example involving two processors P1 and P2:P1 P2x := 0 y := 0x := 1 y := 1if (x = y) then do short computationelse do very long computationwhere both the short computation and the very long computation produce the same (correct) output.Under the cost metric for the qrqw asynchronous pram, this computation will take only ashort time. However, if processor P2 is delayed more than processor P1 then the test x = y willreturn false resulting in a very long computation. None of the algorithms we have presented in thispaper have this property of transforming into a dramatically slower algorithm if di�erent processorsencounter slightly di�erent delays. However the above example shows that it is possible to designsuch algorithms under our cost metric. It would be interesting to come up with a cost metric thatpenalizes large changes in running time in the presence of small delays while at the same timeretaining the advantages of our current cost metric.7 ConclusionsIn this paper we have de�ned the qrqw asynchronous pram and presented some algorithmicresults for the model. In particular, we have shown two instances in which we have better algorithmsfor the qrqw asynchronous pram than those known for the qrqw pram. The �rst is forcomputing the or of n bits for which we described a simple deterministic linear work algorithm thatruns in O(lgn= lg lgn) time; we also showed that this bound is tight. In contrast, no deterministicsub-logarithmic time algorithm for this problem is known for the qrqw pram. The second result isan implementation of the randomized sample sort algorithm that runs in O(lgn) time and O(n lgn)work on the qrqw asynchronous pram; the fastest implementation known for this algorithm onthe qrqw pram runs in O(lg2 n= lg lgn) time. We have also shown adaptations of several qrqwpram algorithms to the qrqw asynchronous pram with the same work-time bounds and asimulation of a fetch&add pram on the qrqw asynchronous pram.Additional results for the qrqw asynchronous pram can be found in a recent paper byAdler [Adl96]. That paper presents a number of new results on low-contention search structures,beyond the binary search fat-tree considered in this paper.One interesting direction for future work is to develop a good emulation of the qrqw asynchro-nous pram on a distributed memory machine model such as the bsp. In [GMR96b] we presented anoptimal work emulation of the qrqw pram on the bsp with only a logarithmic slowdown. It appearsthat the strategy used in that emulation does not carry over directly to the qrqw asynchronouspram and new insights are needed. Alternatively, one could consider developing good emulationresults by imposing suitable restrictions on the qrqw asynchronous pram.17

References[ABM93] Y. Afek, G. M. Brown, and M. Merritt. Lazy caching. ACM Trans. on ProgrammingLanguages and Systems, 15(1):182{205, 1993.[Adl96] M. Adler. Asynchronous shared memory search structures. In Proc. 8th ACM Symp. onParallel Algorithms and Architectures, pages 42{51, June 1996.[AJ96] C. Armen and D. B. Johnson. Deterministic leader election on the Asynchronous QRQWPRAM. Parallel Processing Letters, 1996. To appear.[AKS83] M. Ajtai, J. Komlos, and E. Szemeredi. Sorting in c lgn parallel steps. Combinatorica,3(1):1{19, 1983.[And92] R. J. Anderson. Primitives for asynchronous list compression. In Proc. 4th ACM Symp.on Parallel Algorithms and Architectures, pages 199{208, June-July 1992.[AR92] Y. Aumann and M. O. Rabin. Clock construction in fully asynchronous parallel systemsand PRAM simulation. In Proc. 33rd IEEE Symp. on Foundations of Computer Science,pages 147{156, October 1992.[BGMZ95] G. E. Blelloch, P. B. Gibbons, Y. Matias, and M. Zagha. Accounting for memory bankcontention and delay in high-bandwidth multiprocessors. In Proc. 7th ACM Symp. onParallel Algorithms and Architectures, pages 84{94, July 1995.[BH89] P. Beame and J. H�astad. Optimal bounds for decision problems on the CRCW PRAM.Journal of the ACM, 36(3):643{670, July 1989.[CKP+93] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian,and T. von Eicken. LogP: Towards a realistic model of parallel computation. In Proc.4th ACM SIGPLAN Symp. on Principles and Practices of Parallel Programming, pages1{12, May 1993.[Col88] R. Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770{785, 1988.[CZ89] R. Cole and O. Zajicek. The APRAM: Incorporating asynchrony into the PRAM model.In Proc. 1st ACM Symp. on Parallel Algorithms and Architectures, pages 169{178, June1989.[CZ90] R. Cole and O. Zajicek. The expected advantage of asynchrony. In Proc. 2nd ACMSymp. on Parallel Algorithms and Architectures, pages 85{94, July 1990.[DHW93] C. Dwork, M. Herlihy, and O. Waarts. Contention in shared memory algorithms. InProc. 25th ACM Symp. on Theory of Computing, pages 174{183, May 1993.[DKR94] M. Dietzfelbinger, M. Kuty lowski, and R. Reischuk. Exact lower time bounds for com-puting boolean functions on CREW PRAMs. Journal of Computer and System Sciences,48(2):231{254, 1994.[GGK+83] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuli�e, L. Rudolph, and M. Snir. TheNYU Ultracomputer { designing an MIMD shared memory parallel computer. IEEETrans. on Computers, C-32(2):175{189, 1983.[Gib89] P. B. Gibbons. A more practical PRAM model. In Proc. 1st ACM Symp. on ParallelAlgorithms and Architectures, pages 158{168, June 1989. Full version in The Asyn-chronous PRAM: A semi-synchronous model for shared memory MIMD machines, PhDthesis, U.C. Berkeley 1989. 18

[GLL+90] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.Memory consistency and event ordering in scalable shared-memory multiprocessors. InProc. 17th International Symp. on Computer Architecture, pages 15{26, May 1990.[GM92] P. B. Gibbons and M. Merritt. Specifying nonblocking shared memories. In Proc. 4thACM Symp. on Parallel Algorithms and Architectures, pages 306{315, June-July 1992.[GMG91] P. B. Gibbons, M. Merritt, and K. Gharachorloo. Proving sequential consistency ofhigh-performance shared memories. In Proc. 3rd ACM Symp. on Parallel Algorithmsand Architectures, pages 292{303, July 1991.[GMR93] P. B. Gibbons, Y. Matias, and V. Ramachandran. QRQW: Accounting for concurrency inPRAMs and Asynchronous PRAMs. Technical report, AT&T Bell Laboratories, MurrayHill, NJ, March 1993.[GMR96a] P. B. Gibbons, Y. Matias, and V. Ramachandran. E�cient low-contention parallelalgorithms. Journal of Computer and System Sciences, 1996. To appear. Preliminaryversion appears in Proc. 6th ACM Symp. on Parallel Algorithms and Architectures, pages236-247, June 1994.[GMR96b] P. B. Gibbons, Y. Matias, and V. Ramachandran. The Queue-Read Queue-Write PRAMmodel: Accounting for contention in parallel algorithms. SIAM Journal on Computing,1996. To appear. Preliminary version appears in Proc. 5th ACM-SIAM Symp. on DiscreteAlgorithms, pages 638-648, January 1994.[J�aJ92] J. J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, MA, 1992.[KR90] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines.In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume A, pages869{941. Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 1990.[LAB93] P. Liu, W. Aiello, and S. Bhatt. An atomic model for message-passing. In Proc. 5thACM Symp. on Parallel Algorithms and Architectures, pages 154{163, June-July 1993.[Lam79] L. Lamport. How to make a multiprocessor computer that correctly executes multipro-cess programs. IEEE Trans. on Computers, C-28(9):690{691, 1979.[MPS92] C. Martel, A. Park, and R. Subramonian. Work-optimal asynchronous algorithms forshared memory parallel computers. SIAM Journal on Computing, 21(6):1070{1099, 1992.[Nis90] N. Nishimura. Asynchronous shared memory parallel computation. In Proc. 2nd ACMSymp. on Parallel Algorithms and Architectures, pages 76{84, July 1990.[Rei85] R. Reischuk. Probabilistic parallel algorithms for sorting and selection. SIAM Journalon Computing, 14(2):396{409, May 1985.[Rei93] J. H. Reif, editor. A Synthesis of Parallel Algorithms. Morgan-Kaufmann, San Mateo,CA, 1993.[Smi95] B. Smith. Invited lecture, 7th ACM Symp. on Parallel Algorithms and Architectures,July 1995.[Vis83] U. Vishkin. On choice of a model of parallel computation. Technical Report 61, De-partment of Computer Science, Courant Institute of Mathematical Sciences, New YorkUniversity, 251 Mercer St., New York, NY 10012, 1983.19

