Generalized Quantitative Temporal Reasoning!

E. A. Emerson Richard J. Trefler

July 17, 1996

Abstract

Reactive systems form a large and important class computing systems. Temporal logic has proven
to be a very expressive formalism for describing such systems. Model checking provides an automated
proof technique for ensuring that a reactive system satisfies correctness properties specified in temporal
logic. In this paper we discuss real time extensions to certain temporal logics and give model checking
algorithms for these extensions.

1 Introduction

In a landmark paper, [Pn77], Pnueli identified a very general and important class of computing systems
now called ‘reactive systems’ (cf. [HP85] [Pn86]). Characterized by their ongoing behavior, reactive systems
and their sub-components interact with an environment over which they have little control. Such systems,
e.g. operating systems, tend to be quite complex and they have necessitated the development of powerful
tools for their verification. In [Pn77] it was argued that temporal logic is a highly appropriate formalism for
specifying and verifying the ongoing operation of reactive systems.

CTL (Computation Tree Logic) [Em81] [CE81], because it has an efficient model checking algorithm [CE81],
is an especially useful kind of temporal logic. Formulae of CTL include the operators ‘A,” ‘G’ and ‘F’ meaning,
respectively, ‘for all computations,” ‘at all states of a computation’ and ‘at some point in a computation.’
Using these operators CTL and its related logics can express qualitative properties of reactive systems. For
example, one can express the requirement that ‘every request from a client should be met with a response
from the server’ as AG(request = AFresponse).

Recently, however, 1t has been recognized that in many applications the specification of correct operation
requires quantitative as well as qualitative properties. Real time systems, those systems whose correct
operation includes time critical specifications, require such quantitative analysis. RTCTL (Real Time CTL)
[EMSS90] is an example of a logic designed to express timing considerations. RTCTL adds to the syntax
of CTL, operators like ‘F<®” which, informally, means ‘at some time along a computation before more than
five time units have elapsed.” With this formalism we can express properties like ‘every request from a
client should be met with a response from the server within five time units’ as AG(request = AF<5response).
The surge of interest in real time systems has led to a number of formalisms proposing to deal with the
technicalities of real time; many of the these formalisms are quite complex.

In this paper we present a simple but general framework for handling an enriched class of quantitative
problems. Our formalism is an extension of RTCTL that employs natural notations from formal language
and automata theory. An example of the types of specifications we are interested in, a constraint on the set
of computations of a system, is exhibited below.

If the server ever receives three consecutive requests from a client, and the server has issued no
response since receiving the first request, then the server will issue a response before receiving a

t This work was supported by NSF grant CCR9415496

fourth request. This is expressed as G((request + response " request)®true =((Tesponse * response)N
(request " request)<3)true).

(request + response*request) is a requirement on strings of system actions that is satisfied when a string
contains request as the last element of the string and no occurrences of either request or response anywhere
else in the string. (request + response*request)?’ specifies three consecutive occurrences of strings satisfying
(request + response*request), l.e. ‘request’ occurs three times and ‘response’ has not occurred. true is

satisfied by any computation therefore the sub-formula (request + response*request)?’true is satisfied by
any computation with a prefix satisfying (request + response*request)?’. Similarly, ‘((Tesponse ~ response) N
(request*request)SB)’ specifies that one ‘response’ has occurred while less than four ‘request’s have occurred.

Verifying that a reactive system obeys a specification, written as a formulain one of the formalisms mentioned
above, can be accomplished with a technique known as model checking [CE81]. Model checkers answer the
question ‘given a specific reactive system M and a formula ¢, do all computations of M satisfy the formula
¢?7" We present efficient extensions of existing model checking algorithms that allow us to model check
formulae of our language over general representations of reactive systems.

Section 2, below, gives the syntax and semantics of the quantitative and qualitative languages analyzed in
the remainder of the paper. Model checking for the quantitative linear time logic RTPLTL+ is described
and analyzed in Section 3. Section 4 contains some interesting specifications and their translations into
RTPLTL+4. Section 5 is devoted to algorithms for model checking the branching real time logic RTCTL+
and an analysis of these algorithms. Example specifications written in RTCTL+ syntax are given in Section 6.
Finally, section 7 is a discussion of related and future work.

2 Preliminaries

2.1 Syntax

Below we present a unified syntax for CTL, Propositional Linear Time Logic (PLTL) [Pn77], CTL" and
certain quantitative extensions, viz., RTCTL, RTPLTL, RTCTL+, RTPLTL+ and RTCTL*+.

We use the symbol AP to denote the set of underlying atomic proposition symbols. ACT denotes the set
of atomic action symbols. Elements of AP will be represented by P, @, etc., elements of ACT by B,C, D,
ete., and N will represent the set of non-negative integers.

Semantics of these formulae will be presented in terms of a structure M = (S, R, L), where S is a set of
states, R is a transition relation on the set of states, and L is a function that labels states and transitions
with subsets of AP and elements of ACT respectively. Formulae true or false of states in the structure
are denoted ‘state’ formulae. Formulae true or false of the paths through M are denoted ‘path’ formulae.
‘Regular’ formulae are also modeled on paths and describe the actions which occur along the paths.

Let k € N, B € ACT then a term is of the form ‘4B’, ‘< kB’ and ‘> kB.” A counting expression ce is a
boolean combination of terms. As a shorthand we will write ‘1B’ as B.

The state formulae are defined as follows:

S1. Each atomic proposition P is a formula.

S2. If f and g are state formulae then so are =f and f A g.

S3a. If ¢ 1s a path formula then E¢ is a state formula.

S3b. If f and g are state formulae then so are EXf, E(fUg), AXf and A(fUyg).

S3c. If f and g are state formulae and ce is a counting expression then E(fU%yg) and A(fUyg) are state
formulae.

S4. If f is a state formula and p is a regular formula then Epf and Apf are state formulae.
Path formulae are formed according to the rules:

P1. Each state formula is a path formula.

P2. If ¢ and ¢ are path formulae then so are —¢ and ¢ A .

P3a. If ¢ and ¢ are path formulae then so are X¢ and (¢U4).

P3b. If ¢ and ¢ are path formulae and ce is a counting expression then (¢U) is a path formula.
P4. If ¢ is a path formula and p is a regular formula then p¢ is a path formula.

Let mn,b € N, i €[l :n], B € ACT, C € ACT and y; C ACT such that B; € . If v, =
{BiyD1,...,Dn} then 7 is a shorthand for (B; 4+ D1+ ---+ Dy,), which, to avoid the proliferation of
parentheses, may be written as B; + D1 + - - -+ D,, . Regular formulae are formed by the four rules below.

Rla. (37 "By ... 79, " By) is a regular formula.

Ri1b. (37" B; ... %, *B,)2" is a regular formula.

Rlc. (71" By ... %, *B,)S? is a regular formula.

R2. If p; and ps are regular formulae then so are (p1p2) and (p1 N p2).

CTL is the language restricted to rules S1, S2 and S3b. PLTL is formed by the rules S1, P1, P2, and
P3a. CTL* is the set of state formulae formed by S1, S2, S3a, P1, P2 and P3a. RTCTL can be formed
by adding the rule S3c to the rules of CTL and restricting the allowable counting expressions to ones of
the form < kC, k > 1 (C represents the ‘time’ unit which is implicit in the RTCTL formulae). RTPLTL
adds rule P3b to the rules for PLTL. RTPLTL+ adds rule P4 to RTPLTL and RTCTL adds rule S4 to
RTCTL without any restrictions on counting expressions.

Derived operators are also allowed and we give a listing of them below.
o fVg = =(=fAg).
e true = PV -P.
o false = —true.
e [=yg = fVy.
o Ay = —E-.
o OVY = =(-yU-g).
o VY = S(—ypUc—g).
o Fyy = trueUp.
o Gy = —F—.
o F¢¢ = truelU¢.
o GFp = —Fnp,
o 06 = —p(—9).
e \(FT*B1... 97 *By)N(C C)SY¢ = —((F*By ... 9w *By) N (CC)<b) =g

We also use the following shorthand notations. Given p = (37" By ...3, "By) and n > 1, then if for all
k k€[l :n], 7w = J and By = By then (37" B1)" is a shorthand for p. Also, given formulae of the form
((p1p2) ... pn), if the p; are all identical then we will write (p1)™ as a shorthand for ((p1p2) ... pn).

2.2 Intuition

Before defining the semantics of the formulae, some intuition regarding regular formulae may be in order.
Formulae of the type (31 * By .. .55 * Bp) have a straightforward meaning. These formulae express restrictions
on the order of the atomic actions of computations (paths through a structure); furthermore, the meaning
of the formulae is equivalent to the meaning of their identical regular expressions. (1 *By ... %, *B,)" is a
shorthand for b copies of (37 * By ...%, *By) and formulae of this type are also equivalent to their identical
regular expressions. However, formulae of the form (F7*Bj ... %, *B,)S? do not have a meaning equal to
their identical regular expressions. (J1*Bj ... 7%, *B,)<’ expresses the requirement that there are no more
than b occurrences of the sequence (377 "By ... %, *By), it does not require that there exists a b’ € [0 : b] such
that (37 "By .. .'y_n*Bn)bl be satisfied. In particular (37 * By .. .5, *B,)<Y is true of sequence so long as the
sequence does not satisfy (37 *By ... 5, *By). While the empty string satisfies these requirements it is not
the only string that does so. Similarly (F7* By ... 7, * B,)2° requires of a string only that there is a prefix
of the string which satisfies (37 * By ... 7%, * By)°.

2.3 Semantics

Temporal logics, such as CTL, are usually interpreted with respect to Kripke structures. A Kripke structure
is a triple which consists of a set of states S, a transition relation on the state set R, and a labeling function
L. L labels the states and/or transition relation arcs with, respectively, the atomic propositions true at a
state and the atomic actions associated with transitions. In particular, the family of logics discussed here
are interpreted over finitely branching structures with finite state sets.

RTCTL implicitly labels each transition with one or more ‘clock’ actions or time units; the algorithms
given in [EMSS90] are restricted to the case when only a single clock action labels each transition but the
generalizations are straight forward. RTCTL+ makes no such assumptions. A clock action is merely one of
a set of possible actions which may effect state transitions. We require only that all valid paths through the
structure be ‘clock fair,” i.e. all infinite paths must have infinitely many clock ticks.

Let M = (S, R, L) be a structure such that S is a finite set of states. R C S x (ACT x S) is a total
transition relation and L : SU R — 2 AP U ACT such that for all s € S, L(s) €2 AP and for all 5,8 €85,
and ¢ € ACT such that (s,0,s') € R, L(s,0,5') = 0.

Let # be a ‘full path’ in M, then z is of the form xgopx101 ... where for i > 0, z; € S, 0; € ACT and
(z;,01,2i41) € R. »;, 07 denote, respectively, the ith state and the éth action of a path while " denotes the
full path z;0;2;41041 | ACT denotes the projection of 2 onto ACT.

Appendix A contains some basic notations and facts about finite and infinite strings and string automata. We

note that a structure M can be viewed as a Biichi automaton accepting exactly the strings in (QAP x ACT)¥
which are computations in M.

Given a state s (respectively path z) in M we denote that s (respectively) satisfies or models state formula
f (path formula ¢) by M,s = f (M,x |= ¢). Similarly s (z) does not satisfy f (¢) is denoted by M, s |£ f
(M, z £ ¢). Extending these notions to counting expression and regular formulae we write, for ¢ € ACT*,
o = ce and ¢ = p to denote that a the sequence of actions, o, satisfies the counting expression ce or,
respectively, the regular formula p. When M is understood we will sometimes drop it from the = notation.

The semantics of formulae formed by the syntactic rules defines the satisfaction relation, and is given below.

Given state s € S and state formulae f, g, ¢’, path formulae ¢,1 and regular formula p

SS1. f= P forsome P€ AP : M,s |= fiff f € L(s).

SS2. f=—g: M,sEfit M,sl,tyg f=9gAg : M,skEfif M,slEgand M,s =g
SS3a. f = E¢ : M,s |= [iff there exists a full path # in M such that 2y = s and M,z |= ¢.

SS3b. [= EXg: M,s |= f iff there exists full path # in M such that zo = s and M,z = g. f = E(gUyg’) :
M, s = fiff there exists full path « in M such that o = s and M,z = gUg’.

SS3c. f=E(gU®¢') : M,s |= f iff there exists full path « in M such that g = s and M,z | gUy’.

SS4. f=Epg : M, s | f iff there exist a path # such that o = s and M,z = pg.
Let = zgoq ... be a full path in M, ¢, are path formulae and p is a regular formula then

PS1. ¢ is a state formula: M,z | ¢ iff M, 2y | ¢.
PS2. ¢=—p: Mia =it Mialet. o=vAY - MaE¢ill Mz Ev and M,z =

PS3a. ¢ =Xy M,z = ¢ iff M 2! = 9. ¢ = wUy’ : M,z |= ¢ iff there exists i € A such that M, 2’ = ¢/
and for all j € [0:4— 1], M,z = <.

PS3b. ¢ = wUy : M,z |= ¢ iff there exist i € N such that og...0;_1 | ce, M,z |= +' and for all
JE:i—1], M, 2l |= .

PS4. ¢ = pyp : M,z = ¢ iff there exists i € N such that (i is the least element of A" such that ¢ =
090y ...0i—1 and o |= p) and M, 2% |= .

Let ¢ € ACT", such that |o| = m and p be a regular formula then

RSla. p = (37" B1... 7 "By): o = p iff there exists j1,...,j, € [0 : m — 1] such that for all i € [1 :
n—1j; < jit1, jn=m—1,0;, =By and forall k € [0: j1 — 1]oy € v1 and for all i € [2: n],0;, = B;
and for all k € [j_1+1:7; — 1], 06 & -

RS1b. p = (F1*B1...9, *B,)2% o | piff b = 0 or there exists i € [0 : m — 1] such that oq...0; |
(F1*By ... % *Bn)".

RSle. p= (57" Bi. 5 Ba)<" o b p ifl o o (777 By .50 " Bu) 2!+,

RS2. p = (p1p2) : o | p iff there is an ¢, the least element of [0 : m — 1] such that ¢y...0y_1 | p1, and
GiooOme1 Ep2. p=(p1Np2): cEpiff o |Ep1 and o = ps.

Let o € ACT", such that |¢| = m, and ce be a counting expression then

CES1. ce = kB: o | ce iff k = 0 and there exists no j € [0 : m — 1] such that ¢; = B or k # 0 and there
exists unique ji,...,jx € [0 : m — 1] such that jz = m— 1, and for all i € [1 : k], 05, = B and it is not
the case that there exists unique ji, ..., jr41 € [0:m — 1] such that for all i € [1: k + 1], 05, = B.

CES2. ce = < kB : o |= ce iff it is not the case that there exists unique ji, ..., jg+1 € [0: m — 1] such that
forallie[l:k+1],0; = B.

CES3. If ce = > kB: o = ce iff there exists unique ji, . . ., ji € [0: m—1] such that for alli € [1 : k], 0;, = B.

CES4. ce = cey Aces: o= ce iff 0 = cey and o | cey. ce = —cey : o | ce iff o [E cey.

2.4 Time

RTCTL+ and RTPLTL+ are logics for reasoning about quantitative system properties, including time,
therefore it is necessary to make time explicit in our model. Time will be represented by a monotonically
increasing sequence of integers. 7 : (S x ACT)* — A'“ maps the computations of M into ‘time sequences.’

Given a full path # = zgopz101 ... € (S x ACT)%, and supposing that the clock action is represented by C
, then 7(z)p = 0 and
T(x)ip1 = { T(2)i+1 i C =0

T(x); otherwise

This definition leaves open the possibility that the time sequence is bounded above for any particular compu-

tation. We wish to avoid this and require that time increase infinitely often. Let & :OE (6*C)true, where OE
is a shorthand for GF. & is a type of fairness [Fr86] constraint that guarantees that the clock ticks infinitely
often. M,z |= ® implies the elements of 7(x) are not bounded above by any integer.

Logics which are at least as expressive as PLTL and RTPLTL can express ® directly and it is a straightforward
matter to incorporate these constraints into the model checking environment. Structure M satisfies RTPLTL
formula ¢ under the fairness constraint @ iff for all full paths 2 of M, M,z E ® = ¢. & = ¢ is a formula
of RTPLTL+ and hence given a model checking procedure for arbitrary RTPLTL+ formulae we can model
check such formulae and ensure correct timing behavior in the model.

Fairness constraints in branching time logics are implemented by evaluating all path quantifiers under the
constraint ®. M, s |= A¢ under & iff for all paths @, such that 29 = s and M,z = ®, M,z |= ¢. Similarly,
M, s | E¢ under @ iff there is a path z, such that zo = s, M,z |= ® and M,z |= ¢. Using CTL" syntax we
can write the equivalent formulae A(® = ¢) and E(® A ¢) respectively. CTL, however, can not express these
constraints. Fairness is incorporated directly into the model checking algorithms for the various modalities.
The details of this procedure are given in [EL87] and we will assume them in the algorithms for model

checking RTCTL+.

Extending these definitions to multiple clocks is accomplished in a straightforward manner. When the model
includes n independent clocks then 7 : (S x ACT)* — (N™)¥ and ® is expanded to include conjuncts for
each clock C;. Notice that there is nothing special about the clock action C'. ' may represent any action,
likewise fairness may be relativized to any subset of system actions not just the clocks.

2.5 Related Concepts

In the sequel we will make use of various manipulations and categorizations of formulae. We mention them
here and then will feel free to make use of them without further explanation.

We denote the length of a formula ¢ by |¢|. When ¢ is an atomic proposition then |¢| = 1. Length is
defined for boolean combinations of formulae by |=¢| = 1+ |¢| and when ¢ is a positive boolean combination
of ¢’ and ¢" then |¢| = |¢'| + |¢”| + 1. |[Ed| = 1+ |¢| and |A¢| = 1 + |¢|. Formulae of the form X¢
have length equal to 1 + |¢| and formulae of the form ¢Ut¢ have length equal to |¢| + || + 1. The length
of a ce formula is defined as follows, terms kB, < kB and > kB all have length logk. |-ce| = 1 + |ce]
and |ce A ce’| = |ce| + |ce’| + 1. Then |¢UY| = |¢| + || + |ce|. Regular formulae of type Rla have
(respectively R1b, R1lc) have length n(max(|y;|)), where |v;| is equal to the number of elements in the
set v, (log(b)n(max(]v;])), log(b)n(max(|y;]))). Formulae of the type (pi1p2) and (p1 N p2) have length
lp1| + |p2| + 1 . Finally, formulae of the form |p¢| = |p| + |¢| + 1.

The positive normal form, PNF, of a formula ¢ is a formula ¢’ where negations have been ‘pushed’ in as far
as possible. We use the appropriate short forms, given above, and De Morgan rules to accomplish this. We
give the rules for creating the PNF of a formula below and note that it is straightforward to show that for
full paths # and states s, M,z = ¢ iff M,z = PNF(¢) and M,s |= f iff M,s = PNF(f) for all ¢ and f.

FV f') = PNF(f) V PNE(f).
~(fV[)) = PNF(=f) APNF(=f").
o PNF(pg) = p(PNF(9)).
~p¢) = p(PNF(=¢)) .
¢) = p(PNF(¢)).
—p¢) = p(PNF(=¢)) .
* PNF(X¢) = X(PNF(¢)).
~X¢) = X(PNF(=9)).
e PNF(E¢) = E(PNF(¢)).

¢ PNF

¢ PNF
¢ PNF
¢ PNF

¢ PNF

NE(
(
(
(
(P
(
(
(
(
» PNF(=E¢) = A(PNF(-9)) .
» PNF(A¢) = A(PNF(¢)).
e PNF(—-A¢) = E(PNF(—¢
» PNF(¢U¢’) = (PNF(¢)
(
(
(
(
(
(
NE(

)

* PNF(=(¢U¢’)) = (PNF(
)

(

J

e PNF(¢V¢') = (PNF(¢))V(PNF(¢)).
¢ PNF

J

(¢V¢')) = (PNF(=¢"))U(PNF (=¢)).
o PNF(gU¢’) = (PNF(¢))U(PNF(¢')).
¢ PNF

_I

(0U¢")) = (PNF (=g’
o PNF(¢V¢') = (PNF(¢))V(PNF(4')).

—(pV<e’)) = (PNF(=¢))U* (PNF (-¢)).

Formulae of temporal logic express conditions on the behavior of their models. Conditions which determine
both the present state of the model and its future behavior. Generally, these conditions can be separated
into assertions about the present state and assertions about the next state. ¢U¢’ is true of computations
when ¢’ Is true at some future time, ¢, and ¢ is true at all times until ¢. Stated in terms of present and
next time, ¢U¢’ is true when when either ¢’ is true now or ¢ is true now and ¢U¢’ is true next time.
dUg" = ¢' V (¢ A X(¢Ug')), this validity is immediate from the definitions. Model checking procedures
use this relationship to attack the problem of satisfaction, since the satisfaction relationship can be very
intuitively expressed in terms of now and next time.

However, a problem arises. ¢U¢’ is a guarantee that ¢’ will eventually be satisfied. ¢’V (¢ A X(¢U¢’)) masks
that eventuality and seems only to require that the present state satisfy ¢ and X(¢Ug¢') a condition on the
next state which can again be expanded into a condition on that state and its successor. Repeating this
argument ad infinitum would seem to indicate that ¢’ need never be true, a contradiction. Furthermore,
¢U¢’ requires only that ¢’ eventually become true and does not give, a priori, a time when it must become
true.

A good deal of the complexity of model checking stems from the need to check explicitly for the ‘eventual’
requirements of temporal formulae. Formulae which express eventual requirements are denoted as ‘eventu-
alities.” Eventualities are formulae of the form ¢U¢’, E(fUg), A(fUg), #U¢’, E(fUg), A(fUg), po, Epf
and Apf. Notice that p¢, V¢’ and their branching time counterparts are not eventualities.

3 Model Checking RTPLTL+

Given structure M = (S, R, L), as defined above, and a formula ¢ of RTPLTL+ we define a model checking
procedure which determines whether there is a path # in M such that M,z = ¢. This is the dual of the
question posed in the introduction but can be shown to be equivalent via the following observation. The
computations of M satisfy specification ¢ iff there is no computation & of M such that M,z | —¢

We extend a standard automata theoretic technique to decide this problem. The technique consists of
creating an automaton, A4, on infinite strings which accepts only those strings which satisfy the formula
—¢. Combine the structure M with A4 to form the product automaton M x A-,. M x.A-4 is an automaton,
on infinite strings, whose language is empty if and only if M is a model of ¢.

Before considering the automaton for arbitrary RTPLTL+ formula ¢ we first define automata which recognize
infinite strings that satisfy formulae of the form ptrue and automata which recognize finite strings that satisfy
counting expressions.

Suppose ¢ = ptrue where p = (F7*B1 ... 5 *Bn) N (U*C)Sb). A, = (ACT, Q,4,q(0,0), F') is a Biichi au-
tomaton where Q@ = {q(0,0),9(0,1) - - - > 4(0,641)> 4(1,0)> - - -» U(n=1,b4+1) U(n,0)s - - -» Um0 > £ = {G(n,0)5 -+ Un 1)}
and § : @ x ACT — @Q is a deterministic transition relation defined in the transition diagram below. Note
that in the figure ¥ stands for ACT, X1 = (X \ y1) \ {C}, 22 = (2 \ 72) \ {C}, etec, and v = v \ {B;, C}.

In the sequel we shall sometimes refer to states ¢p and ¢p, the states so marked in the diagram.

As constructed A, accepts w-strings over the alphabet ACT that conform to p, i.e. the strings contain By,
By to B, in order before the appearance of more more than b C”s and no action in ~; occurs before By, no
action in ~s occurs between the first occurrence of By and the next occurrence of Bs, etc.

Suppose ¢ = (\(7T*B1... 7 " Bp) N (6*0)36)](&186 . Az = (ACT, Q, 4, q(0,0), I'') where the acceptance
condition F/ = Q\ F.

Generally, when p = (37 "By .. .7, "By,) then A, = (ACT, Q,4, g, F) where @ = {q0,...,¢n11}, F = {¢n},
and ¢ is defined as follows. For ¢ € [0:n — 1],0(q5, Bi41) = qiy1, if B € 5; then d(¢;, B) = ¢;, and if B € »;

and B # B; then §(q;, B) = gny1. When p = (37* By ... 5, *B,)2% and b > 1 the automaton is similar to
b

the first case except that it is built asif p =37 *By .. .37 *Bn .. .71 " B1 ... % " Bn, d(qen, B) = vy, for all B,
and F' = {gpn}. When b = 0 then F = Q = {q0} and 6(qo, B) = o for all B. When p = (37 * By ... 5, " B,)<?
build A as if the expression were p = (FT*By ... 9, *B,)2%T! except choose the set of final states as F' =

Q \ {Q(b+1)n}~

Automata for concatenated regular formulae are similar to the above. If A, and A,, are the automata for
pitrue and patrue respectively, then by replacing the final states of A,, with the initial state of A,, we get
an automaton for (p;p2)true. Automata for for regular formulae of the form p; N py are created by forming
the product automaton from the automata for p; and ps.

We will sometimes refer to formulae such as ¢ (respectively ¢'), formulae with unnegated (negated) regular
components as their primary connective, as positive (negative) formulae. By extension we refer to A, (Az)
as positive (negative) automata.

Claim 1 Let x be a full path in arbitrary M and ¢ and ¢’ formulas as above then z |= ¢ iff (| ACT) € L(A,)
and x =" iff (x|]ACT) € L(Az).

Proof: Let ¢ = (z|ACT) . M,z E ptrue iff there exists i € N such that (gg...0;_1 = p and i is the
least such element of V') and M,z |= true. If x is a computation of M, M, 2/ |= true for all j € N. So
M,z = ptrue iff there exists an ¢ such that og...0;-1 = p. Suppose there exists such an i, extending § to a
function on strings in the usual way, §(qo,0,00...0i_1) € ¢f. Once A, is in a state labeled with f it remains
in that state forever. Therefore o € £(A,). Suppose there does not exist an ¢ such that o...0;_1 | p. By
the construction of A,, d(qo,0,00...05-1) & g¢ for any i € A and hence o & L(A,).

Analysis for the negative case is similar.

n-1,b+1
f

Bn Bn

Figure 1: automaton for (77 * By ... 5 *Bn) N (U*C’)Sb)true

O

Let ce be a counting expression, then there exists a deterministic finite automaton A, = (ACT, Q, 4, qo, F)
such that for all ¢ € ACT*, 0 € L(A) iff ¢ |= ce. We construct the automaton inductively from the
structure of ce. If ce = 0B then @ = {qo,91}, F = {qo} and 6(qo, B) = q1, (g0, B') = qo for all B’ # B,
and d(q1, B') = ¢q1 for all B". If ce = kB then Q@ = {qo,...,q5+1}, F = {qi} and § is defined according to
the following rules. For all ¢ € [0: k — 1], 6(qs, B) = ¢s41 and d(g;, B') = ¢; for all B’ # B. §(¢x, B') = qx41
and d(qx+1, B') = g1 for all B’. When ce = < kB then the automaton is same as the previous one except
that §(qr, B') = q for all B # B and F = {qo,...,qx}. When ce = > kB then the automaton is the same
as the one in the case of ce = kB except gr41 is removed from the state set and d(qx, B') = ¢ for all B’
When ce = cey A cey then Aee = Ace, X Ace,. When ce = —cey then Ay = Age, except that F = Q\ Fy.
The following claim follows from the above construction.

Claim 2 Given a counting expression ce, deterministic automaton A can be constructed in time exponen-

tial in |ce| such that L(Aq) = {oc € ACT"| o = ce} and |Ac.| is exponential in |ce].

Let ¢ be a formula of RTPLTL+ in PNF. For each regular sub-formula p (p) and counting expression ce
there is a corresponding automaton A, (Az) or A... Number these automata 1...a. Then for j € [1 : al,
A; = (ACT, Q;,4;, ¢}, F;) and we refer to the i-th state of the j-th automata by ¢!.

Theorem 3 Given a formula ¢ of RI'PLTL+ there is a Buchi automaton Ay such that for any structure
M = (S,R,L) and full path x of M, M,z |E ¢ iff € L(Ay).

Proof: We proceed as follows. Using a modified version of the tableaux construction for PLTL, a tableaux
T is constructed from the formula ¢. T encodes models of ¢ and we can use the structure of 7' to form the
automaton Ag.

Tableaux are similar to automata with no acceptance conditions. They encode models of a formula by
aggregating conditions which the model must satisfy now and conditions which must be satisfied in the
next state. This local focus ensures that all paths in the tableaux are safe, 1.e. they are propositionally
consistent and they do not violate any of their next state requirements, but does not guarantee the satisfaction
of eventualities. Therefore a tableaux may encode behavior which is not a model of ¢. Satisfaction of
eventualities, such as ¥ U1, may be postponed indefinitely. This postponing behavior is required of the
tableaux because there is no a prior: bound on the point where a computation z finally satisfies 1/, x is only
required to satisfy 1’ eventually. Paths in the tableaux that never satisfy ¢’ or any other eventuality must
be excluded. We accomplish this by using Buchi conditions on the states of the automata which say that if
an eventuality is promised infinitely often then it is fulfilled infinitely often.

Before describing the tableaux construction we give a categorization of RTPLTL+ formulae as elementary
or non-elementary formulae. Non-elementary formulae are then separated into Alpha-formulae and Beta-
formulae. Intuitively, an Alpha-formulae ¢ with constituents 1, is true if ¢y and 1’ are true while a
Beta-formula ¢ with constituents 1 and ' is true iff one or both of the constituents is true. Note that in
the following we will abuse notation and consider individual states of the automata .A; as formulae.

Propositions and formulae of the form X¢ are elementary. The following tables characterize the Alpha- and
Beta-formulae and give their constituent formulae.

Alpha-formulae :

e o A ¢': with constituents ¢ and ¢’.

. q%, where A; is the automaton associated with p¢ or p¢: with constituent ¢.

o p¢, where A; is the automaton associated with p¢ : with constituent q‘é.

o p¢, where A; is the automaton associated with p¢ : with constituent q‘é.

10

o ¢U”¢’, where A; is the automaton for ce : with constituent qSUqg o' .

. qSUqfqb’, where q‘g ¢ F; . with constituents ¢ and X(qSquoqb’) V...V X((/)qunqb’) where q‘ZLO .. .q‘ZL are

R n
the successor states of ¢ .

o ¢V’ where A; is the automaton for ce : with constituent qSngqb’.
Beta-formulae :

e ¢V ¢': with constituents ¢ and ¢’

o ¢Ug’: with constituents ¢’ and ¢ A X(¢Ug’).

$V @' with constituents ¢ A ¢' and ¢ A X(pVe').

(qung’, where q‘g € Fj : with constituents ¢' and ¢ A (X(¢)qu0¢)/) V.. .\/X((/)qung/)’)) where q‘ZLO .. .q‘ZL
are the successor states of ¢ .

n

n

qSqugb’, where q‘g ¢ I; © with constituents ¢’ and X(qStiug/)’) V..V X((/)tinq/)’) where q‘ZLO .. .q‘ZL are
the successor states of ¢ .

qSqugb’, where q‘g € Fj: with constituents ¢ N¢' and qu/\(X(qStiug/)’)\/. : .\/X(qStinqS’)) where q‘ZLO .. .q‘zm
are the successor states of ¢].

q‘g, where q‘g is not labeled with f : with constituents X(q‘zo), e X(q‘zn) where ‘T/zoa e q‘zn are the
successor states of q‘g.

A tableaux is a bipartite graph, where AND-nodes and OR-nodes make up the two sets of nodes. Each node
is identified, or labeled, by a set of formulae all of which are true of the node. Creation of the tableaux for
¢ proceeds by labeling the initial OR-node with the formula ¢. Procedure OR_Node, given in figure 2,
describes the generation of the set ¥V of AND-nodes which are children of the OR-Node U. AND-node
successors are then generated from the labeling of the AND-node. OR-nodes are so designated because their
labels are satisfied when any one of their children are satisfied, AND-nodes are satisfied only when all their
children are satisfied.

We say that M,z |= 8 for any set of formulae § iff M,z | ¢ for all ¥ € S.

Suppose V is an AND-node. That is V is a successor of an OR-node and the label of V' a set returned
in the result of procedure OR-node. V contains a set of propositions, negated propositions and states of
the A;’s. These elements specify the ‘state’ that V' designates. Furthermore, for any full path « of M,
M,z E U if M,z = V. Notice that we have included the conditions that M,z q‘g, M,z = ¢U% ¢ and
M,z = #V4 ¢, This lifting of the satisfaction relation comes directly from the structure of the automaton A,
(Az, Ace). Referring to the formula and automaton in figure 1, M,z |= g0y iff M,z |= (37" B1 .. .5 " Bn)N
(C7C) M) true, M,z = gy iff M,z = (F7*B1 ... 70 *By) N (CT OVt Ntrue, M,z | g0y iff M,z =
(2% Bz2... % "Bp)N (G*C)Sb)true, etc. When we transform the tableaux into an automaton which accepts
models of ¢, V specifies acceptance conditions on the models when the automaton is in state V. Furthermore,
the next-time formulae of V' | formulae whose first element is the X operator, specify the next state relation.
The successor of V' is the OR-node U whose label contains the formula ¢ iff X4 is in the label of V. An arc
from AND-node V to OR-node U is labeled by the set of B € ACT such that the following conditions hold.

e For all q‘g ev, q‘g ¢ I there is a q‘g, € U such that (5j(q‘g,B) = q‘g,.

e For all q‘g, € U either i = 0 and A; is the automaton for p (p) and pp € U (p¢ € U), or there is an
¢l €V and §;(q!, B) = ¢l

11

Procedure OR_Node (U, V)

/* OR_Node takes as input a set U of formulae and a set V

/* of sets of formulae. If V is empty then OR_Node will return,
/*in V the set of AND_node labels that are successors of U.

begin

Repeat Until U = {§
Remove ¢ from U,
If V=0 then V := {{¢}}
Else for all V € V,V :=V U {¢};
Case ¢ of the form

YAy 1 V.= ORNode({y, ¢}, V)
YV V= ORNode({¢},V) UORNode({¢'}, V)
YUy’ : V:= ORNode({¢y A X(¢Uy¢")}, V) U OR Node({¢'},V)
YV V== ORNode({¥ A X(¥V4)}, V) UOR Node({y A ¢'}, V)
YUy’ 1V := ORNode({U%y'}, V) ,
YU% ' Y := ORNode({1, X(¥U%hoy’)}, V) U ... U ORNode({t, X(¥U%n ')}, V)
- [Mifgl ¢ 8
YpUT Y Y = ORNode({¢'}, V)U ,
ORNode({, X(¢U%hety')}, V) U . ..U ORNode ({1, X(vU%n1)")}, V)
[¥it gl € F; |
Ve 1V := ORNode({¢V%hay'}, V)
YV Y = OR-Node({X(¢Vod/)}, V) U .. .U
OR Node({X (N7 1)}, V)
- ritgl ¢ F; v
YV Y = ORNode({¢/, ¢}, V) U OR_Node({¢, X(V%ho/)}, V) U .. .U
OR_Node({), X(¢Vory)}, V)
[*ifql € Fy
p V= OR_Node({q‘Zoyo)}, V)
ﬁ¢ V= OR_Node({q‘gqyo)}, V) '
g; : V := ORNode({Xg},},V)U...UORNode({Xq},},V)
J¥ifif ¢l € F
q‘} 2V := ORNode({¢'}, V);
/* Where A; is the automaton for py or .

endCase

endRepeat
Return(V);

end

Figure 2: Procedure OR_Node

12

For all (/)Uqfﬁ/) € V either q‘g € Iy and ¢ € V, or there is an qSqu’w € U and (5j(q‘g, B) = q‘g,.

For all qSqu’w € U either ¢/ = 0 and ¢U®y € U and A; is the automaton for ce, or there is a
pU% 4y € V and 8;i(¢l,B) = ql..

For all V94 € V then ¢ € V and ¢ € V, or ¢ € V and ¢ ¢ Fj, or ¢l ¢ Fj and there is a SN e U
such that (5j(q‘g, B) = q‘z,, or ¢ € V and there is a qSqu’w € U such that (5j(q‘g, B) = q‘z,.

For all ¢qu’1/) ev either i = 0 and ¢V°°¢ € U and A; is the automaton for ce, or there is a (/>qu1/) eV
and &; (¢!, B) = ¢q)..

When no such B exists we label the arc with the empty set. When V' contains no automata related formula
then the arc is left unlabeled, meaning that any B € ACT can cause that transition.

By requiring the uniqueness of node labels, we guarantee that the graph is finite, and of size no more than
exponential in the length of formula ¢. We identify similarly labeled OR-nodes by one representative with
multiple incoming and outgoing arcs, likewise for AND-nodes.

Once the graph has been completed repeat the following pruning procedure until the graph has stabilized.
The procedure ensures that consistency conditions, such as no label requiring both P and =P, are met.

Repeat the following until the graph stabilizes.
e Remove any AND_node whose successor arc is labeled by the empty set.
e Remove any node which contains ¢ and —, for any .
e Remove any AND_node whose successor has been removed.
e Remove any OR_node all of whose original successors have been removed.

Delete any AND_node which has an eventuality which is not fulfill-able in the graph. (See below for a
more detailed explanation).

Eventualities are formulae of the form ¢Ud, Uy, $U% ', py’ and q‘g from positive A; representing
formulae of the form py’. They assert that sometime in the future v’ will become true and the tableaux
must be able to fulfill this promise. Whether the tableaux can fulfill this promise is checkable in time linear
in the size of the tableaux.

Suppose AND-node V is labeled with eventuality ¢ and ¢ = U«’. v is fulfill-able at V iff there is a path in
T from V to AND-node V' which is labeled with +’. Further, all AND-nodes on the path, except ¥V’ must
be labeled with ¢. Checking for the existence of such a path is tantamount to checking for the existence
of a directed acyclic graph (DAG) rooted at V' which contains only one successor for each OR-node and
whose leaves are labeled with ¢’. Using standard graph theoretic techniques we can check this in linear time

[Em95].

Finally we note that even though the eventualities of the AND_Nodes can be fulfilled there is as yet no
guarantee that any particular path through the tableaux will fulfill them. Therefore, we view the tableaux
as a Biichi automata whose acceptance condition will guarantee that any eventuality that i1s encountered
infinitely often will be satisfied infinitely often.

Number the eventualities in the tableaux 1 through /. Augment the states of the tableaux with a counter
from 0 through {. The states of the automaton A4 will have two components, one which respects the states
of the tableaux and one which represents the current eventuality of interest. Given a particular eventuality,
a state either expresses that the eventuality is pending (not yet satisfied) or is not pending. An eventuality
is not pending if it is satisfied in that state or was not pending in any predecessors and is not pending now.
Therefore, given a run of Ay in state (¢,), where i represents the 7th eventuality, if ¢ is pending in ¢ then

13

the next state of the run must be some (', ¢). If eventuality ¢ is not pending in ¢ then the next state will be
(', (i +)mod(l + 1)). Fy the acceptance set of Ay, is the set of states where the second component is 0.

Given a non-empty tableaux 7' for formula ¢ we construct a Blichi automaton .44 whose language contains

all stings in (QAP x ACT)¥ satisfying ¢ and does not contain any string that does not satisfy ¢.

Ay = (£,7,6, 70, F) where ¥ = 9AP ACT, T = (AND x {0,...,{}) Usink, where AND is the set of
AND-nodes of T, and Ty = {(t,0)]¢ € t}. § : ¥ x T — 27 such that (¢ k') € §({t,k), (s, o)) iff for all
P et,Pe L(s), forall =P € ¢, P & L(s), if U is the child of ¢ in T" then ¢ is a child of U in T, ¢ is an
element of the subset of ACT which labels the arc from ¢ to U and if eventuality & is pending in ¢ then
k = k' otherwise &' = (k+ 1) mod ({ + 1). sink € §((t, k), (s, o)) iff ¢ contains no next time formulae and
for all P € t,P € L(s) and for all =P € ¢, P & L(s). sink € d(sink, (s, o)) for all (s,o) € X. Finally,
F = {sink} U {{t, k)|k = 0}.

We can view arbitrary structure M as a Buchi automaton accepting exactly the strings in (QAP x ACT)¥

which are computations in M. In the sequel we shall, given a string or computation z € (2 Py ACT)v,
write that # = ¢ without specific reference to a structure when there is no particular structure to reference.

Claim 4 Let ¢ € ¥¥, z = (s0,00)(s1,01) ..., there is an accepting run, v = (to,0)(t1,1)..., of Ay on z
implies for all j € N if ¢ € t; then 2/ | .

Proof: Suppose for some j,r; = sink. Then for all j* > j,r;» = sink and therefore for all j/, 2’ E ¢, for
all ¢ € .
We can now restrict our attention to the r; # sink.

Suppose P € t;. r; has a successor on input z; iff P € s; iff zJ = P. Similarly, if =P € t;, r; has a successor
on input «; iff P ¢ s; iff 27 | —P.

Suppose ¢ A’ € t;. By the construction of T', Yy A¢/ € t; implies ¢ € ¢; and ¢/ € ¢;. If 27 = ¢ and 27 = o/
then 27 = o A4’ Similarly, if ¥ V ¢’ € ¢; then ¢ € ¢; or ¢/ € t;. In the former case, 27 |= psi and in the
latter case 27 |= ¢, Therefore 27 |= ¢ V ¢'.

Suppose Xt € ;. By the construction of T, ¢ € t;41. /! = ¢ implies 27 | Xy.

Suppose YUy’ € t;. By the construction of T either ¢ € ¢; or, X(¥Uy') € t; and o € t;. ¢ € t; and
2/ | ¢’ implies 27 |= YUy, Otherwise ¢, X(¢Uy’) € t; and because r is an accepting run there is a j' > j
such that ¥ U+’ is not pending at ¢;/, which implies that ¥’ € ¢;; and therefore that 7 = ¢’. Furthermore,
by the construction of Ay, ¥ € ¢y for all k € [j : j' — 1] and therefore z* = ¢ which implies that 2/ | ¥Uy’.
Suppose ¥V’ € t;. Either 1, ¢ € t; or ¥, X(¥Vy') € t;. If ¢, ¢/ € t; then 2/ = ¢ and 27 | ¢ therefore
zd | YV, Otherwise, by the construction of Ay, either there exists j' > j such that ¢, ¢’ € t;, and for all
k€[j:j' W €ty or for all k > j, v € ty. In either case ¢ € t, implies that #* |= . In the latter case this
implies that #/ |= ¢V¢' and in the former case we have 2’ = ¢ A9/ and therefore x/ = ¢V,

Suppose p¥ € ¢; and that A, is the automaton for p. We will refer to the states of A, by g, ¢1, etc. By the
construction of Ay, ¢, Xqp € t;. Furthermore, g5 € tj41 and 6,(go,0;) = ¢5. Since r is an accepting run
there is a j' > j such that gp € t;; and by the construction of Ay, for all k € [j : j'] there is a qx € tx such
that if & < j' then 6,(qx,0x) = qr41. By the definition of A, this implies that d,(qo,0;...05_1) = ¢ and
therefore that 27| ACT € L(A,). qf € t; implies ¢ € t; and therefore that 2t E ¢. Therefore, we have
that 27 | pi.

Suppose g € t; and that Az is the automaton for 7. By the construction of Ay either there exist a j > j
such that ¢p € t;, and for all k € [j : j'] there is a ¢ € tx such that for all k < j' d5(qx, o) = g1, or for
all k > j there is a qr € ty, qr € F5, and 65(qxk, 0k) = qr+41. In the former case z| ACT ¢ L(A5) but since
qp € tjs then, by the construction of T', ¢ € #;/ and 2’ k= ¢ implies that 2/ = pv. In the latter case, since
the g, € I, x| ACT € L(Ap) and therefore 27 |= 7).

Suppose Uy’ € t; and that A is the automaton for ce. YU’ € t; implies that YUY o €1;. ¢ € ¢
implies that #/ | ¢. r is accepting implies that there is a j > j such that YU%" " € t;, ¢/ € t; and

14

¢j' € Fee. Furthermore, by the construction of Ay, for all & € [j : j] there is a U9y’ € 1 such that
dce(qu, 0k) = qr41 for k < j' and ¢; = ¢qo. This implies that ¢; ...05_1 € L(Ac.). Since YUY € ty, k < j
then ¢ € tx, by the construction of Ag. Therefore % = o for k < j' and 2’ E ¢/ which implies that
xJ ': 1/)Uce¢/.

Suppose VY’ € ¢; and that A is the automaton for ce. Then V%)’ € t; and by the construction of
Ay there is a j > j such that for all £ € [j : j/] there is a YV&*¢' € t; such that for k < j dce(qr, 0%) =
qk+1,9; = qo and either ¢,y € ¢ji, or ¢ € ¢;» and ¢;1 € Fee. Otherwise, for all k > j there is a YV €
such that d.c(qx, 0k) = qrt+1 and ¢; = qo. In either case if YV’ € ¢; then either ¢ € ty or ¢ € Feo. If
Y € 1y, then 2 = ¢ and if ¢/ € t; then x* |= ¢/, furthermore, if ¢z & F.. then 05 ...0p-1 & L(Ac) and so
we have that in either case 7 | ¥V,

0.

Claim 5 Let x € ¥, & = (s, 00) ..., then x |= ¢ implies © € L(Ay).

Proof: Suppose & |= ¢ then we can construct a satisfying run of Ay on .

By the construction of the AND-OR graph there is a path, through that graph, UyVoU;V; ... such that if
P eV, then P € s;,if =P € V] then P ¢ s;, and furthermore, there is an arc labeled by o; from V; to U;41.
This path defines a path in A4 (V5,0)...(V,0)... which is accepting. O

O(Theorem 3)
Theorem 6 L(M x Ay) # 0 iff there is a full path z in M such that M,z = ¢.

Proof: The proof is immediate from the previous theorem. O.

Theorem 3 gives a model checking procedure that runs in time linear in the size of the structure M and
linear in the size of the tableaux for formula ¢. T, the tableaux for ¢, is at most of size exponential in the
length of ¢ since each node has a unique label and there are at most 2/?l such labels.

Theorem 7 Given a formula ¢ of RTPLTL+, fairness constraint ® and structure M = (S, R, L), the model

checking problem ‘do the fair computations of M satisfy ¢ is decidable in time O(|M| x 22|¢|+|¢|).

Proof: Theorem 3 gives a method for creating the Biichi automaton A for the RTPLTL+ formula —=(® = ¢)
which accepts only those computations that satisfy ® and do not satisfy ¢. From the construction in the

theorem A is of size exponential in the length of the formula =(® = ¢) which is exponential in binary
encoding of the numeric constants of ® and ¢.

Form the product automaton M x A, and test this automaton for emptiness. Testing Blichi automaton A’
for emptiness is in O(].A’|) (see the appendix for details). Hence we can test whether £(M x A) = §} in time
linear in the size of M x A. L(M x A) = 0 iff for all computations z of M, M,z = —~(® = ¢) iff for all
computations x of M, M,z = (® = ¢) iff M is a fair model of ¢.

O

4 RTPLTL+ Example Specifications

We list a few example specifications which exhibit a pattern typical of real time systems requirements.
The requirements are of the general form ‘G(antecedent = consequent)’ where the antecedent specifies the
occurrence of some time bounded condition and the consequent specifies a time bounded extension to the
antecedent.

Example 1. If B occurs exactly four times within ten time units, then immediately following the fourth
occurrence of B, D occurs within three time units.
G(FABASI0C e = FABASI0CEDASIC 1y)

15

Example 2. If B occurs, then immediately following B, D should occur at least five times within eighteen
time units and there should be at least three time units between any two of the five consecutive
occurrences of D.

G((B" B)true = (B"B)((D"DY(D+C "C)») (D" D)) N (C~C)<'8)true)

Example 3. If the actions B, D, I/, F' occur, exactly once each and in order, within ten time units, i.e. F
occurs before eleven time units have elapsed since the occurrence of B, then G occurs within nine time
. _ %
units of F. Let A= B+ D+ E+ F then

G((ABADAEAF)N(C C)$true
=
(ABADAEAF)N(C™C)s1)
FEAS9C trye

)

Example 4. If B occurs, then D should occur before F' has occurred three times.
G((B™B)true = (B B)((D D) N (F " F)<3)true)

Example 5. If B occurs, D, E, F and G should occur, exactly once each and in order, within ten time
units and D, F and F should have occurred within five time units. Let A = D4+ E 4+ F + G™ and
A'=D+ E+F ", then we have

G(FPtrue
=
FE(ADAEAFAG)N(CTC)S%true
A
FB((A' DA EAN FYN (C7C)S5)true
)

Example 6. If B occurs followed by D and there are no more than two occurrences of E between B and
D, then F' happens five time units after D.

G(FB(FDASZEtrue) = (FB(FDASZE(FFASE’Ctrue))))

5 Model Checking RTCTL+

CTL and RTCTL, branching time temporal logics, are of special consideration because their model checking
procedures have only linear time complexity. While RTCTL+ model checking is not linear, the exponential
cost of model checking is due to the increased expressiveness obtained from the addition of regular formulae
and counter expressions. Regular formulae are expensive because the size of the associated automaton is
multiplicative in the number of ‘N operators and exponential in the binary encoding of the numeric con-
stants. Similarly, counter expressions are model checked with automata exponential in the binary encoding
of constants and multiplicative in the number of ‘A’ symbols in the counter expressions. This blow up seems
unavoidable and in a manner similar to the Lichtenstein Pnueli [LP85] thesis we argue that the constants
and regular expressions will usually be of a manageable size in comparison with the size of the model.

This section covers the development of a model checking algorithm similar to those presented in [EMSS90]
and [EL87]. The algorithm runs in time linear in the structure size, linear in the number of temporal
connectives of a formula, and exponential in the binary encoding of the constants of a formula and the
number of conjunctive arguments to regular formulae and counter expressions.

16

5.1 Model Checking

Model checking RTCTL+ formulae is very similar to model checking RTCTL formulae with fairness con-
straints. We give the most important algorithms from [EMSS90] modified to ensure fairness and explain how
to use the concepts from the linear time section to handle formulae with regular sub-formulae and counting
expressions.

Given RTCTL+ formula f, we denote by SUB(f) the set of sub-formulae of f; we import the concept of
positive and negative formulae from the previous sections.

SUB(f) is defined recursively as follows:

o f=P: for P € AP then SUB(f) = {f}.

o f =g : SUB(f) = {f} USUB(g).

o f=/fiAf2: SUB(f) = {f} USUB(f1) USUB(/f2).

o f=EXfi: SUB(f) = {f} USUB(f1).

o [=E(f1Uf2): SUB(f) = {f} USUB(f1) USUB(f2).
o f=E(f1U%f2): SUB(F) = {f} USUB(f1) USUB(/2).
o f=AXf1: SUB(f) = {f} USUB(f1).

o [=A(f1Uf2): SUB(f) = {f} USUB(f1) USUB(f2).
o [=A(fiUf2): SUB(f) = {f} USUB(f1) USUB(/f2).
o [=Epg: SUB(f) = {f} USUB(9).

— {f} USUB(y).

)

o f=Epg: SUB(f)
= {f} USUB(g).
)

(
(
o f=Apg: SUB(f) (
o f=Apg: SUB(f) = {f} USUB(g).

Inducting on the number of connectives, E, A, X, U, U% A, =, in a formula f, it can be shown that |[SUB(f)|
is linear in the number of connectives.

The top level procedure Model _Check, shown in figure 3, takes as input an RTCTL+ formula f, a structure
M and fairness constraint ® and returns structure M’ labeled with the sub-formulae of f that respect the
structure of M. T.e. if M = (S, R, L) then M’ = (S, R, L’) and for all s € S, g € L'(s) iff M, s = g under @,

where g or its negation is an element of SUB(f).

As defined in [EL87] the Fair State Problem is ‘given M = (S, R, L) and fairness constraint @, determine
the states s € S such that there exists a full path @ = zgog...in M, 29 = s, and M« = ®.” [EL87] gives an
algorithm, which we refer to as FSP, for this problem running in time linear in M and quadratic in the size

(o] J—
of ®. However, when & =F (C'* Ctrue a state s is a fair state iff there is a strongly connected component
of M, reachable from s, which contains states s1,s2 and (s1,C, s3) € R. Which requirement can be checked
in time linear in the size of M.

Model_Check uses FSP to label the fair states in S and then proceeds in a bottom up fashion. M is already
labeled with propositions and by extension their negations. Once M’ has been labeled with all sub-formulae
of length < n, it is a simple matter to extend the labeling to sub-formulae of length n + 1. Model_Check
handles the obvious cases; a state is labeled by —f precisely when it is not labeled by f. Add f A f’ to the
label of s iff s is already labeled with f and f’. EXg is added to L(s) just when s has a successor ¢ such that
t satisfies ¢ and .

17

Procedure Model_Check(f,M,®)
/* Input: structure M = (S, R, L), RTCTL+ formula f

/* and fairness constraint @

/* Output: M’ = (S, R, L') where f € L'(s) iff M,s |= f.
begin

S = FSP(M, ®);

for each s € §', L(s) := L(s) U{®};

Sub := SUB(Y)

for i := 1 to length(f) do
for each f’, in Sub, of length i do

case structure of f’ is of the form

P : skip; /* M is already labeled with atomic propositions
—g: for each s € S, if g & L(s) then L(s) := L(s) U{f'};
g1 A ga - foreach s € S, if g1 € L(s) and g2 € L(s) then L(s) := L(s) U{f'};
EXg : for each s € S, if there exists t € S and B € ACT such that (s, B,t) € R, ¢ € L(t) and ® € L(t)
then L(s) := L(s) U{f'};
AXyg : for each s € S| if for all t € S and B € ACT such that (s, B,t) € R, ® € L(t) implies g € L(t),
then L(s) := L(s) U{f'};
E(g1Ug2) : EU_Check(g1, g2, f', ®);
A(g1Uga2) : for each s € S
if g1 & L(s) then L(s) := L(s) U{—g1};
if go & L(s) then L(s) := L(s) U {—g2};
if =g1, g2 € L(s) then L(s) := L(s) U{—g1 A —g2};
end for
EU_Check(—g2, ~g1 A =gz, E(mg2U—g1 A =g2),);
EG_Check(—g2, EG(—g2), ®);
for all s € S if neither E(—g2U—g1 A —g2) € L(s)
nor EG(—g2) € L(s)
then L(s) := L(s) U{f'};
E(g1U%g2): Ece_Check(M x Ace, g1, 92,ce, [/, ®);
A(g1U%ga): Ace_Check(M x Ace, g1, g2, ce, [/, ®);
Epg : posE_Check(M x A,, g, f', ®);
Apg : for all s € S such that g & L(s) then L(s) := L(s) U {—g};
negE_Check(M x Az, —g,Ep—yg, ®);
for s € S such that Ep—g ¢ s
L(s):= L(s) U{f'};
Epg : negE_Check(M x Az, g, ', ®);
Apg : for all s € S such that g € L(s) L(s) := L(s) U{—g};
E_Check(M x A,,—g, Ep—g, ®);
for s € S such that Ep—g ¢ s
L(s) := L(s) U{f'};

endcase

endfor
endfor
end

Figure 3: Procedure Model_Check

18

Procedure EU_Check(g1, g2, f, ®)
begin
EU := §;
for each s € S do
if g2 € L(s) and ® € L(s) then

EU := EUU {s};
L(s) = L(s) U{f);
endif
endfor
while EU #£ §

remove s from EU;
PRE := {s'|(s', B,s) € R,g1 € L(s') and f & L(s") };
for each s’ € PRE do L(s") := L(s") U{f};
EU := EU U PRE;
endwhile
end

Figure 4: Procedure EU_Check

Figure 4 contains the procedure EU_Check given in [EL87]. EU_Check labels each state s in M with E(g1Ug2)
exactly when M contains a fair path @ = xpoq..., 2o = s and M,z |= gUg’. Each state s which satisfies ®
and ¢’ satisfies E(gUyg’). EU_Check finds all such states and ‘works backwards’ finding all states which satisfy
g and are connected to states already known to satisfy E(gUg’) under ®. This set of predecessor states also
satisfies E(gUg’) under ®. Eventually all states reachable, in reverse, from the initial set of satisfying states
are examined and the algorithm traverses each edge in the graph at most once. Therefore EU_Check runs in
time linear in the size of the structure.

Claim 8 Given M = (S, R, L), f = E(91Ug2), and ®, such that for all s € S, M, s |= g1 (respectively g, ®)
iff 91(g2,®) € L(s) then EU_Check adds f to L(s) exactly when M,s |= f.

Figure 5 contains procedure EG_Check which labels states in M with formulae of the form EGg. EG_Check
reduces M to a sub-graph which contains only those states which satisfy g and then uses the FSP to find
the states with a fair path which satisfies f. Any state which satisfies EGg under & must have have a
computation, starting in that state, which satisfies (Gg) A ®. Just those states in the sub-graph with infinite
computations satisfy EGg under &.

Claim 9 Given M = (S,R, L), f = Gg and ®, such that for all s € S, M,s = g (respectively ®)} iff
g(®) € L(s) then EG_Check adds f to the label of state s precisely when M, s |= f.

Since A(f1Uf2) = =(E(=faU=f1 A= fa) V EG(—f2)) we have as a corollary that Model_Check correctly labels
states that satisfy A(fiUf2).

Procedure pos_Echeck, in figure 6 below, gives an algorithm for determining the states of M that model Epg
under fairness constraint ® , where it is has previously been determined which states model ¢ and which
states model ®. Note that the correctness of the algorithm is based on the fact that M can be viewed as a
Bichi automaton accepting only those strings which are computations of M.

Suppose f is of the form Epg. Then for all s € .S, M, s |= f under fairness constraint ® iff there exists a full
path ¥ = xgop ... in M, such that g = s and M,z = (pg) A ®. When determining whether a path satisfies

(o]
a fairness constraint like F ¢ one can ignore arbitrarily long finite prefixes of the path. Therefore it suffices

19

Procedure EG_Check(g, f, @)
begin
S ={slge L(s)};
R :={(s,B,s)|(s,B,s') € Rand s,s" € S};
M’ = (5", R L);
Sl = FSP(M, <I>)
for all s € 57
L(s) := L(s) U f;
endfor
end

Figure 5: Procedure EG_Check

Procedure pos_Echeck(M x A,, g, ®, f)

/* M x A, is the product automaton */

/* described in the text */

begin
SCC := the set of strongly connected components of Qarx.a,;
GSC := the elements of SCC whose intersection with Fi .4, is non-empty;
GS := {s € 5| there is a path from (¢o 0, s)to a state in an element of GSC };
for all s € GS, L(s) := L(s) U{f};

end

Figure 6: Procedure pos_Echeck

to check M, 2 |= p(¢g A ®). & may not be a fair path, however, M,z = p(g A ®) guarantees a state x; such
that M, z; = g A ® which implies that there is a fair full path y = yoo} ..., such that yo = #; and the path
¥ = xo0og...2i—10;_1Yo0] . . . is a fair path which satisfies (pg) A ®.

Given regular formula p the automaton A, = (ACT, Q,,4,, go, F,) accepts strings o € ACT* which satisfy
p. Define the product automaton M x A, = (X,Q,4,(s,q0), F) as follows. ¥ = S x ACT, @ = 5 x
(Q, U {qr,qr}) and F = {(s,qr)|s € S}. & : Q x ¥ — 29 defined by the following rules. For ¢ €
Q,,q & F,, (¢/,s") € 6({(q,9),(t,B)) iff t = s, (s,B,s') € R, and 6,(¢q,B) = ¢'. For ¢ € Q,,q € F,
(97,5 € 6({q,8),(t,B)) iff t = s, (s,B,s') € R, ® € L(s), and g € L(s); if ® & L(s) or ¢ ¢ L(s) then
(qr, 5"y € 6({q,s),(t, B)). If ¢ € {gr,qr} then (¢q,s') € 6({g, s),(t, B)) iff s =¢ and (s, B,s’) € R.

L(M x A,) = 0 iff there are no computations, z of M such that M,z |= (pg) A ®. pos_ECheck uses this fact
to find all the states s € S which satisfy E(pg) A ® by a standard Biichi automata emptiness algorithm.

The product construction given in pos_ECheck is linear in the size of |.4,| and |M|. Clearly the final product
automaton is still Biichi and so it can be tested for emptiness in time linear in its size.

Claim 10 Given input formula Epg, fairness constraint ®, and product automaton M x A,, procedure
pos_ECheck correctly labels the states s of M with Epg such that M, s |= Epg under fairness constraint ®, in
time linear in the size of Epg and M .

Formulae of the form Epg are handled in a similar fashion, see figure 7, by changing the acceptance set of

the automaton M x Az to include all states of Q7 except ¢ and checking that the fairness condition holds
in the strongly connected components of the automaton structure.

20

Procedure neg_Echeck(M X Asyertinep, 9, P, f)
/* M x A, is the product automaton */
/* described in the text */
begin
SCC := the set of strongly connected components of € nrx.45;
GSC := the elements of SCC whose intersection with Fjsx.4, is non-empty
and which contain a transition of the form ((s, ¢), C, (¢, q))

/* i.e. the SCC which are also fair according to FC. */
GS := {s € 5| there is a path from (¢o 0, s)to a state in an element of GSC };
for all s € GS, L(s) := L(s) U{f};

end

Figure 7: Procedure neg_Echeck

Claim 11 Given input formula Epg, fairness constraint ®, and product automaton M x As procedure
neg_ECheck correctly labels the states s of M with Epg such that M,s |= Epg under fairness constraint
D, in time linear wn the size of Epg and M.

Note that Apg = —Ep(—g) and Apg = —Ep(—g) we can label the states of the figure which satisfy these types
of formulae.

Ece_Check takes as input a formula f’ of the form E(gUg’) and labels with f’ exactly those states of S
which satisfy f’ under the constraint ®. Assuming that M has already been labeled with g, ¢’ and ® the
procedure works in the following manner. Let A.. = (ACT, Q,6, qo, F') be the automaton for the counting
expression ce then create M x A = (ACT, Q' ¢, Qf, F'). @ = (Sx QU {sink}, Qf, the set of (¢o,s) € @,
is the set of start states and F' = {sink}. &’ is defined by (s',¢') € 0'(s,q, B) iff (s, B,s') € R, §(¢, B) = ¢,
g€ L(s)andoneof ¢ & F, g’ & L(s), or ® & L(s). 0'(s,q,B) = sink if € I, ¢’ € L(s) and ® € L(s); and
&' (sink, B) = sink.

Clearly £L(M x Ac) = @ iff there exists no s € S such that M,z | f’. Using techniques outlined in the
procedure pos_Echeck we can find all the states which satisfy f’ and label them appropriately.

Claim 12 Given RTCTL+ formula E(fUyg), fairness constraint ® and the automaton for the counting
expression ce, A, and assuming that M has been labeled with ®, f and g, then Procedure Ece_Check labels the
states, s € S with E(fUg) ff M,s = E(fUg) under ®. Furthermore, the procedure runs in time linear
in the size of M and linear in the size of A.

Ace_Check works in a similar way. Given the input formula A(fUg), fairness constraint ® and the automaton
for ce A’ = (ACT, Q',6', qo, F') then the first step is to create a product automaton A that accepts computa-
tions of M which satisfy the property =(fU®g)A®. A = (Sx ACT, Q, 4, Qp, F) where Q@ = (Sx Q")U{sink},
Qo ={(5,9)l¢ = qo} and F = {sink} U{(s,q)|l¢ € I’ or ¢ & L(s)}. J is defined as follows, d(sink, (s, B)) =
sink, (s',¢") € 3((s,¢), (&, B)) iff s =t,(s,B,s') € R, (¢,B,¢) €, f € L(s), and (¢ € I or ¢ & L(s)), and
3((s,q),{t,B)) = sink iff & € L(s),f & L(s) and (¢ € F' or ¢ & L(s)). As in the procedure neg_ECheck we
need only check for fair strongly connected components whose intersection with the F” is none empty and
which contain an arc labeled by C'.

Claim 13 Given RTCTL+ formula A(fUg), fairness constraint ® and the automaton for the counting
expression ce, A’, and assuming that M has been labeled with ®, f and g, then Procedure Ace_Check labels
the states, s € S with A(fUg) iff M,s = A(fU®g) under ®. Furthermore, the procedure runs in time
linear in the size of M and linear in the size of A.

21

Proof: M,z = A(fU%g) under @ iff M, 2 = —-E=(fU%g) under ®. Since a state, s, satisfies formula
—f" iff it is not the case that s satisfies f’ it suffices to determine which states satisfy E-(fUyg) under ®.
M,s = E=(fU%yg) under @ iff there exists path # = zgog... such that zg = s and M, 2 = —(fU%®g) A ®
iff it is not the case that there exists an ¢ € A such that cgoy...0;_1 | ce and M, z E ¢ and for all
j<i, M,z |= fand M,z = ®. Suppose there exists ¥ € A" such that M,z* |= —f, this implies that if
i exists, as above, then i < k. l.e. given that forno i < k, M,z' = g and for all j < i, M, 2’ |= f and
0001 ...0i—1 = ce then there exists no such i > k.

Let « be a path in M such that M,z | —=(fU%g) A ®. Then there exists an accepting run, r, of A on
z. Suppose there exists a k as described above. Then r = (xg, o), (#1,¢1) ... (2, i) sink ... which is an
accepting run. If no k exists then the run (2, o) (21, ¢1) . . . is accepting since for each (;, ¢;) either ¢ & L(x;)
or ¢; € F', and o; = C infinitely often. Suppose A has an accepting run. By the transition relation of A, if
swink 1s not an element of the run, », then the input generating the run is a computation of M which satisfies
=(fUg) A ®. No prefix (zg,00)(21,01) ... (25, 04) can satisfy both o¢...0;_1 |E ce and M, z; = g since
that would imply that 7, = (2;,¢), ¢ € F' and g € L(x;), and A has no successors from such a state. If sink
is an element of the run then the input prefix leading up to sink can be used to construct a computation
satisfying =(fUg) A® because z; of (z;,q), the predecessor of the first state sink state, satisfies & and —f.

O

Therefore we have the following theorem.

Theorem 14 Given structure M = (S, R, L), fairness constraint ® and RTCTL+ formula f, the question
‘does there exist a state s € S such that M, s |= f under ® can be answered in time O(|M| x 271 x |®|).

6 RTCTL+ Example Specifications

In this section we reformulate the example specifications in the logic RTCTL+.

Example 1. If B occurs exactly four times within ten time units, then immediately following the fourth
occurrence of B, D occurs within three time units.

AG(=E((B"B)* N (C"C)S19)-A((D D) N (C 7 C)S3Ytrue)

Example 2. If B occurs, then immediately following B, D should occur at least five times within eighteen
time units and there should be at least three time units between any two consecutive occurrences of

D.

AG(AGP
A(D DD+ C CP)*D D) N (CTC)S18) true
)

Example 3. If the actions B, D, I/, F' occur, exactly once each and in order, within ten time units, i.e. F
occurs before eleven time units have elapsed since the occurrence of B, then G occurs within nine time
. _—— %
units of F. Let A= B+ D+ E+ F then

AG(-E((ABA DA EAF)n (C C)SOEGEFNSIC fulse)

Example 4. If B occurs then D should occur before F' has occurred three times.
AG(—E(B”B)-A((D" D) N (F"F)<3)true)

Example 5. If B occurs, D, E, F and (G should occur, exactly once each and in order, within ten time
units and D, F and F should have occurred within five time units. Let A = D4+ E 4+ F + G™ and
A'=D+ E+F ", then we have

22

AG((AGPA((A DA EAF AG)N (CTC)S') true)
A
(AGBA((A' D A" E A F) N (C~C)S%) true)
)

Example 6. If B occurs followed by D and there are no more than two occurrences of E between B and
D, then F' happens five time units after D.

AG(AGP AGP NS AFFNS3C trye)

7 Conclusion and Related Work

In summary, we have presented a general and natural framework for reasoning about quantitative temporal
properties. Our models of systems can encode the computations of asynchronous systems using the abstrac-
tion of an interleaving syntax. Our logics allow one to reason about properties expressible in CTL, RTCTL
and PTL and we have added the ability to discuss regular sequences over paths at a very reasonable cost.
Combining the logics with the models allows for the consideration of quantitative properties of independent
events. In particular, the RTPLTL+ formula GFP1¢1A<b2C2 e expresses a restriction on the divergence
of independent clocks €7 and C5. While the syntax for regular formulas i1s different from, and does not
encompass all regular expressions, our techniques are general enough to handle any deterministic finite state
machine in place of regular formulae.

Model checking RTCTL+ and RTPLTL+ preserves the utility of CTL and PLTL model checking procedures
in that the algorithms are linear in the size of the structure. RTCTL model checking techniques which are
linear in the log of the size of the formula constants cannot be applied, however, the models considered here
are more general and the logics more generally quantitative rather than simply timing related.

There has been a great deal of related work in the field and we only mention some of the work that most
closely bears on our own. Alur and Henzinger have written an excellent survey [AH92] which covers many
of the basic theoretical and practical considerations involved in designing a real time logic.

[AH89][AH94] defines the logic TPTL (Timed Propositional Temporal Logic) which is a real time extension
to PLTL. TPTL is an ‘half-order’ logic in that formulae such as Oz.(B = $y.(D Ay < 2 4+ 10)) partially
quantify over ‘time.” Evaluation of a formula over a sequence of states and time value pairs (the sequence of
time values is monotonically non-decreasing) proceeds by ‘freezing’ x to the value of time at the first state
of the sequence. Therefore we can loosely interpret the above formula as meaning whenever B is true at
state s, bind x to the value of time associated with s, and verify that there is a future state s’ at which D is
true and time, represented by y has not increased more than 10 units from . [AH90] explains that & and
y must refer to the same increasing sequence of time values, otherwise the logic may become undecidable.
RTPLTL+ can express some of TPTL properties, e.g. the above property is expressed in RTPLTL+ as
G(FBtrue = FPFPAS10C%yprye). However, RTPLTL+ is not restricted to models involving a single time
sequence. TCTL [ACDY0] [Al91] is the branching time analog of TPTL with a continuous time semantics.

Lewis, in [Le90], describes an extension to CTL which incorporates time bounds on the basic modalities.
E(PU,Q) specifies that there is a computation along which P holds until @ holds and moreover @ holds
within the bounds specified by 7, a contiguous subset of a discrete domain. Formulae of the logic can be

encoded in RTCTL+ with a linear cost [EMSS90].

[Le90] uses, as an example of the utility of the logic, the problem of modeling asynchronous circuits with
general delay assumptions. A significant drawback to this approach arises because the timing delays in
circuit transitions may cause the circuit to oscillate before stabilizing. Models which encode this oscillating
behavior may encode infinite computations which oscillate between unstable states. Therefore there can
exist formulae of the logic which are true (false) of the model and false (true) of the circuit. [Le90] offers

23

a solution which incorporates timing histories of the transitions. Using the histories a model can guarantee
that any such oscillating behavior is bounded by the delays on the actual gates of the circuit, or estimations
of those delays. This extra data encoded in the model can, however, cause the size of the model to increase
dramatically. An alternative solution is to mark those states that are stable with a proposition and rule out,
through the use of fairness restrictions, any infinite behavior which does not stabilize infinitely often.

Automatic quantitative analysis of programs or hardware can be, in general, a difficult problem. Presburger
arithmetic 1s an expressive language for writing quantitative specifications in but has a costly decision
procedure. Combining CTL or PLTL with Presburger arithmetic allows the specification of non-regular
properties [BE95a] [BE95b], i.e. properties which are not definable as w-regular sets. However, Bouajjani
et. al. [BE95a] have been able to combine CTL with Presburger arithmetic, in PCTL, and model check
these formulae on some finite and infinite state processes. While PCTL is more expressive than RTCTL+ it
is also more costly. Model checking PCTL is undecidable on finite state processes in general, however, for a
sub-language of PCTL model checking is decidable for a restricted class of finite and infinite state processes

called ‘guarded PA’s’ [BE95a].

CLTL [BE95b] is a quantitative logic that extends PLTL with Presburger arithmetic and finite state au-
tomata. Again, model checking the full logic on finite state processes is not decidable, but certain sub-logics
have decidable model checking procedures. ALTL, which adds finite automata to PLTL, has a model checking
procedure for finite state structures and some infinite state structures. ALTL is not, however, an obviously
quantitative logic and is similar to Extended Temporal Logic (ETL) [Wo83].

ETL is an extension of PLTL that allows each right linear grammar to define a temporal operator. [Wo83]
shows that this logic is more expressive that PLTL and has a decision procedure similar to and with the
same complexity as PLTL. Alur and Henzinger, in [AH90], extend TPTL to TETL and show that the more
expressive logic TETL can be used at no extra cost in terms of model checking procedures.

There has also been work done on probabilistic model checking [HJ89], [Ha91], [AS95] and [BdA95]. This
paradigm allows one to ask what percentage of the computations of a system satisfy certain CTL or PLTL
properties.

Our approach here has been to examine structures with respect to the quantitative specifications of a logic.
Alternatively, specifications maybe directly embodied in automata. [Di88a] [Di88b] is a restricted example
of this method and [Bur88] is an extension. Representing specifications as automata requires the specifier
to make a difficult jump from the pre-formal specification to the extensional automaton. A difficulty not
encountered here although the model checking method for PLTL and its real time extensions can be seen as
a compiling of language specifications into automata specifications.

Henriksen et al, in [HJ95], study specifications written in a second order monadic logic of traces. The focus
is on an alternative to regular expressions and they give a method for compiling specifications into reduced
finite state automata.

Quantitative model checking answers the question ‘do the computations of a structure satisfy a given speci-
fication?” Where the specification encodes some quantitative requirement such as ‘every request is responded
to within 5 time units.” Another analytic paradigm may ask what is the longest or shortest response time to
a request? Campos et. al. [CE94] have developed algorithms that analyze finite state systems and answer
such questions. Their algorithms find longest (provided there are no loops in the graph of the system)
and shortest computation paths to goal states where the states may be required to satisfy some boolean
constraint.

Finally we look at the possibility of extending our work. Two areas of immediate importance arise. Analysis
of the satisfiability problem for the logic RTCTL+ and efficient implementations of model checkers for the
logics.

Acknowledgements

We would like to thank Insup Lee and Hong-liang Xie for drawing our attention to example specifications

similar to the ones in Sections 4 and 6. We are grateful to Panagiotis Manolios and Kedar Namjoshi for
their many insightful comments and questions regarding this work.

24

References

[ACD90]

[ATI89]

[AH90]

[AH92]

[AHY4]

[A191]

[AS95]

[BdA95]

[BE95a]

[BE95b]

[Bu62]

[Bur8g]

[Ch74]

[CE94]

[CES1]

[Dig8a]

Alur, R., Courcoubetis, C., and Dill, D., Model Checking for Real-Time Systems. In Proceedings
of the Fifth Annual Symposium on Logic in Computer Science, pp. 414-425, IEEE Computer
Society Press, 1990.

Alur, R., and Henzinger, T. A. | A Really Temporal Logic. In Proceedings of the 30th Annual
Symposium on Foundations of Computer Science. IEEE Computer Society Press, New York, pp.
164-169, 1989.

Alur, R., and Henzinger, T. A. | Real-time Logics: Complexity and Expressiveness. In Proceedings
of the 5th Annual Symposium on Logic in Computer Science. IEEE Computer Society Press, New
York, pp. 390-401, 1990.

Alur, R. and Henzinger, T. A. |, Logics and Models of Real Time: A Survey. In Real Time:
Theory wn Practice. J. W. de Bakker, K. Huizing, W. -P. de Roever, and G. Rozenberg, eds.
Lecture Notes in Computer Science, vol. 600. Springer-Verlag, New York, pp. 74-106, 1982.

Alur, R. and Henzinger, T. A. , A Really Temporal Logic. In Journal of the Association for
Computing Machinery. Vol. 41, No. 1, January 1994, pp. 181-204, 1994.

Alur, R., Techniques for Automatic Verification of Real-Time Systems. PhD thesis, Stanford
University, 1991.

Aziz, A., Singhal, V., Balarin, F., Brayton, R.K., and Sangiovanni-Vincentelli, A.L., It Usually
Works: The Temporal Logic of Stochastic Systems. In Proceedings of Computer Aided Verification
1995, Springer Verlag, pp. 155-165, 1995.

Bianco, A. and de Alfaro, L., Model Checking of Probabilistic and Nondeterministic Systems.
In Foundations of Software Tech. and Theor. Comp. Sci., Lecture Notes in Computer Science,

Springer-Verlag, 1995.

Bouajjani, A., Echahed, R. and Habermehl, P., Verifying Infinite State Processes with Sequential
and Parallel Composition. In ACM POPL95 pp. 95-106.

Bouajjani, A., Echahed, R. and Habermehl, P., On The Verification Problem of Nonregular
Properties for Nonregular Processes. In IEEE LICS95 pp. 123-133.jy = m — 1, and

Buchi, J. R.; On a Decision Method in restricted Second Order Arithmetic, Proc. 1960 Inter.
Congress on Logic, Methodology, and Philosophy of Science, pp. 1-11.

Burch, J. R., Modeling Timing Assumptions with Trace Theory, In Proceeding of the IEEE
International Conference on Computer Design, 1989.

Choueka, Y., Theories of Automata on w-tapes: A Simplified Approach. Journal of Computer
and System Sciences vol. 8. pp. 117-141, 1974.

Campos, S., Clarke, E., Marrero, W., Minea, M. and Hirashi, H., Computing Quantitative
Characteristics of Finite-State Real-Time Systems. Technical Report CMU-CS-94-147, Carnegie
Mellon University, School of Computer Science, 1994.

Clarke, E. M., and Emerson, E. A.) Design and Verification of Synchronization Skeletons using
Branching Time Temporal Logic, Logics of Programs Workshop, IBM Yorktown Heights, New
York, Springer LNCS no. 131., pp. 52-71, May 1981.

Dill, D., Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits,
PhD Thesis, Dept. of Computer Science, Carnegie Mellon University, 1988.

25

[Dig8b]

[EHS6]

[Em&1]

[Em95]

[EL85]

[EL87]

[EMSS90]

[Fr86]

[FI89]

[Ha91]

[FJ95]

[HP85]

[Le90]

[LP85]

[Pn77)

[Pn86]

[St81]

[Tho1]

Dill, D., Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits. In
Advanced Research in VLSI: Proceedings of the fifth MIT Conference, 1988.

Emerson, E. A., and Halpern, J. Y., ‘Sometimes’ and ‘Not Never’ Revisited: On Branching versus
Linear Time Temporal Logic, JACM, vol. 33, no. 1, pp. 151-178, Jan. 86.

Emerson, E. A.] Branching Time Temporal Logics and the Design of Correct Concurrent Pro-
grams, Ph. D. Dissertation, Division of Applied Sciences, Harvard University, August 1981.

Emerson, E. A., Automated Temporal Reasoning about Reactive Systems. In Logics for Concur-
rency, Faron Moller and Graham Birtwistle, Eds., Springer Verlag, Berlin, 1996, pp. 41-101.

Emerson, E. A., and Lei, C. L., Temporal Model Checking Under Generalized Fairness Con-
straints. In Proceedings of the 18th Hawau International Conference on System Sciences, Hawaii,

1985.

Emerson, E. A.) and Lei, C.-L., Modalities for Model Checking: Branching Time Strikes Back,
pp- 84-96, ACM POPLS85; journal version appears in Sci. Comp. Prog. vol. 8, pp 275-306, 1987.

Emerson, E. A., Mok, A. K., Sistla, A. P., and Srinivasan, J., Quantitative Temporal Reasoning.
In CAV 90: Computer-aided Verification. E. M. Clarke and R.P. Kurshan Eds. Lecture Notes in
Computer Science, vol. 531. Springer-Verlag, New York, pp. 136-145, 1990.

Francez, N., Fairness, Springer-Verlag, New York, 1986

Hansson, H. and Jonsson, B., A Framework for Reasoning About Time and Reliability. In Pro-
ceedings of the 10th Annual IEEE Real Time Systems Symposium, Santa Monica, CA., December
5-7, pp. 102-111, 1989.

Hansson, H., Time and Probability in Formal Design of Distributed Systems. Ph.D. Dissertation,
Uppsala University, Sweden, DoCS91/27, September 1991.

Henriksen, J.G., Jensen, J., Jorgensen, M., Klarlund, N.; Paige, R., Rauhe, T. and Sandholm,
A., MONA: Monadic Second-Order Logic in Practice, BRICS Report Series, BRICS RS-95-21,
University of Aarhus, 1995.

Harel, D. and Pnueli, A., On the Development of Reactive Systems. In Logics and Models of
Concurrent Systems. K. Apt Ed. NATO Advanced Summer Institutes, vol. F-13. Springer-Verlag,
pp. 477-498, 1985.

Lewis, H. R., A Logic of Concrete Time Intervals. Proceedings of the 5th Annual Symposium on
Logic in Computer Science (LICS), IEEE Press, pp. 380-399, Philidelphia, 1990.

Litchtenstein, O., and Pnueli, A., Checking That Finite State Concurrent Programs Satisfy Their
Linear Specifications, POPLS85, pp. 97-107, Jan. 85.

Pnueli, A., The Temporal Logic of Programs, 18th annual IEEE-CS Symp. on Foundations of
Computer Science, pp. 46-57, 1977.

Pnueli, A.; Applications of Temporal Logic to the Specification and Verification of Reactive Sys-
tems: A Survey of Current Trends, in Current Trends in Concurrency: Overviews and Tutorials,

ed. J. W. de Bakker, W.P. de Roever, and G. Rozenberg, Springer LNCS no. 224, 1986.

Streett, R., Propositional Dynamic Logic of Looping and Converse, PhD Thesis, MIT, 1981;
journal version appears in Information and Control b4, 121-141, 1982.

Thomas, W., Automata on Infinite objects. In Handbook of Theoretical Computer Science, vol.
B, (J. van Leeuwen, ed.), Elsevier/North-Holland, 1991.

26

[Va95] Vardi, M., An Automata-theoretic Approach to Linear Temporal Temporal Logic. In Logics for
Concurrency (Faron Moller and Graham Birtwistle, Eds.), Springer Verlag, Berlin, 1996, pp.
238-266.

[VW94] Vardi, M. Y. and Wolper, P., Reasoning About Infinite Computations. Information and Compu-
tation, vol. 115(1). November 1994, pp. 1-37.

[Wo83] Wolper, P., Temporal Logic Can Be More Expressive Information and Control, vol. 56, 1983, pp.
72-99.

A Automata

We review the definitions of automata on infinite strings that will be used in constructing the proofs later
in the paper. The treatment here is minimal and we refer the reader to excellent articles on the subject by

Vardi [Va95] and Thomas [Th91].

Let X be a finite alphabet. X% represents the set of strings over X that are of length w. A string € X% has
the form zgzy.... When i € N (A refers to the set of natural numbers), ; refers to the ith element in the
string and z! refers to the suffix of z, @;x;4; ... € ¥*. A Biichi automaton [Bu62] A = (X, Q, q0,d, F) is an
automaton which accepts strings over X of length w. Formally,

e Q is a finite set of states {qo,...,¢n—1}
e ¢o 1s the start state.
e §:Q x ¥ — 29 is the transition function.

e F C Q is a set of final states.

A run of Aon z € ¢ is a string r € Q¥ such that rqg = ¢q¢ and for all ¢ > 0,741 € (ry, ;). r is an accepting
run if inf(r) N F' # (), where inf(r) is the set of states in r that appear infinitely often. We say that A accepts
z € X% if A has an accepting run on . L(A) = {x € ¥¥|A accepts x} defines the language accepted by A.
Let @ be a set then, |Q| = the number of elements of . When @ is a graph |@Q| denotes the number of
nodes plus the number of edges. Suppose z to be a string over some alphabet. Then || = the length of
z, where the empty string is of length 0 and if # = ay, a a member of the alphabet and y a string of the
alphabet, then |z| = |y| + 1.

Theorem 15 [EL85] [EL8T] [VW94] Let A = (2,9, 40,0, F) be a Biichi automaton. Then it is decidable
whether L(A) = 0 in time O(n). Where n represents the size of the transition graph of A.

Proof Sketch: Determine the set of strongly connected components (SCC’s) of @ (this can be done in time
linear in the size of A). £(.A) = @ iff there is no simple path from ¢g to an SCC which contains a state ¢ € F
(this can be determined in time linear in the size of A).

O

Theorem 16 [Ch7{] Let A} = (X, O1, go1,61, I1) and Ay = (X, Qa, qoz, Iz, F2) be Biichi automata. There is
Biichi automaton A = (X, Q, qo, 9, F') such that L(A) = L(A1)NL(A2). A is known as the product automaton
and is denoted Ay x As.

Proof :

14 Q:Q1XQ2X{Oa1a2}

27

® g0 = (q01, 902, 0)
e §:Q x ¥ — 29 and is defined by the following where ¢ € X.

(41, 45,0) € 6(0,{q1,92,0)) il ¢1 € 61(0,q1) and ¢5 € d2(0, ¢2) and ¢ & Fi.
(47,95, 1) €0(0,{q1,92,0)) if ¢} € d1(0,q1) and ¢ € da(0, ¢q2) and ¢, € F.
(91, 45,1) € 6(0,{q1,92,1)) il ¢1 € 61(0, q1) and ¢5 € d2(0, ¢2) and ¢ & Fo.
(91, 45,2) € 6(0,{q1,92,1)) il ¢1 € 61(0, q1) and ¢5 € d2(, ¢2) and g¢» € Fo.
(¢1,45,0) €3(0,{q1,92,2)) if ¢} € d1(0,q1) and g5 € (0, ¢2).

o F={{(11,92,2)lq1 € Q1,42 € Qa}

The counter cycling through 0, 1 and 2, in the above construction, ensures that any accepting run of the
automaton A will visit accepting states of A; and .4, infinitely often. A straightforward argument shows
that A has an accepting run on z € X* iff A; and .42 have accepting runs on z.

O

28

