
Generalized Quantitative Temporal ReasoningyE. A. Emerson Richard J. TreerJuly 17, 1996AbstractReactive systems form a large and important class computing systems. Temporal logic has provento be a very expressive formalism for describing such systems. Model checking provides an automatedproof technique for ensuring that a reactive system satis�es correctness properties speci�ed in temporallogic. In this paper we discuss real time extensions to certain temporal logics and give model checkingalgorithms for these extensions.1 IntroductionIn a landmark paper, [Pn77], Pnueli identi�ed a very general and important class of computing systemsnow called `reactive systems' (cf. [HP85] [Pn86]). Characterized by their ongoing behavior, reactive systemsand their sub-components interact with an environment over which they have little control. Such systems,e.g. operating systems, tend to be quite complex and they have necessitated the development of powerfultools for their veri�cation. In [Pn77] it was argued that temporal logic is a highly appropriate formalism forspecifying and verifying the ongoing operation of reactive systems.CTL (Computation Tree Logic) [Em81] [CE81], because it has an e�cient model checking algorithm [CE81],is an especially useful kind of temporal logic. Formulae of CTL include the operators `A,' `G' and `F' meaning,respectively, `for all computations,' `at all states of a computation' and `at some point in a computation.'Using these operators CTL and its related logics can express qualitative properties of reactive systems. Forexample, one can express the requirement that `every request from a client should be met with a responsefrom the server' as AG(request) AFresponse).Recently, however, it has been recognized that in many applications the speci�cation of correct operationrequires quantitative as well as qualitative properties. Real time systems, those systems whose correctoperation includes time critical speci�cations, require such quantitative analysis. RTCTL (Real Time CTL)[EMSS90] is an example of a logic designed to express timing considerations. RTCTL adds to the syntaxof CTL, operators like `F�5' which, informally, means `at some time along a computation before more than�ve time units have elapsed.' With this formalism we can express properties like `every request from aclient should be met with a response from the server within �ve time units' as AG(request) AF�5response).The surge of interest in real time systems has led to a number of formalisms proposing to deal with thetechnicalities of real time; many of the these formalisms are quite complex.In this paper we present a simple but general framework for handling an enriched class of quantitativeproblems. Our formalism is an extension of RTCTL that employs natural notations from formal languageand automata theory. An example of the types of speci�cations we are interested in, a constraint on the setof computations of a system, is exhibited below.If the server ever receives three consecutive requests from a client, and the server has issued noresponse since receiving the �rst request, then the server will issue a response before receiving ayThis work was supported by NSF grant CCR9415496 1



fourth request. This is expressed as G((request + response �request)3true )((response �response)\(request �request)�3)true).(request + response �request) is a requirement on strings of system actions that is satis�ed when a stringcontains request as the last element of the string and no occurrences of either request or response anywhereelse in the string. (request + response �request)3 speci�es three consecutive occurrences of strings satisfying(request + response �request), i.e. `request ' occurs three times and `response' has not occurred. true issatis�ed by any computation therefore the sub-formula (request + response �request)3true is satis�ed byany computation with a pre�x satisfying (request + response �request)3. Similarly, `((response �response) \(request �request)�3)' speci�es that one `response' has occurred while less than four `request 's have occurred.Verifying that a reactive system obeys a speci�cation, written as a formula in one of the formalismsmentionedabove, can be accomplished with a technique known as model checking [CE81]. Model checkers answer thequestion `given a speci�c reactive system M and a formula �, do all computations of M satisfy the formula�?' We present e�cient extensions of existing model checking algorithms that allow us to model checkformulae of our language over general representations of reactive systems.Section 2, below, gives the syntax and semantics of the quantitative and qualitative languages analyzed inthe remainder of the paper. Model checking for the quantitative linear time logic RTPLTL+ is describedand analyzed in Section 3. Section 4 contains some interesting speci�cations and their translations intoRTPLTL+. Section 5 is devoted to algorithms for model checking the branching real time logic RTCTL+and an analysis of these algorithms. Example speci�cations written in RTCTL+ syntax are given in Section 6.Finally, section 7 is a discussion of related and future work.2 Preliminaries2.1 SyntaxBelow we present a uni�ed syntax for CTL, Propositional Linear Time Logic (PLTL) [Pn77], CTL� andcertain quantitative extensions, viz., RTCTL, RTPLTL, RTCTL+, RTPLTL+ and RTCTL�+.We use the symbol AP to denote the set of underlying atomic proposition symbols. ACT denotes the setof atomic action symbols. Elements of AP will be represented by P;Q; etc., elements of ACT by B;C;D;etc., and N will represent the set of non-negative integers.Semantics of these formulae will be presented in terms of a structure M = (S;R; L), where S is a set ofstates, R is a transition relation on the set of states, and L is a function that labels states and transitionswith subsets of AP and elements of ACT respectively. Formulae true or false of states in the structureare denoted `state' formulae. Formulae true or false of the paths through M are denoted `path' formulae.`Regular' formulae are also modeled on paths and describe the actions which occur along the paths.Let k 2 N ; B 2 ACT then a term is of the form `kB', `� kB' and `� kB.' A counting expression ce is aboolean combination of terms. As a shorthand we will write `1B' as B.The state formulae are de�ned as follows:S1. Each atomic proposition P is a formula.S2. If f and g are state formulae then so are :f and f ^ g.S3a. If � is a path formula then E� is a state formula.S3b. If f and g are state formulae then so are EXf , E(fUg), AXf and A(fUg).S3c. If f and g are state formulae and ce is a counting expression then E(fUceg) and A(fUceg) are stateformulae. 2



S4. If f is a state formula and � is a regular formula then E�f and A�f are state formulae.Path formulae are formed according to the rules:P1. Each state formula is a path formula.P2. If � and  are path formulae then so are :� and � ^  .P3a. If � and  are path formulae then so are X� and (�U ).P3b. If � and  are path formulae and ce is a counting expression then (�Uce ) is a path formula.P4. If � is a path formula and � is a regular formula then �� is a path formula.Let m;n; b 2 N , i 2 [1 : n], Bi 2 ACT , C 2 ACT and i � ACT such that Bi 2 i. If i =fBi; D1; : : : ; Dmg then i is a shorthand for (Bi +D1 + � � �+Dm), which, to avoid the proliferation ofparentheses, may be written as Bi +D1 + � � �+Dm . Regular formulae are formed by the four rules below.R1a. (1 �B1 : : : n �Bn) is a regular formula.R1b. (1 �B1 : : : n �Bn)�b is a regular formula.R1c. (1 �B1 : : : n �Bn)�b is a regular formula.R2. If �1 and �2 are regular formulae then so are (�1�2) and (�1 \ �2).CTL is the language restricted to rules S1, S2 and S3b. PLTL is formed by the rules S1, P1, P2, andP3a. CTL� is the set of state formulae formed by S1, S2, S3a, P1, P2 and P3a. RTCTL can be formedby adding the rule S3c to the rules of CTL and restricting the allowable counting expressions to ones ofthe form � kC, k � 1 (C represents the `time' unit which is implicit in the RTCTL formulae). RTPLTLadds rule P3b to the rules for PLTL. RTPLTL+ adds rule P4 to RTPLTL and RTCTL adds rule S4 toRTCTL without any restrictions on counting expressions.Derived operators are also allowed and we give a listing of them below.� f _ g = :(:f ^:g).� true = P _ :P .� false = :true.� f ) g = :f _ g.� A = :E: .� �V = :(: U:�).� �Vce = :(: Uce:�).� F = trueU .� G = :F: .� Fce� = trueUce�.� Gce� = :Fce:�.� �� = :�(:�).� (n(1 �B1 : : : n �Bn) \ (C �C)�b)� = :((1 �B1 : : : n �Bn) \ (C �C)�b):�We also use the following shorthand notations. Given � = (1 �B1 : : : n �Bn) and n � 1, then if for allk; k 2 [1 : n], 1 = k and B1 = Bk then (1 �B1)n is a shorthand for �. Also, given formulae of the form((�1�2) : : : �n), if the �i are all identical then we will write (�1)n as a shorthand for ((�1�2) : : : �n).3



2.2 IntuitionBefore de�ning the semantics of the formulae, some intuition regarding regular formulae may be in order.Formulae of the type (1 �B1 : : : n �Bn) have a straightforward meaning. These formulae express restrictionson the order of the atomic actions of computations (paths through a structure); furthermore, the meaningof the formulae is equivalent to the meaning of their identical regular expressions. (1 �B1 : : : n �Bn)b is ashorthand for b copies of (1 �B1 : : : n �Bn) and formulae of this type are also equivalent to their identicalregular expressions. However, formulae of the form (1 �B1 : : : n �Bn)�b do not have a meaning equal totheir identical regular expressions. (1 �B1 : : : n �Bn)�b expresses the requirement that there are no morethan b occurrences of the sequence (1 �B1 : : : n �Bn), it does not require that there exists a b0 2 [0 : b] suchthat (1 �B1 : : : n �Bn)b0 be satis�ed. In particular (1 �B1 : : : n �Bn)�0 is true of sequence so long as thesequence does not satisfy (1 �B1 : : : n �Bn). While the empty string satis�es these requirements it is notthe only string that does so. Similarly (1 �B1 : : : n �Bn)�b requires of a string only that there is a pre�xof the string which satis�es (1 �B1 : : : n �Bn)b.2.3 SemanticsTemporal logics, such as CTL, are usually interpreted with respect to Kripke structures. A Kripke structureis a triple which consists of a set of states S, a transition relation on the state set R, and a labeling functionL. L labels the states and/or transition relation arcs with, respectively, the atomic propositions true at astate and the atomic actions associated with transitions. In particular, the family of logics discussed hereare interpreted over �nitely branching structures with �nite state sets.RTCTL implicitly labels each transition with one or more `clock' actions or time units; the algorithmsgiven in [EMSS90] are restricted to the case when only a single clock action labels each transition but thegeneralizations are straight forward. RTCTL+ makes no such assumptions. A clock action is merely one ofa set of possible actions which may e�ect state transitions. We require only that all valid paths through thestructure be `clock fair,' i.e. all in�nite paths must have in�nitely many clock ticks.Let M = (S;R; L) be a structure such that S is a �nite set of states. R � S � ( ACT � S) is a totaltransition relation and L : S [R! 2 AP [ACT such that for all s 2 S; L(s) 2 2 AP and for all s; s0 2 S,and � 2 ACT such that (s; �; s0) 2 R , L(s; �; s0) = �.Let x be a `full path' in M , then x is of the form x0�0x1�1 : : : where for i � 0, xi 2 S, �i 2 ACT and(xi; �i; xi+1) 2 R. xi; �i denote, respectively, the ith state and the ith action of a path while xi denotes thefull path xi�ixi+1�i+1 : : :. xjACT denotes the projection of x onto ACT.Appendix A contains some basic notations and facts about �nite and in�nite strings and string automata. Wenote that a structure M can be viewed as a B�uchi automaton accepting exactly the strings in (2AP�ACT)!which are computations in M .Given a state s (respectively path x) in M we denote that s (respectively x) satis�es or models state formulaf (path formula �) by M; s j= f (M;x j= �). Similarly s (x) does not satisfy f (�) is denoted by M; s 6j= f(M;x 6j= �). Extending these notions to counting expression and regular formulae we write, for � 2 ACT�,� j= ce and � j= � to denote that a the sequence of actions, �, satis�es the counting expression ce or,respectively, the regular formula �. When M is understood we will sometimes drop it from the j= notation.The semantics of formulae formed by the syntactic rules de�nes the satisfaction relation, and is given below.Given state s 2 S and state formulae f; g; g0, path formulae �;  and regular formula �SS1. f = P for some P 2 AP : M; s j= f i� f 2 L(s).SS2. f = :g : M; s j= f i� M; s 6j= g. f = g ^ g0 : M; s j= f i� M; s j= g and M; s j= g0.SS3a. f = E� : M; s j= f i� there exists a full path x in M such that x0 = s and M;x j= �.4



SS3b. f = EXg : M; s j= f i� there exists full path x in M such that x0 = s and M;x1 j= g. f = E(gUg0) :M; s j= f i� there exists full path x in M such that x0 = s and M;x j= gUg0.SS3c. f = E(gUceg0) : M; s j= f i� there exists full path x in M such that x0 = s and M;x j= gUceg0.SS4. f = E�g : M; s j= f i� there exist a path x such that x0 = s and M;x j= �g.Let x = x0�0 : : : be a full path in M , �;  ;  0 are path formulae and � is a regular formula thenPS1. � is a state formula : M;x j= � i� M;x0 j= �.PS2. � = : : M;x j= � i� M;x 6j=  . � =  ^  0 : M;x j= � i� M;x j=  and M;x j=  0.PS3a. � = X : M;x j= � i� M;x1 j=  . � =  U 0 : M;x j= � i� there exists i 2 N such that M;xi j=  0and for all j 2 [0 : i� 1];M; xj j=  .PS3b. � =  Uce 0 : M;x j= � i� there exist i 2 N such that �0:::�i�1 j= ce, M;xi j=  0 and for allj 2 [0 : i� 1];M; xj j=  .PS4. � = � : M;x j= � i� there exists i 2 N such that (i is the least element of N such that � =�0�1 : : : �i�1 and � j= �) and M;xi j=  .Let � 2 ACT�, such that j�j = m and � be a regular formula thenRS1a. � = (1 �B1 : : : n �Bn): � j= � i� there exists j1; : : : ; jn 2 [0 : m � 1] such that for all i 2 [1 :n� 1]ji < ji+1, jn = m� 1, �j1 = B1 and for all k 2 [0 : j1 � 1]�k 62 1 and for all i 2 [2 : n]; �ji = Biand for all k 2 [ji�1 + 1 : ji � 1]; �k 62 i.RS1b. � = (1 �B1 : : : n �Bn)�b: � j= � i� b = 0 or there exists i 2 [0 : m � 1] such that �0 : : :�j j=(1 �B1 : : : n �Bn)b.RS1c. � = (1 �B1 : : : n �Bn)�b: � j= � i� � 6j= (1 �B1 : : : n �Bn)�b+1.RS2. � = (�1�2) : � j= � i� there is an i, the least element of [0 : m � 1] such that �0 : : :�i�1 j= �1, and�i : : : �m�1 j= �2. � = (�1 \ �2): � j= � i� � j= �1 and � j= �2.Let � 2 ACT�, such that j�j = m, and ce be a counting expression thenCES1. ce = kB: � j= ce i� k = 0 and there exists no j 2 [0 : m � 1] such that �j = B or k 6= 0 and thereexists unique j1; : : : ; jk 2 [0 : m � 1] such that jk = m� 1, and for all i 2 [1 : k]; �ji = B and it is notthe case that there exists unique j1; : : : ; jk+1 2 [0 : m � 1] such that for all i 2 [1 : k + 1]; �ji = B.CES2. ce = � kB : � j= ce i� it is not the case that there exists unique j1; : : : ; jk+1 2 [0 : m� 1] such thatfor all i 2 [1 : k + 1]; �ji = B.CES3. If ce = � kB: � j= ce i� there exists unique j1; : : : ; jk 2 [0 : m�1] such that for all i 2 [1 : k]; �ji = B.CES4. ce = ce1 ^ ce2: � j= ce i� � j= ce1 and � j= ce2. ce = :ce1 : � j= ce i� � 6j= ce1.2.4 TimeRTCTL+ and RTPLTL+ are logics for reasoning about quantitative system properties, including time,therefore it is necessary to make time explicit in our model. Time will be represented by a monotonicallyincreasing sequence of integers. � : (S �ACT)! !N! maps the computations of M into `time sequences.'5



Given a full path x = x0�0x1�1 : : : 2 (S � ACT)!, and supposing that the clock action is represented by C, then � (x)0 = 0 and � (x)i+1 = � � (x)i + 1 if C = �i� (x)i otherwise.This de�nition leaves open the possibility that the time sequence is bounded above for any particular compu-tation. We wish to avoid this and require that time increase in�nitely often. Let � =1F (C �C)true, where 1Fis a shorthand for GF. � is a type of fairness [Fr86] constraint that guarantees that the clock ticks in�nitelyoften. M;x j= � implies the elements of � (x) are not bounded above by any integer.Logics which are at least as expressive as PLTL and RTPLTL can express � directly and it is a straightforwardmatter to incorporate these constraints into the model checking environment. Structure M satis�es RTPLTLformula � under the fairness constraint � i� for all full paths x of M , M;x j= � ) �. � ) � is a formulaof RTPLTL+ and hence given a model checking procedure for arbitrary RTPLTL+ formulae we can modelcheck such formulae and ensure correct timing behavior in the model.Fairness constraints in branching time logics are implemented by evaluating all path quanti�ers under theconstraint �. M; s j= A� under � i� for all paths x, such that x0 = s and M;x j= �, M;x j= �. Similarly,M; s j= E� under � i� there is a path x, such that x0 = s, M;x j= � and M;x j= �. Using CTL� syntax wecan write the equivalent formulae A(�) �) and E(�^�) respectively. CTL, however, can not express theseconstraints. Fairness is incorporated directly into the model checking algorithms for the various modalities.The details of this procedure are given in [EL87] and we will assume them in the algorithms for modelchecking RTCTL+.Extending these de�nitions to multiple clocks is accomplished in a straightforward manner. When the modelincludes n independent clocks then � : (S � ACT)! ! (Nn)! and � is expanded to include conjuncts foreach clock Ci. Notice that there is nothing special about the clock action C. C may represent any action,likewise fairness may be relativized to any subset of system actions not just the clocks.2.5 Related ConceptsIn the sequel we will make use of various manipulations and categorizations of formulae. We mention themhere and then will feel free to make use of them without further explanation.We denote the length of a formula � by j�j. When � is an atomic proposition then j�j = 1. Length isde�ned for boolean combinations of formulae by j:�j = 1+ j�j and when � is a positive boolean combinationof �0 and �00 then j�j = j�0j + j�00j + 1. jE�j = 1 + j�j and jA�j = 1 + j�j. Formulae of the form X�have length equal to 1 + j�j and formulae of the form �U have length equal to j�j+ j j + 1. The lengthof a ce formula is de�ned as follows, terms kB, � kB and � kB all have length log k. j:cej = 1 + jcejand jce ^ ce0j = jcej + jce0j + 1. Then j�Uce j = j�j + j j + jcej. Regular formulae of type R1a have(respectively R1b, R1c) have length n(max(jij)), where jij is equal to the number of elements in theset i, (log(b)n(max(jij)), log(b)n(max(jij))). Formulae of the type (�1�2) and (�1 \ �2) have lengthj�1j+ j�2j+ 1 . Finally, formulae of the form j��j = j�j+ j�j+ 1.The positive normal form, PNF, of a formula � is a formula �0 where negations have been `pushed' in as faras possible. We use the appropriate short forms, given above, and De Morgan rules to accomplish this. Wegive the rules for creating the PNF of a formula below and note that it is straightforward to show that forfull paths x and states s, M;x j= � i� M;x j= PNF(�) and M; s j= f i� M; s j= PNF(f) for all � and f .� PNF(P ) = P .� PNF(:P ) = :P .� PNF(f ^ f 0) = PNF(f) ^ PNF(f 0).� PNF(:(f ^ f 0)) = PNF(:f) _ PNF(:f 0). 6



� PNF(f _ f 0) = PNF(f) _ PNF(f 0).� PNF(:(f _ f 0)) = PNF(:f) ^ PNF(:f 0).� PNF(��) = �(PNF(�)).� PNF(:��) = �(PNF(:�)) .� PNF(��) = �(PNF(�)).� PNF(:��) = �(PNF(:�)) .� PNF(X�) = X(PNF(�)).� PNF(:X�) = X(PNF(:�)).� PNF(E�) = E(PNF(�)).� PNF(:E�) = A(PNF(:�)) .� PNF(A�) = A(PNF(�)).� PNF(:A�) = E(PNF(:�)) .� PNF(�U�0) = (PNF(�))U(PNF(�0)).� PNF(:(�U�0)) = (PNF(:�0))V(PNF(:�)).� PNF(�V�0) = (PNF(�))V(PNF(�0)).� PNF(:(�V�0)) = (PNF(:�0))U(PNF(:�)).� PNF(�Uce�0) = (PNF(�))Uce(PNF(�0)).� PNF(:(�Uce�0)) = (PNF(:�0))Vce(PNF(:�)).� PNF(�Vce�0) = (PNF(�))Vce(PNF(�0)).� PNF(:(�Vce�0)) = (PNF(:�0))Uce(PNF(:�)).Formulae of temporal logic express conditions on the behavior of their models. Conditions which determineboth the present state of the model and its future behavior. Generally, these conditions can be separatedinto assertions about the present state and assertions about the next state. �U�0 is true of computationswhen �0 is true at some future time, t, and � is true at all times until t. Stated in terms of present andnext time, �U�0 is true when when either �0 is true now or � is true now and �U�0 is true next time.�U�0 = �0 _ (� ^ X(�U�0)), this validity is immediate from the de�nitions. Model checking proceduresuse this relationship to attack the problem of satisfaction, since the satisfaction relationship can be veryintuitively expressed in terms of now and next time.However, a problem arises. �U�0 is a guarantee that �0 will eventually be satis�ed. �0_ (�^X(�U�0)) masksthat eventuality and seems only to require that the present state satisfy � and X(�U�0) a condition on thenext state which can again be expanded into a condition on that state and its successor. Repeating thisargument ad in�nitum would seem to indicate that �0 need never be true, a contradiction. Furthermore,�U�0 requires only that �0 eventually become true and does not give, a priori, a time when it must becometrue.A good deal of the complexity of model checking stems from the need to check explicitly for the `eventual'requirements of temporal formulae. Formulae which express eventual requirements are denoted as `eventu-alities.' Eventualities are formulae of the form �U�0, E(fUg), A(fUg), �Uce�0, E(fUceg), A(fUceg), ��, E�fand A�f . Notice that ��, �V�0 and their branching time counterparts are not eventualities.7



3 Model Checking RTPLTL+Given structure M = (S;R; L), as de�ned above, and a formula � of RTPLTL+ we de�ne a model checkingprocedure which determines whether there is a path x in M such that M;x j= �. This is the dual of thequestion posed in the introduction but can be shown to be equivalent via the following observation. Thecomputations of M satisfy speci�cation � i� there is no computation x of M such that M;x j= :�We extend a standard automata theoretic technique to decide this problem. The technique consists ofcreating an automaton, A:�, on in�nite strings which accepts only those strings which satisfy the formula:�. Combine the structure M with A:� to form the product automatonM�A:�. M�A:� is an automaton,on in�nite strings, whose language is empty if and only if M is a model of �.Before considering the automaton for arbitrary RTPLTL+ formula� we �rst de�ne automatawhich recognizein�nite strings that satisfy formulae of the form �true and automata which recognize �nite strings that satisfycounting expressions.Suppose  = �true where � = ((1 �B1 : : : n �Bn) \ (C �C)�b). A� = (ACT;Q; �; q(0;0); F ) is a B�uchi au-tomaton where Q = fq(0;0); q(0;1) : : : ; q(0;b+1); q(1;0); : : : ; q(n�1;b+1); q(n;0); : : : ; q(n;b)g, F = fq(n;0); : : : ; q(n;b)gand � : Q � ACT ! Q is a deterministic transition relation de�ned in the transition diagram below. Notethat in the �gure � stands for ACT, �1 = (� n 1) n fCg, �2 = (� n 2) n fCg, etc, and 0i = i n fBi; Cg.In the sequel we shall sometimes refer to states qf and qf0 , the states so marked in the diagram.As constructed A� accepts !-strings over the alphabet ACT that conform to �, i.e. the strings contain B1,B2 to Bn in order before the appearance of more more than b C's and no action in 1 occurs before B1, noaction in 2 occurs between the �rst occurrence of B1 and the next occurrence of B2, etc.Suppose  0 = (n(1 �B1 : : : n �Bn) \ (C �C)�b)false . A� = (ACT;Q; �; q(0;0); F 0) where the acceptancecondition F 0 = Q n F .Generally, when � = (1 �B1 : : : n �Bn) then A� = (ACT;Q; �; q0; F ) where Q = fq0; : : : ; qn+1g, F = fqng,and � is de�ned as follows. For i 2 [0 : n� 1]; �(qi; Bi+1) = qi+1, if B 62 i then �(qi; B) = qi, and if B 2 iand B 6= Bi then �(qi; B) = qn+1. When � = (1 �B1 : : : n �Bn)�b and b � 1 the automaton is similar tothe �rst case except that it is built as if � = bz }| {1 �B1 : : : n �Bn : : : 1 �B1 : : : n �Bn, �(qbn; B) = qbn for all B,and F = fqbng. When b = 0 then F = Q = fq0g and �(q0; B) = q0 for all B. When � = (1 �B1 : : : n �Bn)�bbuild A as if the expression were � = (1 �B1 : : : n �Bn)�b+1 except choose the set of �nal states as F =Q n fq(b+1)ng.Automata for concatenated regular formulae are similar to the above. If A�1 and A�2 are the automata for�1true and �2true respectively, then by replacing the �nal states of A�1 with the initial state of A�2 we getan automaton for (�1�2)true. Automata for for regular formulae of the form �1 \ �2 are created by formingthe product automaton from the automata for �1 and �2.We will sometimes refer to formulae such as  (respectively  0), formulae with unnegated (negated) regularcomponents as their primary connective, as positive (negative) formulae. By extension we refer to A� (A�)as positive (negative) automata.Claim 1 Let x be a full path in arbitraryM and  and  0 formulas as above then x j=  i� (xjACT) 2 L(A�)and x j=  0 i� (xjACT) 2 L(A�).Proof: Let � = (xjACT) . M;x j= �true i� there exists i 2 N such that ( �0 : : :�i�1 j= � and i is theleast such element of N ) and M;xi j= true. If x is a computation of M;M; xj j= true for all j 2 N . SoM;x j= �true i� there exists an i such that �0 : : :�i�1 j= �. Suppose there exists such an i, extending � to afunction on strings in the usual way, �(q0;0; �0 : : : �i�1) 2 qf. Once A� is in a state labeled with f it remainsin that state forever. Therefore � 2 L(A�). Suppose there does not exist an i such that �0 : : :�i�1 j= �. Bythe construction of A�, �(q0;0; �0 : : :�i�1) 62 qf for any i 2 N and hence � 62 L(A�).Analysis for the negative case is similar. 8
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2Let ce be a counting expression, then there exists a deterministic �nite automaton Ace = (ACT;Q; �; q0; F )such that for all � 2 ACT�, � 2 L(Ace) i� � j= ce. We construct the automaton inductively from thestructure of ce. If ce = 0B then Q = fq0; q1g, F = fq0g and �(q0; B) = q1, �(q0; B0) = q0 for all B0 6= B,and �(q1; B0) = q1 for all B'. If ce = kB then Q = fq0; : : : ; qk+1g, F = fqkg and � is de�ned according tothe following rules. For all i 2 [0 : k � 1], �(qi; B) = qi+1 and �(qi; B0) = qi for all B0 6= B. �(qk; B0) = qk+1and �(qk+1; B0) = qk+1 for all B0. When ce = � kB then the automaton is same as the previous one exceptthat �(qk; B0) = qk for all B0 6= B and F = fq0; : : : ; qkg. When ce = � kB then the automaton is the sameas the one in the case of ce = kB except qk+1 is removed from the state set and �(qk; B0) = qk for all B0.When ce = ce1 ^ ce2 then Ace = Ace1 � Ace2 . When ce = :ce1 then Ace = Ace1 except that F = Q n F1.The following claim follows from the above construction.Claim 2 Given a counting expression ce, deterministic automaton Ace can be constructed in time exponen-tial in jcej such that L(Ace ) = f� 2 ACT�j � j= ceg and jAce j is exponential in jcej.Let � be a formula of RTPLTL+ in PNF. For each regular sub-formula � (�) and counting expression cethere is a corresponding automaton A� (A� ) or Ace . Number these automata 1:::a. Then for j 2 [1 : a],Aj = (ACT;Qj; �j; qj0; Fj) and we refer to the i-th state of the j-th automata by qji .Theorem 3 Given a formula � of RTPLTL+ there is a B�uchi automaton A� such that for any structureM = (S;R; L) and full path x of M , M;x j= � i� x 2 L(A�).Proof: We proceed as follows. Using a modi�ed version of the tableaux construction for PLTL, a tableauxT is constructed from the formula �. T encodes models of � and we can use the structure of T to form theautomaton A�.Tableaux are similar to automata with no acceptance conditions. They encode models of a formula byaggregating conditions which the model must satisfy now and conditions which must be satis�ed in thenext state. This local focus ensures that all paths in the tableaux are safe, i.e. they are propositionallyconsistent and they do not violate any of their next state requirements, but does not guarantee the satisfactionof eventualities. Therefore a tableaux may encode behavior which is not a model of �. Satisfaction ofeventualities, such as  U 0, may be postponed inde�nitely. This postponing behavior is required of thetableaux because there is no a priori bound on the point where a computation x �nally satis�es  0, x is onlyrequired to satisfy  0 eventually. Paths in the tableaux that never satisfy  0 or any other eventuality mustbe excluded. We accomplish this by using B�uchi conditions on the states of the automata which say that ifan eventuality is promised in�nitely often then it is ful�lled in�nitely often.Before describing the tableaux construction we give a categorization of RTPLTL+ formulae as elementaryor non-elementary formulae. Non-elementary formulae are then separated into Alpha-formulae and Beta-formulae. Intuitively, an Alpha-formulae � with constituents  ;  0 is true i�  and  0 are true while aBeta-formula � with constituents  and  0 is true i� one or both of the constituents is true. Note that inthe following we will abuse notation and consider individual states of the automata Aj as formulae.Propositions and formulae of the form X� are elementary. The following tables characterize the Alpha- andBeta-formulae and give their constituent formulae.Alpha-formulae :� � ^ �0 : with constituents � and �0.� qjf , where Aj is the automaton associated with �� or ��: with constituent �.� ��, where Aj is the automaton associated with �� : with constituent qj0.� ��, where Aj is the automaton associated with �� : with constituent qj0.10



� �Uce�0, where Aj is the automaton for ce : with constituent �Uqj0�0 .� �Uqji�0, where qji 62 Fj : with constituents � and X(�Uqjh0�0) _ : : : _ X(�Uqjhn�0) where qjh0 : : : qjhn arethe successor states of qji .� �Vce�0, where Aj is the automaton for ce : with constituent �Vqj0�0.Beta-formulae :� � _ �0: with constituents � and �0.� �U�0: with constituents �0 and � ^ X(�U�0).� �V�0: with constituents � ^ �0 and � ^ X(�V�0).� �Uqji�0, where qji 2 Fj : with constituents �0 and �^ (X(�Uqjh0�0)_ : : :_X(�Uqjhn�0)) where qjh0 : : : qjhnare the successor states of qji .� �Vqji�0, where qji 62 Fj : with constituents �0 and X(�Vqjh0�0) _ : : :_ X(�Vqjhn�0) where qjh0 : : : qjhn arethe successor states of qji .� �Vqji�0, where qji 2 Fj: with constituents �^�0 and �^(X(�Vqjh0�0)_: : :_X(�Vqjhn�0)) where qjh0 : : : qjhnare the successor states of qji .� qji , where qji is not labeled with f : with constituents X(qjh0), : : : , X(qjhn) where qjh0; : : : ; qjhn are thesuccessor states of qji .A tableaux is a bipartite graph, where AND-nodes and OR-nodes make up the two sets of nodes. Each nodeis identi�ed, or labeled, by a set of formulae all of which are true of the node. Creation of the tableaux for� proceeds by labeling the initial OR-node with the formula �. Procedure OR Node, given in �gure 2,describes the generation of the set V of AND-nodes which are children of the OR-Node U . AND-nodesuccessors are then generated from the labeling of the AND-node. OR-nodes are so designated because theirlabels are satis�ed when any one of their children are satis�ed, AND-nodes are satis�ed only when all theirchildren are satis�ed.We say that M;x j= S for any set of formulae S i� M;x j=  for all  2 S.Suppose V is an AND-node. That is V is a successor of an OR-node and the label of V a set returnedin the result of procedure OR-node. V contains a set of propositions, negated propositions and states ofthe Aj's. These elements specify the `state' that V designates. Furthermore, for any full path x of M ,M;x j= U if M;x j= V . Notice that we have included the conditions that M;x j= qji , M;x j= �Uqji�0 andM;x j= �Vqji�0. This lifting of the satisfaction relation comes directly from the structure of the automatonA�(A�;Ace). Referring to the formula and automaton in �gure 1,M;x j= q(0;0) i�M;x j= ((1 �B1 : : : n �Bn)\(C �C)�b)true, M;x j= q(0;1) i� M;x j= ((1 �B1 : : : n �Bn) \ (C �C)�b�1)true, M;x j= q(1;0) i� M;x j=((2 �B2 : : : n �Bn)\ (C �C)�b)true, etc. When we transform the tableaux into an automaton which acceptsmodels of �, V speci�es acceptance conditions on the models when the automaton is in state V . Furthermore,the next-time formulae of V , formulae whose �rst element is the X operator, specify the next state relation.The successor of V is the OR-node U whose label contains the formula  i� X is in the label of V . An arcfrom AND-node V to OR-node U is labeled by the set of B 2 ACT such that the following conditions hold.� For all qji 2 V , qji 62 Fj there is a qji0 2 U such that �j(qji ; B) = qji0 .� For all qji0 2 U either i0 = 0 and Aj is the automaton for � (�) and �� 2 U (�� 2 U ), or there is anqji 2 V and �j(qji ; B) = qji0 . 11



Procedure OR Node (U;V)/* OR Node takes as input a set U of formulae and a set V/* of sets of formulae. If V is empty then OR Node will return,/* in V the set of AND node labels that are successors of U .beginRepeat Until U = ;Remove � from U ;If V = ; then V := ff�ggElse for all V 2 V; V := V [ f�g;Case � of the form ^ 0 : V := OR Node(f ;  0g;V) _ 0 : V := OR Node(f g;V) [OR Node(f 0g;V) U 0 : V := OR Node(f ^X( U 0)g;V) [OR Node(f 0g;V) V 0 : V := OR Node(f ^ X( V 0)g;V) [OR Node(f ^  0g;V) Uce 0 : V := OR Node(f Uqj0 0g;V) Uqji 0 :V := OR Node(f ;X( Uqjh0 0)g;V) [ : : :[OR Node(f ;X( Uqjhn 0)g;V)/* if qji 62 Fj Uqji 0 :V := OR Node(f 0g;V)[OR Node(f ;X( Uqjh0 0)g;V) [ : : :[OR Node(f ;X( Uqjhn 0)g;V)/* if qji 2 Fj Vce 0 : V := OR Node(f Vqj0 0g;V) Vqji 0 :V := OR Node(fX( Vqjh0 0)g;V) [ : : :[OR Node(fX( Vqjhn 0)g;V)/* if qji 62 Fj Vqji 0 :V := OR Node(f 0;  g;V) [OR Node(f ;X( Vqjh0 0)g;V) [ : : :[OR Node(f ;X( Vqjhn 0)g;V)/* if qji 2 Fj� : V := OR Node(fqj(0;0)g;V)� : V := OR Node(fqj(0;0)g;V)qji : V := OR Node(fXqjh0g;V) [ : : :[OR Node(fXqjh0g;V)/* if if qji 2 Fjqjf : V := OR Node(f g;V);/* Where Aj is the automaton for � or � .endCaseendRepeatReturn(V);end Figure 2: Procedure OR Node12



� For all �Uqji 2 V either qji 2 Fj and  2 V , or there is an �Uqji0 2 U and �j(qji ; B) = qji0.� For all �Uqji0 2 U either i0 = 0 and �Uce 2 U and Aj is the automaton for ce, or there is a�Uqji 2 V and �j(qji ; B) = qji0 .� For all �Vqji 2 V then  2 V and � 2 V , or  2 V and qji 62 Fj, or qji 62 Fj and there is a �Vqji0 2 Usuch that �j(qji ; B) = qji0 , or � 2 V and there is a �Vqji0 2 U such that �j(qji ; B) = qji0.� For all �Vqji0 2 U either i0 = 0 and �Vce 2 U and Aj is the automaton for ce, or there is a �Vqji 2 Vand �j(qji ; B) = qji0.When no such B exists we label the arc with the empty set. When V contains no automata related formulathen the arc is left unlabeled, meaning that any B 2 ACT can cause that transition.By requiring the uniqueness of node labels, we guarantee that the graph is �nite, and of size no more thanexponential in the length of formula �. We identify similarly labeled OR-nodes by one representative withmultiple incoming and outgoing arcs, likewise for AND-nodes.Once the graph has been completed repeat the following pruning procedure until the graph has stabilized.The procedure ensures that consistency conditions, such as no label requiring both P and :P , are met.Repeat the following until the graph stabilizes.� Remove any AND node whose successor arc is labeled by the empty set.� Remove any node which contains  and : , for any  .� Remove any AND node whose successor has been removed.� Remove any OR node all of whose original successors have been removed.� Delete any AND node which has an eventuality which is not ful�ll-able in the graph. (See below for amore detailed explanation).Eventualities are formulae of the form  U 0,  Uce 0,  Uqji 0, � 0 and qji from positive Aj representingformulae of the form � 0. They assert that sometime in the future  0 will become true and the tableauxmust be able to ful�ll this promise. Whether the tableaux can ful�ll this promise is checkable in time linearin the size of the tableaux.Suppose AND-node V is labeled with eventuality � and � =  U 0.  is ful�ll-able at V i� there is a path inT from V to AND-node V 0 which is labeled with  0. Further, all AND-nodes on the path, except V 0 mustbe labeled with �. Checking for the existence of such a path is tantamount to checking for the existenceof a directed acyclic graph (DAG) rooted at V which contains only one successor for each OR-node andwhose leaves are labeled with  0. Using standard graph theoretic techniques we can check this in linear time[Em95].Finally we note that even though the eventualities of the AND Nodes can be ful�lled there is as yet noguarantee that any particular path through the tableaux will ful�ll them. Therefore, we view the tableauxas a B�uchi automata whose acceptance condition will guarantee that any eventuality that is encounteredin�nitely often will be satis�ed in�nitely often.Number the eventualities in the tableaux 1 through l. Augment the states of the tableaux with a counterfrom 0 through l. The states of the automaton A� will have two components, one which respects the statesof the tableaux and one which represents the current eventuality of interest. Given a particular eventuality,a state either expresses that the eventuality is pending ( not yet satis�ed) or is not pending. An eventualityis not pending if it is satis�ed in that state or was not pending in any predecessors and is not pending now.Therefore, given a run of A� in state (t; i), where i represents the ith eventuality, if i is pending in t then13



the next state of the run must be some (t0; i). If eventuality i is not pending in t then the next state will be(t0; (i+ 1)mod(l + 1)). F� the acceptance set of A�, is the set of states where the second component is 0.Given a non-empty tableaux T for formula � we construct a B�uchi automaton A� whose language containsall stings in (2AP � ACT)! satisfying � and does not contain any string that does not satisfy �.A� = (�; T ; �; T0; F ) where � = 2AP � ACT, T = (AND � f0; : : : ; lg) [ sink, where AND is the set ofAND-nodes of T , and T0 = fht; 0ij� 2 tg. � : � � T ! 2T such that ht0; k0i 2 �(ht; ki; hs; �i) i� for allP 2 t; P 2 L(s), for all :P 2 t; P 62 L(s), if U is the child of t in T then t0 is a child of U in T , � is anelement of the subset of ACT which labels the arc from t to U and if eventuality k is pending in t thenk = k0 otherwise k0 = (k + 1) mod (l + 1). sink 2 �(ht; ki; hs; �i) i� t contains no next time formulae andfor all P 2 t; P 2 L(s) and for all :P 2 t; P 62 L(s). sink 2 �(sink; hs; �i) for all hs; �i 2 �. Finally,F = fsinkg [ fht; kijk = 0g.We can view arbitrary structure M as a B�uchi automaton accepting exactly the strings in (2AP � ACT)!which are computations in M . In the sequel we shall, given a string or computation x 2 (2AP � ACT)!,write that x j= � without speci�c reference to a structure when there is no particular structure to reference.Claim 4 Let x 2 �!, x = hs0; �0ihs1; �1i : : :, there is an accepting run, r = ht0; 0iht1; 1i : : :, of A� on ximplies for all j 2 N if  2 tj then xj j=  .Proof: Suppose for some j; rj = sink. Then for all j0 � j; rj0 = sink and therefore for all j0; xj0 j=  , forall  2 tj0 .We can now restrict our attention to the rj 6= sink.Suppose P 2 tj . rj has a successor on input xj i� P 2 sj i� xj j= P . Similarly, if :P 2 tj, rj has a successoron input xj i� P 62 sj i� xj j= :P .Suppose  ^ 0 2 tj . By the construction of T ,  ^ 0 2 tj implies  2 tj and  0 2 tj . If xj j=  and xj j=  0then xj j=  ^  0. Similarly, if  _  0 2 tj then  2 tj or  0 2 tj. In the former case, xj j= psi and in thelatter case xj j=  0. Therefore xj j=  _  0.Suppose X 2 tj. By the construction of T,  2 tj+1. xj+1 j=  implies xj j= X .Suppose  U 0 2 tj. By the construction of T either  0 2 tj or, X( U 0) 2 tj and  2 tj.  0 2 tj andxj j=  0 implies xj j=  U 0. Otherwise  ;X( U 0) 2 tj and because r is an accepting run there is a j0 > jsuch that  U 0 is not pending at tj0 , which implies that  0 2 tj0 and therefore that xj j=  0. Furthermore,by the construction of A�,  2 tk for all k 2 [j : j0� 1] and therefore xk j=  which implies that xj j=  U 0.Suppose  V 0 2 tj. Either  ;  0 2 tj or  ;X( V 0) 2 tj . If  ;  0 2 tj then xj j=  and xj j= � thereforexj j=  V 0. Otherwise, by the construction of A�, either there exists j0 > j such that  ;  0 2 tj0 and for allk 2 [j : j0] 2 tk, or for all k � j;  2 tk. In either case  2 tk implies that xk j=  . In the latter case thisimplies that xj j=  V 0 and in the former case we have xj0 j=  ^  0 and therefore xj j=  V 0.Suppose � 2 tj and that A� is the automaton for �. We will refer to the states of A� by q0; q1, etc. By theconstruction of A�, q0;Xqh 2 tj. Furthermore, qh 2 tj+1 and ��(q0; �j) = qh. Since r is an accepting runthere is a j0 � j such that qf 2 tj0 and by the construction of A�, for all k 2 [j : j0] there is a qk 2 tk suchthat if k < j0 then ��(qk; �k) = qk+1. By the de�nition of A� this implies that ��(q0; �j : : :�j0�1) = qf andtherefore that xjj ACT 2 L(A�). qf 2 tj implies  2 tj and therefore that xj0 j=  . Therefore, we havethat xj j= � .Suppose � 2 tj and that A� is the automaton for �. By the construction of A� either there exist a j0 � jsuch that qf 2 tj0 and for all k 2 [j : j0] there is a qk 2 tk such that for all k < j0 ��(qk; �k) = qk+1, or forall k � j there is a qk 2 tk, qk 2 F�, and ��(qk; �k) = qk+1. In the former case xj ACT 62 L(A�) but sinceqf 2 tj0 then, by the construction of T ,  2 tj0 and xj0 j=  implies that xj j= � . In the latter case, sincethe qk 2 F�, xj ACT 2 L(A�) and therefore xj j= � .Suppose  Uce 0 2 tj and that Ace is the automaton for ce.  Uce 0 2 tj implies that  Uq0 0;  2 tj.  2 tjimplies that xj j=  . r is accepting implies that there is a j0 � j such that  Uqj0 0 2 tj0 ,  0 2 tj and14



qj0 2 Fce . Furthermore, by the construction of A�, for all k 2 [j : j0] there is a  Uqk 0 2 tk such that�ce (qk; �k) = qk+1 for k < j0 and qj = q0. This implies that �j : : :�j0�1 2 L(Ace). Since  Uqk 0 2 tk, k < j0then  2 tk, by the construction of A�. Therefore xk j=  for k < j0 and xj0 j=  0 which implies thatxj j=  Uce 0.Suppose  Vce 0 2 tj and that Ace is the automaton for ce. Then  Vq0 0 2 tj and by the construction ofA� there is a j0 � j such that for all k 2 [j : j0] there is a  Vqk 0 2 tk such that for k < j �ce (qk; �k) =qk+1,qj = q0 and either  ;  0 2 qj0, or  2 qj0 and qj0 62 Fce . Otherwise, for all k � j there is a  Vqk 0 2 tksuch that �ce (qk; �k) = qk+1 and qj = q0. In either case if  Vqk 0 2 tk then either  2 tk or qk 62 Fce . If 2 tk then xk j=  and if  0 2 tk then xk j=  0, furthermore, if qk 62 Fce then �j : : :�k�1 62 L(Ace) and sowe have that in either case xj j=  Vce 0.2.Claim 5 Let x 2 �!, x = hs0; �0i : : :, then x j= � implies x 2 L(A�).Proof: Suppose x j= � then we can construct a satisfying run of A� on x.By the construction of the AND-OR graph there is a path, through that graph, U0V0U1V1 : : : such that ifP 2 Vi then P 2 si, if :P 2 Vi then P 62 si, and furthermore, there is an arc labeled by �i from Vi to Ui+1.This path de�nes a path in A� hV0; 0i : : :hV; 0i : : : which is accepting. 22(Theorem 3)Theorem 6 L(M � A�) 6= ; i� there is a full path x in M such that M;x j= �.Proof: The proof is immediate from the previous theorem. 2.Theorem 3 gives a model checking procedure that runs in time linear in the size of the structure M andlinear in the size of the tableaux for formula �. T , the tableaux for �, is at most of size exponential in thelength of � since each node has a unique label and there are at most 2j�j such labels.Theorem 7 Given a formula � of RTPLTL+, fairness constraint � and structureM = (S;R; L), the modelchecking problem `do the fair computations of M satisfy �' is decidable in time O(jM j � 22j�j+j�j).Proof: Theorem 3 gives a method for creating the B�uchi automatonA for the RTPLTL+ formula :(�) �)which accepts only those computations that satisfy � and do not satisfy �. From the construction in thetheorem A is of size exponential in the length of the formula :(� ) �) which is exponential in binaryencoding of the numeric constants of � and �.Form the product automaton M �A, and test this automaton for emptiness. Testing B�uchi automaton A0for emptiness is in O(jA0j) (see the appendix for details). Hence we can test whether L(M �A) = ; in timelinear in the size of M � A. L(M � A) = ; i� for all computations x of M , M;x 6j= :(� ) �) i� for allcomputations x of M , M;x j= (�) �) i� M is a fair model of �.24 RTPLTL+ Example Speci�cationsWe list a few example speci�cations which exhibit a pattern typical of real time systems requirements.The requirements are of the general form `G(antecedent ) consequent)' where the antecedent speci�es theoccurrence of some time bounded condition and the consequent speci�es a time bounded extension to theantecedent.Example 1. If B occurs exactly four times within ten time units, then immediately following the fourthoccurrence of B, D occurs within three time units.G(F4B^�10Ctrue ) F4B^�10CFD^�3Ctrue) 15



Example 2. If B occurs, then immediately following B, D should occur at least �ve times within eighteentime units and there should be at least three time units between any two of the �ve consecutiveoccurrences of D.G((B �B)true ) (((B �B)((D �D)(D + C �C)3)4(D �D)) \ (C �C)�18)true)Example 3. If the actions B;D;E; F occur, exactly once each and in order, within ten time units, i.e. Foccurs before eleven time units have elapsed since the occurrence of B, then G occurs within nine timeunits of F . Let � = B +D +E + F � thenG( ((�B �D �E � F )\ (C �C)�10)true)((�B �D �E � F )\ (C �C)�10)FG^�9Ctrue)Example 4. If B occurs, then D should occur before F has occurred three times.G((B �B)true ) (B �B)((D �D) \ (F �F )�3)true)Example 5. If B occurs, D, E, F and G should occur, exactly once each and in order, within ten timeunits and D, E and F should have occurred within �ve time units. Let � = D +E + F +G � and�0 = D + E + F �, then we haveG( FBtrue)FB((�D �E � F �G) \ (C �C)�10)trueF̂B((�0 D�0 E �0 F ) \ (C �C)�5)true)Example 6. If B occurs followed by D and there are no more than two occurrences of E between B andD, then F happens �ve time units after D.G(FB(FD^�2Etrue)) (FB(FD^�2E(FF^�5Ctrue))))5 Model Checking RTCTL+CTL and RTCTL, branching time temporal logics, are of special consideration because their model checkingprocedures have only linear time complexity. While RTCTL+ model checking is not linear, the exponentialcost of model checking is due to the increased expressiveness obtained from the addition of regular formulaeand counter expressions. Regular formulae are expensive because the size of the associated automaton ismultiplicative in the number of `\' operators and exponential in the binary encoding of the numeric con-stants. Similarly, counter expressions are model checked with automata exponential in the binary encodingof constants and multiplicative in the number of `^' symbols in the counter expressions. This blow up seemsunavoidable and in a manner similar to the Lichtenstein Pnueli [LP85] thesis we argue that the constantsand regular expressions will usually be of a manageable size in comparison with the size of the model.This section covers the development of a model checking algorithm similar to those presented in [EMSS90]and [EL87]. The algorithm runs in time linear in the structure size, linear in the number of temporalconnectives of a formula, and exponential in the binary encoding of the constants of a formula and thenumber of conjunctive arguments to regular formulae and counter expressions.16



5.1 Model CheckingModel checking RTCTL+ formulae is very similar to model checking RTCTL formulae with fairness con-straints. We give the most important algorithms from [EMSS90] modi�ed to ensure fairness and explain howto use the concepts from the linear time section to handle formulae with regular sub-formulae and countingexpressions.Given RTCTL+ formula f , we denote by SUB(f) the set of sub-formulae of f ; we import the concept ofpositive and negative formulae from the previous sections.SUB(f) is de�ned recursively as follows:� f = P : for P 2 AP then SUB(f) = ffg.� f = :g : SUB(f) = ffg [ SUB(g).� f = f1 ^ f2 : SUB(f) = ffg [ SUB(f1) [ SUB(f2).� f = EXf1: SUB(f) = ffg [ SUB(f1).� f = E(f1Uf2): SUB(f) = ffg [ SUB(f1) [ SUB(f2).� f = E(f1Ucef2): SUB(f) = ffg [ SUB(f1) [ SUB(f2).� f = AXf1: SUB(f) = ffg [ SUB(f1).� f = A(f1Uf2): SUB(f) = ffg [ SUB(f1) [ SUB(f2).� f = A(f1Ucef2): SUB(f) = ffg [ SUB(f1) [ SUB(f2).� f = E�g : SUB(f) = ffg [ SUB(g).� f = E�g : SUB(f) = ffg [ SUB(g).� f = A�g : SUB(f) = ffg [ SUB(g).� f = A�g : SUB(f) = ffg [ SUB(g).Inducting on the number of connectives, E;A;X;U;Uce;^;:, in a formula f , it can be shown that jSUB(f)jis linear in the number of connectives.The top level procedure Model Check, shown in �gure 3, takes as input an RTCTL+ formula f , a structureM and fairness constraint � and returns structure M 0 labeled with the sub-formulae of f that respect thestructure ofM . I.e. if M = (S;R; L) then M 0 = (S;R; L0) and for all s 2 S, g 2 L0(s) i� M; s j= g under �,where g or its negation is an element of SUB(f).As de�ned in [EL87] the Fair State Problem is `given M = (S;R; L) and fairness constraint �, determinethe states s 2 S such that there exists a full path x = x0�0 : : : in M , x0 = s, and M;x j= �.' [EL87] gives analgorithm, which we refer to as FSP, for this problem running in time linear in M and quadratic in the sizeof �. However, when � =1F (C�C)true a state s is a fair state i� there is a strongly connected componentof M , reachable from s, which contains states s1; s2 and (s1; C; s2) 2 R. Which requirement can be checkedin time linear in the size of M .Model Check uses FSP to label the fair states in S and then proceeds in a bottom up fashion. M is alreadylabeled with propositions and by extension their negations. Once M 0 has been labeled with all sub-formulaeof length � n, it is a simple matter to extend the labeling to sub-formulae of length n + 1. Model Checkhandles the obvious cases; a state is labeled by :f precisely when it is not labeled by f . Add f ^ f 0 to thelabel of s i� s is already labeled with f and f 0. EXg is added to L(s) just when s has a successor t such thatt satis�es g and �. 17



Procedure Model Check(f ,M ,�)/* Input: structure M = (S;R; L), RTCTL+ formula f/* and fairness constraint �/* Output: M 0 = (S;R; L0) where f 2 L0(s) i� M; s j= f .beginS0 := FSP(M;�);for each s 2 S0; L(s) := L(s) [ f�g;Sub := SUB(f)for i := 1 to length(f) dofor each f 0, in Sub, of length i docase structure of f 0 is of the formP : skip; /* M is already labeled with atomic propositions:g: for each s 2 S, if g 62 L(s) then L(s) := L(s) [ ff 0g;g1 ^ g2 : for each s 2 S, if g1 2 L(s) and g2 2 L(s) then L(s) := L(s) [ ff 0g;EXg : for each s 2 S, if there exists t 2 S and B 2 ACT such that (s; B; t) 2 R, g 2 L(t) and � 2 L(t)then L(s) := L(s) [ ff 0g;AXg : for each s 2 S, if for all t 2 S and B 2 ACT such that (s; B; t) 2 R, � 2 L(t) implies g 2 L(t),then L(s) := L(s) [ ff 0g;E(g1Ug2) : EU Check(g1; g2; f 0;�);A(g1Ug2) : for each s 2 Sif g1 62 L(s) then L(s) := L(s) [ f:g1g;if g2 62 L(s) then L(s) := L(s) [ f:g2g;if :g1;:g2 2 L(s) then L(s) := L(s) [ f:g1 ^:g2g;end forEU Check(:g2;:g1 ^:g2;E(:g2U:g1 ^ :g2);�);EG Check(:g2;EG(:g2);�);for all s 2 S if neither E(:g2U:g1 ^ :g2) 2 L(s)nor EG(:g2) 2 L(s)then L(s) := L(s) [ ff 0g;E(g1Uceg2): Ece Check(M � Ace ; g1; g2; ce; f 0;�);A(g1Uceg2): Ace Check(M � Ace ; g1; g2; ce; f 0;�);E�g : posE Check(M �A�; g; f 0;�);A�g : for all s 2 S such that g 62 L(s) then L(s) := L(s) [ f:gg;negE Check(M �A�;:g;E�:g;�);for s 2 S such that E�:g 62 sL(s) := L(s) [ ff 0g;E�g : negE Check(M � A�; g; f 0;�);A�g : for all s 2 S such that g 62 L(s) L(s) := L(s) [ f:gg;E Check(M � A�;:g;E�:g;�);for s 2 S such that E�:g 62 sL(s) := L(s) [ ff 0g;endcaseendforendforend Figure 3: Procedure Model Check18



Procedure EU Check(g1; g2; f;�)begin EU := ;;for each s 2 S doif g2 2 L(s) and � 2 L(s) thenEU := EU[ fsg;L(s) := L(s) [ ffg;endifendforwhile EU 6= ;remove s from EU;PRE := fs0j(s0; B; s) 2 R; g1 2 L(s0) and f 62 L(s0)g;for each s0 2 PRE do L(s0) := L(s0) [ ffg;EU := EU [ PRE;endwhileend Figure 4: Procedure EU CheckFigure 4 contains the procedure EU Check given in [EL87]. EU Check labels each state s inM with E(g1Ug2)exactly when M contains a fair path x = x0�0 : : :, x0 = s and M;x j= gUg0. Each state s which satis�es �and g0 satis�es E(gUg0). EU Check �nds all such states and `works backwards' �nding all states which satisfyg and are connected to states already known to satisfy E(gUg0) under �. This set of predecessor states alsosatis�es E(gUg0) under �. Eventually all states reachable, in reverse, from the initial set of satisfying statesare examined and the algorithm traverses each edge in the graph at most once. Therefore EU Check runs intime linear in the size of the structure.Claim 8 Given M = (S;R; L), f = E(g1Ug2), and �, such that for all s 2 S, M; s j= g1 (respectively g2;�)i� g1(g2;�) 2 L(s) then EU Check adds f to L(s) exactly when M; s j= f .Figure 5 contains procedure EG Check which labels states in M with formulae of the form EGg. EG Checkreduces M to a sub-graph which contains only those states which satisfy g and then uses the FSP to �ndthe states with a fair path which satis�es f . Any state which satis�es EGg under � must have have acomputation, starting in that state, which satis�es (Gg)^�. Just those states in the sub-graph with in�nitecomputations satisfy EGg under �.Claim 9 Given M = (S;R; L); f = Gg and �, such that for all s 2 S, M; s j= g (respectively �) i�g(�) 2 L(s) then EG Check adds f to the label of state s precisely when M; s j= f .Since A(f1Uf2) = :(E(:f2U:f1 ^:f2) _ EG(:f2)) we have as a corollary that Model Check correctly labelsstates that satisfy A(f1Uf2).Procedure pos Echeck, in �gure 6 below, gives an algorithm for determining the states ofM that model E�gunder fairness constraint � , where it is has previously been determined which states model g and whichstates model �. Note that the correctness of the algorithm is based on the fact that M can be viewed as aB�uchi automaton accepting only those strings which are computations of M .Suppose f is of the form E�g. Then for all s 2 S, M; s j= f under fairness constraint � i� there exists a fullpath x = x0�0 : : : in M , such that x0 = s and M;x j= (�g) ^ �. When determining whether a path satis�esa fairness constraint like 1F � one can ignore arbitrarily long �nite pre�xes of the path. Therefore it su�ces19



Procedure EG Check(g; f;�)begin S0 := fsjg 2 L(s)g;R0 := f(s; B; s0)j(s; B; s0) 2 R and s; s0 2 Sg;M 0 := (S0; R0; L);S1 := FSP(M;�)for all s 2 S1L(s) := L(s) [ f ;endforend Figure 5: Procedure EG CheckProcedure pos Echeck(M � A�; g;�; f)/* M � A� is the product automaton *//* described in the text */begin SCC := the set of strongly connected components of QM�A� ;GSC := the elements of SCC whose intersection with FM�A� is non-empty;GS := fs 2 Sj there is a path from hq0;0; sito a state in an element of GSC g;for all s 2 GS, L(s) := L(s) [ ffg;end Figure 6: Procedure pos Echeckto check M;x j= �(g ^ �). x may not be a fair path, however, M;x j= �(g ^ �) guarantees a state xi suchthat M;xi j= g ^ � which implies that there is a fair full path y = y0�00 : : :, such that y0 = xi and the pathx0 = x0�0 : : : xi�1�i�1y0�00 : : : is a fair path which satis�es (�g) ^ �.Given regular formula � the automaton A� = (ACT;Q�; ��; q0; F�) accepts strings � 2 ACT! which satisfy�. De�ne the product automaton M � A� = (�;Q; �; hs; q0i; F ) as follows. � = S � ACT, Q = S �(Q� [ fqT ; qFg) and F = fhs; qT ijs 2 Sg. � : Q � � ! 2Q de�ned by the following rules. For q 2Q�; q 62 F�, hq0; s0i 2 �(hq; si; ht; Bi) i� t = s, (s; B; s0) 2 R, and ��(q; B) = q0. For q 2 Q�; q 2 F�hqT ; s0i 2 �(hq; si; ht; Bi) i� t = s, (s; B; s0) 2 R, � 2 L(s), and g 2 L(s); if � 62 L(s) or g 62 L(s) thenhqF ; s0i 2 �(hq; si; ht; Bi). If q 2 fqT ; qFg then hq; s0i 2 �(hq; si; ht; Bi) i� s = t and (s; B; s0) 2 R.L(M �A�) = ; i� there are no computations, x of M such that M;x j= (�g) ^�. pos ECheck uses this factto �nd all the states s 2 S which satisfy E(�g) ^ � by a standard B�uchi automata emptiness algorithm.The product construction given in pos ECheck is linear in the size of jA�j and jM j. Clearly the �nal productautomaton is still B�uchi and so it can be tested for emptiness in time linear in its size.Claim 10 Given input formula E�g, fairness constraint �, and product automaton M � A�, procedurepos ECheck correctly labels the states s of M with E�g such that M; s j= E�g under fairness constraint �, intime linear in the size of E�g and M .Formulae of the form E�g are handled in a similar fashion, see �gure 7, by changing the acceptance set ofthe automatonM �A� to include all states of Q� except qF and checking that the fairness condition holdsin the strongly connected components of the automaton structure.20



Procedure neg Echeck(M � Aoverline�; g;�; f)/* M � A� is the product automaton *//* described in the text */begin SCC := the set of strongly connected components of QM�A� ;GSC := the elements of SCC whose intersection with FM�A� is non-emptyand which contain a transition of the form (hs; qi; C; ht; qi)/* i.e. the SCC which are also fair according to 1F C. */GS := fs 2 Sj there is a path from hq0;0; sito a state in an element of GSC g;for all s 2 GS, L(s) := L(s) [ ffg;end Figure 7: Procedure neg EcheckClaim 11 Given input formula E�g, fairness constraint �, and product automaton M � A� procedureneg ECheck correctly labels the states s of M with E�g such that M; s j= E�g under fairness constraint�, in time linear in the size of E�g and M .Note that A�g = :E�(:g) and A�g = :E�(:g) we can label the states of the �gure which satisfy these typesof formulae.Ece Check takes as input a formula f 0 of the form E(gUceg0) and labels with f 0 exactly those states of Swhich satisfy f 0 under the constraint �. Assuming that M has already been labeled with g, g0 and � theprocedure works in the following manner. Let Ace = (ACT;Q; �; q0; F ) be the automaton for the countingexpression ce then create M�Ace = (ACT;Q0; �0;Q00; F 0). Q0 = (S�Q0)[fsinkg, Q00, the set of (q0; s) 2 Q0,is the set of start states and F 0 = fsinkg. �0 is de�ned by (s0; q0) 2 �0(s; q; B) i� (s; B; s0) 2 R, �(q; B) = q0,g 2 L(s) and one of q 62 F , g0 62 L(s), or � 62 L(s). �0(s; q; B) = sink if q 2 F , g0 2 L(s) and � 2 L(s); and�0(sink ; B) = sink .Clearly L(M � Ace ) = ; i� there exists no s 2 S such that M;x j= f 0. Using techniques outlined in theprocedure pos Echeck we can �nd all the states which satisfy f 0 and label them appropriately.Claim 12 Given RTCTL+ formula E(fUceg), fairness constraint � and the automaton for the countingexpression ce, A, and assuming that M has been labeled with �; f and g, then Procedure Ece Check labels thestates, s 2 S with E(fUceg) i� M; s j= E(fUceg) under �. Furthermore, the procedure runs in time linearin the size of M and linear in the size of A.Ace Check works in a similarway. Given the input formulaA(fUceg), fairness constraint � and the automatonfor ce A0 = (ACT;Q0; �0; q0; F 0) then the �rst step is to create a product automatonA that accepts computa-tions ofM which satisfy the property :(fUceg)^�. A = (S� ACT;Q; �;Q0; F ) where Q = (S�Q0)[fsinkg,Q0 = f(s; q)jq = q0g and F = fsinkg [ f(s; q)jq 62 F 0 or g 62 L(s)g. � is de�ned as follows, �(sink ; hs; Bi) =sink , (s0; q0) 2 �(hs; qi; ht; Bi) i� s = t; (s; B; s0) 2 R; (q; B; q0) 2 �0; f 2 L(s); and (q 62 F 0 or g 62 L(s)), and�(hs; qi; ht; Bi) = sink i� � 2 L(s); f 62 L(s) and (q 62 F 0 or g 62 L(s)). As in the procedure neg ECheck weneed only check for fair strongly connected components whose intersection with the F 0 is none empty andwhich contain an arc labeled by C.Claim 13 Given RTCTL+ formula A(fUceg), fairness constraint � and the automaton for the countingexpression ce, A0, and assuming that M has been labeled with �; f and g, then Procedure Ace Check labelsthe states, s 2 S with A(fUceg) i� M; s j= A(fUceg) under �. Furthermore, the procedure runs in timelinear in the size of M and linear in the size of A. 21



Proof: M;x j= A(fUceg) under � i� M;x j= :E:(fUceg) under �. Since a state, s, satis�es formula:f 0 i� it is not the case that s satis�es f 0 it su�ces to determine which states satisfy E:(fUceg) under �.M; s j= E:(fUceg) under � i� there exists path x = x0�0 : : : such that x0 = s and M;x j= :(fUceg) ^ �i� it is not the case that there exists an i 2 N such that �0�1 : : : �i�1 j= ce and M;xi j= g and for allj < i;M; xj j= f and M;x j= �. Suppose there exists k 2 N such that M;xk j= :f , this implies that ifi exists, as above, then i � k. I.e. given that for no i � k , M;xi j= g and for all j < i;M; xj j= f and�0�1 : : :�i�1 j= ce then there exists no such i > k.Let x be a path in M such that M;x j= :(fUceg) ^ �. Then there exists an accepting run, r, of A onx. Suppose there exists a k as described above. Then r = (x0; q0); (x1; q1) : : : (xk; qk)sink : : : which is anaccepting run. If no k exists then the run (x0; q0)(x1; q1) : : : is accepting since for each (xi; qi) either g 62 L(xi)or qi 62 F 0, and �i = C in�nitely often. Suppose A has an accepting run. By the transition relation of A, ifsink is not an element of the run, r, then the input generating the run is a computation of M which satis�es:(fUceg) ^ �. No pre�x (x0; �0)(x1; �1) : : : (xi; �i) can satisfy both �0 : : :�i�1 j= ce and M;xi j= g sincethat would imply that ri = (xi; q), q 2 F 0 and g 2 L(xi), and A has no successors from such a state. If sinkis an element of the run then the input pre�x leading up to sink can be used to construct a computationsatisfying :(fUceg)^� because xi of (xi; q), the predecessor of the �rst state sink state, satis�es � and :f .2Therefore we have the following theorem.Theorem 14 Given structure M = (S;R; L), fairness constraint � and RTCTL+ formula f , the question`does there exist a state s 2 S such that M; s j= f under �' can be answered in time O(jM j � 2jf j � j�j).6 RTCTL+ Example Speci�cationsIn this section we reformulate the example speci�cations in the logic RTCTL+.Example 1. If B occurs exactly four times within ten time units, then immediately following the fourthoccurrence of B, D occurs within three time units.AG(:E((B �B)4 \ (C �C)�10):A((D �D) \ (C �C)�3)true)Example 2. If B occurs, then immediately following B, D should occur at least �ve times within eighteentime units and there should be at least three time units between any two consecutive occurrences ofD. AG( AGBA(((D �D(D + C �C)3)4D �D) \ (C �C)�18)true)Example 3. If the actions B;D;E; F occur, exactly once each and in order, within ten time units, i.e. Foccurs before eleven time units have elapsed since the occurrence of B, then G occurs within nine timeunits of F . Let � = B +D +E + F � thenAG(:E((�B �D �E � F ) \ (C �C)�10)EGG^�9Cfalse)Example 4. If B occurs then D should occur before F has occurred three times.AG(:E(B �B):A((D �D) \ (F �F )�3)true)Example 5. If B occurs, D, E, F and G should occur, exactly once each and in order, within ten timeunits and D, E and F should have occurred within �ve time units. Let � = D +E + F +G � and�0 = D + E + F �, then we have 22



AG( (AGBA((�D�E� F �G) \ (C �C)�10)true)(̂AGBA((�0 D �0 E �0 F ) \ (C �C)�5)true))Example 6. If B occurs followed by D and there are no more than two occurrences of E between B andD, then F happens �ve time units after D.AG(AGBAGD^�2EAFF^�5Ctrue)7 Conclusion and Related WorkIn summary, we have presented a general and natural framework for reasoning about quantitative temporalproperties. Our models of systems can encode the computations of asynchronous systems using the abstrac-tion of an interleaving syntax. Our logics allow one to reason about properties expressible in CTL, RTCTLand PTL and we have added the ability to discuss regular sequences over paths at a very reasonable cost.Combining the logics with the models allows for the consideration of quantitative properties of independentevents. In particular, the RTPLTL+ formula GFb1C1^�b2C2true expresses a restriction on the divergenceof independent clocks C1 and C2. While the syntax for regular formulas is di�erent from, and does notencompass all regular expressions, our techniques are general enough to handle any deterministic �nite statemachine in place of regular formulae.Model checking RTCTL+ and RTPLTL+ preserves the utility of CTL and PLTL model checking proceduresin that the algorithms are linear in the size of the structure. RTCTL model checking techniques which arelinear in the log of the size of the formula constants cannot be applied, however, the models considered hereare more general and the logics more generally quantitative rather than simply timing related.There has been a great deal of related work in the �eld and we only mention some of the work that mostclosely bears on our own. Alur and Henzinger have written an excellent survey [AH92] which covers manyof the basic theoretical and practical considerations involved in designing a real time logic.[AH89][AH94] de�nes the logic TPTL (Timed Propositional Temporal Logic) which is a real time extensionto PLTL. TPTL is an `half-order' logic in that formulae such as 2x:(B ) 3y:(D ^ y � x + 10)) partiallyquantify over `time.' Evaluation of a formula over a sequence of states and time value pairs (the sequence oftime values is monotonically non-decreasing) proceeds by `freezing' x to the value of time at the �rst stateof the sequence. Therefore we can loosely interpret the above formula as meaning whenever B is true atstate s, bind x to the value of time associated with s, and verify that there is a future state s0 at which D istrue and time, represented by y has not increased more than 10 units from x. [AH90] explains that x andy must refer to the same increasing sequence of time values, otherwise the logic may become undecidable.RTPLTL+ can express some of TPTL properties, e.g. the above property is expressed in RTPLTL+ asG(FBtrue ) FBFD^�10C true). However, RTPLTL+ is not restricted to models involving a single timesequence. TCTL [ACD90] [Al91] is the branching time analog of TPTL with a continuous time semantics.Lewis, in [Le90], describes an extension to CTL which incorporates time bounds on the basic modalities.E(PU�Q) speci�es that there is a computation along which P holds until Q holds and moreover Q holdswithin the bounds speci�ed by � , a contiguous subset of a discrete domain. Formulae of the logic can beencoded in RTCTL+ with a linear cost [EMSS90].[Le90] uses, as an example of the utility of the logic, the problem of modeling asynchronous circuits withgeneral delay assumptions. A signi�cant drawback to this approach arises because the timing delays incircuit transitions may cause the circuit to oscillate before stabilizing. Models which encode this oscillatingbehavior may encode in�nite computations which oscillate between unstable states. Therefore there canexist formulae of the logic which are true (false) of the model and false (true) of the circuit. [Le90] o�ers23



a solution which incorporates timing histories of the transitions. Using the histories a model can guaranteethat any such oscillating behavior is bounded by the delays on the actual gates of the circuit, or estimationsof those delays. This extra data encoded in the model can, however, cause the size of the model to increasedramatically. An alternative solution is to mark those states that are stable with a proposition and rule out,through the use of fairness restrictions, any in�nite behavior which does not stabilize in�nitely often.Automatic quantitative analysis of programs or hardware can be, in general, a di�cult problem. Presburgerarithmetic is an expressive language for writing quantitative speci�cations in but has a costly decisionprocedure. Combining CTL or PLTL with Presburger arithmetic allows the speci�cation of non-regularproperties [BE95a] [BE95b], i.e. properties which are not de�nable as !-regular sets. However, Bouajjaniet. al. [BE95a] have been able to combine CTL with Presburger arithmetic, in PCTL, and model checkthese formulae on some �nite and in�nite state processes. While PCTL is more expressive than RTCTL+ itis also more costly. Model checking PCTL is undecidable on �nite state processes in general, however, for asub-language of PCTL model checking is decidable for a restricted class of �nite and in�nite state processescalled `guarded PA's' [BE95a].CLTL [BE95b] is a quantitative logic that extends PLTL with Presburger arithmetic and �nite state au-tomata. Again, model checking the full logic on �nite state processes is not decidable, but certain sub-logicshave decidable model checking procedures. ALTL, which adds �nite automata to PLTL, has a model checkingprocedure for �nite state structures and some in�nite state structures. ALTL is not, however, an obviouslyquantitative logic and is similar to Extended Temporal Logic (ETL) [Wo83].ETL is an extension of PLTL that allows each right linear grammar to de�ne a temporal operator. [Wo83]shows that this logic is more expressive that PLTL and has a decision procedure similar to and with thesame complexity as PLTL. Alur and Henzinger, in [AH90], extend TPTL to TETL and show that the moreexpressive logic TETL can be used at no extra cost in terms of model checking procedures.There has also been work done on probabilistic model checking [HJ89], [Ha91], [AS95] and [BdA95]. Thisparadigm allows one to ask what percentage of the computations of a system satisfy certain CTL or PLTLproperties.Our approach here has been to examine structures with respect to the quantitative speci�cations of a logic.Alternatively, speci�cations maybe directly embodied in automata. [Di88a] [Di88b] is a restricted exampleof this method and [Bur88] is an extension. Representing speci�cations as automata requires the speci�erto make a di�cult jump from the pre-formal speci�cation to the extensional automaton. A di�culty notencountered here although the model checking method for PLTL and its real time extensions can be seen asa compiling of language speci�cations into automata speci�cations.Henriksen et al, in [HJ95], study speci�cations written in a second order monadic logic of traces. The focusis on an alternative to regular expressions and they give a method for compiling speci�cations into reduced�nite state automata.Quantitative model checking answers the question `do the computations of a structure satisfy a given speci-�cation?' Where the speci�cation encodes some quantitative requirement such as `every request is respondedto within 5 time units.' Another analytic paradigm may ask what is the longest or shortest response time toa request? Campos et. al. [CE94] have developed algorithms that analyze �nite state systems and answersuch questions. Their algorithms �nd longest (provided there are no loops in the graph of the system)and shortest computation paths to goal states where the states may be required to satisfy some booleanconstraint.Finally we look at the possibility of extending our work. Two areas of immediate importance arise. Analysisof the satis�ability problem for the logic RTCTL+ and e�cient implementations of model checkers for thelogics.AcknowledgementsWe would like to thank Insup Lee and Hong-liang Xie for drawing our attention to example speci�cationssimilar to the ones in Sections 4 and 6. We are grateful to Panagiotis Manolios and Kedar Namjoshi fortheir many insightful comments and questions regarding this work.24
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� q0 = hq01; q02; 0i� � : Q ��! 2Q, and is de�ned by the following where � 2 �.hq01; q02; 0i 2 �(�; hq1; q2; 0i) if q01 2 �1(�; q1) and q02 2 �2(�; q2) and q1 62 F1.hq01; q02; 1i 2 �(�; hq1; q2; 0i) if q01 2 �1(�; q1) and q02 2 �2(�; q2) and q1 2 F1.hq01; q02; 1i 2 �(�; hq1; q2; 1i) if q01 2 �1(�; q1) and q02 2 �2(�; q2) and q2 62 F2.hq01; q02; 2i 2 �(�; hq1; q2; 1i) if q01 2 �1(�; q1) and q02 2 �2(�; q2) and q2 2 F2.hq01; q02; 0i 2 �(�; hq1; q2; 2i) if q01 2 �1(�; q1) and q02 2 �2(�; q2).� F = fhq1; q2; 2ijq1 2 Q1; q2 2 Q2gThe counter cycling through 0, 1 and 2, in the above construction, ensures that any accepting run of theautomaton A will visit accepting states of A1 and A2 in�nitely often. A straightforward argument showsthat A has an accepting run on x 2 �! i� A1 and A2 have accepting runs on x.2

28


