
Fast Fault-Tolerant Concurrent Access to Shared Objects�C. Greg Plaxton Rajmohan RajaramanAbstractWe consider a synchronous model of distributed computation in which n nodes communicatevia point-to-point messages, subject to the following constraints: (i) in a single \step", a nodecan only send or receive O(logn) words, and (ii) communication is unreliable in that a constantfraction of all messages may be lost at each step due to node and/or link failures. We designand analyze a simple local protocol for providing fast concurrent access to shared objects inthis faulty network environment. In our protocol, clients use a hashing-based method to accessshared objects. When a large number of clients attempt to read a given object at the same time,the object is rapidly replicated to an appropriate number of servers. Once the necessary levelof replication has been achieved, each remaining request for the object is serviced within O(1)expected steps. Our protocol has practical potential for supporting high levels of concurrencyin distributed �le systems over wide area networks.1 IntroductionA basic problem in distributed memory environments is to provide e�cient access to remote objects(e.g., �les, words of memory). This is a complicated problem because of the large number of (oftencompeting) considerations involved, including: object size, network topology, latency, throughput,bu�er space, degree of concurrency to be supported, consistency requirements, and communicationoverhead.This paper describes a hashing-based protocol for supporting fast fault-tolerant concurrentaccess to shared objects in a distributed network. The protocol is most suitable for applicationsin which: (i) reads occur much more frequently than writes, (ii) objects are not too small, and(iii) the \popularity" of any object (i.e., the number of users trying to access the object) does notconstantly change by a signi�cant amount. For example, the protocol might be appropriate formanaging access to WWW pages on the Internet, since pages tend to be read far more often thanthey are written, the typical page size is thousands of bytes or more, and popular pages tend toremain popular over extended periods of time (e.g., for minutes, hours, or even days). In contrast,the protocol would probably be poorly-suited for use within a PRAM emulation scheme, wherewrites often account for a signi�cant fraction of all accesses, the objects being accessed tend to beextremely small, and the popularity of an object may uctuate arbitrarily.Most of the details of our protocol are concerned with ensuring fast access to popular objects. Avariety of other well-known methods have been used for solving this problem, including broadcast,combining [15], and multicast [8]. However, the class of architectures that support the e�cientimplementation of these methods is restricted. For example, a single-bus network can e�cientlysupport broadcast, which enables an arbitrary subset of the processors to obtain copies of a single�Department of Computer Science, University of Texas at Austin, Austin, TX 78712. This research was supportedby the National Science Foundation under Grant No. CCR{9504145, and the Texas Advanced Research Program underGrant No. 93{003658{461. E-mail: fplaxton,rrajg@cs.utexas.edu.1

object at the same time. On the other hand, the cost of implementing broadcast in a distributednetwork with point-to-point connections is signi�cant.Modern distributed networks tend to have complex topologies that can support many inde-pendent point-to-point connections simultaneously. In fact, it has been widely observed that thecommunication capabilities of modern distributed networks are similar to those previously associ-ated only with tightly-coupled parallel machines. For this reason, we have chosen to implementand evaluate the performance of our protocol under a model of computation that may be looselyviewed as a variant of Valiant's bulk-synchronous parallel (BSP) model [18]. As in the BSP model,we assume the existence of a simple point-to-point router with no built-in combining or multicastcapability. (See [18] for a detailed justi�cation of this assumption.) In order to demonstrate thefault-tolerance of our protocol, our model of computation incorporates both static and dynamicnode faults as well as a notion of faulty communication. Most importantly, our fault model assumesthat at any given time: (i) a constant fraction of the nodes may be \down" (i.e., unable to com-municate with any other nodes), and (ii) each \up" node may be unable to directly communicate(i.e., via a single point-to-point message) with a constant fraction of the other \up" nodes. SeeSection 2 for a precise de�nition of our model of computation.How can we provide e�cient concurrent access to a given popular object A in a network thatsupports only partially reliable point-to-point communication? In a conventional distributed �lesystem, a single \server" process (residing on a particular physical node) is assigned the responsi-bility for storing the object A, and any \client" process wishing to read A sends a message to thisserver; the server then responds with a message containing a copy of the object A. Unfortunately,this scheme su�ers from both low fault-tolerance (if a given client cannot connect to the server dueto a network fault, an event that occurs with constant probability in our model, then that clientcannot access the object) and high latency (since A is assumed to be a popular object, a long timeis needed for the server to sequentially service each of the incoming requests for A).Thus, to obtain either fault-tolerance or fast concurrent access we are led to consider schemesin which each object is replicated across a number of di�erent nodes. In fact, fault-toleranceconsiderations alone would seem to imply that each object should be replicated
(logn) times ifwe wish to guarantee access with a failure probability that is polynomially small in n, the numberof nodes in the network (since each node can fail with constant probability). Unfortunately, thisresults in an
(logn)-fold increase in the space needed to store each object. However, the theoryof erasure codes provides a convenient method for achieving fault-tolerance while paying only aconstant factor space penalty. For example, using Rabin's Information Dispersal Algorithm [14](IDA), for any k > m, a given b-bit string can be encoded as a set of k (b=m)-bit strings oflength m, with the property that any m of the (b=m)-bit strings su�ce to reconstruct the originalb-bit string. Thus, IDA can be used to obtain fault-tolerance with only a constant factor spacepenalty by setting m to �(log n) and k to �(m), e.g., k = 2m. This powerful technique is used byAumann et al. [3] as part of an e�cient scheme for emulating large-grained PRAM programs on anasynchronous parallel machine. In this paper, we use the same technique to store the \primary"copy of each object.Of course, the IDA technique alone is not su�cient to guarantee fast (e.g., O(logn) time)concurrent access to an object that is extremely popular. For example, suppose that the popularityof some object is pn, and that IDA has been used to encode the object in �(log n) \fragments",each of which is stored in a separate node. Assuming point-to-point communication, and assumingthat a single node cannot send or receive more than a small number (e.g., O(logn)) of messages ina single time step, it is clear that further replication (either of the individual fragments, or of theobject as a whole) is needed in order to rapidly service all pn requests. In our scheme, we choose2

to replicate whole copies of popular objects, as opposed to fragments, so that the encode-decodeoverhead associated with IDA can be avoided on retrieval of popular objects. (This may be viewedas a minor optimization since the overhead of IDA is actually quite small [14].)At a high level, our protocol achieves fast concurrent access by enforcing the following two in-variants. Invariant 1: While the popularity of a given object exceeds the number of \server copies"(i.e., the number of server processes holding a copy of the object), the number of server copiesincreases geometrically. Invariant 2: When the popularity of a given object does not exceed thenumber of server copies by more than a constant factor, each outstanding request is independentlyserviced with constant probability at the current step. (Thus, if the popularity of the object doesnot increase dramatically during subsequent steps, each of the outstanding requests is serviced inO(1) expected steps, and in O(logn) steps whp1.)The methods used to establish these invariants, discussed in Section 3, are loosely related toValiant's hashing-based combining mechanism for simulating CRCW PRAM algorithms on par-allel computers [17]. In related work, Gibbons et al. [9] adopt a di�erent approach to accountfor contention in parallel algorithms. They introduce the QRQW PRAM model, which permitsconcurrent reading and writing but at a cost proportional to the number of readers/writers to amemory location in a given step. The focus of our algorithm design and analysis is di�erent. WhileGibbons et al. and Valiant are primarily concerned with the problem of PRAM emulation, we haveoptimized our protocol to obtain fast performance (e.g., expected O(1) time) on a more restrictedclass of access patterns. See Section 4 for a formal statement of our main results.We remark that existing implementations for handling concurrent access to shared objects(e.g., [2, 5, 10]) do not provide fast concurrent access in the sense considered in this paper. Whilethese schemes incorporate replication of objects, the only way for a client to determine where thecopies of a given object are stored is to consult the \manager" of the object. The manager is usuallyimplemented as a process running at a single node and thus constitutes a sequential bottleneck.2 Model of ComputationIn this section we de�ne our model of computation. We assume a synchronous network consist-ing of n nodes, each with its own local memory. We specify the model by characterizing: (i)communication, (ii) faults, (iii) object size, (iv) cache size, and (v) local computation.Communication. Nodes communicate with one another by sending messages. Each messagecontains at least one word, and at most O(logn) words, where a \word" is de�ned as an O(logn)-bit string.Sending messages. The total number of words in all messages sent by a single node in one stepis required to be O(logn) (even if some or all of these messages are not successfully transmitteddue to faults in the network, which are discussed below).Receiving messages. In a BSP-like model [18], where communication is assumed to take theform of an h-relation, we might now tend to add a requirement that the total number of wordsin all messages destined to a single node in one step must be O(logn). We make a slight variantof this assumption which will ultimately allow us to obtain a more e�cient protocol. Namely, weplace no upper bound on the total number of words in all messages destined to a single node in onestep; instead, we only limit to c0 logn the number of words in all messages successfully receivedby a node in one step, where c0 is some positive constant. As in the c-arbitrary crossbar model of1We use the abbreviation \whp" throughout the paper to mean \with high probability" or, more precisely, \withprobability 1 � n�c, where n is the number of nodes in the network and c is a constant that can be set arbitrarilylarge by appropriately adjusting other constants de�ned within the relevant context."3

MacKenzie et al. [13] (where all messages have unit length), we assume that a worst-case adversarydetermines which subset of the messages of total size c0 log n are successfully received by a givennode if the c0 log n limit on total size would otherwise be exceeded. (The related c-arbitrary DMMmodel of Karp et al. [12] does not take into account contention among clients trying to access thesame object and hence is not well-suited for our study.)Message types. Our protocol makes use of a constant number of di�erent types of messages.At times the protocol may result in, say, O(logn) messages of type � and �(pn) messages oftype � being sent to a particular node. In such a scenario, the adversary referred to above hasthe freedom to decide that none of the messages of type � get through. On the other hand, itmay be important for the correctness of the protocol that the type � messages be given priorityover the type � messages. One way to accomplish this is to modify the model stated above byassociating a numeric priority with each message-type to resolve contention among messages ofdi�erent types. Since our protocol only makes use of a constant number of di�erent message types,we could avoid introducing such priorities by modifying the protocol to ensure that only one typeof message is ever sent in a single step. We prefer the former solution since it is more compatiblewith an asynchronous view of the protocol.Faults. As mentioned in Section 1, our model of computation also allows for the possibility offaults in the network. More speci�cally, we assume that the network is subject to following threeclasses of faults.Random static node faults. After we have �xed our initial storage layout for the objects, weassume that a (su�ciently small) constant fraction �0 of the nodes are selected at random andmarked as \dead". Such dead nodes cannot send or receive any messages throughout the course ofthe computation.Dynamic node faults. An oblivious adversary selects, for each step, a (su�ciently small) con-stant fraction �1 of the nodes and marks them \down". Such down nodes cannot send or receiveany messages in the current step.Dynamic link faults. For each pair of up nodes (i.e., neither dead nor down) i and j in thenetwork, an oblivious adversary determines whether communication between nodes i and j is to beallowed in step t. In each step t, each up node must be allowed the possibility of communicatingwith a (su�ciently large) constant fraction (1� �2) of the other nodes.With regard to the dynamic node faults, we should emphasize that the vectors determined bythe adversary are not provided to the non-dead nodes at execution time. The only way that anon-dead node can �nd out whether it is possible to communicate with some other non-dead nodein step t is by attempting to send a message in step t, with the hope of subsequently receiving someform of acknowledgment in a later step. (Of course, any acknowledgment message is itself subjectto possible faults.)Object size. Each object consists of �(logn) words. Note that this assumption can be enforcedby simply breaking up larger data items into �(logn)-word pieces, and padding out smaller dataitems to �(log n) words. The main reason for assuming a uniform object length is that it simpli�esour presentation and analysis. In a practical implementation, we would modify the protocol tohandle messages of varying lengths; for larger objects, the associated optimizations can be expectedto provide substantial constant factor savings in overhead per object-word accessed.Cache size. We assume that each node of the network has a cache in which extra copies ofobjects are stored. In our analysis, it is convenient to assume that the capacity of each cache is
(logn) objects.Local computation. In each step, a node is allowed to perform an arbitrary amount of localcomputation. (Although the model of computation allows an arbitrary amount of local computation4

in each step, our protocol does not perform any particularly complex local operations in a singlestep.)3 Overview of the ProtocolIn this section we provide an informal overview of our protocol for sharing read-only objects. Ourdiscussion is formalized in Section 5. See Section 7 for a discussion on write operations. Asmentioned in Section 1, our protocol relies on maintaining Invariants 1 and 2.Enforcing Invariant 1. With each object we associate a number of disjoint blocks of servers.The ith block contains �(2i log n) servers, 0 � i < log(n=�(logn)), so that the total number ofservers in all blocks is approximately n, the number of nodes in the network. A hash function isused to map these logical blocks of servers to the physical nodes of the network. The hash functionis distributed to all nodes so that any node can rapidly compute the physical node correspondingto the jth server of the ith block of a given object. The �(logn) servers of block 0 of an objectare used to store the primary copy of that object, i.e., the �(logn) fragments computed usingIDA. In our protocol, a client process attempting to read a particular object A sends �(logn)messages, one to each of the �(logn) servers in block 0 of A, and O(1) messages to a randomlychosen set of servers in each of the �(logn) other blocks associated with A. If the popularity of Ais low (i.e., O(logn) where the hidden constant is su�ciently small), then whp a su�ciently highconstant fraction of the messages sent to block 0 are successfully transmitted, and at the next stepa su�ciently high number of fragments are returned to the client, allowing the client to reconstructa copy of the desired object using IDA. (Note that a node can send O(logn) copies of a fragmentin a single step, since a fragment only consists of a constant number of words.)If the popularity of A is high (i.e.,
(logn) where the hidden constant is su�ciently high), thenso many clients attempt to access A that the servers in block 0 of A are \ooded" with incomingmessages requesting fragments of A. As a result, most of these messages are not successfullytransmitted, and few if any of the clients receive (on the next step) su�ciently many fragments toreconstruct A using IDA. On the other hand, a su�ciently high constant fraction of the servers inblock 0 of A receive �(logn) messages requesting a fragment of A.One might believe that all of the servers in block 0 receive �(logn) such messages; this is notnecessarily the case, however, since some of these servers may be mapped to the same node as, forexample, the servers in block 0 of one or more other popular objects, so that the messages associatedwith A might be \swamped out" by the messages associated with other objects. A critical part ofour analysis is geared towards proving that whp a su�ciently high constant fraction of the nodesin block 0 of A is not the destination of more than a total of O(logn) messages associated withother objects at the current step; these are the nodes that whp receive �(logn) requests for A.Each server in block 0 of A that detects a high level of popularity for A at a particular stepreacts by attempting to send a copy of the fragment of A that it holds to all O(logn) servers inblock 1 of A. Although the servers in block 1 may all be ooded with client requests for A (sincethe popularity of A is assumed to be high), the fragment messages sent from servers in block 0 arenot swamped out by such client requests because the fragment messages are given a higher priority.(Of course, we need to argue that these fragment messages are not swamped out by same-priorityfragment messages associated with other objects; this follows by essentially the same argument aswas mentioned in the preceding paragraph.) As a result of the fragment messages sent from serversin block 0 (the constant fraction detecting a high popularity for A) to servers in block 1, whp asu�ciently high constant fraction of the servers in block 1 of A reconstruct a copy of A using IDA.Thus, if the popularity of A is su�ciently high at time t, then at time t+1, a constant fraction5

of the servers in block 1 of A hold a copy of A whp. A minor variant of the above process is usedto ensure that, if a su�ciently large constant fraction of the servers in block 1 hold a copy of A attime t, and if the popularity of A is
(logn), then a constant fraction of the servers in block 2 holda copy of A at time t+ 1. The idea is that a server in block 1 \detects a high popularity" for A ifit receives more than a certain constant threshold number of requests for A. Rather than sendingO(logn) fragments of A to servers of block 2 (as were sent from servers of block 0 to servers ofblock 1 earlier), each server of block 1 detecting a high popularity for A sends O(1) copies of Ato a randomly chosen set of servers in block 2 of A. (Note that O(1) copies of A require O(logn)words.)More generally, suppose that at time t a su�ciently high constant fraction of the servers ineach of blocks 1 through i holds a copy of A, and that the popularity of A is
(2i log n), where thehidden constant is su�ciently large. Then a constant fraction of the servers in block i receive morethan a certain constant threshold number of requests for A, and react by sending O(1) copies ofA to randomly chosen servers in block i + 1. As a result, at time t + 1, a constant fraction of theservers in block i+ 1 of A hold a copy of A whp.Enforcing Invariant 2. The total number of requests received by a server for object fragmentsis O(logn) per step, simply because a node cannot receive more than O(logn) messages per step.Thus, in the following step (assuming it is not subject to a dynamic node fault), a server can respondto each such request with a copy of the desired fragment. (Recall that a fragment consists of aconstant number of words and so the total number of words in all of these responses is O(logn).)Of course, each of these responses may or may not be received by the associated client due to thepossibility of dynamic faults in the network. On the other hand, the server may also receive asmany as O(logn) requests for entire copies of objects, and since each object consists of �(logn)words, only a constant number of these requests can be handled in a single step. In our protocol,the server selects a constant-size subset of the incoming requests for entire copies of objects, andresponds only to this selected subset.Now suppose that the hypothesis of Invariant 2 holds, that is, the popularity of some objectA is less than or equal to the number of server copies of the object. Because our mechanism forgenerating server copies �lls in the blocks in ascending order of index, we can deduce that a blockof servers of A with size within a constant fraction of the current popularity of A satis�es thefollowing two conditions whp: (i) a constant fraction of the servers in the block contain a copy ofA, and (ii) each client requesting a copy of A sends a constant number of messages to randomlychosen servers within the block. By a straightforward Cherno�-type argument [6], we can showthat a constant fraction of the client requests for A are satis�ed at the current step, establishingInvariant 2.Cache management. Each node has a cache for holding extra object copies. When this cachebecomes full, an LRU (least-recently-used) replacement policy is invoked to decide which objectcopy to abandon.4 ResultsIn this section, we state our main performance bounds for the read-only protocol, which is formallyde�ned in Section 5. We analyze the protocol under di�erent access pattern models. Our timebounds are stated in terms of rounds; for any nonnegative integer t, round t consists of steps 2tand 2t + 1 (steps are numbered from 0). Let A be a collection of m objects, labeled A0 throughAm�1. For any round t, and any i in [m], let qi(t), ri(t), and si(t) denote the number of newrequests generated, the number of requests remaining, and the number of requests attempted,6

respectively, for Ai at the start of round t. (For any nonnegative integer x, we use [x] to denotethe set f0; : : : ; x� 1g.) Thus, for any round t, and any i in [m], si(t) = ri(t) + qi(t).We measure the performance of our protocol in terms of throughput, delay, and per-requestcommunication. The throughput of the protocol is the average number of access requests satis�edper round. The delay of an individual access request is the number of rounds taken to satisfy thatrequest. The per-request communication is de�ned as the total number of words in all messagessent divided by the number of access requests satis�ed. We say that round t is steady if: (i) thereexists a real constant �, 0 � � < 1, such that ri+1(t) � �si(t) for all i in [m], and (ii) the probabilitythat an arbitrary access request is satis�ed in round t is
(1). Thus, if round t is steady, for everyobject A, an expected constant fraction of the requests for A are satis�ed in round t.The �rst access model we consider is the �xed model, in which each new access request isindependently drawn from a �xed probability distribution D on A. The distribution D is speci�edby a vector (p0; : : : ; pm�1); for a random variable X drawn from D, we have Pr[X = Ai] = pi. Atthe start of each round t, new requests drawn from D are generated and \placed" by an adversaryon each of the nodes that do not currently have an outstanding request. The particular assignmentof new requests to \free" clients can be arbitrarily determined by the adversary.Theorem 1 In the �xed probability distribution model, there exists t0 = O(logn) such that for anyt, t0 � t � poly(n), round t is steady whp.It follows from Theorem 1 and the protocol de�nitions that in the �xed model, our protocol providesoptimal throughput and optimal expected delay using optimal per-request communication.Corollary 1.1 In t rounds of the �xed model, where
(logn) � t � O(poly(n)), whp, the numberof access requests satis�ed is
(nt) using O(logn) per-request communication. Moreover, afterO(logn) rounds, each access request is satis�ed in expected O(1) rounds.(Note that in Corollary 1.1 the per-request communication is optimal since each object is of size�(logn).)Our analysis for the �xed model can be easily extended to apply to a time-varying model , inwhich the probability distribution changes every
(logn) steps. The model is de�ned as follows.Let D0; : : : ;Dd�1, be a sequence of d probability distributions over A. For each i in [d], let ti be apositive integer. We consider t rounds, where t denotes Pi2[d] ti. In round t0, where P0�j<i tj �t0 < P0�j�i tj , each new access request is independently drawn from Di. As in the �xed model,the particular assignment of new requests to free clients is determined by an adversary.Theorem 2 Consider t rounds of a time-varying model with d distributions such that t is O(poly(n))and ti is
(logn) for each i in [d]. Whp, the number of access requests satis�ed by the protocol is
(nt) using O(logn) per-request communication.Thus far, we have considered access patterns in which each new request is drawn from a probabilitydistribution. The bounds stated in Corollary 1.1 also hold for access patterns in which the popu-larity of an object can change arbitrarily, subject to the constraint that for all i in [m] and t � 0,we have qi(t) � cmaxfqi(t0) : maxf0; t� �(�)g � t0 < tg, where c > 1. Note that such an accesspattern allows arbitrary decreases in the popularity of an object, and also admits large increasesin certain cases. 7

5 The Read-Only ProtocolIn this section, we formally de�ne our protocol for accessing read-only shared objects. With everyobject A we associate n server processes, which provide client processes access to A. Let theservers associated with A be labeled Si(A), 0 � i < n. Let b equal log(n=c1 logn) + 1, where c1 isa constant that is speci�ed later. (We assume that c1 log n and b are both integers.) We partitionthe set of servers into blocks as follows. For each i in [b], the ith block, denoted by Bi(A), is theset fSj(A) : (2i � 1)c1 logn � j < (2i+1 � 1)c1 logng. For each i in [b], let bi be the size of the ithblock, i.e., bi equals c12i logn.Each server associated with A is mapped to a physical node by means of a hash function hA;the function hA is chosen such that for any i in [b], block Bi(A) is mapped to a subset of jBi(A)jnodes chosen independently and uniformly at random. (Note that several servers associated withdi�erent objects may be mapped to the same node.) We encode A as a set of b0 fragments suchthat any b0=4 fragments su�ce to decode A. For each i in [b0], hA(Si(A)) stores the ith fragment ofA. For each integer j in [1; b), and for each server S 2 Bj(A), hA(S) stores at most one replicatedcopy of the entire object. Let the cache at each node have the capacity to store all object copiesreceived by the node in � rounds. Thus, the minimum cache capacity is �(�) objects. We assumethat � is
(logn).We describe our access protocol in terms of the communication between the clients attemptingto access a given object A and the servers associated with A. In order to simplify the presentationand analysis of the protocol, we assume that the clients send messages at even steps of the protocoland the servers send messages at odd steps of the protocol. The clients always send messages toservers; servers send messages to both clients and servers.In our description of the protocol, we di�erentiate between several kinds of messages; theseare listed in Table 1. In the priority-based model, any assignment of priorities that respects thefollowing constraints can be used: (i) frag-req has a lower priority than each of client-obj andclient-frag, and (ii) obj-req has a lower priority than each of client-obj, client-frag, server-obj, andserver-frag, and (iii) each of server-frag and server-obj has a lower priority than each of client-fragand client-obj.The protocol is de�ned in Figure 1, where we state the actions in round t of: (i) a client Cattempting to access object A, and (ii) a server S associated with A. (Recall that round t consistsof steps 2t and 2t+ 1.) It is convenient to divide each step into two phases, one in which messagesare sent, and the other in which messages are received. Thus, in Figure 1, Phase 0 (resp., Phase 2)is the \sending phase" for step 2t (resp., 2t + 1), while Phase 1 (resp., Phase 3) is the \receivingphase" for step 2t (resp., 2t+ 1). In Figure 1, �0, �1, �2, �3, �4, �5, and �6 denote positive integerconstants. Message type Source Destination Size Contentsobj-req client server �(1) request for objectfrag-req client server �(1) request for fragmentclient-obj server client �(logn) copy of objectclient-frag server client �(1) copy of fragmentserver-obj server server �(logn) copy of objectserver-frag server server �(1) copy of fragmentTable 1: Types of messages.8

Phase 0: In step 2t clients send request messages.� Client. Attempt to send a frag-req message toeach server in B0(A) and, for 0 � i < b, anobj-req message to a random server in Bi(A).(Remark: Note that each message is actually sentsince the bound on the number of words that canbe sent by a node is not exceeded.)Phase 1: Successfully transmitted Phase 0 mes-sages are received by servers.� Server. Let D(S; t) denote the set of clients thatare the sources of obj-req and frag-req Phase 1messages received by S.Phase 2: In step 2t+ 1, servers holding a copy orfragment of object A respond to Phase 1 messages.Let S 2 Bi(A).� Server, i = 0. Attempt to send a client-frag mes-sage to minf�0b0; jD(S; t)jg clients in D(S; t),and if D(S; t) � �1b0 then attempt to send aserver-frag message to each server in B1(A).� Server, i > 0. If jD(S; t)j � �2 then attempt tosend a client-obj message to minf�3; jD(S; t)jgrandom clients in D(S; t), and if D(S; t) � �4then attempt to send a server-obj message to �5random servers in Bi+1(A).

(Remark: If the bound on the number of words anode can send in a step would be exceeded, an ar-bitrary subset of these messages are actually sent.)Phase 3: Successfully transmitted Phase 2 mes-sages are received by clients and servers.� Client. If C receives a client-obj message orc2 logn fragments, then the access attempt issuccessful. Otherwise, C attempts to access Ain round t+ 1.� Server, i = 1. If S receives at least c2 logn frag-ments, then decode A and store it in the LRUcache; otherwise, discard the fragments received.� Server, i > 1. If S receives at least �6 server-objmessages, then store A in the LRU cache.(Remarks: Note that C could receive more thanone copy of A, and that S could receive a newcopy of A even though S already has a copy. In apractical implementation: (i) C would stop trans-mission of all but one copy of A, (ii) a check wouldbe added to ensure that a new copy is sent to Sonly if S does not already have a copy, and (iii)if fewer than c2 logn fragments are received by aclient or server, then these fragments would becached and not discarded since su�ciently manyadditional fragments are likely to be received inthe near future.)Figure 1: The read-only protocol (object A, client C, server S, round t).The terms \send", \receive", and \attempt to send" are used in the protocol de�nition. Whenwe say that a client/server mapped to node u sends a message x, we mean that u initiates thetransmission of x. When we say that a client/server mapped to node u receives a message x,we mean that the transmission of x is successful and x is at destination u. When we say that aclient/server mapped to node u attempts to send a message x, we mean that u sends x if x is inthe subset of messages of total size at most c0 log n that is selected for transmission from u.6 AnalysisOur analysis proceeds in two parts. In the �rst part, Section 6.1, we de�ne the notion of a goodround and show that Invariants 1 and 2 of Section 1 hold whp in a good round. The claims inSection 6.1 hold for an arbitrary access pattern. In the second part, we restrict our attention to the�xed and time-varying models. In Section 6.2 we analyze the �xed model and prove Therorem 1.In Section 6.3, we establish Theorem 2 by extending the analysis of Section 6.2.To simplify the presentation, we assume in this section that there is no contention amongmessages of distinct types. The message priorities de�ned in Section 5 can easily be used to removethis assumption. 9

6.1 Protocol PropertiesDe�nition 6.1 Let X denote a set of labels, let U denote a set of bins, let " be a real in [0; 1),and let � be a nonnegative integer. In a uniform (X;U; "; �) experiment, we are given a setfVi : i 2 X; Vi � U; and jVij � "jU jg, and the following steps are performed: (i) for each i in X,place a ball labeled i in each bin in U n Vi, and (ii) for each bin that has more than � balls, discardall but an arbitrary subset of at least � balls. Let Y denote the set of remaining balls. We refer tothe set of remaining balls as the outcome of the experiment.De�nition 6.2 Let X denote a set of balls, and let U , ", and � be as de�ned in De�nition 6.1. Ina random (X;U; "; �) experiment, we are given a set fVi : i 2 X; Vi � U; and jVij � "jU jg, thefollowing steps are performed: (i) throw the balls independently and uniformly at random into U ,(ii) for each i 2 X, if ball i lands in a bin in Vi, discard ball i, and (iii) for each bin that has morethan � balls, discard all but an arbitrary subset of at least � balls. We refer to the set of remainingballs as the outcome of the experiment.For convenience, we refer to any message of type � as an �-message. Let size(�) denote thenumber of words in an �-message. For any � and i 2 [b], let N�(A; i; t) denote the set of serversin Bi(A) that attempt any �-message in round t. (Here and in the rest of this section, we use theword \attempt" as a short form for \attempt to send".) Let N 0�(A; i; t) denote the set of servers Sin Bi(A) such that all of the �-messages attempted by S in round t are sent.Let M�(A; i; t) be the set of �-messages that are sent to Bi(A) in round t. Let M 0�(A; i; t)denote the set of �-messages received by Bi(A) in round t. Let F (A; t) be the set of servers inB0(A) that send b1 server-frag messages in round t. Let G(A; t) denote the set of clients that sendb0 frag-req messages in round t.If we assume a fault-free model with no upper bound on the number of words a node cansend/receive in a single step, then it is easy to show that some of the sets de�ned above are relatedby standard balls-and-bins experiments. Unfortunately, in the presence of faults and contention,this is not true. However, we are able to establish similar relations using instances of De�nitions 6.1and 6.2.De�nition 6.3 Round t is good if there exists a su�ciently small real " such that, for every objectA, the following conditions hold:1. For any � and any i in [b], if jN�(A; i; t)j is
(logn), then jN 0�(A; i; t)j is
(jN�(A; i; t)j).2. If � is frag-req, then M 0�(A; 0; t) is the outcome of a uniform (G(A; t); B0(A); ";�(logn))experiment.3. If � is server-frag, then M 0�(A; 1; t) is the outcome of a uniform (F (A; t); B1(A); ";�(logn))experiment.4. If � is in fobj-req; server-objg, then for any i in [b], M 0�(A; i; t) is the outcome of a random(M�(A; i; t); Bi(A); ";�(logn)= size(�)) experiment.Let T�(t) denote the set of all �-messages that are attempted in round t. For any set of messagesX , let kXk denote the total number of words in X . The following lemma places an upper boundon kT�(t)k.Lemma 6.1 For any i in [m], any round t, and any �, kT�(t)k is O(n logn) whp.10

Proof: The messages attempted in step 2t are described in Phase 0 of Figure 1. (No messages areattempted in Phase 1.) Only clients attempt messages in Phase 0 and at most one client residesat any node. In Phase 0, each client attempts O(logn) frag-req messages and O(logn) obj-reqmessages. Thus, for � in ffrag-req; obj-reqg, kT�(t)k is O(logn).The messages attempted in step 2t+ 1 are described in Phase 2 of Figure 1. (No messages areattempted in Phase 3.) We consider di�erent cases based on �. Let xi equal si(t).� Case � = client-frag: At most O(logn) �-messages are sent by servers in B0(Ai) to eachclient requesting Ai. Therefore, kT�(t)k is O(Pi2[m] xi logn) = O(n logn).� Case � = server-frag: A server S in B0(Ai) attempts an �-message only if S receives at least�1b0 client-frag messages. Since each client-frag message received by S is from a di�erentclient, it follows that if S attempts any �-message, then xi is at least �1b0. Since the numberof �-messages attempted by S is at most �0b0, the total number of �-messages attempted instep 2t+ 1 by servers in B0(Ai) is O(log2 n) = O(xi logn). Since the size of each server-fragmessage is �(1), kT�(t)k is O(n logn).� Case � 2 fclient-obj; server-objg: A server S attempts a client-obj (resp., server-obj) messagein step 2t + 1 only if it receives at least �2 (resp., �4) obj-req messages in step 2t. We showfor � = client-obj that kT�(t)k is O(n logn) whp. A similar proof holds for � = server-obj.We partition the set of objects into two disjoint subsets L and H . For each i in [m], ifxi � logn, then Ai is in L; otherwise, Ai is in H . Consider an object Ai in H . Let j bethe largest integer such that bj � xi. Since each server attempts at most �3 �-messages, itfollows that the total number of �-messages attempted by servers in B1(Ai) through Bj(Ai)is O(xi). We now place an upper bound on the number of �-messages attemped by serversin Bk(Ai) for k > j. Since each obj-req message is destined to a random server, even if allof the obj-req messages are received, we obtain by Lemma C.6 that the number of servers in[k>jBk(Ai) that receive at least �2 obj-req messages in step 2t is O(xi) whp. Thus, the totalnumber of attempted client-obj messages associated with objects in H is O(n) whp.Consider the set L. Since each obj-req message is destined to a random server, even if all ofthe obj-req messages are received, we obtain by Lemma C.6 that the number of servers in[Ai2L [k>0 Bk(Ai) that receive at least �2 obj-req messages in step 2t is:O0@Xk>00@XAi2Lxi=2k +sXAi2Lxi logn1A1A = O(n) whp.Adding the bounds for the �-messages associated with L and H , we obtain that kT�(t)k isO(n logn) whp.Lemma 6.2 If there are nonnegative reals x0; : : : ; xm�1, independent of the hash functions, suchthat si(t) � xi and Pi2[m] xi = O(n), then round t is good whp.Proof: We �x indices i 2 [b] and j 2 [m]. We prove the desired claim by establishing the fourparts of De�nition 6.3. Let U denote the set of up nodes (i.e., neither dead nor down) in round t.Note that jU j is at least (1� (�0 + �1))n. 11

1. Let � be any message-type that is attempted by a server. Since servers attempt messagesin odd steps only, this part concerns step 2t + 1 only. By Lemma 6.1, kT�(t)k is O(n logn)whp. Let U 0 be the set of nodes u such that at most (c0 log n)=2 words are attempted fromu in step 2t + 1. By an averaging argument, it follows that jU 0j is
(n), where the hiddenconstant can be made arbitrarily close to 1 by setting c0 su�ciently large. By de�nition, allmessages in N�(Aj ; i; t) are attempted by servers. Since x0; : : : ; xm�1 are independent of thehash functions, the mapping of Bi(Aj) is independent of the source nodes associated with themessages in T�(t) nN�(Aj ; i; t). It follows from bounds on the tail of the hypergeometric dis-tribution [7], given in Theorem A.2, that a constant fraction of the messages in N(Aj; i; t) areattempted by nodes in U 0. By setting c0 and c1 su�cently large, we obtain that jN 0�(Aj ; i; t)jis
(jN�(Aj ; i; t)j) whp.2. Let � equal frag-req. We need to prove that M 0�(Aj ; 0; t) is the outcome of a uniform(G(Aj; t); B0(Aj); ";�(logn)) experiment. In our proof, the clients in G(Aj ; t) correspondto the labels, and the servers in B0(Aj) correspond to bins. Step (i) of the experiment corre-sponds to the following: each client in G(Aj ; t) sends one �-message to each server in B0(Aj).We now establish step (ii) of the experiment.Consider a client C in G(Aj ; t). Let v be the node associated with C. Let Uv be the set ofup nodes u in U such that at most (c0 logn)=2 words in T�(t) nM�(Aj ; i; t) are destined tou and u has a non-faulty link to v. Since kT�(t)k is O(n logn), by an averaging argument, itfollows that jUvj is
(n), where the hidden constant is arbitrarily close to 1 for c0 su�cientlylarge and �0, �1, and �2 su�ciently small. Let Wv be B0(Aj) \ Uv. Since the mapping ofservers in B0(Aj) is independent of the destination nodes associated with the messages inT�(t) nM�(Aj ; i; t), it follows from Theorem A.2 that jWvj is at least cbi whp, where c canbe set arbitrarily close to 1 for appropriate values of c0, �0, �1, and �2.The correspondence to De�nition 6.1 is established by substituting (G(Aj; t); B0(Aj); (1 �c);�(logn); B0(Aj) nWv) for (X;U; "; �; Vi).3. Similar to Part 2.4. Let � be in fobj-req; server-objg. We need to prove that M 0�(Aj ; i; t) is the outcome of arandom (M�(Aj ; i; t); Bi(Aj); ";�(logn)= size(�)) experiment. In our proof, the messagesin M�(Aj ; i; t) correspond to balls, and the servers in Bi(Aj) correspond to bins. Step (i)of the experiment corresponds to the following: each �-message is sent to a server chosenindependently and uniformly at random from Bi(Aj). We now account for steps (ii) and (iii)of the experiment.Consider any message y in M(Aj ; i; t). Let Uy be the set of up nodes u 2 U such that atmost (c0 logn)=2 words in T�(t) nM�(Aj ; i; t) are destined to u and u has a non-faulty linkto the source of message y. Since kT�(t)k is O(n logn), by an averaging argument, it followsthat jUy j is
(n), where the hidden constant is arbitrarily close to 1 for c0 su�ciently largeand �0, �1, and �2 su�ciently small. Let Wy be the set of servers in Bi(Aj) that are mappedto nodes in Uy . Since the mapping of servers in Bi(Aj) is independent of T�(t) nM�(Aj ; i; t),it follows Theorem A.2 that jWy j is at least cbi whp, where c can be set arbitrarily close to1 for appropriate values of c0, �0, �1, and �2. For step (iii), it is enough to note that eachserver in Wy can receive at least (c0 log n)=2 words from M 0(Aj ; i; t).The correspondence to De�nition 6.2 is established by substituting (M�(Aj ; i; t); Bi(Aj); (1�c);�(logn)= size(�); Bi(Aj) nWy) for (X;U; "; �; Vi).12

For any server S associated with object A, let a(S; t) be 1 if server S has a copy of A or afragment of A at the start of round t, and 0 otherwise. For each i in [b], we associate a statevariable s(A; i; t) 2 fcomplete; incompleteg that is de�ned as follows: if the number of servers Sin Bi(A) such that a(S; t) = 1 is at least 9bi=10, then s(A; i; t) is complete; otherwise, s(A; i; t) isincomplete. Let R(A; t) denote the set of clients that attempt to access A in round t. Let R0(A; t)denote the set of clients C that receive at least b0=4 distinct client-frag messages or at least oneclient-obj message in round t. We de�ne predicates P0 through P3 as follows:� P0(A; t): If jR(A; t)j is at least 2�1b0, then for t + 1 � t0 � t +�, s(A; 1; t0) is complete.� P1(A; i; t): If jR(A; t)j is at least 4�4bi and s(A; i; t) is complete, then for t+ 1 � t0 � t +�,s(A; i; t0) is complete.� P2(A; t): If jR(A; t)j is at most �0b0, then R0(A; t) = R(A; t).� P3(A; i; t): If s(A; i; t) is complete then: (i) if jR(A; t)j is at least �3bi=12, then jR0(A; t)j isat least �3bi=120, and (ii) if 4�2bi � R(A; t) = O(bi), then for each C 2 R(A; t), we havePr[C 2 R0(A; t)] =
(1).The predicates P0(A; t) and P1(A; i; t) (resp., P2(A; t) and P3(A; i; t)) formalize Invariant 1 (resp.,Invariant 2) of Section 1. We assume that �3 � maxf48�2; 4�0g.Lemma 6.3 If round t is good, then the following predicates hold for every object A whp: (i)P0(A; t), (ii) 8i > 0 : P1(A; i; t), (iii) P2(A; t), and (iv) 8i > 0 : P3(A; i; t).Proof: Since at most one client resides on any node and each client attempts at most c0 log nwords, each attempted message of type client-frag or obj-req is sent.1. Proof of P0(A; t): Let � and � equal frag-req and server-frag, respectively. We are giventhat R(A; t) is 2�1b0. Since round t is good, it follows from part (ii) of De�nition 6.3 thatM 0�(A; 0; t) is the outcome of a uniform (R(A; t); B0(A); ";�(logn)) experiment.Let X be the set of servers in B0(A) that receive at least �1b0 �-messages in step 2t. ByCorollary B.1.1, jX j is at least 9b0=10. Each server in X attempts b1 �-messages in step 2t+1(see Phase 2 of Figure 1), i.e., N�(A; 0; t) = X . Since step 2t + 1 is good, it follows frompart (i) of De�nition 6.3 that jN 0�(A; 0; t)j is at least b0=2.By de�nition, F (A; t) equals N 0�(A; 0; t). Since round t is good, by part (iii) of De�nition 6.3,M 0�(A; 1; t) is an outcome of a uniform (M�(A; 1; t); B1(A); ";�(logn)) experiment. Let Y bethe set of servers in B1(A) that receive at least b0=4 �-messages. By Corollary B.1.1, jY j isat least 9b1=10. Therefore, s(A; 1; t+ 1) is complete, and the desired claim follows from theassumption about the cache capacity.2. Proof of P1(A; i; t) for all i > 0: Let � and � equal obj-req and server-obj, respectively. Weare given that R(A; t) is at least 4�4bi. Hence, jM�(A; i; t)j is at least 4�4bi. Since roundt is good, it follows from part (i) of De�nition 6.3 that M 0�(A; i; t) is the outcome of an(M�(A; i; t); Bi(A); ";�(1)) experiment.Let X denote the set of servers in Bi(A) that receive at least �4 �-messages. By Corol-lary C.3.1, jX j is at least 9bi=10. Since s(A; i; t) is complete, at most bi=10 servers in Bi(A)do not have a copy of A. Therefore, at least 4bi=5 servers in X attempt �5 �-messages toBi+1(A) in step 2t + 1. Thus, jN�(A; i+ 1; t)j is at least 4�5bi=5. Since round t is good, by13

part (ii) of De�nition 6.3, the number of servers in Bi(A) all of whose attempted �-messagesare sent is at least 2bi=5. Therefore, jM�(A; i+ 1; t)j is 2�5bi=5.Since round t is good, it follows from part (i) of De�nition 6.3 thatM 0�(A; i+1; t) is an outcomeof an (M�(A; i+1; t); Bi+1(A); ";�(1)) experiment. By Corollary C.3.1, the number of serversin Bi+1(A) that receive at least �5=20 �-messages is 9bi+1=10 whp. Thus, s(A; i+ 1; t+ 1) iscomplete whp, and the desired claim follows from the assumption about the cache capacity.3. Proof of P2(A; t): Let � and � equal frag-req and client-frag, respectively. We are given thatjR(A; t)j is at most �0b0. Since round t is good, it follows from part (ii) of De�nition 6.3 thatM 0�(A; 0; t) is the outcome of a uniform (M�(A; 0; t); B0(A); ";�(logn)) experiment. Thus,for any client C, (1 � ")b0 of the �-messages sent by C are received by (1 � ")b0 di�erentservers in B0(A).Since each server that receives an �-message attempts at least one �-message, it follows thatjN�(A; 0; t)j is at least (1� ")b0. Since round t is good, by part (i) of De�nition 6.3, all but2b0=5 of the servers in B0(A) send all their attempted �-messages. All of the �-messages thatare sent by servers in B0(A) are received by the clients. It follows that C receives �-messagesfrom (1� "� 2=5)b0 di�erent servers in B0(A). Hence, the request by client C is satis�ed inround t.4. Proof of P3(A; i; t) for all i > 0: Let � and � equal obj-req and client-obj, respectively.By de�nition, jM�(A; i; t)j is (jR(A; t)j). Since round t is good, it follows from part (iv) ofDe�nition 6.3 that M 0�(A; i; t) is the outcome of an (M�(A; i; t); Bi(A); ";�(1)) experiment.For part (i) of P3, we are given that �3bi=12 � jR(A; t)j � �3bi=6. By Corollaries C.3.1and C.4.1, at least 4bi=5 servers in Bi(A) receive at least �3=48 � �2 and at most �3 �-messages whp. Hence, jN�(A; i; t+ 1)j is 4bi=5 whp. Since round t is good, by part (i) ofDe�nition 6.3, it follows that jN 0�(A; i; t)j is 2bi=5. If a client C is sent at least one �-message,C receives at least one �-message. Therefore, �3bi=120 � jR(A; t)j=20 of the clients receive a�-message whp, establishing part (i).The proof of part (ii) is similar. We are given that 4�2bi=12 � jR(A; t)j = O(bi). ByCorollary C.3.1 and Lemma C.4, at least 4bi=5 servers in Bi(A) receive at least �2 and atmost O(1) �-messages. By part (i) of De�nition 6.3, it follows that jN 0�(A; i; t)j is 2bi=5.Thus,
(jR(A; t)j) of the clients receive a �-message. Since each client C selects a server atrandom and each server sends �-messages to a random subset of requesting clients, part (ii)of the claim follows.6.2 The Fixed ModelThe �xed model is speci�ed by a probability distribution D = (p0; : : : ; pm�1), where each newrequest is for Ai with probability pi. For any round t, we de�ne di(t) to be the largest index j suchthat s(Ai; k; t) is complete for all k in [j + 1]. Let ei(t) be the smallest index j such that for everyserver S in [k�jBk(Ai), a(S; t) is 0. In the following lemmas, we use the block predicates to relatedi(t), ei(t), ri(t), and si(t), when t is good.Lemma 6.4 Let t be a good round. For any i in [m]:1. If si(t) is at most �0b0, then ri(t+ 1) = 0 whp.14

2. If si(t) is at most �3bdi(t)=6, then si(t)� ri(t+ 1) is at least si(t)=20 whp.3. If si(t) is at least 4�4bj and di(t) is at least j, then di(t+ 1) is at least j + 1.4. si(t)� ri(t+ 1) is at most �3bei(t).Proof: By de�nition, si(t) equals jR(Ai; t)j and si(t)� ri(t + 1) equals jR0(Ai; t)j. Since round tis good, we invoke Lemma 6.3 to prove the claims.1. The claim directly follows from Part (iii) of Lemma 6.3.2. There exists an integer j � di(t) such that �3bj=12 � si(t) � �3bj=6. Therefore, by Part (iv)of Lemma 6.3, si(t)� ri(t+ 1) is at least si(k)=20 whp.3. If si(t) is at least 4�4bj and di(t) is at least j, then for each k in [j+1], si(t) is at least 4�4bk.Therefore, Parts (i) and (ii) of Lemma 6.3 imply that s(Ai; k; t+ 1) is complete for all j in[j + 2], establishing the desired claim.4. Each server in B0(A) sends at most �0b0 client-frag messages. Since each client requires b0=4fragments to reconstruct the object, the number of clients whose requests are satis�ed by B0is at most 4�0b0 � �3b0. The number of requests satis�ed by each server in a block Bj(Ai)for j > 0 is at most �3. Therefore si(t)� ri(t+1) is at mostP0�j<ei(t) �3bj , which is at most�3bei(t).We use a number of positive real constants in our analysis. Each constant is of the formai. Constants a0 through a6 appear in the de�nitions and the statements of the lemmas and arerequired to satisfy the following inequalities.a0 � �0c1=a3;a1 � 9a3�23=(a4a2);a2 � maxf4�4; 2�1g;a2 � �3=12;a5 = 1=(1� 1=20 + a3=(a6 � a3)); anda6 > 21a3:(From the above inequalities, we have: (i) a0 � c1, (ii) �4; �1 � a2 � �3 � a1, and (iii) a3 � a6.The inequalities associated with other constants that arise in the proofs are speci�ed whereever therelevant constants are introduced.)We partition the set A into O(logn) subsets as follows:Aj = (fAi : npi � a0 logng; if j = 0;fAi : a0aj�11 log n < npi � a0aj1 logng; otherwise.Let A�i denote the set [j�iAj . We de�ne A�i, A>i, and A<i similarly. For each i in [m], objectAi is said to be steady in round t, if si(t) � a2bdi(t); otherwise, Ai is said to be unsteady in round t.Let B(m; p) be the random variable denoting the number of successes in m independent Bernoullitrials with success probability p. Let a3 and a4 be real constants such that for p � a0 logn=n,a4np � B(n; p) � a3np whp; a3 and a4 are obtained from standard Cherno� bounds [6], given inTheorem A.1. 15

Lemma 6.5 Let rounds 0 through r � 1 be good. If object Ai is not steady in rounds 0 through r,then whp we have di(j) = j and ei(j) = j + 1 for 0 � j < r.Proof: The proof is by induction on j. The induction basis is trivial. For the induction hypothesis,we assume that di(j) = j and ei(j) = j+1, for all j in [k], where k is in [r�1]. Since Ai is unsteadyin round k� 1, we have si(k� 1) > a2bdi(k�1). Since round k� 1 is good, by Part 3 of Lemma 6.4,di(k) is k whp. Since ei(k � 1) + 1 � ei(k) < di(k) and ei(k � 1) = k, ei(k) is k + 1 whp.Lemma 6.6 Let rounds 0 through r � 1 be good. If Ai is not in A0 and Ai is unsteady in rounds0 through r, then si(r) � a2a4npi=(3�3) whp.Proof: By Lemma 6.5, di(j) is j for all j in [r + 1]. By Part 4 of Lemma 6.4, it follows thatsi(j)� ri(j + 1) is at most 2�3bj . Thus, we have whp:si(r) = si(0) + X0�j�r qi(j)� X0�j<r(si(j)� ri(j + 1)� si(0)� X0�j<r 2�3bj� si(0)� 2�3br� a4npi � 2�3br� a4npi � 2�3si(r)=a2� a4npi=(1 + 2�3=a2)� a2a4npi=(3�3):(The �rst inequality follows from the de�nition of si. The fourth inequality follows from a Cherno�bound. The �fth inequality holds since Ai is unsteady in round r. The last inequality holds sincea2 � �3.)Lemma 6.7 places an upper bound on the number of requests for object Ai during any roundafter the �rst round in which Ai is steady.Lemma 6.7 Let rounds 0 through r � 1 be good, where r is at most �. Let Ai be not in A0, andlet j < r be the smallest integer such that Ai is steady in round j. There exist constants a5 > 1and a6 such that, for j � k < r, we have whp:si(k) � maxfsi(j)ak�j5 ; a6npig (1)Proof: By a Cherno� bound, qi(k + 1) is at most a3npi whp. If si(k) � (a6 � a3)npi, thensi(k + 1) � si(k) + qi(k + 1) � a6npi whp, thus establishing the claim. For the remainder of theproof, we assume that: si(k) > (a6 � a3)npi: (2)We consider two cases depending on whether si(j) � a6npi.� Case si(j) � a6npi: We show by induction on k that Equation 1 holds whp. The inductionbasis is trivially true. Let Equation 1 be true for rounds j through k, where j � k < r � 1.16

Since j is the �rst round in which Ai is steady, Lemma 6.5 implies that di(j) is j. Therefore,si(j) � a2bj whp.By the induction hypothesis, si(k) � si(j). Moreover, since r is at most �, di(k) is at leastj. Therefore, si(k) � a2bj � a2bdi(k). Since a2 is at most �3=6, Part 2 of Lemma 6.4 implieswhp: si(k)� ri(k + 1) � si(k)=20: (3)Therefore we have whp:si(k + 1) = ri(k+ 1) + qi(k + 1)= si(k)� (si(k)� ri(k + 1)) + qi(k + 1)� si(k)(1� 1=20)+ a3si(k)=(a6 � a3)� si(k)(1� 1=20 + a3=(a6 � a3))� si(k)=a5� maxfsi(j)ak�j5 ; a6npig:(The second inequality follows from the de�nition of si. The third inequality follows fromEquations 2 and 3. The �fth inequality follows from the choice of the constants: a6 > 21a3and 1=a5 = (1� 1=20 + a3=(a6 � a3)).)� Case si(j) < a6npi: We show that in this case si(k) � a6npi whp. The proof is by inductionon k. The induction basis is trivial. Let the claim be true for rounds j through k wherej � k < r. In the induction step, we need to show that si(k + 1) � a6npi.Let ` be the last round in which si(`) � a2bdi(`). (Such an ` exists as si(j) � a2bdi(j).) ByPart 3 of Lemma 6.4 and the de�nition of `, di(k) � di(`)+(k�`) whp. By a Cherno� bound,si(`) is at least (a6 � (k � `)a3)npi whp. Therefore, bdi(`) is at least (a6 � (k � `)a3)npi=a2whp. Moreover, since ` is at most �, di(`) � j. Therefore, we have whp:bdi(`) � bj� 2si(j � 1)2a2 + �3� 2a2a4npi9�23 :(The second inequality holds since Ai is steady in round j. The third inequality follows fromLemma 6.6.) Therefore, we have whp:bdi(`) � maxf(a6 � (k � `)a3); 2a22a49�23 gnpia2 : (4)We select a6 and a new constant a7 such that 2a3a7 � a3 � 2a7+2a2a4=(9�23). If k � ` is atmost a7, then bdi(k) is at least a6npi=2a2. By the induction hypothesis, si(k) is at most a6npi.Therefore, si(k) � 2a2bdi(k). If k � ` is at least a7, then bdi(k) is at least 2a7+1a2a4npi=(9�23).By the choice of a6 and a7, we obtain that si(k) � 2a2bdi(k) whp.By Part 2 of Lemma 6.4, we have whp: si(k) � ri(k + 1) is at least si(k)=20. Therefore,si(k+1) is at most 19si(k)=20+ a3npi which is at most a6npi by the choice of the constants.17

We use Lemma 6.8 to relate the number of requests, in round r, for any two objects that areunsteady in rounds 0 through r� 1.Lemma 6.8 Let rounds 0 through r� 1 be good. Let i1 and i2 be integers in [m] such that Ai1 andAi2 are not in A0 and Ai2 is not steady in rounds 0 through r. It holds whp thatsi1(r) � 3a3�3pi1a2a4pi2 si2(r):Proof: Consider any round j, 0 � j < r. We are given that Ai2 does not become steady in anyof the r rounds. We invoke Lemma 6.5 and obtain that di2(j) = j whp. Therefore, si2(j) > a2bjwhp. By Part 4 of Lemma 6.4 (si2(j)� ri2(j + 1)) is at most 2�3bj whp. Let q denote the numberof new requests generated in rounds 0 through r. Since q � n and Ai1 ; Ai2 =2 A0 we have whp:P0�j�r qi1(j) is at least a4pi1q and P0�j�r qi2(j) is at most a3pi2q. We thus have:si1(r) � a3pi1q: (5)si2(j) � a4pi2q � X0�j<r 2�3bj : (6)From Equations 5 and 6, we obtain whp:si1(r) � a3pi1q� a3pi1a4pi2 (si2(r) + 2�3br)� 3a3�3pi1a2a4pi2 si2(r):(The �rst inequality follows from Equation 5. The second inequality follows from Equation 6. Thelast inequality holds since Ai2 is unsteady in round r and a2 � �3.)Lemma 6.9 Let rounds 0 through r � 1 be good. Let i1 and i2 be in [m]. Let j in [r] be thesmallest integer such that Ai1 is steady in round j. If pi1 � ak1pi2, where k is a positive integer,then there exists j 0 � j�k+1 such that Ai2 is steady in round j 0. If pi1 � pi2=a1, then there existsj 0 � j +O(1) such that Ai2 is steady in round j0.Proof: We �rst consider the case in which pi1 � ak1pi2 for some positive integer k. Since Ai1 isnot steady in rounds 0 through j � 1, di1(j) = j whp by Lemma 6.5. Since Ai1 is steady in roundj, we have si1(j) � a2bj whp, and we obtain an upper bound on si1(j � k + 1) as follows:si1(j � k + 1) = si1(j) + (X0�`<k(si1(j � `)� r(j � `+ 1))� q(j � `+ 1))� si1(j) + (X0�`<k(si1(j � `)� r(j � `+ 1))� si1(j) + 2�3bj� 3�3bj : (7)(The �rst equality follows from the de�nition of si1 . The third inequality, follows from Part 1 ofLemma 6.4. The fourth inequality holds since Ai1 is steady in round j and a2 � �3.)18

If Ai2 is steady in some round j 0 < j � k + 1, then the claim holds. Otherwise, by Lemma 6.8,it holds whp that si2(j� k+1) � 3a3�3a2a4ak1 si1(j� k+1). Hence, Ai2 is steady in round j� k+1 whpbecause: si2(j � k + 1) � 9a3(�3)2ak1a2a4 bj� a2bj�k+1:(The �rst inequality follows from Equation 7. The second inequality follows from the choice ofconstants: a1 � 9a3�23=(a2a4) � 2.)We now consider the case in which pi1 � pi2=a1. Let a8 be an integer constant satisfying:2a8 � 3a22(a2 + 3a8�3)(a2 + �3)a1a3�3=(a2a4):(Thus, a8 is a su�ciently large integer constant.) If Ai2 is steady in some round j 0 < j + a8, thenthe claim holds. Otherwise, Ai2 is steady in round j + a8 whp because:si2(j + a8) � si2(j � 1) + a4a8npi2� si2(j � 1)(1 + 3�3a8=a2)� 3(1 + 3�3a8=a2)a1a3�3a2a4 si1(j � 1)� 3(1 + 3�3a8=a2)a1a3�3a2a4 (si1(j) + �3bj)� 3(1 + 3�3a8=a2)a1a3�3(a2 + �3)a2a4 bj� a2bj+a8 :(The �rst inequality follows from the de�nition of si2 . The second inequality follows from Lemma 6.6.The third inequality follows from Lemma 6.8. The fourth inequality follows from the de�nition ofsi1 . The �fth inequality holds since Ai1 is steady in round j. The last inequality follows from thechoice of a8.)Lemma 6.10 Let rounds 0 through r�1 be good. For any nonnegative integer i such that 0 � i < mand Ai 2 A0, we have ri(r) = 0.Proof: We will prove by induction on j that for 0 � j � r, ri(j) is zero. The base case is trivial.Let the claim hold for j. Consider round j + 1 � r. Since ri(j) is zero, si(j) equals qi(j) which isat most �0b0 whp. Since round j is good, by Part 1 of Lemma 6.4, it follows that ri(j + 1) equalszero whp.De�nition 6.4 For nonnegative integers i and j, 0 � i < m we de�ne:s�i (j) = 8>>><>>>: B(n; pi); if Ai 2 A0;npiaj�`5 PAk2A�` pk + npi if Ai 2 A`; 0 < ` � jnpiPAk2A>j pk + npi otherwise.Lemma 6.11 For all j > 0, P0�i<m s�i (j) is O(n) whp.19

Proof: We rewrite P0�i<m s�i (j) as follows:X0�i<m s�i (j) = Xi:Ai2A0 s�i (j) + Xi:Ai2A�j\A>0 s�i (j) + Xi:Ai2A>j s�i (j):We establish the lemma by obtaining upper bounds on the three terms in the right-hand side ofthe above equation. The �rst sum is at most a4n whp. The second sum is bounded as follows:Xi:Ai2A�j\A>0 s�i (j) = 0@ X0<`�j Xi:Ai2A` npiaj�`5 PAk2A�` pk1A+ Xi:Ai2A�j npi� 0@ X0<`�j Xi:Ai2A` npiaj�`5 PAk2A` pk1A+ Xi:Ai2A�j npi= X0<`�j naj�`5 + Xi:Ai2A�j npi� n1� a5 + Xi:Ai2A�j npi: (8)Similarly, we bound the third sum as follows:Xi:Ai2A>j s�i (j) = 0@ Xi:Ai2A�j npiPAk2A�j pk1A + Xi:Ai2A>j npi= n+ Xi:Ai2A>j npi: (9)It follows from the bounds on the three sums that P0�i<m s�j is O(n).Lemma 6.12 Let rounds 0 through r � 1 be good, where r is at most �. Whp, round r is good.Proof: We show that there exists an integer h such that for all i in [m], si(r) is O(s�i (h)) whp.We divide A into three groups A0, S, and U . Let S be the set fAi 2 A n A0 : there exists j �r such that Ai is steady in round jg. Let U be the set A n (S [A0).We �rst consider any object Ai in A0. By Lemma 6.10, we have si(r) = qi(r) � B(n; pi).Let h be the largest index such that Ah \ S is nonempty. If S is empty then we set h to 0. ByLemma 6.9 and the de�nition of Ai, it follows whp that for i in [h], every object in Ai is steady insome round j 0 � r � h + i+ 1.Consider any object Aj 2 S \ Ai where 0 � i � h. Let rj be the smallest round in which Ajis steady. By Lemma 6.9 and the de�nition of Ai, it holds whp that every object Ak 2 A�i isunsteady in some round r0 = rj � O(1). By Lemma 6.8, it holds that for Ak 2 A�i, whp we havesk(r0) =
(pksj(r0)=pj). Therefore we have whp:sj(rj � 1) = O npjPAk2A�i pk + npj! , and hence,sj(r) = O0@ npjar�rj5 PAk2A�i pk + npj1A= O0@ npjah�i�15 PAk2A�i pk + npj1A= O(s�j(h)):20

(The �rst inequality follows from the de�nition of sj . The second inequality follows from Lemma 6.8.The third inequality follows from the earlier claim that rj � r�h+ i+1. The last equality followsfrom the de�nition of s�j (h).)We now consider the objects in U . Let h0 be the smallest index such that Ah0 \ U 6= ;. If U isempty, then let h0 equal h. By Lemma 6.9, h0 is at least h�1 whp. By Lemma 6.9, it holds whp thatevery object in A�h0 is unsteady in some round r0 = r � O(1). Consider any object Aj 2 U \ Ai,i � h0. By Lemma 6.8, for all objects Ak 2 A�h0 , it holds whp that sk(r0) =
(pksj(r0)=pj).Therefore we have whp: sj(r) = O npjPAk2A�h0 pk + npj!= O(s�j (h)):(The �rst inequality holds since P`2[m] s`(t) is at most n for any t. The second inequality holdssince A�h0 � A�h.)We have shown that for each j in [m], sj(r) is O(s�j(h)) whp. By Lemmas 6.11 and 6.2, itfollows that round r is good whp.Let t0 denote equal b + loga5 n. We assume that � is at least t0 + a9, where a9 is a constantthat is speci�ed in the proof of Lemma 6.13 below.Lemma 6.13 For any i in [m] and for any t � t0, we have whp:1. If Ai is in A0, si(t) is B(�(n); pi).2. If Ai is not in A0, si(t) is �(npi), and bdi(t) is
(npi).3. Round t is good.Proof: By Lemma 6.12, rounds 0 through t0 are good whp. For any i in [m], if Ai is not steady inrounds 0 through b� 2, then by Lemma 6.5, di(b� 1) is b� 1. Since a2c12b�1 logn > n � si(b� 1),Ai is steady in round b� 1. We have thus shown that for each i in [m], Ai is steady in some roundj in [b].Part 1 follows directly from Part 2. We establish Parts 2 and 3 by showing that for any Ai notin A0, and t � t0: (i) si(t) is at most a10npi, (ii) round t is good, (iii) if t > t0, si(t) is at leasta12npi , and (iv) bdi(t) is at least a11npi. Constants a10, a11, and a12 are speci�ed below.The proof of the above four claims is by induction on t. For the induction basis, let t equal t0.By Lemma 6.7, si(t) is at most a6npi � a10npi whp, thus establishing claim (i) (we set a6 � a10).Claim (ii) follows from claim (i) and Lemma 6.2. Claim (iii) holds vacuously. Since � is
(logn),Lemma 6.6 implies that bdi(t0) is at least a2a4npi=(9�23) � a11npi, thus establishing claim (iv) (weset a11 � a2a4=(9�23)). This completes the induction basis.For the induction step, we assume that claims (i), (ii), (iii), and (iv) hold for rounds t0 throught. We �rst establish claim (i) for round t + 1. If si(t) is at most (a10 � a3)npi, then si(t + 1) �si(t) + qi(t+ 1) � a10npi whp, and the desired claim holds.We now consider the case in which si(t) is at least (a10 � a3)npi. Let ` � t0 be the lastround in which si(`) � 9a6�23bdi(`)=(a2a4). (Such an ` exists as t0 satis�es the inequality.) Since9a6�23=(a2a4) � 4�4, Part 3 of Lemma 6.4 and the de�nition of ` imply that di(t) is at leastdi(`) + (t� `). By a Cherno� bound, si(`) is at least (a10 � (t� `)a3)npi whp. Therefore, bdi(`) is21

at least 2a2a4(a10 � (t� `)a3)npi=(9a6�23) whp. Moreover, by the induction hypothesis, bdi(`) is atleast a11npi. bdi(`) � maxf2a2a4(a10 � (t� `)a3)9a6�23 ; a11gnpi: (10)We choose a13 and a10 such that 2a3a13 � a10 � a2a112a13 . If t � ` is at most a13, then bdi(t)is at least a2a3a4a10npi=(9�23). By the induction hypothesis, si(t) is at most a10npi. Therefore,si(t) is at most 18�23bdi(t)=(a2a4). By Part (iii) of Lemma 6.3, we have whp: si(t) � ri(t + 1) isat least a2a4si(t)=(2160a6�3) whp. If t � ` is at least a13, then bdi(t) is at least 2a13a11npi whp.By the choice of constants, we obtain that si(t) is at most a2bdi(t) whp. By Part 2 of Lemma 6.4,si(t)� ri(t + 1) is at least si(t)=20. Thus, in either case, since si(t) is at least (a10 � a3)npi, if a10is chosen su�ciently larger than �3, si(t+ 1) is at most a10npi.Claim (ii) follows from claim (i) and Lemma 6.2. We now prove claim (iii). Since si(t) is atmost a10npi and bdi(t) is at least a11npi, by Part (iii) of Lemma 6.3, si(t) � ri(t + 1) is at leasta11�3si(t)=(120a10) whp. Therefore, the total number of new requests is at least a11�3n=(120a10).By a Cherno� bound, the number of new requests for each Ai in A>0 is at least a12npi whp for asuitable choice of a12.We now prove claim (iv). We need to show that s(Ai; j; t+1) is complete for all j such that bj isat most 2a11npi. Fix an index j satisfying the above. By the induction hypothesis, si(t) is at leasta12npi, and bdi(t) is at least a11npi. Part (ii) of Lemma 6.3 is applicable only if a12 were at least4a11�4. Such a choice of a11 and a12 is not always possible. Therefore, instead of considering newcopies made in Bj(Ai) in round t only, as is done in the Part (ii) of Lemma 6.3, we consider copiesmade in rounds t � a9 through t, where a9 is a su�ciently large constant. The proof of claim (iv)is as follows. If t � t0 + a9, then since the cache is assumed to hold copies created in rounds 0through t0 + a9, as in the induction basis, it follows that bdi(t) is at least a11npi. If t > t0 + a9, theinduction hypothesis implies that for t� a9 � t0 � t, si(t0) is at least a12npi. By Lemma C.7, if a9is chosen su�ciently large, the number of new copies created in Bj(Ai) in rounds t � a9 through tis at least 9bj=10. Thus, bdi(t+1) is at least a11npi.Proof of Theorem 1: The desired claim follows directly from Lemmas 6.13 and 6.10, andPart (iv) of Lemma 6.3.6.3 Extension to the Time-Varying ModelIn the time-varying model, we are given a sequence of d probability distributions D0; : : : ;Dd�1. Thedistribution Dj is speci�ed by an m-vector (pj0; : : : ; pjm�1) of probabilities. Let tj be the number ofrounds associated with Dj .For the �xed model we showed that any cache that can hold copies for
(logn) rounds su�ces.Thus, � can be as small as �(logn). For the time-varying model, we assume a stronger cachemanagement policy: any secondary copy of an object A is deleted by the node that holds the copy,after �0 rounds of its creation, where �0 � �. We require that � and �0 are
(logn). Hence, theminimum cache capacity is �(logn), as for the �xed model.The analysis of tj rounds under distribution Dj is similar to that of tj rounds of the �xedmodel with distribution Dj . There is one di�erence, however. In the analysis for the �xed model,the initial state of the blocks associated with any object Ai is assumed to be the following: di(0)is 0 and ei(t) is 1. Such an assumption is clearly not valid in the time-varying model when thedistribution changes from Dj�1 to Dj . We show that in the time-varying model, at the start of anydistribution Dj , each object Ai is well-distributed. We say that the object Ai is well-distributed in22

round t if there exists an index k such that: (i) s(A; i; t) is complete for each j in [k], and (ii) foreach j � k + �(1), if bk is
(2j�k logn), then the number of servers in Bj(A) that hold copies ofA is at most bk=2j�k; otherwise the number of servers in B�j that hold copies of A is O(logn).We de�ne di(t), as before, to be the largest k such that s(Ai; `; t) is complete for all ` in [k+1].We de�ne ei(t) to be the smallest k such that the number of copies of Ai in B`(Ai) in round t is atmost bdk=2`�di(t)+O(log n) for all ` � k. Thus, if Ai is well-distributed in round t, then ei(t)�di(t)is O(1).We begin the analysis of the time-varying model by showing that, for a �xed probability distri-bution D, within �0 rounds of reaching the steady state, each objectAi is well-distributed. Considerany object Ai such that pi is
(logn=n). By Lemma 6.13, in the steady state, bdi(t) is at least cnpifor some constant c. Let ki denote the largest j such that bj is at least cnpi. (If no such j exists,we set ki to 0.)Lemma 6.14 Consider the �xed model with associated probability distribution D = (p0; : : : ; pm�1).Let t be any steady round. Consider any object Ai with pi =
(logn=n). In round t + �0, Ai iswell-distributed and di(t +�0) is maxfb; ki+ log�0=(�4�6) + �(1)g whp.Proof: By Lemma 6.13, rounds t through t+�0 are steady and good. Let ` equal log �0=(�4�6).We prove the result by showing that whp: (i) s(Ai; j; t+�0) is complete for all j in [ki+ `], and (ii)for j � ki + ` + �(1), the number of servers in Bj(A) that hold copies of A at the start of roundt +�0 is at most bki+`=2j�ki�`.We establish claim (i) by showing that for all j in [`�O(1)], in rounds t through t+�(2j�4�6),
(bki+j) servers in Bki+j(Ai) receive new copies of Ai. The proof is by induction on j. (Note thatby Part 2 of Lemma 6.13 and the de�nition of ki, s(Ai; j 0; t0) is complete for any j 0 � ki and anyt0 � t.)The induction basis follows from Part 2 of Lemma 6.13 and the de�nition of ki. For the inductionstep, we assume that s(Ai; j; t0) is complete for t + c02j�4�6 � t0 < t + �0, for a su�ciently largeconstant c0. We consider rounds t+ c02j�4�6 through t + c02(j+1)�4�6 � 1. We refer to these roundsas active rounds. Let t0 denote the number of active rounds. Note that t0 is �(2j�4�6). We labelthe rth active round as t0r.In each active round, by Lemma 6.13, �(npi) = �(bki) requests are present for object Ai. Let �and � equal obj-req and server-obj, respectively. Let yr denote the number of servers in Bki+j(Ai)that receive at least �4 �-messages in round t0r. We wish to obtain a lower bound on y = Pr yr.Since each round is good, by Part 4 of De�nition 6.3,M 0�(Ai; ki+ j; t0r) is the outcome of a random(M�(Ai; ki + j; t0r); Bki+j(Ai); ";�(logn)) experiment. By Lemma C.5, whp:y =
(t0(bki)�4=b�4�1ki+j)= �(2j(�4�6��4+1)bki):(The second equality follows from the bound on t0. We have assumed that �4 and �5 are su�cientlylarge.) Let � equal server-obj. Each of the yr servers in Bki+j(Ai) attempt �5 �-messages in roundt0r. Let zr denote the number of servers in Bk+j(Ai) who send �5 �-messages in round t0r . Let zdenote Pr zr. By Part 1 of De�nition 6.3, z is �(E[y]) whp.By Part 4 of De�nition 6.3, M 0�(Ai; j + ki + 1; t0r) is the outcome of a random (M�(Ai; j + ki +1; t0r); Bj+k+1(A); "; �) experiment. Let ur denote the number of servers in Bj+ki+1(Ai) that receiveat least �6 �-messages in round t0r, and let u equal Pr ur. By Lemma C.5, we have whp:u =
 Xr z�6r =b�6�1j+ki+1!23

=
 �t0(z=t0)�6=b�6�1j+ki+1�=
(bj+ki+1);where the hidden constant can be made arbitrarily close to 1 by choosing c appropriately large.Hence s(Ai; j + k + 1; tt0) is complete whp.We establish claim (ii) by showing that for j � k+ `+�(1), O(bki+`=2j�ki�`) servers in Bj(Ai)receive new copies of Ai in �(logn) steps whp. In each step O(npi) = O(bki) �-messages areattempted to Bj(Ai) in any step t0 in [t; t+�0). Since round t0 is good, it follows from Lemma C.6that the number of servers in Bj�1(Ai) that receive at least �4 �-messages in step t0 is O(b�4ki =b�4�1j).Thus, the number of �-messages attempted in round t0 is O(�5bki=2(j�ki)(�4�1)) whp. Since roundt0 is good, it follows that the number of servers in Bj(Ai) that receive at least �6 �-messages(and hence store a new copy of Ai) in step t0 is O(bki=2(j�ki)�4�6�1) whp. Since 2`(�4�6) is �0,it follows that in �0 rounds, the number of servers in Bj(Ai) that store at least one new copy isO(bki+`=2(j�ki�`)�4�6�1) � bki+`=2j�ki�` whp (for �4 and �6 su�ciently large).We now consider the time-varying model. We prove by induction on j that within O(logn)rounds of any distribution Dj , the protocol reaches a steady state. Thus, if tj is at least a constantfactor times the number of rounds taken to reach the steady state for each j, then Theorem 2follows.The induction basis follows from Theorem 1. For the induction step, we consider tj roundsof Dj , where j > 0. For convenience, we number the rounds 0 through tj � 1. (Note that tj is
(logn).) By the induction hypothesis and Lemma 6.14, it follows that at the start of round 0,Ai is well-distributed for each i in [m]. Let fi equal ki + log�0=(�4�6), where ki is associated withDj�1. In the following, we omit j from any subscript or superscript.The proof of the induction step follows the proof of Theorem 1, given in Section 6.2. Weonly describe here the main modi�cations needed in the proof, which are with respect to the initialdistribution of secondary copies: di(0) is at least fi (instead of 0 in the �xed model) and the numberof copies in Bk(Ai) geometrically decreases with k for k � fi + �(1). The initial distribution isreected in the new partitioning of the objects and a�ects Lemma 6.5, whose analogous version isshown below. Using Lemmas 6.4 and 6.15, the proof proceeds as before with the following change:when an object Ai is unsteady in rounds 0 through k � 1, then di(k) is fi + k +O(1) (instead of kin the �xed model).The new partitioning of A into O(logn) groups is as follows.Aj = (fAi : npi � a02fi logng; if j = 0;fAi : a0aj�11 2fi log n < npi � a0aj02fi logng; otherwise.Lemma 6.15 Let rounds 0 through r � 1 be good, where r = O(logn). If Ai is not steady inrounds 0 through r, then di(r) equals fi+ r+O(1) and ei(r) equals fi+ r+O(1) whp. Thus, Ai iswell-distributed in round r whp.Proof: The proof is by induction on the number of rounds. The induction basis follows fromLemma 6.14. As the induction hypothesis, we assume that Ai is well-distributed in round t forsome t < r. We establish the induction step by showing that di(t + 1) is at least di(t) + 1, andei(t+1) is at most ei(t)+1. By de�nition, s(Ai; k; t) is complete for each k in [di(t)+1]. By Part 3of Lemma 6.4, it follows that di(t+ 1) is at least di(t) + 1 whp.We now show that ei(t+1) is at most ei(t)+1, i.e., for each k � ei(t)+1, the number of serversin Bk(Ai) that hold any copy of Ai in round t + 1 is at most bdi(t+1)=2k�di(t+1) whp. Consider24

any block Bk(Ai), where k is at least ei(t). Since Ai is well-distributed, the number of serversin Bk(Ai) that hold any copy of Ai in round t is at most bdi(t)=2k�di(t). Therefore, even if all ofthe servers receive �4 �-messages, the number of �-messages attempted to Bk+1(Ai) is at most�5bdi(t)=2k�di(t). Since round t is good, we apply De�nition 6.3 and obtain that M 0�(Ai; k+ 1; t) isthe outcome of an (M�(Ai; k+ 1; t); Bk+1(Ai); ";�(1)) experiment. By Lemma C.6, the number ofservers in Bk+1(Ai) that receive at least �6 �-messages is whp:= O (�5bdi(t))�6b�6�1k+1 2�6(k�di(t))!� bdi(t)2k�di(t)�1 ;for �6 su�ciently large. Thus, the total number of servers in Bk+1(Ai) that have copies of Ai inround t + 1 is at most bdi(t)2k+1�di(t+1) whp.7 Write OperationsThus far, we have focused our attention on read-only objects. In this section, we describe ouralgorithm for handling write operations. We consider two di�erent approaches: the write-and-update and the invalidate-and-write protocols.At a given time step, any number of clients may attempt to simultaneously initiate a writeoperation on some object A. Each client communicates with servers in block B0(A) only, wherethe primary copy of A is stored. The �rst part of each protocol consists of a simple three-roundrandomized leader election procedure to select one of these clients to actually write the object A.We introduce four new types of control messages: write-req, write-may, write-try, and write-ok. Inthe �rst round, each writer attempts a write-req message to each server in B0(A). For server Sin B0(A), let Q(S) denote the set of clients whose write-req messages are received by S. If Q(S)is non-empty, S sends a write-may control message to an arbitrary client in Q(S). In the secondround, each client that receives at least one write-may message attempts a write-try control messageto each server in B0(A). Let T (S) denote the set of clients whose write-try messages are receivedby S. Server S selects the client C in T (S) with the largest id and sends a write-ok message toC. In the third and �nal round, the unique client that receives more than b0=2 write-ok messages,writes A by sending the fragments of the new version of object A to B0(A). A time-stamp is sentalong with each of these fragments so that future clients reading the fragments can di�erentiate oldfragments from new ones.The two protocols di�er in the second part. In the write-and-update protocol, after the frag-ments are sent to block B0(A), updates are propagated to servers in higher-numbered blocks thathold copies of A, by the same method as is used to propagate copies. The write is assumed to\complete" before these updates are propagated. As a result, it is possible that a client reads anold version of an object. We use the following validation scheme to ensure that each client receivesa version that is at most O(logn) steps out of date. A steady stream of validation time-stampsis created by servers in B0(A) and propagated to higher-numbered blocks that hold copies of A.Each server S that has a copy of A maintains a variable b(S) that denotes the last validation time-stamp received by S. A server S satis�es a request in round t only if b(S) is at least t � O(logn),thus ensuring that the version sent to a client is at most O(logn) steps old. Since the per-requestcommunication due to the validation time-stamps is asymptotically smaller than that required bythe rest of the protocol, the results of Section 4 hold as stated.25

In the invalidate-and-write protocol, we maintain, for each object, a fault-tolerant distributedlist of all servers and clients holding a copy of the object. When a write operation is performed,before updating the primary copy, the servers in block 0 participate in an invalidation scheme inwhich each client/server on the list is sent one or more invalidation messages whp. The mainadvantage of this extension is that clients can make use of locally-cached copies of objects sincethey are informed once such a copy becomes out of date. The main disadvantage is that it isnot possible to guarantee in the worst case that these invalidation messages are all sent quickly(e.g., within O(logn) steps). The di�culty is that the lists can grow very long over time, and if alarge number of write operations are performed over a short period on a set of objects with longassociated client/server lists, then it is simply not possible to send all of the invalidation messagesquickly. On the positive side, it is possible to prove a good amortized bound on the total numberof messages used by the extended protocol for processing a given number of read/write accesses.8 Concluding RemarksIn order to achieve fault-tolerance and space-e�ciency, our protocol uses Rabin's IDA techniqueto encode each object as a set of fragments such that only a constant fraction of the fragmentsare needed to reconstruct an object. One shortcoming of IDA is that it does not tolerate errorsin the fragments. Suppose, for example, that a client reading an object receives a large numberof fragments, each of which is noisy (i.e., contains arbitrarily many errors) with some constantprobability " > 0. Unless the noisy fragments can be easily identi�ed as such, the client cannote�ciently reconstruct the object using IDA. In such a noisy setting, it would be worthwhile toconsider variants of our protocol based on the Berlekamp-Welch decoder [4] (see also [16, AppendixA]), which tolerates noise in a constant fraction of the fragments.We would like to extend our protocols to other interesting models of distributed computationthat incorporate asynchrony or locality information. We conjecture that, with suitably modi�edde�nitions and appropriate technical assumptions, the performance bounds of the present paper canbe extended to apply to models allowing limited forms of asynchrony (e.g., bounded asynchrony).To address the issue of locality, it would be interesting to consider a variant of our protocol in whichthe number of copies of an object that are created in any region of the network is proportional toits popularity within the region, and where regions are identi�ed on the basis of some hierarchicaldecomposition of the network.AcknowledgmentsThe authors would like to thank Pawan Goyal, Vijaya Ramachandran, and David Zuckerman forseveral useful discussions, and Micah Adler, Funda Ergun, and S. Ravikumar for helpful commentson a preliminary draft of this manuscript.References[1] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley, New York, NY, 1991.[2] T. E. Anderson, M. D. Dahlin, J. N. Neefe, D. A. Patterson, D. S. Rosselli, and R. Y. Wang.Serverless network �le systems. In Proceedings of the 15th Symposium on Operating SystemsPrinciples, pages 109{126, 1995. 26

[3] Y. Aumann, Z. Kedem, K. V. Palem, and M. O. Rabin. Highly e�cient asynchronous executionof large-grained parallel programs. In Proceedings of the 34th Annual IEEE Symposium onFoundations of Computer Science, pages 271{280, November 1993.[4] E. Berlekamp and L. Welch. Error correction of algebraic block codes. U.S. Patent Number4,633,470.[5] M. A. Blaze. Caching in large-scale distributed �le systems. Technical Report TR-397-92,Department of Computer Science, Princeton University, January 1993. PhD Thesis.[6] H. Cherno�. A measure of the asymptotic e�ciency for tests of a hypothesis based on the sumof observations. Annals of Mathematical Statistics, 23:493{509, 1952.[7] V. Chv�atal. The tail of the hypergeometric distribution. Discrete Mathematics, 25:285{287,1979.[8] S. Deering and D. Cheriton. Multicast routing in datagram internetworks and extended LANs.ACM Transactions on Computer Systems, pages 85{111, 1990.[9] P. Gibbons, Y. Matias, and V. Ramachandran. The QRQW PRAM: Accounting for contentionin parallel algorithms. In Proceedings of the 5th Annual ACM-SIAM Symposium on DiscreteAlgorithms, pages 638{648, January 1994. To appear in SIAM Journal on Computing.[10] J. S. Gwertzman and M. Seltzer. The case for geographical push-caching. In Proceedings ofthe 5th Workshop on Hot Topics in Operating Systems, pages 51{57, May 1995.[11] W. Hoe�ding. Probability inequalities for sums of bounded random variables. Journal of theAmerican Statistical Association, 58:13{30, 1963.[12] R. Karp, M. Luby, and F. Meyer auf der Heide. E�cient PRAM simulation on a distributedmemory machine. In Proceedings of the 24th Annual ACM Symposium on Theory of Comput-ing, pages 318{326, May 1992.[13] P. D. MacKenzie, C. G. Plaxton, and R. Rajaraman. On contention resolution protocols andassociated probabilistic phenomena. In Proceedings of the 26th Annual ACM Symposium onTheory of Computing, pages 153{162, May 1994.[14] M. O Rabin. E�cient dispersal of information for security, load balancing and fault tolerance.JACM, 36:335{348, 1989.[15] A. G. Ranade. How to emulate shared memory. Journal of Computer and System Sciences,42:307{326, 1991.[16] M. Sudan. E�cient Checking of Polynomials and Proofs and the Hardness of ApproximationProblems. PhD thesis, Department of Computer Science, University of California at Berkeley,October 1992.[17] L. Valiant. A combining mechanism for parallel computers. Technical Report TR-24-92, Centerfor Research in Computing Technology, Harvard University, January 1992.[18] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,33:103{111, 1990. 27

A Large DeviationsWe make frequent use of bounds on large deviations for the binomial and hypergeometric distribu-tions, and martingales. The particular form of Theorem A.2 below is from [13].Theorem A.1 ([6]) Let X be a random variable drawn from B(n; p), i.e., X is the number ofsuccesses in n independent Bernoulli trials, where each trial succeeds with probability p. Then,Pr[X � (1� ")np] � e�"2np=2; 0 � " � 1Pr[X � (1 + ")np] � e�"2np=3; 0 � " � 1Pr[X � (1 + ")np] � [e"(1 + ")�(1+")]npTheorem A.2 ([11, 7]) Let S be a set of s balls, T be a subset of S, t = jT j, and p = t=s. Let s0balls be chosen uniformly at random from S, and t0 be the random variable representing the numberof balls that are chosen from T . Then, for any real " � 0,Pr[t0 � (p+ ")s0] � e�2"2s0 ; andPr[t0 � (p� ")s0] � e�2"2s0 :Theorem A.3 (Azuma's Inequality [1]) Let X0; : : : ; Xk be a martingale with jXi+1�Xij � 1,for all 0 � i < k. Then for real � > 0,Pr hjXk �X0j > �pki < 2e��2=2:B Analysis of the uniform experimentIn this section, we analyze a uniform (X;U; "; �) experiment, de�ned in De�nition 6.1. Let x andu denote jX j and jU j, respectively. Throughout this section, we assume that u is at least c1 logn.Also, c1 is assumed to be su�ciently large and " to be su�ciently small. For any ball i in X andbin j in U , we say that i is good for j if j is not in Vi; otherwise, we say that i is bad for j.Lemma B.1 The number of bins that receive at most (1� c")x balls is at most u=c.Proof: For each ball in X , the number of bad bins is at most "u. Thus, the total number of bad\ball-bin pairs" is at most "ux. By an averaging argument, we obtain that the number of bins thatare bad for at least c"x balls is at most u=c.Corollary B.1.1 The number of bins that receive at most x=2 balls is at most u=10.28

C Analysis of the random experimentIn this section, we analyze a random (X;U; "; �) experiment, de�ned in De�nition 6.2. We areinterested in bounds on random variables associated with the number of bins that receive at least(or at most) c balls for some positive integer c. We refer to these variables as threshold variables.We are only concerned with threshold variables for which c is at most � ; hence, we can assume �to be as large as jX j. Let x and u denote jX j and jU j, respectively. Throughout this section, weassume that u is at least c1 log n. Also, c1 is assumed to be su�ciently large and " to be su�cientlysmall.We use the theory of martingales in our analysis of the random experiment. Our presentationis based on that of [1]. The random experiment de�nes a probability distribution on the set offunctions
 from X to U [f?g, where ? is a special bin, that contains the discarded balls. Arandom function g drawn from
 satis�es the following. For any i in X , we have: (i) for any j inU n Vi, Pr[g(i) = j] = 1=u, (ii) for any j in Vi, Pr[g(i) = j] = 0, and (iii) Pr[g(i) = ?] = jVij=u.Fix a gradation ; = B0 � B1 � : : : � Bx = X . Given any functional L :
 7! R, we de�ne amartingale Z0, Z1, . . . , Zx by settingZi(h) = E[L(g) : g(b) = h(b) for all b in Bi]:We say that L satis�es the Lipschitz condition if jL(h0)� L(h)j � 1 whenever h and h0 di�er onlyon Bi+1 � Bi. It has been shown that if L satis�es the Lipschitz condition, then jZi+1 � Zij � 1(for example, see Theorem 4.1 of [1]).Lemma C.1 Let Z be a threshold variable in a random (X;U; "; �) experiment. For any � > 0,we have: Pr �jZ �E[Z]j > �px� < e��2=2:Proof: The functional associated with Z satis�es the Lipschitz condition. The desired claimfollows from Theorem A.3.We extend the de�nition of threshold variables to a sequence of s random experiments, given by(X0; U0; "; �), . . . , (Xs�1; Us�1; "; �). A threshold variable Z for a sequence of s random experimentsis the number of bins that receive at least (or at most) c balls in at least one of the s experiments,for some positive integer c.Lemma C.2 Let Z be a threshold variable associated with a sequence of s random experiments.For any � > 0, we have: Pr24jZ �E[Z]j > �sXi2[s]Xi35 < e��2=2:Proof: Same as that of Lemma C.1.In the remainder of the section, we use Lemmas C.1 and C.2 to obtain high probability bounds oncertain threshold variables. Lemmas C.3 and C.4 consider a single random (X;U; "; �) experiment.As in Section B, we say that bin j is good for ball i if j is not in Vi; otherwise, we say that j is badfor i. 29

Lemma C.3 Let c be a real number greater than 4. If x is at least 4cu, then the number of binsthat receive less than c balls is at most u(1=ec + 1=20+ 4�c) with probability at least (1� 2e��2cu).Proof: Let X 0 be an arbitrary 4cu-size subset of X . Let U 0 be the set of bins j such that jis bad for at most 4c0"cu balls in X 0. By an averaging argument, we obtain that jU 0j is at least(c0 � 1)u=c0.Let Z denote the number of bins in U that receive less than c balls. Let i be a bin in U 0. LetX 0i be the set of balls in X 0 that are good for i, and let x0i denote jX 0ij. By the de�nition of U 0, x0iis at least (1� c0")4cu. The probability that i receives less than c balls is at most:X0�j<c x0ij !�1� 1u�x0i�j 1uj� c x0ic !�1� 1u�x0i�c iuc� c(4e(1� c0"))c�1� 1u�(1�c0")4cu�c� c� 4e(1� c0")e4(1�c0")�1=u�c� 1ec ;for c > 4 and " su�ciently smaller than 1=c0.We set c0 to 20. Thus, E[Z] is at most (1=ec + 1=20)u. By Lemma C.1, the probability that Zis at least (1=ec + 1=20 + 4�c)u is at most 2e��2cu.Corollary C.3.1 If c is su�ciently large and x is at least 4cu, then the number of bins that receiveless than c balls is at most u=10 whp.Lemma C.4 If x is at most cu, then the number of bins that receive at least 2ec balls is at mostu(1=22ec + �) with probability at least 1� 2e��2u.Proof: Let Z denote the number of bins that receive at least 2ec balls. For any bin i, theprobability that i receives at least 2ec balls is at most � cu2ec� 1u2ec � 122ec . Thus, E[Z] is at mostu=22ec. By Lemma C.1, the probability that Z exceeds u(1=22ec + �) is at most e��2u.Corollary C.4.1 If c is su�ciently large and x is at most cu, then the number of bins that receiveat least 2ec balls is at most u=10 whp.In the following three lemmas, we consider sequences of random (X;U; "; �) experiments.Lemma C.5 Let c be a positive integer constant. Consider a sequence of s random experiments,(X0; U0; "; �); : : : ; (Xs�1; Us�1; "; �), such that c � xi = jXij � u = jUij for all i in [s], and Ui \ Ujis ; for i 6= j. The number of bins in [i2[s]Ui that receive at least c balls is
0@Xi2[s](xci=uc�1)�sXi2[s]xi logn1A whp.30

Proof: Let Zi be the number of bins in Ui that receive at least c balls. Let Z equal Pi2[s]Zi. We�rst obtain lower bounds on E[Zi] for all i, and hence a lower bound on E[Z].Consider the ith experiment, namely the random (Xi; U; "; �) experiment. Let U 0i be the set ofbins such that j is bad for at most 100"xi balls in Xi. By an averaging argument, we obtain thatjU 0i j is at least 99u=100. Consider a bin j in U 0i . The probability that j receives at least c balls isat least: (1� 100")xic !�1� 1u�xi�c 1uc =
 ((xi=u)c)Thus, E[Zi] is
(xci=uc�1), and E[Z] is
(Pi2[s](xci=uc�1)). The desired claim follows fromLemma C.2.Lemma C.6 Let c be a positive integer constant. Consider a sequence of s random experiments,(X0; U0; "; �); : : : ; (Xs�1; Us�1; "; �), such that c � xi = jXij � u = jUij for all i in [s], and Ui \ Ujis ; for i 6= j. The number of bins in [i2[s]Ui that receive at least c balls isO0@Xi2[s](xci=uc�1) +sXi2[s]xi log n1A whp.Proof: Let Zi be the number of bins in Ui that receive at least c balls. Let Z equal Pi2[s]Zi. We�rst obtain an upper bound on E[Zi] for any i, and hence an upper bound on E[Z].Consider the ith experiment. The probability that j receives at least c balls is at most�xic �(1=u)c = O((xi=c)c). Thus, E[Zi] is O(xci=uc�1) and E[Z] is O(Pi2[s](xci=uc�1)). The desiredclaim follows from Lemma C.2.Lemma C.7 Let "1 be a positive real constant in (0; 1], and let c be a positive integer con-stant. There exists an integer constant s such that in any sequence of s random experiments(X0; U; "; �); : : : ; (Xs�1; U; "; �) satisfying "1u � jXij � u for all i in [s], the number of bins in Uthat receive at least c balls in at least one of the s experiments is 9u=10 whp.Proof: Let Z be the number of bins in U that receive at least c balls in at least one of the sexperiments. We �rst obtain a lower bound on E[Z].Consider the ith experiment, namely the random (Xi; U; "; �) experiment. LetX 0i be an arbitrary"1u-size subset of Xi. Let U 0i be the set of bins such that j is bad for at most 100""1u balls in X 0i.By an averaging argument, we obtain that jU 0i j is at least 99u=100. Consider a bin j in U 0i . Theprobability Pj that j receives at least c balls is at least: (1� 100""1)uc !�1� 1u�xi�c 1uc = f("; "1; c);where f("; "1; c) is a constant in [0; 1], dependent on ", "1, and c.Let U 0 be the set of bins j such that j is in U 0i for at least s=2 di�erent values of i. Byan averaging argument, we obtain that jU 0j is at least 49u=50. Consider any bin j in U 0. Theprobability that j did not receive c balls in any of the s experiments is at most:(1� f("; "1; c))s=2 � 19=20;for s chosen a suitably large constant. Thus, E[Z] is at least 19u=20. By Lemma C.2, it followsthat Z is 9u=10 whp. 31

