Fast Fault-Tolerant Concurrent Access to Shared Objects®

C. Greg Plaxton Rajmohan Rajaraman

Abstract

We consider a synchronous model of distributed computation in which n nodes communicate
via point-to-point messages, subject to the following constraints: (i) in a single “step”, a node
can only send or receive O(logn) words, and (ii) communication is unreliable in that a constant
fraction of all messages may be lost at each step due to node and/or link failures. We design
and analyze a simple local protocol for providing fast concurrent access to shared objects in
this faulty network environment. In our protocol, clients use a hashing-based method to access
shared objects. When a large number of clients attempt to read a given object at the same time,
the object is rapidly replicated to an appropriate number of servers. Once the necessary level
of replication has been achieved, each remaining request for the object is serviced within O(1)
expected steps. Our protocol has practical potential for supporting high levels of concurrency
in distributed file systems over wide area networks.

1 Introduction

A basic problem in distributed memory environments is to provide efficient access to remote objects
(e.g., files, words of memory). This is a complicated problem because of the large number of (often
competing) considerations involved, including: object size, network topology, latency, throughput,
buffer space, degree of concurrency to be supported, consistency requirements, and communication
overhead.

This paper describes a hashing-based protocol for supporting fast fault-tolerant concurrent
access to shared objects in a distributed network. The protocol is most suitable for applications
in which: (i) reads occur much more frequently than writes, (ii) objects are not too small, and
(iii) the “popularity” of any object (i.e., the number of users trying to access the object) does not
constantly change by a significant amount. For example, the protocol might be appropriate for
managing access to WWW pages on the Internet, since pages tend to be read far more often than
they are written, the typical page size is thousands of bytes or more, and popular pages tend to
remain popular over extended periods of time (e.g., for minutes, hours, or even days). In contrast,
the protocol would probably be poorly-suited for use within a PRAM emulation scheme, where
writes often account for a significant fraction of all accesses, the objects being accessed tend to be
extremely small, and the popularity of an object may fluctuate arbitrarily.

Most of the details of our protocol are concerned with ensuring fast access to popular objects. A
variety of other well-known methods have been used for solving this problem, including broadcast,
combining [15], and multicast [8]. However, the class of architectures that support the efficient
implementation of these methods is restricted. For example, a single-bus network can efficiently
support broadcast, which enables an arbitrary subset of the processors to obtain copies of a single

*Department of Computer Science, University of Texas at Austin, Austin, TX 78712. This research was supported
by the National Science Foundation under Grant No. CCR-9504145, and the Texas Advanced Research Program under
Grant No. 93-003658-461. E-mail: {plaxton,rraj}@cs.utexas.edu.

object at the same time. On the other hand, the cost of implementing broadcast in a distributed
network with point-to-point connections is significant.

Modern distributed networks tend to have complex topologies that can support many inde-
pendent point-to-point connections simultaneously. In fact, it has been widely observed that the
communication capabilities of modern distributed networks are similar to those previously associ-
ated only with tightly-coupled parallel machines. For this reason, we have chosen to implement
and evaluate the performance of our protocol under a model of computation that may be loosely
viewed as a variant of Valiant’s bulk-synchronous parallel (BSP) model [18]. As in the BSP model,
we assume the existence of a simple point-to-point router with no built-in combining or multicast
capability. (See [18] for a detailed justification of this assumption.) In order to demonstrate the
fault-tolerance of our protocol, our model of computation incorporates both static and dynamic
node faults as well as a notion of faulty communication. Most importantly, our fault model assumes
that at any given time: (i) a constant fraction of the nodes may be “down” (i.e., unable to com-
municate with any other nodes), and (ii) each “up” node may be unable to directly communicate
(i.e., via a single point-to-point message) with a constant fraction of the other “up” nodes. See
Section 2 for a precise definition of our model of computation.

How can we provide efficient concurrent access to a given popular object A in a network that
supports only partially reliable point-to-point communication? In a conventional distributed file
system, a single “server” process (residing on a particular physical node) is assigned the responsi-
bility for storing the object A, and any “client” process wishing to read A sends a message to this
server; the server then responds with a message containing a copy of the object A. Unfortunately,
this scheme suffers from both low fault-tolerance (if a given client cannot connect to the server due
to a network fault, an event that occurs with constant probability in our model, then that client
cannot access the object) and high latency (since A is assumed to be a popular object, a long time
is needed for the server to sequentially service each of the incoming requests for A).

Thus, to obtain either fault-tolerance or fast concurrent access we are led to consider schemes
in which each object is replicated across a number of different nodes. In fact, fault-tolerance
considerations alone would seem to imply that each object should be replicated Q(logn) times if
we wish to guarantee access with a failure probability that is polynomially small in n, the number
of nodes in the network (since each node can fail with constant probability). Unfortunately, this
results in an Q(logn)-fold increase in the space needed to store each object. However, the theory
of erasure codes provides a convenient method for achieving fault-tolerance while paying only a
constant factor space penalty. For example, using Rabin’s Information Dispersal Algorithm [14]
(IDA), for any k£ > m, a given b-bit string can be encoded as a set of k (b/m)-bit strings of
length m, with the property that any m of the (b/m)-bit strings suffice to reconstruct the original
b-bit string. Thus, IDA can be used to obtain fault-tolerance with only a constant factor space
penalty by setting m to O(logn) and k to ©(m), e.g., k = 2m. This powerful technique is used by
Aumann et al. [3] as part of an efficient scheme for emulating large-grained PRAM programs on an
asynchronous parallel machine. In this paper, we use the same technique to store the “primary”
copy of each object.

Of course, the IDA technique alone is not sufficient to guarantee fast (e.g., O(logn) time)
concurrent access to an object that is extremely popular. For example, suppose that the popularity
of some object is y/n, and that IDA has been used to encode the object in ©(logn) “fragments”,
each of which is stored in a separate node. Assuming point-to-point communication, and assuming
that a single node cannot send or receive more than a small number (e.g., O(logn)) of messages in
a single time step, it is clear that further replication (either of the individual fragments, or of the
object as a whole) is needed in order to rapidly service all \/n requests. In our scheme, we choose

to replicate whole copies of popular objects, as opposed to fragments, so that the encode-decode
overhead associated with IDA can be avoided on retrieval of popular objects. (This may be viewed
as a minor optimization since the overhead of IDA is actually quite small [14].)

At a high level, our protocol achieves fast concurrent access by enforcing the following two in-
variants. Invariant 1: While the popularity of a given object exceeds the number of “server copies”
(i.e., the number of server processes holding a copy of the object), the number of server copies
increases geometrically. Invariant 2: When the popularity of a given object does not exceed the
number of server copies by more than a constant factor, each outstanding request is independently
serviced with constant probability at the current step. (Thus, if the popularity of the object does
not increase dramatically during subsequent steps, each of the outstanding requests is serviced in
O(1) expected steps, and in O(logn) steps whp'.)

The methods used to establish these invariants, discussed in Section 3, are loosely related to
Valiant’s hashing-based combining mechanism for simulating CRCW PRAM algorithms on par-
allel computers [17]. In related work, Gibbons et al. [9] adopt a different approach to account
for contention in parallel algorithms. They introduce the QRQW PRAM model, which permits
concurrent reading and writing but at a cost proportional to the number of readers/writers to a
memory location in a given step. The focus of our algorithm design and analysis is different. While
Gibbons et al. and Valiant are primarily concerned with the problem of PRAM emulation, we have
optimized our protocol to obtain fast performance (e.g., expected O(1) time) on a more restricted
class of access patterns. See Section 4 for a formal statement of our main results.

We remark that existing implementations for handling concurrent access to shared objects
(e.g., [2, 5, 10]) do not provide fast concurrent access in the sense considered in this paper. While
these schemes incorporate replication of objects, the only way for a client to determine where the
copies of a given object are stored is to consult the “manager” of the object. The manager is usually
implemented as a process running at a single node and thus constitutes a sequential bottleneck.

2 Model of Computation

In this section we define our model of computation. We assume a synchronous network consist-
ing of n nodes, each with its own local memory. We specify the model by characterizing: (i)
communication, (ii) faults, (iii) object size, (iv) cache size, and (v) local computation.

Communication. Nodes communicate with one another by sending messages. Fach message
contains at least one word, and at most O(logn) words, where a “word” is defined as an O(logn)-
bit string.

Sending messages. The total number of words in all messages sent by a single node in one step
is required to be O(logn) (even if some or all of these messages are not successfully transmitted
due to faults in the network, which are discussed below).

Receiving messages. In a BSP-like model [18], where communication is assumed to take the
form of an h-relation, we might now tend to add a requirement that the total number of words
in all messages destined to a single node in one step must be O(logn). We make a slight variant
of this assumption which will ultimately allow us to obtain a more efficient protocol. Namely, we
place no upper bound on the total number of words in all messages destined to a single node in one
step; instead, we only limit to ¢plogn the number of words in all messages successfully received
by a node in one step, where ¢g is some positive constant. As in the c-arbitrary crossbar model of

''We use the abbreviation “whp” throughout the paper to mean “with high probability” or, more precisely, “with
probability 1 — n~¢, where n is the number of nodes in the network and c is a constant that can be set arbitrarily
large by appropriately adjusting other constants defined within the relevant context.”

MacKenzie et al. [13] (where all messages have unit length), we assume that a worst-case adversary
determines which subset of the messages of total size ¢glogn are successfully received by a given
node if the ¢glogn limit on total size would otherwise be exceeded. (The related c-arbitrary DMM
model of Karp et al. [12] does not take into account contention among clients trying to access the
same object and hence is not well-suited for our study.)

Message types. Our protocol makes use of a constant number of different types of messages.
At times the protocol may result in, say, O(logn) messages of type a and ©(y/n) messages of
type being sent to a particular node. In such a scenario, the adversary referred to above has
the freedom to decide that none of the messages of type a get through. On the other hand, it
may be important for the correctness of the protocol that the type o messages be given priority
over the type [messages. One way to accomplish this is to modify the model stated above by
associating a numeric priority with each message-type to resolve contention among messages of
different types. Since our protocol only makes use of a constant number of different message types,
we could avoid introducing such priorities by modifying the protocol to ensure that only one type
of message is ever sent in a single step. We prefer the former solution since it is more compatible
with an asynchronous view of the protocol.

Faults. As mentioned in Section 1, our model of computation also allows for the possibility of
faults in the network. More specifically, we assume that the network is subject to following three
classes of faults.

Random static node faults. After we have fixed our initial storage layout for the objects, we
assume that a (sufficiently small) constant fraction ¢¢ of the nodes are selected at random and
marked as “dead”. Such dead nodes cannot send or receive any messages throughout the course of
the computation.

Dynamic node faults. An oblivious adversary selects, for each step, a (sufficiently small) con-
stant fraction ¢, of the nodes and marks them “down”. Such down nodes cannot send or receive
any messages in the current step.

Dynamic link faults. For each pair of up nodes (i.e., neither dead nor down) ¢ and j in the
network, an oblivious adversary determines whether communication between nodes 7 and 7 is to be
allowed in step t. In each step ¢, each up node must be allowed the possibility of communicating
with a (sufficiently large) constant fraction (1 — ¢3) of the other nodes.

With regard to the dynamic node faults, we should emphasize that the vectors determined by
the adversary are not provided to the non-dead nodes at execution time. The only way that a
non-dead node can find out whether it is possible to communicate with some other non-dead node
in step ¢ is by attempting to send a message in step ¢, with the hope of subsequently receiving some
form of acknowledgment in a later step. (Of course, any acknowledgment message is itself subject
to possible faults.)

Object size. Each object consists of O(logn) words. Note that this assumption can be enforced
by simply breaking up larger data items into ©(logn)-word pieces, and padding out smaller data
items to O(log n) words. The main reason for assuming a uniform object length is that it simplifies
our presentation and analysis. In a practical implementation, we would modify the protocol to
handle messages of varying lengths; for larger objects, the associated optimizations can be expected
to provide substantial constant factor savings in overhead per object-word accessed.

Cache size. We assume that each node of the network has a cache in which extra copies of
objects are stored. In our analysis, it is convenient to assume that the capacity of each cache is
Q(logn) objects.

Local computation. In each step, a node is allowed to perform an arbitrary amount of local
computation. (Although the model of computation allows an arbitrary amount of local computation

in each step, our protocol does not perform any particularly complex local operations in a single
step.)

3 Overview of the Protocol

In this section we provide an informal overview of our protocol for sharing read-only objects. Our
discussion is formalized in Section 5. See Section 7 for a discussion on write operations. As
mentioned in Section 1, our protocol relies on maintaining Invariants 1 and 2.

Enforcing Invariant 1. With each object we associate a number of disjoint blocks of servers.
The ith block contains ©(2'log n) servers, 0 < i < log(n/0(logn)), so that the total number of
servers in all blocks is approximately n, the number of nodes in the network. A hash function is
used to map these logical blocks of servers to the physical nodes of the network. The hash function
is distributed to all nodes so that any node can rapidly compute the physical node corresponding
to the jth server of the ith block of a given object. The ©(logn) servers of block 0 of an object
are used to store the primary copy of that object, i.e., the ©(logn) fragments computed using
IDA. In our protocol, a client process attempting to read a particular object A sends ©(logn)
messages, one to each of the ©(logn) servers in block 0 of A, and O(1) messages to a randomly
chosen set of servers in each of the ©(logn) other blocks associated with A. If the popularity of A
is low (i.e., O(logn) where the hidden constant is sufficiently small), then whp a sufficiently high
constant fraction of the messages sent to block 0 are successfully transmitted, and at the next step
a sufficiently high number of fragments are returned to the client, allowing the client to reconstruct
a copy of the desired object using IDA. (Note that a node can send O(logn) copies of a fragment
in a single step, since a fragment only consists of a constant number of words.)

If the popularity of A is high (i.e., Q(logn) where the hidden constant is sufficiently high), then
so many clients attempt to access A that the servers in block 0 of A are “flooded” with incoming
messages requesting fragments of A. As a result, most of these messages are not successfully
transmitted, and few if any of the clients receive (on the next step) sufficiently many fragments to
reconstruct A using IDA. On the other hand, a sufficiently high constant fraction of the servers in
block 0 of A receive ©(logn) messages requesting a fragment of A.

One might believe that all of the servers in block 0 receive O(logn) such messages; this is not
necessarily the case, however, since some of these servers may be mapped to the same node as, for
example, the servers in block 0 of one or more other popular objects, so that the messages associated
with A might be “swamped out” by the messages associated with other objects. A critical part of
our analysis is geared towards proving that whp a sufficiently high constant fraction of the nodes
in block 0 of A is not the destination of more than a total of O(logn) messages associated with
other objects at the current step; these are the nodes that whp receive ©(logn) requests for A.

Each server in block 0 of A that detects a high level of popularity for A at a particular step
reacts by attempting to send a copy of the fragment of A that it holds to all O(logn) servers in
block 1 of A. Although the servers in block 1 may all be flooded with client requests for A (since
the popularity of A is assumed to be high), the fragment messages sent from servers in block 0 are
not swamped out by such client requests because the fragment messages are given a higher priority.
(Of course, we need to argue that these fragment messages are not swamped out by same-priority
fragment messages associated with other objects; this follows by essentially the same argument as
was mentioned in the preceding paragraph.) As a result of the fragment messages sent from servers
in block 0 (the constant fraction detecting a high popularity for A) to servers in block 1, whp a
sufficiently high constant fraction of the servers in block 1 of A reconstruct a copy of A using IDA.

Thus, if the popularity of A is sufficiently high at time ¢, then at time ¢ + 1, a constant fraction

of the servers in block 1 of A hold a copy of A whp. A minor variant of the above process is used
to ensure that, if a sufficiently large constant fraction of the servers in block 1 hold a copy of A at
time ¢, and if the popularity of A is Q(logn), then a constant fraction of the servers in block 2 hold
a copy of A at time ¢ 4+ 1. The idea is that a server in block 1 “detects a high popularity” for A if
it receives more than a certain constant threshold number of requests for A. Rather than sending
O(logn) fragments of A to servers of block 2 (as were sent from servers of block 0 to servers of
block 1 earlier), each server of block 1 detecting a high popularity for A sends O(1) copies of A
to a randomly chosen set of servers in block 2 of A. (Note that O(1) copies of A require O(logn)
words.)

More generally, suppose that at time ¢ a sufficiently high constant fraction of the servers in
each of blocks 1 through i holds a copy of A, and that the popularity of A is Q(2'logn), where the
hidden constant is sufficiently large. Then a constant fraction of the servers in block ¢ receive more
than a certain constant threshold number of requests for A, and react by sending O(1) copies of
A to randomly chosen servers in block 7 4+ 1. As a result, at time ¢ + 1, a constant fraction of the
servers in block 7 + 1 of A hold a copy of A whp.

Enforcing Invariant 2. The total number of requests received by a server for object fragments
is O(logn) per step, simply because a node cannot receive more than O(logn) messages per step.
Thus, in the following step (assuming it is not subject to a dynamic node fault), a server can respond
to each such request with a copy of the desired fragment. (Recall that a fragment consists of a
constant number of words and so the total number of words in all of these responses is O(logn).)
Of course, each of these responses may or may not be received by the associated client due to the
possibility of dynamic faults in the network. On the other hand, the server may also receive as
many as O(logn) requests for entire copies of objects, and since each object consists of ©(logn)
words, only a constant number of these requests can be handled in a single step. In our protocol,
the server selects a constant-size subset of the incoming requests for entire copies of objects, and
responds only to this selected subset.

Now suppose that the hypothesis of Invariant 2 holds, that is, the popularity of some object
A is less than or equal to the number of server copies of the object. Because our mechanism for
generating server copies fills in the blocks in ascending order of index, we can deduce that a block
of servers of A with size within a constant fraction of the current popularity of A satisfies the
following two conditions whp: (i) a constant fraction of the servers in the block contain a copy of
A, and (ii) each client requesting a copy of A sends a constant number of messages to randomly
chosen servers within the block. By a straightforward Chernoff-type argument [6], we can show
that a constant fraction of the client requests for A are satisfied at the current step, establishing
Invariant 2.

Cache management. Fach node has a cache for holding extra object copies. When this cache
becomes full, an LRU (least-recently-used) replacement policy is invoked to decide which object
copy to abandon.

4 Results

In this section, we state our main performance bounds for the read-only protocol, which is formally
defined in Section 5. We analyze the protocol under different access pattern models. Our time
bounds are stated in terms of rounds; for any nonnegative integer ¢, round ¢ consists of steps 2t
and 2t + 1 (steps are numbered from 0). Let A be a collection of m objects, labeled Ag through
Ap—1. For any round ¢, and any ¢ in [m], let ¢;(¢), r;(t), and s;(t) denote the number of new
requests generated, the number of requests remaining, and the number of requests attempted,

respectively, for A; at the start of round ¢. (For any nonnegative integer x, we use [¢] to denote
the set {0,...,2 — 1}.) Thus, for any round ¢, and any ¢ in [m], s;(¢t) = r;(t) + ¢ ().

We measure the performance of our protocol in terms of throughput, delay, and per-request
communication. The throughput of the protocol is the average number of access requests satisfied
per round. The delay of an individual access request is the number of rounds taken to satisfy that
request. The per-request communication is defined as the total number of words in all messages
sent divided by the number of access requests satisfied. We say that round ¢ is steady if: (i) there
exists a real constant §, 0 < § < 1, such that r;41(¢) < ds;(t) for all 7 in [m], and (ii) the probability
that an arbitrary access request is satisfied in round ¢ is Q2(1). Thus, if round ¢ is steady, for every
object A, an expected constant fraction of the requests for A are satisfied in round t.

The first access model we consider is the fized model, in which each new access request is
independently drawn from a fixed probability distribution D on A. The distribution D is specified
by a vector (po,...,pm—1); for a random variable X drawn from D, we have Pr[X = A;] = p;. At
the start of each round ¢, new requests drawn from D are generated and “placed” by an adversary
on each of the nodes that do not currently have an outstanding request. The particular assignment
of new requests to “free” clients can be arbitrarily determined by the adversary.

Theorem 1 In the fized probability distribution model, there exists to = O(logn) such that for any
t, to <t < poly(n), round t is steady whp.

It follows from Theorem 1 and the protocol definitions that in the fixed model, our protocol provides
optimal throughput and optimal expected delay using optimal per-request communication.

Corollary 1.1 Int rounds of the fized model, where Q(logn) <t < O(poly(n)), whp, the number
of access requests satisfied is Q(nt) using O(logn) per-request communication. Moreover, after
O(logn) rounds, each access request is satisfied in expected O(1) rounds. B

(Note that in Corollary 1.1 the per-request communication is optimal since each object is of size
O(logn).)

Our analysis for the fixed model can be easily extended to apply to a time-varying model, in
which the probability distribution changes every Q(logn) steps. The model is defined as follows.
Let Dy, ..., Dy_1, be a sequence of d probability distributions over A. For each i in [d], let ¢; be a
positive integer. We consider ¢ rounds, where ¢ denotes } ;c(qt;. In round t', where Yo<j<ili <
t < Eoﬁjﬁi t;, each new access request is independently drawn from D;. As in the fixed model,
the particular assignment of new requests to free clients is determined by an adversary.

Theorem 2 Considert rounds of a time-varying model with d distributions such that t is O(poly(n))
and t; is Q(logn) for each i in [d]. Whp, the number of access requests satisfied by the protocol is
Q(nt) using O(logn) per-request communication. B

Thus far, we have considered access patterns in which each new request is drawn from a probability
distribution. The bounds stated in Corollary 1.1 also hold for access patterns in which the popu-
larity of an object can change arbitrarily, subject to the constraint that for all ¢ in [m] and t > 0,
we have ¢;(t) < cmax{¢;(t') : max{0,t — O(A)} < ¢’ < t}, where ¢ > 1. Note that such an access
pattern allows arbitrary decreases in the popularity of an object, and also admits large increases
in certain cases.

5 The Read-Only Protocol

In this section, we formally define our protocol for accessing read-only shared objects. With every
object A we associate n server processes, which provide client processes access to A. Let the
servers associated with A be labeled S;(A), 0 <7 < n. Let b equal log(n/cylogn) + 1, where ¢4 is
a constant that is specified later. (We assume that ¢q logn and b are both integers.) We partition
the set of servers into blocks as follows. For each ¢ in [b], the i¢th block, denoted by B;(A), is the
set {9;(A) : (2 — Deylogn < j < (241 — 1)¢ylogn}. For each i in [b], let b; be the size of the ith
block, i.e., b; equals ¢12° log n.

Each server associated with A is mapped to a physical node by means of a hash function h4;
the function hy4 is chosen such that for any ¢ in [b], block B;(A) is mapped to a subset of |B;(A)]
nodes chosen independently and uniformly at random. (Note that several servers associated with
different objects may be mapped to the same node.) We encode A as a set of by fragments such
that any by/4 fragments suffice to decode A. For each 7 in [bg], ha(5;(A)) stores the ith fragment of
A. For each integer j in [1,b), and for each server S € B;(A), h4(9) stores at most one replicated
copy of the entire object. Let the cache at each node have the capacity to store all object copies
received by the node in A rounds. Thus, the minimum cache capacity is ©(A) objects. We assume
that A is Q(logn).

We describe our access protocol in terms of the communication between the clients attempting
to access a given object A and the servers associated with A. In order to simplify the presentation
and analysis of the protocol, we assume that the clients send messages at even steps of the protocol
and the servers send messages at odd steps of the protocol. The clients always send messages to
servers; servers send messages to both clients and servers.

In our description of the protocol, we differentiate between several kinds of messages; these
are listed in Table 1. In the priority-based model, any assignment of priorities that respects the
following constraints can be used: (i) frag-req has a lower priority than each of client-obj and
client-frag, and (ii) obj-req has a lower priority than each of client-obj, client-frag, server-obj, and
server-frag, and (iii) each of server-frag and server-obj has a lower priority than each of client-frag
and client-obj.

The protocol is defined in Figure 1, where we state the actions in round ¢ of: (i) a client C'
attempting to access object A, and (ii) a server S associated with A. (Recall that round ¢ consists
of steps 2t and 2t + 1.) It is convenient to divide each step into two phases, one in which messages
are sent, and the other in which messages are received. Thus, in Figure 1, Phase 0 (resp., Phase 2)
is the “sending phase” for step 2t (resp., 2¢t 4+ 1), while Phase 1 (resp., Phase 3) is the “receiving
phase” for step 2t (resp., 2t +1). In Figure 1, 7g, 71, 72, 73, 74, 75, and 7 denote positive integer
constants.

|| Message type | Source | Destination | Size | Contents ||
obj-req client server O(1) request for object
frag-req client server O(1) request for fragment
client-obj server client O(logn) copy of object
client-frag server client O(1) copy of fragment
server-objy server server O(logn) copy of object
server-frag server server O(1) copy of fragment

Table 1: Types of messages.

Phase 0: In step 2t clients send request messages.

e Client. Attempt to send a frag-req message to
each server in By(A) and, for 0 < ¢ < b, an
obj-req message to a random server in B;(A).

(Remark: Note that each message is actually sent
since the bound on the number of words that can
be sent by a node is not exceeded.)

Phase 1: Successfully transmitted Phase 0 mes-
sages are received by servers.

e Server. Let D(S,t) denote the set of clients that
are the sources of obj-req and frag-req Phase 1
messages received by S.

Phase 2: In step 2t + 1, servers holding a copy or
fragment of object A respond to Phase 1 messages.

Let S € BZ'(A).

e Server, ¢ = 0. Attempt to send a client-frag mes-
sage to min{mobg, |D(S,t)|} clients in D(S,1),
and if D(S,t) > miby then attempt to send a
server-frag message to each server in By (A).

e Server, ¢ > 0. If |D(S,t)| > ma then attempt to
send a client-obj message to min{ws, |D(S,t)|}
random clients in D(S,?), and if D(S,t) > my4
then attempt to send a server-obj message to ms
random servers in B;i1(A).

(Remark: If the bound on the number of words a
node can send in a step would be exceeded, an ar-
bitrary subset of these messages are actually sent.)

Phase 3: Successfully transmitted Phase 2 mes-
sages are received by clients and servers.

o Client. If C receives a client-ob) message or
cologn fragments, then the access attempt is
successful. Otherwise, C' attempts to access A
in round ¢ + 1.

o Server, 1 = 1. If S receives at least ¢s logn frag-
ments, then decode A and store it in the LRU
cache; otherwise, discard the fragments received.

e Server, i > 1. If S receives at least 7 server-obj
messages, then store A in the LRU cache.

(Remarks: Note that C' could receive more than
one copy of A, and that S could receive a new
copy of A even though S already has a copy. In a
practical implementation: (i) C' would stop trans-
mission of all but one copy of A, (ii) a check would
be added to ensure that a new copy is sent to .S
only if S does not already have a copy, and (iii)
if fewer than c¢s logn fragments are received by a
client or server, then these fragments would be
cached and not discarded since sufficiently many
additional fragments are likely to be received in
the near future.)

Figure 1: The read-only protocol (object A, client C, server S, round t).

The terms “send”, “receive”, and “attempt to send” are used in the protocol definition. When
we say that a client/server mapped to node u sends a message x, we mean that « initiates the
transmission of . When we say that a client/server mapped to node u receives a message x,
we mean that the transmission of x is successful and 2 is at destination uw. When we say that a
client /server mapped to node u attempts to send a message x, we mean that u sends z if 2 is in
the subset of messages of total size at most ¢glogn that is selected for transmission from u.

6 Analysis

Our analysis proceeds in two parts. In the first part, Section 6.1, we define the notion of a good
round and show that Invariants 1 and 2 of Section 1 hold whp in a good round. The claims in
Section 6.1 hold for an arbitrary access pattern. In the second part, we restrict our attention to the
fixed and time-varying models. In Section 6.2 we analyze the fixed model and prove Therorem 1.
In Section 6.3, we establish Theorem 2 by extending the analysis of Section 6.2.

To simplify the presentation, we assume in this section that there is no contention among
messages of distinct types. The message priorities defined in Section 5 can easily be used to remove
this assumption.

6.1 Protocol Properties

Definition 6.1 Let X denote a set of labels, let U denote a set of bins, let € be a real in [0,1),
and let T be a nonnegative integer. In a uniform (X,U, ¢, 7) experiment, we are given a set
{Vi:ie X,V; CU, and |V;| < e|U|}, and the following steps are performed: (i) for each i in X,
place a ball labeled i in each bin in U\ V;, and (ii) for each bin that has more than T balls, discard
all but an arbitrary subset of at least T balls. Let'Y denote the set of remaining balls. We refer to
the set of remaining balls as the outcome of the experiment.

Definition 6.2 Let X denote a set of balls, and let U, ¢, and T be as defined in Definition 6.1. In
a random (X,U, ¢, 7) experiment, we are given a set {V;:1 € X,V; C U, and |V;| < e|U|}, the
following steps are performed: (i) throw the balls independently and uniformly at random into U,
(ii) for each i € X, if ball i lands in a bin in V;, discard ball i, and (iii) for each bin that has more
than 1 balls, discard all but an arbitrary subset of at least T balls. We refer to the set of remaining
balls as the outcome of the experiment.

For convenience, we refer to any message of type a as an a-message. Let size(a) denote the
number of words in an a-message. For any « and ¢ € [b], let N,(A,1,t) denote the set of servers
in B;(A) that attempt any a-message in round ¢. (Here and in the rest of this section, we use the
word “attempt” as a short form for “attempt to send”.) Let N/ (A, i,t) denote the set of servers S
in B;(A) such that all of the a-messages attempted by S in round ¢ are sent.

Let M, (A,1i,t) be the set of a-messages that are sent to B;(A) in round ¢. Let M/ (A,i,t)
denote the set of a-messages received by B;(A) in round ¢t. Let F(A,t) be the set of servers in
By (A) that send by server-frag messages in round t. Let (G(A,t) denote the set of clients that send
by frag-req messages in round t.

If we assume a fault-free model with no upper bound on the number of words a node can
send /receive in a single step, then it is easy to show that some of the sets defined above are related
by standard balls-and-bins experiments. Unfortunately, in the presence of faults and contention,
this is not true. However, we are able to establish similar relations using instances of Definitions 6.1
and 6.2.

Definition 6.3 Roundt is good if there exists a sufficiently small real £ such that, for every object
A, the following conditions hold:

1. For any a and any @ in [b], if [IN5(A,1,t)| is Q(logn), then |NL(A, i, t)] is Q(Na(A,1,1)]).

2. If a is frag-req, then M](A,0,t) is the outcome of a uniform (G(A,t), Bo(A),=,0(logn))
experiment.

3. If « is server-frag, then M! (A, 1,t) is the outcome of a uniform (F(A,t), B1(A),e,O(logn))
experiment.

4. If a is in {obj-req, server-obj}, then for any i in [b], M (A,1,t) is the outcome of a random
(Mo(A,0,t), B;(A),e,0(logn)/ size(a)) experiment.

Let T, (t) denote the set of all a-messages that are attempted in round ¢. For any set of messages
X, let || X|| denote the total number of words in X. The following lemma places an upper bound
on [|Tu(t)[]-

Lemma 6.1 For any i in [m], any round t, and any o, ||T4(t)|| is O(nlogn) whp.

10

Proof: The messages attempted in step 2t are described in Phase 0 of Figure 1. (No messages are
attempted in Phase 1.) Only clients attempt messages in Phase 0 and at most one client resides
at any node. In Phase 0, each client attempts O(logn) frag-req messages and O(logn) obj-req
messages. Thus, for « in {frag-req, obj-req}, ||T,(t)| is O(logn).

The messages attempted in step 2¢ + 1 are described in Phase 2 of Figure 1. (No messages are
attempted in Phase 3.) We consider different cases based on a. Let z; equal s;(t).

e Case o = client-frag: At most O(logn) a-messages are sent by servers in Bg(A;) to each

client requesting A;. Therefore, || T, (¢)|| is O(3;¢pn) vilogn) = O(nlogn).

e Case o = server-frag: A server S in By(A;) attempts an a-message only if .S receives at least
mbo client-frag messages. Since each client-frag message received by S is from a different
client, it follows that if S attempts any a-message, then z; is at least m1bg. Since the number
of a-messages attempted by S is at most mgbg, the total number of a-messages attempted in
step 2t + 1 by servers in Bo(A;) is O(log? n) = O(x;logn). Since the size of each server-frag
message is O(1), ||T,(¢)] is O(nlogn).

e Case « € {client-obj, server-obj}: A server S attempts a client-obj (resp., server-obj) message
in step 2t + 1 only if it receives at least wy (resp., m4) obj-req messages in step 2¢t. We show
for o = client-obj that ||T,(t)| is O(nlogn) whp. A similar proof holds for av = server-obj.

We partition the set of objects into two disjoint subsets L and H. For each i in [m], if
x; < logn, then A; is in L; otherwise, A; is in H. Consider an object A; in H. Let j be
the largest integer such that b; < z;. Since each server attempts at most 73 a-messages, it
follows that the total number of a-messages attempted by servers in By (A;) through B;(A;)
is O(z;). We now place an upper bound on the number of a-messages attemped by servers
in By(A4;) for k > j. Since each obj-req message is destined to a random server, even if all
of the obj-req messages are received, we obtain by Lemma C.6 that the number of servers in
Uk>; Bi(A4;) that receive at least my obj-req messages in step 2t is O(z;) whp. Thus, the total
number of attempted client-obj messages associated with objects in H is O(n) whp.

Consider the set L. Since each obj-req message is destined to a random server, even if all of
the obj-req messages are received, we obtain by Lemma C.6 that the number of servers in
Ua,er Ukso Br(A4;) that receive at least w3 obj-req messages in step 2t is:

O (Z (Z xi/Qk—l— /Z xilogn)) = O(n) whp.
k>0 \A;€EL AeLl

Adding the bounds for the a-messages associated with L and H, we obtain that ||T,(¢)]| is
O(nlogn) whp.

Lemma 6.2 If there are nonnegative reals xq, ..., tm_1, independent of the hash functions, such
that s;(t) < @; and 3¢, @0 = O(n), then round t is good whp.

Proof: We fix indices ¢ € [b] and j € [m]. We prove the desired claim by establishing the four
parts of Definition 6.3. Let U denote the set of up nodes (i.e., neither dead nor down) in round ¢.
Note that |U] is at least (1 — (¢o + ¢1))n.

11

1. Let v be any message-type that is attempted by a server. Since servers attempt messages
in odd steps only, this part concerns step 2t 4+ 1 only. By Lemma 6.1, ||1,(¢)|| is O(nlogn)
whp. Let U’ be the set of nodes u such that at most (cqlogn)/2 words are attempted from
w in step 2t + 1. By an averaging argument, it follows that |U’| is ©(n), where the hidden
constant can be made arbitrarily close to 1 by setting ¢q sufficiently large. By definition, all
messages in N, (A;,7,t) are attempted by servers. Since zg,..., z,,—1 are independent of the
hash functions, the mapplng of B;(A;) is independent of the source nodes associated with the
messages in T, () \ N (A;, ¢, t). It follows from bounds on the tail of the hypergeometric dis-
tribution [7], given in Theorem A.2, that a constant fraction of the messages in N(A;,7,t) are
attempted by nodes in U’. By setting ¢ and ¢; sufficently large, we obtain that | N/ (A;,4,1)]

(|N(i b)|) whp.

2. Let a equal frag-req. We need to prove that M/(A;,0,t) is the outcome of a uniform
(G(A;,t),Bo(A;),e,0(logn)) experiment. In our proof, the clients in G(A;,t) correspond
to the labels, and the servers in By(A;) correspond to bins. Step (i) of the experiment corre-
sponds to the following: each client in G(A;,t) sends one a-message to each server in By(A;).
We now establish step (ii) of the experiment.

Consider a client C'in G(A;,t). Let v be the node associated with C'. Let U, be the set of
up nodes u in U such that at most (cologn)/2 words in T,(t) \ M,(A;,4,t) are destined to
w and u has a non-faulty link to v. Since ||T,(¢)|] is O(nlogn), by an averaging argument, it
follows that |U,| is Q(n), where the hidden constant is arbitrarily close to 1 for ¢q sufficiently
large and ¢g, ¢1, and ¢, sufficiently small. Let W, be By(A;) NU,. Since the mapping of
servers in By(A;) is independent of the destination nodes associated with the messages in

To(t) \ M, (A;,14,), it follows from Theorem A.2 that |W,| is at least c¢b; whp, where ¢ can
be set arbitrarily close to 1 for appropriate values of ¢g, ¢g, ¢1, and ¢s.

The correspondence to Definition 6.1 is established by substituting (G(A;,t), Bo(A;), (1 —
¢), O(logn), Bo(A;) \ W) for (X, U, e, 7, Vi).

3. Similar to Part 2.

4. Let « be in {obj-req, server-obj}. We need to prove that M/ (A;,7,t) is the outcome of a
random (M, (A;,7,t), Bi(A;),,0(logn)/size(a)) experiment. In our proof, the messages
in M, (A;, 1, t) correspond to balls, and the servers in B;(A;) correspond to bins. Step (i)
of the experiment corresponds to the following: each a-message is sent to a server chosen
independently and uniformly at random from B;(A4;). We now account for steps (ii) and (iii)
of the experiment.

Consider any message y in M(A;,7,t). Let U, be the set of up nodes u € U such that at
most (cglogn)/2 words in T, (t) \ M, (A;, ¢, t) are destined to u and u has a non-faulty link
to the source of message y. Since ||T,(t)]| is O(nlogn), by an averaging argument, it follows
that |Uy| is ©Q(n), where the hidden constant is arbitrarily close to 1 for ¢y sufficiently large
and ¢g, ¢1, and ¢, sufficiently small. Let W, be the set of servers in B;(A;) that are mapped
to nodes in U,. Since the mapping of servers in B;(A;) is independent of T, () \ M, (A;,4,1),
it follows Theorem A.2 that |W,| is at least ¢b; whp, where ¢ can be set arbitrarily close to
1 for appropriate values of cg, ¢, ¢1, and ¢y. For step (iii), it is enough to note that each
server in W, can receive at least (cologn)/2 words from M'(A;, i,t).

The correspondence to Definition 6.2 is established by substituting (M, (4;, ¢,), B;(A4;), (1 —
¢),O(logn)/size(a), B;(A;) \ Wy) for (X, U,e,7,V}).

12

For any server S associated with object A, let a(S,t) be 1 if server S has a copy of A or a
fragment of A at the start of round ¢, and 0 otherwise. For each ¢ in [b], we associate a state
variable s(A,1,t) € {complete,incomplete} that is defined as follows: if the number of servers S
in B;(A) such that a(S,t) = 1 is at least 9b;/10, then s(A,,t) is complete; otherwise, s(A,1,¢) is
incomplete. Let R(A,t) denote the set of clients that attempt to access A in round ¢. Let R'(A,t)
denote the set of clients C' that receive at least by/4 distinct client-frag messages or at least one
client-ob) message in round t. We define predicates Fy through P; as follows:

o (A, t): If |[R(A,t)|is at least 2m1bg, then for t +1 <t/ <t + A, s(A, 1,t) is complete.

o P(A, 0, t): If |[R(A,t)|is at least 4m4b; and s(A, ¢, t) is complete, then for ¢t +1 <’ <t 4+ A,
s(A,1,t') is complete.

o Py(A,t): If [R(A,¢t)]is at most mobg, then R'(A,t) = R(A,t).

o P5(A,i,t): If s(A,4,t) is complete then: (i) if |R(A,t)| is at least m3b;/12, then |R'(A,t)] is
at least m3b;/120, and (ii) if 47eb; < R(A,t) = O(b;), then for each C' € R(A,t), we have
Pr[C' e R'(A,1)] = Q(1).

The predicates Fy(A,t) and Py(A,1,t) (resp., P(A,t) and P3(A,1,t)) formalize Invariant 1 (resp.,
Invariant 2) of Section 1. We assume that 73 > max{48w3, 4mo}.

Lemma 6.3 If round t is good, then the following predicates hold for every object A whp: (i)
Po(A,t), (i) Yi > 0: Pi(A,,t), (iii) P2(A,t), and (iv) Yi > 0: P5(A,i,t).

Proof: Since at most one client resides on any node and each client attempts at most ¢glogn
words, each attempted message of type client-frag or obj-req is sent.

1. Proof of Py(A,t): Let a and § equal frag-req and server-frag, respectively. We are given
that R(A,t) is 2m1bg. Since round ¢ is good, it follows from part (ii) of Definition 6.3 that
M! (A,0,t) is the outcome of a uniform (R(A,t), Bo(A),c,0(logn)) experiment.

Let X be the set of servers in By(A) that receive at least m1by a-messages in step 2¢t. By
Corollary B.1.1, | X | is at least 9by/10. Each server in X attempts by S-messages in step 2t + 1
(see Phase 2 of Figure 1), i.e., N3(A,0,t) = X. Since step 2t 4 1 is good, it follows from
part (i) of Definition 6.3 that [N;(A,0,¢)] is at least bo/2.

By definition, F'(A,t) equals Né(A7 0,t). Since round ¢ is good, by part (iii) of Definition 6.3,
Mg (A, 1,t) is an outcome of a uniform (Mg(A, 1,t), Bi(A), <, O(logn)) experiment. Let ¥ be
the set of servers in By(A) that receive at least by/4 [-messages. By Corollary B.1.1, |Y| is
at least 9b1/10. Therefore, s(A, 1,t 4 1) is complete, and the desired claim follows from the
assumption about the cache capacity.

2. Proof of P(A,4,t) for all i > 0: Let a and 3 equal obj-req and server-obj, respectively. We
are given that R(A,t) is at least 4m4b;. Hence, |M,(A,1,t)| is at least 4m4b;. Since round
t is good, it follows from part (i) of Definition 6.3 that M/ (A, ¢, ¢t) is the outcome of an
(Mo(A,0,t), Bi(A),e,0(1)) experiment.

Let X denote the set of servers in B;(A) that receive at least m4 a-messages. By Corol-
lary C.3.1, | X| is at least 9b;/10. Since s(A,1,¢) is complete, at most b;/10 servers in B;(A)
do not have a copy of A. Therefore, at least 4b;/5 servers in X attempt 75 [-messages to
Biy1(A) in step 2t + 1. Thus, |[Ng(A, i+ 1,t)| is at least 4w5b; /5. Since round ¢ is good, by

13

part (ii) of Definition 6.3, the number of servers in B;(A) all of whose attempted S-messages
are sent is at least 2b;/5. Therefore, |[Mg(A, i+ 1,t)| is 275b;/5.

Since round ¢ is good, it follows from part (i) of Definition 6.3 that M} (A, i+1,¢) is an outcome
of an (Mp(A,i41,t), Biy1(A),e,0(1)) experiment. By Corollary C.3.1, the number of servers
in B;y1(A) that receive at least 75/20 -messages is 9b;11/10 whp. Thus, s(A,i+ 1,14+ 1) is
complete whp, and the desired claim follows from the assumption about the cache capacity.

. Proof of P5(A,t): Let o and 3 equal frag-req and client-frag, respectively. We are given that

|R(A,t)| is at most mobg. Since round ¢ is good, it follows from part (ii) of Definition 6.3 that
M!(A,0,t) is the outcome of a uniform (M, (A,0,¢), Bo(A),s,0(logn)) experiment. Thus,
for any client C', (1 — €)by of the a-messages sent by C' are received by (1 —)by different
servers in By(A).

Since each server that receives an a-message attempts at least one 3-message, it follows that
|N3(A,0,t)] is at least (1 — £)bg. Since round ¢ is good, by part (i) of Definition 6.3, all but
2bg/5 of the serversin By(A) send all their attempted 3-messages. All of the G-messages that
are sent by servers in Bg(A) are received by the clients. It follows that C' receives f-messages
from (1 — e —2/5)bg different servers in By(A). Hence, the request by client C' is satisfied in
round t.

. Proof of P3(A,i,t) for all ¢ > 0: Let a and § equal obj-req and client-obj, respectively.

By definition, |M, (A, ¢, t)]is (|R(A,t)]). Since round ¢ is good, it follows from part (iv) of
Definition 6.3 that M/ (A,1,t) is the outcome of an (M, (A, ,t), B;(A),s,0(1)) experiment.
For part (i) of Ps, we are given that m3b;/12 < |R(A,t)| < mw3b;/6. By Corollaries C.3.1
and C.4.1, at least 4b;/5 servers in B;(A) receive at least m3/48 > 7wy and at most 73 a-
messages whp. Hence, |Ng(A, ¢, ¢+ 1)| is 4b;/5 whp. Since round ¢ is good, by part (i) of
Definition 6.3, it follows that [N5(A, 4,)| is 2b;/5. If a client C'is sent at least one 3-message,
C' receives at least one J-message. Therefore, m3b;/120 > |R(A,t)|/20 of the clients receive a

f-message whp, establishing part (i).

The proof of part (ii) is similar. We are given that 4meb;/12 < |R(A,t)] = O(b;). By
Corollary C.3.1 and Lemma C.4, at least 4b;/5 servers in B;(A) receive at least w3 and at
most O(1) a-messages. By part (i) of Definition 6.3, it follows that |[Nj(A,1,t)| is 2b;/5.
Thus, Q(|R(A,t)]) of the clients receive a f-message. Since each client C selects a server at
random and each server sends -messages to a random subset of requesting clients, part (i)
of the claim follows.

6.2 The Fixed Model

The fixed model is specified by a probability distribution D = (pg,...,Pm-1), Where each new
request is for A; with probability p;. For any round ¢, we define d;(¢) to be the largest index j such
that s(A;, k, t) is complete for all k in [j + 1]. Let €;(¢) be the smallest index j such that for every
server S in Ug>; By (A;), a(S,t) is 0. In the following lemmas, we use the block predicates to relate
d;(t), ei(t), r;(t), and s;(t), when ¢ is good.

Lemma 6.4 Lett be a good round. For any i in [m]:

1. If s;(t) is at most mobg, then ri(t +1) =0 whp.

14

2. If s;(t) is at most m3bg,(1)/6, then s;(t) — ri(t + 1) is at least s;(t) /20 whp.
3. If 5;(t) is at least 4m4b; and d;(t) is at least j, then d;(t + 1) is at least j + 1.
4. si(t) = ri(t + 1) is at most w3be,).

Proof: By definition, s;(t) equals |R(A;,t)| and s;(t) — r;(t + 1) equals |R'(A;,t)|. Since round ¢
is good, we invoke Lemma 6.3 to prove the claims.

1. The claim directly follows from Part (iii) of Lemma 6.3.

2. There exists an integer j < d;(t) such that m3b;/12 < s;(t) < m3b;/6. Therefore, by Part (iv)
of Lemma 6.3, s;(t) — r;(t + 1) is at least s;(k)/20 whp.

3. 1If s5;(t) is at least 4m4b; and d;(t) is at least j, then for each kin [j+ 1], s;(¢) is at least 4m4by.
Therefore, Parts (i) and (ii) of Lemma 6.3 imply that s(A;, k, ¢+ 1) is complete for all j in
[J + 2], establishing the desired claim.

4. Each server in By(A) sends at most mobg client-frag messages. Since each client requires by /4
fragments to reconstruct the object, the number of clients whose requests are satisfied by By
is at most 4mgby < m3bg. The number of requests satisfied by each server in a block B;(A;)
for j > 0is at most m3. Therefore s;(¢) —r;(t +1) is at most 3 o< ;. () Tab;, which is at most
7T3bei(t)'

We use a number of positive real constants in our analysis. Each constant is of the form
a;. Constants ag through ag appear in the definitions and the statements of the lemmas and are
required to satisfy the following inequalities.

ap < mocr/as,

a; > 9(137?%/((14(12),

ag > max{4ry, 27},

ay; < w3/12,

as = 1/(1—-1/20+ a3/(as — as)), and
ag > 2las.

(From the above inequalities, we have: (i) ag < ¢1, (i) 74, 71 <€ a3 € 73 < ay, and (iii) a3 < ag.
The inequalities associated with other constants that arise in the proofs are specified whereever the
relevant constants are introduced.)

We partition the set A into O(logn) subsets as follows:

A — {Ai :np; < aglogn}, if j =0,
s {A; - agal ™ log n < np; < apal logn}, otherwise.

Let As; denote the set U;>;A;. We define A<;, As;, and Ag; similarly. For each ¢in [m], object
A; is said to be steady in round ¢, if s;(¢) < azbg,(¢); otherwise, A; is said to be unsteady in round ¢.
Let B(m,p) be the random variable denoting the number of successes in m independent Bernoulli
trials with success probability p. Let as and a4 be real constants such that for p > aglogn/n,
asnp < B(n,p) < aznp whp; as and a4 are obtained from standard Chernoff bounds [6], given in
Theorem A.1.

15

Lemma 6.5 Let rounds 0 through r — 1 be good. If object A; is not steady in rounds 0 through r,
then whp we have d;(j)=j and e;(j) =7+ 1 for 0 < j <r.

Proof: The proofis by induction on j. The induction basis is trivial. For the induction hypothesis,
we assume that d;(j) = j and e;(j) = j+1, for all j in [k], where k is in [r —1]. Since A; is unsteady
in round k — 1, we have s;(k—1) > b4, (x—1)- Since round k — 1 is good, by Part 3 of Lemma 6.4,
d;(k) is k whp. Since e;(k — 1)+ 1 < e;(k) < d;(k) and e;(k — 1) =k, ¢;(k) is k+ 1 whp. B

Lemma 6.6 Let rounds 0 through r — 1 be good. If A; is not in Ay and A; is unsteady in rounds
0 through r, then s;(r) > azaqnp;/(37s) whp.

Proof: By Lemma 6.5, d;(j) is j for all j in [r 4+ 1]. By Part 4 of Lemma 6.4, it follows that
si(j) — ri(j + 1) is at most 2w3b;. Thus, we have whp:

sir) = S0+ > a() - D (siG)—rG+ D)

0<j<r 0<j<r
> 5(0) — Z 273b;
0<y<r
> 5(0) — 2mwsb,
> aqnp; — 2ms3b,
> aynp; — 2wss;(r)/az
> aynp;/(1+ 27s3/az)
> agaanp;/(37s).

(The first inequality follows from the definition of s;. The fourth inequality follows from a Chernoff
bound. The fifth inequality holds since A; is unsteady in round r. The last inequality holds since
as S 773.) |

Lemma 6.7 places an upper bound on the number of requests for object A; during any round
after the first round in which A; is steady.

Lemma 6.7 Let rounds 0 through r — 1 be good, where r is at most A. Let A; be not in Ay, and
let j < r be the smallest integer such that A; is steady in round j. There exist constants as > 1
and ag such that, for j <k <r, we have whp:

sih) < max(. agnp) (1)

Proof: By a Chernoff bound, ¢;(k 4 1) is at most agnp; whp. If s;(k) < (as — as)np;, then
si(k+1) < si(k) + qi(k+ 1) < agnp; whp, thus establishing the claim. For the remainder of the
proof, we assume that:

si(k) > (ag — asz)np;. (2)
We consider two cases depending on whether s;(j) > agnp;.

e Case s;(j) > agnp;: We show by induction on k that Equation 1 holds whp. The induction
basis is trivially true. Let Equation 1 be true for rounds j through k, where j < k < r — 1.

16

Since j is the first round in which A; is steady, Lemma 6.5 implies that d;(j) is j. Therefore,
s5i(7) < azb; whp.

By the induction hypothesis, s;(k) < s;(j). Moreover, since r is at most A, d;(k) is at least
J. Therefore, s;(k) < asb; < agbg,(r)- Since az is at most 73/6, Part 2 of Lemma 6.4 implies
whp:

Sz(k) — T‘Z'(k + 1) > Si(k)/QO. (3)

Therefore we have whp:

silk+1) = rik+1)+qk+1)
= si(k) = (si(k) = ri(k +1)) + qi(k + 1)
< s(k)(1—1/20) 4 ass;(k)/(as — as)
< s(k)(1—1/204 as/(as — as))
< si(k)/as
< max{ Zlk(f J) , agnpi

(The second inequality follows from the definition of s;. The third inequality follows from
Equations 2 and 3. The fifth inequality follows from the choice of the constants: ag > 2las

and 1/as = (1 —1/20+ as/(as — as)).)

Case s;(j) < agnp;: We show that in this case s;(k) < agnp; whp. The proof is by induction
on k. The induction basis is trivial. Let the claim be true for rounds j through k£ where
Jj <k < r. In the induction step, we need to show that s;(k 4 1) < agnp;.

Let ¢ be the last round in which s;(¢) < agbg, (4. (Such an € exists as s;(j) < azby,;)-) By
Part 3 of Lemma 6.4 and the definition of ¢, d;(k) > d;(¢)+ (k —{) whp. By a Chernoff bound,
s;(() is at least (ag — (k — {)az)np; whp. Therefore, by, is at least (ag — (k — ()az)np;/az
whp. Moreover, since £ is at most A, d;(¢) > j. Therefore, we have whp:

bdi(f) 2 b]
S 2si(j — 1)
T 2ay+ 73
2aza4mp;
- 9732

(The second inequality holds since A; is steady in round j. The third inequality follows from
Lemma 6.6.) Therefore, we have whp:

2
2a5a4

RS (4)

ba,(¢) > max{(as — (k — l)as), 972) a,
3

We select ag and a new constant ar such that 2azar < az < 297 T2aya4/(9732). If k — (is at
most ar, then by, (1 is at least agnp;/2ay. By the induction hypothesis, s;(k) is at most agnp;.
Therefore, s;(k) < 2azbg,(x). If k — € is at least a7, then by) is at least 297t qoaqnp; /(9732).
By the choice of ag and a7, we obtain that s;(k) < 2a2bg, () Whp.

By Part 2 of Lemma 6.4, we have whp: s;(k) — r;(k + 1) is at least s;(k)/20. Therefore,
si(k+1) is at most 19s;(k) /204 asnp; which is at most agnp; by the choice of the constants.

17

We use Lemma 6.8 to relate the number of requests, in round r, for any two objects that are
unsteady in rounds 0 through r — 1.

Lemma 6.8 Let rounds 0 through r — 1 be good. Let iy and iy be integers in [m] such that A; and
A;, are not in Ay and A;, is not steady in rounds 0 through r. It holds whp that

3“3773])2'1 5 (T‘)

si(r) a2a4p;,

Proof: Consider any round 7, 0 < j < r. We are given that A4;, does not become steady in any
of the r rounds. We invoke Lemma 6.5 and obtain that d;,(j) = j whp. Therefore, s;,(j) > a2b;
whp. By Part 4 of Lemma 6.4 (s;,(j) — ri,(j + 1)) is at most 273b; whp. Let ¢ denote the number
of new requests generated in rounds 0 through r. Since ¢ > n and A, , 4;, ¢ Ay we have whp:

2o<j<r Gir (J) 18 at least aqp; g and 3o, ¢i, (J) is at most azp;,q. We thus have:

Sil (r) < a-?)ph q (5)

si,() > aapng— Y 2mab;. (6)
0<j<r

From Equations 5 and 6, we obtain whp:

Sil(r) < azpi q

a3Piy

< : 2m3b

> a4pi2 (522 (T‘) ‘|’ 3 7’)
3 .

< MSAQ.
a204Pq,

(The first inequality follows from Equation 5. The second inequality follows from Equation 6. The
last inequality holds since A;, is unsteady in round r and a3 < 73.) W

Lemma 6.9 Let rounds 0 through r — 1 be good. Let iy and iy be in [m]. Let j in [r] be the
smallest integer such that A;, is steady in round j. If p;, > a’fpiz), where k is a positive integer,

then there exists j' < j — k41 such that A;, is steady in round j'. If p;; > pi, /a1, then there exists
J' < j4+O(1) such that A;, is steady in round j'.

Proof: We first consider the case in which p;, > afp;, for some positive integer k. Since A;, is
not steady in rounds 0 through j — 1, d;,(j) = j whp by Lemma 6.5. Since A;, is steady in round
J,» we have s;, (j) < agb; whp, and we obtain an upper bound on s;, (j — k + 1) as follows:

siy(G—k+1) = si,(D+ (D s, (G-0—r(G—C(+1)—q(j—(+1))

0<L<k

< s+ (s, =0 —r(i—L+1))
0<L<k

< s, (J) + 2msb;

(The first equality follows from the definition of s;,. The third inequality, follows from Part 1 of
Lemma 6.4. The fourth inequality holds since A;, is steady in round j and ay < 73.)

18

If A;, is steady in some round j’ < j — k4 1, then the claim holds. Otherwise, by Lemma 6.8,
it holds whp that s, (j —k+1) < &Lﬁsil (j—k+1). Hence, A4;, is steady in round j —k+1 whp
a7

asa
because:
. 9as(ms)?
sp(J—k+1) < 7,3() b;
a1a204
< agbi_pqa-

(The first inequality follows from Equation 7. The second inequality follows from the choice of
constants: a; > 9azm3/(agay) > 2.)
We now consider the case in which p;, > p;,/a1. Let as be an integer constant satisfying:

298 > 3a%(a2 + 3asms)(ay + 73)araszws/(azaq).

Thus, ag is a sufficiently large integer constant.) If A4, is steady in some round j' < j 4+ as, then
g g 2
the claim holds. Otherwise, A;, is steady in round j 4 ag whp because:

si,(J+as) < osiy(j— 1)+ asasnp;,
< s, (7 — 1)(1 4 3msas/az)
S 3(1 + 3773(18/612)611(13773 s, (] _ 1)
Aoy
3(14+3
< (14 3m3ag/az)aiasms (51, (j) + 73b;)
Aoy
3(1-+—3ﬂ3a8/a2)a1a3ﬂ3(a2—+—ﬂ3)bl
> J
Aoy
< a2bj+a8'

(The first inequality follows from the definition of s;,. The second inequality follows from Lemma 6.6.
The third inequality follows from Lemma 6.8. The fourth inequality follows from the definition of
s;,. The fifth inequality holds since A;, is steady in round j. The last inequality follows from the
choice of ag.) W

Lemma 6.10 Let rounds 0 through r—1 be good. For any nonnegative integer i such that 0 < i < m
and A; € Ag, we have r;(r) = 0.

Proof: We will prove by induction on j that for 0 < j <r, r;(j) is zero. The base case is trivial.
Let the claim hold for j. Consider round j+ 1 < r. Since r;(j) is zero, s;(j) equals ¢;(j) which is
at most moby whp. Since round j is good, by Part 1 of Lemma 6.4, it follows that r;(j 4+ 1) equals
zero whp.

Definition 6.4 For nonnegative integers ¢ and j, 0 < ¢ < m we define:

B(n,p;), if A; € Ao,

rips) .
) —— =4 np; if A, € Ap, 0 <0< g
SU) =9 @ Daeagr T

P + np; otherwise.

Pk
Ak€A>]

Lemma 6.11 For all j > 0, Y o<icy 57 (J) is O(n) whp.

19

Proof: We rewrite 3 o<, 57 (j) as follows:
Yoos= > s+ X s+ X si0)-
0<i<m 1:A; €A itA;€A<;NASo A EAS

We establish the lemma by obtaining upper bounds on the three terms in the right-hand side of
the above equation. The first sum is at most a4n whp. The second sum is bounded as follows:

> sl = (Z > =)+22 np;

itA;€A<;NASo 0<t<ji:A; €Ay a5 ZAkeAN Pr

IN

(Z DL)+ >

0<l<ji:A;EA, 05 ZAkeA,Z Pk A€ A

= Z]Z—I_ Z np;

0<i<; @5 A €A
n
S D DR (8)
b A,

Similarly, we bound the third sum as follows:

Yo si0) = S] > np
A€ As, A €Ay, LeAREAS; PR A €A
= n+ Z np;. (9)
i:AiEA>]

It follows from the bounds on the three sums that 3 o<;c,, 87 is O(n). W
Lemma 6.12 Let rounds 0 through r — 1 be good, where r is at most A. Whp, round r is good.
Proof: We show that there exists an integer h such that for all 7 in [m], s;(r) is O(s(h)) whp.

We divide A into three groups Ag, S, and U. Let S be the set {4; € A\ Ap : there exists j <
r such that A; is steady in round j}. Let U be the set A\ (SU Ag).

We first consider any object A; in Ag. By Lemma 6.10, we have s;(r) = ¢;(r) < B(n, p;).

Let h be the largest index such that A, NS is nonempty. If S is empty then we set h to 0. By
Lemma 6.9 and the definition of A;, it follows whp that for ¢ in [h], every object in A; is steady in
some round 7' <r—h+1+1.

Consider any object A; € SN A; where 0 < ¢ < h. Let r; be the smallest round in which A;
is steady. By Lemma 6.9 and the definition of A;, it holds whp that every object Ay € As; is
unsteady in some round r’ = r; — O(1). By Lemma 6.8, it holds that for Ay € As;, whp we have
sk(r') = Q(prs;(r')/p;). Therefore we have whp:

np;
si(ri—1) = O|=————+4np,;]|, and hence,
iU) (ZAkeA>z Dk])

si(r) = O(o +"pf)
g

! ZAk E.Azl‘ Pk

= 0 h i—1 —I_np]
ZAkeA>z pk

= 0(5;(h)).

20

(The first inequality follows from the definition of s;. The second inequality follows from Lemma 6.8.
The third inequality follows from the earlier claim that r; <r —h+44 1. The last equality follows
from the definition of s7(h).)

We now consider the objects in U. Let b’ be the smallest index such that A, NU # 0. If U is
empty, then let A’ equal h. By Lemma 6.9, b’ is at least h—1 whp. By Lemma 6.9, it holds whp that
every object in Asp/ is unsteady in some round " = r — O(1). Consider any object A; € U N A4,
i > . By Lemma 6.8, for all objects A, € Asy/, it holds whp that sE(r') = Qprs;(r')/p;)-
Therefore we have whp: -

si(r) = O(npj—ﬂpf)
= O(s3(h).

(The first inequality holds since > ,c(,, s¢(t) is at most n for any ¢. The second inequality holds
since Aspr 2 Asyp.)

We have shown that for each j in [m], s;(r) is O(s3(h)) whp. By Lemmas 6.11 and 6.2, it
follows that round r is good whp. B

Let ¢y denote equal b + log, n. We assume that A is at least {o + ag, where ag is a constant
that is specified in the proof of Lemma 6.13 below.

Lemma 6.13 For any i in [m] and for any t > ty, we have whp:
1. If A; is in Ao, s;(t) is B(O(n), p;).
2. If A; is not in Ao, si(t) is O(np;), and by, is Q(np;).
3. Round t is good.

Proof: By Lemma 6.12, rounds 0 through ¢y are good whp. For any ¢ in [m], if 4; is not steady in
rounds 0 through b — 2, then by Lemma 6.5, d;(b— 1) is b— 1. Since azer 2P logn > n > si(b—1),
A; is steady in round b — 1. We have thus shown that for each ¢ in [m], A; is steady in some round
J in [b].

Part 1 follows directly from Part 2. We establish Parts 2 and 3 by showing that for any A; not
in Ag, and ¢ > fo: (i) s;(¢) is at most aionp;, (ii) round ¢ is good, (iii) if ¢ > tg, s;(t) is at least
ajanp; , and (iv) bd,‘(t) is at least ajynp;. Constants aqg, @11, and a9 are specified below.

The proof of the above four claims is by induction on ¢. For the induction basis, let ¢ equal tg.
By Lemma 6.7, s;(t) is at most agnp; < ajonp; whp, thus establishing claim (i) (we set ag < ajq).
Claim (ii) follows from claim (i) and Lemma 6.2. Claim (iii) holds vacuously. Since A is Q(logn),
Lemma 6.6 implies that by, (;,) is at least azagnp;/(972) > ayynp;, thus establishing claim (iv) (we
set ay; < agay/(973)). This completes the induction basis.

For the induction step, we assume that claims (i), (ii), (iii), and (iv) hold for rounds to through
t. We first establish claim (i) for round ¢ + 1. If s;(¢) is at most (a19 — as)np;, then s;(t + 1) <
si(t) + ¢ (t + 1) < ayonp; whp, and the desired claim holds.

We now consider the case in which s;(t) is at least (a10 — az)np;. Let { > t; be the last
round in which s;() < 9asm3by,(¢)/(azaq). (Such an [exists as to satisfies the inequality.) Since
9agri/(agay) > 4wy, Part 3 of Lemma 6.4 and the definition of ¢ imply that d;(t) is at least
di(() 4+ (t = ¢). By a Chernoff bound, s;(() is at least (a10 — (¢ — €)az)np; whp. Therefore, by, is

21

at least 2agay(ajg — (t — £)az)np;/(9agw?) whp. Moreover, by the induction hypothesis, b, (¢ is at
least ayqnp;.
2@2@4(@10 — (t — f)ag)

i 10
9@6773 7011}7117 ()

bdl‘ (0) > max{

We choose aq3 and aqg such that 2aza3 < a9 < agaq12™2. If t — £ is at most a3, then bd,‘(t)
is at least azazaqaionp;/(973). By the induction hypothesis, s;(¢) is at most ajonp;. Therefore,
si(t) is at most 1873by,(;)/(azaq). By Part (iii) of Lemma 6.3, we have whp: s;(t) — ri(t 4 1) is
at least agaqs;(t)/(2160aems) whp. If t — £ is at least ays, then bg,(ry 18 at least 2% ayy np; whp.
By the choice of constants, we obtain that s;(¢) is at most azbg;(ry whp. By Part 2 of Lemma 6.4,
si(t) — ri(t + 1) is at least s;(¢)/20. Thus, in either case, since s;(t) is at least (aj0 — as)np;, if aig
is chosen sufficiently larger than w3, s;(t 4+ 1) is at most ajonp;.

Claim (ii) follows from claim (i) and Lemma 6.2. We now prove claim (iii). Since s;(¢) is at
most ajonp; and by, is at least ajinp;, by Part (iii) of Lemma 6.3, s;(t) — r;(t + 1) is at least
a11735;(t)/(120a10) whp. Therefore, the total number of new requests is at least a;;m3n/(120a10).
By a Chernoff bound, the number of new requests for each A; in As is at least a1onp; whp for a
suitable choice of aqs.

We now prove claim (iv). We need to show that s(A;, j,t+1) is complete for all j such that b; is
at most 2a;np;. Fix an index j satisfying the above. By the induction hypothesis, s;(¢) is at least
aianp;, and by, (s is at least ajinp;. Part (ii) of Lemma 6.3 is applicable only if a1z were at least
4dayimy. Such a choice of a7 and aq is not always possible. Therefore, instead of considering new
copies made in B;(A;) in round ¢ only, as is done in the Part (ii) of Lemma 6.3, we consider copies
made in rounds ¢ — ag through ¢, where ag is a sufficiently large constant. The proof of claim (iv)
is as follows. If t < tg + ag, then since the cache is assumed to hold copies created in rounds 0
through tg 4 ag, as in the induction basis, it follows that bd,‘(t) is at least ay1np;. If t > tg + ag, the
induction hypothesis implies that for t —ag <t/ <t, s;(t') is at least ayanp;. By Lemma C.7, if ag
is chosen sufficiently large, the number of new copies created in B;(A;) in rounds ¢ — ag through ¢
is at least 9b;/10. Thus, ba;(t41) 18 at least ayinp;. W

Proof of Theorem 1: The desired claim follows directly from Lemmas 6.13 and 6.10, and
Part (iv) of Lemma 6.3. W

6.3 Extension to the Time-Varying Model

In the time-varying model, we are given a sequence of d probability distributions Dy, ..., Dg_1. The
distribution D; is specified by an m-vector (p,...,p.,_;) of probabilities. Let ¢; be the number of
rounds associated with D;.

For the fixed model we showed that any cache that can hold copies for Q(logn) rounds suffices.
Thus, A can be as small as O(logn). For the time-varying model, we assume a stronger cache
management policy: any secondary copy of an object A is deleted by the node that holds the copy,
after A’ rounds of its creation, where A’ < A. We require that A and A’ are Q(logn). Hence, the
minimum cache capacity is O(logn), as for the fixed model.

The analysis of ¢; rounds under distribution D; is similar to that of ¢; rounds of the fixed
model with distribution D;. There is one difference, however. In the analysis for the fixed model,
the initial state of the blocks associated with any object A; is assumed to be the following: d;(0)
is 0 and ¢;(¢) is 1. Such an assumption is clearly not valid in the time-varying model when the
distribution changes from D;_; to D;. We show that in the time-varying model, at the start of any
distribution D;, each object A; is well-distributed. We say that the object A; is well-distributed in

22

round ¢ if there exists an index k such that: (i) s(A4,7,t) is complete for each j in [k], and (ii) for
each j > k+ ©(1), if by, is (27 %logn), then the number of servers in B;(A) that hold copies of
A is at most by /27%; otherwise the number of servers in By; that hold copies of A is O(logn).

We define d;(t), as before, to be the largest k such that s(A;, (,t) is complete for all £in [k+1].
We define €;(t) to be the smallest & such that the number of copies of A; in By(A;) in round ¢ is at
most by, /2=% M £ O(log n) for all £ > k. Thus, if 4; is well-distributed in round ¢, then e;(t) —d;(t)
is O(1).

We begin the analysis of the time-varying model by showing that, for a fixed probability distri-
bution D, within A’ rounds of reaching the steady state, each object A; is well-distributed. Consider
any object A; such that p; is Q(logn/n). By Lemma 6.13, in the steady state, by, ;) is at least enp;
for some constant ¢. Let k; denote the largest j such that b; is at least cnp;. (If no such j exists,
we set k; to 0.)

Lemma 6.14 Consider the fized model with associated probability distribution D = (po, ..., Pm-1)-
Let t be any steady round. Consider any object A; with p; = Q(logn/n). In round t + A', A; is
well-distributed and d;(t + A") is max{b, k; + log A’/ (74ms) + O(1)} whp.

Proof: By Lemma 6.13, rounds ¢ through ¢ + A’ are steady and good. Let ¢ equal log A’/ (7476).
We prove the result by showing that whp: (i) s(A4;, j,t+ A’) is complete for all j in [k; 4 (], and (ii)
for j > k; + €+ ©(1), the number of servers in B;(A) that hold copies of A at the start of round
t+ A'is at most by, yo/27 7R

We establish claim (i) by showing that for all j in [¢ — O(1)], in rounds ¢ through ¢ + © (2777,
Q(bg,+;) servers in By, 4;(A;) receive new copies of A;. The proof is by induction on j. (Note that
by Part 2 of Lemma 6.13 and the definition of k;, s(A;, j’,t) is complete for any j' < k; and any
>t

The induction basis follows from Part 2 of Lemma 6.13 and the definition of k;. For the induction
step, we assume that s(A;, j, ') is complete for t + ¢/27™7 < ' < t + A/, for a sufficiently large
constant ¢/. We consider rounds ¢ + ¢/2/™7e through t + 20)mame 1 We refer to these rounds
as active rounds. Let ¢ denote the number of active rounds. Note that ¢’ is ©(2/™7¢). We label
the rth active round as .

In each active round, by Lemma 6.13, O(np;) = O(by,) requests are present for object A;. Let «
and 3 equal obj-req and server-obj, respectively. Let y, denote the number of servers in By, 1;(4;)
that receive at least 74 a-messages in round t/.. We wish to obtain a lower bound on y = 3, y,.
Since each round is good, by Part 4 of Definition 6.3, M/ (A;, ki + j,t.) is the outcome of a random
(Mo (Ai ki + 3,8)), B4 (A;),,0(logn)) experiment. By Lemma C.5, whp:

y o= Q' (by)™/005)
— G(Qj(w47r6_7r4+1)bki)-

(The second equality follows from the bound on ¢’. We have assumed that 74 and 75 are sufficiently
large.) Let 3 equal server-obj. Each of the y, servers in By, y;(4;) attempt 75 S-messages in round
t. Let z, denote the number of servers in Bjy;(A;) who send 75 -messages in round ¢,.. Let z
denote 3", z.. By Part 1 of Definition 6.3, z is ©(FE[y]) whp.

By Part 4 of Definition 6.3, Mj(A;, j+ k; +1,;) is the outcome of a random (Mg(A;,j + k; +
1,8.), Bjyrt1(A), e, 7) experiment. Let u, denote the number of servers in Bjix,+1(A;) that receive
', and let u equal >, u,. By Lemma C.5, we have whp:

r?

kg Te—1
vo= 9(227’6/bjj‘ki+1)

at least mg [-messages in round ¢

23

= Q V()T)
= Q(bj-l-krl-l))

where the hidden constant can be made arbitrarily close to 1 by choosing ¢ appropriately large.
Hence s(A;,j+ k + 1,ty) is complete whp.

We establish claim (ii) by showing that for j > k+(+0(1), O(b*+*/27=ki=t) servers in B;(A;)
receive new copies of A; in O(logn) steps whp. In each step O(np;) = O(by,) a-messages are
attempted to B;(4;) in any step ¢’ in [¢,t+ A’). Since round ¢’ is good, it follows from Lemma C.6
that the number of servers in Bj_; (A;) that receive at least 74 a-messages in step t' is O(bzl‘,‘/b;“‘_l).

Thus, the number of S-messages attempted in round ¢ is O(7T5bki/2(j_ki)(”4_1)) whp. Since round
' is good, it follows that the number of servers in B;(A;) that receive at least mg [-messages
(and hence store a new copy of A;) in step ' is O(by, /20~)™ =1) whp. Since 24™7) is A/,
it follows that in A’ rounds, the number of servers in B;(A;) that store at least one new copy is
O(bki+g/2(j_ki_é)7r47r6_1) < bki_|_g/2j_k"_z whp (for 74 and 7 sufficiently large). B

We now consider the time-varying model. We prove by induction on j that within O(logn)
rounds of any distribution D;, the protocol reaches a steady state. Thus, if ¢; is at least a constant
factor times the number of rounds taken to reach the steady state for each j, then Theorem 2
follows.

The induction basis follows from Theorem 1. For the induction step, we consider ¢; rounds
of D;, where j > 0. For convenience, we number the rounds 0 through ¢; — 1. (Note that ¢; is
Q(logn).) By the induction hypothesis and Lemma 6.14, it follows that at the start of round 0,
A; is well-distributed for each 7 in [m]. Let f; equal k; +log A’/(7w47e), where k; is associated with
D;_1. In the following, we omit j from any subscript or superscript.

The proof of the induction step follows the proof of Theorem 1, given in Section 6.2. We
only describe here the main modifications needed in the proof, which are with respect to the initial
distribution of secondary copies: d;(0) is at least f; (instead of 0 in the fixed model) and the number
of copies in Bj(A;) geometrically decreases with k for £ > f; + ©(1). The initial distribution is
reflected in the new partitioning of the objects and affects Lemma 6.5, whose analogous version is
shown below. Using Lemmas 6.4 and 6.15, the proof proceeds as before with the following change:
when an object A; is unsteady in rounds 0 through k — 1, then d;(k) is f; +k 4+ O(1) (instead of k
in the fixed model).

The new partitioning of A into O(logn) groups is as follows.

4= A € a2 logn}, i j =0,
J {AZ : aoa‘i_12fi logn < np; S aoaéin log n}7 OtheI’Wise,

Lemma 6.15 Let rounds 0 through r — 1 be good, where r = O(logn). If A; is not steady in
rounds 0 through r, then d;(r) equals f; +1r 4+ O(1) and e;(r) equals f; +r+ O(1) whp. Thus, A; is

well-distributed in round r whp.

Proof: The proof is by induction on the number of rounds. The induction basis follows from
Lemma 6.14. As the induction hypothesis, we assume that A; is well-distributed in round ¢ for
some t < r. We establish the induction step by showing that d;(t + 1) is at least d;(¢) + 1, and
e;(t+1) is at most e;(t) + 1. By definition, s(A;, k,t) is complete for each k in [d;(t) +1]. By Part 3
of Lemma 6.4, it follows that d;(t 4+ 1) is at least d;(t) + 1 whp.

We now show that e; (¢4 1) is at most e;(¢t) 41, i.e., for each k > ¢;(¢) + 1, the number of servers
in Bi(A;) that hold any copy of A; in round ¢ + 1 is at most bdi(t+1)/2k_di(t+1) whp. Consider

24

any block By (A4;), where k is at least e;(t). Since A; is well-distributed, the number of servers
in Bj(A4;) that hold any copy of A; in round ¢ is at most bdi(t)/Qk_di(t). Therefore, even if all of
the servers receive w4y a-messages, the number of S-messages attempted to Bjii1(4;) is at most
7T5bdi(t)/2k_di(t). Since round ¢ is good, we apply Definition 6.3 and obtain that Mj(A;, k+1,1) is
the outcome of an (Mg(A;, k+1,t), Bry1(A;),c,0(1)) experiment. By Lemma C.6, the number of
servers in Byy1(A;) that receive at least mg [-messages is whp:

- 0 (_7715%1.(75))%
bey 27 (hdi(0)

ba;(¢)
= k—d(f)—1"

for mg sufficiently large. Thus, the total number of servers in Byi1(A;) that have copies of A4; in

. ba, (¢
round ¢ + 1 is at most 2“1—% whp. H

7 Write Operations

Thus far, we have focused our attention on read-only objects. In this section, we describe our
algorithm for handling write operations. We consider two different approaches: the write-and-
update and the invalidate-and-write protocols.

At a given time step, any number of clients may attempt to simultaneously initiate a write
operation on some object A. Each client communicates with servers in block By(A) only, where
the primary copy of A is stored. The first part of each protocol consists of a simple three-round
randomized leader election procedure to select one of these clients to actually write the object A.
We introduce four new types of control messages: write-req, write-may, write-try, and write-ok. In
the first round, each writer attempts a write-req message to each server in By(A). For server S
in By(A), let Q(S) denote the set of clients whose write-req messages are received by S. If Q(S5)
is non-empty, S sends a write-may control message to an arbitrary client in Q(5). In the second
round, each client that receives at least one write-may message attempts a write-try control message
to each server in By(A). Let T'(S) denote the set of clients whose write-try messages are received
by S. Server S selects the client C' in T'(S) with the largest id and sends a write-ok message to
C'. In the third and final round, the unique client that receives more than by/2 write-ok messages,
writes A by sending the fragments of the new version of object A to Bg(A). A time-stamp is sent
along with each of these fragments so that future clients reading the fragments can differentiate old
fragments from new ones.

The two protocols differ in the second part. In the write-and-update protocol, after the frag-
ments are sent to block By(A), updates are propagated to servers in higher-numbered blocks that
hold copies of A, by the same method as is used to propagate copies. The write is assumed to
“complete” before these updates are propagated. As a result, it is possible that a client reads an
old version of an object. We use the following validation scheme to ensure that each client receives
a version that is at most O(logn) steps out of date. A steady stream of validation time-stamps
is created by servers in Bg(A) and propagated to higher-numbered blocks that hold copies of A.
Each server S that has a copy of A maintains a variable b(5) that denotes the last validation time-
stamp received by S. A server S satisfies a request in round ¢ only if b(S) is at least t — O(logn),
thus ensuring that the version sent to a client is at most O(logn) steps old. Since the per-request
communication due to the validation time-stamps is asymptotically smaller than that required by
the rest of the protocol, the results of Section 4 hold as stated.

25

In the invalidate-and-write protocol, we maintain, for each object, a fault-tolerant distributed
list of all servers and clients holding a copy of the object. When a write operation is performed,
before updating the primary copy, the servers in block 0 participate in an invalidation scheme in
which each client/server on the list is sent one or more invalidation messages whp. The main
advantage of this extension is that clients can make use of locally-cached copies of objects since
they are informed once such a copy becomes out of date. The main disadvantage is that it is
not possible to guarantee in the worst case that these invalidation messages are all sent quickly
(e.g., within O(logn) steps). The difficulty is that the lists can grow very long over time, and if a
large number of write operations are performed over a short period on a set of objects with long
associated client/server lists, then it is simply not possible to send all of the invalidation messages
quickly. On the positive side, it is possible to prove a good amortized bound on the total number
of messages used by the extended protocol for processing a given number of read /write accesses.

8 Concluding Remarks

In order to achieve fault-tolerance and space-efficiency, our protocol uses Rabin’s IDA technique
to encode each object as a set of fragments such that only a constant fraction of the fragments
are needed to reconstruct an object. One shortcoming of IDA is that it does not tolerate errors
in the fragments. Suppose, for example, that a client reading an object receives a large number
of fragments, each of which is noisy (i.e., contains arbitrarily many errors) with some constant
probability € > 0. Unless the noisy fragments can be easily identified as such, the client cannot
efficiently reconstruct the object using IDA. In such a noisy setting, it would be worthwhile to
consider variants of our protocol based on the Berlekamp-Welch decoder [4] (see also [16, Appendix
A]), which tolerates noise in a constant fraction of the fragments.

We would like to extend our protocols to other interesting models of distributed computation
that incorporate asynchrony or locality information. We conjecture that, with suitably modified
definitions and appropriate technical assumptions, the performance bounds of the present paper can
be extended to apply to models allowing limited forms of asynchrony (e.g., bounded asynchrony).
To address the issue of locality, it would be interesting to consider a variant of our protocol in which
the number of copies of an object that are created in any region of the network is proportional to
its popularity within the region, and where regions are identified on the basis of some hierarchical
decomposition of the network.

Acknowledgments

The authors would like to thank Pawan Goyal, Vijaya Ramachandran, and David Zuckerman for
several useful discussions, and Micah Adler, Funda Ergun, and S. Ravikumar for helpful comments
on a preliminary draft of this manuscript.

References

[1] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley, New York, NY, 1991.

[2] T. E. Anderson, M. D. Dahlin, J. N. Neefe, D. A. Patterson, D. S. Rosselli, and R. Y. Wang.
Serverless network file systems. In Proceedings of the 15th Symposium on Operating Systems
Principles, pages 109-126, 1995.

26

[3] Y. Aumann, Z. Kedem, K. V. Palem, and M. O. Rabin. Highly efficient asynchronous execution
of large-grained parallel programs. In Proceedings of the 34th Annual IFEE Symposium on
Foundations of Computer Science, pages 271-280, November 1993.

[4] E. Berlekamp and L. Welch. Error correction of algebraic block codes. U.S. Patent Number
4,633,470.

[6] M. A. Blaze. Caching in large-scale distributed file systems. Technical Report TR-397-92,
Department of Computer Science, Princeton University, January 1993. PhD Thesis.

[6] H. Chernoff. A measure of the asymptotic efficiency for tests of a hypothesis based on the sum
of observations. Annals of Mathematical Statistics, 23:493-509, 1952.

[7] V. Chvatal. The tail of the hypergeometric distribution. Discrete Mathematics, 25:285-287,
1979.

[8] S. Deering and D. Cheriton. Multicast routing in datagram internetworks and extended LANs.
ACM Transactions on Computer Systems, pages 85-111, 1990.

[9] P. Gibbons, Y. Matias, and V. Ramachandran. The QRQW PRAM: Accounting for contention
in parallel algorithms. In Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 638-648, January 1994. To appear in SIAM Journal on Computing.

[10] J. S. Gwertzman and M. Seltzer. The case for geographical push-caching. In Proceedings of
the 5th Workshop on Hot Topics in Operating Systems, pages 51-57, May 1995.

[11] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58:13-30, 1963.

[12] R. Karp, M. Luby, and F. Meyer auf der Heide. Efficient PRAM simulation on a distributed
memory machine. In Proceedings of the 24th Annual ACM Symposium on Theory of Comput-
ing, pages 318-326, May 1992.

[13] P. D. MacKenzie, C. G. Plaxton, and R. Rajaraman. On contention resolution protocols and
associated probabilistic phenomena. In Proceedings of the 26th Annual ACM Symposium on
Theory of Computing, pages 153-162, May 1994.

[14] M. O Rabin. Efficient dispersal of information for security, load balancing and fault tolerance.
JACM, 36:335-348, 1989.

[15] A. G. Ranade. How to emulate shared memory. Journal of Computer and System Sciences,
42:307-326, 1991.

[16] M. Sudan. Efficient Checking of Polynomials and Proofs and the Hardness of Approzimation
Problems. PhD thesis, Department of Computer Science, University of California at Berkeley,
October 1992.

[17] L. Valiant. A combining mechanism for parallel computers. Technical Report TR-24-92, Center
for Research in Computing Technology, Harvard University, January 1992.

[18] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33:103-111, 1990.

27

A Large Deviations

We make frequent use of bounds on large deviations for the binomial and hypergeometric distribu-
tions, and martingales. The particular form of Theorem A.2 below is from [13].

Theorem A.1 ([6]) Let X be a random variable drawn from B(n,p), i.e., X is the number of
successes in n independent Bernoulli trials, where each trial succeeds with probability p. Then,

PriX <(1-¢)np] < 6_52”p/2, 0<e<1
PrlX > (1+¢)np] < 6_527”7/3, 0<e<1
PAX > (14 e)np] < [e(1+2) 0]

Theorem A.2 ([11, 7]) Let S be a set of s balls, T be a subset of S, t =|T|, andp=1t/s. Let s
balls be chosen uniformly at random from S, and t' be the random variable representing the number
of balls that are chosen from T. Then, for any real € > 0,

6—2525'

Prlt’ > (p+2)s'
Prft’ < (p - 2)s'

IN

, and

6—2525' .

IN

Theorem A.3 (Azuma’s Inequality [1]) Let Xo,..., X be a martingale with | X;+1 — X;| < 1,
Jor all 0 < v < k. Then for real A > 0,

Pr [— Xo| > AWk < 2772,

B Analysis of the uniform experiment

In this section, we analyze a uniform (X, U, e, T) experiment, defined in Definition 6.1. Let z and
u denote | X| and |U]|, respectively. Throughout this section, we assume that u is at least ¢; logn.
Also, ¢ is assumed to be sufficiently large and ¢ to be sufliciently small. For any ball 7 in X and
bin j in U, we say that ¢ is good for j if j is not in V;; otherwise, we say that ¢ is bad for j.

Lemma B.1 The number of bins that receive at most (1 — ce)x balls is at most u/c.

Proof: For each ball in X, the number of bad bins is at most eu. Thus, the total number of bad
“ball-bin pairs” is at most cuz. By an averaging argument, we obtain that the number of bins that
are bad for at least cex balls is at most u/c. B

Corollary B.1.1 The number of bins that receive at most x/2 balls is at most u/10. W

28

C Analysis of the random experiment

In this section, we analyze a random (X, U, e, 7) experiment, defined in Definition 6.2. We are
interested in bounds on random variables associated with the number of bins that receive at least
(or at most) ¢ balls for some positive integer ¢. We refer to these variables as threshold variables.
We are only concerned with threshold variables for which ¢ is at most 7; hence, we can assume 7
to be as large as |X|. Let and u denote | X| and |U|, respectively. Throughout this section, we
assume that u is at least ¢y logn. Also, ¢; is assumed to be sufficiently large and ¢ to be sufficiently
small.

We use the theory of martingales in our analysis of the random experiment. Our presentation
is based on that of [1]. The random experiment defines a probability distribution on the set of
functions Q from X to U U {L}, where L is a special bin, that contains the discarded balls. A
random function g drawn from € satisfies the following. For any 7 in X, we have: (i) for any j in
U\ Vi, Prlg(i) = /] = 1/u, (i) for any j in Vi, Pr[g(i) = 4] = 0, and (i) Prlg(i) = 1] = Vil u.
Fix a gradation) = By C By C ... C B, = X. Given any functional L : Q — R, we define a
martingale Zy, 71, ..., Z, by setting

Zi(h) = E[L(g) : g(b) = h(b) for all bin B;].

We say that L satisfies the Lipschitz condition if |L(h') — L(h)| < 1 whenever h and &' differ only
on Bjiy — B;. It has been shown that if L satisfies the Lipschitz condition, then |Z;4; — Z;| < 1
(for example, see Theorem 4.1 of [1]).

Lemma C.1 Let 7 be a threshold variable in a random (X,U,e,T) experiment. For any A > 0,
we have:

Pr[|Z — E[Z]] > W] < eV /2,

Proof: The functional associated with Z satisfies the Lipschitz condition. The desired claim
follows from Theorem A.3. B

We extend the definition of threshold variables to a sequence of s random experiments, given by
(Xo,Uo,e,7), ..., (Xs—1,Us—1,e,7). A threshold variable Z for a sequence of s random experiments
is the number of bins that receive at least (or at most) ¢ balls in at least one of the s experiments,
for some positive integer c.

Lemma C.2 Let Z be a threshold variable associated with a sequence of s random experiments.

For any A > 0, we have:
Z - E[Z]] > X [XZ»] <e N2,
1€[s]

Proof: Same as that of Lemma C.1. B

Pr

In the remainder of the section, we use Lemmas C.1 and C.2 to obtain high probability bounds on
certain threshold variables. Lemmas C.3 and C.4 consider a single random (X, U, e, 7) experiment.
As in Section B, we say that bin j is good for ball 7 if j is not in V;; otherwise, we say that j is bad
for 1.

29

Lemma C.3 Let ¢ be a real number greater than 4. If x is at least 4cu, then the number of bins
that receive less than ¢ balls is at most u(1/e° 4+ 1/20 + 4X¢) with probability at least (1 — 2=),

Proof: Let X’ be an arbitrary 4cu-size subset of X. Let U’ be the set of bins j such that j
is bad for at most 4c¢’ccu balls in X’. By an averaging argument, we obtain that |U’| is at least
(¢ = 1u/c.

Let Z denote the number of bins in U that receive less than ¢ balls. Let ¢ be a bin in U’. Let
X/ be the set of balls in X’ that are good for ¢, and let 2! denote | X/|. By the definition of U’, 2!
is at least (1 — ¢’¢)4cu. The probability that i receives less than ¢ balls is at most:

= ()67

0<j<e

/ 1 acg—c .
(e
c U uc

< C<4e(1—c’€))C

ed(1—ce)=1/u

1
< —
R

IN

I
o
P
i
o
—~
—_
|

Q\
Q]
e
e
o]
TN
|
|

9

for ¢ > 4 and ¢ sufficiently smaller than 1/¢.
We set ¢ to 20. Thus, F[Z] is at most (1/e+ 1/20)u. By Lemma C.1, the probability that Z
is at least (1/e°+ 1/20 4+ 4Ac)u is at most 2¢—Neu 1

Corollary C.3.1 If c is sufficiently large and x is at least 4cu, then the number of bins that receive
less than ¢ balls is at most u/10 whp. M

Lemma C.4 If x is at most cu, then the number of bins that receive at least 2ec balls is at most
u(1/22%° + \) with probability at least 1 — 2e="*,

Proof: Let Z denote the number of bins that receive at least 2ec balls. For any bin ¢, the
probability that i receives at least 2ec balls is at most (J*) 4= < s53=. Thus, F[7] is at most

2ec/ y2ec = 9Q2ec:

u/2%%°. By Lemma C.1, the probability that Z exceeds u(1/2%¢° 4)) is at most P |

Corollary C.4.1 If ¢ is sufficiently large and x is at most cu, then the number of bins that receive
at least 2ec balls is at most w/10 whp. W

In the following three lemmas, we consider sequences of random (X, U, e, T) experiments.

Lemma C.5 Let ¢ be a positive integer constant. Consider a sequence of s random experiments,
(Xo,Uo,e,7), ..., (X521, Us—q,e,7), such that ¢ < x; = | X;| <u= Uy for all i in [s], and U; N U;
is O for i # j. The number of bins in Use[sUi that receive at least ¢ balls is

Q (Z(xf/uc_l) — /Z z; logn) whp.
1€[s] 1€[s]

30

Proof: Let Z; be the number of bins in U; that receive at least ¢ balls. Let Z equal Eie[s] Z;. We
first obtain lower bounds on F[Z;] for all i, and hence a lower bound on E[Z].

Consider the ith experiment, namely the random (X;, U, ¢, 7) experiment. Let U be the set of
bins such that j is bad for at most 1002, balls in X;. By an averaging argument, we obtain that
|U!| is at least 99u/100. Consider a bin j in U/. The probability that j receives at least ¢ balls is

at least: a
((1 _ 1005)962') (1 B l) Tl ((zi/u))

c U uc

Thus, F[Z;] is Q(z§/u™"), and E[Z] is Q(T;epq(2§/u")). The desired claim follows from
Lemma C.2. B

Lemma C.6 Let ¢ be a positive integer constant. Consider a sequence of s random experiments,
(Xo,Uo,e,7), ..., (X521, Us—q,e,7), such that ¢ < x; = | X;| <u= Uy for all i in [s], and U; N U;
is O for i # j. The number of bins in Use[Ui that receive at least ¢ balls is

O (Z(xf/uc_l) + /Z z;log n) whp.
1€[s] 1€[s]

Proof: Let Z; be the number of bins in U; that receive at least ¢ balls. Let Z equal Eie[s] Z;. We
first obtain an upper bound on F[Z;] for any ¢, and hence an upper bound on F[Z].

Consider the ith experiment. The probability that j receives at least ¢ balls is at most
(") (1/u)* = O((xi/c)%). Thus, B[Z]is O(xf/u*"") and E[Z] is O(T;¢pq(2f/u°"")). The desired

claim follows from Lemma C.2. B

Lemma C.7 Let 1 be a positive real constant in (0,1], and let ¢ be a positive integer con-
stant. There exists an integer constant s such that in any sequence of s random experiments
(Xo,U,e,7), ..., (Xso1,U,e,7) satisfying exu < |X;| < u for all i in [s], the number of bins in U
that receive at least ¢ balls in at least one of the s experiments is 9u/10 whp.

Proof: Let Z be the number of bins in U that receive at least ¢ balls in at least one of the s
experiments. We first obtain a lower bound on E[Z].

Consider the ith experiment, namely the random (X;, U, e, 7) experiment. Let X be an arbitrary
eyu-size subset of X;. Let U/ be the set of bins such that j is bad for at most 100csqu balls in X/
By an averaging argument, we obtain that |U/| is at least 99u/100. Consider a bin j in U/. The
probability P; that j receives at least ¢ balls is at least:

((1 — 100€€1)U) (1 _ l)xi_c 1_ fleen,0),

c U uc

where f(e,e1,¢) is a constant in [0, 1], dependent on ¢, &1, and .

Let U’ be the set of bins j such that j is in U/ for at least s/2 different values of i. By
an averaging argument, we obtain that |U’| is at least 49u/50. Consider any bin j in U’. The
probability that j did not receive ¢ balls in any of the s experiments is at most:

(1= f(e,e1,¢))*? > 19/20,

for s chosen a suitably large constant. Thus, F[Z] is at least 19u/20. By Lemma C.2, it follows
that 7 is 9u/10 whp. B

31

