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The design of concurrent programs that run reliably and efficiently on networks
of interconnected computers will remain an important challenge for the foreseeable
future, as the size and complexity of such systems will continue to grow. Verification
techniques based on appropriate design formalism and complemented by mechanical
support will play an important role for asserting the correctness and quality of these
concurrent systems.

In this dissertation we focus on providing suitable automated assistance to
the design and verification of concurrent systems by developing a model checker for
finite state programs and propositional UNITY logic. Combining the verification
technique of model checking with the temporal logic of UNITY was motivated by

two goals, namely to exploit the simplicity and structure of UNITY logic as to
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provide efficient checking algorithms for a mostly automated verification, and to
allow the user to interactively supply design knowledge in order to improve the
system performance.

These goals have been met in three ways: (i) we have derived a model check-
ing procedure for safety and basic progress properties that is based on the proof
rules of UNITY logic, increases the efficiency of verification by making it possible
to replace fixpoint computations by simple verification checks, and, moreover, takes
advantage of state-based design knowledge in the form of invariants; (ii) we have
developed and formally investigated a new theory of generalized progress, in which
action-based hints can be provided to indicate how progress is achieved and which
can be used to improve the efficiency of checking and reasoning about arbitrary
progress properties; (iii) finally, we have implemented the resulting model checking
procedures as part of the UNITY Verifier System and have used our implementation

to demonstrate the improved verification performance with several examples.
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Chapter 1

Introduction

The current trend for the development of large parallel systems indicates that the
design of concurrent programs that run reliably and efficiently on networks of inter-
connected computers will remain an important challenge for the foreseeable future,
as the size and complexity of such programs and networks will continue to grow.

The complexity of large systems is usually managed by formulation of ap-
propriate design principles that permit the development of a system by composing
smaller subsystems, and by automated aids to assist in the design and the develop-
ment of such systems. Despite many research efforts over the last decade that have
resulted in the formulation of design formalisms and the construction of support
systems, the design and verification of complex concurrent software systems remain
a difficult task.

In this work we focus on providing suitable automated assistance for design
and verification of concurrent programs. We present our contributions to the area of
formal verification of concurrent programs in section 1.2; here, we discuss briefly the
notions of design and verification of such programs in general terms and provide a
classification of different approaches that have been taken in order to build reliable

systems.



1.1 Design and Verification of Concurrent Programs

Over the last decade the area of design and verification of concurrent systems has
received an enormous amount of interest by researchers worldwide. Many different
formal systems for reasoning about concurrent programs have been defined, different
languages have been introduced for writing such programs, and many methodologies
for effective designs have been proposed.

There are several criteria according to which methods for verifying concurrent
programs can be described and differentiated. In the following, we discuss some of
these criteria, explain how our approach to verifying concurrent programs can be
characterized according to these criteria, and suggest how our work contributes to

the current practice of program design and verification.

Simulation versus Formal Verification: The term verification has different
meanings for different people: in most scientific and academic environments program
verification refers to the task of formally establishing that a given program satisfies
a given specification, or is somehow equivalent to another program; in industrial
environments, however, verification is often synonymous with program validation
by testing or simulation.

While for very small sequential programs a simulation-based method can
establish correctness, it is impossible to make such a claim for larger, in particular
reactive programs, for which the number of possible interactions or orderings of
events is so large that only a negligible part of them can be validated by simulation.
Such a validation can increase a designer’s confidence in the program; it cannot,

however, establish its correctness for all possible executions.

A Posteriori versus Design Oriented Verification: Traditionally, design and
verification are viewed as separate tasks, with verification being attempted after a

program has been written. This a posteriori verification has two major limitations:



first, no guidance is provided to the designer to come up with a program that meets a
given set of specifications; second, many design decisions are no longer visible in the
final program description, thereby making the verification task often excruciatingly
difficult.

This situation can be contrasted with a design process in which the design
and the verification of a program are performed hand-in-hand. Ideally, the program
construction proceeds by repeated transformations from the initial specifications,
where each transformation is guaranteed to preserve required properties, thereby
establishing an implicit proof of correctness. Even if such a systematic way of
deriving a program from its specification and proving it at the same time is not
feasible — be it due to the size of the program, due to lack of a suitable formalism,
or due to a certain inexperience of the designer — such an attempt leads to stating the
assumptions and assertions about the program explicitly. This is a way to document
design decisions and to prevent this form of design knowledge from disappearing

between the lines of the final program text.

Interactive versus Automated Methods: Another way of characterizing a
verification method is by the degree of automation of the verification process. At
one end of the spectrum are fully automated methods that establish correctness of
a program (or the lack thereof) without any user intervention. At the other end are
paper-and-pencil methods (possibly enriched with some mechanical support) that
provide a method for verifying programs, but leave the discovery of a suitable proof
to the user.

A fully automated verification method does not exist for all kinds of systems,
but it is obvious that a high degree of automation is especially important for effective

use in an industrial production environment.

Monolithic versus Compositional Approaches: While a monolithic verifica-

tion method attempts to deal with a program as a whole, a compositional method



makes it possible to decompose a program into smaller components, verify the in-
dividual components separately, and then combine the verification results for the
components to assert properties of the entire program. It is generally accepted that
the compositionality of a method is crucial in order to be able to handle large and

complex systems of concurrent programs.

Nature of Programs: Finally, verification methods can be distinguished by the
type of programs they can be applied to, and by the application domains for which
these programs are designed. Different realizations encompass software protocols,
hardware circuits, synchronous programs, or asynchronous ones. It is expected that
a successful verification method capable of dealing with very complex systems will
have to take advantage of specific features of the program realization and of the

application domain.

1.2 Overview of the Thesis

With respect to the above criteria we can classify our research interests as follows: we
want to improve the applicability of formal verification; our approach should allow
the designer to take advantage of design knowledge in a direct way; our method
should be mechanically supported with as much automation as possible and as little
user intervention as necessary; our work should be placed in a context that supports
compositional design and reasoning; finally, our methods should be applicable to a
wide range of systems and applications.

Our goal, in summary, is to improve the practicability of formal verification
for a wide range of concurrent systems by demonstrating how the judicious use of
available design knowledge can improve the efficiency and the effectiveness of an

otherwise automated verification method.



1.2.1 Foundations

As a starting point for our work we need both a suitable formalism and a powerful
verification method.

A formalism suitable for our proposed work is required to have a clean and
rich logical structure, has to have simple yet powerful concepts supporting both the
design of concurrent programs and reasoning about them, and has to be capable of
dealing with many different systems. Out of the many existing theories for design
and verification of concurrent systems, very few meet these requirements. UNITY
([CM88]) has been found to be such a formalism, mainly because of its rich proof
system, general computational model, economy of concepts, compositional structure,
and design methodology.

As far as the choice of a verification method is concerned we want to build
on a method that has proven to be practically useful, that can deal with sizable
programs, and that can be used in a fully automated way. The verification technique
called model checking ([CES86]) meets these requirements and has, furthermore,

achieved great practical relevance.

1.2.2 Contributions

This dissertation makes three main contributions to the area of verification of con-

current programs:

1. We have combined UNITY logic with model checking to obtain efficient model
checking procedures for safety and basic progress properties. These procedures
take advantage of the structure of the UNITY proof system; they allow the
user to utilize state-based design knowledge, in form of invariants, to replace
expensive fixpoint computations by evaluations of simple local verification

conditions.



2. We have developed an extension of UNITY logic for progress called generalized
progress that allows the user to provide hints as part of progress properties.
Hints take on a form similar to regular expressions; they characterize how
progress is achieved in a computation. We have developed a logic to rea-
son about such generalized progress properties. Additionally, the verification
procedure can take advantage of the hints to improve the efficiency of check-
ing progress properties. The theory we have developed comprises a predicate
transformer semantics, a deductive proof system, the characterization of the

algebraic structure of the new properties, and an operational semantics.

3. We have implemented the model checking procedures for the extended logic as
part of a verification system called the UNITY Verifier System. The system is
both a useful tool for verifying concurrent programs, and an extensible plat-
form for exploring future research ideas. Our preliminary experiments show
that our approach can be substantially faster then existing model-checking

procedures.

1.2.3 Structure of the Thesis

The remainder of this thesis consists of seven chapters and four appendices, and is
organized as follows:

In chapter 2, Preliminaries, we introduce definitions and notation that we
use in the formal development of our theory. We also present a brief summary of the
UNITY notation and logic, and some facts about the verification technique known
as model checking.

The first part of our work deals with the theory of verifying properties of
UNITY logic: in chapter 3, Model Checking for UNITY, we show how combining
UNITY logic and model checking results in a verification technique suitable for deal-
ing with safety properties and basic progress properties efficiently. Verification of

arbitrary progress properties is addressed in chapter 4, A Generalization of Progress,



where we develop the theory of generalized progress properties. In chapter 5, Check-
ing Progress Properties, we demonstrate how the theory in chapter 4 can be used in
a model checker.

The second part of our work is devoted to the practical application of our
theory: in chapter 6, The UV System, we describe our implementation of the model
checking algorithms based on the previously developed theory. In chapter 7, Fzper-
tmental Results, we apply the UV system to a series of examples and demonstrate
the advantages of our verification techniques.

We summarize our results in chapter 8, Conclusions, and discuss possibilities
for extending the work presented here.

The four appendices provide additional information on various aspects of our
work: in appendix A, The UV Input Language, we present the complete grammar of
the input language of the UV system and discuss some extensions of it. A detailed
description of the scripting interface of the UV system that makes the functionality
of the system accessible to the user follows in appendix B, The Tel Interface. An
overview of the UV source files in appendix C, The UV Source Structure, is intended
for those who may wish to extend our system. Finally, in appendix D, Additional

Proofs, we include proofs of some of the theorems that were omitted in chapter 4.



Chapter 2

Preliminaries

The formal development of our theory in chapters 3, 4, and 5 requires some notation
and definitions which we introduce in section 2.1. We also give a brief overview of
two of the main ideas our work is built on: the temporal logic and programming
notation UNITY [CM88] is summarized in section 2.2, and the verification technique
of model checking [CE81](cf. [QS82, CES86]) is introduced in section 2.3.

2.1 Notation and Terminology

In the following we introduce some notation and collect some basic results that are
used throughout this thesis. We begin with some notational conventions in section
2.1.1, followed by a description of the fundamental concepts of programs, states
and predicates in section 2.1.2, and of the calculational proof format used in this
thesis, in section 2.1.3. The important notion of predicate transformers and some of
their properties are introduced in section 2.1.4, followed by the definition of extreme
solutions of equations and the characterization of some properties of such solutions
in section 2.1.5. Some definitions and notation concerning regular expressions, in

section 2.1.6, conclude the presentation of notation and terminology.



2.1.1 Notational Conventions

We use formulae of propositional and predicate calculus following the conventions
laid out in [DS90]; in particular, the infix “.” is used for denoting function applica-
tion. As usual, function application is left-associative. The following boolean and
arithmetic operators, with their usual meanings, are used for writing expressions;
we list them in order of increasing binding power (operators in the same line have

the same binding power):

Il
e

[l
e
A
IN
v
vV

Additional operators for relations and regular expressions will be introduced as
needed. We make sure that such an introduction does not cause ambiguities in
the operator precedence; for instance, when adding regular expression operators (cf.
section 2.1.6), precedence can be resolved by taking type information (i.e., regular

expressions versus predicates) into account.

Quantification

For quantified formulae of predicate calculus we use the following notation: for

@ € {¥,3} we denote by

(Qi:ra:ta)

the quantification over all ¢.¢ for which ¢ satisfies r.e . We call ¢ the dummy, r.i the

range, and t. the term of the quantification. If the range is understood from the



context, we may omit it.
This notation is generalized for arbitrary associative and commutative binary

operators: for any such operator op we write
(opi:r.a:ta)

to denote the value of any expression obtained by substituting the instances of
the dummy satisfying the range predicate in the term expression and folding the
resulting expressions using op. Since op is associative and commutative this value
is well defined. If op has a unit element w, we permit the range to be empty, in
which case the denoted value is w. Instead of introducing a binary set constructor

we use the more convenient notation
{i:rad:ti}

to denote set comprehension, namely the set of all .2 where the dummy ¢ ranges

over all values satisfying r.¢.

Sequences

We use N to denote the set of natural numbers. For any natural number n we
denote by Z, the set {¢:0 < ¢ < n:1i} of the first n elements of N. In the following
let .S be any non-empty set. A finite sequence of length k over S is a mapping from
Zy to S. An infinite sequence over S is a mapping from N to .S and has length w.
We write () for the empty sequence (i.e., the sequence of length 0), and |o| for the
length of a sequence 0. We denote by S* the set of all finite sequences over S, by ST
the set of all non-empty finite sequences over S, by S“ the set of infinite sequences
over S, and by 5 the set of all sequences over 5, i.e., §% = 5" U S¥.

We also define a few functions on sequences in S°: finite maps sequences
to boolean values indicating whether a sequence is finite (B denotes the boolean

domain):

10



finite : S>* =+ B

finite.oc = |o|<w

The function tail strips a sequence of its first element (if present):

tail : S0 = 5%

tail .() =

|tail.o| = Jo|—-1 if 0<|o|l<w

tail.o.i = o.(i+1) if 0<|ol<w AO0<i<]o|—1
|tail.o] = w if |o]=w

tail.o: = o.(i4+1) if [o]=w A ieN

The binary concatenation operator + appends two sequences:

+ S — 5 — 5

lo+H7 = |o|+|7] if |oj<w A 7| <w

loH7 = w if |ol=w V |7|=w

(c+7)i = o4 if 0<i<]|of

(c+7)i = 7.(i—|o|) if |o|<w AT <w A o] <i<]ol+]7|
(c+7)i = 7.(i—|o|) if |oj<w A |7|=w

We also extend the notation for quantified expressions to arbitrary binary operators

where the ranges are sequences, as follows:

(opi:o:t.i)
= u if |o|=0and u is a unit of op
= t.(0.0) if |o|=1
= (.(0.0) op (opi:tail.o:tad) if |o|>1

Finally, we adopt the convention that all formulae are universally quantified over all

free variables occurring in them.

11



2.1.2 Predicates, Programs, and States

The intended model for the theory developed in this thesis — both for defining the un-
derlying computational domain, and for the treatment of the operational semantics
of the proposed logic — is the structure of total deterministic labeled state transition
systems (TDLSTS): they are commonly used in modeling concurrent systems, they
are very general in that they allow both state-based and action-based formulations,

and they serve as a model for both UNITY logic and our extensions of it.

Programs

Formally, a labeled state transition system F' is a tuple (S, A,T,I) where S is a
non-empty set of states, A is a finite set of actions, T C S x A x S is a labeled
transition relation, and I C S is the non-empty set of initial states. For an LSTS
F we write F.S to denote its set of states, and similarly F.A, F. T, and F.I for its
other components. If (s,a,t) € F.T', we say that ¢ is an a-successor of s. For a
labeled state transition relation 7" and an action «, we denote by T, the a-successor
relation, i.e., the projection onto the first and third arguments of the restriction of
T to the second argument a: ((s,t) € T,) = (s,a,t) € T).

For our intended model of computation we require actions to be total and
deterministic: an action « is total if it is enabled in every state of the state space,
i.e., if every state s has at least one a-successor; it is deterministic if for any state s
there is at most one a-successor. A TDLSTS is a labeled state transition system in
which all actions are total and deterministic. It follows that in any TDLSTS F for
any action « the a-successor relation (F.T'), is a total function, which we henceforth
associate with a. We thus write a.s to denote the unique a-successor of state s.

Every TDLSTS we encounter in this thesis is described as a program in
the UNITY notation (cf. section 2.2, where we discuss briefly how such a program
defines a TDLSTS). Due to the close correspondence between a UNITY program

and the corresponding TDLSTS, henceforth, we use the term program to refer to
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both concepts.

A run of a program F is a finite or infinite sequence of actions, i.e., an
element of (F.A)>. We associate with every finite run z a function! from F.S to
F.S, mapping a state s to the state z.s obtained by executing the actions of z in

order:

().s = s
zr.s = (tail.z).((2.0).s)if [z| > 0

An ezecution of program F' is a pair (s,z) consisting of an initial state s in F.J
and an infinite run & of F. An execution (s, z) of F'is unconditionally fair if and
only if every « in F.A occurs infinitely often in z, i.e., for every « in F.A the set

{i:i € NAz.i=o:1}is infinite.

The Assertion Language

For any program F we assume the existence of an assertion language for denoting
state predicates over the state space of F, that is sufficiently expressive to charac-
terize the sets of states that arise in various constructions of our theory. We denote
by Pr the class of all state predicates over the state space F.S. We assume that
the assertion language is equipped with a semantics that determines whether any
given state in F.S satisfies a given state predicate: for a predicate p in Pp and a
state s in F.S we denote by s = p the fact that s satisfies p. With such a semantics
in place, every predicate p in P characterizes a subset of F.5, namely the set of
states satisfying p; also, by the above assumption, every interesting set of states we
encounter can be characterized by some predicate in Pr. Therefore, we often do
not distinguish between predicates in Pr and sets of states of F.9 .

Given a state s in F.S and a run « of F, we can consider the sequence of

!'We, thereby, overload the sequence x as both a mapping from states to states and a mapping
from some naturals to actions. Due to the distinct domains of states and naturals this does not
pose a problem.
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states obtained by executing z action-by-action starting in s. For any such s and
z and any predicate p in Pr we introduce the notation (s,z) = p to denote the
situation in which execution of z starting in s reaches some state (after a finite

number of steps) satisfying p. Formally,

(s,z)Ep = (Fy,z:2=y+H zAfinite.y:y.sE=p)

The Everywhere Operator

It is often desirable to quantify a predicate universally over the state space of a
program F in order to assert that the predicate is satisfied by every program state.
Following [DS90] we use the everywhere operator, a unary operator that has all

2. There are two

the properties of universal quantification over a non-empty range
different ways in which the range of this universal quantification can be defined,
either as quantification over the full syntactic state space, (i.e., over F.S), or as
quantification over the reachable part of the state space consisting of all states
that are reached from some initial state by some finite run (i.e., over the reflexive
transitive closure of F.I under the relation (Ja:a € F.A: (F.1),)).

The distinction between syntactic and reachable state space is important
when defining the semantics of UNITY programs with non-trivial initial sets, where
a complete axiomatization requires the so-called substitution axiom that corresponds
to limiting observations of the program behavior to only its reachable set of states
(for a detailed discussion of the substitution axiom and completeness of UNITY
logic, the reader is invited to consult [San91, Kna92]). As a consequence, we use two
variations of the everywhere operator: we surround a predicate by square brackets
[] to denote quantification over the reachable part of the state space, and by double
square brackets [] to denote quantification over the full syntactic state space. The

notion of reachable state space is formalized in section 2.1.5, where we introduce

the concept of extreme solutions of predicate transformers.

?Recall that we require the set of initial states of any program to be non-empty.
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2.1.3 Proof Format

Most of our proofs will be conducted in a calculational style, in which proof steps
consist of a number of syntactic transformations rather than being based on seman-
tic reasoning. In particular, for manipulating formulae of the predicate calculus
we use a proof format that was proposed by Dijkstra, Feijen, and others, which
greatly facilitates this kind of reasoning (for a thorough discussion of this format,
see [DS90]).

In this format a proof is a sequence of formulae related by = (equivales), =
(implies), or < (follows-from), interspersed with hints justifying the transformation
from one formula to the next. For instance, a proof that [A = D] could be written

in our format as

D

< {hint why [C' = D]}
C

= {hint why [B = (]}
B

< {hint why [A = B]}
A

The use of <= instead of the more traditional = can result in proofs that are easier
to understand. It is often the case that performing a proof step in one implication
direction requires a significant amount of clairvoyance, whereas the step is dictated
by the syntactic form of the involved formulae when performed in the opposite
direction.

We assume a certain familiarity with the predicate calculus (e.g. as presented
in [DS90]) and will justify many common transformations based on predicate or

propositional calculus with the hint predicate calculus.
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2.1.4 Predicate Transformers

A predicate transformer for a program F is a mapping® from P to Pp for some n
in N. We extend the [] and [] operators to predicate transformers by defining their

application to any unary predicate transformer 7 by

[r] = Z:7Z¢ePp:[r.7)),
I7] (N7 Z € Pp:[r.2]),

and similarly for predicate transformers of higher arity.
An important property of a predicate transformer is the extent to which it
distributes over disjunction or conjunction of predicates. A predicate transformer 7

is said to be conjunctive with respect to a set .S of predicates if and only if

[(Vp:peS:tp)y = 71.(Np:pesS:p)]

Similarly, a predicate transformer 7 is said to be disjunctive with respect to S, if

and only if

[(Ep:peS:tp)y = 1.(3p:pesS:p]

There are several notions of junctivity? depending on S. In particular, 7 is called
finitely conjunctive (finitely disjunctive) if it is conjunctive (disjunctive) for all non-
empty finite 9, it is called and-continuous (or-continuous) if it is conjunctive (dis-
junctive) for all non-empty linear® S, and it is called universally conjunctive (uni-
versally disjunctive) if it is conjunctive (disjunctive) for arbitrary sets 5. It is well
known that conjunctivity and disjunctivity over all non-empty, finite, and linear sets
S are the same and coincide with the traditional notion of monotonicity of 7. A

complete discussion of various junctivity properties can be found in [DS90].

? As usual, P} denotes the n-times Cartesian product of Pp.

*We use the term junctive and its noun form to stand for either conjunctive or disjunctive.

® A set of predicates is called linear if its elements can be arranged in a monotonic (strengthening
or weakening) denumerable sequence.
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In the following, we make use of three predicate transformers characterizing

the semantics of actions [Dij75]. These are

Weakest Precondition (wp): For an action a and a state predicate ¢, wp.a.g
characterizes precisely those initial states beginning in which each execution

of v terminates in a state satisfying ¢.

Weakest Liberal Precondition (wlp): For an action « and a state predicate ¢,
wlp .a.g characterizes precisely those initial states beginning in which each

execution of « either fails to terminate or terminates in a state satisfying ¢.

Strongest Postcondition (sp): For an action « and a state predicate ¢, sp .a.q
characterizes precisely those final states for which there exists an execution of

« starting in some state satisfying ¢ and terminating in that final state.

Since the actions we consider are total and deterministic, these predicate trans-

formers satisfy the following conditions. Proofs of these theorems can be found in

[DS90]:

1. Since actions always terminate, we have for all actions a: [wp.a = wlp .a].

Henceforth, we will use wp only.

2. For every action «, the predicate transformer wp .« is universally conjunctive

(again due to actions being total).

3. For every action «, the predicate transformer wp .« is universally disjunctive

(because actions are deterministic).

It can also be shown that under our assumptions, for every action « the predicate

transformers wp .« and sp .« are converse in the following sense:

[p= wp.aq] = [sp.c.p=q]
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This establishes that sp .« is universally conjunctive and disjunctive as well. From
our notation for actions we see that for action « and state predicate ¢ the pred-
icate transformer sp.a can be characterized as [sp.a.¢ = a.¢q]. Combining this

characterization with the above condition yields the following property of wp .o

[p = wp .a.(a.p)]

We also extend the above predicate transformers to whole programs: for a program

P with action set F.A we define the predicate transformers wp.F and sp.F as

[wp.F.qg = (NVa:a € F.A:wp.a.g)]
[sp.ll¢g = Fa:a € F.A:a.q)]

If the program F’ is understood from the context, we often use the predicate trans-
former wco (pronounced weakest constrains because of its connection to the con-
strains operator co of UNITY logic, cf. section 2.2.2) to denote wp.F. Clearly,

wp .F' is universally conjunctive, and sp.F is universally disjunctive.

2.1.5 Some Results on Extreme Solutions of Equations

In developing our theory for generalized leads-to properties we will encounter several
predicate transformers that are defined as extreme solutions of certain equations.
Given the implication ordering on predicates we call p the strongest (weakest) solu-
tion of the equation £ in the unknown Z — written as Z : F/ — if and only if p solves
F and any solution of F follows from (implies) p.

For equations of the form 7 : [Z = f.Z] for some monotonic predicate
transformer f, we denote by (uZ :: f.Z) the strongest solution of 7 : [Z = f.Z],
and call it the least fizpoint of f. Similarly, we denote by (v7 :: f.Z) the weakest
solution of 7 : [Z = f.Z] and call it the greatest fixpoint of f. Existence of such

solutions is established by the well known theorem of Knaster-Tarski [Tar55]:

Theorem 1 (Knaster-Tarski) For a monotonic function f, the equation
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772 =1.7]

has a weakest and a strongest solution. Furthermore, the strongest solution is the

same as the strongest solution of the equation
77 < f.7]

and the weakest solution is the same as the weakest solution of the equation
77 = f.7]

The following very useful theorem from [DS90] shows that certain junctivity proper-
ties are inherited by the extreme solutions of equations from the functions defining

them:

Theorem 2 For monotonic f, denote the strongest solution of 7 : [f(X,Z) = 7]
by g.X and the weakest solution by h.X. Then any type of conjunctivity enjoyed by
[ is enjoyed by h as well, and any type of disjunctivity enjoyed by f is enjoyed by g

as well.
We also note that the fixpoint operators are monotonic:

Theorem 3 For monotonic f and g:

=] = [uZ: [.2) = (w2 = 9.2]
If=9] = [(vZ: f.2)= (vZ : g.7)]

Proof . We show the proof for the least fixpoint; the greatest fixpoint is dealt
with analogously.

Since f and g are monotonic, their strongest fixpoints exist and satisfy in

particular
(w2 9.2) = gz 2 9.7)] (0)
(VX o [X < fX] = [(ps: [.72) = X]) (1)
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With this we observe

WuZ = f.2) = (uZ = g.2)]
< {(1) with X :=(uZ :: 9.2)}

WpZ = 9.2) < f(uZ 2 9.2)]
= {(0)}

lg{puZ i 9.72) <= [(uZ 2 9.7)]
< {predicate calculus}

[g <= f]

End of Proof.

Using predicate transformers we can now formalize the notion of reachable state
space: for any program F we define the set of reachable states of I’ as the set
characterized by the predicate si.F, called the strongest invariant® of F. A state is
reachable if it can be reached from some initial program state by a finite number of

transitions; hence we define
[si.F' = (uZ - F.IVsp.F.2)]

From the monotonicity of sp.F, it follows that the predicate transformer in the
body of the above fixpoint application is monotonic; therefore, the fixpoint exists
and is well defined. Using si.F we can also define the [] operator in terms of the []

operator by postulating for all p in Pg

[p] = [si.F = p].

As an immediate consequence of this definition we have for all p in Pg:

[l = [l

which allows us, for instance, to replace an assertion of the form [p] by [p].

A justification for this term is given in section 3.2.
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2.1.6 Regular Expressions

Part of our theory will make extensive use of a restricted form of regular expressions.
We briefly summarize a few basic definitions and some notational conventions related
to regular expressions that will be used later on. We start with some definitions
concerning strings and languages.

For a given finite alphabet A we denote by A* the monoid (A,-) of strings
over A, where - is the concatenation operator. The neutral element of A* is denoted
by € and is called the empty string. We often omit - and denote the concatenation
by juxtaposition of elements of A*.

A language over A is a subset of A*. For two strings s, € A* we say that s
is subsumed by t (written as s < t) if and only if s is a subsequence of ¢, i.e., s can
be obtained from ¢ by removing zero or more symbols. Formally, for s,t € A*, and

x € A:

(z-5) <t = (@Quviu,ve A :t=uzv A s<v)

For two languages K, L over A we say that K is subsumed by L if and only if every

string of K is subsumed by some element of L:
K<L = (Vs:seK:(3t:tel:s<ty)

It is easily seen that subsumption (<) is an ordering relation on languages over A
that is weaker than the language containment ordering (C).

We define reqular expressions over a finite alphabet A as the free universal
algebra [Wec92, Jac80, Con71] with the nullary constructors @), £ and « for each o €
A, the unary constructor * (repetition), and the binary constructors + (alternation)
and - (sequencing). We write + and - as infix operators and * as a postfix operator.
As usual, we often omit the - operator from expressions, writing for instance UV

instead of U - V. We also associate different orders of precedence with the operators
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to reduce the number of parentheses required when writing expressions: * binds
strongest, followed by -, followed by +. For instance, U + VW * denotes the element
U+ V- ().

Later, we will be mostly interested in a sub-algebra of this free algebra of
regular expressions, which is obtained from it by omitting the () constructor. For a
program I’ with action set F.A we denote this free algebra of (-free regular expres-
sions over F.A by Rp".

Any regular expression over some alphabet A denotes a regular language
([HU79]) over A by virtue of the following mapping £: L =0, L.e = {e}, L(UV) =
{z,y:x e LUNy e LV tay}, LU+V)=LUULV, and LU =(Ui:1 € N:
L.U%), where U° = ¢ and for all ¢ in N, Ut! = UU".

2.2 UNITY

In the following, we give a very brief overview of the UNITY programming notation
and temporal logic. A more thorough and detailed introduction can be found in

[CM88], while some more recent developments are described in [Mis95b, Mis95a.

2.2.1 Programming Notation

The computational model for UNITY is that of deterministic, total, labeled state
transition systems (TDLSTS) described earlier. The TDLSTS model is well suited
for describing many common classes of systems (e.g. hardware circuits or protocols),
and is familiar to many designers of such systems. In the following we briefly
describe the form of a UNITY program, show how the syntactic form corresponds
to a TDLSTS, present an example program, and describe how UNITY programs are

executed.

"Note that at first we are indeed dealing with the terminal algebra over the given constructors.
Only later in chapter 4 will we investigate a coarser equational theory for R p.
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Program Sections

A UNITY program consists of four parts: (1) a collection of variable declarations,
called the declare section, defines the state space of the program; (2) optionally, a
set of abbreviations, called the always section, defines certain transparent variables
used to write programs succinctly; (3) a set of initial conditions, called the initially
section, characterizes the set of initial states of the program, and (4) a finite set
of statements, called the assign section, defines the actions of the program and,
thereby, its transition relation. In accordance with our requirements for actions
(cf. section 2.1.4) statements are guarded multiple assignments, deterministic and
always terminating.

The TDLSTS corresponding to a program F' consists of the set of states of
F which is the Cartesian product of the domains of all variables declared in the
declare section, the set of actions corresponding to the statements of I’ listed in
the assign section, the transition relation defined as the union of all the labeled
transition relations corresponding to the individual program statements, and the

set of initial states characterized by the conditions in the initially section.

An Example

As an example of a UNITY program we consider the scheduling problem known as
Milner’s cycler [Mil89]. A cycler of size N consists of a cyclic arrangement of N
processes Fp through Py_; in which each process receives a signal as input from
its one neighbor, sends a signal to its other neighbor, and performs some further
observable actions. More precisely, in a ring of N processes, in which process ¢ sends
signals to process (i + 1) mod n for each 7 with 0 < ¢ < n, process P; has the state
transition diagram shown in figure 2.1.

As can be seen from the diagram, process F; repeatedly performs an observ-
able a-action, then synchronizes with process (¢ + 1) mod n via a communication

action ¢, and performs a b-action and synchronization with process (i — 1) mod n in
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choose

Figure 2.1: Transition Diagram for Process P; of Milner’s Cycler

either order. A property of the cycler is that the a-actions occur in cyclic order over
the processes in the ring. Initially, process Fp is ready to perform an a-action, while
all other processes are ready to receive synchronization signals from their respective
neighbors.

Figure 2.2 shows an encoding of the cycler for N processes as a UNITY
program. The variable cyc.i indicates the state of process P; (for 0 < ¢ < N) and

variable last_a records the most recently occurred a action.

Program Executions

An execution of a UNITY program is any unconditionally fair execution of the
associated TDLSTS. Operationally, an execution is obtained by selecting a start
state satisfying the conditions of the initially section and then repeatedly selecting
statements of the assign section and executing them (if the guard of a selected
statement evaluates to false in the current state, the entire statement is equivalent
to a skip operation, i.e., it doesn’t change the state). The selection of statements
is subject to the unconditional fairness constraint, i.e., every statement is selected
infinitely often.

Concerning the example in figure 2.2 it should be noted how the asynchronous
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program Cycler
declare
type PC = enum(start, sync, choose, be, cb);
type Index = int(0..N — 1);
var last_a : Index;
var cyc : Index — PC;
initially
last.a = N — 1;
cyc.0 = start;
(Vi:1<i<N:cyci=bey;
assign
(i:0<i< N:
last_a, cyc.t := 1, sync if cyc.i = start
cyc.t := bc if cyc.i = choose
cye.t = start if cyc.i = cb
cyc.(i — 1), cye.i = choose, start if cyc.(i — 1) = sync A cyc.i = be
cyc.(i — 1), cyc.i := choose, cb  if cyc.(i — 1) = sync A cyc.i = choose

= ==

end

Figure 2.2: UNITY program of Milner’s Cycler
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aspects of the scheduler (i.e., the interleaving execution of @ and b actions of different
processes) are expressed by separate statements in the UNITY program, whereas
the synchronous communication is modeled by multiple assignment statements, up-

dating several state variables simultaneously.

2.2.2 UNITY Logic

The logic of UNITY is a simple temporal logic providing many proof rules for rea-
soning about programs and their properties. Different from many state-based com-
putational models that reason about individual executions of programs, the UNITY
operators characterize properties of programs, i.e., properties of all unconditionally
fair program executions.

The UNITY programming theory provides many powerful rules for reasoning
about program properties. Using these rules one can replace an often tedious and
error-prone operational argument by a calculational proof, in which properties of
programs are derived by applying inference rules. Moreover, these rules can be used
to derive properties of programs, as well as — when applied in reverse order — to
guide the designer of a program who has to meet certain specifications, by suggesting
program refinements corresponding to the structure of the rules [CM88, Kna92].

In the following we introduce the UNITY operators and some rules for rea-
soning with them to the extent needed for this work. Proofs of most rules are

straightforward and can be found in [Mis95b, Mis95a].

Safety

The most fundamental safety property of UNITY logic is the constrains property, or
co property for short. The co operator is a binary relation over state predicates

and is defined by the following inference rule:

NVa:a € F.A:[p=wp.ag]), [p=4]
p co ¢
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The property p co ¢ asserts that in any execution a state satisfying p is always
followed by a state satisfying ¢. In order to model stuttering steps p is required to
imply g. Several other safety operators are expressed in terms of co :

pcop
stable p

(Ve :: stable z =¢)

constant z

stable p, [F.I = p]
invariant p

pA—q co pVyg

p unless ¢

A predicate is stable, if it remains true once it becomes true. An expression x is
constant if for any possible value e the predicate © = e is stable. A predicate is
mwvariant if it is stable and holds in all initial program states. Finally, the unless
operator is a binary relation over state predicates, such that p unless ¢ holds if
in any state satisfying p either p continues to hold forever, or holds up to (but not

necessarily including) a state satisfying g¢.

2.2.3 The Substitution Axiom

The operational semantics of UNITY programs is usually given with respect to the
reachable part of the state space of the program. For instance, program F enjoys the
property p — ¢ if and only if for any unconditionally fair execution of F' starting
in an initial state of F' any state satisfying p is also a state satisfying ¢ or is followed
by such a state.

On the other hand, the UNITY proof rules do not explicitly refer to the set
of reachable states. Instead, the so-called substitution axiom can be invoked in order
to restrict attention to a superset of the reachable part of the state space as needed.

The substitution axiom can be formulated as follows:
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invariant p
[r]
Since an invariant of a program is true over the reachable part of the state space,
it is equivalent to true in any program property. Thereby the substitution axiom
allows us to replace any invariant predicate of a program F' by true (and vice versa)

in any proof of a property of F.

Progress

The most fundamental progress property is called transient and is a unary relation
on state predicates. A predicate p is transient in a program F, if there is a program
action that falsifies p in all program states in which p holds:

(Fa:a e FA:[p=wp.a.(-p)])

transient p

The other basic progress property of UNITY logic is called ensures . It is a binary

relation on state predicates and is defined in terms of unless and transient :

p unless ¢, transient p A —¢

p ensures ¢

If p ensures ¢ holds for a program F' then there is, by virtue of the transient
part, an action of F' that establishes —p V ¢ when executed in any state in which
p A =g holds; together with the unless part we have that ¢ is established in any
execution starting in a state satisfying p and that p holds up to the point at which
q is established.

Progress properties are expressed in UNITY in general with the — (leads-
to) operator. The + operator is a binary relation on state predicates and is
formally defined as the transitive, disjunctive closure of the ensures relation, i.e.,

as the strongest relation satisfying the following three conditions:
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p ensures ¢
p—=4q

p = qq =T

p = r

NVw:weW:pw — q)
(FGw:weW:pw) — ¢

for any set W

The UNITY programming theory provides many laws for reasoning about progress
properties [CM88]. Among them is the so-called induction principle for leads-to
properties, which can be stated as follows: for a well-founded set (W, <) and a

function M mapping program states to W we have

NVw:weW:ipAM=w — (pAM <w)Vq)
p = q

Since there is only one rule for establishing an ensures property of a program
F, we can derive from the ensures rule and the substitution axiom the following

equivalence:
p ensures ¢ = [pA-g= weo.pVg)A[(Fa:a€ F.A:pA—qg= wp.o.q)]

We will also make use of another property, ensures,, , which is similar to ensures

but explicitly names the helpful action. For an action « in F.A we define:

p ensures, ¢ = [pA—qg= wco.(pVq)]A[pA-qg= wp.o.g]

2.2.4 Program Composition

For dealing with large programs a methodology is needed that makes it possible to
decompose large programs into smaller components, to reason about the components
individually, and to derive properties of the large program from the properties of its
components. The UNITY programming theory is compositional in the sense that it

provides many rules for reasoning about multiple programs and their composition.
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Although we do not exploit the UNITY compositionality theory in this work,
we mention a few results because of their relevance to future work on automated
program verification.

UNITY defines two forms of program composition: the symmetric program
unton combines two programs with compatible state spaces and initial conditions
by forming the union of their actions. The union theorem [CM88] makes it possible
to derive safety and basic progress properties of the composed program from its
components. In program superposition, an underlying program is augmented by
superimposed variables, additional actions, and restricted synchronous extensions
to existing actions. Due to the restricted way in which the program is augmented,
it is possible to state the superposition theorem, saying that every property of the
underlying program is also a property of the superimposed one.

Another way of dealing with program composition is by defining a notion of
closure properties [Mis] as a generalization of the ordinary UNITY properties. A
program [ is said to have a certain closure property, if the corresponding ordinary
property is enjoyed by any union of F with a program ' that satisfies certain
compatibility constraints with respect to F. These compatibility constraints have
the form of syntactic link constraints, restricting the access to certain program
variables according to their interface characterizations.

Although, in general, progress properties are not compositional, recent re-
search has provided methods for establishing some progress properties of programs

from properties of their components [Coh93, CK93, Ra095, Pra95].

2.3 Model Checking

Model checking [CE81, QS82, CES86] has become one of the most successful tech-
niques for verifying and analyzing certain classes of finite-state programs. It has

been used to find subtle errors in industrial designs.
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2.3.1 Basic Idea of Model Checking

A model checking task consists of determining whether a given system satisfies a
specification. Typically, the system is a program, circuit, or process, whereas the
specification is a formula of some temporal or modal logic.

When attempting to classify different model checking problems, one can dis-
tinguish different approaches by the different kinds of models used (such as au-
tomata, process algebras, Kripke structures, or labeled transition systems), and by
the temporal logic employed for specifying properties (such as CTL, LTL, CTL* or
the modal mu-calculus).

Another way to characterize different model checking approaches is to ask
whether they are global (i.e., they attempt to determine all the states of a given
system satisfying a given specification), or whether they are local (i.e., they attempt
to determine whether a given specification is satisfied for a given set of states).
Although the worst-case complexity of local and global algorithms for many systems
and logics is the same in general, the local approach can often be more practical
because it often avoids the (explicit or symbolic) construction of the entire state
space.

The term model checking is usually reserved for decision procedures, most
of them dealing with finite state spaces. However, some model checking algorithms
have been extended to unbounded or some restricted infinite state spaces, and some
procedures have been developed — typically based on the local paradigm — to deal
with infinite state spaces in general [Bra93].

A feature of model checking algorithms that is essential for their use in in-
dustrial environments is their ability to generate counterexamples from failed model
checking attempts. In large scale applications it is often a serious problem to model
programs in the context of insufficiently specified environments. Since this problem
cannot be solved by formal verification techniques alone, model checking algorithms

tend to be used not so much as checkers but more often as analyzers and debuggers:
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instead of having the model checker simply decide whether a given program meets
its specification, it is used as a tool for allowing the designer to experiment with
different ways of modeling various aspects of the system. In these applications a
simple yes/no answer to a model checker invocation is not satisfactory; instead a de-
tailed counterexample exhibiting more information about the nature of an existing

problem is highly desirable.

2.3.2 Symbolic Model Checking and OBDDs

Another characterization of model checking algorithms divides such algorithms into
enumerative and symbolic methods. Enumerative methods were the first ones intro-
duced. They attempt to explicitly build (possibly in a lazy fashion) the state space
of the system under investigation as part of the checking procedure. As such they
are limited by the size of the (part of the) state space that needs to be examined;
in particular, they are generally restricted to finite state systems. For some applica-
tions, however, enumerative methods have been used with success, especially when
combined with reductions of symmetric state spaces ([ID93]).

Symbolic methods, on the other hand, utilize some form of symbolic repre-
sentation for the models under consideration (such as set of states and transition
relations), and are thus capable of dealing with potentially much larger systems,
provided a suitably compact symbolic representation can be found.

A practical breakthrough in the application of model checking techniques
to large programs was accomplished through the introduction of ordered binary
decision diagrams (OBDDs) [Bry86] and their incorporation into model checking
algorithms [McM92, Pix90, CBM89]. The idea behind OBDDs is to encode sets of
states and transition relations that are relevant for the calculations of a symbolic
model checking algorithm by boolean functions over the state space of the program.
Using OBDDs it is possible in many applications to represent these functions in a

concise way and to manipulate them efficiently. Much of the practical success of
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model checking can be attributed to the clever use of this symbolic representation
in model checking algorithms for logics such as CTL.

Recently, model checking algorithms have become even more powerful by
exploiting symmetry, by using compositionality of the underlying models, and by
utilizing abstraction mappings in order to reduce the size of the state space that
needs to be examined. As a result some systems with more than 101990 states
can be handled today [CGL94]. Some of the inherent limitations of OBBDs have
also been successfully tackled for many practical applications. In particular, the
effects of the strong dependence of OBDDs sizes on variable orderings and the
difficulty of finding good orderings reliably, have been partially overcome by domain-
specific ordering heuristics [Gro94] and by dynamic reordering algorithms [Rud93].
Moreover, some programs that do not have an efficient encoding using OBDDs
(e.g. multiplier circuits) have been successfully verified using extensions of OBBDs.
By encoding word-level operations (instead of bit-level operations as done with
OBDDs), data structures such as binary moment diagrams [BC95] made it possible
to solve previously intractable problems [CZ96].

Altogether, model checking has become a very powerful verification tech-
nique, that can be easily used in practice (at least compared with approaches based
on theorem proving), due to its mostly automated nature. However, circuits and
protocols built today are still far too big and complex to be handled in general.
It is expected that techniques capable of dealing with such large systems will have
to take advantage of modular and compositional verification and of user supplied

design knowledge.
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Chapter 3

Model Checking for UNITY

The programming theory UNITY combines a simple yet expressive temporal logic
with a programming notation that is suitable for the formal specification, design,
and analysis of concurrent programs. Since its introduction in [CM88] the UNITY
theory has been thoroughly investigated [M*90] and simplified [Mis95b], it has been
applied to a variety of interesting problems [Sta92], and been used as a foundation

for other theories and formalisms [Car94, CWB94, CR90].

UNITY is Suitable for Program Design and Verification

There are several reasons why UNITY is an interesting formalism for designing,
reasoning about, and verifying concurrent systems. First, UNITY logic is simple
and, therefore, more likely to be effectively used by designers of concurrent systems
than more expressive though more complicated formalisms. In spite of its simplicity
UNITY logic is expressive enough to state many important and desired properties
of concurrent systems, such as invariants and progress properties. Secondly, the
programming model makes it possible to abstract away from program control flow,
one of the greatest hindrances in understanding concurrent systems. It is also ca-
pable of describing synchronous and asynchronous aspects of concurrent systems.

Moreover, UNITY logic has a well developed deductive system that allows formal
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reasoning about concurrent programs, thus providing several results about program
composition. This is, undoubtedly, one of the most important requirements of any
formalism intended to deal with large and complex systems. Finally, UNITY also
comprises a programming methodology that can aid the designer in building correct

concurrent systems.

Combining UNITY with Model Checking

Because of its suitability for designing and verifying concurrent programs, it is a
promising idea to combine UNITY with one of the most successful techniques for
program verification, namely model checking. The goals of this project, model
checking UNITY, are threefold: first, such a combination can result in a valuable
tool for designers and users of UNITY, aiding them in developing and analyzing
their programs by automating certain verification tasks which are often tedious
and error prone to perform manually; second and more fundamentally, we aim at
supporting the claim that a simple logic like UNITY is well suited for practical use
in designing concurrent systems, both because of its simplicity that allows the user
to conveniently reason within the logic, and because of its restrictions, that make an
efficient implementation of verification procedures for that logic possible. Finally, a
system implementing model checking for UNITY is expected to serve as a platform
for exploring advanced ideas for verifying and reasoning about concurrent systems
in future research. In the remaining chapters of this thesis we demonstrate how each
of these goals has been achieved in our work.

In the remainder of this chapter we investigate how the existing deductive
system of UNITY logic can be exploited to derive efficient model checking algo-
rithms: in section 3.1 we derive verification conditions for UNITY properties from
the UNITY proof rules. In section 3.2 we discuss the important role invariants
play in verifying properties with the UNITY verification conditions. We present the

UNITY model checking method in section 3.3 where we also discuss its advantages
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and limitations. An example in section 3.4 illustrates several aspects of the proposed

method. We conclude this chapter with some remarks in section 3.5.

3.1 Verification Conditions for UNITY

The most interesting challenge in designing a model checking algorithm for UNITY
logic is to determine how one can take advantage of the simplicity of the logic in
order to improve its efficiency compared to model checking algorithms for more
general logics such as CTL [CES86].

The starting point for a derivation of a model checking method that takes ad-
vantage of the deductive structure of UNITY is the UNITY proof system, presented
in section 2.2. As suggested by the substitution axiom, invariants play an important
role in proving properties of programs. In the following we make invariants explicit

by tagging properties with the invariant used in a proof:

Definition 1 (Tagged Properties) For a program F, a property © and an in-
variant J of F, (ﬂ')J denotes the property obtained by replacing each predicate p in
T by pAJ.

Tagging a property with an invariant J effectively restricts the property to the part
of the state space characterized by J. Since the semantics of traditional untagged
properties of a program F' is given with respect to the reachable set of states char-
acterized by the strongest invariant of F, si.F’ of F, it follows that a property =
is satisfied by F' in the traditional sense, if and only if (ﬂ')Si'F is satisfied. The
idea of tagging properties with a restricting invariant is similar to the treatment of
invariants in [San91].

We call a property of a program F' directly provable if it can be proved in the
UNITY proof system for F' without using the substitution axiom. The importance
of direct provability is emphasized by the theorem about normal forms of proofs

due to Misra [Mis90b]:
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Theorem 4 For any property ©@ of a program I there is an invariant J such that

(7)? is directly provable.

The significance of this theorem for our derivation of a verification method
is that any proof of a property 7 can be split into two parts, namely first finding
a suitable invariant J and then proving the tagged property 77 directly. In the
following we determine verification conditions for characterizing direct provability.
To this end, we restate the UNITY proof rules of sections 2.2.2 and 2.2.3 in terms

of tagged properties for a given program F"

invariant J [pAJ = q], Va:a e FA:[pAJ = wp.a.(¢AJ)]) (co)

(p co q)7
(p co p)’
(stable p)’ (stable)
(Ve :: (stable z = ¢)”)
(constant z)’ (constant)
(stable p)’, [F.I = p] ) )
invariant p (invariant)
(pA—g co pVq)’ (unless)
(p unless ¢)’
invariant J, (JGa:a € F.A:[pAJ = wp.a.(-pAJ)]) )
: 7 (transient)
(transient p)
(p unless ¢)’, (transient p A —q)’
= (ensures)
(p ensures q)
(p ensures q)”
b = o (promote)
(r = @7 (¢ = 1)’
= )7 (trans)
. . J
Nw:weW:(pw — ¢q)7) for any set W (disj)

(Guw:weW :pw) — ¢)’
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invariant true (true)

(7)’ :
for any property « (lift)
T

There are two additions to the usual UNITY proof rules dealing specifically with the
tagging of properties: (true) serves as a base case for establishing invariants and
the lifting rule (lift) relates tagged properties to ordinary untagged ones. It should
be noted that in rules (co) and (invariant) some conjunctions of predicates with
J have been omitted, because they are equivalent to the predicates alone: in (co)
the tagged condition [p A J = ¢ A J] is propositionally equivalent to [p A J = 4],
and in (invariant) the tagged condition [F.I = p A J] is equivalent to [F.] = p]
because .J is an invariant and therefore satisfies [F.1 = J].

By virtue of tagging the properties with invariants we are assured that
the rules (co), (stable), (constant), (unless), (transient), and (ensures) are
equivalences; the same holds for (invariant) as well if the occurrence of J in the
antecedent is existentially quantified. Only the rules for leads-to — (promote),
(trans), and (disj) — are proper implications in general.

As a consequence of these equivalences, the proof rules for co , stable |,
unless , invariant , transient , and ensures properties can be transformed
into formulae that refer only to the given program text (via wp) and to some
invariant needed for its proof. This form can be obtained by repeated substitution

of equivalences. For instance, we obtain for the stable operator:

(stable p)’
= {(stable)}

(» co p)’
= {(co)}
(invariant J) A Va:a € FA:[pAJ = wp.a.(pAJ)])

This derivation makes it clear that stable p is provable for F if and only if there

is some invariant J of F satisfying the last line of the derivation. Together with the
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soundness and completeness of the UNITY logic [Kna92] we obtain a verification
condition for F' and the property stable p . Similar derivations for the other kinds

of properties result in the following list of verification conditions:

F E pecog iff for some invariant J of F:
[JAp=4q] N Va:a€e FA:[JAp = wp.a.(J Ag)])

F | stable p iff for some invariant .J of F:
NVa:ae FA:[JAp = wp.a.(J Ap)])

F | constant z iff for some invariant .J of F:

Veu(Va:ace FA:[JAhz=e = wp.a.(JA(z=¢))]))

F E invariant p iff for some invariant .J of F

[Fl=p] N Va:ace FA:[JAp = wp.a.(JAp)])

F E p unless ¢ iff for some invariant J of F":
Va:ae FA:[JApA-qg = wp.alpha.(J A (pVq))])

F E transient p iff for some invariant J of F

(Fa:ae FA:[JAp = wp.a.(JA-p)])

F E p ensures ¢ iff for some invariant J of F":
Va:ae FA:[JApA—qg = wp.a.(JA(pVa)A
(Fa:ae FA:[JApA-qg = wp.a(JA(=pVg)])

The important feature of the above verification conditions is that they are local,
i.e., that they only refer to individual transitions (via wp) and do not rely on any
fixpoint computations. We use these verification conditions as the basis of a model
checking method for UNITY. Before we present the method in section 3.3 we need

to discuss the role of invariants for these verification conditions in greater detail.
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3.2 The Role of Invariants

It is obvious that finding a suitable invariant is essential for taking advantage of the
previously mentioned locality of the verification conditions. An invariant suitable
for proving a property m of a program F’ is any invariant of I that is strong enough
to make the verification condition for m true. We formalize this characterization

with the following lemmas:

Lemma 5 For any program F, the set of invariants of I is a complete lattice with

boolean implication as ordering relation, true as top, and si.F as bottom element.

Proof . It suffices to show that si.F is an invariant of /', and that for any invariant
J of F and any predicate K with [J = K], K is also an invariant of F'. By virtue

of the fixpoint definition of si.P we have
[si.F' = F.IVsp.F.(si.I)] (ST)

from which [F.I = si.F] follows immediately. For the stability we observe with
J = true for all o in F.A:

[true Asi.F' = wp .a.(si.F)]
<  {property of wp.a: [Y = wp.a.(a.Y)]}
[wp.o.(a.(si.F)) = wp.o.(si.F)]
< {wp.a is monotonic}
[ov.(si.F) = si.F]
< {definition of sp.F'}
[sp.F.(si.F) = si.[]

which follows from (SI). Together with the verification condition for invariants we,
therefore, have invariant si.F.
For any invariant J of F, and any predicate K for which [J = K] holds,

we have, by virtue of the verification condition for invariants and the transitivity

of implication, that [F.I = K]; also, since [J A K = J] holds, we have, by virtue
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of the verification condition for invariants and the monotonicity of wp.«, that for
all avin F.A the stability condition [J A K = wp .a.K] is satisfied. Hence K is an
invariant.

End of Proof.

It follows that a property 7 is satisfied by a program F' if and only if the verification
condition for 7 with respect to si.F is true. On the other hand, any invariant
of F' for which the verification condition of 7 becomes true suffices to establish «.
Therefore, it is not required to find the strongest invariant, but any sufficiently strong
invariant. In the following we describe different ways for finding such invariants. A
presentation of different techniques in the context of linear temporal logic can be

found in [MP95].

3.2.1 The Strongest Invariant

As mentioned before, the strongest invariant of F, si.F, is sufficient for proving any
property of £'. The main problem with si.f is, however, that it may not be possible
to be computed for a given program F. For infinite state spaces and recursively
enumerable (r.e.) sets of initial states, the set of reachable states is r.e. but not
necessarily decidable as can be seen by reduction from the Halting Problem (for
the definitions see for instance [HU79]): a deterministic universal Turing machine
can be modeled as a TDLSTS, hence it cannot be decided whether a final state is
reachable. But even for finite state programs F, where the computation of si.F
suggested by the fixpoint definition of si.F’ is guaranteed to terminate, it might
not be feasible to actually compute the strongest invariant due to limited resources

(memory and time), even when using a symbolic representation.

3.2.2 Automatically Generated Invariants

As we have seen, it may not always be possible to compute the strongest invariant

for large and complex programs. In such a case we have to find ways of computing
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sufficiently strong invariants with which we are then able to prove the properties at
hand. The first guidance for this task can be found in the program for which we
want to verify properties: we can take advantage of type declarations and possibly
other syntactic restrictions in order to derive certain invariants automatically. A
type invariant for some variable z simply asserts that z takes on values only from
its declared domain. Other invariants can be derived for variables on which only a
restricted set of operations is performed, e.g. integer variables which are incremented
or decremented only by some fixed constant. More elaborate techniques analyze
certain dependencies of sets of variables; e.g. the linear invariants of [M*94, MP95]

are obtained by determining linear dependencies between certain program variables.

3.2.3 User Supplied Invariants

In most of the interesting cases automatically generated invariants do not suffice to
prove the desired properties of a given program. The reason for this is that typing
and other syntactic features of a program description typically do not capture the
full semantic content of a program. A certain amount of design knowledge has
gone into the construction of such a program and cannot be extracted easily from
the program description alone. In a situation in which the program verification is
performed hand-in-hand with the program design, however, it is possible to transfer
some of this design knowledge to the verification task.

A particular form of such design knowledge is state-based and has the form of
invariants: the designer of a program often has an understanding about restrictions
on possible values of certain variables that are present as part of the program design,
but are very difficult to calculate without that knowledge.

It is therefore useful for the designer to supply such design invariants to
the verification procedure. The verification procedure has to establish first that the
provided invariants indeed are invariants of the program, and then to strengthen

the automatically generated invariants by the newly provided ones. It is often the
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case that some of these design invariants suflice to prove the desired properties of a
given program. Heuristic evidence of this fact is presented in chapter 7.

It should be noted that providing design invariants amounts to supplying a
partial proof of a property. In fact, if a deductive proof of some property uses the
substitution axiom on a series of invariants, it is clear that the conjunction of all
these invariants serves as a sufficiently strong invariant for the verification condition.
In chapter 5 we illustrate the relationship between proofs and design knowledge in

more detail.

3.2.4 Strengthening Invariants

Sometimes the above methods still do not suffice: the automatically generated in-
variants are too weak, design invariants are not available or are not strong enough,
and the strongest invariant cannot be computed; another problem might be that a
suggested design invariant cannot be established since it does not meet the stability
requirement with respect to the available invariants. In such cases an attempt can
be made to use a goal-oriented technique that takes the properties to be proved into
account.

While all the suggested techniques for finding invariants were independent
of properties to be established, the idea behind invariant strengthening is to utilize
the information obtained from a failed property verification to strengthen the used
invariant; this is done under the assumption that the given property, in fact, holds.

The procedure is as follows: a failed verification condition for a property 7
results in a predicate characterizing certain illegal states. For instance, a failed check
for the property stable p of program F with respect to the established invariant
J characterizes the set of states violating the stability condition as (3o : v € F. A :
JApA=wp .a.(JAp)). Under the assumption that stable p holds, we can strengthen
the invariant from J to JA Vo :a € FLA: J Ap= wp.a.(J Ap)). This, of course,

requires us to establish that the strengthened invariant is indeed an invariant of
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F. We can repeat this strengthening procedure with respect to other properties or
with respect to the alleged invariant until we succeed in establishing the invariant
and, thereby, confirm the validity of all properties used for strengthening, or until
we arrive at an alleged invariant that does not cover all reachable states (a simple
check is to test whether the set of initial states is covered). In the latter case we
have established indirectly that some property used for strengthening is not satisfied
by the program.

It should be noted that for infinite state programs the repeated strengthen-
ing of alleged invariants need not terminate by reaching a stable predicate or by
excluding some reachable states. However, for finite state programs this method
is guaranteed to strengthen invariants successfully. Of course, even in the finite
case the method might not be practicable if the representation of the strengthened

invariants grows too big.

3.3 A Model Checking Procedure for UNITY

After discussion of the two main ingredients of a verification procedure for UNITY,
namely the verification conditions based on the notion of direct provability, and
methods for finding sufficiently strong invariants, we describe below a model check-
ing procedure for finite state programs and propositional UNITY properties, and

discuss its advantages and limitations.

3.3.1 Description of the Procedure

A model checking procedure for UNITY logic can be constructed from three ingre-
dients: the verification conditions for the various properties, a method for finding
suitable invariants, and a representation for state predicates that is both concise
and allows efficient calculation of the verification conditions.

Before we can present such a method for full UNITY logic we need to address

the fact that we do not have a local verification condition for leads-to properties.
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Even though for finite state programs the disjunctivity rule (disj) is subsumed by
the transitivity rule (trans) [Mis95a], it is still not possible to define an equivalence

that directly relates leads-to properties to state or transition predicates’.

Dealing with leads-to

We can, however, express an equivalence involving leads-to by using the predicate
transformer wlt (weakest leads-to) from [JKR&9]: for a state predicate ¢, the pred-
icate wlt .q characterizes all states with the property that any unconditionally fair
execution starting from such a state eventually reaches a state in which ¢ holds.

Formally, wlt .q can be defined as

[wlt .q = (uZ 1 qV we.Z)]
[we.q = (Fa:a € F.A:stp.a.g)]

[stp.ac.g = (w7 i (weo.Z Awp.a.q)V q)]
and satisfies the following characterization:
[p=wltg = p— q
From this we can derive the following verification condition for leads-to properties:

FEp—yg iff for some invariant .J of F:
[JAp = wlt.(JAg)].

With the given verification conditions for UNITY properties, we present a (symbolic)
model checking procedure. The procedure takes as input a UNITY program F and
a set P of UNITY properties of F. The model checking procedure can be executed
in one of two modes, automated or interactive. The automated mode is available if

the strongest invariant si.F' can be computed.

YA transition predicate of program F is a state predicate over I.S x IS, thereby characterizing
a successor relation.
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Automated Mode

If si.F has been computed, the verification conditions for all input properties can be
evaluated with respect to si.F. A verification condition evaluating to true indicates
that the property is satisfied by F', whereas false means that the property is not met
by F. It can be expected that all verification conditions with the possible excep-
tion of the one for leads-to properties can be handled efficiently in the automated
case, since they are typically much simpler than the computation of the strongest

invariant.

Interactive Mode

In case it is not possible to compute si.F' the procedure is executed in interactive
mode. As long as there are unproven properties the user can select any such property
together with an established invariant, evaluate the verification condition, and —
depending on the result — be either done with the property by having successfully
established it, or be provided with some debugging information in case of failure.
Throughout the interactive execution, properties are paired with sets of in-
variant predicates, indicating which invariants have been used in checking the prop-
erty. Two sets of tagged properties are maintained by the procedure: SUCCESS
contains all the properties that have been proved for F, while TODQO contains the
properties that have been checked but could not be proved yet. Furthermore, the
variable INV contains the strongest invariant established for F' during the verifica-
tion session. INV is initialized to the invariant automatically generated from the

program text (or to true if no such procedure is available).

Choosing a Property When choosing a property © and an invariant J for the
verification condition evaluation, two conditions have to be met: J has to be implied
by the current value of INV, and J has to be stronger than all invariant predicates

7 is tagged with. The first condition guarantees that J is an established invariant of
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F, the second makes sure that the subsequent verification condition evaluation has
some chance of being successful. Unless the size of the representation of the current
value of INV is large, one should choose the current value of INV for J and select a
property that has not been checked with respect to the current value of INV. If no
such property exists, the user has to strengthen INV either by supplying a stronger
invariant property and successfully checking it, or by attempting an automated

invariant strengthening with respect to one of the properties in TODO.

Success of Checking Condition If the verification condition for a property =
and invariant J evaluates to true, the property is placed into the SUCCESS set; it
has been proved to be satisfied by F. If 7 is an invariant property, its predicate is

also conjoined to INV.

Failure of Checking Condition If the verification condition does not evaluate
to true, it could mean that J was not strong enough to establish 7. In particu-
lar, 7 is definitely not a property of F if the check with respect to the strongest
invariant, si.F', fails. The result of the computation of the verification condition
characterizes a set of states that violate the verification condition. For instance, the
negation of the verification condition for stable properties characterizes the states
for which the execution of some action violates the stability requirement. Based on
this information the user can decide either that there is an error in the property or
the program — in which case the property is removed, or the program is modified
— or that the used invariant needs to be strengthened. This strengthening can be
done either manually by submitting a new invariant property to the model checking
procedure, or by attempting an automatic invariant strengthening with respect to

.

Automatic Strengthening Automatic strengthening proceeds by conjoining to

INV the negation of the predicate characterizing the violating states. If the re-
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sulting predicate is not implied by the initial condition of F, the property used for
automatic strengthening is established as not satisfied by F. Otherwise a new in-
variant property with the resulting predicate is added as input to the model checking

procedure, starting another verification round.

Simple Optimizations

We point out four optimizations of the described procedure. First, when checking
an invariant property @ with respect to some invariant J, where .J is stronger than
the invariant predicate of 7, the result of the check can be asserted to be true.

Second, when checking the condition for a leads-to property, an early termi-
nation of a successful check is possible due to the monotonicity of the wlt fixpoint
iterations.

Third, since the computation of wlt does not depend on the invariant with
respect to which a leads-to property is checked, the wlt result of an unsuccessful
check can be cached and reused for a later check of the same property with respect
to some stronger invariant.

Finally, the conjunction with J can be dropped from the arguments of wp
and wlt in all verification conditions provided J is inductive, i.e., satisfies the condi-
tion [/ = weo .J]. It can be shown that for any inductive invariant J and predicates

p and ¢ the following equivalences hold:

[(JAp=wp.a.(JAG) = (JAp= wp.a.g)]
[(JAap=wlt.(JAg) = (JAp= wlt.q)]

The suggested simplification of the verification conditions is an application of these
equivalences. It is straightforward to show that the inductive invariants of a program
P form a complete sub-lattice of the lattice of invariants of F with true as top
element and si.F as bottom element. Furthermore, if predicate p has been shown

to be an invariant by using the verification condition with respect to some invariant
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J, then predicate J A p is an inductive invariant. Also, the type invariant of a
program is inductive. It follows that if only the type invariant of F', the strongest
invariant of F, or the conjunction of all established invariants of F are used for

checking other properties, the simplified verification conditions can be used.

3.3.2 Properties of the Verification Conditions

The verification conditions for safety and basic progress properties have two char-
acteristics that make them well suited for efficient model checking: they are simple
formulae of the underlying (non-temporal) logic, i.e., they do not contain any fix-
point operations; furthermore, they are naturally partitioned by the actions of F.
The simple form of the verification conditions is a consequence of the fact
that every action « in F.A corresponds to a deterministic conditional multiple as-
signment, for which the weakest precondition wp.s can be computed easily. More
precisely, a deterministic conditional multiple assignment in the assign section of a

UNITY program has the form

o= (i falZ,y) if baZ,79))
where & and ¥ are tuples of state variables, the f@ and b.7 are functions expressible
in the underlying logic, 7 ranges over some finite set, and the choices satisfy the
condition that whenever any two of them are enabled in a state (i.e., their guards
evaluate to true in that state), then their right hand sides evaluate to the same

tuples (this condition ensures determinism):

— —

Vi, g [b0.(Z, ) ANbJ(Z,Y) = [fa@9) = fi.(& 9]

Such conditional multiple assignment statements always terminate, and the weakest
precondition wp .a.q of a state predicate ¢ with respect to a statement « can be

computed as

[wp.o.g = (VibiZ,§) = (0.4).9) A ((Vi:=bi(Z, 7)) = q)]
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where 0.0 = {7 « f@(f, 7)} is the substitution of the components of f.i for the
corresponding variables of Z.

Due to the expressiveness requirements of the logic we obtain a form of the
checking conditions entirely within the underlying logic without having to rely on
fixpoint characterizations. We, thereby, eliminate fixpoint computations which may
require a number of iterations equal to the diameter of the state graph, by a single
formula evaluation whose complexity is comparable to a single step of the iteration.

The second characteristic that makes checking of UNITY conditions favorable
for an actual implementation of a model checking algorithm is the partitioning of
the global state transition relation by individual statements: the transition relation
of program F is the disjunction of the transition relations corresponding to the
individual statements of F. Instead of computing the relational product for the full
transition relation, we are able to use the representation of the transition relation
by a set of statements. It is actually not necessary to compute a pre-image of some
set of states under the global transition relation. Instead, the form of the checking
conditions makes it possible to compute independent pre-images (corresponding to
wp computations) for each disjunct of the transition relation corresponding to each
statement of the program. Not only can we avoid building the global state transition
relation, but the form of the checking conditions allows us to work exclusively with
the disjuncts of the global relation. This form of partitioning is long known to result
in a significant increase of the applicability of BDD-based symbolic computations
[BCM91], and can be directly derived from a given UNITY program at no extra
cost.

Although the locality of the verification conditions is responsible for the
improved efliciency of verifying properties, it reduces the availability of debugging
information that can be directly obtained from a failed verification attempt: the
failed verification condition typically contains only local information about some

local violation of the required condition. By itself this information is not sufficient
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to generate complete counterexample traces. For instance, a failed check of the
verification condition for a stable property characterizes a set of states and an
action, so that execution of the action in any one of the states violates the stability
requirement. This violating transition represents valuable information that can be
used for debugging. A complete execution trace of the program starting in an initial
state, however, cannot be derived from this result. In fact, there might be no such
trace, because the stability may be verifiable with respect to a stronger invariant.

For generating full traces non-local methods have to be used (cf. [McM92]).

3.3.3 Limitations

The proposed method for model checking UNITY programs has the potential to
improve the efficiency of verification tasks significantly. However, there are also
a few considerations that limit the applicability of the method: in particular, the
non-locality of the verification condition for leads-to properties, the reliance on state-
based design knowledge, and the dependence on asynchronous programs.

The verification condition for leads-to properties is non-local, since it involves
a fixpoint computation of alternation depth two (due to the fairness constraint of
UNITY) instead of just a simple evaluation involving pairs of states. Moreover,
design invariants are only exploited for detecting a possible early termination of the
outer fixpoint iteration. As a result, checking a general leads-to property amounts
to a rather complicated fixpoint computation that is typically even more resource-
consuming than the reachability computation for the strongest invariant. In that
sense our method does not improve the situation for checking general progress prop-
erties. We will address this problem at length in chapter 4, where we extend the logic
by a generalization of progress properties that often can be checked more efficiently.

The fact that the elimination of fixpoint computations relies on the avail-
ability of suitable invariants is a clear disadvantage if the model checking method

is used in a posterior: verification. When used as a tool during the design process,
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however, it is likely that some design knowledge is available in a form that can be
exploited by our method.

A more fundamental restriction to our approach is its dependence on asyn-
chronous programs. Although UNITY can express synchronous composition, pro-
grams that are mostly synchronous tend to consist of only a few very big statements,
thereby increasing the complexity of local wp calculations while reducing the degree
of partitioning at the same time. The resulting size of the formulae that need to be

manipulated makes it mandatory to use very efficient symbolic representations.

3.4 An Example

We illustrate some aspects of the UNITY model checking procedure with a small
example, an instance of Milner’s cycler for two processes. A description of the pro-
gram and its formulation in the UNITY programming notation has been presented
in section 2.2.1. Figure 3.1 shows the transition diagram for the two-process cy-
cler for the state space determined by the variables cyc.0 and cyc.1 (i.e., we do
not consider the auxiliary variable last_a). The initial state is marked with a bold
outline; also, self loops, which exist for all states, have been omitted to improve the
readability of the diagram.

For this program we demonstrate the verification of two properties, one safety
and one progress property. With the safety property we illustrate the locality of the
checking conditions, whereas with the progress property we show how the strength-
ening of invariants is used in the model checking procedure.

We start with a property asserting that process Fy leaves the sync state only

through the choose state:
cyc.0 = sync co cyc.0 = syncV cyc.0 = choose

The verification condition for this property with respect to the trivial invariant true

is
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Figure 3.1: Transition Diagram for Milner’s Cycler with 2 Processes
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[cye.0 = syne = cyc.0 = syncV cye.0 = choose] A

(Vo :a € Cycler. A : [eye.0 = sync = wp .a.(cyc.0 = syncV cyc.0 = choose)])

which is easily shown to be true. Evaluating this verification condition corresponds
to checking for each pair of successive states in the transition diagram that, if the
first state satisfies cyc.0 = sync, then the second state satisfies cyc.0 = syncVeye.0 =
choose. This check is performed symbolically: all transitions with the same state-
ment label are checked simultaneously. This property is established automatically
without a fixpoint computation because of the locality of the verification condition.
A traditional model checking procedure, on the other hand, would have explored
the reachable state space starting from the initial state while checking that each
new transition encountered does not violate the safety condition.

With the second property we want to illustrate a situation in which a property

cannot be established directly. We consider the progress property
cyc.0 = start — cyc.l = start

which states that whenever process Fy is in the start state then, eventually, process
Py is in the start state as well.

The verification condition for this property requires us to compute the predi-
cate wlt .(cyc.1 = start). The states characterized by wlt .(cyc.l = start) are shown
as filled circles in figure 3.2(a). Having computed this set of states, the model
checker determines that the state in which cyc.0 = start and cye.l = sync violates
the verification condition [cyc.0 = start = wlt .(cyc.l = start)]. In other words, the
model checker provides the debugging information that there exists a fair execution
of the program starting in this marked state that never reaches a state in which
cyc.l = start holds. This violating state is marked with a cross in figure 3.2(a).

After this initial verification check failed the user can attempt to provide a
stronger invariant based on his design knowledge while taking the information about

the violating state into account. For instance, the user might provide the following
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Figure 3.2: wlt-check: (a) failed, (b) with J, (¢) with K

55

Py bc  choose

9

start

sync




invariant J:
invariant cyc.0 €S = cycl g S

where S = {cb, start, sync}?. Invariant .J is established directly using the verifica-
tion condition for invariants. Furthermore, using .J, the leads-to property is also
established because there are no violating states in the restriction of the state space
to J. This situation is illustrated in figure 3.2(b) in which the states characterized
by J are shaded.

Alternatively, after the failure of the initial verification check the model
checker can be used to strengthen the current invariant automatically. This is ac-
complished by starting with the current invariant (true in our example), eliminating
the violating state(s), and then repeatedly eliminating those states that violate the
stability of the remaining set of states (i.e., the predecessors of previously eliminated
states). This process terminates with a stable predicate K, shown in figure 3.2(c)
as the shaded set of states. Since K contains the initial state of the program, it
is an invariant. It follows that the leads-to property is established automatically
since there is no state in the state space restricted to K that violates the leads-to

condition.

3.5 Discussion

In this chapter we have derived a model checking procedure for UNITY logic that
takes advantage of the structure of the UNITY proof system to obtain efficient
checking conditions for all safety and basic progress properties. A big performance
gain is achieved when fixpoint computations can be replaced by evaluation of cer-
tain local checking conditions, possibly as a result of supplying state-based design

knowledge in the form of invariants.

2The rationale for this invariant is given in section 7.4.
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While a complete automation of mechanical verification is an important goal
in particular for industrial applications, we can argue that for a situation in which
program design and verification are carried out together, it is at least worth trying
to utilize the available design knowledge for speeding up the verification. If these
attempts fail, one can always resort to the fully automated methods based on fixpoint
computations.

We also want to point out again that the suggested verification method based
on direct provability and the finding of suitable invariants is not per se limited to
finite state systems. For finite state systems the method is decidable and, when
combined with suitable representation techniques, practical for possibly very large
systems. However, it can also be applied in a more general context such as a part
of a theorem prover potentially capable of dealing with infinite state spaces, or with
unbounded families of parameterized programs.

The results obtained in this chapter can also be applied to logics that con-
tain (part of) UNITY as a sub-logic. For instance, the safety properties of UNITY
logic are contained in LTL and in CTL. Therefore a similar treatment of invari-
ants and local checking conditions can be incorporated into LTL and CTL model
checkers provided the specification formulae are restricted to the UNITY subset. In
order to take advantage of the checking conditions for the basic progress properties
transient and ensures , a logic must be able to meet the unconditional fairness
of UNITY, and must be able to distinguish different actions (e.g., indexed CTL ).

We also note that with an encoding of transition labels into successor states
and with a suitable fairness constraint, Fair CTL ([EL85]) contains the leads-to
properties of UNITY logic. However, the verification of such properties using the
UNITY checking conditions is not improved; in fact, the calculation of wlt corre-
sponds exactly to the fixpoint computations for leads-to properties in Fair CTL with
the appropriate fairness constraint. The checking of general progress properties is,

therefore, not improved by the proposed method. In the next chapter we investigate
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a new extension to UNITY logic that will enable us to utilize action-based design
knowledge for increasing the efficiency and effectiveness of verification of progress

properties.
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Chapter 4

A Generalization of Progress

Progress properties constitute a large class of properties frequently encountered in
the specification of concurrent systems. Informally characterized as expressing that
“something good will happen” [LamT77], progress properties are used for specifying
or asserting important achievements of concurrent systems such as guarantee of
response to service requests, convergence, or absence of starvation. Different from
safety properties, which are informally described as expressing that “nothing bad
ever happens”, progress properties inherently refer to infinite program executions in

that finite prefixes of program executions do not suffice to characterize them [AS85].

Automatic Checking of Progress Properties is Difficult in Practice

In chapter 3 we have seen how checking safety properties of UNITY programs can be
reduced to checking certain local conditions and to finding suitably strong invariants.
A similar approach fails in general for progress properties, because such properties
cannot be characterized by local checking conditions asserting how pairs of successive
states are related to each other (if this were possible then progress properties could
be characterized by finite execution prefixes as well); instead, some global variance
information needs to be provided in order to measure the progress towards some

goal.
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There has been significant success with various techniques and methods for
mechanical verification or automated verification support, in particular theorem
provers and model checkers, in dealing with and in reasoning about safety proper-
ties. In practice, these verification methods have been found to be often less useful
and attractive when applied to progress properties: establishing progress properties
is complicated for theorem proving by the need to perform transfinite induction
over a well-founded set, whereas for model checking the alternation depth 2 of char-
acterizations of progress under fairness limits symbolic approaches that are so far
the most successful ones. As a consequence, it is not uncommon to formally verify
only safety aspects of concurrent systems and to argue about progress properties
informally, or even to consider progress properties as practically not very impor-
tant. With our work we want to help with improving the manageability of proving
progress properties while making mechanical checking of progress properties more
efficient.

It is our goal in this chapter to propose a new notion of generalized progress
properties and to develop a theory for it that makes it possible to derive ordinary!
progress properties from generalized ones, to utilize design knowledge during rea-
soning about progress properties, and to improve the performance of automated

checking procedures based on the new progress properties.

Generalized Progress Theory Improves Checking Progress Properties

The key idea for accomplishing these goals is to formalize and thereby to make
explicit the way in which progress is achieved by a program. We do so by introducing

generalized progress properties of the form

w
p—q

(pronounced p leads-to ¢ by W) for state predicates p and ¢ and for regular ex-

'We use the term ordinary in connection with progress properties from now on to indicate the
traditional notion of progress and to distinguish it from our new notion of generalized progress.
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pression W over the alphabet of actions of the program under consideration. The
regular expression W captures how progress is achieved from states satisfying p to
states satisfying ¢. Using generalized progress properties in the design process for
concurrent systems is advantageous in two ways: the designer can incorporate ac-
tion based design knowledge in the design and verification process, and the actual
mechanical verification can possibly be performed more efficiently. The increase in
efficiency is due to the fact that a verification system can utilize the information
contained in the hints supplied in form of regular expressions in order to elimi-
nate some unnecessary fixpoint computations and to simplify others. The effective
use of such action based design knowledge, however, is of great importance beyond
improving verifier performance, by making it possible for the designer to provide
hints in a formal manner that become part of the verification process and can be
used in exploring and debugging programs and specifications. Moreover, the level of
provided design knowledge is scalable in the sense that whatever is made available
can be used, while without any specific design knowledge the generalized progress

properties coincide with the ordinary ones.

The UNITY Advantage

In section 3.1 we have seen how the local checking conditions for safety properties
and for basic progress properties were derived from the corresponding proof rules
for safety and basic progress of UNITY logic (cf. section 2.2). In a similar fashion
the formalization of progress via regular expressions is mostly determined by the
UNITY proof rules for leads-to properties: progress by single actions corresponds to
ensures properties, where the helpful action is named explicitly; sequencing corre-
sponds to transitivity, alternation to finite disjunctions, and repetition to application
of leads-to induction. The combination of simplicity of formal specifications and of
a rich structure of the deductive system makes UNITY a very suitable basis for the

development of the theory of generalized progress and its practical application.
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Different Semantics for Generalized Progress

There are different ways for developing and presenting an extension to an existing
logic and its semantics: properties can be described operationally in terms of pro-
gram executions; they can be characterized in relational terms by a set of axioms
and proof rules; or they can be characterized by suitable predicate transformers. In
our presentation we use different approaches in order to deal with different aspects
of the theory in the most suitable way, while demonstrating the close relationship
of these approaches to each other.

The operational characterization relates generalized progress properties to
program executions that often play a significant role in the conception and design of
programs, either due to an informal operational specification of the desired program,
or as a complementary technique enabling the designer to deal with and to concretize
inherently informal aspects of a program specification. An operational semantics is
therefore an important tool for capturing and expressing design knowledge.

Defining a property as a relation over predicates gives rise to a proof system
which is often the most suitable formalism to establish properties of programs under
consideration.

Finally, a characterization of generalized progress properties based on pred-
tcate transformers is appealing because its uniformity makes it suitable for calcu-
lational proofs to be used for proving meta-theorems about properties as well as

automating proofs of properties for specific programs by model checking.

Organization of This Chapter

The remainder of this chapter is organized as follows: in section 4.1 we introduce the
idea of generalized progress properties and relate such properties informally to both
program executions and to proofs of ordinary progress properties. In section 4.2 we
present a formal semantics for generalized progress properties based on predicate

transformers. In section 4.3 we provide a deductive system for proving generalized
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progress properties of given programs and relate it to predicate transformer seman-
tics. An investigation of the algebraic structure of the family of generalized progress
properties for different regular expressions is given in section 4.4. A presentation of
an operational semantics for the generalized progress properties in section 4.5 and

a discussion of the new theory in section 4.6 conclude the chapter.

4.1 Introduction

Progress properties are generally specified using some temporal operator, be it the
leads-to operator of UNITY logic, formulae of the form AG(p = AFq) of CTL, or
formulae like G(p = Fq) of linear temporal logic. Common to the ways these oper-
ators are defined is the fact that they abstract away from how progress is achieved
by hiding any reference to individual program actions or variant functions. This
abstraction makes it possible to characterize progress simply by pairs of state pred-
icates; however, establishing such progress properties for a given program requires
that individual program actions be made explicit (for instance in carrying out a de-
ductive proof), or at least be handled anonymously (for instance in model checking

algorithms).

The Advantages of Providing Design Knowledge

Although the formal verification of progress properties is highly desirable, it is often
unrealistic to require the designer to provide a complete proof of such a property.
The level of detail required to carry out a formal proof is often well beyond what
is considered practical during the design process; moreover, the designer’s expertise
might not be sufficient to carry out such a proof efficiently. In spite of these practical
difficulties, it is undoubtedly the case that the designer has some (possibly partial)
understanding of how progress is achieved by the designed program, either in the
form of some operational argument, in the form of a high level proof sketch, or simply

based on experience with similar programs. In all these cases a formalism that allows
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the designer to express such partial, often operational, design knowledge in a simple
way and that takes advantage of that knowledge in the verification process, has
the potential of improving the effectiveness of the verification task by conducting a
proof (by model checking) of some properties without forcing the designer to supply
a complete proof herself.

If the partial knowledge supplied by the designer is sufficient to derive such a
proof efficiently, the interactive verification has been completed successfully. If such
a proof cannot be found efficiently (or cannot be found at all), the designer needs
to be assisted in supplying further (more specific) design knowledge. If she can-
not provide such knowledge, or if the provided knowledge causes any inconsistency,
appropriate debugging information should be made available to aid in either debug-
ging the design, or in pointing out parts that require additional design knowledge
in order to be verified efficiently. However, not more information should be asked
for from the designer than what is necessary for establish the required properties.

By providing a way of making this form of design knowledge formally ac-
cessible to reasoning about programs, and by taking advantage of such knowledge
in the verification process, we could meet our goals of providing a more powerful
and effective way of dealing with progress properties than by the use of the leads-to

operator alone.

An Example

In the following we present a small example to illustrate the idea of how progress
properties are generalized by including explicit action-based progress information.
We then argue how this new theory and its associated methodology can be used in
program verification.

Let us consider the following program UpDown, in which n is an integer
counter, that can always be decremented, but can only be incremented if the boolean

variable b is false:
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program UpDoun
declare
var n: integer

var b : boolean

assign
[up] n:=n+1 if b
[down] n:=n-—1
[set] b := true
end

A progress property of program UpDown is that in any execution eventually n

becomes negative, which is expressed by the following UNITY leads-to property:

true — n<0.

The following informal argument serves as a justification for this claim: given
any execution and any state reached during the execution in which n is not negative,
there is some subsequent state in which b holds: at the latest the first state after an
execution of [set] ? satisfies b, due to the unconditional fairness there always is such
a next occurrence of [set], and no other action falsifies b. In such a state satisfying
b, either n is negative or a finite number of executions of [down] (namely, one more
than the value of n in that state) makes n negative. Again, due to the unconditional
fairness there are sufficiently many such occurrences of [down], and no other action
interferes with [down] by increasing n or falsifying b. Therefore, for any execution
and any state there is a future state® satisfying n < 0.

The above operational argument suggests that one can think of the progress
from true to n < 0 as being achieved by virtue of a strategy expressed by the regular

expression

2Square brackets are used in the following as part of the action labels.
®possibly the current state
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[set][down]™,

over the alphabet of actions of UpDown, i.e., by one [set] action followed by some
finite number of [down] actions. Using the notation for generalized progress prop-

erties, we can state that program UpDown satisfies the property

[set][down]”
true — n < 0.

Before we formalize the notion of a strategy for achieving progress and define the
operational semantics of generalized progress properties, we show that there is not
only an operational interpretation of such regular expression strategies, but also a
close connection to proofs in the deductive system of UNITY logic.

To this end we present a proofin UNITY logic of the property true — n <0
of program UpDown:

0. true ensures b
; from program text via [set]
1. true — b
; promotion from 0
2. bAn=k ensures bAn< k
; from program text via [down]
3. bAn=Fkw— bAn<k
; promotion from 2
4. bA|nl=k — (bA|n<kVvn<O
; arithmetic case split and disjunction on 3
5. b — n<0
; leads-to induction on 4 with metric |n| over the naturals
6. true — n<0

; transitivity with 1 and 5
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Steps 0 and 1 of this proof correspond to the [set] action in our proposed strategy;
similarly steps 2 and 3 correspond to the [down] action. The inductive argument
of steps 4 and 5 establishes the progress via [down]; finally, step 6, combines the
substrategies by sequencing. We therefore can argue that the above proof has a
structure corresponding to the regular expression [set][down]*. However, this regular
expression is much less detailed than the complete proof: in particular, the state
predicates needed to combine the different parts of the proof together, are omitted.
Hence, even a general idea about the structure of a proof of a progress property can

be turned into a strategy without requiring a complete and detailed proof.

Some Ways for Providing Design Knowledge

In summary, we have suggested that there are two ways in which the designer of a
concurrent system could formulate her design knowledge and come up with strategies
in the form of regular expressions for progress properties of the program under
consideration: suitable regular expressions can either be proposed based on the
operational understanding of the program under construction, or can be derived from
a high-level approximation of a deductive proof of the property. Both techniques
help the designer to express design knowledge and to convey it to a verifier that
can take advantage of the information provided. Moreover, the expressed design
knowledge can play an important role in reasoning about the program, in testing
hypotheses, and in debugging both programs and properties.

In the rest of this chapter we develop the theory of generalized progress. The
practical application of this theory to model checking, as well as a demonstration of

the techniques for utilizing design knowledge, follows in chapter 5.

4.2 A Predicate Transformer Semantics

Predicate transformers have been successfully used for defining and reasoning about

semantics of both sequential ([Dij76, DS90]) and concurrent ([JKR89, Kna92]) pro-
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grams. In this section we present a predicate transformer semantics for the general-
ized progress properties and use it for investigating some fundamental characteristics
of these properties.

We are interested in a predicate transformer semantics for several reasons:
the use of predicate transformers allows us to stay completely in the realm of predi-
cate calculus, instead of having to introduce axioms for each relation of a deductive
system, thereby facilitating a calculational style of reasoning; certain characteristics
of the generalized leads-to operator, such as monotonicity and continuity, can be
stated and answered more easily using predicate transformers; moreover, the pred-
icate transformers prove to be invaluable for investigating the algebraic structure
of the generalized progress properties (cf. section 4.4); and finally, the fixpoint def-
initions of the predicate transformers for generalized progress give rise to symbolic
algorithms which we subsequently use in our new model checking procedures for
progress properties in chapter 5.

The treatment of the predicate transformers for generalized progress is or-
ganized as follows: in section 4.2.1 we introduce a family of predicate transformers
wltr (for weakest leads-to by regular expression) by giving a fixpoint characteriza-
tion and exhibiting some basic properties of them. In section 4.2.2, we investigate
the junctivity properties of the wltr predicate transformers. In section 4.2.3 we
establish the close connection between the wltr predicate transformers and the wlt
predicate transformer (for weakest leads-to, [JKR89]) characterizing the ordinary

leads-to properties of UNITY logic.

4.2.1 Predicate Transformers for Generalized Progress

We begin the formal treatment of the semantics of generalized progress properties
by defining a family of predicate transformers wltr .W for any W in Ry inductively

over the structure of W:
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Definition 2 For any W in R, the predicate transformer wltr W is defined in-
ductively over the structure of W such that for all o in F.A, all U,V in Ry, and

all state predicates ¢ in Pg:

[wltr.c.¢ = 4] (wltrEps)
[wltr.a.q = (vZ:(weo.(ZVq)Awp.a.q)V q)] (wltrAct)
[wltr (UV).q = wltr.U.(wltr.V.q)] (wltrSeq)
[witr (U+V).q = wltr.Ugq Vv wltr.V.g] (wltrAlt)
[wlitr U*.q = (uZ:q VvV wltr.U.Z)] (wltrStar)

Informally, the predicate wltr .W.q is intended to characterize all those states from
which any execution characterized by W leads to a state satisfying ¢, where the
notion of executions characterized by regular expressions will be made precise later
in section 4.5.

Even with a very informal understanding of progress characterized by regular
expressions, we can attempt to motivate the above definitions. To this end we note
that (wltrEps) captures precisely the notion of progress without actions, where the
start predicate is the goal predicate, that (wltrSeq) captures the notion of sequenc-
ing which corresponds to the functional composition of the predicate transformers
of the subexpressions, and that (wltrAlt) captures the notion of choice which cor-
responds to the disjunction of the predicate transformers of the subexpressions.

The form of (wltrAect) is suggested by observing that for any action « in

R we expect wltr .a.q to be the weakest predicate that ensures ¢ via o, i.e.,

wltr .a.q¢ ensures, ¢ (E0)

Z ensures, ¢ = [Z = wltr.a.q] (E1)
Manipulating the definition of ensures, we observe

/ ensures, (

= {definition of ensures, }
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[Z AN=q= weco.(ZVq]N[ZAN-qg= wp.a.q]
= {shunting, predicate calculus}

[Z = ((weo.(ZV q) ANwp .a.q) V q)]

In order to characterize the weakest predicate that ensures ¢ via « it therefore seems

reasonable to ask for the weakest solution of the following equation:
77 = (weo.(ZVq) Awp.a.q)V q)]

The righthand side of this equation is monotonic in Z and therefore (by the Knaster-
Tarski Theorem) has a weakest solution, which is the same as the weakest solution

of the equation
77 = ((weo. (ZV q) ANwp.a.q) V q)]

which we denote by (vZ :: (weo.(Z V ¢) A wp .a.q) V q) and which we use as our
definition of wltr.a.q. We note that by virtue of the above construction and by
the relationship between the everywhere operators it follows that wltr .«.q satisfies
(E0) and (E1).

For (wltrStar) we expect that wltr.U*.q be the weakest predicate that
leads to g by some finite sequence of executions of U. Together with the observation
that wltr .U*.q certainly is at least as weak as ¢, this makes it seem reasonable to

ask for a solution of the equation
77 = qvwltr U.Z]

Due to the required finiteness of the repetitions we need to consider the strongest
solution of the above equation. In the next paragraph, we establish that for any W
in Rp wltr .W is a monotonic predicate transformer, by induction on the structure
of W. It follows that the righthand side of the above equation is monotonic in 7,
and that therefore (again by the theorem of Knaster-Tarski) the equation has indeed

a least fixpoint which we denote by (u7 :: ¢ V wltr.U.Z) and which we use as our
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definition of wltr .U™.q.
As some important properties of the wltr predicate transformers we establish

that each such predicate transformer is monotonic, strict, and weakening:

Lemma 6 (Basic Properties of wltr) For any W in Ry and any p,q in Pp:

Ip=4q] = [wltr.W.p= wltr W.q] (wltrMon)

[wltr .W.false = false] (wltrStrict)

l¢ = wltr .W.q¢] (wltr Weaken)
Proof .  We prove each property by induction over the structure of W. For

(wltrMon) we observe the following: wltr .c is the identity function and is there-
fore obviously monotonic; wltr .« is defined as a fixpoint of a monotonic equation
and is therefore monotonic itself; both wltr .(UV') and wltr.(U 4 V') are defined by
monotonic functions of the (by the induction hypothesis) monotonic predicate trans-
formers wltr .U and wltr .V; and wltr .U* is defined as a fixpoint of a monotonic
equation using the (by the induction hypothesis) monotonic predicate transformer
wltr .U, and is therefore monotonic as well.

For (wltrStrict) we show only the cases corresponding to single actions and

to repetition, the remaining cases are trivial. We observe for any « in F.A:

wltr .. false

= {(wltrAct)}

(vZ :: (weo.(pV false) A wp .. false) V false)
= {wp .« is strict, predicate calculus}

(v7 ::false)
= {predicate calculus}

false

and for any W in Rp:

wltr . WV*. false
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= {(wltrStar)}
(uZ ::false v wltr .U.Z)
= {induction hypothesis, predicate calculus}

false

Similarly, the proof for (wltrWeaken) is straight forward if we use the fact that in
the cases corresponding to single actions and repetition any fixpoint of the respective
equations is implied by g¢.

End of Proof.

4.2.2 Junctivity Properties of the wltr Predicate Transformers

We have already established in the previous section that for each W in Rp the
predicate transformer wltr .1 is monotonic. In this section we show that in general
wltr .W does not enjoy other interesting junctivity properties. In particular we
demonstrate that wltr . W, where W contains some action from F.A, is neither
finitely disjunctive nor finitely conjunctive, that it is not or-continuous, and is and-

* operator (see

continuous only if the regular expressions W does not contain the
section 2.1.4 for the definition of junctivity properties).

We start with the results about and-continuity:

Lemma 7 For any W in Ry not containing the repetition operator *, wltr W is

and-continuous. Allowing the * operator in general destroys and-continuity.

Proof . The proof proceeds by induction on the structure of W. We show that
all operators but the * operator preserve and-continuity, and that the * operator in
general destroys it.

Since [wltr .c.q = ¢] by (wltrEps), wltr .c is trivially and-continuous. By

(wltrAect), wltr .a.q for some « in F.A is the weakest solution of the equation

X:[X = 7.X.4]
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where
[r.X.Y = (weo. (X VY)Awp.a.Y) VY]

From the universal conjunctivity of weco and wp and the and-continuity of dis-
junction it follows that 7 is and-continuous. Hence, by theorem 2, wltr .« is and-
continuous as well. Function composition and disjunction preserve and-continuity,
hence for and-continuous wltr .U and wltr .V both wltr .UV and wltr .(U+V) are
and-continuous as well.

To show that the * operator does not preserve and-continuity we consider the pro-

gram

program AndContinuity
declare
var n: integer
assign
[o] n:=n+1

end

and define for any natural ¢ the predicate Q.i by [@Q.i = n > 7]. Clearly, (Vi,j 1 <
J = [Q.i <= Q.j]), hence {i : : € N : Q.i} is linear. For this set of predicates we

observe that

wltr .a*.(Vi:7 € N : Q.7)
{definition of Q.i, arithmetic}

wltr .a™. false
= {(wltrStrict)}

false

but that

(Vi:i€e N:wltr.a*.(Q.7))
= {calculation using (wltrStar), (wltrAct)}
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(Vi:i € N:true)
= {predicate calculus}

true

End of Proof.
The remaining results are presented in the following lemmas:

Lemma 8 For any W in Rp not containing actions from F.A, wltr W is both
universally disjunctive and universally conjunctive. For any W containing at least

one action from F.A, wltr . W is in general

(0) not or-continuous,
(1) not finitely disjunctive,

(2) not finitely conjunctive.

Proof . It is easily seen by induction on the structure of W, that [wltr .W.q = ¢]
for any W built from ¢, sequencing, alternation, and repetition alone. For such W
wltr .W is therefore clearly universally disjunctive and universally conjunctive.

For the three negative results we exhibit counterexamples:
ad (0): Consider the program

program OrContinuity
declare

var n: integer

var d:{-1,1}

assign
[o] nd:=n+d —1
3 ni=ntd
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which is a slight modification of the program of section 4.1.

For each natural ¢ define Q.i by [Q.0 = n <0V (d=—-1An <i)]. Clearly,
(Vi,j 21 <j=[Q.1= Q.j]), hence {i:7 € N :Q.t} is linear. Furthermore, it can
be shown that [wltr.a.(Q.i) = Q.(7 + 1)]. From this it follows that

wltr .a.(Fi: 0 € N : Q.7)
= {definition of ).7, arithmetic}
wltr .a.(n <0V d=-1)

{(wltrAct), from program}

true

but that

(Fi:1 € N:wltr.a.(Q.7))

= {(wltrAct), see above}
(Fi:ieN:Q.(i+1))

= {definition of ).7, arithmetic}
n<0vd=-1

ad (1): Consider the program

program FiniteDisjunctivity
declare

var n:{0,1,2,3,4}

initially
n=20
assign
[a] ni=n+2 if n<?2
(5] n:=4 if n=2
[v] ni=n+1 1n=0vn=3
end
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which has the following state-transition diagram:
ay

a B
B e e C(’B,y

O

a,p
For the predicates p and ¢ defined by [p = n=2Vn=4]and [¢ = n=3Vn = 4]

we observe that

wltr.a.(pV q)
{definition of p, ¢}
wltr.a.(n=2vn=3Vvn=4)

= {calculation using (wltrAct)}

true

but that

wltr.a.p V wltr.a.g
= {calculations using (wltrAct)}
(n=2Vn=4) VvV (n=1Vn=3Vn=4)
= {predicate calculus}

n#0

ad (2): Consider the program

program FiniteConjunctivity

declare
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var b : boolean
assign
[o] b:=—b

end
and observe for the predicates b and —b that

wltr .a.(b A —b)

{predicate calculus}
wltr .. false
{(wltrStrict)}

false

but that

wltr .a.b A wltr .a.(=b)

= {calculations using (wltrAct)}
true A true

= {predicate calculus}

true

End of Proof.

4.2.3 Relating wltr to wlt

We are now in the position to answer the important question about the relationship
between the ordinary leads-to properties of UNITY logic characterized by the wlt
predicate transformer and our generalized progress properties. In the following we
establish the relationship between wltr and wlt, later in section 4.3.3 we use the
result obtained here to state the close connection of the proof systems for ordinary
and generalized progress properties.

The relationship between wltr and wlt is characterized by the following

theorem:
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Theorem 9 (Relating wltr and wlt) For any W in Ry, and state predicate q

m Pg:
[wltr W.q = wlt .¢] (wltrSound)
W W e Ry : [wlt.q = wltr W.q]) (wltrCompl)

The first part of the theorem can be referred to as a soundness result since it asserts
that states from which a ¢ state is reached by virtue of W are states from which a ¢
state is reached eventually in the sense of ordinary progress. Conversely, the second
part can be seen as a completeness result since it shows that any state from which
a ¢ state is reached eventually is a state from which a ¢ state is reached by virtue
of some regular expression W in Rr.

In order to prove these results we recall a few properties of the wlt predicate
transformer, either taken from [JIKKR89] or being simple consequences of results found

there. First, wlt has the following fixpoint characterization:

[wlt .q = (uZ 1 qV we.Z)] (wlt0)
[we.q = (Ja:a € F.A:stp.a.g)] (wlt1)
[stp.ac.g = (w7 i (weo.Z Awp.a.q)V q)] (wlt2)

Furthermore, wlt and stp enjoy the following properties:

l¢ = wlt.q] (wlt3)
[stp.a.g = wlt .¢] (wlt4)
[wlt .(wlt.q) = wlt .¢] (wlt5)

We also need the following lemma relating stp and wltr:
Lemma 10 For a program F and any action « in F.A:

[stp.a = wltr.q]
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Proof . stp.a.qis by (wlt2) the weakest solution of the equation X : [X = f.X]
with f defined by

[f.X = (weo. X Awp.a.q) Vq]

and wltr.a.q is by (wltrAct) the weakest solution of the equation X : [X = ¢.X]
with ¢ defined by

[g-X = (weco.(XVq)Awp.a.q)V (]

Clearly both f and g are monotonic. Since wco is monotonic we have [f = g¢], and
hence by theorem 3 that [stp.a = wltr.«].

For the converse, we observe that wltr .«, as a fixpoint of g, satisfies

[wltr.a.q = (weo.(wltr.a.qV ¢) A wp.a.q)V q] (0)
and that stp .a, as the greatest fixpoint of f, satisfies

[X = fX]=[X = stp.ag] (1)
with which we have for all ¢:

[wltr .c.g = stp.a.¢]

< {(1)}
[wltr.a.q = f.(wltr.a.q)]

= {[wltr.a.q = ¢V wltr .a.¢] from (0), definition of f}
[wltr .a.q = (wceo.(wltr.a.qV ¢) Awpa.q) V q]

= {(0);

true

End of Proof.

We are now ready to prove the soundness and completeness results.
Proof of theorem 9. For (wltrSound) we observe for all ¢, and W by induction

over the structure of W:
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case W = ¢:

wltr .c.q

= {(wltrEps)}
q

= {(wlt3)}
wlt .¢

case W = o for some o € F.A:

wltr .a.q

= {lemma above}
stp .a.q

= {(wlt4)}
wlt .q

case W =UV:

wltr .UV.g

= {(wltrSeq)}
wltr .U.(wltr.V.q)

= {induction hypothesis, twice, wltr.U is monotonic}

wlt .(wlt .q)
= {(wlt5)}

wlt .q

case W =U+V:

wltr (U +V).q
= {(wltrAlt)}
wltr .U.q Vv wltr .V.g
= {induction hypothesis, twice, predicate calculus}

wlt .q
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case W = U™:

[wltr .U*.q = wlt .¢]
= {(wltrStar)}
WuZ ::qv witr U.Z) = wlt .¢]
< {induction hypothesis, theorem 3, predicate calculus}
WuZ ::qvwt.Z) = wlt.q]
< {least fixpoint property}
[gVwlt.(wlt.q) = wlt .¢]
= {(wlt3), (wlt5), predicate calculus}

true

For (wltrCompl) it suffices to exhibit a regular expression C'in R and to demon-
strate that for C' the implication [wlt = wltr .C] holds. Let L be a sequence of all
elements of I.A and define ' as

C = ((+i:L:Lay)~
Using (wltrEps), (wltrAlt), and (wltrStar) it is easily seen that

[wltr .((+7i: L : La)).q = Qa:a € F.A: wltr .a.7)]
[witr C.¢ = (uZ :qV (Ja:a € F.A:wltr.a.Z))]

From [wltr .o = stp .a] (by the lemma above) and (wlt0), and (wlt1), we see that
indeed [wltr .C' = wlt].
End of Proof.

4.3 Reasoning about Generalized Progress

In the previous section we have introduced the notion of generalized progress prop-
erties of a program F’ by defining a family of predicate transformers wltr charac-
terizing progress by regular expressions. While such a semantics is very useful for

investigating such properties and reasoning about them in a general way, it is often
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more practical to carry out proofs of progress properties of specific programs using
a deductive proof system. It is therefore our goal for this section to present such a
proof system for generalized progress properties, to exhibit some useful proof rules,
and to establish its connection to the previously presented predicate transformer
semantics.

We achieve this goal in three steps: in section 4.3.1 we introduce the gen-
eralized leads-to relation over regular expressions and pairs of state predicates as
the strongest relation generated by a set of inference rules; in section 4.3.2 we show
how closely the generalized leads-to relation and the wltr predicate transformers

are related. Finally, we list some useful proof rules in section 4.3.3.

4.3.1 A Deductive System

For a given program F we define in the following a ternary relation (AW.Ap.Aq. p LN
q) (pronounced p leads-to ¢ by W) over state predicates p and ¢ in Pr and regular
expressions W in Rr as the strongest relation generated by a set of inference rules.
Such a characterization in terms of inference rules is well suited to carrying out
proofs of properties of specific programs.

In order to state the proof rules we need to introduce the notion of a metric
over the reachable state space of F. In the following we use Ord to denote the set

of ordinal numbers.

Definition 3 (Metric) A metric M for a given program F is a family of state

predicates {i : i € Ord : M.i} from Pp, such that the following two conditions are

met:
[(Fi:i€ Ord: M.i)] (MetricEzh)
(Vi,j:i€0OrdAj€eOrd:i#j= [~(MinM.j)]) (MetricDis).

The first condition states that the predicates in M exhaust the reachable state space

of I, the second asserts that any two predicates with different indices are disjoint.
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The predicates in M are totally ordered by the ordering relation < (pro-
nounced precedes) obtained from lifting the total order relation on the ordinal indices

to the predicates:
(Vi,j:i€0rdAj€eOrd:i<j = Mi=<M.j)

After these remarks we are ready to define the generalized leads-to relation in terms

of a set of generating inference rules as follows:

Definition 4 (Generalized Leads-To Relation) For a given program F' the re-
lation (AW.Ap.Aq. p LU q) is the smallest subset of Ry X Pr X Pr satisfying the
Jollowing inference rules for all reqular expressions U,V in Ry, for all actions o in

F.A, for all state predicates p, p', q, r, and s in Pgr, and for all metrics M for F:

[p = q

b 5 (PrEps)
= p'], p' ensures,
r= ] p'i> z (PrAct)
p q
U 14
p =T, T —q
) v, ) (PrSeq)
U 14
pr—q 1 r—(q
noage o, .U , o
p=7p],VMi:ieOrd: P AM.4 — (PA@Ej:j<i:M.j))Vyg) (PrStar)

U*
p = q

An important observation is that for any W in Ry there is exactly one inference
rule that can be used for establishing that a triple (W, p,q) satisfies the relation.
It follows that the above rules are actually equivalences rather than implications*.

For instance, if p Y ¢ holds for a program F, then there exists a metric M and

“the lack of such equivalences for the ordinary leads-to relation was identified as the main
shortcoming of leads-to in section 3.
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a state predicate p’ at least as weak as p, such that for all ordinals 7, p’ A M.i N
(PP AN(Fj:j<i:M.j))Vqholds,

We can therefore render the above proof rules in the form of the following

equivalences:
p = [p=4 (AxEps)
pr q = (3p:[p=7p]:p ensures, q) (AxAct)
P g = Gl D A s ) (AxSeq)
p Y g = @rsirves=plir YD ga(s o g) (AxAlt)
p 25 g = @ :[p=p]: (3M : M is metric : (AxStar)
(Vi:icOrd:

PAMG s (pPAE) G < i M) V)

By virtue of these equivalences and by using structural induction over Ry we can

immediately establish that the generalized leads-to relation is well defined:

Theorem 11 (Well-Definedness of LN ) For any given program F the equa-
tions (AzEps), (AzAct), (AzSeq), (AzAlt), and (AzStar) uniquely define a
family of relations {W : W € Rp : (Ap.Aq. p LN q)}.

Moreover, if a triple (W, p, q) satisfies the generalized leads-to relation, it can be
shown to do so by a finite number of applications of the above proof rules (due
to the finiteness of the structure of W). Therefore every element (W, p,¢q) in the
relation has a finite proof; from now on we write /' = p LN g to denote that
(W, p, q) satisfies the generalized leads-to relation.

It is also worth mentioning that the use of ordinals is essential in (AxStar):
under unconditional fairness it is generally not possible to bound the number of steps
required to achieve progress from any particular start state, it can only be asserted
that a finite number of steps suffices. Therefore natural numbers as metric are not
sufficient; instead all ordinals of cardinality less than or equal to the cardinality of

the size of the state space have to be considered.
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4.3.2 A Characterization of Provability

The main result of this section is to establish the very close connection between
the generalized leads-to relation just defined and the wltr predicate transformers of
section 4.2. The result is analogous to the one relating the ordinary leads-to relation
to the wlt predicate transformer in [JKR89, Kna92] and is stated in the following

theorem:

Theorem 12 For any W in Ry and state predicates p and q in Prp:

[p=wltr Wq] = p 2 q

Proof . From theorem 11 the generalized leads-to relation is uniquely defined
by the equations (AxEps), (AxAct), (AxSeq), (AxAlt), and (AxStar). It is

therefore sufficient to show that the relation R defined as

RWpq = [p= wltr.Wq]

solves the same equations. We establish this by induction over the structure of W

by observing for all p and ¢ in Pp:

case W = ¢:

R.epyg

= {definition of R}
[p = wltr .c.q]

= {(wltrEps)}
[p= 4]

= {(AxEps)}
P q

case W = o for some o € F.A:

Rapg = p+— ¢
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= {definition of R, (AxAct)}
[p=wltr.a.q) = (@p :[p=p]:p ensures, ¢)
which we prove by mutual implication:
[p = wltr .a.¢]
= {predicate calculus, (EQ), wltr .a.q is witness for p'}
(T :[p=p]:p ensures, q)
S (B}
T [p=7]:[p = wltr .a.q])
= {predicate calculus}
[p = wltr .a.¢]

case W =UV:

R.(UV).p.q
= {definition of R}
[p= wltr .(UV).¢]
= {(wltrSeq)}
[p = wltr .U.(wltr.V.q)]
= {monotonicity of wltr .U, predicate calculus,
wltr .V.q is witness for r}
(Fr:[p= wltr U] A [r = wltr .V.q])
= {induction hypothesis, twice}
(Fr o (p -y r)A(r s q))
= {(AxSeq)}

uv
P('—>)f]

case W =U+V:

R.(U+V).pgq
= {definition of R}
[p= wltr .(U+V).q]
= {(wltrAlt)}
[p= wltr .U.q vV wltr .V.q]
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= {predicate calculus, p A wltr .U.q is witness for r,
p A wltr .V.q is witness for s}
(Frys:[rvs=p|:[r=wltr.Ug|A[s= wltr .V.q])
= {induction hypothesis, twice}
(Frys:[rvs=p|:r N gAs N q)

= {(AxAlt)}
U4V
P q
case W = U™:
* _ U
RUpg = pr— ¢

= {definition of R, (AxStar)}
[p = wltr .U*.q]
(F :[p=p]:(3M : M is metric :
(Vi:i € Ord:
PAMG “S (PAG g < i M)V g)))

= {induction hypothesis}
[p= wltr .U*.q] =
(F :[p=p]:(3M : M is metric :
(Vi:i € Ord:
[(PPAM.G) = wltr U((p'A(Fj:j<i:Mp)Vagl)))

In order to proceed with the proof we introduce some notation: first we use the
abbreviation E.p’.M.i for the innermost quantification term of the right-hand side

of the last formula:

Ep Mi=[(pAMi)=whtr U((p’ANEFj:j<i:M.j))Vq)]
We also introduce the predicate transformer 7 by

[r.X = ¢V wltr U.X]

Repeated application of 7 is defined for any ordinal ¢ in the usual way:
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[°.X = X]
for step ordinal i: [7".X = r.(r""1.X)]
for limit ordinal i: [7*.X = (Fj:j < i:77.X)]

Based on these definitions we state the following properties of 7:

7 is monotonic (TO)
wltr .U*.q is the strongest solution of X : [7.X = X] (T1)
[wltr.U*.q = (Ji:i € Ord : 7. false)] (T2)
[r.false = ¢] (T3)
(Vi,j:i<j:[ri.false = 77.false]) (T4)

(To) follows from wltr .U being monotonic, (T1) is a restatement of (wltrStar),
(T2) is a consequence of (T1) and the Knaster-Tarski Theorem, (T3) follows from
(wltrStrict), and (T4) finally follows from (T0) and (T3).

We restate our proof obligation using the above definitions:

[p = wltr .U*.q] (*)
(3 = p=pIA(EM : M is metric :
(Vi:i€Ord: E.p.Mui)))

which we prove in the following by mutual implication.
Proof of (*), = :

We choose as witnesses for p’ and M the following;:

[p) = wltr.U*.q]
[M.0 = —wltr . U".q]
(Vi:i>0:[M.i = rt.false A ~(3j:j < i:7 false)])

In appendix D.1 we show that M is indeed a metric, and furthermore satisfies the

following property for all ordinals ¢:
[(Fj:0<j<i:Mj) = 7' false] (Mo)

88



In order to prove the left-to-right implication of (*), it suffices to show that

for the choices for p’ and M above:

(Vi:ie Ord: E.p'.M.i)

which we establish by transfinite induction over ¢. For ¢« = 0 we observe

E.p'.M.0
= {definitions of M.0, p’ and E'}

[wltr .U*.g A = wltr .U*.q = wltr .U.q]
= {predicate calculus}

true

For ¢ > 0 we have

E.p M.

= {definitions of M.i, p’ and F'}

[wltr.U*.g A 7. false A ~(3j :j < i:77.false)

= wltr U ((wltr .U .q A (Fj: 7 <i:M.j))Vq)]
{from (T2): [r'.false = wltr.U*.q]}

[ri.false A =(Fj :j < i:7/. false)

= wltr U ((wltr .U .q A (Fj: 7 <i:M.j))Vq)]

For a limit ordinal ¢ the antecedent of the last formula is false, hence this last proof
obligation is trivially satisfied.

For a step ordinal ¢ we observe

[ri.false A =(Fj :j < i:7/. false)

= wltr U ((wltr .U .q A (Fj: 7 <i:M.j))Vq)]
< {left-hand side weakening, splitting the range}

[r. false = wltr .U.((wltr .U*.q A (M.OV (Fj:0< j<i:Mj)))Vq)]
= {definition of M.0, predicate calculus, 7 is step ordinal}

[r. false = wltr .U.((wltr . U*.qA{(3j:0 < j <i—1:M.j))Vq)]
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—  {(Mo)}
[r. false = wltr .U.((wltr .U*.q A 77" false) V ¢)]
= {(T2), predicate calculus}
[7%. false = wltr .U.(7"!. false V ¢)]
< {monotonicity of wltr .U, twice, predicate calculus}
[7%. false = wltr .U.(7" 1. false) vV wltr.U.q]
< {(wrltWeaken), predicate calculus}
[7%. false = wltr .U.(7" . false) V q]
= {definition of 7, predicate calculus}

true

Proof of (*), <

Let us abbreviate with B the following equation in p’:
P i([p=p] A (M : M is metric : (Vi : 7 € Ord : E.p/.M.7)))

In order to establish the right-to-left implication of (*), it clearly suffices to show

that any solution p’ of B also satisfies also satisfies
[p = wltr .U*.q]

i.e., that wltr .U*.q is the weakest solution of B. We therefore observe for any p’

solving B, where M is some corresponding witness metric:

[p = wltr .U*.q]
= {(MetricExh), (T2) and (T4)}

[P’ A(Fi:i€Ord: Mi)= (Ji:i€ Ord: r'*2. false)]
< {predicate calculus}

(Vi:icOrd:[p AMi= 72 false])

We establish this last proof obligation by transfinite induction over ¢. For i = 0 we

observe:

P AM.O
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= {p/ solves B, definition of E'}
wltr .U.q

= {definition of 7}
T.q

= {(T3)}

72 false

For ¢ > 0 we have:

p' A M.
= {p' solves B, definition of F'}
wltr U.(p’A(Fj:j<i:M.j)) V)
= {predicate calculus}
wltr U.((Fj:j<i:p AM.j)Vq)
= {induction hypothesis, wltr.U is monotonic}

wltr .U.((3j : j < i : 7772 false) V q)
For any limit ordinal ¢ we observe

wltr .U.((3j : j < i : 7772 false) V q)
= {¢is limit ordinal}
wltr .U.((Fj: j < i: 77 false) V q)
= {definition of 7* for limit ordinal i, (T3)}
wltr .U.(7%. false V T.false)
= {(T4), predicate calculus}
wltr .U.(7°. false) V ¢
= {definition of 7, (T4)}

7i+2 false

and for any step ordinal 7 we observe

wltr .U.((3j : j < i : 7712 false) V q)
{i is step ordinal}
wltr .U.((3j: j <i— 1: 792 false) V q)

= {(T4), (T3)}
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wltr .U. (77! false V 7. false)
= {(T4), predicate calculus}
wltr .U.(77+L false) V ¢
= {definition of 7}

7i+2 false

which concludes the proof.

End of Proof.

As an immediate consequence of the above theorem we observe for all regular ex-

pressions W in R and all state predicates p and ¢ on Pp:

wltr .W.g N q

P 2 q = [p= wltr.W.q]

which together establish that wltr .W.q as defined by the equations (wltrEps),
(wltrAct), (wltrSeq), (wltrAlt), and (wltrStar) is the unique weakest solution

of the equation p: (p LN q).

4.3.3 Some Derived Proof Rules for Generalized Leads-To

In this section we exhibit some useful laws that increase our repertoire of proof rules
and enable us to establish more easily generalized leads-to properties of programs.

In the following let F' be any program.

Theorem 13 (Derived Proof Rules) For any VW in Rp and any state predi-

cates p,p',q,q', and b in Pg, for any set S and any mappings f,q: S — Pp:

b=qd = @+ q (Tmply)
=A@ g = (%9 (LhsStr)
P ) Alg=d] = (S ) (RhsWeak)
(Ym:meS: fm = gm) = (GenDisj)

((Am:m e S: fom) R (Im:m e S:g.m))
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(» 5 false) = [p] (Impossible)

(p ,L qVvb) A (b »L ry = (p m qVvr) (Cancel)

(Imply) states that the generalized leads-to relation as a binary relation over pred-
icates is weaker than implication. By (LhsStr) and (RhsWeak) the generalized
leads-to relation is weakening in its right and strengthening in its left argument.
Finally,( GenDisj), (Impossible) and (Cancel) are generalizations of the general
disjunction, impossibility and cancellation theorems of the ordinary leads-to relation
(cf. [CMB8S]).

Proof of Theorem 13. All proof rules are established by using the fundamen-
tal connection between the generalized progress relation and the wltr predicate
transformers (theorem 12) and properties of wltr:

For (Imply) we observe for all W, p and ¢:

P 'L q
= {theorem 12}
[p = wltr .W.¢]
< {(wltrWeaken), predicate calculus}

[p = q]

We prove (LhsStr) and (RhsWeak) simultaneously by observing for all W, p,p’. ¢

and ¢':

P
= {theorem 12}
[p = wltr W.¢]
< {antecedent [p’ = p], predicate calculus}
[p = wltr .W.¢']
< {antecedent [¢ = ¢'], (wltrMon), predicate calculus}
[p = wltr .W.¢]
= {theorem 12}
P 'L q
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For (GenDisj) we observe for all W, S, f and g, where all quantifications are over

elements in S:

(Vm :: fom U g.m)
= {theorem 12}
(Vm :: [fom = wltr .W.(¢g.m)])
= {predicate calculus}
(Vm : [fom = (Tm : wltr W.(¢g.m))])
= {predicate calculus, (wltrMon)}
[(Fm 2 fom) = wltr W.(Fm = g.m)]
= {theorem 12}
(Im :: fom) R (Im :: g.m)

For (Impossible) we observe for all W and p:

p Vs false
= {theorem 12}
[p = wltr .. false]
= {(wltrStrict)}
[p = false]

= {predicate calculus}

[—p]

Finally, for (Cancel) we observe for all W, p, ¢, r, and b:

b sy

= {theorem 12, predicate calculus}
[b = wltr . W.r]

= {predicate calculus}
[qVb = qVwltr . W.r]

= {(wltrWeaken), (wltrMon)}
[gVb = wltr W.(qVr)]

= {(wltrMon), (wltrSeq)}
(wltr.V.(¢V b) = wltr . (VW).(¢V r)]
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= {from antecedent: [p = wltr.V.(qV b)]}
[p = wltr (VW).(¢V r)]

= {theorem 12}

qu\/T‘

End of Proof.

We conclude our listing of properties of the generalized leads-to relation by relating
it to the ordinary leads-to relation of UNITY logic. The soundness and completeness
result given below is an immediate corollary of theorems 9 and 12 and the following

connection between the ordinary leads-to relation and the wlt predicate transformer

(cf. [JKR&9]):
[p=wltg = p+— ¢
Put together we obtain the following

Corollary 14 For any W in Ry, and state predicates p and q in Pp:

a9 = =0 (Sound)
p—q = <E|W:W€Rp:pb1>q> (Compl)

In summary, we see that proving p LN q for some W establishes the ordinary
p +— q as well, while conversely any ordinary progress property can be proved as a

generalized one.

4.4 Progress and Regular Expressions

After having established properties of the predicate transformers wltr .W for each
W in RF in section 4.2, we now turn to the task of investigating the structure of the
family of such predicate transformers, i.e., to the task of determining the relationship
of predicate transformers wltr .U and wltr .V for different regular expressions U and

Vin Rg.
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It is our goal to design an equational theory for such predicate transformers
that allows us to relate different regular expressions that may be used as hints in
the verification of progress properties. Based on such a theory we are able to de-
sign methodologies for effectively using regular expressions in progress proofs, for
instance by replacing certain regular expressions by others that allow for a more
efficient mechanical verification, or by experimenting with different regular expres-
sions in order to check different hypothesis about design knowledge, to gain a clearer
understanding of how progress is achieved, and to help in program and specification
debugging.

We will meet the goal of designing an equational theory for R by introducing
the notion of a progress algebra which captures the essence of the algebraic structure
of the wltr family of predicate transformers. We could have restricted ourselves to
analyzing this family directly, but the introduction of a special algebra for doing so
provides a layer of abstraction that makes it possible to separate algebraic issues
from the details of the fixpoint characterizations of the predicate transformers, and
to compare the proposed algebraic structure to other familiar structures like Kleene
algebras [Koz90].

The characterization of the algebraic structure of wltr is done in two parts:
first, in section 4.4.1, we define the notion of progress algebras and establish a
few properties of such algebras. Then, in section 4.4.2, we demonstrate that the
family wltr of predicate transformers can be considered a progress algebra, which

establishes the algebraic characterization of wltr.

4.4.1 Progress Algebras

So far we have regarded Rr as a free algebra generated by the actions in F.A and by
the operators e, - (sequencing), + (alternation), and * (repetition). In the following
we define a coarser algebraic structure that we call a progress algebra by presenting

a list of equalities and equational implications which define a congruence relation
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on regular expressions and thereby an equivalence class structure.

For a given program F we refer to the resulting algebraic structure as Ry
from now on and call it the progress algebra for program F. First we define the
equational Horn theory for Ry, then we show that Ry bears many similarities
to the well known Kleene algebras and to the algebra of regular events. In the
following we use the familiar formalism and terminology of Kleene algebras [Koz90]
where appropriate.

We start with the definition of progress algebra in which the binary relation
< (pronounced subsumed by) is defined by U <V = U+ V =V.

Definition 5 (Progress Algebra) A progress algebra K is the free algebra with
binary operations - and 4, unary operation *, and constant € satisfying the following

equations and equational implications for all U, V, and W in K:

U4+ (V+W) = U+ V)+W (PrAlgo)
U+V = V+U (PrAlg1)
W4+W =W (PrAlg2)
U(VW) = (UV)W (PrAlg3)
W o= W (PrAlg))
We = W (PrAlg5)
Uv+Uuw < UV +W) (PrAlgé6)
U+VW = UW+VW (PrAlg7)
e < W (PrAlg8)
e+ WW* < W~ (PrAlg9)
e+ W W < W~ (PrAlg10)
UW < W = UW<W (PrAlgi1)
WU < W = WU < W (PrAlg12)

A progress algebra satisfying (PrAlg11) but not necessarily (PrAlg12) is called a
right-handed progress algebra, and a progress algebra satisfying (PrAlg12) but not
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necessarily (PrAlg11) is called a left-handed progress algebra.

Axioms (PrAlg0), (PrAlgl) and (PrAlg2) characterize the + operator
as associative, commutative, and idempotent. The - operator is associative by
(PrAlg3) and has ¢ as a unit by (PrAlg4) and (PrAlg5). Axioms (PrAlgé)
and (PrAlg7) define how - and + interact, namely that - distributes over + on
the right, but not quite on the left. The next axiom (PrAlg8) identifies ¢ as a

* operator are characterized by

minimum element. Finally, the properties of the
axioms (PrAlg9) through (PrAlgl2).

The motivation for defining an algebraic structure by the above equations
and equational implications is twofold: first, we want to stay as close as possible
to the axioms of Kleene algebras ([Koz90]), which define a very important and
familiar structure that arises in many different areas of computer science including
automata theory and program semantics. Doing so allows us to reuse some theorems
of Kleene algebras and regular language theory. Second, we want to capture the
equational structure of the family wltr of predicate transformers as an algebra. This
makes it possible to characterize the essence of the structure of the wltr predicate
transformers in an abstract way.

Comparing progress algebras with Kleene algebras we notice three major

differences:

1. Progress algebras lack the equivalent of the () constant of Kleene algebras.
One could consider introducing such a constant by defining [wltr .0.q = false],
which would actually satisfy the Kleene axioms referring to (). Since such a
regular expression does not have a counterpart in either the operational model

or the deductive system, we omit it from further consideration.

2. A progress algebra does not have to satisfy the left distributivity of - over +.

Only the weaker inequality (PrAlg6) is required instead.
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3. On the other hand any progress algebra satisfies an additional axiom not

present in Kleene algebras (PrAlg8).

The first two differences account for the fact, that progress algebras do not have a
ring structure. Whereas the omission of a unit element for + is somewhat arbitrary,
the lack of left distributivity of - over + is essential. This lack is a well known
property of process algebras [Mil89], which, however, are substantially different due
to their lack of any law corresponding to (PrAlg8).

In the following we list some important properties of progress algebras that
can be derived from the above axioms. The proofs can be found in appendix D.2.

First we have the following properties of the subsumption relation <:

Lemma 15 In any left-handed or right-handed progress algebra K, the subsumption
relation < defined by U <V = U4V =V is a partial order. Moreover the
sequencing, alternation, and repetition operators are monotonic with respect to <,

ie., for allU, V, U and V' in K with U <V and U' < V':

vur < vv! (PrAlgSeq)
U+U < v4V/ (PrAlgAlt)
U < v (PrAlgStar)

In spite of the differences from Kleene algebras many theorems of Kleene algebras

also hold for progress algebras as stated in the following lemmas:

Lemma 16 In any left-handed or right-handed progress algebra K for a«ll U, V, and
W in K the following laws hold:

s WW* = W (PrAlg13)
cHWW = W (PrAlg1})
W W= = W* (PrAlg15)
(W= = wr (PrAlg16)
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Furthermore, for right-handed K and oll U, V, and W in K:

V+UWSW = UVIW (PrAlg17)
and for left-handed K and allU, V, and W in K:

VWU <SW = VU <W (PrAlg18)

(PrAlgl13) through (PrAlgl6) correspond to well-known properties of the * op-
erator of Kleene algebras. Furthermore, as in Kleene algebras [Pra88], (PrAlgl7)
is equivalent to (PrAlgl1), and (PrAlgl8) is equivalent to (PrAlgl2).

Finally there are some interesting properties of progress algebras that are

not generally true in Kleene algebras:

Lemma 17 In any left-handed or right-handed progress algebra K, for all n € N
with n > 0 and sequences W in Z,, — K, for all permutations © of Z,,, and for all

U and V in K the following laws hold:

UV < ¢ = U = ¢ (PrAlg19)
UV < ¢ = V =¢ (PrAlg20)
U+V <e = U=c¢ (PrAlg21)
U <e = U = ¢ (PrAlg22)
Ut = U (PrAlg23)
DU = U (PrAlg24)
HU - W:U)y < (U:Wor:U) (PrAlg25)
HU - W: Uy = (U:Wor:U)* (PrAlg26)

(PrAlgl9) through (PrAlg22) characterize ¢ as an irreducible element,
(PrAlg23) and (PrAlg24) show that arbitrary and positive repetitions are equiv-
alent. (PrAlg25) states that the alternation of regular expressions is subsumed

by any permuted sequencing of those expressions, and (PrAlg26) asserts that the
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repetitions of an alternation of regular expressions and of any permuted sequencing
of those expressions are the same.

In order to show that the equational theory of progress algebras is consistent
and to illustrate the connection between Kleene algebras and progress algebras,
consider Regsy., the algebra of reqular events over the non-empty alphabet X, the
elements of which are regular languages over >. This is an important instance of a
Kleene algebra that we relate to a progress algebra in the following.

Clearly, Regy. is not a progress algebra, since (PrAlg8) is not satisfied even
if W is restricted to denote only non-empty languages: for any « in X, € < a does
not hold, since L.(¢ + ) = {¢,a} # {a} = L.(a) . Conversely, a progress algebra
can certainly not be embedded in a Kleene algebra because of the lack of equality
in (PrAlg6). However, if we interpret < as the subsumption order on strings (cf.
section 2.1.6), and define equality by U =V = U <V AV < U, it is easy to check
that the resulting structure meets all progress algebra axioms (see appendix D.2.4

for details).

4.4.2 Ry as Progress Algebra

In the previous section we have introduced the notion of progress algebras and have
exhibited many properties of them. It is our goal now to show that the family wltr
of predicate transformers can be regarded as a progress algebra. This allows us to
characterize the algebraic structure Ry of the wltr predicate transformers for any
program F'.

In order to show that wltr is a progress algebra, we have to define the
equational theory of wltr, to relate the operators -, 4+, *, and the constant ¢ of Ry
to operations on predicate transformers, and finally to show that the equations and
equational implications defining progress algebras are met by wltr.

The equational theory and the algebraic structure of wltr are defined as

expected: any W in Ry denotes the predicate transformer wltr . W over Pg; the
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meaning of the constant ¢ is given by (wltrEps) as the identity transformer; the
meaning of the operators -, +, and * is given by (wltrSeq), (wltrAlt), and (wl-
trStar) as functional composition of predicate transformers, disjunction of pred-
icate transformers, and a least fixpoint construction respectively; the meaning of
the basic elements o in F.A is given by (wltrAct) as the wltr .« predicate trans-
former. Finally, equality of regular expressions over F.A (written as =p) is defined

as equivalence of the corresponding predicate transformers, i.e., for all U, V in Rp:
U=V = [wltr.U=wltr.V].

The induced subsumption relation <y on Ry is then given by
U<pV = U+V=pV.

It follows that for all U and V in Rp:

U<pV

= {definition of <p}
U+V=pV

= {(wltrAlt), definition of =}
[wltr .U VvV wltr .V = wltr .V]

= {predicate calculus}

[wltr U = wltr.V]

In other words, the subsumption relation <y on Rp is exactly the implication
of the corresponding predicate transformers. Based on this interpretation we can

characterize the algebraic structure of Ry as follows:
Theorem 18 For any program F, the algebra Ry is a right-handed progress algebra.

Proof .  We need to show that the progress algebra axioms (PrAlg0) through
(PrAlgll) are satisfied by Rp.
(PrAlg0), (PrAlgl), and (PrAlg2) follow by virtue of (wltrAlt) directly

from the associativity, commutativity, and idempotency of disjunction. Similarly,
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(PrAlg3) follows by virtue of (wltrSeq) from the associativity of functional com-
position.

From (wltrEps) we know that wltr .c is the identity transformer, which is
the left and right identity element of functional composition. This establishes (using
(wltrSeq)) both (PrAlg4) and (PrAlg5).

For (PrAlg6) we observe for all ¢ in Pp:

wltr U(V +W).q
= {(wltrSeq), (wltrAlt)}

wltr .U.(wltr.V.q vV wltr .W.q)
< {wltr.U is monotonic}

wltr .U.(wltr .V.¢q) v wltr .U.(wltr .W.q)
= {(wltrSeq), (wltrAlt)}

wltr (UV +UW).q

Similarly, for (PrAlg7) we observe for all ¢ in Pp:

wltr (U + V)W.q
{(wltrSeq), (wltrAlt)}

wltr .U.(wltr .W.q) V wltr .V.(wltr .W.q)
{(wltrSeq), (wltrAlt)}

wltr (UW 4+ VIV).q

(PrAlg8) follows directly from (wltrEps) and (wltrWeaken). For (PrAlg9)
we see by virtue of (wltrStar) that wltr .W*.q is a solution of the equation X :
[q vV wltr W.X], i.e., it satisfies

[wltr W*.q = ¢V wltr .W.(wltr . W=.q)]. (Po)
With this we observe for all ¢ in Pg:

wltr .(s + WIWW*).q
= {(wltrAlt), (wltrEps), (wltrSeq)}
gV wltr W.(wltr .W=.q)
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= {(P0)}
wltr W*.¢

The proof of (PrAlgl0) is slightly more difficult. We first observe for all ¢ in Pp:

wltr .(s + W*W).q

= {(wltrAlt), (wltrEps)}
gV wltr W*W.g

= {[¢g = wltr W*W.¢] from (wltrWeaken)}
wltr W*W.q

{(wltrSeq)}
wltr W*. (wltr .W.q)

thus leaving us with the proof obligation
[wltr W*.(wltr .W.q) = wltr W*.q], (P1)

which we prove by mutual implication: the implication from right to left is an im-
mediate consequence of (wltrWeaken) and the monotonicity of wltr .WW*. For the
other direction we introduce two predicate transformers f and ¢, that characterize,

by virtue of (wltrStar), the left-hand and right-hand side of (P1) respectively:

[f.X
[g.X = wltr W.gV wltr W.X]

gV wltr W.X]J

Clearly, both f and ¢ are monotonic. Furthermore wltr .W=.¢ is the strongest
fixpoint of f, and wltr .W*.(wltr .W.q) is the strongest fixpoint of g. Since both
sides of (P1) are characterized as strongest fixpoints of some predicate transformers,
it seems reasonable to attempt to conduct the proof by finding an intermediate

predicate characterized as fixpoint of some other monotonic predicate transformer

h:

[wltr W= (wltr W.q) = wltr .W*.q]
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< {(wltrStar), properties of suitable h}
WpuZ 9.2y = (pZ = hZ)] N [(uZ 2 hZ) = (uZ:: f.2)]

For h to satisfy the first conjunct it is sufficient, by theorem 3, to require that
lg = h]. Since (uZ :: h.Z) is the strongest fixpoint of h, the second conjunct is
satisfied by h if (u7 :: f.7) is a fixpoint of h. Formally we hence require:

lg = 7]
ThiuZ o f.2) = (us = f.2)].

Any iterated composition of f satisfies the second condition. Unfortunately [g < f]

holds, but since f is weakening, we try f o f for h by observe for all X in Pp:

g.X
{definition of ¢}

wltr W.gV wltr . W.X

= {(wltrWeaken), predicate calculus}
gV wltr W.gV wltr . W.X

= {wltr .W is monotonic}
gV wltr W.(¢V X)

= {wltr.W is monotonic, (wltrWeaken)}
gV wltr W.(¢ Vv wltr W.X)

= {definition of f, twice}
F(FX)

Hence, choosing f o f, which is certainly monotonic, for h completes the proof of
(PrAlgl0).

We finish the proof of theorem 18 by observing that the antecedent of
(PrAlgll) is

[wltr .U.(wltr W.q) = wltr .W.q], (P2)

whereas the conclusion has the form
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[wltr .U*.(wltr W.q) = wltr .W.¢].

Since wltr .U*.(wltr .W.q) is, by (wltrStar), the strongest solution of the equation
X [X = wltr W.qV wltr .U.X], we have

(VX = [X = wltr WV wltr U.X] = (P3)
[wltr .U*.(wltr . W.q) = XT]).

We conclude the proof of (PrAlgll) by observing for all ¢ in Pg:

[wltr .U*.(wltr W.q) = wltr .W.¢]
< {(P3) with X := wltr .W.q}

[wltr W.q = wltr W.qV wltr .U.(wltr .W.¢)]
= {predicate calculus, (P2)}

true

End of Proof.

Two remarks about the axioms (PrAlg6) and (PrAlgl2) are in order. First, we
note that (PrAlg6) cannot be strengthened to equality. By examining the proof

for (PrAlg6) above we see that for equality we need to prove
[wltr .U.(wltr .V.qV wltr W.q) = wltr .U.(wltr .V.q) V wltr .U.(wltr .W.q)]

Clearly, we cannot expect this to hold in general, because from lemma 8 we know that
wltr .U is not finitely disjunctive. In fact, the program Finite Disjunctivity of section
4.2.2 serves as a counter example: with U :=«a, V := g, W := v, and ¢ := (n = 4),
we have [wltr.f.(n =4) =n =2V n=4], [wltry.(n=4)=n =3V n =4] and

hence by virtue of the calculations in section 4.2.2
[wltr .a.(wltr .8.(n = 4) Vwltr .y.(n = 4)) = true]

whereas
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[wltr .a.(wltr .5.(n = 4)) V wltr .a.(wltr .y.(n =4)) = n # 0]

Next, we show that Ry is not left-handed, i.e., that (PrAlgl2) is not satisfied.
An attempt at a proof of (PrAlgl2) by transfinite induction over the ordinals up
to the ordinal i for which [wltr.U*.q = 7°.false], where [7.X = ¢V wltr.U.X],
fails because the inductive step for limit ordinals seems to require wltr .W to be
or-continuous, which it is not in general by theorem 8.

In the following we construct a counterexample from the failed proof. Such

a counterexample can be derived from two regular expressions U and V satisfying
S[wltr U* = (Fi 1 < w: wltr U], (00)

i.e., wltr .U* is not stronger or equal to the w - disjunction of all wltr.U?, but also
[wltr.V = (Fi: i < w: wltr.U")], (01)

i.e., the w-disjunction of all wltr.U" is expressible® in Rp.

We show that such U and V constitute a counterexample by establishing
that the antecedent of (PrAlgl2), [wltr.VU = wltr.V], holds, but that the
conclusion [wltr VU* = wltr .V] is not satisfied. For the antecedent we have for

all ¢ in Pp

wltr .VU.q
= {(wltrSeq), (O1)}
(Fi:i < w:wltr. Ut (wltr.U.q))
= {(wltrWeaken), predicate calculus}
(Fi:i<w:wltr.Ulqg)
— {(o1)}
wltr .V.g

A straightforward induction using (P0), (wltrWeaken), and (wltrSeq) allows us

®We call a predicate transformer 7 expressible in R if and only if there is a regular expression
V in R g such that wltr.V = 7.
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to establish that [wltr.U* = wltr .UU*] for all i in N. For the conclusion we can,

therefore, observe for all ¢ in Pgr

wltr VU".q
= {(wltrSeq), (O1)}
(Fi i <w:wltr Ut (wltr .U*.q))
= {(wltrSeq), observation above}
(Fi i <w:wltr.U*.q)
= {predicate calculus}

wltr .U*.q

which by (00) and (O1) does not imply wltr.V.q.
The following example due to Cohen [Coh96] exhibits such regular expres-
sions U and V', thereby establishing that Ry is not left-handed. Consider the

program LeftHanded given by

program LeftHanded
declare
var n: natural

var b : boolean

assign
[o] n:=n+1 if b
(5] nb:=n—1,true iIfbANR>0 ~ nitrue if =bvn=0
[v] n, b:= 0, true if b ~ n,true  if-b
end

For this program we observe that properties (00) and (O1) are satisfied for U := 3
and V := 5. It can be checked easily that [wltr.3'.(n = 0) = (n = 0)V (bA(n < 1))]
for any 7 in N, [(3i:i < w: wltr.8%.(n = 0)) =n = 0V b], and [wltr .y.(n = 0) =
n =0V b], but that [wltr.5*.(n = 0) = true].

We conclude our exploration of the algebraic structure of Ry by combin-

ing our results into the main theorem about relating the subsumption relation on
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progress algebras to implication of the corresponding wltr predicate transformers.

From the characterization of <z we recall that that for all U and V in Rg
U<pV = [wltr .U = wltr .V]

Since, by theorem 18, the family wltr of predicate transformers has the structure

of a progress algebra, we also know that
ULV = U<LpV.

where the first subsumption is the relation provable in progress algebras, and the
second one is the semantic subsumption of elements of Ry. Combining these results

we obtain the following:

Theorem 19 For any program F, wltr is monotonic with respect to < in its first

argument, t.e., for all U and V in Rp:
U<V = [wltr.U= wltr.V]

An immediate consequence of the above theorem and of theorem 12 is the following
corollary, which relates the subsumption of regular expressions to the generalized

leads-to relation:

Corollary 20 For any program F and regular expressions U and V in Ry with

U<V:

s = .

We conclude this section with a brief discussion of the question of how well the
wltr family of predicate transformers can be characterized algebraically. Theorem
19 establishes that for any given program the implication ordering on the trans-
formers is at least as weak as the subsumption order on the corresponding regular

expressions. It is obvious that an exact characterization of the implication order
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for individual programs cannot be achieved by any order on the progress algebra
Rp: for a simple program with two (syntactically) identical actions « and 3, the
predicate transformers wltr .o and wltr .3 are certainly identical, whereas the two
regular expressions o and 3 cannot be related in any progress algebra.

Instead of considering individual programs we might, however, ask about the
algebraic structure common to all programs sharing the same action alphabet. More
precisely, let A be a finite set of actions, and let Reg.A be the progress algebra over
A. For any regular expressions U and V in R.A we know that the axiom system for
the progress algebra (definition 5) is sound, i.e., that from U =V in R.A we can
conclude [wltr .U = wltr .V] for any program F' with .4 O A. This follows form
theorem 19 and the fact that R.A is a sub-algebra of Rp.

The converse of this observation amounts to the formulation of a completeness

property of the progress algebra axioms, which can be stated as follows:
VU V:UVeRA:(NF:FADA:[wltr.U=wltr V]) = U=1V)

It asserts that whenever the predicate transformers corresponding to two regular
expressions U and V of some progress algebra R.A are equivalent for all programs
F with suitable action set, U and V are provably equivalent in Reg.A. We pose this
completeness statement of progress algebras as an open question and remark that a
positive answer would establish that the subsumption relation of progress algebras
characterizes the uniform algebraic structure of the wltr predicate transformers

exactly.

4.5 Progress by Actions

So far we have characterized generalized progress properties by predicate trans-
formers and by a deductive proof system, but are still lacking a formal operational
semantics. As mentioned earlier, the main motivation is to provide a link between

generalized progress properties characterizing how progress is achieved for a given
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program, and executions of the program as a sequence of program states and ac-
tions, thereby allowing the designer to formulate some operational design knowledge
in terms of regular expression hints. In order to allow this link to be exploited during
verification, it is important that the operational semantics be as simple and intu-
itive as possible, and be easily matched with an understanding of possible program
executions.

We base our presentation of an operational semantics for generalized progress
properties on a certain notion of games, inspired by [Dij95], where games are used
as a model for the DUALITY calculus. A game takes place between two players,
called the progressor and the opponent, engaging in a series of game rounds. The
sequence of the rounds is governed by a strategy chosen by the progressor from a set
of possible strategies determined by a regular expression characterizing the game.
In a game corresponding to the property p LN q, the progressor tries to reach
a state satisfying ¢ whenever some state satisfying p has been reached previously,
whereas the opponent attempts to prevent this from happening. A program satisfies
a property p LU q if the progressor has a winning strategy for reaching ¢ states
from p states.

The remainder of this section is organized as follows: in section 4.5.1 we
formalize the notions of games and strategies upon which our operational semantics
is based. In section 4.5.2 we state our definition of the operational semantics and
illustrate it with a few simple examples. Finally, in section 4.5.3 we relate the
operational semantics to the deductive system by establishing a soundness and a

completeness result.

4.5.1 Games and Strategies

In order to give an operational semantics for the generalized progress properties, we
need to formalize the notions of games and strategies for a program F.

A round of F is a non-empty, finite run of F, i.e., an element of (F.A)*. If
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for some av in F.A a round r ends with «, i.e., if r = za for some & € (F.A)*, we
call » an a-round. A game of I' is a (finite or infinite) sequence of rounds, i.e., an
element of ((F.A)T)*°. In the following, we denote this set of games of program
F by Gr. The concatenation operation +H on the elements of Gg is as defined in
section 2.1.1.

For every game g we denote by g the run obtained by concatenating all

rounds of ¢ in order. Formally,

) = 0

g = ¢.0 ++ tail.g if |g| >0

Note that g is well defined also for infinite ¢ (cf. [Sto81, Bro93]).

Next we will define the notion of a strategy of F for regular expressions
W in Rp. The algebra of strategies Str.A.P for a given sort A of actions and a
sort P of state predicates, is the free sorted algebra generated by the following five

constructors, each listed with its respective type:

eps: Str.A.P

act: A — Str. AP

seq: (Str.A.P x Str.A.P) — Str.A.P

alt : (P x Str.A.P x Str.A.P) — Str.A.P
star : (P x Str.A.P) — Str.A.P

The mapping S from Ry into Str.(F.A).Pr associates with each regular expression
W the set of possible strategies S.W of F'. The set §.W is defined inductively over
the structure of W as follows. For all @ in F.A, and all U,V in Rp:

S.e = {eps}
S.a = {act.a}
S.(UV) = {u,v:ueS.UNveESYV :seq.(u,v)}
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S (U+V) = {ttwyo:tePrAuveSUAveSV alt.(t,u,v)}
S.U* = {t,bu:tePrAueSU:star.(t,u)}

A strategy of F for the regular expression W in Ry is simply an element of S.W.
In order to define what it means for a game to satisfy a given strategy, we introduce
the relation sat over pairs of states and games, and strategies. For a state s, a
game ¢ and a strategy w we denote by (s, g) sat w that g started in s satisfies w.
Formally, sat is a binary relation in (F.S X GF) X Str.(F.A).Pp, defined as the
smallest relation satisfying the following conditions for all states s in F.9, all games

g in G, all actions a in F.A, all predicates ¢ in Pp, and all strategies v and v in

Str.([.A).Pp:

(s,g) sat eps iff |g|=0

(s,g) sat act .« iff |gl=1AFz:2e (FA)":g=2aq)

(s,g) sat seq.(u,v) iff (Qe,f:eHf=g:

((s,€) sat u) A

(finite .€ = ((e.s, f) sat v)))
((s.9) sat u)) A

((s,9) sat v))

= lg| =0) A

(s,g) sat alt.(t,u,v) iff ((sEt

S t

(s,g) sat star.(t,u) iff ((sEt

(s=1) =
((s 1) =
((sF=1)
((s 1) =

s (s,9) sat seq.(u,star.(t,u)))

The definition of the algebras Str and the sets S follows very closely the structure
of the algebra Rr. The only notable addition to the algebraic structure is the
occurrence of the predicate arguments in the constructors alt and star, which we
briefly motivate in the following.

For the regular expression ¢ and for any action « in Ry there is only one
possible strategy, namely eps and act .« respectively. Also the strategy for a se-
quence UV is completely determined by the sub-strategies for U and for V, as a

game for UV consists of a game for U followed by a game for V. On the other
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hand, in alternations and repetitions choices have to be made: in the case of an
alternation U 4+ V the progressor can decide whether to play a game for U or a game
for V, whereas in the case of a repetition U*, the progressor can decide after each
U game whether to terminate the repetition or to continue with more U games.
It is this freedom of choice that is captured by the predicate arguments of the alt
and star strategies: for alternations it is the test predicate that determines which
sub-strategy to follow, for repetitions it determines termination.

We illustrate the above definitions with an example: consider the program
UpDown of the previous section and the regular expression [set][down]". For the set

of strategies for [set][down]” we obtain

S.[set][down]” = {t:t ¢ P UpDown * €4 .(act .[set], star.(¢,act .[down]))}.
Choosing for t the predicate n < 0, we consider the specific strategy

w = seq.(act .[set], star.(n < 0,act .[down])).

We also consider the following games (for all £ in N):

90 = (([set], [down]))
gl = (([down];[set]))
g2k = ({[set]), {[up], [down])*)

With these definitions, the following statements about satisfaction of games hold,

where s is an arbitrary reachable state of UpDown®:
((s,90) sat w) = false
((s,g1) sat w) = (sEn<0)

((s,92.k)sat w) = (sE(k>0An=k—-1)V(k=0An<0))

Game g0 does not satisfy w for any start state because it consists of exactly one

round, which is not a [set]-round. Game g1, on the other hand, consists of a [set]-

SSince the initial predicate of UpDown is true, all states of program UpDown are reachable.
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round followed by zero [down]-rounds. In order to satisfy w it is therefore required
that the termination predicate n < 0 be true at the end of the [set]-round, which
determines the set of possible start states as characterized by n < 0. Similarly, ¢2.k
consists of one [set]-round and k [down]-rounds, which imposes the requirement that
at the end of ¢2.k the termination predicate should be true, but that it should be
false at the end of any intermediate round. The reader can check easily that this

requirement results in the above characterization of the possible start states.

4.5.2 An Operational Semantics

Based on the formalization of games and strategies we are now ready to formally
define the operational semantics of generalized progress properties; i.e., we define

what it means for a program F to be a model of such a property:

Definition 6 (Operational Semantics) For any program F, state predicates p
and q in Pr and reqular expression W in R, we say F is a model for the generalized

progress property p LN q, written F' = p LN q, and define it by:

F):prq =
(Fw:weSW:

(Vs, g : s is reachable :

(sEP)A((s,9) sat w) = (s,9) F q))

According to the definition, F is a model for p LN g if and only if there exists
a strategy w with a structure determined by W, such that any game started in a
reachable state satisfying p and following the rules of w reaches a state satisfying
g after a finite number of actions. The existential quantification in the formula
above corresponds to the progressor’s ability to choose a particular strategy, whereas
the universal quantification reflects the requirement that the strategy be successful

regardless of the actions the opponent decides to perform.
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We illustrate the operational semantics by considering some special cases
for the regular expression W. First, for W = « for some o« in Ry, the set S.«v is
the singleton {act .a}. Any game satisfying act . consists of exactly one a-round.
Program F therefore satisfies the generalized progress property p — ¢ if and only
if during any run starting in a reachable state satisfying p and ending with an «
action, a state satisfying ¢ is encountered.

Next, we consider the case W = o for some « in Rp. Any strategy for
a* is of the form star .t.(act.«) for some state predicate . Any game satisfying
such a strategy is a (finite or infinite) sequence of a-rounds. In order to analyze
the operational behavior implied by such a strategy we demonstrate, that F' =
p N g if and only if the condition in definition 6 is met by the specific strategy
w = star.q.(act .«): clearly, by definition 6, if w satisfies the condition, then F' =
p 2 g holds. Conversely, we need to establish that if the condition is met by
any strategy in S.o™ then it is also met by w. Let v be a strategy establishing
FlEp 2 g and let ¢t be the termination predicate of v. Furthermore let ¢ be
any game and s be any state satisfying p. If ¢ is finite then it terminates in a state
satisfying ¢, therefore (s, g) = ¢ holds as required. If g is infinite, we consider the
smallest prefix e of g such that e.s = ¢ (or e = ¢ if ¢ is not satisfied after any round
of ¢g). Due to the condition for the operational semantics satisfied by v, we have
(s,€) = ¢. If e is infinite, we have e = g and therefore (s,g) = ¢. Finally, if e is
finite, then € is a prefix of f, from which (s, g) |= ¢ follows as well. This establishes
that w is a characterizing strategy for p i q, i.e., a strategy that defines the
operational semantics of the given property.

Combining this result with definition 6, we see that program F satisfies
the generalized progress property p 2 g if and only if during any run starting
in a reachable state satisfying p and containing infinitely many « actions, a state

satisfying ¢ is encountered.
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As alast example we have another look at program UpDown and demonstrate

[setl[d_o}wn] :

that it indeed satisfies the property true n < 0. This can be seen by

choosing the strategy investigated at the end of section 4.5:
w = seq.(act .[set], star.(n < 0,act .[down])).

Any game ¢ started in some state s and satisfying w consists of one [set]-round
followed by a sequence of [down]-rounds. Since b is true at the end of the [set]-
round, and since it remains true once it becomes true, the values of n at the end
of each [down]-round form a strictly decreasing sequence. Because termination of
the repetition occurs once n < 0 holds, we conclude from the well-foundedness
of the naturals that ¢ is finite, and that g.s = n < 0 holds. Therefore we have

[setl[d_o}wn] :

(s,g) E n < 0 which establishes that I = true n < 0.

4.5.3 Soundness and Completeness

In order to relate the deductive system for the generalized leads-to relation of section
4.3 to the operational semantics just defined, we will establish both a soundness and
a completeness result. The deductive system is sound with respect to the operational
semantics, if and only if any generalized leads-to property proved for a program
P is indeed satisfied by F; the deductive system is complete, if and only if any
generalized leads-to property that is satisfied by F' can actually be proved in the
deductive system for F.

To be more precise, we will establish the completeness of the deductive system
relative to the expressiveness of the assertion language, in our case the predicate
calculus part of the logic. We show that a generalized leads-to property satisfied
by a program F can be proved under the assumption that certain sets of states can
be characterized by predicates of the assertion language, and that certain predicate
transformers and fixpoint operations are expressible in the assertion language as

well. This notion of completeness was first investigated by Cook [Coo78], a detailed
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discussion of some of the issues involved can be found in [Ra095].
We establish the connection between operational semantics and deductive

system in the following theorem:

Theorem 21 (Soundness and Completeness) For any program F and regular
expression W in Ry the deductive system defined for generalized leads-to properties

1s sound and relatively complete in the sense of Cook:

Fe p % ¢ iff FF pSh g

In order to prove the above theorem, the notion of a canonical strategy C.W.q for a
given regular expression W and predicate ¢ is needed. It has the important property
that it serves as a witness strategy in the definition of the operational semantics,
i.e., whenever ' p LN q holds, we can establish F' |= p LN g by virtue of
C'.W.q, and conversely, whenever F' = p LN ¢ can be established by virtue of some
strategy, it also can be established by virtue of C.W.q. The definition of C.W.q and

the proof of the above theorem can be found in appendix D.3.

4.6 Discussion

Our goals for developing the theory of generalized progress have been threefold: such
a theory should (i) provide a new way of establishing ordinary progress properties of
programs by allowing the user to explicitly characterize how progress is achieved, (ii)
make it possible to take advantage of design knowledge in order to more effectively
verify programs, and (iii) increase the efficiency of mechanical verification procedures
based on the developed theory.

These goals have been achieved by our proposed theory in the following ways:
we can (i) prove ordinary progress properties by our generalized ones due to theorem
9; we have (ii) developed an algebraic theory for treating progress hints formally

that can be exploited in the verification process; finally, as will be demonstrated in

118



subsequent chapters, we can (iii) take advantage of the new formalism in the form
of improved model checking procedures for generalized progress properties.

In summary, the theory of generalized progress makes it possible to incor-
porate action-based design knowledge into the interactive verification of concurrent
systems. This is accomplished by treating hints about how progress is achieved
as formal objects (namely as elements of a progress algebra) and by providing a
calculus for reasoning about such hints, for relating them to program executions,
and for combining them with state-based reasoning methods (such as proving safety
properties).

With the theoretical foundations in place, future work on generalized progress
will be centered around two questions: the relationship to other formal approaches
for verification of progress properties, and the practical application of the new theory
to program verification.

On the theoretical side it will be interesting to explore the relationship of
our theory to automata-theoretic approaches [Kur94], to deductive systems based
on linear temporal logic [M194], or on the propositional mu-calculus [Koz83, Bra93].
It will be worthwhile to investigate to which extent the ideas of formalizing hints
and of incorporating design knowledge at various levels of detail could be exploited
by these other approaches.

The application of the our theory to the practical verification of concurrent
systems is investigated in the following chapter in the context of finite-state model
checking. However, it is important to point out, that there is no inherent restriction
of the theory of generalized progress properties to neither finite-state systems, or
to model checking as a verification technique. In particular the integration with
theorem provers [Gol92, OSR93, GM93] and with infinite state-space model checking
approaches, as well as the extension to the compositional structure of UNITY logic

[Mis] and to compositional verification in general are of great interest.
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Chapter 5

Checking Progress Properties

In this chapter we show how we can improve the model checking procedure for
UNITY logic, presented in chapter 3, by employing the theory of generalized progress
developed in the previous chapter. By incorporating this theory into the model
checking procedure we achieve two important advantages: first, the expensive wlt
computation used in the verification condition for ordinary progress properties can
be replaced by verification conditions for generalized progress properties that often
are significantly easier to check. Second, a more expressive specification language is
made available for the design and verification process thus providing more possibil-
ities for analyzing and debugging programs and their specifications.

In the following, we describe the extensions to the model checking procedure
for UNITY in section 5.1 and discuss some heuristics for obtaining regular expression
hints in section 5.2. In section 5.3, we illustrate several aspects of the procedure
with a non-trivial example, an elevator control program. Section 5.4 concludes the

chapter with a discussion of the extended procedure.
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5.1 Model Checking for Generalized Progress

The idea for incorporating generalized progress properties into the UNITY model
checking procedure is simple: by using the definition of the wltr predicate transform-
ers (wltrEps), (wltrAct), (wltrSeq), (wltrAlt), and (wltrStar) and theorem
12, we can derive a verification condition for generalized progress properties similar

to the one for ordinary progress properties:

F Ep 2 q iff for some invariant J of F:

[JAp = wlte W.(J A q)].

Asg it is the case with the verification conditions for the other properties of UNITY
logic, the conjunction with JJ in the argument of wltr .W can be dropped provided J
is an inductive invariant, i.e., satisfies [J = wco .J]. This is possible because it can
be shown that for any inductive invariant J, regular expression W, and predicates

p and ¢
[(JAp=wltr W(JAq)) = (JAp= wltr W.q)]

holds. Whether or not such a replacement is advantageous depends on the com-
plexity of the representation of the invariant. By virtue of the above equivalence,
however, we can use any inductive invariant with which we may be able to reduce the
argument and all intermediate results in the computation of wltr .W.q with respect

to that invariant.

Advantages of New Model Checking Procedure

The model checking procedure of section 3.3 is simply extended by adding the
new verification conditions for generalized progress properties. In particular, the
verification of safety properties and the managing of invariants is performed as
previously. However, when verifying progress properties the user can experience a

threefold improvement over the previous method:
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Shortened Verification Time: the evaluation of the verification conditions based
on the wltr predicate transformers is often simpler than the evaluation of the
ordinary progress condition based on wlt. This is the case because fixpoint
computations can be avoided or at least simplified, since only a subset of the
program actions needs to be considered as contributing to the progress of the
program. Some examples illustrating the performance gains are discussed in

chapter 7.

Finer Specification Detail: with the availability of a new set of progress prop-
erties that are more expressive than the traditional transient , ensures ,
and +— operators alone, the user can refine the characterization of progress
properties in order to either confirm his understanding of the program, or to
analyze the program by experimenting with different regular expression hints.
The algebraic structure of the progress algebras from section 4.4 is a valuable

tool for relating such experiments to one another.

Improved Debugging Information: a failed verification of an ordinary progress
property yields a set of violating states from which fair program executions
exist that do not reach any goal states; no additional information is given
about how a counterexample trace can be obtained. The regular expression
hints provide such information that makes it possible to restrict the set of

traces among which counterexamples can be found.

Crucial to the applicability of the generalized progress checking is the ability to find
suitable regular expression hints, that either help to improve the performance of the
verification, or help to analyze or debug the program more effectively. We address

this issue in the next section.
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5.2 Obtaining Regular Expression Hints

In section 4.1 we have mentioned the two primary ways of obtaining regular expres-
sion hints for verifying generalized progress properties: the designer’s operational
understanding can be captured by a regular expression hint, or such hints can be
viewed as an abstract representation or an outline of a progress proof. At this point,
we want to present two heuristics that can help with obtaining such hints: the first,
called phase-splitting, takes advantage of the sequential structure of a program; the
second, called action-grouping, derives hints for progress properties that depend on

only a few program actions.

5.2.1 Phase-Splitting

The idea of phase-splitting is based on the transitivity rule for progress, captured
by (AxSeq): if it is possible to split the progress towards some goal predicate into
subsequent phases separated by intermediate sets of states, then a strategy for the
desired progress is obtained as the sequence of strategies for the individual phases.

A simple example illustrating this technique is the counter of section 4.1.
Progress from true to a negative counter value, i.e., n < 0, is achieved in two phases:
the first phase establishes that the flag b is set, the second phase then decreases the
counter value below 0. Given strategies for the individual phases — [set] for the first,
and [down]* for the second phase) — we derive a strategy for the progress property
by sequencing, thus obtaining [set][down]* for our example.

Two things are worth mentioning about this technique: although a predicate
characterizing the intermediate states between two successive phases must exist, it
does not have to be stated explicitly as part of the strategy; moreover, in the context
of program design by refinement, refining a phase without changing its boundary
predicates corresponds to refining the strategy of that phase without affecting the
strategies of other phases. For instance, let us assume that in the above counter

program, the flag b was used to model the completion of some process and is to be
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refined to model this process behavior in a more detailed way. In that case we can
obtain a strategy for the refined program simply by concatenating the new strategy
for the refinement of the first phase and [down]*, the strategy for the second phase.

Phase-splitting does not improve the performance of progress checking di-
rectly: if progress towards some goal exhibits a sequential structure, then ordinary
progress checking handles these sequences of phases by repeated iterations, and
generalized progress checking cannot decrease the number of these required itera-
tions. However, by virtue of splitting the progress into phases it is often possible to
find successful strategies for the individual phases that are much simpler than the

iteration over all program actions performed by ordinary progress checking.

5.2.2 Action-Grouping

Actions of a program can be classified in three groups with respect to a given
progress property: contributing actions actively help in achieving progress and need
to be executed in order to reach the set of goal states; non-interfering actions have
no relevant effect on how progress is achieved; no execution of a non-interfering
action can prevent progress; interfering actions, on the other hand, not only do not
contribute to progress, they can even prevent it when being executed.

An important observation is that in the absence of interfering actions, non-
interfering actions can be ignored for achieving progress; i.e., a repetition of con-
tributing actions suffices to reach some goal state. In other words, if there are no
interfering actions with respect to the progress property p +— ¢, and if W is the
regular expression consisting of the concatenation of all contributing actions, then
p AN q holds. By virtue of (PrAlg26) of lemma 17 the same holds for W being
the alternation of all contributing actions; because of (PrAlg25), however, using
concatenation often results in fewer outer iterations. When using concatenation
there might be different orderings of the contributing actions that might affect the

complexity and the number of iterations of the check. If there is a sequential de-
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pendency among the contributing actions, this should be reflected in the ordering
(cf. section 5.3.3 for an example).

For the progress property b — n < 0 of the counter program, actions [set]
and [up] are non-interfering, and action [down] is contributing. Hence, [down]* is a
successful strategy. But even in the presence of interfering actions, action grouping
can be used: in a first step, interfering actions have to be eliminated, then the
method can be used as described above. Often the elimination of interfering actions
corresponds to an application of the phase-splitting heuristic. As an example we
consider again the counter program and the progress property true — n < 0. For
this property [down] is contributing, [set] is non-interfering, and [up] is interfering.
We can eliminate [up] by falsifying its guard b. Hence, we split the progress property
in two parts, true — band b — n < 0. The first phase is completed in one [set]
step, the second phase is dealt with as described above. Together we obtain the
expected regular expression strategy [set][down]* in a mostly mechanical way.

The performance gained when using action grouping compared with ordinary
progress checking depends on the ratio of number of contributing actions to the total
number of actions: the fewer contributing actions there are, the smaller the number
of inner fixpoint computations is in each outer fixpoint iteration. Often the gain
is more than linear, as the average complexity of the inner fixpoint computations

tends to decrease with fewer contributing actions.

5.3 An Example: An Elevator Control Program

It is the goal of this section to demonstrate the application of the model checking
procedure for generalized progress properties to a small but non-trivial example.
Such an example is the following elevator control program, which has been motivated
by similar programs of this kind discussed in the literature (e.g. [CWB94]).

In the following, we describe the program in section 5.3.1 and state some of

its properties in section 5.3.2. Then, in sectionb.3.3, we derive a regular expression
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strategy for the main progress property of the program.

5.3.1 The Program Description

The program FElevator models an elevator for a building with N floors. There are
three variables describing the state of the elevator: pos is the number of the floor (in
the range from 1 to N) the elevator is currently at; state tells whether the elevator is
currently moving upwards (UP), moving downwards (DOWN), or halting (STOP);
finally, dir records the preferred direction of the elevator, -1 for downwards and 1
for upwards, while 0 indicates that there is no preferred direction.

There are also two variables that model the behavior of the users of the
elevator: req is an array of boolean variables, indexed by the floors. The elevator
is requested to go to floor ¢, 1 < ¢ < N, if and only if req.¢ is true. There is no
distinction between whether the elevator is requested to go to some floor by a user
waiting on that floor, or by a user in the elevator wanting to go to that floor. Users
can only issue a request (i.e., set req.i to true), while the control program can only
remove requests (i.e., reset req.i to false). The boolean variable user is introduced
to model the situation in which from some point onwards for some (or even for
all) floors no request is issued any more. Without this variable the unconditional
fairness constraint would guarantee that for every floor the elevator is requested
infinitely often.

At first glance, the use of both state and dir to model the elevator seems
unnecessary, since 1 and UP, as well as -1 and DOWN apparently correspond to each
other. However, there is a subtle and important difference: while state models the
physical status of the elevator, dir encodes a control strategy. More precisely, the
variable dir is used to resolve conflicting requests. A conflict arises in a situation in
which there are requests both above and below the current position of the elevator.
In order to prevent starvation of some floors, the elevator control has to make a fair

choice between going upwards and going downwards. For instance, the strategy to

126



always honor requests from below first (which might seem reasonable, since traffic
in the first floor is likely to be highest) is not fair: repeated requests on lower floors
could prevent requests on higher floors from being served forever.

We employ the following fair strategy for the control program: whenever
there is any request, the elevator has a preferred direction given by dir. As long
as there is a request in the preferred direction, the elevator moves in that direction
and services requests. If there is no request in the preferred direction, the preferred
direction can be changed to a new value. This strategy is fair, since there can always
be only finitely many requests in the preferred direction. After having serviced the
last such request the elevator changes its preferred direction and services all pending
floors in the new direction.

The elevator program consists of the elevator control part and the user part.
The program has N+ 7 actions, 6 for the elevator control, and the remaining for the
users. The control actions are: [service] services a request at the current floor; [move]
moves the elevator in its preferred direction; [goOn] starts movement of the elevator
in the preferred direction; [up] and [down] set the preferred direction to upwards
and downwards respectively and start movement of the elevator. The user actions
are: [request.i] for each floor i issues a request at floor i, provided the elevator is
not there already; [toggle] alternately enables and disables request actions in order
to model eventual absence of requests as explained above.

The complete program is listed below. In addition to the variables and ac-
tions described above it also contains two transparent variables: upReq is a boolean
variable indicating whether there is a pending request above the current elevator
position; similarly downReq indicates such a request below the current position. In
the initial state the elevator is halting on floor 1 and has no preferred direction; also,

there are no user requests.
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program Flevator
declare
type Range = int(1..N)
var state : enum(STOP, UP, DOWN)
var dir:int(—1..1)
var pos : Range
var req : Range — boolean
var user : boolean
always
upReq = (Fi : Range, pos < i : req.i)
downReq = (3i : Range, pos > i : req.i)
initially
pos =1
(Vi : Range : —req.i)
dir=10
state = STOP
assign
[service]  req.pos, state := false, STOP
if req.pos
[move] pos := pos+ dir
if state # STOP AN —req.pos
[200n] state :=UP
if upReq N dir=1 A state = STOP N —req.pos
B DOWN
if downReq N dir=—1 A state = STOP A —req.pos
[up] state, dir := UP, 1
if upReq N (dir=0 V —downReq) N state = STOP A —req.pos
[down] state, dir == DOWN, —1
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if downReq A (dir=0 V —upReq) N state = STOP A —req.pos
[halt] dir:=0

if —upReq N —downReq A state = STOP A —req.pos
(] ¢ = Range :

[request]  req.i := true
if pos# 1 N user

)
[toggle] user := —user

end

5.3.2 Properties of Program Flevator

The key property we want to prove of the elevator program is its eventual service
property: whenever a request is issued on some floor, the elevator will reach that
floor eventually and stop there. This is expressed as the following leads-to property

in UNITY logic (the variable k is implicitly quantified universally over all floors):
req.k — pos=k A state=STOP (ES)

There are also a few design invariants, which express design knowledge about the

elevator control variables state and dir:

invariant state = UP = dir=1 (10)
invariant state = DOWN = dir=—1 (I1)
invariant state = UP = upReqV req.pos (I2)
invariant state = DOWN = downReqV req.pos (I3)

(I0) and (I1) state that the elevator can move only in its preferred direction. (I2)
asserts that the elevator can only move upwards if there is a request above or at the
current position (the request was issued above, but the elevator might have moved

onto a floor with pending request). (I3) asserts the corresponding fact for moving
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downwards.
All invariants above can be established directly from the program text. They
can be checked by the model checking procedure using the verification conditions

for invariants with respect to true.

5.3.3 Finding a Strategy for FElevator

In order to establish the eventual service property, we want to find a regular expres-

sion hint W allowing us to check successfully the generalized progress property

req.k LU pos =k A state = STOP .

successfully. Instead of relying on some operational understanding, we use the
heuristics presented in section 5.2 and a notion of abstract top-down proofs in order
to obtain a suitable strategy. Our goal is to find such a strategy as directly and

with as little effort as possible.

A Simple Derivation Using Heuristics

We start with the action-grouping method and observe that all actions of the user
part as well as the [halt] action can be classified as non-interfering with respect
to (ES): if the control program works correctly, no user action should be able to
interfere with the desired progress; furthermore, as long as the request at floor &
has not been serviced, there is at least one request pending, hence [halt] is disabled.
The remaining five control actions can be expected to be contributing: the elevator
has to move, possibly change direction, and service requests at intermediate floors.

This immediately yields the following strategy for establishing (ES):
([service][move][goOn][up][down])* (Ho)

Checking (ES) with this regular expression fails, if we do not take some design

invariants into account. A direct check produces a set of violating start states
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containing, for instance, a state in which state = DOWN A pos =1 A —req.1 holds
and which violates design invariant (I3). Using (I8) we are alerted to the fact that
a state satisfying state = DOWN A dir = 1 is violating (ES), prompting us to
use (I1) as well. Continuing the verification process we are asked to supply (I0)
and (I2) as well; of course, we could have added them directly together with (I1)
and (I8) for reasons of symmetry. With these four design invariants in place, the
progress check for (ES) for the suggested strategy succeeds, proving the program
correct and confirming our understanding of the role the program actions play in
achieving progress'.

With a little additional thought we can improve the derived strategy further.
There are some sequential dependencies among the contributing actions, which we
can reflect in the ordering of the actions in the regular expression: [service] possibly
stops the elevator; [goOn], [up], and [down] are effective only if the elevator is
stopped, but they also start moving the elevator again; [move] is effective only if the

elevator is not stopped. This suggests (among others) as possible orderings either
([service][goOn][up][down][move])* (H1)
or
([service][up][down][goOn][move])* (H2)
both of which result in fewer fixpoint iterations than (HO0)?2.

A Detailed Derivation Based on a Progress Proof

Examining the structure of how progress is achieved more carefully, we observe

that progress from req.k to pos = k A state = STOP takes place in two phases.

'We can explore this idea further by dropping any action from the hint; we then find that
the property can no longer be checked successfully. This shows that all five actions are indeed
contributing.

2(H2) performs better than (H1); a subtle sequential dependency between [up] and [goOn]
(similarly, between [down] and [goOn]) can be uncovered as part of a more detailed progress proof.
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In the first phase the elevator moves to the requested floor, thereby establishing
req.k A pos= k; in the second phase the elevator simply stops, which is easily seen
to be accomplished by one [service] action.

The first phase, in which most of the progress takes place, cannot be directly
split into smaller phases. It is possible, however, to proceed by constructing an

abstract proof of the progress property corresponding to the first phase, namely
req.k +—  req.k A pos=k (ES1)

This proof obligation can be split into three new obligations depending on whether
the elevator is initially at, above, or below the requested floor. More precisely we

can establish (ES1) by using the disjunctivity rule on the three properties

req.k A pos=k +— reqk A pos=k (ES10)
req.k A pos < k +—  req.k A pos=k (ES11)
req.k A pos >k +—  req.k A pos=k (ES12)

(ES10) is trivial (corresponding to the e-hint), while (ES11) and (ES12) are
symmetric. If we denote by Wy, and Wys regular expression hints for (ES11) and
(ES12) respectively, and if we denote by W for some hint W the hint obtained
by replacing every occurrence of [up] with [down] and vice versa, we expect that
Wia = Wiy. Using the rules (AxAlt) and (AxSeq) we obtain as a suitable hint

for (ES) the following expression:

(e + Wiy + Wiy)[service]

Hence, we consider in the following the progress property (ES11) and attempt to
find a suitable Wy;. Our next idea is to distinguish between different preferred
directions. Since our goal is to reach floor k from some floor below k, we will do so
by eventually moving upwards. If the preferred direction is upwards, we can do so

directly:
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req.k A pos < kANdir=1 — reqk Apos=k (ES110)
If the preferred direction is downwards, we have to switch it to upwards eventually:
req.k A pos < kANdir=—-1 +— reqk Apos< kANdir=1 (ES111)
Finally, if there is no preferred direction, we have to choose one:
req.k N pos < kANdir=0 +— reqk Apos <k Adir#£0 (ES112)

Combining (ES110), (ES111), and (ES112) using the disjunction and cancelation
rules of UNITY logic we can derive (ES11). Let us denote by Wiy, Wiy, and
W12 the yet to be determined regular expression hints for (ES110), (ES111), and
(ES112), respectively. Then, the derivation of (ES11) corresponds to the following

equation for Wiy:

Wii = Wito + WiniWiio + Wiia(Wiio + Wi11Wiio),
which is equivalent in the progress algebra to

Wit = WinaWinnWie .

We could now continue with the top-down proof and refine the regular expressions
further until we reach basic ensures properties and are able to determine all regular
expression hints. Alternatively, we can resort to action-grouping and derive some
regular expressions directly without having to be concerned with the details of in-
termediate predicates. It turns out, that both (ES110) and (ES111) require the
induction principle as the next proof step. Hence, we do not lose much structure by
using action-grouping directly.

For (ES110) we identify [service], [goOn], and [move] as contributing actions
with a sequential dependency in the listed order. Similarly, we find for (ES111),
that [service], [up], [goOn], and [move] contribute to progress. Finally, for (ES112)
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no grouping is needed since the sequence [service][up] establishes the property. Com-

bining these results we obtain

W11 = [service][up]([service][up][goOn][move])*([service][goOn][move])*
which is equivalent to

Wiy = (ervice][upl[zoOn][move])*

Using the definition of Wy, we obtain for the final regular expression hint the fol-

lowing expression
(([service][up][goOn][move])* + ([service][down][goOn][move])*)[service] ,

which again is equivalent to (H2). This derivation illustrates two facts: first, a sim-
ple method like action-grouping can produce accurate regular expression hints for
a top-level progress property, i.e., a progress property for which we do not want to
consider intermediate predicates. On the other hand, although the detailed deriva-
tion based on the abstract progress proof produced the same top-level result, it also
generated many auxiliary properties with associated intermediate predicates and
regular expression hints. Deriving such a detailed structure with an abstract proof
is certainly more difficult than applying a simple heuristic to obtain some regular
expression hint. However, a detailed structure provides a collection of properties,
which can be used to analyze the program and to track down errors in case the orig-
inal property does not hold. Moreover, the detailed derivation is still more abstract
than a complete progress proof, particularly since at any level a detailed subproof

can be replaced by a regular expression hint obtained by some other method.

5.4 Discussion

In this chapter we have described how the theory of generalized progress can be

incorporated into the model checking procedure for UNITY logic. This extension
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improves the model checking procedure by providing a new way of verifying progress
properties. The advantages of the new method are similar to the advantages of the
previous procedure for checking safety and basic progress properties: (i) by utilizing
a certain form of design knowledge — regular expression hints — the verification
task can often be sped up significantly; (ii) the design knowledge has a simple
structure and is readily available by virtue of methods and heuristics for obtaining
such knowledge from operational considerations and proof outlines; (iii) the extended
logic makes it possible to refine progress specifications of programs and thus serves
as a valuable tool for analyzing and debugging programs and their specifications.

Several remarks about the model checking procedure of chapter 3 can be
extended to the new augmented method: the verification conditions for generalized
progress are in principle not restricted to finite state systems and could be combined
with infinitary representations and theorem proving systems; moreover, other logics
like LTL and Fair-CTL could be extended in a similar way in order to take advantage
of at least some aspects of the new properties; however, several features specific
to UNITY - such as the unconditional fairness, identification of actions, and the
structure of the deductive system — have been exploited in order to define these new
properties.

A very appealing characteristic of the new method for verifying progress
properties is the flexibility with which it can be used in the design and verification
process: at one extreme, a completely automated verification based on the fixpoint
characterization of the leads-to operator can be attempted; at the other extreme, one
could start with a detailed proof outline and verify the correctness of the individual
proof steps. The most promising application of the method, however, lies somewhere
in the middle: some design knowledge will be directly available and can be used at
little or no extra cost due to the simplicity of the formalism in which the knowledge
can be stated; additional design knowledge can be provided in response to failed

verification attempts or when analyzing the program.
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It was not to be expected to find a method with which the verification of
progress properties under fairness could be reduced to the evaluation of some simple
and local checking conditions as it is the case for safety properties. However, the
new method is a step in the right direction by allowing us to simplify the verifica-
tion conditions to be evaluated, while at the same time providing us with a more

expressive logic as a means to reason about our programs.
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Chapter 6

The UNITY Verifier System

In the previous chapters we have demonstrated how the temporal logic and pro-
gramming notation of UNITY can be extended and exploited so to obtain efficient
model checking algorithms. In particular, we have argued that interactive verifica-
tion based on UNITY logic makes it possible to incorporate design knowledge into
the verification process, either by providing or establishing sufficiently strong invari-
ants, or by supplying progress hints in the form of regular expressions. Moreover,
the interactive model checking based on UNITY logic takes advantage of the asyn-
chronous computation model of UNITY and of the design information supplied in
order to simplify or even eliminate some computations required for verifying prop-
erties. In this chapter, we describe how the previously developed theory and the
proposed algorithms are implemented as part of the UNITY Verifier System, abbre-
viated as UV System, an interactive symbolic model checker for finite state UNITY
programs and propositional UNITY properties.

The design and implementation of an interactive verification system for
UNITY (and our extensions of UNITY logic) is motivated by three goals: first,
we need to substantiate our claim that the verification of certain concurrent sys-
tems can be aided by taking advantage of the simplicity and structure of UNITY

logic, and by employing a methodology for making design knowledge a formal in-
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gredient of the verification process; second, we want to provide a useful tool for
designers who routinely use UNITY for designing, analyzing, or modeling concur-
rent systems, which can help them in performing certain tedious and error-prone
verification tasks; and third, we strive to construct a system that can serve as a
platform for further research on verification techniques and methodologies.

The above goals influenced the overall design of the UV system significantly.
In order to demonstrate the feasibility and advantages of the UNITY model checking
approach and of the interactive use of it, a system has to be built that can be run on
sizable and interesting examples, and that can be compared to other model checker
implementations. The desire to build a useful tool calls for an intuitive user interface
that allows for easy interactive access to the functionality provided by the model
checker, while presenting information about verifier invocations in a manageable
way. Furthermore, the intention of using the system as a basis for future research
requires its construction in a modular and extensible fashion.

In the remainder of this chapter we describe how these design goals are met
by our implementation of the UV System!. In section 6.1 we give an overview of the
system architecture. Important features of the UV language, in which the programs
and properties that are to be submitted to the verifier are written, are discussed
in section 6.2. We present some aspects of the user interface of the UV System in
section 6.3 and explain how the system is used for interactive program verification.
We conclude this chapter with a summary of the implementation and a discussion
of extensions to the system that are currently under way or are planned for the near
future.

For up-to-date documentation of the UV system and for a more detailed
description of various implementation issues, the reader is invited to visit the UV
system home page on the world wide web at the following URL:

http://www.cs.utexas.edu/users/markus/uv2/welcome.html

!The system description is based on the current version, 2.3.3 , of the UV System.
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6.1 The UV System Architecture

In order to meet the requirements of modularity, extensibility, performance, and
ease of use, the architecture of the UV System has been designed to support the

following features:

Object-oriented workspace: entities that are relevant for a verification task,
such as programs and properties, are available to the user for direct inspection

and manipulation.

Separation of user interface from core functionality: the operations of the
verifier are independent from their representation in the user interface; dif-
ferent interfaces can be provided for different tasks or user preferences, exper-
imenting with the interface does not require extensive changes to the system

core.

Scriptability: modifying the user interface, performing repeated tasks or series of
experiments, or recording statistics in an automated fashion becomes possible

without having to recompile the entire system.

Adequate Input Language: a strongly typed language with user definable ex-
pressions and data types close to the original UNITY notation makes it pos-

sible to conveniently state programs and properties.

Efficient Symbolic Representation: expressions and formulae used to represent
various parts of the programs and properties under consideration are encoded
and represented by ordered binary decision diagrams (OBDDs, [Bry86]), and

can, therefore, often be stored and manipulated very efficiently.

These features are implemented in a system architecture that consists of two sep-
arate layers: the UV kernel provides the core functionality of the system, while a

GUI (Graphical User Interface) allows the user to access the kernel in a convenient
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manner. The architecture is based on the Tcl/Tk system ([Ous94]), which makes
it possible to separate kernel and user interface, to make the core functionality of
the system available as a set of Tcl commands, and to interactively execute and
combine these commands as required by a specific verification methodology or user
interface. Moreover, the use of Tel/Tk as a GUI definition language significantly
reduces both code size and development time needed to build a user interface (cf.
section 6.4).

The user can interact with the two layers in different ways: the kernel is
accessible as the uvwish shell, which is an extension of the standard Tel/Tk win-
dowing shell wish. In addition to all the usual wish commands, several UV specific
commands have been added to provide the UV functionality. The user can interact
directly with the command line interface of the uvwish shell. On the other hand, a
GUI is entirely written as Tcl/Tk scripts on top of uvwish. There is a standard GUI
provided with the UV system distribution, but it can be modified or replaced by
another one without affecting the kernel. Every interaction with the kernel through
a GUI can be performed with the uvwish shell alone, although often in a far less
convenient way. On the other hand, not all operations of the kernel are necessar-
ily accessible through a GUI. The overall system structure of the UV system is

illustrated in figure 6.1. As can be seen the uvwish shell consists of three parts:

The Tecl/Tk Library and Parser provide all the common wish commands and

the system initialization, as well as the main event loop for the entire system.

UV Tecl Commands access the special functionality and data representations of
the UV system core through a well defined script command interface. Typical
commands are uv_init for initializing the UV workspace, and uv_parse for

parsing a string as a UV input.

The UV Workspace holds all the data objects generated and manipulated during

a verification session such as formulae, programs, and properties. It contains

140



User A l T

Tcl /ITk
GUI Interface Scripts uvwi sh. tk
_______ N I [ N,
uvwish Y Y uvwi sh.init.tcl

Tcl /Tk Library and Parser
~/ . uvwi shrc

Work- UV Tcl _e\{e_nlt_ loop, ~/ . uvwi sh-prefs
space cmds. initializa-
i (€ & tion,
BDDs, =N uv_init BN wish cmds|
Parser, uv_parse etc.
etc. etc.

Figure 6.1: The UV System Architecture

an OBDD package for the symbolic representation of boolean functions and
many auxiliary data structures. It also implements the actual system opera-

tions such as UV parsing and model checking.

While the functionality of the UV system is determined by the UV kernel (consisting
of the workspace, the Tcl commands, and the Tcl/Tk interface), its appearance is

mostly defined by several Tcl/Tk scripts that define how the UV system is executed:

The loading script uvwish.init.tcl is responsible for processing command line

options, maintaining the preference file, and starting up the UV kernel.

The preference script .uvwish-prefs located in the user’s home directory keeps
track of user preferences and system settings. It is maintained by the loading

script and is not intended to be directly edited by the user.

The interface script uvwish.tk defines the graphical user interface. It is exe-

cuted as last part of the UV system start-up process.
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The user script .uvwishrc , also located in the user’s home directory, is a user-
supplied resource script that can contain additional setup or customization
commands. These commands are executed after the user interface has been

set up.

The UV system obtains its modular and extensible structure mainly from the sep-
aration of the user interface from the system kernel, and from the modularization
of commands providing the kernel functionality. Moreover, certain implementation-
level techniques have been used to keep the overall structure clean and manageable:
first, the object-oriented features of C+4 as the implementation language are used
extensively to ensure the design principles of data encapsulation and separation
of functionality (model checking algorithms) from representation (symbolic repre-
sentation as well as user interface). Second, the parser and the lexical analyzer
for the UV input language (cf. section 6.2) are generated from sets of augmented
grammar rules, allowing for greater flexibility in making modifications to the input
language. Finally the OBDD package and its memory management (including a
non-incremental version of a treadmill garbage collector [Bak92]) have been devel-
oped as part of the system in order to facilitate a seamless interaction with the other
system components while retaining the possibility of modifying the system as part
of future research. Meeting the goals of seamless interaction and future extensibil-
ity would have become more difficult when using an existing package for symbolic
representations.

In the remaining part of this section we discuss briefly two important parts
of the UV kernel: the workspace and its implementation in section 6.1.1, as well as
the OBDD package in section 6.1.2. Aspects of the GUI and the Tcl interface are
presented later in section 6.3, while an overview of the modules of the UV source

code can be found in appendix C.
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6.1.1 The UV Workspace

During a verification session the user manipulates objects that are relevant to the
verification task at hand. Such objects include UNITY programs, properties, and ex-
pressions characterizing relations and sets of program states. These objects (as well
as other internally used objects such as symbol tables or status information blocks)
are maintained by the UV system in what can be conceptualized as a workspace, a
structured collection of relevant objects. An illustration of the workspace structure
is shown in figure 6.2.

There are two ways in which objects are introduced into the UV workspace:
either they are constructed as a result of a translation from an external textual
form according to the UV input language into an internal representation suitable
for storage and manipulation, or they are created by performing certain operations
with already existing objects. Building a program object from a textual description
of a UNITY program is an example of object construction, whereas extracting an
expression characterizing a counter-example from a property after a failed model
checker invocation is a typical way of creating an object from an already existing

one.
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For effective and convenient interactive operation of the UV system, the
internal representations of the relevant objects in the workspace need to be directly
accessible through the user interface. This is accomplished by maintaining external
names for those objects as well as mappings that allow the user to access objects
by their external names. These external names typically consist of a prefix that
characterizes the kind of an object (for instance #expr for expressions) followed
by a unique number for that category. Certain objects can also be referred to by
user-provided names.

The most important entities a user deals with during a verification session

are the following:

documents and user input externally represent workspace objects such as pro-

grams and properties,
programs are the system models to be analyzed and verified,
properties are specifications to be checked for certain programs,

expressions are, in general, formulae over the state space of certain programs

characterizing sets of states, relations, invariants or parts of properties,

invariants are expressions that play a special role in the verification of UNITY

programs.

regular expressions are formal hints used in checking progress properties.

In the following we briefly characterize these entities and describe typical operations

performed with them.

Documents and User Input

In order to introduce UNITY programs, properties, and expressions into the UV

system the user provides an ASCII text description of these objects. The syntax of
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this external description is governed by the UV language. Input strings can be read
from document files or can be provided interactively through some user input win-
dow. Document files typically contain descriptions of programs and properties to be
checked, whereas interactive input is mostly used to evaluate interesting expressions
or to experiment with additional properties.

Each input string provided by the user is processed by the UV Parser, which
performs syntax and type checking and generates an internal representation for
correctly described objects. In case syntax or type errors are encountered, a suitable
error message is returned and the location of the error in the input string is reported.
Parsing and introducing new objects into the workspace is done incrementally as
newly described objects are added to the workspace without altering or removing

existing ones.

Programs

Programs define the models (state transition systems) for which model checking is to
be performed. In particular, any program defines a state space of all possible values
of its variables, a set of initial states, and a labeled transition relation determining
which state can be reached by executing a program statement in a given state.
Furthermore there are invariants associated with every program, corresponding to
sets of states that are closed under the execution of the program.

A successfully parsed program is entered into the workspace as part of the
program table containing all currently defined programs. The user can display sta-
tus information of all programs contained in the program table, and can invoke

operations on the programs such as computing the strongest invariant.

Properties

Properties are the specification formulae that need to be checked for programs. Each

property is associated with one program, of which it expresses a certain behavior.
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A successfully parsed property is entered into the workspace as part of the
property table containing all currently defined properties. The user can display status
information of all properties contained in the property table, can invoke operations
on the properties, such as model checking the associated program for the given

property, or can remove properties from the workspace.

Expressions

Expressions represent typed values over some state space, typically the state space
of a particular program or the global state space. Boolean expressions over the
state space of a program often denote sets of program states; similarly, boolean
expressions over the Cartesian product of a program state space with itself denote
transition relations.

Expressions are introduced into the workspace either directly through parser
invocation on some user input, or as a result of certain operations on other expres-
sions, programs, or properties. A successfully parsed or created expression is entered
into the workspace as part of the expression table which contains all currently defined
expressions. The user can display information about expressions contained in the
expression table, and can, furthermore, refer to them by using external expression

names when parsing subsequent input.

Invariants

Invariants are boolean expressions over the state space of a program that play an
important role in the model checking of properties of that program. Finding suit-
ably strong invariants is critical to efficient interactive model checking of UNITY
programs.

The UV system maintains at most three invariants for each program: the
type invariant expressing that every program variable takes on values only from the

domain determined by its type, the current invariant which is the conjunction of all
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invariants established for the program during a verification session, and, optionally,

the strongest invariant characterizing the set of reachable states of the program.

Regular Expressions

Regular expressions are part of generalized progress properties introduced in chapter
4. They play an important role in utilizing action-based design knowledge in the
model checking of progress properties.

Currently, the UV system maintains regular expressions only as part of gen-
eralized progress properties. Additional operations, such as keeping regular expres-
sions as separate objects and performing algebraic manipulations on them will be

provided in future system revisions.

6.1.2 Symbolic Representation Using OBDDs

Ordered binary decision diagrams are long known to be an efficient symbolic repre-
sentation for boolean functions encoding sets of states and transition relations (cf.
2.3.2). We chose OBDDs as symbolic representation mostly because of the success
of BDD based verification methods and implementations. It is, however, important
to note that the model checking procedures for UNITY, presented in chapters 3
and 5, are independent of any particular symbolic or even explicit representation.
For us, OBDDs make it possible to verify a wide range of programs, but it might
still be the case that other representations (such as explicit state enumeration, or
certain representations based on predicate calculus for infinite state systems) are
better suited for some classes of programs.

Ideally, it should be possible to keep a strong separation of the symbolic rep-
resentation and the actual verifier operations. That makes it possible to incorporate
improved representations, or even to use multiple representations for different ver-
ification tasks or inputs. When work on the UV system was begun in 1992, an

OBDD package was developed as a separate C++ class with the goal of supporting
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this separation by accessing the symbolic representation from the model checker
and parser only through a well defined interface (cf. appendix C). Although by
now there are complete OBDD packages and libraries available (for instance, David
Long’s OBDD package developed at CMU), we continued to use our own OBDD
package for two main reasons: first, the intimate understanding of the package al-
lows us to experiment with different ideas and implementations; second, as part
of a one-person prototype development it is more important to concentrate on the
algorithmic contributions than to attempt to incorporate all new ideas for the im-
provement of symbolic representations. Nonetheless, it was important to provide
an efficient implementation of the low-level symbolic representation structures and
manipulation operations documented in the literature. The techniques and methods
currently implemented include the use of reduced OBDDs as described in [BBR90],
of a combined and-exists operation in computing relational products ([McM93],
of quantification ordering in synchronous transitions similar to those described in
[BCMO1], of restriction [CM90], and generalized cofactoring [TSL*90].

In addition to provisions for taking advantage of the monotonicity of predi-
cate transformers in early termination of fixpoint computations, the current imple-
mentation also uses a special second level cache for memoizing certain and-exists
computations in addition to the standard if-then-else (ITE) cache ([BBR90]. We
observed, in particular, that in the presence of relatively small deterministic mul-
tiple assignments, typical of many UNITY programs, a hit-rate of above 30% was
achieved for the and-exists cache, resulting in a significant gain in performance.
The and-exists caching technique has been used in other systems as well [Fil94],
where somewhat smaller performance improvements on large examples have been

observed.
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6.2 The UV Input Language

A user of the UV system describes most entities that play a role in a verification
session by using the UV input language. UNITY programs, UNITY properties, and
expressions involving program variables and predicates are typical entities, which
are entered into the UV workspace after being parsed and compiled into an internal
OBDD based form suitable for further processing. Therefore, the UV input language
defines the set of possible user inputs, and provides the user with a convenient way of
expressing programs, properties, and expressions. These goals are met by designing
the UV input language to be close to the original UNITY notation while having the

following features:

Finiteness: in order to ensure finiteness of all state spaces, the UV input language

allows only finite data types.

Strong Typing: a strong type system makes it possible to derive information

about invariants from the program text.

Complete Set of Properties: all properties of UNITY logic are implemented in-

cluding the generalized progress properties introduced in chapter 4.

Statement Labels: in extension to the traditional UNITY notation, all statements
have unique labels by which they can be identified in debugging and formal-

izing progress hints.

In the following, we briefly describe some aspects of the UV input language.
In particular, we discuss parse units, types and type checking, expressions, programs,
and properties. In our presentation we show some rules of the grammar for the UV
input language. A complete formal description of the grammar for the UV input

language and of the UV type system can be found in appendix A.
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6.2.1 Name Space and Scoping

The UV system has two name spaces: one for variable, constant, type, program, and
field names (henceforth referred to as object names), the other for action names.
The structures of the name spaces determine the visibility of names in a system
description: associated with each action and each object is a scope, defined as parts
of the description in the UV input language from which the action or object can be
referred to by its name. Both action and object name space have a tree structure
with the global scope as their roots and sub-scopes as their children. Sub-scopes for
both objects and actions are introduced with every program definition, additional
sub-scopes for objects (field names) are created for each record type.

Every object and action is visible in the scope where it is declared and recur-
sively in all children of that scope, subject to the restriction that names in sub-scopes
(lower scopes) hide the same names in outer scopes. Names declared in the same
scope of the same name space have to be unique, e.g. , it is illegal to declare two
enumeration types with a shared enumeration constant name in the same scope,
since the enumeration constants are declared in the same scope.

The action name space has an empty global scope and a local scope for each
program containing exactly the statement labels of that program.

The object name space has a global scope containing certain predefined
names, such as the type boolean and the constants true and false, as well as
all object names declared by the user globally (e.g. , program names are globally
declared constants of program type). On the other hand, object names declared in-
side programs (or field names of record types) have local scope, i.e., are only visible
from within the program, or from within expressions and properties that are placed

into the program context.
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6.2.2 Types

The benefits of using type systems in programming are well known. In addition to
the ability of recognizing certain program errors at compile-time, a suitable type
system provides the user with invariants that can be derived from the program text
by simple syntactic operations. These invariants come at no cost for the programmer
since there are no proof obligations to establish them.

We, therefore, adopt a simple strong type system of finite types for the UV
input language. In this type system every expression occurring in a program or in a
property has a statically well defined type. In the following we describe the available
types together with the operations on them, and sketch the rules for correctly typing

programs and properties.

The UV Type System

The type system of the UV input language consists of nine different kinds of types.
The simple types are boolean, number, cyclic, bits, int (finite range integers),
enum (enumeration), and program; the structured types are record and mapping.
The simple types are all finite, and the structured types are finite types constructed
from simpler finite types.

Among the simple types, the number and program types are restricted in
the sense that the user cannot declare variables of these types: any program can be
thought of as the definition of a constant (the program name) of type program, and
any expression made up from only number literals and arithmetic operators is given
a number type. There are no operations defined on the program type, but program
constants are used in specifying the context of properties.

The boolean type has two predefined constants true and false and the
usual boolean operators. Finite enumeration types are given by ordered list of
unique enumeration constants; these constants define the possible values of the type

as well as a linear order (from smallest to greatest element) on it. Additionally, the
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UV type system provides three finite-range integer types, that differ slightly in the
way they relate to the actual set of integers, i.e., in the way the arithmetic operators
+ and - are defined (the comparison relations are similarly defined for all integer

types, as the relation on the corresponding integers):

Cyclic types: cyclic(n) represents the integers modulo the positive natural n,
i.e., the cyclic group of n elements. Inequality relations are to be used carefully,
since they do not obey monotonicity laws (e.g. , in cyclic(5), 2<4 but not

2+2<4+2).

Bits types: bits(n) represents n-bit numbers for which arithmetic is performed
modulo 2. They are similar to the cyclic types, but support additional

bit-level operations?.

Interval types: int(m..n): represents the intervals of integers from m up to and
including n. The type of an expression involving interval type variables is
the syntactic minimal interval type suitable for the result; for instance, if x
has type int(2..7), the expression x-3 has type int(-1..4). No modulo

arithmetic is performed.

The two kinds of structured types are the record type and the mapping type, the
latter of which can be thought of as a generalization of array types. A record type
is defined by a non-empty set of pairs of field-names and previously defined types.
A mapping type is determined by two previously defined types, an index type and
an element type. A variable of a mapping type is a (finite) mapping from the index
type to the element type. Arrays in languages like C4+4+ or PASCAL are special
cases of mappings in which the index type is some integer or range type. A few

examples of type declarations are:

type Range = int(1..8);

2not implemented currently
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type State = enum{idle, trying, criticall};
type Process = {id: cyclic(16); state: State};
var process: Process;

var network: Range -> Process;

type Monitor = Process -> enum{never, once, often};

Note that the index type of a mapping type can be a structured type (see Monitor in
the example above). Accessing components of a record type or elements of an index
type is expressed with the function application operator . asin process.state or

network. (i+1) .

Subtypes

The notions of subtypes and type coercion play an important role in determining
whether a given program, property, or expression is typed correctly: only correctly
typed input is compiled into the internal representation, and any (sub-)expression
of a correctly typed input has a unique, statically determined type.

Informally, a type S is a subtype of type T if every element of S can be
regarded as an element of T'. For instance, extending a record type R by a new
component yields a subtype of R, since any element of the new type can be regarded
as an element of R (in which the value of the new component is ignored).

The subtype relation on integer types is, at the first glance, somewhat un-
usual: number types are subtypes of all other integer types, cyclic and bits types
are only subtypes of themselves, and int types are subtypes of any int type. Types
cyclic and bits types are kept incompatible with other integer types because they
have a different algebraic structure. Compatibility of arbitrary int types was cho-
sen in order to support the informal semantics of such types as providing a window
into the infinite set of integers. In particular, this compatibility is a requirement for
being able to handle assignments of the form x := x+1 where x has interval type

int(m. .n); the right-hand side has type int(m+1..n+1) which needs to be a sub-
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type of int(m. .n) in order to comply with the type rule for assignments. Instead of
disallowing such an assignment altogether, it is given the semantics that the value
of the right-hand side is some arbitrary value in the target range from m to n in case
the value of x+1 falls outside this range. An implementation is free to choose that
value arbitrarily.

The rationale behind this semantics is the following: an assignment such as
the above is inappropriate for a finite state program, since it can generate an infinite
program behavior. The only reasonable occurrence of such an assignment should
be guarded by some predicate b that effectively restricts the growth of the value
of x. The intention should be that in an actual program execution the statement
is never enabled in a state in which the right-hand side produces an out-of-range
value. In other words, by including an assignment such as x := x + 1 if bin a
program, the user actually generates the proof obligation invariant b ==> x<n,
which should be checked as a required property of the program.

The subtyping relation for structured types is defined recursively as follows:
a record type R is a subtype of a record type S, if and only if every field-name of
S occurs in R and for each field-name £ of S the type associated with £ in R is a
subtype of the type associated with £ in S. A mapping type M defined as A->B is a
subtype of a mapping type N defined as C->D, if and only if B is a subtype of D and
C is a subtype of A.

Type Checking of Expressions

An expression is well-typed if the UV type checking algorithm successfully labels
all subexpressions with their types. The type checking algorithm proceeds by la-
beling subexpressions with their types in a bottom-up fashion starting with literals
and variables, while requiring that the types of any subexpressions occurring as

arguments to some operator be compatible with that operator.
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6.2.3 Parse Units

The input to the UV parser (more precisely, to the uv_parse command of the uvwish
shell) consists of a sequence of input units, each of which either declares some types
or variables, or describes a program or a property, or defines an expression.

All units that have been parsed correctly and have passed the type checking
successfully are compiled into an internal OBDD-based representation. In partic-
ular, programs are internally represented as a set of statements, each of which is
symbolically represented by a boolean function characterizing the transition rela-
tion of the statement. Similarly, the internal representation of a property includes
the OBDDs representing the expressions from which the property is built, and —
in the case of generalized progress properties— also a representation of the regular
expression that is part of the property. Expressions are compiled into vectors of
OBDDs, the size of which is determined statically by the type of the corresponding

expression.

Programs

A program consists of a program name and four sections: the declare-section de-
clares local types and variables and, thereby, defines the local state space of the pro-
gram; the always-section defines transparent variables ([CM88]) that serve mostly as
abbreviations to render the program easier to read and understand; the initially-
section defines the set of initial states of the program, and the assign-section defines
the state transition in terms of asynchronous program actions. Several examples of
programs are given in chapter 7.

A program is well-typed if the following conditions are met: all of its expres-
sions are well-typed, the types of all expressions in the always section are subtypes of
the declared types of the corresponding transparent variables, all expressions in the
initially section are of type boolean, all expressions appearing as guards in state-

ments in the assign section are of type boolean, and the types of all expressions
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appearing on the right-hand side of the assignment operator are subtypes of the
corresponding types of the left-hand side variables, record components, or mapping

components.

Properties and Expressions

A property is defined in the context of exactly one program, which is named in a
context declaration preceding the property. As a consequence, all global symbols
and all local symbols defined in the associated program can be referred to in the

property. Some examples of properties of a program named sample are:

in sample: n=3 unless m>0;

in sample: true --> n=3 by [alpha]l*[beta];

A property is well-typed if and only if all of its expressions are well-typed, and —

unless the property is a constant property — are of type boolean.

6.3 The User Interface

Interaction with the UV system can take place at two different levels: the Tcl
interface provides access to the core functionality of the UV workspace, whereas a
GUI makes some of that functionality accessible in a more convenient way. In the
following, we describe these two interfaces in some more detail: first, we describe
the standard GUI that is provided with the UV system distribution; then, we briefly

summarize the underlying Tcl interface.

6.3.1 The Standard Graphical User Interfaces

When interacting with the UV system through its graphical interface the user typ-

ically deals with the following parts:

The Command Window gives access to system commands, displays system mes-

sages, and allows the user to invoke the parser.
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Document Windows are created for each document file in use and allow the user

to edit, save and parse documents.

The Program Table Window lists all current programs and allows the user to

examine and perform operations on them.

The Property Table Window lists all current properties and allows the user to

examine and perform operations on them.
The Expression Table Window lists information about all current expressions.

Property Information Windows display detailed status information about se-

lected properties.

In the following we show typical instances of these interface components and briefly

explain how they can be used.

The Command Window

The command window consists of the following four parts arranged from top to

bottom; see figure 6.3 for an example.

The Menu Bar provides access to various system operations.
Command Buttons invoke operations on the command window.

The System Message Area displays system messages such as parser error mes-

sages or status messages.

The User Input Area allows the user to interactively parse and process UV in-

put.

The menu bar contains a pull-down menu labeled File providing operations for
creating new documents (New), opening an already existing document (Open...),

and for terminating a verification session (Quit). Other menus for accessing system
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Figure 6.3: A Command Window
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level information, setting preferences, or invoking tools like formulae browsers will
be added in future releases.

There are two command buttons, one labeled Parse User Input for running
the UV parser on the entire content of the user input area of the command window,
the other labeled Clear for clearing both the message area and the user input area
of the command window. Status and error messages produced by the parser are
displayed in the message area of the command window, and the error position is

indicated in the user input area by highlighting the token that caused the error.

Document Windows

A document window is used for viewing and editing input to the UV system, and for
filing and parsing operations on such input documents. A document window consists

of the following three parts listed as they appear in the layout of the window:

Command Buttons allow the user to perform filing and parsing operations on

the document.

The Document Message Area displays messages that result from performing

operations on the document.

The Document Content Area is an editable text area that can be used for

browsing, writing, or modifying the document content.

An example of a typical document window is shown in figure 6.4.
A document window contains four command buttons that cause the following

operations to be performed:

Parse runs the UV parser on the entire document content of the document win-
dow. Status and error messages produced by the parser are displayed in the
message area of the document window, and the error position is indicated in

the document content area by highlighting of the token that caused the error.
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Figure 6.4: A Document Window
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Close closes the document window. Changes made to the document content that

have not been saved are lost.

Save saves the document to a file. If the document was opened from a file, changes
are saved to that file. If the document was newly created, the user is prompted

for a new filename under which the document is to be saved.

Save As... savesthe document to a file, but always prompts the user for a filename

under which the document is to be saved.

Clear Messages clears the message area of the document window.

The Program Table Window

All programs currently in use are listed in the program table window. The window
consists of a command button labeled Compute Strongest Invariant and a scroll-
able list of all programs currently in the UV workspace. An example of a typical
program table window is shown in figure 6.5.

For each program one line is displayed containing the program ID, the pro-
gram name, and information about which invariant has been computed for the
program so far. Program lines can be selected with the usual click and drag tech-
niques: clicking the command button causes the strongest invariant to be computed
for all selected programs. Although the UV kernel implements different algorithms
for computing the strongest invariant (such as forward chaining and iterative squar-

ing), the command button invokes the algorithm that has been found to be the most
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Figure 6.6: A Property Table Window

efficient for most programs. This algorithm is called frontier forward chaining; its
name is due to the fact that in successive iterations of the forward exploration of
the state space successors of those states are determined that have been added only

in the previous iteration.

The Property Table Window

All properties currently in use are listed in the property table window. The window
consists of the following three parts given in the order in which they appear in the

layout of the window:

Command Buttons allow the user to perform operations on selected properties.

Invariant Radio Buttons are used to specify which invariant is to be used in

checking properties.

The List of Properties is a scrollable list of all properties currently in the UV

workspace.

An example of a typical property table window is shown in figure 6.6.
A property table window contains two command buttons: the first, labeled

Check, invokes the model checker on all currently selected properties; the second,
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labeled Delete, removes the selected properties from the workspace.

The radio buttons are used to select whether a model checker invocation
should use the type invariant, the current invariant, or the strongest invariant of the
respective programs for which properties are checked.

For each property in the list of properties, one line is displayed containing
summary information about the property, namely the property 1D, the name of the
program associated with the property, the checking status of the property, and the
beginning of the textual representation of the property. The checking status is one

of the following four:

new indicates that no checking attempt has been made for the property.

? indicates that the property has not yet been proved to hold in the associated
program, but that there might be a suitably strong invariant with respect to

which the property could still be proved.
ok indicates that the property has been proved to hold in the associated program.

fail indicates that the property has been proved not to hold in the associated

program by checking it with respect to the strongest invariant of the program.

Property lines are selected for subsequent operations with the usual click and drag
techniques. Double-clicking on a property line with the first mouse button brings
up a property information window for this property containing more detailed infor-

mation about the checking status.

The Expression Table Window

All expressions currently in use are listed in the expression table window. The
window consists of a list of entries with one line for each expression. An example of

an expression table window is shown in figure 6.7.
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Figure 6.7: An Expression Table Window

For each expression in the UV workspace, one line is displayed characterizing
the expression. Each such line consists of the expression 1D, the type of the expres-
sion, the value of the expression (if the expression represents a constant, otherwise
a number in square brackets showing the number of OBDD nodes required in the
symbolic representation of the boolean vector encoding of the expression), and the

beginning of the textual representation of the expression.

Property Information Windows

For each property listed in the property table, window a property information win-
dow can be displayed by double-clicking on the entry of the property in the property
table list.
The property information window displays more detailed information about the
property and is useful for analyzing model checker output and for debugging prop-
erties and their associated programs. The information presented in a property in-
formation window includes the name of the program associated with the property, a
textual representation of the property, and a list of status items, each providing in-
formation about a certain aspect of the checking status of the property. An example
of a property information window is shown in the figure 6.8.

Each status item is labeled with an identifying category. Some status items
have additional information associated with them in the form of some expression.
If such an expression is present, a button labeled Add Expr appears at the right of

the corresponding status item line. Pressing that button causes the expression to
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Figure 6.8: A Property Information Window

be added to the expression table window, thereby being made available for further
investigation.
The following table lists all status items by their categories and describes the

information available through them:

Status shows the checking status of the property as displayed in the property table

window.

Invariant identifies the kind of invariant used for checking the property. This

invariant is made available by pressing the Add Expr button.

Implication states the result of the implication check required for invariant and
co properties. A predicate characterizing all states (within the checking
invariant) falsifying the implication is available by pressing the Add Expr but-

ton.

Safety states the result of the safety check required for co , unless , stable |,
invariant , constant , and ensures properties. In particular, it names a
program statement violating the condition (if there is any). If there is such
a violating statement then a predicate characterizing all states (within the
checking invariant) from which an execution of named statement violates the

safety condition is available by pressing the Add Expr button.
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Transition states the result of the helpful transition check required for transient
and ensures properties. In particular, it names a helpful program statement

(if there is any).

Value shows a value for the expression of a constant property for which the
stability condition is violated (if there is such a value). If there is a value that
is changed by some statement, then such a value is made available by pressing

the Add Expr button.

Iterations presents the number of outer (least) and inner (greatest) fixpoint it-
erations in the checking of leads-to and generalized leads-to properties. A
predicate characterizing all states (within the checking invariant) for which
there is a fair program execution not satisfying the leads-to property is made

available by pressing the Add Expr button.

Furthermore, all status items characterizing counter-examples (i.e., the items
labeled Implication, Safety, Value, and Iterations) have another button at-
tached to them, which is labeled Debug. Pressing this button brings up a new
window with a witness for the violation characterized by the corresponding status

item. Pressing the Close button closes the property information window.

6.3.2 The Tcl Interface

The Tcl interface of the UV system consists of a set of commands and some special
Tel variables added to the standard windowing shell wish. The entire functionality
is available through these commands and variables: in particular, the standard GUI
presented in the previous section is implemented completely as a set of Tel/Tk
scripts.

The commands specific to the UV system as part of the uvwish shell are
listed briefly in the following table; a detailed description of these commands can

be found in appendix B:
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uv_check invokes the model checker.

uv_expr accesses information about expressions.

uv_info accesses information about the UV system.
uv_init initializes the UV system.

uv_option sets and displays system options and parameters.

uv_parse parses a string of the UV language and adds the defined entities to the

UV workspace.
uv_prog accesses information about programs.
uv_prop accesses information about properties.

uv_si computes strongest invariants.

Currently, there are three Tecl variables that can be used to control the behavior of
some UV commands, or communicate information between executing UV commands

and other active Tecl/Tk scripts:

uvAbort is a boolean variable that when set to 1 causes the potentially time-

consuming UV commands uv_check and uv_si to be aborted.

uvProgress is an integer variable that counts the number of major iterations during

uv_check invocations for leads-to properties and during uv_si invocations.

uvSubProgress is an integer variable that is set to the percentage of statements
checked in uv_check invocations for safety and basic progress properties, and

in each major iteration of a uv_check invocation for a leads-to property.

These variables are used in the standard GUI, for instance, in order to display com-

putation progress bars indicating the status of a lengthy UV command execution
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(such as computing a strongest invariant or checking a property of a complex pro-
gram). This is possible because the potentially time-consuming commands uv_check
and uv_si periodically process pending events, thereby updating the user interface

display and checking the variables mentioned above.

6.4 Implementation Summary and Extensions

The UV system in its current form is the result of a research and implementation
effort that began in 1992 as an experimental OBDD based model checker for UNITY
programs, which was written in Scheme [RC86], and ran on a Macintosh computer.
Since then, many significant improvements to the symbolic representation have been
made, the system has been written in C++ under UNIX and the X Windows system,
and the theory of incorporating design knowledge has been developed. The first
version of the UV system was made publicly available in December 1994 [Kal94,
Kal95b]. After a redesign and clean-up of the system architecture that had grown
over a period of two years, the second and current version of the UV system was
released in October 1995. Besides the new structure and the interface based on the
Tcl/Tk package, version 2 improved the efficiency of the symbolic representation and
the expressiveness of the UV input language. We expect the UV system to continue
to be a platform for conducting and evaluating further research in verification of
concurrent programs in the near future.

The current version, 2.3.3 , of the UV system is based on Tcl 7.4 and Tk 4.0,
and has been successfully tested on SunOS 4.1.3 and Solaris 2.4. It was developed
using the GNU suite of development tools, including the parser generator bison
and the lexical scanner generator flex. The UV system source consists of about
36,000 lines of commented code. About 24,500 lines are written in C++ , 9,000 lines
are C++ code generated by bison, flex and the genclass type generator, and the
remaining 2,500 lines are Tcl/Tk code defining the user interface. Overall, 32% of
the code deals with parsing and compilation of UV input into the internal OBDD
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representation, 26% is needed to implement the symbolic OBDD representation and
the symbol table handling, about 23% is used on the model checking algorithms
and related data structures, 12% is spent on implementing the Tcl interface, and
only about 7% of the code makes up the standard GUI. It is worth mentioning that
this confirms one of the greatest alleged advantages of using a scripting language
like Tecl/Tk for building user interfaces, namely that the code size and the time
required to build, modify, and maintain such an interface is significantly lower than
traditional user interface designs, in which the interface code is typically written in
C++ using some interface toolkit. In the first version of the UV system, we had
written an interface based on the Motif[Hel92] toolkit, that not only took up more
than 30% of the entire code, but also was more difficult to modify and adjust to
the changing requirements of a system that is used as an experimental platform for
research.

In spite of its current size and its established usefulness, there are some
implementation aspects of the UV system that need to be improved. They can be

divided into the following three groups:

Symbolic Representation: several well established techniques for improving the
OBDD performance need to be implemented, such as dynamic variable re-

ordering [Rud93] and partitioned OBDD representations [HD93, Jai96];

UV Language: quantified statements and formulae need to be introduced in order
to improve the ease of expression of the input language; support for regular
expression hints as separate objects and for performing algebraic operations

on them could simplify working with progress properties;

User Interface: a better presentation of debugging information in the form of
counter-example traces, and the addition of formula browsers could facilitate

the user’s task of finding and debugging program or specification errors.

In addition to these implementation-oriented extensions, future research concerning
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compositional reasoning will prompt the need for support of advanced structuring
and reasoning methods, which are expected to utilize the modular and extensible

structure of the current version of the UV system.
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Chapter 7

Experimental Results

In this chapter we present some empirical results in applying the UV system to some
practical problems. Each example has been chosen with the intention to emphasize
a particular aspect of the UV system and the model checking procedures it is based
on.

In section 7.1 we present a two-process mutual exclusion protocol that has
been one of the first applications of the UV system, which detected errors in a manual
correctness proof. A resource allocation protocol based on a dining philosopher
algorithm demonstrates the increased efficiency of local safety checking in section
7.2. The counter example of chapter 4 has been included in section 7.3 to document
the savings obtained by generalized progress checking. The remaining two examples,
Milner’s cycler in section 7.4 and the elevator control program of chapter 5 in section
7.5, are more elaborate examples that illustrate the advantages of using generalized
progress properties.

Each example is presented with the program and relevant properties written
using the UV input language. However, for the sake of conciseness of the listings
some language features not implemented in the current revision 2.3.3 of the UV
system are used. In particular, quantified assignments and formulae are used exten-

sively. We refer to the language including these additional syntactic features as the
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extended UV input language.
All examples were run on a SPARC-20 workstation with about 20 MB of

main memory allocated to the model checker.

7.1 Two-Process Mutual Exclusion

The following two-process mutual exclusion algorithm is taken from [Mis90a], where
it is derived by refinement from a set of properties. Important properties of the al-
gorithm, like mutual exclusion and absence of starvation, are established along with
the manual. Although these properties can be established, some of the intermediate
invariant proofs in the paper were indeed not correct. Some of these errors had been
discovered independently [DF90], but they were all discovered automatically by the
UV system.

The mutual exclusion algorithm for two processes U and V is based on an
encoding of a shared queue by three boolean variables u, v, and p. Processes enter
their IDs at the end of the queue if they are requesting to enter their critical sections;
the ID at the head of the queue belongs to the process permitted to enter its critical
section; upon leaving its critical section a process removes its ID from the head
of the queue. The variables u and v indicate whether the IDs of U or V are in
the queue, respectively; variable p indicates which process ID is at the head of the
queue: if it is the ID of V' then p is true, if it is the ID of U then it is false (its value
is immaterial if the queue is empty).

The encoding of the mutual exclusion algorithm as a UNITY program is given
in the following listing. We have added two boolean variables hu and hv to model the
possibility that either process can remain in its non-critical section forever (without
these variables each process would request to enter its critical section eventually due

to the unconditional fairness constraint).
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program Mutex
declare
type PC = enum(noncritical, requesting,
trying, critical, exiting);
var m, n: PC;
var u, v, p: boolean;

var hu, hv: boolean;

always

initially

m = noncritical;

[=}
1}

noncritical;

assign

// first process (u)

[u0] hu = 'hu

[u1l u, m := true, requesting if hu /\ m = noncritical
[u2] p, m := v, trying if m = requesting

[u3] m := critical if 'p /\ m = trying

[u4] u, m := false, exiting if m = critical

[u5] p, m := true, noncritical if m = exiting

// second process (v)

[vo] hv := thy

[vi] v, n := true, requesting if hv /\ n = noncritical

[v2] p, n := 'u, trying if n = requesting
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[v3] n = critical if p /\ n = trying
[v4] v, n := false, exiting if n = critical
[v5] p, n := false, noncritical if n = exiting

end;

// invariants

in Mutex: invariant u == (m >= requesting /\ m <= critical);

in Mutex: invariant v == (n >= requesting /\ n <= critical);

// invalid invariants

in Mutex: invariant m = critical \/ m

exiting ==> !p;

in Mutex: invariant n = critical \/ n = exiting ==> p;

in Mutex: invariant (u == (m >= requesting /\ m <= critical))
/\ (m = critical \/ m = exiting ==> !p);
in Mutex: invariant (v == (n >= requesting /\ n <= critical))

/\ (n = critical \/ n = exiting ==> p);

// corrected invariants

in Mutex: invariant (u == (m >= requesting /\ m <= critical))
/\ (m = critical ==> !p);
in Mutex: invariant (v == (n >= requesting /\ n <= critical))

/\ (n = critical ==> p);

// misc. properties

in Mutex: m = trying unless m = critical;

in Mutex: m = requesting --> (p == v) /\ m = trying;

in Mutex: m = critical --> p;
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// mutual exclusion

in Mutex: invariant !'(m = critical /\ n = critical);

// absence of starvation

in Mutex: m = requesting --> m = critical;

Due to the small size of program Mutez the strongest invariant and all valid proper-
ties can be checked almost instantaneously. Two facts, however, are worth noting:
first, the four invariants in the sections labeled invariants and corrected invariants
are sufficient to establish all the other valid properties. Second, the number of inner
iterations necessary for checking the absence of starvation property can be reduced
from 116 to 22 by using the regular expression hint [u2]([v2][v3][v4][v5])[u3], which
captures the transition of process u from requesting to critical with the possibly

necessary pass of process v through its critical section.

7.2 Resource Allocation: Dining Philosophers

The dining philosophers program presented here is based on the distributed dining
philosophers algorithm found in [CMS8]. It implements a ring topology in which
two neighboring processes share a fork. Fach process is in one of three states,
thinking, hungry, or eating. A process can transit from thinking to hungry at any
time, can move from hungry to eating only if neither of its neighboring processes is
in its eating state, and moves from eating to thinking after finite time. While the
transitions from thinking to hungry and from eating to thinking are under control of
the processes, a scheduler has to determine when processes can transit from hungry
to eating. An important property that need to be maintained by the scheduler is the

mutual exclusion property, stating that two neighboring processes are not eating at
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the same time.

In order to resolve conflicts arising when two neighboring processes are ready
to transit from hungry to eating, the algorithm for the scheduler maintains a par-
tial order among the processes in which processes with higher priority are chosen
over processes with lower one. To guarantee that no process is permanently dis-
criminated against, the partial order needs to be dynamic and fair over time. This
is accomplished my maintaining a directed acyclic graph over the topology of the
processes, in which an edge from process u to process v indicates that u has higher
priority than v. A process chosen to enter its eating state decreases its priority by
changing all incident edges to point away from it.

The algorithm implements the directed acyclic graph in a distributed fashion
in which every pair of neighboring processes communicates via three variables, fork,
clean, and rf. These variables encode both the ordering between the processes and
their respective states. For a detailed description of this encoding and the derivation
of the algorithm, the reader is referred to [CM88].

In the following we show the program and several relevant properties written
in the extended UV input language. The syntactic parameter N is instantiated to
yield ring topologies of varying sizes. Syntactic features used in the presentation of
this program that are not present in the current implementation of the UV input
language include the quantification of expressions and assignments, the use of array
literals (such as the one in the definition of other), and the if-then-else operator <|

[>.
program dining
declare
type State = enum(thinking, hungry, eating);

type Neighbors = enum(left, right);

type Index = cyclic(N);
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var ready : boolean; // used for modeling the nondeterministic

// behavior of a thinking process

var dine : Index -> State;
var clean : Index -> boolean;
var fork : Index -> Neighbors;

var rf : Index -> Neighbors;

always
other : Neighbor -> Neighbor =
(-> n: Neighbor |: left <| n = right |> right);
mayEat : Index -> boolean =
(-> 1i: Index |: (fork.i = left /\ (clean.i \/ rf.i = right)) /\
(fork.(i-1) = right /\ (clean.(i-1) \/
rf.(i-1) = left)));
sendReq : Index -> Neighbors -> boolean =
(-> i: Index |:
(-> n: Neighbors |: fork.i = n /\ rf.i = other.n /\
dine.i = hungry));
sendFork : Index -> Neighbors -> boolean =
(-> i: Index |:
(-> n |: Neighbors: fork.i = n /\ !clean.i /\

rf.0 = n /\ !'(dine.i = eating)));
initially

(/\ i: Index |: dine.i = thinking);

(/\ i: Index |: 'clean.i);
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(/\ i: Index |: fork.i != rf.i);

(/\ i: Index |: fork.i = left <| i != N-1 |> right);

assign
[toggle] ready := !ready
([0 i: Index |:

[th] dine.i :

hungry if dine.i = thinking /\ ready)

([1 i: Index |:
[et] dine.i := thinking if dine.i = eating)
([1 i: Index |:
[hel dine.i, clean.i, clean.(i-1) := eating, false, false

if (dine.i = hungry) /\ mayEat.i)
([0 i: Index |:
([ n: Neighbor |:

[r] rf.i := n if sendReq.i.(other.n)))
([0 i: Index |:
([ n: Neighbor |:
[f] fork.i, clean.i := n, true if sendFork.i.(other.n)))
end;
// auxiliary invariants

in dining: (/\ i: Index |:

invariant (dine.i = eating) ==
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(fork.i left) /\ !'clean.i);

in dining: (/\ i: Index |:

invariant (dine.i = eating) ==

(fork.i-1 = right) /\ !clean.i-1);

// mutual exclusion property
in dining: (/\ i, j: Index | i '= j:

invariant !(dine.i = eating /\ dine.j = eating));

In order to establish the mutual exclusion of the two neighboring processes 0 and 1,

we have to check the following property:
in dining: invariant !'(dine.0 = eating /\ dine.1 = eating);

The attempt to compute the strongest invariant is not successful for all but small
values of N. For instance, the program for a ring with 10 processes has 71 assignment
statements, requires 51 state bits for a syntactic state space of 1.27-101* states which
has a diameter of 104 (i.e., the number of iterations needed in the computation of
the strongest invariant). Computing the strongest invariant takes about 45 minutes
and produces a OBDD representation consisting of 844 nodes. The subsequent check
of the invariant property takes only a few milliseconds.

We contrast this with the interactive approach in which the user supplies
design knowledge in the form of invariants. From the design of the algorithm, it is
immediately clear that a process can only be in its eating state if it holds both forks
and both the forks are dirty. In particular, the following weaker invariants can be

asserted for processes 0 and 1:

in dining: invariant (dine.0 = eating) ==

(fork.0

left) /\ !'clean.0;

in dining: invariant (dine.1 = eating) ==

(fork.0

right) /\ !clean.0;
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The above invariants can be established directly with the type invariant, the mutual
exclusion property can then be checked successfully with respect to the current
invariant. For 10 processes all three checks together take only a few milliseconds.
Checking mutual exclusion for all 10 processes requires 20 auxiliary invariants, all
of which can be checked in about 0.5 seconds. For 20 processes with 101 state
bits and 8 - 10?4 states, checking of the 20 mutual exclusion properties and the 40
auxiliary invariants establishes mutual exclusion in about 2 seconds. An important
point is that the auxiliary design invariants express a straightforward fact about the
design of the algorithm and are therefore readily available in a situation in which

the verification is not entirely separated from the program design.

7.3 Progress by Regular Expressions: A Counter

In chapter 4 the counter program UpDown was used as an illustrative example to
introduce the concept of generalized progress properties and was discussed there
in detail. Here, we present some performance measurements that demonstrate the
improved efficiency of using generalized progress properties as compared to ordinary
leads-to properties.

In the following listing of the program and the two progress properties the

syntactic parameter N needs to be instantiated for different counter sizes:

program UpDown
declare
var b: boolean;
var x: int(0..N-1);
always
initially
assign

[set] b := true
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x+1 if ' /\ x < N-1

™
1}

[Lupl

[down] x :=x-1 if x > 0

end;

in UpDown: true --> x=0;

in UpDown: true --> x=0 by [set][down]*;

In the following table we summarize performance measurements for different counter
sizes. The two properties, for which model checking is compared, are the ordinary
leads-to property true — 2 = 0 (indicated by ~— in the table), and the gen-

d
eralized leads-to property true [setMun]*

¢ = 0 (indicated by r- — ). Three
measurements are listed: iterations states the number of inner fixpoint iterations
needed to complete the check, ops states the number of OBDD node lookup requests
in thousands, and time shows the execution time in seconds. All model checker in-

vocation establish the respective property as correct and use only the automatically

generated type invariant.

N 10 | 20 50 | 100 200 500 1000 | 10000

itera- — || 107 | 320 | 1551 | 5608 | 21222 | 128000 | 506006 n/a

tions - — 41| 81| 201 | 401 801 2001 4001 | 40001

ops — 25| 11| 100 | 548 | 2810 | 22283 | 88933 n/a
in 10° -~ 0.8 ] 2.1 8.7 18 39 119 243 | 3844
time — 0.3 0.3 1.1 4.8 27.3 2279 | 1028.4 n/a
ins r- 0.2 0.3 0.3 0.4 0.5 1.1 2.2 38.0

As can be seen from this table, the number of iterations for the ordinary leads-to

check is quadratic in N, whereas it is only linear for the generalized leads-to check.
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7.4 Scheduling: Milner’s Cycler

The scheduling problem known as Milner’s Cycler ([Mil89]) has been described in
section 2.2.1; it also has been used toillustrate the UNITY model checking procedure
in section 3.4. In the following, we present some performance measurements for
checking different properties.

Milner’s Cycler has been used as a benchmark in the literature in order to
compare different verification methods and systems. Preliminary results in [Kal95a)
demonstrated the advantages of using design invariants for checking safety proper-
ties. The following listing shows the program Cycler together with several relevant
properties written in the extended UV input language, where the syntactic param-

eter N needs to be instantiated to the actual ring size.

program Cycler

declare
type Index = cyclic(N);

type PC = enum(start, sync, choose, bc, cb);

var a: Index; // a holds the index of the last process
// that performed its a-action
var i: Index; // specification variable

var cyc: Index -> PC; // process states

initially
a=N-1;
cyc.0 = start;

(/\i: I 1 it'=0: cyc.i=bc);

182



assign

(a i:
[st]

(a i:
[chl

(a i:
[cb]

(a i:
[sb]

a i:
[scl

end;

Index |:

a, cyc.1 := 1, sync

Index |:

cyc.i := bc

Index |:

cyc.i := start

Index |:
cyc.i, cyc.(i+1)

if cyc.

Index |:
cyc.i, cyc.(i+1)

if cyc.

// design invariants

in Cycler: invariant a = 1

if cyc.i

if cyc.i

if cyc.i

choose, start

= sync /\ cyc.

choose, cb

= sync /\ cyc.
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cyc.i = sync \/ cyc.(i+1) = start \/ cyc.(i+1l) = cb;

in Cycler:

invariant (/\ i: Index |: ((cyc.i = cb \/ cyc.i = start \/

cyc.i = sync) ==>

(/\ j: Index | i != j: (cyc.j = choose \/ cyc.j = bc))));

// safety property characterizing cyclic behavior

in Cycler: a =i co a=1\/ a= i+1;

// progress properties asserting absence of deadlock

in Cycler: a = 1 --> a = 1+1;

in Cycler: a = 1 --> a = 1+1 by

([sc.i][eb.(i+1)]1[sb.i]) [st.(i+1)];

// specific versions of the above progress properties for i = 1

in Cycler: a =1 --> a = 2;

in Cycler: a = 1 =-=> a = 2 by ([sc.1][cb.2][sb.1])[st.2];

The design invariants are obtained from the design of the processes, or, alternatively,
from inspection of the state transition diagram as follows. If the a-action of process ¢
has been taken most recently (modeled by the predicate a = ¢), then either process i
is in state sync, or it has synchronized with process i+ 1 which has not yet performed
its a-action, i.e., process ¢+ 1 is in state cb or in state start. This is formulated as
the first design invariant above.

The second design invariant is derived from the following observation: pro-
cess states can be divided into two classes, one containing cb, start, and sync, the
other containing bc and choose. The two program statements effecting a process
synchronization, namely [sb] and [sc], have the property that the two participat-

ing processes have states in different classes, and each participating process changes
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its class as a result of the synchronization. Together with the fact, that initially
exactly one process, namely process 0, has a state in the first class, it follows, that
there is always at most one process with in a state from that first class. This is
formulated in the second design invariant.

In the following table we compare the checking of the safety property a =
icoa=1itVa=1i+1 by computing the strongest invariant (indicated by si)
and by using the design invariants (indicated by inv). The following table lists the
number of OBDD node lookup requests in thousands under ops, the checking time
in seconds under time, as well as the size of the syntactic state space under states
and the maximum distance of any state from the start state under diameter for

various sizes of N.

N 4 8 12 16 20
states 1.00-10* | 2.50-107 | 3.52-10'° | 3.91-10'3 | 3.81-10'
diameter 20 44 68 92 116
ops si 24 313 2479 9980 32990
in 10° inv 5 21 54 86 170
time si 0.4 2.2 16.6 74.0 296.5
in s inv 0.3 0.5 0.7 1.1 1.9

Next, we check the progress property, ¢ =¢ — a =1¢4 1. Clearly, progress from
a =1 toa=1+11is achieved in two phases: first, process i+ 1 has to reach its start
state, then @ =7+ 1 is established by virtue of the [st.(i+ 1)] action. In the first
phase synchronization between processes ¢ and ¢+ 1 needs to take place, achieved by
either action [sb.?] or action [sc.7]. Action [sb.¢] moves process i+1 to its start
state, whereas after action [sc.i] an execution of action [cb. (i + 1)] is necessary
in order to complete the first phase. Since the choice between synchronization via
[sb.:] or [sc.i] is not determined by the current state (for instance, if process i

is in its sync state and process ¢ + 1 is in its choose state, then executions with
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either synchronization action are possible), we choose as regular expression for the
first phase the sequential composition [sc.i][cb. (i + 1)][sb.¢], which results in
the regular expression for the progress property as shown above.

The following table compares the ordinary progress check (indicated by — )
for the property ¢ =1 — a = 2 with the generalized one (indicated by r- — ) using
the regular expression hint derived above. As in the previous examples, the lines
labeled with iterations show the total number of inner fixpoint iterations, the ones
labeled with ops show the number of OBDD node lookup requests in thousands,

and the ones labeled with time show the checking time in seconds:

N 4 8 12 16 20
itera- — 86 | 174 | 268 | 370 480
tions - — 12| 12 12 12 12
ops — 22 | 287 | 2030 | 8917 | 29334

in 10° -~ T 24 52 87 145

time — (| 04| 23| 16,5 | 87.7 | 369.8

in s r- — 0.3 1] 0.5 0.8 1.3 1.8

In this example the effect of using a generalized progress property is particularly
impressive. Since the regular expression hint does not contain a *-operator, the
verification condition evaluation is reduced to a few simple fixpoint computations of
depth 1. We are thereby able to take advantage of the local nature of the achieve-
ment of progress, something we could not have done with ordinary leads-to prop-
erties. We could have attempted to establish the progress property by a series of
ensures properties; in that case, however, we would have been required to come
up with suitable intermediate predicates, a task which the verification check using

generalized progress properties performs implicitly.
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7.5 An Elevator Control Program

The elevator control program has been discussed in detail in section 5.3. Here we
present the program source in the extended UV language and report some of the
performance results for checking progress properties.

The following listing shows the program Flevator, four design invariants, and
the leads-to properties we are interested in. The syntactic parameter N needs to be

instantiated to obtain programs for various number of floors:

program Elevator

declare
type Range = int(1..N);

var state: enum(STOP, UP, DOWN); // state of elevator

var dir : int(-1..1); // direction of movement
var pos : Range; // current floor
var req : Range -> boolean; // array of requested floors
var user : boolean; // user enable flag
always
upReq : boolean = (\/ i: Range | pos < i: req.i);

// indicates request above

downReq : boolean = (\/ i: Range | pos > i: req.i);

// indicates request below
initially

pos = 1 /\ dir = 0 /\ state = STOP;

(/\ i: Range |: 'req.i);
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assign
[service] req.pos, state := false, STOP

if req.pos

[move] pos := pos + dir

if state != STOP /\ !req.pos

[goOn] state := UP
if upReq /\ dir = 1 /\ state = STOP /\ !req.pos
- DOWN

if downReq /\ dir = -1 /\ state = STOP /\ !req.pos

[turnUp] state, dir := UP, 1
if upReq /\ (dir = 0 \/ !'downReq)

/\ state = STOP /\ !req.pos

[turnDown] state, dir := DOWN, -1
if downReq /\ (dir = 0 \/ !upReq)

/\ state = STOP /\ !req.pos

[halt] dir := 0

if 'upReq /\ !'downReq /\ state = STOP /\ !req.pos

([1 i: Range |:
[request] req.i := true
if pos !'= i /\ user)
[toggle] wuser := l!user
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end;

// auxiliary invariants

in Elevator: invariant state = UP ==> dir = 1;

in Elevator: state = DOWN ==> dir

1}
|
[
..

UP

in Elevator: invariant state => upReq \/ req.pos;

in Elevator: invariant state = DOWN ==> downReq \/ req.pos;

// quantified leads-to properties

in Elevator: (/\ i: Range |:

req.i --> pos = i /\ state = STOP);
in Elevator: (/\ i: Range |:
req.i --> pos = i /\ state = STOP by

([service] [turnUp] [turnDown] [goOn] [move])*) ;

// specific leads-to properties for i = 3

in Elevator: req.3 --> pos = 3 /\ state = STOP;

in Elevator: req.3 --> pos = 3 /\ state = STOP by

([service] [turnUp] [turnDown] [goOn] [move] ) *;

The strategy for the generalized leads-to properties has been derived and motivated
in section 5.3. We compare the verification of the specific leads-to properties, first
using the ordinary leads-to, then using the regular expression strategy. The results
are summarized in the following table, where iterations states the number of inner

fixpoint iterations needed to complete the check, ops states the number of OBDD
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node lookup requests in millions, and time shows the execution time in seconds. The
properties have been checked with respect to the current invariant, being the con-
junction of the four auxiliary design invariants. All checks establish the respective
properties to hold for program FElevator. The ordinary leads-to property is indicated

by > , the generalized by - — :

N 20 50 100
states 3.77-10% | 1.01-10'8 | 2.28 - 103
itera- > 2264 13248 51576
tions  r- 658 1798 3698
ops — 2.25 18.3 659
in 10 - 1.17 7.6 95
time > 10.8 280 >10000
in s - — 5.3 83 1150

Using the regular expression hint reduces the number of required fixpoint iterations
significantly. The actual checking time does not decrease by the same factor, because
the fewer inner iterations are expected to correspond on average to more complicated
formulae, since they are more likely to contribute to progress (some iterations in the
ordinary progress computation are more likely to terminate very quickly since they
do not contribute to the desired progress). Also, some implementation specific issue
may play a role; for instance, the hit ratio of the and-exists cache was significantly
worse for the generalized progress checking than for the ordinary one. A different
chaching strategy or cache organization could lead to even better results.

It should be pointed out again that the observed results confirm that the
increase in performance observed when using regular expression hints is closely re-
lated to the ratio of the number of actions that contribute to progress versus the
total number of actions. Even in a program like the above that does not have a

behavior that can be described in sequential phases, the possibility of restricting
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one’s attention to the actions that are helpful for the property under consideration

produces significant performance improvements.
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Chapter 8

Conclusions

In this thesis, we have investigated how a combination of the programming notation
and temporal logic of UNITY and the verification technique of model checking can
aid in the verification of concurrent programs. We have shown that the structure
of UNITY logic can be exploited to obtain efficient model checking procedures for
safety and basic progress properties that take advantage of user-supplied state-
based design knowledge. We have extended the UNITY logic by the theory of
generalized progress, which we have used to improve the checking and the reasoning
about progress properties by utilizing user-supplied action-based design knowledge.
Finally, we have designed and implemented a model checker for UNITY that makes
our methods available for practical use, and have demonstrated the advantages of
our techniques by verifying several example programs.

It is important to note that the techniques we have developed and investi-
gated in this work contribute mostly to the algorithmic and methodological aspects
of program verification. In particular, they are orthogonal to issues related to the
choice of suitable symbolic representations and — to some lesser degree — program-
ming notations. For instance, it can be expected that improvements in representa-
tion techniques (OBDDs or others), can be combined with our methods to further

increase the performance of program verification.
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Our results on model checking for UNITY have not only been encouraging,
they also suggest several research directions for future work. In the following section,
8.1, we briefly discuss some of these ways of extending our work. We conclude this

thesis with some final remarks in section 8.2.

8.1 Directions for Future Research

Throughout this thesis we have pointed out several possible extensions to our work
on model checking for UNITY. Among these are the improvement of some aspects of
the implementation of the UV system, in particular of the symbolic representation
by OBDDs, the application of our methods to larger examples, and the investigation
of how our methods can be adapted to other logics and formalisms — including the
combination of our theory with fairness assumptions other than the unconditional
fairness of traditional UNITY logic [CM88, Ra095, Fra86]. In the following, we
briefly discuss some additional topics for future research that can build on our work

presented here.

Verification for Seuss

Recently, Misra has proposed a new discipline for multiprogramming [Mis94] called
Seuss that is aimed at addressing both the need to reason about complex concurrent
systems, and the requirement for efficient execution of the designed systems.

A principal problem in dealing with multiprograms is that the requirements
for a modular structure (being essential for understanding a complex system) and for
fine-grained interaction of the program components (being important for an efficient
implementation) are contradictory in nature: when reasoning about a program one
wants to be able to consider its components independently, whereas an efficient
execution implies the possibility of interference.

Seuss addresses this conflict by disentangling sequential and multiprogram-

ming aspects of concurrent systems. This approach is based on the observation
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that concurrent systems typically consist of substantial sections of sequential code
embedded into multiprograms. These sequential sections can be understood and
reasoned about like sequential programs, in particular they can be given a trans-
formational semantics based on pre- and postconditions. Furthermore, they can
be regarded as atomic as far as the interference with other parts of the concurrent
system is concerned. On the other hand there are multiprogramming aspects of
concurrent systems that cause synchronization and waiting of different parts of a
system. These multiprogramming parts of a concurrent system can be given seman-
tics as reactive systems, reflecting their ongoing interaction with their environment.
The computational model of Seuss separates the transformational from the reactive
aspects of a concurrent system and allows for disciplined interactions between them.

For the Seuss programming model one can define computations in two ways.
A tight execution maintains a single thread of control and is well suited for reasoning
about a program. On the other hand, a loose execution of a Seuss program allows for
a fine-grained asynchronous distributed implementation. Central to a realization of
such an execution strategy is the notion of compatibility of atomic actions. Roughly
speaking, two such actions are compatible if their order of execution can be serialized
in the context of a certain class of program executions. Compatibility can be seen
as a generalization of the notion of commutativity of procedures, which proves to be
too restrictive for most practical forms of process interaction.

The fundamental theorem about Seuss relates the two notions of execution
strategies by asserting that for every loose execution of a given program there exists
an equivalent tight execution of the same program (conversely, every tight execution
is trivially also a loose execution). By virtue of this theorem it becomes possible
to reason about a program and deduce its properties in terms of the simple tight
execution strategy, and still obtain all properties even for the more general and
efficient loose executions.

While the model of computation of Seuss extends much beyond that of
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UNITY with respect to hierarchical program structuring, communication by proce-
dure calls, and the distinction between the sequential and concurrent aspects of a
program, there are many features of UNITY logic that are applicable to the Seuss
model as well. By virtue of the disciplined interaction of sequential and concurrent
parts and the hierarchical structure of programs, the Seuss model is very suitable
for the design of actual concurrent systems (e.g. GUI or window managers) that
are well beyond the size and complexity of typical UNITY programs. Therefore,
automated or interactive design support for Seuss can have a significant impact
in both a theoretical and a practical way: it can take advantage of the additional
structure of programs by providing a compositional theory of concurrency, and it
can be used for a class of applications that could not be dealt with effectively using
traditional formalisms. Work on defining a UNITY-like logic for reasoning about

Seuss programs and their properties is under way ([Ada95, Mis96]).

Composition and Closure

The importance of compositional reasoning as a means for dealing with large systems
is well understood, and several approaches have been proposed to exploit composi-
tional techniques for model checking (e.g. [GL94]). The performance gains observed
in checking safety and basic progress properties with the UV system are closely re-
lated to the inherent compositionality of UNITY logic. However, there is an even
richer theory of compositionality of UNITY related to closure properties [Mis], that
should be explored for its applicability to model checking. By hierarchically struc-
turing programs and imposing syntactic restrictions (e.g. by typing and by access
restrictions) on shared variables, a notion of program composition can be defined
that makes it possible to deduce even progress properties of a composite system
from properties of its components.

This work may lead to a simplification of the rely /guarantee style of reasoning

[Col93, CK93, McM92]. Any results obtained in this direction will also be usable in
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the context of the hierarchically structured program model of Seuss.

Model Checking of Parameterized Systems

A very desirable extension to traditional model checking is the ability to verify not
just one fixed program but a whole class of parameterized programs simultaneously
while not having to resort to general theorem-proving techniques.

Several ideas for dealing with parameterized systems have been investigated
in the literature. On one hand, one can try to eliminate the parameterization alto-
gether without the use of induction [EN95]; on the other hand, methods for eliminat-
ing induction in certain cases have been proposed by either choosing a canonical pa-
rameterized representation [GF93], or by reducing the parameterized checking prob-
lem to a few finite model checking problems of fixed size [KM89, McM92, MCB89].
Common to these approaches to reducing parameterized systems is their linear struc-
ture, i.e., the constant difference (by some measure) of the structures of successive
instantiations of the parameterized system.

Two ideas for expanding the class of parameterized problems that can be
handled in a (mostly) automated way should be investigated. First, the linearity
requirement could be relaxed by developing a second- (or higher-) order induction
scheme, in which the difference between successive instantiations is no longer re-
quired to be constant, but could be in the form of a parameterized system as well,
requiring an inductive treatment of a lower degree. Secondly, a combination of model
checking with the deductive system of UNITY logic could be attempted in such a
way that an interactive proof checker could verify the validity of the transformation
of proof obligations within the logic, while the model checker could deal with the
generated finite state checking tasks. The idea of combining theorem proving and
model checking is certainly not new ([Hun93, RSS95]), but the simplicity and the

deductive system of UNITY logic might be used effectively.
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8.2 Final Remarks

The formal verification of concurrent systems will remain a challenging research
area for the foreseeable future. As concurrent systems, in particular safety-critical
systems such as traffic or process control systems, continue to grow in size and
complexity, we will have to find ways of extending formal methods to be able to
cope with increasingly complex verification tasks. Arguably, there are three ways in
which we can hope to improve the applicability of formal methods and the feasibility

of their use in an industrial environment:

1. It will be of utmost importance to take advantage of the modular structure
of systems in order to overcome the complexity problems related to the state
explosion problem, i.e., the exponential growth of the size of state spaces when
combining component programs to larger systems. In general, one does not
have to find a modularization of a complex system, as any reasonable design
method relies on some form of modularization in order to manage design com-
plexity. However, it is necessary to devise methods for taking advantage of
such modularizations, and to suggest suitable modularizations to the designer

of complex systems.

2. The exploitation of design knowledge will prove to be crucial for verifying
intricate components and systems. It seems that one cannot afford to ignore
the information about a design, the assumptions that led to certain design
decisions, and the designer’s understanding of how and why he expects his
program to meet its specifications. Much of this information is no longer
present in the final program text, but was available at some point during
the design of the program. This observation emphasizes again the need of
performing design and verification hand-in-hand. It will be necessary to find
ways of exploiting this design knowledge, even if it is not possible to formalize

the entire design process.
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3. It cannot be expected that a general design and verification method will be
equally applicable to all different kinds of concurrent systems. Clearly, the
requirements and properties of a highly synchronous circuit are very much
different from the ones of an asynchronous communication protocol. It will
be necessary to take advantage of the specifica of systems and application

domains as part of a successful design and verification method.

It is widely recognized that the application of formal techniques to the design and
verification of concurrent systems yields a degree of understanding of such systems
and confidence in their correct and reliable operation that is unmatched by any
other design method. However, the acceptance of formal methods in an industrial
environment is greatly hindered by complexity issues, by the lack of training and
experience in using formal methods, and — as a consequence — by the adherence to
established design processes and tools, and the reluctance to adopt new ideas.

It would be naive to assume that the effective use of formal techniques in
an industrial setting could be accomplished without having to redesign at least
parts of the program development process. However, the use of simple and elegant
formalisms that have highly automated support can lessen the impact of adopting
formal methods and enlarge the class of practical problems that can be dealt with
effectively. Our work constitutes a step in this direction, in particular by showing
novel ways for taking advantage of user supplied design knowledge. Our approach
can be considered successful if it is able to contribute to lowering the threshold
of applying formal design and verification methods to practical problems, thereby
helping to establish design methodologies that result in the construction of more

reliable and maintainable systems.
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Appendix A

The UV Input Language

In this appendix we present the complete grammar of the UV input language of
version 2.3.3 of the UV system. First we introduce our grammar notation in section
A.1, and describe lexical conventions in section A.2. Then we show the grammar
rules in section A.3. We conclude this appendix in section A.4 with a brief presen-
tation of language extensions that will be implemented in future revisions of the UV

system.

A.1 Grammar Notation

The grammar for the UV input language is presented in an extended Backus-Naur
Form (EBNF). There are three EBNF meta symbols, namely ::= for separating left
and right-hand side of grammar rules, | for separating alternative right-hand sides
of a grammar rule, and ( )* to denote any finite repetition of the items enclosed in
parentheses.

Non-terminals of the grammar are represented as strings enclosed in angle
brackets, asin  <name> , while terminals are represented using typewriter font,

asin initially or =!=
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A.2 Lexical Conventions

The UV input language is case sensitive. The input is made up from a sequence of to-
kens and whitespace (i.e., blanks, tabs, and newline characters as well as comments).
Whitespace is significant only for separating tokens, beyond that it is ignored.

Tokens are either terminals as appearing in the grammar rules below, or
strings of characters representing the  <number> |, the <name> , or the
<external> non-terminals.

A comment starts with the characters 7//” (without the quotation marks)
and ends with the first subsequent newline character.

A number as generated by the non-terminal  <number> is a string of
one or more digits, restricted by some implementation dependent limitations on the
number size. It is guaranteed that 15 bit numbers (i.e., numbers from 0 to 32767)
are supported.

A name as generated by the non-terminal <name> is any string of one
or more characters made up from letters and digits starting with a letter. Names
are case-sensitive and the following keywords of the UV language are not avail-
able for names: assign, by, co, const, constant, declare, end, ensures, if, in,
initially, invariant, program, stable, transient, type, unless, and var.

Names are used for denoting variables, programs, types, statement labels,
and record fields. Examples of names are hello, isDone, and t34y0.

An external name as generated by the non-terminal  <ezternal> consists
of the string #expr followed (without any whitespace in between) by a string of
one or more digits. The maximum number of allowed digits is implementation
dependent, but at least four digits are guaranteed. External names are used for
denoting expressions that have been generated interactively during a session with
the UV system. Examples of external names are #expr76 and #expr003.

For ease of reference we list in the following the remaining tokens of the UV

input language: :=, (,), [, 1, ;, :, ,, .., and ==>.
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A.3 Grammar Rules

The following presentation is divided by the syntactic categories of the grammar.

A.3.1 Expressions

Expressions are generated by the non-terminal  <exzpr> . The following table
lists all operators in increasing order of their binding power (operators in the same
group share the same binding power, in which case the operators associate to the

left — if allowed by the typing rules):

== (boolean equivalence), =!'= (boolean antiequivalence, exclusive or)
==> (boolean implication), <== (boolean follows-from)

/\ (boolean conjunction), \/ (boolean disjunction)

! (boolean negation)

= != > >= < <= (nonboolean relational operators)

+ (addition), = (subtraction)

+ (unary plus), - (unary negation)

(record field access, mapping indexing)

<expr> n= <name>
| <external>
| <number>

| ( <ewpr> )

| <expr> . <name>
| <ewxpr> . <expr>

| +  <expr>

| - <expr>

| <expr> + <expr>

| <expr> - <expr>

| <expr> <expr>
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| <ewpr> '= <expr>
| <expr> > <expr>

| <expr> < <expr>

| <expr> >= <expr>
| <erpr> <= <expr>
| true

| false

| I <expr>

| <expr> [\ <expr>
| <expr> \/ <expr>
| <expr> ==> <expr>

| <expr> <==  <expr>

| <ewpr> == <expr>

| <expr> == <expr>
<exprList> n= <expr>  (, <expr>)*
A.3.2 Types
<type> = <name>

| boolean

| int( <expr> .. <expr> )

| cyclic( <expr> )

| bits( <expr> )

| enum( <namelList> )

| { <complList> }

| <type> -> <tlype>
<namelList> n= <name> (, <name>)*
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<compList> =

<compltem> =

A.3.3 Programs

<program> n=

<declare> n=

<declltem> n=

<declSymbols> =

< always> =

<defltem> =

<initial> n=

<assign> =

<compltem> (, <compltem>)*

<name> <type>

program <name>
<declare>
< always>
<initial>
<assign>

end

declare (<declltem>

;)

var <declSymbols> <type>

type <declSymbols> = <type>

<name> (, <name>)*

(<defltem> ;)*

always

<name> <type> = <expr>

(<expr> ;)*

initially

assign (<statement>)*
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< statement> n=  <statLabel> <simpleStat>

< statLabel> = [

| [ <name> ]

<simpleStat> = <assignment> (|| <assignment>)*
<assignment> n= <lhs> = <rhs>
<lhs> = <war>  (,  <lvalue>)*
<lvalue> n= <name>
| <lvalue> . <name>
| <lvalue> . <expr>
<rhs> n=  <exprList>

| <condRhs> (~ <condRhs>)*

<condRhs> n=  <exprList> if <expr>

A.3.4 Properties

<property> :i= constant <expr>
| invariant <eapr>
| stable <expr>
| transient <expr>
| <ewxpr> co <expr>
| <expr> ensures <EIxpr>

| <expr> unless <expr>
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<regexp>

A.3.5 Parse Units

<input>

<unit>

< scopedUnit>

<expr> -—-—-> <expr>

<expr> -—-=-> <expr> by <regexp>

(]

[ <name> ]

( <regexp> )
<regexp> + <regerp>
<regerp> <regerp>

<regerp> *

(<unit>)*

<scopedUnit>
in <name> <scopedUnit>
<program> ;

<declltem> ;

<expr>

<property> ;

A.4 Future Extensions to the Input Language

Two important features of the UV input language not implemented in version 2.3.3

are quantified formulae, statements, and assignments and variable ordering direc-

tives.

In order to introduce quantification to the language we need to add a quan-

tifier construct:
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<quant> n= <quantDummies> : <type> | <quantRange>

<quantDummies>:= <namelList>

<quantRange> =

| <expr>

The range of a quantification starting with such a quantifier construct consists of
a type for the dummy variables and an optional boolean expression restricting the
values of the dummies to those satisfying the expression.

Quantified statements are introduced by modifying the grammar rule for the

statement non-terminal  <statement> as follows:

< statement> n=  <statLabel> <simpleStat>
| <quantStat>
<quantStat> m= ([0 <quant> (<statement>)* )

Similarly, quantified assignments are introduced by modifying the assignment non-

terminal  <assignment>

<assignment> n= <lhs> = <rhs>

| C Il <quant> <simpleStat> )

Finally, quantified expressions are obtained by adding the following alternative to

the rule for the expression non-terminal  <expr>

<expr> = (0 <op>  <quant> <expr> )

where <op> stands for any commutative and associative binary operator with a

unit element.
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As far as directives for influencing the variable ordering for the OBDD repre-
sentation of program variables are concerned it might be argued that such informa-
tion should be separated from the actual program text, as it constitutes information
not so much about the program but about how to make it manageable for a specific
symbolic representation. Therefore, we plan to include commands for managing
variable orderings as separate entities that can be loaded, modified, browsed, and
saved. However, until this will be implemented, a simple mechanism that gives the
user some additional control over the variable ordering seems desirable.

Such a mechanism is the one that has been implemented in an earlier revi-
sion (1.19) of the UV system, in which the user can cause certain variables to be
interleaved by tagging them with the %interleaved directive. This mechanism is

included by extending the grammar rule for the declare section as follows:

<declare> = declare (<ditem> ;)"
<declltem> n= var <declSymbols> : <type> <interl>
| type <declSymbols> = <type>
<declSymbols> = <name> (, <name>)*
<interl> RES
| /interleaved

| hinterleaved <name>

The directive }interleaved after a list of variables causes all variables in the
list to have interleaved BDD indices. The directive %interleaved followed by a
variable name after a list of variables causes all the variables in the list to have
BDD indices that are interleaved not only for the list of variables, but also for the
named variable (and all variables the named variable is interleaved with). <name>

in the last variation must be a previously declared variable name (including the
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immediately preceding list of declared variables), there is no restriction on its type

(in particular it does not need to match the type of the declared variables).
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Appendix B

The Tcl Interface of UV

The overall structure of the UV System has been described in section 6 as consisting
of a kernel providing the functionality of the UV workspace and of a graphical user
interface making the core functions of the kernel accessible in a convenient fashion.
This separation is possible due to the use of an interface layer between kernel and
user interface: the kernel makes its operations and data structures available through
a number of Tcl commands, the user interface is built as a collection of Tel/Tk
scripts that rely solely on the commands provided by the kernel.

This appendix serves as a reference section for the Tcl commands imple-
mented in the current version of the UV system (2.3.3 ). Each command is described
in its own entry with information about command syntax, parameters and return
values, and general usage description.

For displaying the command syntax, the following conventions are used:
typewriter font is used to show text that is to be typed literally, italics denote
variables or options that need to be replaced with some suitable text. Moreover the
common meta-symbols [] for optional occurrence, {} for grouping, | for separating
alternatives, and T for indicating one or more occurrences of the preceding item are
used.

There are also a few additional commands and command options that will

209



be made available in future releases of the UV system. Such commands include
uv_symbol for accessing symbol table information about identifiers, uv_order for
accessing and modifying the OBDD variable ordering of variable encodings, and
finally uv_regexp for accessing information about regular expressions used as hints

in generalized leads-to properties.
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B.1 uv_check

Invoke the model checker on a property.

Synopsis

uv_check n [inv]

n ID number of property to check,
mnv option indicating which invariant is to be used invariant to use for
checking; one of -type, —current, and -strongest.
Result

A two-element list of the form invoke status is returned, where invoke in-

dicates, whether the checker was actually invoked:

0 if checker was not invoked (e.g. because checking result

could be determined from invariants alone),

1 if checker was invoked,

and status indicates the checking status of the property:

ok if property has been proved correct,

? if checking status is not known yet,

fail if property has been proved incorrect.
Description

The model checker is invoked on the property with ID #propn using the invari-

ant indicated by inv as follows:

-type use type invariant
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-current use current invariant (default)

-strongest use strongest invariant

Special Considerations

The UV workspace must have been initialized prior to executing uv_check.
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B.2 uv

_exXpr

Access information about an expression.

Synopsis

uv_exp

n

Result

r n [-context | -def | -sat | -size | ~type | -value]

ID number of expression to access information about

An exception is raised if n is not an integer or if there is no expression in the

workspace with ID n. Otherwise a value is returned depending on the selected

option:

no option

—-context

-def

-sat

The empty string is returned.

The context of the expression is returned as a list of
scope names denoting the path from the global scope
(corresponding to the empty list) to the scope of the
expression

The source text defining the expression is returned.

An exception is raised if the expression is not of type
boolean or is not satisfiable; otherwise a satisfying vari-
able assignment is returned in the form of a list of scope
assignment lists. Fach scope assignment list is ordered
from outmost (global) scope to innermost (local) scope,
and each scope list consists of the scope name ({} for the
global scope) followed by lists of two elements, the first
being a variable name and the second being its assigned

value.
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For instance, the satisfying variable assignment for the
expression x=3 /\ b where xis a program variable of

program P and b is a global variable, is represented as

{{} {b true}} {P {x 3}}.

-size The number of OBDD nodes used in internally repre-

senting the expression is returned.
-type The type of the expression is returned.

-value The value of the expression is returned: if the expression
is a constant, that constant value is returned; otherwise
all variables the expression depends on are displayed in
a list of scope lists, where scope lists are ordered from
outmost (global) scope to innermost (local) scope, and
where each scope list consists of the scope name ({} for
the global scope) followed by all variables of that scope

the expression depends on.

For instance, the value of an expression of program P de-
pending on the program variable x and the global vari-

able b is represented as  {{} b} {P x}.

Description

Information about an expression in the UV workspace is returned. An expres-
sion is referred to by the ID number that is part of the expression identifier
generated by the parser or by certain expression setting commands at the time
the expression was entered into the workspace. Without an option uv_expr can
be used to check whether an expression with a given ID number is present in
the UV workspace. Specific information about an expression can be obtained

by using one of the listed options as shown above.
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Special Considerations

The UV workspace must have been initialized prior to executing uv_expr.
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B.3 uv_info

Access information about the UV system and the UV workspace.

Synopsis

uv_info {-flags | -memory | -version}

Result

Depending on the chosen option the following information is returned:

-flags

-memory

A list of compile-time flags is returned, indicating how
the UV system was built. Currently the only supported
flag is the DEBUG flag indicating whether the UV system
was compiled in debug mode.

Information about the current memory usage is returned
as a list of five lists containing (in that order) informa-
tion about the OBDD heap, the OBDD hash table, the
ITE cache, the AEN cache, and the function cache. If
a certain cache is not enabled (cf. the uv_option com-
mand), the corresponding list is empty. The information
in each list is structured as follows:

OBDD heap: total number of OBDD nodes, number of
used OBDD nodes, number of allocated OBDD nodes;
OBDD hash table: total number of slots, number of free
slots, number of entries, maximum, average, and vari-
ance of length of entry chains, number of find operations,
percentage of hits, average chaining length;

ITE cache, AEN cache, function cache: total number of
slots, number of free slots, number of find operations,

percentage of hits.
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-version the revision number of the UV system presented in the
form n.m.p where n is the major revision number,

m is the minor revision number, and p is the patch level.

Description

Information about the UV system and about the UV workspace is returned.

Special Considerations

The UV workspace must have been initialized prior to executing uv_info with

the -memory option.
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B.4 wuv_init
Initialize the UV workspace.
Synopsis

uv_init [-mem n]

n Natural number in the range from 6 to 24, specifying the amount

of memory allocated (see below). The default value is 16.

Result

none, or message string if workspace has already been initialized

Description

The UV workspace is initialized by allocating a OBDD heap of 2" nodes, a
OBDD hash table of 22 entries, and proportionally sized cache tables. The

initial global symbol table is set up as well.

Special Considerations

UV_init needs to be called once at the beginning of a session. Subsequent calls

have no effect.
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B.5 uv_ option

Set system options or return their current status.

Synopsis

uv_option {-bdd | -reduce} [value]

value the value to which the specified option is set.

Result

If no value parameter is given, the current value of the specified option is

returned.

Description

Without a value parameter the current status of the specified system option is
returned. If a value parameter is given, then the specified option is set to the
indicated value. The values for the different options and their meaning are as

follows:

The -bdd option enables certain OBDD-level caches; its value is the sum of any

of the following:

1 use a general function cache (default),

2 use a separate AEN cache.

The -reduce option controls the use of the reduction operation on OBDDs; its

value is the sum of any of the following;:

1 use during strongest invariant computations (default),

2 use during wlt-computations.
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B.6 uv_parse

Parse input string according to UV language grammar and update UV workspace

accordingly.

Synopsis

uv_parse wvar {string}™

var Tel variable receiving list of parse results
string input string
Result

No value is returned if input is parsed successfully, otherwise a list of the form
pos len msg is returned, where pos is the character offset into the concatenation
of input strings of the first character of the offending token, len is the number
of characters of the offending token, and message is an error message string
describing the nature of the parse error. (The first character of the input has

offset 1.)

The Tcl variable var contains a list of result items, one for each successfully

parsed input unit, of the following form:

#exprn for expressions: expression 1D,

#progn for programs: programs 1D,

#propn for properties: property ID,

symbollist for declarations: list of declared symbols,

where the numbers n are uniquely assigned for each input unit in each category.
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Description
The parser for the UV language is invoked on the concatenation of all string
arguments. The input string can represent any number of input units like
declarations, expressions, programs, or properties. FEach successfully parsed
unit is compiled into the UV workspace, and a suitable result item identifying

the unit is appended to the Tcl variable var (see results above).

Parsing is terminated upon the first encountered error, in which case some error
information is returned. Possible errors include syntax errors, type errors, and

compilation errors (e.g. exhausted resources).

Special Considerations

The UV workspace must have been initialized prior to executing uv_parse.
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B.7 uv_prog

Access information about a program.

Synopsis

uv_prog
uv_prog
uv_prog
uv_prog
uv_prog

muv

Result

n
n -def

n -invariant [inv]
n  -name

n

-statement [s]

the ID number of the program to be accessed

an option indicating which invariant of the program is to be ac-

cessed; one of type, current, or strongest

the number of the statement the label of which is to be returned

(counting form 0).

An exception is raised if n is not an integer or if there is no program in the

workspace with ID number n. Otherwise a value is returned depending on the

selected option:

no option The empty string is returned.
-def The source text defining the program is returned.
-invariant Without a inv parameter a characterization of the in-

variant of the program is returned in the form of a two
element list, each element being one of type, current,
or strongest. The first element is the weakest charac-
terization of the invariant or the program, the second
is its strongest characterization (type is weaker than

current, which is weaker than strongest).
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—name

-statement

Description

For instance, the result type strongest means that
the strongest invariant has been computed and is the

same as the type invariant.

If the inv parameter is given, the indicated invariant
is entered into the workspace as an expression and an
expression identifier of the form #exprn is returned,
where n is the unique 1D number which the new ex-
pression can be referenced by. An exception is raised if
the strongest invariant is requested without having been

computed.
The program name is returned.

Without an s parameter the number of statements of
the program is returned; otherwise the label of statement

number s is returned.

Information about a program in the UV workspace is returned. A program is

referred to by the ID number that is part of the program identifier generated by

the parser at the time the program was entered into the workspace. Without

an option uv_prog can be used to check whether a program with a given ID

number is present in the UV workspace. Specific information about a program

can be obtained by using one of the listed options as shown above.

Special Considerations

The UV workspace must have been initialized prior to executing uv_prog.
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B.8 uv prop

Access information about a property or delete a property.

Synopsis

uv_prop
uv_prop
uv_prop
uv_prop
uv_prop
uv_prop
uv_prop
uv_prop

uv_prop

key

Result

~arg [d
-def

-delete

-info [key]
-infoexpr key
—op

~prog

-status

S 33 3 3 3 3 3 3

the ID number of the property to be accessed
number indicating which argument is to be accessed (counting from

0),

key indicating which checking information is to be returned; one
of implication, invariant, iterations, safety, transition, or

value.

An exception is raised if n is not an integer or if there is no property in the

workspace with ID number n. Otherwise a value is returned depending on the

selected option:

no option The empty string is returned.

-arg Without an a parameter the number of predicate ar-

guments of the property is returned; otherwise argu-
ment number a (counting from 0) is entered into the

workspace and a unique expression identifier is returned.
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-def

-delete

-info

-infoexpr

The source text defining the property is returned.

The empty string is returned and the property is re-
moved from the workspace.

Without a key parameter, a list of all key values for
which there is checking information for the property is
returned. If a key parameter is given, the following spe-
cific information about the checking status of the prop-
erty is returned (if present) depending on the value of
key:

implication: 1 if and only if the implication part of the
property is true, 0 otherwise;

invariant: characterization of the checking invariant as
a list of two items each having one of the values type,
current, or strongest; cf. the —invariant option of
the uv_prog command for a description of the format;
iterations: list of numbers of major and minor itera-
tions;

safety: label of a violating statement (or empty string);
transition: label of a helpful statement (or empty
string);

value: 1 if and only if there is value violating constant
condition, 0 otherwise.

Depending on the key parameter the following expres-
sions are entered into the workspace and an expression
identifier is returned (provided expression information is
available):

invariant: checking invariant,

implication: negation of implication check,
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safety: negation of safety check of a violating statement

(or empty string if there is no violation),
transition: empty string (no expression entered),

value: value for which constant condition is violated (or

empty string if there is no violation),
iterations: negation of leads-to check.
Note that the negated check expressions for the keys
implication, iterations, and safety characterize the
states that do not satisfy the required property.

-op The operator of the property is returned.

-prog The program identifier of the program to which the prop-
erty belongs is returned,

-status The checking status of the property is returned; it is one

of ok, 7, fail, or new.

Description

Information about a property in the UV workspace is returned. A property is
referred to by the ID number that is part of the property identifier generated by
the parser at the time the property was entered into the workspace. Without
an option uv_prop can be used to check whether a property with a given ID
number is present in the UV workspace. Specific information about a property

can be obtained by using one of the listed options as shown above.

Special Considerations

The UV workspace must have been initialized prior to executing uv_prop.
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B.9 wuv.si
Compute strongest invariant of program.

Synopsis

uv_si n [opt]

n ID number of program for which strongest invariant is to be com-
puted,
opt option indicating which operation is to be performed; one of -clear,

-forward, -frontier, and -square.

Result

Return the number of iterations performed for computing the strongest invari-
ant for options -forward, -frontier, and square, or the empty string for
option -clear. Raise an exception if workspace does not contain a program

with ID number n.

Description

Compute the strongest invariant of the program with ID number n in the UV
workspace using an algorithm determined by the option opt as follows (if the
strongest invariant has been computed previously, it is simply recalled from a

special cache):

-clear do not compute the strongest invariant but forget it in
case it has been computed previously; useful for com-
paring strongest invariant computations using different
algorithms,

-forward use the standard forward chaining algorithm to explore

the reachable state space,
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-frontier use a modification of the forward chaining algorithms in
which only successors of states are considered that are at
the frontier of the state space exploration, i.e.that have
been added to the set of reachable states in the previous

iteration (default),

-square use an iterative squaring algorithm.

Special Considerations

The UV workspace must have been initialized prior to executing uv_si.
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Appendix C

The UV System Source

Structure

The UV System consists in its current revision, 2.3.3 , of about 35000 lines of C4++
and Tecl/Tk code. Here we give an overview of the structure of the UV sources
with a brief description of each file. In our presentation we follow the hierarchical
structure of the UV source directory. For every file we show its size in bytes and a

short description of its content. We start with the UV root directory:

Filename: UV/ Size | Description
uvwish.make 3396 | Makefile for UV system
uvwish.cc 2240 | Contains main procedure; starts

extended Tcl/Tk shell uvwish

UVVersion.h 27 | Current revision number of UV
project

Global.h 1422 | Some global definitions

UVPackage.h 18629 | Interfaces of Tcl commands and

UVPackage.cc 6021 | implementation of UV workspace
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Filename: UV/ Size | Description

Failure.h 1311 | Procedures for dealing with serious
Failure.cc 1534 | and catastrophic system failures
Options.h 1667 | Data structure for dealing with
Options.cc 1085 | global system options

int.defs.h 2696 | Auxiliary declarations for integers
WSExpression.defs.h 2818 | and workspace expressions; gener-

ated by GNU genclass

int .WSExpression.AVLMap.h 4797 | AVL map from integer indices to
int .WSExpression.AVLMap.cc 14410 | workspace expressions; generated
int .WSExpression.Map.h 3626 | by GNU genclass

int .WSExpression.Map.cc 2494

uvwish.init.tcl 6537 | Tcl/Tk startup script; handles

command line arguments and the

preference file

uvwish.tk 1183 | Tcl/Tk script defining user inter-
face

uvwish.message 1045 | Startup message about user notifi-
cation

There are five subdirectories, which we describe in the following. The BDD subdirec-

tory contains the files implementing the OBDD package and the symbol table:

Filename: UV/BDD/ Size | Description

BDDManager.h 6260 | Management and coordination of
BDDManager.cc 6254 | BDD operations

BDD.h 21661 | BDD data structures and opera-
BDD.cc 42262 | tions

BDDVector.h 13932 | Data structures and operations for
BDDVector.cc 12073 | vectors of BDDs
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Filename: UV/BDD/ Size | Description

BDDMemory.h 10844 | BDD memory management

BDDMemory.cc 14826

Cachetable.h 8997 | Implementation of various caches

Cachetable.cc 12551 | and hash tables

Symboltable.h 58588 | Data structures and methods for

Symboltable.cc 89479 | symbol tables

BDDMapping.h 1991 | Data structures and algorithms

BDDMapping.cc 1990 | for mapping program variables to
BDD indices

The MODELCHECKER subdirectory contains the files implementing the UNITY model

checking algorithm and internal representations of properties and programs:

Filename: UV/MODELCHECKER/ Size | Description
Program.h 10026 | Program related data structures
Program.cc 20597 | and algorithms, e.g. , strongest in-

variant computation

ProgramTable.h 5368 | Management of program collec-
ProgramTable.cc 5890 | tions

Statement.h 8316 | Statement related data structures
Statement.cc 16331 | and algorithms

Property.h 10682 | Property related data structures
Property.cc 29443 | and algorithms, e.g. , verification

condition evaluation

PropertyTable.h 3401 | Management of property collec-

PropertyTable.cc 3459 | tions

PropertyStatus.h 13503 | Data structures and methods for

PropertyStatus.cc 19025 | maintaining checking status of
properties
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Filename: UV/MODELCHECKER/ Size | Description

Regexp.h 2913 | Data structures and model check-

Regexp.cc 6245 | ing algorithms for regular expres-
sions

int.defs.h 2696 | Auxiliary declarations for integers,

BDDIndex.defs.h 2770 | BDD indices, programs, and point-

Program.defs.h 2761 | ers to properties; generated by

PropertyPtr.defs.h 2831 | GNU genclass

BDDIndex.AVLSet.h 4677 | AVL set of BDD indices; generated

BDDIndex.AVLSet.cc 18976 | by GNU genclass

BDDIndex.Set.h 3528

BDDIndex.Set.cc 3533

int.Program.AVLMap.h 4497 | AVL map from integer indices

int.Program.AVLMap.cc 14135 | to programs; generated by GNU

int.Program.Map.h 3521 | genclass

int.Program.Map.cc 2464

int.PropertyPtr.AVLMap.h 4753 | AVL map from integer indices to

int.PropertyPtr.AVLMap.cc 14355 | pointers to properties; generated

int .PropertyPtr.Map.h 3606 | by GNU genclass

int.PropertyPtr.Map.cc 2488

The PARSER subdirectory contains the files describing the scanner and parser for the

UV input language and implementing the BDD compiler:

Filename: UV/PARSER/

Size

Description

UVLanguage.l

6106

Scanner and parser definitions for

UVLanguage.y 50471 | flex and bison
ParseTree.h 48720 | Data structures and methods
ParseTree.cc 116287 | for parse tree management, type

checking, and BDD compilation
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Filename: UV/PARSER/ Size | Description

ParseInfo.h 4238 | Data structure for communication
ParselInfo.cc 1900 | between parser and workspace
Display.h 13428 | Data structures and methods for
Display.cc 19550 | external representation of data
items
FontInfo.h 1408 | Font codes for special symbols
BDDIndex.defs.h 2770 | Auxiliary declarations BDD in-
BitAssignment.defs.h 2829 | dices, and internal data structures
BitAssRep.defs.h 2785 | for representing bit assignments;

generated by GNU genclass

BDDIndex.BitAssRep.AVLMap.h 4927 | AVL map from BDD indices to bit

BDDIndex.BitAssRep.AVLMap.cc 14555 | assignment representations; gener-

BDDIndex.BitAssRep.Map.h 3651 | ated by GNU genclass
BDDIndex.BitAssRep.Map.cc 2521

BitAssignment.List.h 8762 | List of bit assignments; generated
BitAssignment.List.cc 22333 | by GNU genclass

The TCL subdirectory contains the files implementing the Tcl commands for provid-
ing the UV system functionality via the uvwish shell (cf. B). The headers for all

these files are contained in UV/UVPackage . h:

Filename: UV/TCL/ Size | Description

UVCheck.cc 8141 | Implementation of uv_check com-
mand

UVExpr.cc 5881 | Implementation of uv_expr com-
mand

UVInfo.cc 7351 | Implementation of uv_info com-
mand

233



Filename: UV/TCL/ Size | Description

UVInit.cc 2125 | Implementation of uv_init com-
mand

UVOption.cc 3436 | Implementation of uv_option com-
mand

UVParse.cc 13560 | Implementation of uv_parse com-
mand

UVProg.cc 6439 | Implementation of uv_prop com-
mand

UVProp.cc 16107 | Implementation of uv_prog com-
mand

UVSI.cc 4350 | Implementation of uv_si command

The SCRIPTS subdirectory contains the Tcl/Tk scripts defining the various parts of

the graphical user interface:

Filename: UV/SCRIPTS/ Size | Description

Command.tcl 4672 | Script for command window
Debugger.tcl 3539 | Script for debugger window
Document.tcl 6191 | Script for document windows
Expression.tcl 2028 | Script for expression table window
FSBox.tcl 43219 | Script for file selection dialog
Program.tcl 6098 | Script for program table window
Property.tcl 18687 | Script for property table window
Utilities.tcl 2356 | Utility scripts
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Appendix D

Additional Proofs

In this appendix we provide the remaining proofs of chapter 4.

D.1 Properties of Metric M in Theorem 12

For the predicate transformer 7 and the collection M of predicates defined by

[r.X = ¢V wltr U.X]
[M.0 = —wltr . U".q]
(Vi:i>0:[M.i = rt.false A ~(3j:j < i:7 false)])

we need to show the following:

[(Fj:0<j<i:Mj) = 7' .false] (Mo)
[(Fi:i€ Ord: M.i)] (M1)
(Vi,j:1€O0rdAj€Ord:i+#j=[-MiVv-Mj] (M2)

(M1) and (M2) establish that M is a metric, (MO0) is an auxiliary result used both
in the proof of theorem 12 and in the proof of (M1).

Proof . We first recall two properties of 7 from section 4.2.1:
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[wltr .U*.q = (Ji:i € Ord : 7. false)] (T2)
(Vi,j:i<j:[ri.false = 77.false]) (T4)

The proof of (MO) is by transfinite induction over ¢. For ¢ = 0 the proof obligation

is satisfied trivially. For any step ordinal ¢ we observe

(Fj:0<j<i:M.j)
= {splitting the range, i is step ordinal, induction hypothesis}
M.i v 77 false
= {definition of M.i}
(ri.false A =(3j:j < i:7/.false)) v 7' false
= {predicate calculus}
7. false Vv 7171, false
= {(T4), predicate calculus}

7t false

For any limit ordinal ¢ we observe

(Fj:0<j<i:M.j)

= {[M.i = false] since 7 is limit ordinal}
(Fj:0<j<i:M.yj)

= {predicate calculus}
(Fk,j:0<j<k<i:My)

= {predicate calculus}
Fk:k<i:(3j:0<j<k:My))

= {induction hypothesis}
(Fk : k< i: 7" false)

= {iis limit ordinal}

7t false

For (M1) we observe

(Ji:7€ Ord: M.a)
= {splitting the range}
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MOV (Fiti>0:M.i)
= {predicate calculus}
MOV (Fi,j:0<j<i:Mj)
= {predicate calculus}
MOV (Fi:i€Ord:(Fj:0<j<i:M.j))
—  {(Mo)}
M.0 v (Ji:i€ Ord: . false)
{definition of M.0, (T2)}
—wltr .U*.qg V wltr .U*.q

= {predicate calculus}

true

Finally, for (M2) we observe for any ordinal i with ¢ > 0:

ManMO

= {definition of M.i, predicate calculus}
7. false AM.0

= {definition of M.0, (T2)}
wltr .U*.q A —wltr .U*.q

= {predicate calculus}

false

and for any ordinals ¢, 7 with ¢ > j:

M.i A M.j

= {definition of M, predicate calculus}
=(Fk 1k < i:7F false) A 7. false

= {predicate calculus, ¢ > j}
—77.false A 77.false

= {predicate calculus}

false

End of Proof.
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D.2 Properties of Progress Algebras

In some of the following proofs of properties of progress algebras we use a small ex-
tension of the proof format introduced in section 2.1.3: when transforming algebraic
expressions we allow =, <, and > as operators relating subsequent lines of a proof
in the same way as we use =, =, and < when relating lines of a proof consisting of

transformations of logical expressions.

D.2.1 Proof of Lemma 15

Lemma 15 In any left-handed or right-handed progress algebra K, the subsumption
relation < defined by U <V = U4V =V is a partial order. Moreover the
sequencing, alternation, and repetition operators are monotonic with respect to <,

ie., for allU, V, U and V' in K with U <V and U' < V':

vur < vv! (PrAlgSeq)

U+U < V4V (PrAlgAlt)

U < v (PrAlgStar)
Proof . Reflexivity, antisymmetry and transitivity of < are easily shown using

(PrAlg0) through (PrAlg2)!. Furthermore, we observe for all U, V, U’ and V' in
K with U <V and U’ < V":

U+l < V4V
= {definition of <}
U+UY+V+V) = V4V
= {(PrAlgo), (PrAlgl)}
U+V)+ U +V) = V4V
= {U+V=V,U +V'=V'from assumption}

true

'This is an instance of the Little Theory in [DS90], stating that a relation < defined in terms
of a binary operator + is reflexive if + is idempotent, is antisymmetric if + is commutative, and is
transitive if 4+ is associative.
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v < vv!
= {U+V=V,U +V'=V'from assumption}
vut < (U+V)(U'+Vv7)
= {(PrAlg7)}
uv < UU4+vh+vu'+Vv)
< {(PrAlg6), (PrAlg0)}
vv < U+ oV +vUu+ v
= {definition of <}
v+ U +U0v+ VU +V)) = UU+ UV + V(U + V')
= {(PrAlg0), (PrAlg2)}

true

For the * operator we first assume K to be right-handed. The case of K being

left-handed is dealt with similarly.

U < v
< {transitivity of <, preparing for (PrAlgll)}
U <U*V* N U V<V
< {(PrAlgSeq), (PrAlg4)}
eV AN U VLSV
= {(PrAlg8), predicate calculus}
Usv*<ve
< {(PrAlgll)}
Uvs <ve
< {(PrAlg9)}
UV <e4+VV”®
= {(PrAlg8), (PrAlg2); definition of <, (PrAlgAlt)}
Uv:<vve
< {(PrAlgSeq)}
U<v

= assumption
p

true

End of Proof.
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D.2.2 Proof of Lemma 16

Lemma 16 In any left-handed or right-handed progress algebra K, for all U, V,
and W in K the following laws hold:

c+ WW* = W (PrAlg13)
c+WW = W (PrAlg1})
W W= = W (PrAlg15)
(W) = W~ (PrAlg16)

Furthermore, for right-handed K and oll U, V, and W in K:

V+UWSW = UVIW (PrAlg17)
and for left-handed K and allU, V, and W in K:

VWU <SW = VU <W (PrAlg18)

Proof .  One direction of (PrAlgl13) and (PrAlgl4) is given by (PrAlg9)
and (PrAlgl0), respectively. The other direction follows easily from (PrAlg8),
(PrAlgSeq), and the definition of <. For (PrAlgl5) we observe for a right-handed

progress algebra

Ww= < W=
< {(PrAlgll)}
ww* < W+
= {(PrAlgl3)}
Ww= < e+ WWw-
= {(PrAlg2), definition of <}

true

and similarly for a left-handed progress algebra. We prove (PrAlgl6) by mutual

implication: for one direction we observe for a right-handed progress algebra
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W= < W=
= {(PrAlgl4)}
e+ (WHysw=> < we
< {(PrAlg2), (PrAlgAlt), (PrAlg8)}
(W W= < W=
< {(PrAlgll)}
Ww= < W=
= {(PrAlgl5)}

true

and similarly for a left-handed progress algebra. For the other direction we have

W < (W)
< {(PrAlgStar)}
w < W
= {(PrAlgl3)}
W < e+ WW=
< {(PrAlg8), (PrAlgSeq), (PrAlg2)}

true

Finally, we establish (PrAlgl7) for a right-handed progress algebra; the proof of
(PrAlgl8) for a left-handed progress algebra is similar.

V+UW < W
= {(PrAlg8), (PrAlgAlt)}
V<W A UW<W
= {(PrAlgll)}
V<W AUW<W
= {(PrAlgSeq)}
Urv<w

End of Proof.
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D.2.3 Proof of Lemma 17

Lemma 17 In any left-handed or right-handed progress algebra K, for all n € N
with n > 0 and sequences W in Z,, — K, for all permutations © of Z,,, and for all

U and V in K the following laws hold:

UV < ¢ = U = ¢ (PrAlg19)
UV < ¢ = V =¢ (PrAlg20)
U+V <e = U=c¢ (PrAlg21)
U <e = U = ¢ (PrAlg22)
Ut = U (PrAlg23)
DU = U (PrAlg24)
HU - W:U)y < (U:Wor:U) (PrAlg25)
HU - W: Uy = (U:Wor:U)* (PrAlg26)

Proof . Due to (PrAlg8) it suffices to establish < on the right-hand sides of
(PrAlgl19) through (PrAlg22). For (PrAlgl9) we observe

U

— {(Pralgs)}
Ue

< {(PrAlg8) for V, (PrAlgSeq)}
uv

< {antecedent}

£

and similar for (PrAlg20). For (PrAlg21) we observe

U

< {definition of <, (PrAlg2)}
U+«

< {(PrAlg8) for V, (PrAlgAlt)}
U+V
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< {antecedent}

£

We prove (PrAlg22) by mutual implication:

U<e
< {transitivity of <}
U<u*
= {(PrAlgl3)}
ULetUU”
< {(PrAlg8), (PrAlgSeq), (PrAlg2)}

true

and, for a right-handed progress algebra (the proof for a left-handed progress algebra

is similar),

e*<e

= {(PrAlg5)}
g*e <e

< {(PrAlgll)}
ce<e

= {(PrAlg5)}

true

(PrAlg23) follows from (PrAlgl3) and (PrAlg8); similarly, (PrAlg24) follows
from (PrAlgl4) and (PrAlg8).

As preparation for (PrAlg25) we note that for any U and V in Ry, U4V <
UV holds by virtue of (PrAlg8), (PrAlgSeq), and (PrAlg2).

We establish (PrAlg25) by induction over the length of W: the base case
|W| = 1is trivial; assuming that (PrAlg25) holds for all W of length n, we observe:

(+U W :U)
= {(PrAlg0),(PrAlgl)}
(+U :Wor:U)
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= {quantification over sequences}

(Wom).0 + (+U :tail . (Wom):U)
< {induction hypothesis}

(Wom).0 + (:U:taill.(Wom):U)
< {observation above}

(Wom).0 - (:U:taill (Wom):U)
= {quantification over sequences}

(U:Wor:U)

As preparation for (PrAlg26) we note that for any U in Ry and any natural n,
U™ < U™, where U™ denotes the sequence of n copies of U. This fact is proved by
induction over n by virtue of (PrAlg8), (PrAlgSeq), and (PrAlg23).

We establish (PrAlg26) by mutual implication. One direction follows from
(PrAlg25) and (PrAlgStar), the other is shown by induction over the length of
W: the base case, |W| =1, is trivial; assuming that (PrAlg26) holds for all W of

length n, we observe

(U:Wor:U)*

< {(PrAlg8), (PrAlgAlt), (PrAlgSeq)}
(U:Worm:(+U :W:U))"

= {sequence calculus}
(+U W U)")>

< {observation above, (PrAlgStar)}
(+U W U)*)*

= {(PrAlgl6)}
(HU W U~

End of Proof.
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D.2.4 Regular Languages with Subsumption as an Example of a

Progress Algebra

In this section we show that the regular languages over an alphabet > are an in-
stance of a progress algebra when ordered with respect to the subsumption relation
introduced in section 2.1.6. In the following we call the algebraic structure R and
denote for any W in R the language of W by LW .

First, we have to show that the subsumption order < is consistent with the
equality defined as U =V = U <V A V < U; ie., we have to show that
ULV = U+ V =V. This is done by observing that for any U and V in R

LU+V) =LV
= {definition of £ and =}

(LUULV) < LV) AN (LV < (LUULYV))
= {definition of <, predicate calculus}

LU < LV

Next, we have to show that all axioms of progress algebras are satisfied by R. To
this end, we establish a connection between R and the algebra of regular events
Regy. In the following we distinguish the equality in R, written as =, from the
equality on Regy, which we write as =, denoting the set-equality of the languages
considered as sets of strings. It is obvious from the definitions of =, <, and =, that

for any U and V in R, the following holds:
(LU =LvVv)y = (U=YV)

This shows that all axioms, with the exception of (PrAlg8), (PrAlgll), and
(PrAlgl2), are satisfied by R since they are satisfied by Regy..

For any W in R, L.e < L.W holds by virtue of the fact that the empty
string is subsumed by any string, and that £.W is not empty. This shows that
(PrAlg8) is satisfied.
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Of the remaining (PrAlgll) and (PrAlgl2) we show the first; the second
is established similarly. We have to show that for any U and V in R, (L.(UV) <
LV) = (L(U*V) < L.V) holds. We observe

L(UV)< LV
= {definition of L}

((Ui:i e N:LUNLV)S LYV
= {set theory}

(Vi:i € N: (LUYLV)SLYV)

which is easily established by induction over ¢ using the antecedent (L.U)(L.V) <
LV .

D.3 Soundness and Completeness of the Generalized

Leads-To Relation

In this section we prove the soundness and completeness of the generalized leads-to

relation with respect to the operational semantics given in section 4.5.2:

Theorem 21 (Soundness and Completeness) For any program F and regular
expression W in Ry the deductive system defined for generalized leads-to properties

1s sound and relatively complete in the sense of Cook:

Using the definition of the operational semantic (definition 6) and theorem 12 we

rewrite the proof obligation as follows: for any W in Ry, and any p and ¢ in Pp

(Fw:weSW:
(Vs,g: (sEpAsLF)A((s,g9)sat w):(s,9) EFq)) =
[p = wltr .W.¢]
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We prove soundness (implication from right-to-left) and completeness (implication
from left-to-right) separately. First we introduce the notion of the canonical strategy
C.W.q for W and ¢ in section D.3.1. After having established some auxiliary lem-
mata in section D.3.2, we then prove the soundness in section D.3.3 using canonical

strategies by showing that

[p= wltr W.¢] =
(Vs,g: (sEpPpAsSL.F)A((s,g) sat C.W.q): (s,9) FE q).

Finally, in section D.3.4 we prove the completeness by establishing the contrapositive

=[p = wltr W.¢] =
Nw:weSW:(3s,g:(sEpAsi.F)A((s,g) sat w) : (s,9) F q)).

D.3.1 Canonical Strategy

For a regular expression W in Ry and a goal predicate ¢ in Pr we define the
canonical strategy C.W.q inductively over the structure of W as a specific element

of §.W as follows. For all ain F.A and all U,V in Rp:

Ceqg = eps

Cl.a.g = act.«o

C.(UV).q = seq.(C.U.(wltr.V.q),C.V.q)
C(U+V).q = alt.(wltr.U.q,C.U.q,CV.q)
C.U*q = star.(¢q,C.U.q)

From the proofs of the completeness theorem in section D.3.4 below we obtain the
result that the canonical strategy is a most general strategy; i.e., if F'|=p LN q
can be established with some strategy w in §.W, then it can be established with
C.W.q as well.
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D.3.2 Auxiliary Lemmata

Before we embark on the proofs of the soundness and completeness theorem we state
and prove a few lemmata for later use. We start with a lemma that establishes a

(conditional) stability result for wltr .W.q predicates:
Lemma 22 For any o in F.A, g in Pp, s in F.S, and W in Rp:
(s EqgAwltr W) = (a5 wltr.W.y)

Proof . The proof proceeds by induction on the structure of W. We observe for

any U and V in Ry and any 3 in F.A:

case W = ¢:

The antecedent is false due to (wltrEps), hence the implication is satisfied trivially.

case W = 3:

s = g Awltr.f.q
= {(wltrAct)}

sE-qA(qV (weo.(qV wltr .5.9) Awp .5.q))
= {predicate calculus}
s Eweo.(qV wltr .5.q)
= {definition of wco, property of wp, (wltrWeaken)}

a.s | wltr .f.q

case W =UV:

We consider two cases: for s £ wltr .V.q we observe

s E g Awltr (UV).q
= {sE -wltr.V.q, (wltrWeaken), (wltrSeq)}
s E-owltr Vg A wltr .U.(wltr .V.q)
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= {induction hypothesis for U with wltr .V.q for ¢, (wltrSeq)}
a.s = wltr . (UV).q

If, on the other hand, s = wltr.V.q holds, we observe

s E g Awltr (UV).q
= {sE wltr.V.¢q, (wltrSeq), (wltrWeaken)}
s = g Awltr Vg
= {induction hypothesis for V'}
a.s = wltr Vg
= {(wltrWeaken), (wltrSeq)}
a.s = wltr . (UV).q

case W =U+V:

s E g Awltr (U +V).q
= {(wltrAlt), definition of |=, predicate calculus}
(s E—~gAwltr.Uq) V (s | —gAwltr .V.q)
= {induction hypothesis, twice}
(a.s Ewltr .Ug) V (a.s |E wltr.V.g)
= {definition of |, (wltrAlt)}
asfE=Ewltr . (U+V).q

case W = U™*:

From s = =gAwltr .U*.q we obtain by virtue of (wltrStar) that there is an ordinal
i satisfying s |= —¢ A 7'.false, where 7 is defined by [r.X = ¢V wltr .U.X]. We

prove by induction over the ordinals that for all ordinals ¢
(s E g AT false) = (a.s = 7' false) .

This assertion, together with the observation about the existence of a suitable ordinal

and with with (wltrStar), establishes the required result. For i = 0 and ¢ = 1 the
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antecedent is false and the implication is satisfied trivially. If 7 is a limit ordinal, we

have

5 = —g A Tl false

{i is limit ordinal}
skE-qA @l <i:7l false)

{definition of |=, predicate calculus}
(Al:1<i:s—qAT false)
= {induction hypothesis for witness [, 7 is monotonic}

a.s |= 7' . false

If 7 is a step ordinal ¢ greater than 1, we observe

5 = —g A Tl false
= {definition of 7, ¢ is step ordinal, predicate calculus}

s = g A wltr U, (7171, false)

Again, we consider two cases: for s £ 771, false we observe

s | =g A wltr U.(7'~1. false)
{s |z =r" 1. false, [¢ = 7~ '.false]}

s | =il false A wlte JU. (7771, false)

= {induction hypothesis for U/ with 7°~'. false for ¢}
a.s | wltr . U.(7i71. false)

= {definition of 7, (wltrStar)}

o.s |= 7. false

whereas for s |= 7'71. false we have

s | =g A wltr U.(7'~1. false)
= {s | 7! false, (wltrWeaken)}
s = g AT false
= {induction hypothesis for ¢ — 1, 7 is monotonic}

a.s |= 7' . false
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End of Proof.

The intermediate assertion we established for the repetition case will be referred to

later on; therefore, we restate it as a corollary as follows:
Corollary 23 For any o in F.A, q in Pp, s in .S, W in Ry, and ordinal ¢:
(sE-gATifalse) = (a.sp 7 false),
where T is defined by [7.X = ¢V wltr W.X].
The next lemma characterizes wltr .a.q in terms of program executions:
Lemma 24 For any o in F.A, ¢ in P, and s in F.5:
(Ve :ax e (FPA)*: (s,2a) Eq) = sEwltr.ag

Proof .  The proof proceeds by mutual implication. Assuming s = wltr.a.q,
we define for any z consisting of k actions, 2.0 through z.(k — 1), a sequence ¢
of states as follows: .0 = s, t.(¢ + 1) = (z.¢).(t.7) for all 7 with 0 < ¢ < k, and
t.(k+1) = a.(t.k) . We show that there is an index ¢, 0 < ¢ < k 4 1, such that
t.i |= q by establishing that (Vi: i< k+1:talErq) = (L.(k+1) Fq):

Mizi<k+1:tilEq)

= {t.0 E wltr .a.q, lemma 22 k-times}
t.k E —q Awltr.a.g

= {(wltrAct), predicate calculus}

t.k Ewp.a.g
= {property of wp, definition of t.(k+ 1)}

t(k+1) Eq

Conversely, we assume that (Vo : « € (F.A)* : (s,za) E ¢) holds. We define a

predicate r by

(tEr) = Veraze (FA: ((t,2)Eq) = (a(zt) Eq)
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Clearly, s = r holds. Next, we observe for all states ¢ (the range for quantifications

of z is understood to be a € (F.A)*):

tEr

= {definition of r, predicate calculus}

tEqg Vv (EFEDATe:(te)Fq = (a(el)=q)

= {predicate calculus, instantiating () and zf for 2}

tEq VvV (atEqANVG e FA:((L20) Fq) = (a(28.0) Eq))

= {predicate calculus, definition of r}

() v (et a) A(YB: B e FA: k)
= {definition of wco, property of wp}

(tEa) v ((LF wp.ag) A (1 | weo.r))
= {wco is monotonic, predicate calculus, definition of =}

tEqV(weo.(rVg) Awp.a.q)

This establishes by virtue of (wltrAct) that r is a solution of the equation defining
wltr .a.q. By the theorem of Knaster-Tarski we conclude that [r = wltr.a.q],
which together with s |= r establishes s = wltr .a.q as required.

End of Proof.

Lemma 25 Forany W and R in Ry, such that R* is a subexpression of W, and for
any q in Pr, there is an X in Ry such that the sub-strategy of C.'W.q corresponding
to R* has the form star.(wltr . X.q, R) .

Proof . The required result follows from showing that for all W and R in Ry and
all ¢ and t in Pg:

star.(f, R) is a sub-strategy of C.W.¢ = (3X : X € Rp: [t = wltr . X .¢])

This is proved by a straightforward induction over the structure of W, which is left

as an exercise.

End of Proof.
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D.3.3 Soundness

By virtue of the equivalence [p] = (Vs :s [ si.F' : s |E p) we can rephrase our

proof obligation as follows:

(Vs:sEpAsi.F:
(s Ewltr W.q) = (Vg:(s,9) sat C.W.q:(s,9) E q)).

Proof . The proof proceeds by induction over the structure of W. We observe for

all win F.A, U and V in Ry, p and ¢ in Pr, and s in F.S satisfying s | p Asi.F:

case W = ¢:

(s,g) sat C.e.q
= {definition of C'.c.¢, definition of sat }

9=

and, therefore,

(s Ewltr.e.q) = (Vg:(s,g) sat C.e.q: (s,9) E q)
= {from above, (wltrEps)}

(sFq = (50 Fa

= {predicate calculus}

true

case W = «:

(s,g) sat C.a.q
= {definition of C'.a.q, definition of sat }
(Frz:ze (FA)* 9= (2a))

and, therefore,

(Vg : (s,g9) sat C.a.q: (s,9) E q)

= {from above, predicate calculus}
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(Ve :z e (FLA)*: (s,za) Eq)
= {lemma 24, antecedent, s = wltr.a.q}

true

case W =UV:

For any game ¢ for which (s, g) sat C.(UV).¢ holds, we obtain from the definitions
of C.(UV).q and sat that there exist games e and f satisfying the following

conditions:
g=ettf (SC0)
(s,€e) sat C.U.(wltr.V.q) (SC1)
finite .e = (e.s, f) sat C.V.q (SC2)

Assuming that s = wltr .(UV).q, we need to show that (s, g) = ¢. We do this by
considering two cases depending on whether € is finite or infinite:

First we consider the case that finite .€ holds. Since s &= wltr .U.(wltr .V.q)
by (wltrSeq), we have by virtue of (SC1) and the induction hypothesis for U

(instantiating true for p and wltr .V.q¢ for ¢):
s, € wltr .V.g 3
Itr .V SC

If (s,e) = ¢ holds, we have (s,g) = ¢ because of (SCO0). Assuming (s,€) = ¢
we obtain from (SC3) that some state in the run (s,e) satisfies =g A wltr.V.q.
By repeated application of lemma 22 we obtain that é.s | wltr.V.q. Together
with (SC2) we have by virtue of the induction hypothesis for V' (instantiating the

reachable state e.s for s and true for p):

(es, f) Eq

With the help of (SCO0) we conclude (s, g) E q.
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For the second case we assume € to be infinite. By (SC1), e follows the
strategy C.U.(wltr.V.q) . There is only one way for € to be infinite: U contains a
subexpression of the form R*, the canonical sub-strategy corresponding to R* is of
the form star .(¢, R) for some predicate ¢ in P, and from some point on e is made
up from an infinite series of sub-games each of which follows the canonical strategy
for R and ends in a state satisfying —t¢.

We define the infinite sequence F of runs by letting F.z for natural ¢ be the
prefix of € up to the beginning of the R-sub-game number 7 (counting from 0). Since
R is a subexpression of U, we have by lemma 25 that the sub-strategy for R has
the form star.(wltr.(XV).¢, R) for some X in Rp. As before, we have by virtue
of (SC1) and the induction hypothesis for U:

(s,€) Ewltr.V.g

Let y be a prefix of € such that y.s | wltr.V.q and let j be the smallest natural
number for which y is a prefix of E.j . We show that (s, £.j) E ¢: if this were
not the case, we would have y.s = —¢ A wltr .V.q. Repeated application of lemma
22 would establish (E.j).s E wltr.V.¢q, which together with (wltrWeaken) and
(wltrSeq) would yield (E.j).s E wltr.(XV).q, contradicting the non-termination
of e at the beginning of sub-game j. Hence, we have (s, F.j) | ¢ and, by the
definition of F.j and by (SCO0), that (s, g) = ¢ holds as required.

case W =U+V:

Any game g, for which (s, ¢)sat C.(U+V).¢ holds, satisfies the following conditions
by virtue of the definitions of C.(U+ V).¢ and sat :

(s Ewltr.U.q) = ((s,9) sat C.U.q) (SC4)
(s £ wltr .U.q) = ((s,9) sat C.V.q) (SCs)

We consider two cases depending on whether wltr.U.q holds in s or not: if s =
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wltr .U.q, we obtain from (SC4) and the induction hypothesis for U that (s, g) = .
Similarly, if s = wltr.U.q, we obtain form the assumption s | wltr.(U 4+ V).q,
(wltrAlt), (SC5) and the induction hypothesis for V' that (s, 9) = ¢.

case W = U™:

From s | wltr .U*.q and (wltrStar) we conclude that there is a least ordinal /
such that s |= 7'.false, where the predicate transformer 7 is defined as [r.X =
q VvV wltr .U.X].

In the following we define sequences k of ordinals, ¢ of reachable states in

F.S, e and f of games in Gr, and F of finite runs in (F.A4)*. We define

k0 =1
t.0 = s
J0 =y
E0 = ()

and maintain the following conditions for all natural numbers ¢, for which the re-

spective elements are defined:

ti = 7R false (SCe)
(t.i, f.) sat C.U".q (SCT7)
FEitrfi=g (SC8)
ti= (E.i).s (SC9)

Clearly, all of these conditions are satisfied for ¢ = 0 by virtue of the above defini-
tions. We now describe the construction of later elements of the various sequences.
The construction will establish (s, g) E ¢ eventually.

Following the definition of sat we consider two cases: if t.i = ¢ holds then

we have, by virtue of (SC8) and (SC9), that (s,g) = ¢ and we are done.
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We now assume t.z = ¢. From the definition of sat we know that there

exist games e.z and f.(i 4+ 1) satisfying the following conditions:

fa=ei+ f(i+1) (SC10)
(t.i,e.t) sat C.U.q (SC11)
finite.(e.t) = ((e.7).(t.1), f.(1+ 1)) sat C.U*.q (SC12)

We, again, consider two cases depending on whether e.i is finite or infinite. For
infinite e.i an argument similar to the one for the case of sequencing (W = UV)
above establishes that (.7, .7) = ¢ and we are done by virtue of (SC10) and (SC8).

For finite e.i we either have (f.i,e.t) = ¢ and we are done, or we have
(t.i,e.q) £ q. In this latter case we define F.(i+ 1) = E.i +-e.i and define ¢.(i + 1)
according to (SC9). With this definition, (SC8) is maintained for ¢ + 1. (SC12)
asserts (SC7) for i + 1 as well. From (SC6) we conclude that t.i E wltr .U*.q;
together with the fact that (¢.7, e.i) £ ¢ we obtain by repeated application of lemma
22 that t.(¢ 4+ 1) | wltr .U*.q as well. Hence, there is a least ordinal k.(i 4+ 1) for
which t.(i + 1) | 7%+ false, thereby establishing (SC6) for i + 1.

Next, we show that k.(i41) < k.i. With this fact we see that, due to the well-
foundedness of the ordinals, the above construction can be done only finitely many
times and has to terminate with one of the cases establishing the goal (s, g) = ¢.

In order to establish that k.(¢ + 1) < k.7, we summarize some properties of

elements of our construction:

finite .(e.) (SC13)
(ti,ed) B q (SC14)
((€.4).(t.4)) = 7%+D false (SC15)

We prove that k.(¢ + 1) < k.¢ by induction over the ordinals. First, we note that
k.i > 0 by (SC6). Since k.7 is the least ordinal satisfying (SC6), it is not a limit

ordinal. Hence k.i is a step ordinal. We observe by starting with (SC6)
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ti = 78 false
= {k.i is step ordinal, definition of 7, (SC14)}
t.i = wltr .U.(757 L. false)
= {(SC11), induction hypothesis for U}
(t.i,e.t) = 7R false
= {(SC13), (SC14), repeated application of corollary 23}
(e.d).(t.4) = 7Fi~1 false
= {(SC15), minimality of k.(¢ 4+ 1)}
k(i4+1) <ka

End of Proof.

D.3.4 Completeness

By virtue of the equivalence [p] = (Vs :s [ si.F' : s |E p) we can rephrase our

proof obligation as follows:

(Fs:sEpAsil s lEwltr W) =
Nw:weSW:(3s,g:(sEpAsi.F)A((s,g) sat w) : (s,9) F q)).

This proof obligation is discharged by showing that for any strategy w in §.W, any
sin F.S, and any g in Pp:

(s E-wltr W.q) = (3g:(s,9) sat w:(s,g) £ q)

which we establish in the following for all W in Rp.
Proof . The proof proceeds by induction over the structure of W. We observe for

all ¢ in Pp, all ain F. A, and all U and V in Rp:

case W = ¢:

We choose g = () which satisfies eps, the only strategy in S.c . We have

(5,9) Fq
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= {9=0}
(s = —q)
< {antecedent, (wltrEps)}

true

case W = o for some o € F.A:

Careful inspection of the corresponding case in the soundness proof reveals that
completeness has been established there as well (due to the equivalence in lemma

24).

case W =UV:

Any strategy w in §.W has the form seq.(u,v) for two strategies u in S.U and
vin 8.V. Since s E —wltr .U.(wltr.V.q) by (wltrSeq), there is by virtue of the
induction hypothesis for U a game e satisfying (s,e) sat u , such that (s,€) [
wltr .V.q.

If € is infinite we have by (wltrWeaken) that (s, €) [~ ¢, and by the defini-
tion of sat that (s,e) sat w. Hence we choose g = e.

If € is finite, on the other hand, then from (s, €) £ wltr .V.q it follows that
€.s = —wltr .V.q. By virtue of the induction hypothesis for V' there is a game f

satisfying (e.s, f) sat v, such that (e.s, f) & q. We choose ¢ = e ++ f which satisfies
both (s, ¢) sat w and (s, g) [~ q.

case W =U+V:

Any strategy w in S.W has the form alt .(¢,u,v) for a predicate ¢ and strategies
win S.U and v in §.V. From the antecedent and from (wltrAlt) it follows that
s |E —wltr .U.g A —wltr.V.q. By virtue of the induction hypothesis for U, there

is a game e with (s,e) sat u such that (s, €) = ¢. Similarly, there is a game f with
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(s, f) sat v such that (s, f) = ¢. If s E t we choose ¢ = €, otherwise we choose
g=1

case W = U™:

We construct a game g for which (s, g) = ¢ holds as follows: starting with f.0 = ()

we define games f.¢ for natural ¢ while maintaining the following two conditions:

(s, [4) g (SC16)
(f4).s = ~wltr.U*.q (SC17)

Since s | —wltr.U*.¢q, both (SC16) and (SC17) are satisfied for ¢ = 0. Any

strategy w in S.W has the form star.(f,u) for a predicate ¢ and a strategy u in

S.U . There are two possibilities for a game execution from state (f.7).s following
strategy w: either s |= ¢, in which case the game terminates, or s [~ ¢, in which case
a game following strategy u is played. In the first case, we simply choose g = f.i,
for which (SC16) establishes that (s, g) [~ ¢.

In the non-terminating case we have (f.i).s | —~wltr.U.(wltr.U*.q), be-
cause U* = UU* by (PrAlg23). By virtue of the induction hypothesis for U,

instantiating wltr .U*.q for ¢, there exists a game e satisfying ((f.i).s,€) sat u

such that ((f.7).s,e) = wltr .U*.¢q, which implies by virtue of (wltrWeaken) that

((f.4).s,€) = q. We define f.(t 4+ 1) = fui+e. Clearly, (SC16) is satisfied for

i+ 1. If € is infinite we choose ¢ = f.(¢: + 1) and are done. If € is finite we have

from ((f.7).s,€) = wltr .U*.q that e.((f.i).s) | - wltr .U*.q establishing (SC17)
for ¢+ + 1. Hence we can repeat the construction until it terminates with one of the
cases above, or we choose for ¢ the limit of the f.i . In either case we have (s, g) £ ¢
as required.

End of Proof.
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