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Chapter 1IntroductionThe current trend for the development of large parallel systems indicates that thedesign of concurrent programs that run reliably and e�ciently on networks of inter-connected computers will remain an important challenge for the foreseeable future,as the size and complexity of such programs and networks will continue to grow.The complexity of large systems is usually managed by formulation of ap-propriate design principles that permit the development of a system by composingsmaller subsystems, and by automated aids to assist in the design and the develop-ment of such systems. Despite many research e�orts over the last decade that haveresulted in the formulation of design formalisms and the construction of supportsystems, the design and veri�cation of complex concurrent software systems remaina di�cult task.In this work we focus on providing suitable automated assistance for designand veri�cation of concurrent programs. We present our contributions to the area offormal veri�cation of concurrent programs in section 1.2; here, we discuss brie
y thenotions of design and veri�cation of such programs in general terms and provide aclassi�cation of di�erent approaches that have been taken in order to build reliablesystems. 1



1.1 Design and Veri�cation of Concurrent ProgramsOver the last decade the area of design and veri�cation of concurrent systems hasreceived an enormous amount of interest by researchers worldwide. Many di�erentformal systems for reasoning about concurrent programs have been de�ned, di�erentlanguages have been introduced for writing such programs, and many methodologiesfor e�ective designs have been proposed.There are several criteria according to which methods for verifying concurrentprograms can be described and di�erentiated. In the following, we discuss some ofthese criteria, explain how our approach to verifying concurrent programs can becharacterized according to these criteria, and suggest how our work contributes tothe current practice of program design and veri�cation.Simulation versus Formal Veri�cation: The term veri�cation has di�erentmeanings for di�erent people: in most scienti�c and academic environments programveri�cation refers to the task of formally establishing that a given program satis�esa given speci�cation, or is somehow equivalent to another program; in industrialenvironments, however, veri�cation is often synonymous with program validationby testing or simulation.While for very small sequential programs a simulation-based method canestablish correctness, it is impossible to make such a claim for larger, in particularreactive programs, for which the number of possible interactions or orderings ofevents is so large that only a negligible part of them can be validated by simulation.Such a validation can increase a designer's con�dence in the program; it cannot,however, establish its correctness for all possible executions.A Posteriori versus Design Oriented Veri�cation: Traditionally, design andveri�cation are viewed as separate tasks, with veri�cation being attempted after aprogram has been written. This a posteriori veri�cation has two major limitations:2



�rst, no guidance is provided to the designer to come up with a program that meets agiven set of speci�cations; second, many design decisions are no longer visible in the�nal program description, thereby making the veri�cation task often excruciatinglydi�cult.This situation can be contrasted with a design process in which the designand the veri�cation of a program are performed hand-in-hand. Ideally, the programconstruction proceeds by repeated transformations from the initial speci�cations,where each transformation is guaranteed to preserve required properties, therebyestablishing an implicit proof of correctness. Even if such a systematic way ofderiving a program from its speci�cation and proving it at the same time is notfeasible { be it due to the size of the program, due to lack of a suitable formalism,or due to a certain inexperience of the designer { such an attempt leads to stating theassumptions and assertions about the program explicitly. This is a way to documentdesign decisions and to prevent this form of design knowledge from disappearingbetween the lines of the �nal program text.Interactive versus Automated Methods: Another way of characterizing averi�cation method is by the degree of automation of the veri�cation process. Atone end of the spectrum are fully automated methods that establish correctness ofa program (or the lack thereof) without any user intervention. At the other end arepaper-and-pencil methods (possibly enriched with some mechanical support) thatprovide a method for verifying programs, but leave the discovery of a suitable proofto the user.A fully automated veri�cation method does not exist for all kinds of systems,but it is obvious that a high degree of automation is especially important for e�ectiveuse in an industrial production environment.Monolithic versus Compositional Approaches: While a monolithic veri�ca-tion method attempts to deal with a program as a whole, a compositional method3



makes it possible to decompose a program into smaller components, verify the in-dividual components separately, and then combine the veri�cation results for thecomponents to assert properties of the entire program. It is generally accepted thatthe compositionality of a method is crucial in order to be able to handle large andcomplex systems of concurrent programs.Nature of Programs: Finally, veri�cation methods can be distinguished by thetype of programs they can be applied to, and by the application domains for whichthese programs are designed. Di�erent realizations encompass software protocols,hardware circuits, synchronous programs, or asynchronous ones. It is expected thata successful veri�cation method capable of dealing with very complex systems willhave to take advantage of speci�c features of the program realization and of theapplication domain.1.2 Overview of the ThesisWith respect to the above criteria we can classify our research interests as follows: wewant to improve the applicability of formal veri�cation; our approach should allowthe designer to take advantage of design knowledge in a direct way; our methodshould be mechanically supported with as much automation as possible and as littleuser intervention as necessary; our work should be placed in a context that supportscompositional design and reasoning; �nally, our methods should be applicable to awide range of systems and applications.Our goal, in summary, is to improve the practicability of formal veri�cationfor a wide range of concurrent systems by demonstrating how the judicious use ofavailable design knowledge can improve the e�ciency and the e�ectiveness of anotherwise automated veri�cation method.4



1.2.1 FoundationsAs a starting point for our work we need both a suitable formalism and a powerfulveri�cation method.A formalism suitable for our proposed work is required to have a clean andrich logical structure, has to have simple yet powerful concepts supporting both thedesign of concurrent programs and reasoning about them, and has to be capable ofdealing with many di�erent systems. Out of the many existing theories for designand veri�cation of concurrent systems, very few meet these requirements. UNITY([CM88]) has been found to be such a formalism, mainly because of its rich proofsystem, general computational model, economy of concepts, compositional structure,and design methodology.As far as the choice of a veri�cation method is concerned we want to buildon a method that has proven to be practically useful, that can deal with sizableprograms, and that can be used in a fully automated way. The veri�cation techniquecalled model checking ([CES86]) meets these requirements and has, furthermore,achieved great practical relevance.1.2.2 ContributionsThis dissertation makes three main contributions to the area of veri�cation of con-current programs:1. We have combined UNITY logic with model checking to obtain e�cient modelchecking procedures for safety and basic progress properties. These procedurestake advantage of the structure of the UNITY proof system; they allow theuser to utilize state-based design knowledge, in form of invariants, to replaceexpensive �xpoint computations by evaluations of simple local veri�cationconditions. 5



2. We have developed an extension of UNITY logic for progress called generalizedprogress that allows the user to provide hints as part of progress properties.Hints take on a form similar to regular expressions; they characterize howprogress is achieved in a computation. We have developed a logic to rea-son about such generalized progress properties. Additionally, the veri�cationprocedure can take advantage of the hints to improve the e�ciency of check-ing progress properties. The theory we have developed comprises a predicatetransformer semantics, a deductive proof system, the characterization of thealgebraic structure of the new properties, and an operational semantics.3. We have implemented the model checking procedures for the extended logic aspart of a veri�cation system called the UNITY Veri�er System. The system isboth a useful tool for verifying concurrent programs, and an extensible plat-form for exploring future research ideas. Our preliminary experiments showthat our approach can be substantially faster then existing model-checkingprocedures.1.2.3 Structure of the ThesisThe remainder of this thesis consists of seven chapters and four appendices, and isorganized as follows:In chapter 2, Preliminaries, we introduce de�nitions and notation that weuse in the formal development of our theory. We also present a brief summary of theUNITY notation and logic, and some facts about the veri�cation technique knownas model checking.The �rst part of our work deals with the theory of verifying properties ofUNITY logic: in chapter 3, Model Checking for UNITY, we show how combiningUNITY logic and model checking results in a veri�cation technique suitable for deal-ing with safety properties and basic progress properties e�ciently. Veri�cation ofarbitrary progress properties is addressed in chapter 4, A Generalization of Progress,6



where we develop the theory of generalized progress properties. In chapter 5, Check-ing Progress Properties, we demonstrate how the theory in chapter 4 can be used ina model checker.The second part of our work is devoted to the practical application of ourtheory: in chapter 6, The UV System, we describe our implementation of the modelchecking algorithms based on the previously developed theory. In chapter 7, Exper-imental Results, we apply the UV system to a series of examples and demonstratethe advantages of our veri�cation techniques.We summarize our results in chapter 8, Conclusions, and discuss possibilitiesfor extending the work presented here.The four appendices provide additional information on various aspects of ourwork: in appendix A, The UV Input Language, we present the complete grammar ofthe input language of the UV system and discuss some extensions of it. A detaileddescription of the scripting interface of the UV system that makes the functionalityof the system accessible to the user follows in appendix B, The Tcl Interface. Anoverview of the UV source �les in appendix C, The UV Source Structure, is intendedfor those who may wish to extend our system. Finally, in appendix D, AdditionalProofs, we include proofs of some of the theorems that were omitted in chapter 4.
7



Chapter 2PreliminariesThe formal development of our theory in chapters 3, 4, and 5 requires some notationand de�nitions which we introduce in section 2.1. We also give a brief overview oftwo of the main ideas our work is built on: the temporal logic and programmingnotation UNITY [CM88] is summarized in section 2.2, and the veri�cation techniqueof model checking [CE81](cf. [QS82, CES86]) is introduced in section 2.3.2.1 Notation and TerminologyIn the following we introduce some notation and collect some basic results that areused throughout this thesis. We begin with some notational conventions in section2.1.1, followed by a description of the fundamental concepts of programs, statesand predicates in section 2.1.2, and of the calculational proof format used in thisthesis, in section 2.1.3. The important notion of predicate transformers and some oftheir properties are introduced in section 2.1.4, followed by the de�nition of extremesolutions of equations and the characterization of some properties of such solutionsin section 2.1.5. Some de�nitions and notation concerning regular expressions, insection 2.1.6, conclude the presentation of notation and terminology.8



2.1.1 Notational ConventionsWe use formulae of propositional and predicate calculus following the conventionslaid out in [DS90]; in particular, the in�x \." is used for denoting function applica-tion. As usual, function application is left-associative. The following boolean andarithmetic operators, with their usual meanings, are used for writing expressions;we list them in order of increasing binding power (operators in the same line havethe same binding power): � 6�( )^ _:= 6= < � � >+ �:Additional operators for relations and regular expressions will be introduced asneeded. We make sure that such an introduction does not cause ambiguities inthe operator precedence; for instance, when adding regular expression operators (cf.section 2.1.6), precedence can be resolved by taking type information (i.e., regularexpressions versus predicates) into account.Quanti�cationFor quanti�ed formulae of predicate calculus we use the following notation: forQ 2 f8; 9g we denote byhQi : r:i : t:iithe quanti�cation over all t:i for which i satis�es r:i . We call i the dummy, r:i therange, and t:i the term of the quanti�cation. If the range is understood from the9



context, we may omit it.This notation is generalized for arbitrary associative and commutative binaryoperators: for any such operator op we writehop i : r:i : t:iito denote the value of any expression obtained by substituting the instances ofthe dummy satisfying the range predicate in the term expression and folding theresulting expressions using op. Since op is associative and commutative this valueis well de�ned. If op has a unit element u, we permit the range to be empty, inwhich case the denoted value is u. Instead of introducing a binary set constructorwe use the more convenient notationfi : r:i : t:igto denote set comprehension, namely the set of all t:i where the dummy i rangesover all values satisfying r:i.SequencesWe use N to denote the set of natural numbers. For any natural number n wedenote by Zn the set fi : 0 � i < n : ig of the �rst n elements of N. In the followinglet S be any non-empty set. A �nite sequence of length k over S is a mapping fromZk to S. An in�nite sequence over S is a mapping from N to S and has length !.We write hi for the empty sequence (i.e., the sequence of length 0), and j�j for thelength of a sequence �. We denote by S� the set of all �nite sequences over S, by S+the set of all non-empty �nite sequences over S, by S! the set of in�nite sequencesover S, and by S1 the set of all sequences over S, i.e., S1 = S� [ S!.We also de�ne a few functions on sequences in S1: �nite maps sequencesto boolean values indicating whether a sequence is �nite (B denotes the booleandomain): 10



�nite : S1 ! B�nite :� � j�j < !The function tail strips a sequence of its �rst element (if present):tail : S1 ! S1tail :hi = hij tail :�j = j�j � 1 if 0 < j�j < !tail :�:i = �:(i+ 1) if 0 < j�j < ! ^ 0 � i < j�j � 1j tail :�j = ! if j�j = !tail :�:i = �:(i+ 1) if j�j = ! ^ i 2 NThe binary concatenation operator ++ appends two sequences:++ : S1 ! S1 ! S1j�++ � j = j�j+ j� j if j�j < ! ^ j� j < !j�++ � j = ! if j�j = ! _ j� j = !(�++ �):i = �:i if 0 � i < j�j(�++ �):i = �:(i� j�j) if j�j < ! ^ j� j < ! ^ j�j � i < j�j+ j� j(�++ �):i = �:(i� j�j) if j�j < ! ^ j� j = !We also extend the notation for quanti�ed expressions to arbitrary binary operatorswhere the ranges are sequences, as follows:hop i : � : t:ii= u if j�j = 0 and u is a unit of op= t:(�:0) if j�j = 1= t:(�:0) op hop i : tail :� : t:ii if j�j > 1Finally, we adopt the convention that all formulae are universally quanti�ed over allfree variables occurring in them. 11



2.1.2 Predicates, Programs, and StatesThe intended model for the theory developed in this thesis { both for de�ning the un-derlying computational domain, and for the treatment of the operational semanticsof the proposed logic { is the structure of total deterministic labeled state transitionsystems (TDLSTS): they are commonly used in modeling concurrent systems, theyare very general in that they allow both state-based and action-based formulations,and they serve as a model for both UNITY logic and our extensions of it.ProgramsFormally, a labeled state transition system F is a tuple (S;A; T; I) where S is anon-empty set of states, A is a �nite set of actions, T � S � A � S is a labeledtransition relation, and I � S is the non-empty set of initial states. For an LSTSF we write F:S to denote its set of states, and similarly F:A, F:T , and F:I for itsother components. If (s; �; t) 2 F:T , we say that t is an �-successor of s. For alabeled state transition relation T and an action �, we denote by T� the �-successorrelation, i.e., the projection onto the �rst and third arguments of the restriction ofT to the second argument �: ((s; t) 2 T�) � (s; �; t) 2 T ).For our intended model of computation we require actions to be total anddeterministic: an action � is total if it is enabled in every state of the state space,i.e., if every state s has at least one �-successor; it is deterministic if for any state sthere is at most one �-successor. A TDLSTS is a labeled state transition system inwhich all actions are total and deterministic. It follows that in any TDLSTS F forany action � the �-successor relation (F:T )� is a total function, which we henceforthassociate with �. We thus write �:s to denote the unique �-successor of state s.Every TDLSTS we encounter in this thesis is described as a program inthe UNITY notation (cf. section 2.2, where we discuss brie
y how such a programde�nes a TDLSTS). Due to the close correspondence between a UNITY programand the corresponding TDLSTS, henceforth, we use the term program to refer to12



both concepts.A run of a program F is a �nite or in�nite sequence of actions, i.e., anelement of (F:A)1. We associate with every �nite run x a function1 from F:S toF:S, mapping a state s to the state x:s obtained by executing the actions of x inorder:hi:s = sx:s = (tail :x):((x:0):s) if jxj > 0An execution of program F is a pair (s; x) consisting of an initial state s in F:Iand an in�nite run x of F . An execution (s; x) of F is unconditionally fair if andonly if every � in F:A occurs in�nitely often in x, i.e., for every � in F:A the setfi : i 2 N ^ x:i = � : ig is in�nite.The Assertion LanguageFor any program F we assume the existence of an assertion language for denotingstate predicates over the state space of F , that is su�ciently expressive to charac-terize the sets of states that arise in various constructions of our theory. We denoteby PF the class of all state predicates over the state space F:S. We assume thatthe assertion language is equipped with a semantics that determines whether anygiven state in F:S satis�es a given state predicate: for a predicate p in PF and astate s in F:S we denote by s j= p the fact that s satis�es p. With such a semanticsin place, every predicate p in PF characterizes a subset of F:S, namely the set ofstates satisfying p; also, by the above assumption, every interesting set of states weencounter can be characterized by some predicate in PF . Therefore, we often donot distinguish between predicates in PF and sets of states of F:S .Given a state s in F:S and a run x of F , we can consider the sequence of1We, thereby, overload the sequence x as both a mapping from states to states and a mappingfrom some naturals to actions. Due to the distinct domains of states and naturals this does notpose a problem. 13



states obtained by executing x action-by-action starting in s. For any such s andx and any predicate p in PF we introduce the notation (s; x) j= p to denote thesituation in which execution of x starting in s reaches some state (after a �nitenumber of steps) satisfying p. Formally,(s; x) j= p � h9y; z : x = y++ z ^ �nite :y : y:s j= piThe Everywhere OperatorIt is often desirable to quantify a predicate universally over the state space of aprogram F in order to assert that the predicate is satis�ed by every program state.Following [DS90] we use the everywhere operator, a unary operator that has allthe properties of universal quanti�cation over a non-empty range2. There are twodi�erent ways in which the range of this universal quanti�cation can be de�ned,either as quanti�cation over the full syntactic state space, (i.e., over F:S), or asquanti�cation over the reachable part of the state space consisting of all statesthat are reached from some initial state by some �nite run (i.e., over the re
exivetransitive closure of F:I under the relation hS� : � 2 F:A : (F:T )�i).The distinction between syntactic and reachable state space is importantwhen de�ning the semantics of UNITY programs with non-trivial initial sets, wherea complete axiomatization requires the so-called substitution axiom that correspondsto limiting observations of the program behavior to only its reachable set of states(for a detailed discussion of the substitution axiom and completeness of UNITYlogic, the reader is invited to consult [San91, Kna92]). As a consequence, we use twovariations of the everywhere operator: we surround a predicate by square brackets[ ] to denote quanti�cation over the reachable part of the state space, and by doublesquare brackets [[ ]] to denote quanti�cation over the full syntactic state space. Thenotion of reachable state space is formalized in section 2.1.5, where we introducethe concept of extreme solutions of predicate transformers.2Recall that we require the set of initial states of any program to be non-empty.14



2.1.3 Proof FormatMost of our proofs will be conducted in a calculational style, in which proof stepsconsist of a number of syntactic transformations rather than being based on seman-tic reasoning. In particular, for manipulating formulae of the predicate calculuswe use a proof format that was proposed by Dijkstra, Feijen, and others, whichgreatly facilitates this kind of reasoning (for a thorough discussion of this format,see [DS90]).In this format a proof is a sequence of formulae related by � (equivales),)(implies), or( (follows-from), interspersed with hints justifying the transformationfrom one formula to the next. For instance, a proof that [A) D] could be writtenin our format asD( fhint why [C ) D]gC� fhint why [B � C]gB( fhint why [A) B]gAThe use of ( instead of the more traditional ) can result in proofs that are easierto understand. It is often the case that performing a proof step in one implicationdirection requires a signi�cant amount of clairvoyance, whereas the step is dictatedby the syntactic form of the involved formulae when performed in the oppositedirection.We assume a certain familiarity with the predicate calculus (e.g. as presentedin [DS90]) and will justify many common transformations based on predicate orpropositional calculus with the hint predicate calculus.15



2.1.4 Predicate TransformersA predicate transformer for a program F is a mapping3 from PnF to PF for some nin N. We extend the [ ] and [[ ]] operators to predicate transformers by de�ning theirapplication to any unary predicate transformer � by[� ] � h8Z : Z 2 PF : [�:Z]i,[[� ]] � h8Z : Z 2 PF : [[�:Z]]i,and similarly for predicate transformers of higher arity.An important property of a predicate transformer is the extent to which itdistributes over disjunction or conjunction of predicates. A predicate transformer �is said to be conjunctive with respect to a set S of predicates if and only if[[h8p : p 2 S : �:pi � �:h8p : p 2 S : pi]]Similarly, a predicate transformer � is said to be disjunctive with respect to S, ifand only if[[h9p : p 2 S : �:pi � �:h9p : p 2 S : pi]]There are several notions of junctivity4 depending on S. In particular, � is called�nitely conjunctive (�nitely disjunctive) if it is conjunctive (disjunctive) for all non-empty �nite S, it is called and-continuous (or-continuous) if it is conjunctive (dis-junctive) for all non-empty linear5 S, and it is called universally conjunctive (uni-versally disjunctive) if it is conjunctive (disjunctive) for arbitrary sets S. It is wellknown that conjunctivity and disjunctivity over all non-empty, �nite, and linear setsS are the same and coincide with the traditional notion of monotonicity of � . Acomplete discussion of various junctivity properties can be found in [DS90].3As usual, PnF denotes the n-times Cartesian product of PF .4We use the term junctive and its noun form to stand for either conjunctive or disjunctive.5A set of predicates is called linear if its elements can be arranged in a monotonic (strengtheningor weakening) denumerable sequence. 16



In the following, we make use of three predicate transformers characterizingthe semantics of actions [Dij75]. These areWeakest Precondition (wp): For an action � and a state predicate q, wp :�:qcharacterizes precisely those initial states beginning in which each executionof � terminates in a state satisfying q.Weakest Liberal Precondition (wlp): For an action � and a state predicate q,wlp :�:q characterizes precisely those initial states beginning in which eachexecution of � either fails to terminate or terminates in a state satisfying q.Strongest Postcondition (sp): For an action � and a state predicate q, sp :�:qcharacterizes precisely those �nal states for which there exists an execution of� starting in some state satisfying q and terminating in that �nal state.Since the actions we consider are total and deterministic, these predicate trans-formers satisfy the following conditions. Proofs of these theorems can be found in[DS90]:1. Since actions always terminate, we have for all actions �: [[wp :� � wlp :�]].Henceforth, we will use wp only.2. For every action �, the predicate transformer wp :� is universally conjunctive(again due to actions being total).3. For every action �, the predicate transformer wp :� is universally disjunctive(because actions are deterministic).It can also be shown that under our assumptions, for every action � the predicatetransformers wp :� and sp :� are converse in the following sense:[[p) wp :�:q]] � [[sp :�:p) q]] 17



This establishes that sp :� is universally conjunctive and disjunctive as well. Fromour notation for actions we see that for action � and state predicate q the pred-icate transformer sp :� can be characterized as [[sp :�:q � �:q]]. Combining thischaracterization with the above condition yields the following property of wp :�:[[p) wp :�:(�:p)]]We also extend the above predicate transformers to whole programs: for a programF with action set F:A we de�ne the predicate transformers wp :F and sp :F as[[wp :F:q � h8� : � 2 F:A : wp :�:qi]][[sp :F:q � h9� : � 2 F:A : �:qi]]If the program F is understood from the context, we often use the predicate trans-former wco (pronounced weakest constrains because of its connection to the con-strains operator co of UNITY logic, cf. section 2.2.2) to denote wp :F . Clearly,wp :F is universally conjunctive, and sp :F is universally disjunctive.2.1.5 Some Results on Extreme Solutions of EquationsIn developing our theory for generalized leads-to properties we will encounter severalpredicate transformers that are de�ned as extreme solutions of certain equations.Given the implication ordering on predicates we call p the strongest (weakest) solu-tion of the equation E in the unknown Z { written as Z : E { if and only if p solvesE and any solution of E follows from (implies) p.For equations of the form Z : [[Z � f:Z]] for some monotonic predicatetransformer f , we denote by h�Z :: f:Zi the strongest solution of Z : [[Z � f:Z]],and call it the least �xpoint of f . Similarly, we denote by h�Z :: f:Zi the weakestsolution of Z : [[Z � f:Z]] and call it the greatest �xpoint of f . Existence of suchsolutions is established by the well known theorem of Knaster-Tarski [Tar55]:Theorem 1 (Knaster-Tarski) For a monotonic function f , the equation18



Z : [[Z � f:Z]]has a weakest and a strongest solution. Furthermore, the strongest solution is thesame as the strongest solution of the equationZ : [[Z ( f:Z]]and the weakest solution is the same as the weakest solution of the equationZ : [[Z ) f:Z]]The following very useful theorem from [DS90] shows that certain junctivity proper-ties are inherited by the extreme solutions of equations from the functions de�ningthem:Theorem 2 For monotonic f , denote the strongest solution of Z : [[f:(X;Z) � Z]]by g:X and the weakest solution by h:X. Then any type of conjunctivity enjoyed byf is enjoyed by h as well, and any type of disjunctivity enjoyed by f is enjoyed by gas well.We also note that the �xpoint operators are monotonic:Theorem 3 For monotonic f and g:[[f ) g]] ) [[h�Z :: f:Zi ) h�Z :: g:Zi]][[f ) g]] ) [[h�Z :: f:Zi ) h�Z :: g:Zi]]Proof . We show the proof for the least �xpoint; the greatest �xpoint is dealtwith analogously.Since f and g are monotonic, their strongest �xpoints exist and satisfy inparticular[[h�Z :: g:Zi � g:h�Z :: g:Zi]] (0)h8X :: [[X ( f:X ]] ) [[h�Z :: f:Zi ) X ]]i (1)19



With this we observe[[h�Z :: f:Zi ) h�Z :: g:Zi]]( f(1) with X := h�Z :: g:Zig[[h�Z :: g:Zi ( f:h�Z :: g:Zi]]� f(0)g[[g:h�Z :: g:Zi ( f:h�Z :: g:Zi]]( fpredicate calculusg[[g( f ]]End of Proof.Using predicate transformers we can now formalize the notion of reachable statespace: for any program F we de�ne the set of reachable states of F as the setcharacterized by the predicate si :F , called the strongest invariant6 of F . A state isreachable if it can be reached from some initial program state by a �nite number oftransitions; hence we de�ne[[si :F � h�Z :: F:I _ sp :F:Zi]]From the monotonicity of sp :F , it follows that the predicate transformer in thebody of the above �xpoint application is monotonic; therefore, the �xpoint existsand is well de�ned. Using si :F we can also de�ne the [ ] operator in terms of the [[ ]]operator by postulating for all p in PF[p] � [[si :F ) p]].As an immediate consequence of this de�nition we have for all p in PF :[[p]] ) [p]which allows us, for instance, to replace an assertion of the form [[p]] by [p].6A justi�cation for this term is given in section 3.2.20



2.1.6 Regular ExpressionsPart of our theory will make extensive use of a restricted form of regular expressions.We brie
y summarize a few basic de�nitions and some notational conventions relatedto regular expressions that will be used later on. We start with some de�nitionsconcerning strings and languages.For a given �nite alphabet A we denote by A� the monoid (A; �) of stringsover A, where � is the concatenation operator. The neutral element of A� is denotedby " and is called the empty string. We often omit � and denote the concatenationby juxtaposition of elements of A�.A language over A is a subset of A�. For two strings s; t 2 A� we say that sis subsumed by t (written as s � t) if and only if s is a subsequence of t, i.e., s canbe obtained from t by removing zero or more symbols. Formally, for s; t 2 A�, andx 2 A:" � t(x � s) � t � h9u; v : u; v 2 A� : t = uxv ^ s � viFor two languages K;L over A we say that K is subsumed by L if and only if everystring of K is subsumed by some element of L:K � L � h8s : s 2 K : h9t : t 2 L : s � tiiIt is easily seen that subsumption (�) is an ordering relation on languages over Athat is weaker than the language containment ordering (�).We de�ne regular expressions over a �nite alphabet A as the free universalalgebra [Wec92, Jac80, Con71] with the nullary constructors ;, " and � for each � 2A, the unary constructor � (repetition), and the binary constructors + (alternation)and � (sequencing). We write + and � as in�x operators and � as a post�x operator.As usual, we often omit the � operator from expressions, writing for instance UVinstead of U �V . We also associate di�erent orders of precedence with the operators21



to reduce the number of parentheses required when writing expressions: � bindsstrongest, followed by �, followed by +. For instance, U +V W � denotes the elementU + (V � (W �)).Later, we will be mostly interested in a sub-algebra of this free algebra ofregular expressions, which is obtained from it by omitting the ; constructor. For aprogram F with action set F:A we denote this free algebra of ;-free regular expres-sions over F:A by RF 7.Any regular expression over some alphabet A denotes a regular language([HU79]) overA by virtue of the following mapping L: L:; = ;, L:" = f"g, L:(UV ) =fx; y : x 2 L:U ^ y 2 L:V : xyg, L:(U + V ) = L:U [ L:V , and L:U� = h[i : i 2 N :L:U ii, where U0 = " and for all i in N, U i+1 = UU i.2.2 UNITYIn the following, we give a very brief overview of the UNITY programming notationand temporal logic. A more thorough and detailed introduction can be found in[CM88], while some more recent developments are described in [Mis95b, Mis95a].2.2.1 Programming NotationThe computational model for UNITY is that of deterministic, total, labeled statetransition systems (TDLSTS) described earlier. The TDLSTS model is well suitedfor describing many common classes of systems (e.g. hardware circuits or protocols),and is familiar to many designers of such systems. In the following we brie
ydescribe the form of a UNITY program, show how the syntactic form correspondsto a TDLSTS, present an example program, and describe how UNITY programs areexecuted.7Note that at �rst we are indeed dealing with the terminal algebra over the given constructors.Only later in chapter 4 will we investigate a coarser equational theory for RF .22



Program SectionsA UNITY program consists of four parts: (1) a collection of variable declarations,called the declare section, de�nes the state space of the program; (2) optionally, aset of abbreviations, called the always section, de�nes certain transparent variablesused to write programs succinctly; (3) a set of initial conditions, called the initiallysection, characterizes the set of initial states of the program, and (4) a �nite setof statements, called the assign section, de�nes the actions of the program and,thereby, its transition relation. In accordance with our requirements for actions(cf. section 2.1.4) statements are guarded multiple assignments, deterministic andalways terminating.The TDLSTS corresponding to a program F consists of the set of states ofF which is the Cartesian product of the domains of all variables declared in thedeclare section, the set of actions corresponding to the statements of F listed inthe assign section, the transition relation de�ned as the union of all the labeledtransition relations corresponding to the individual program statements, and theset of initial states characterized by the conditions in the initially section.An ExampleAs an example of a UNITY program we consider the scheduling problem known asMilner's cycler [Mil89]. A cycler of size N consists of a cyclic arrangement of Nprocesses P0 through PN�1 in which each process receives a signal as input fromits one neighbor, sends a signal to its other neighbor, and performs some furtherobservable actions. More precisely, in a ring of N processes, in which process i sendssignals to process (i+ 1) mod n for each i with 0 � i < n, process Pi has the statetransition diagram shown in �gure 2.1.As can be seen from the diagram, process Pi repeatedly performs an observ-able a-action, then synchronizes with process (i + 1) mod n via a communicationaction c, and performs a b-action and synchronization with process (i� 1) mod n in23
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Figure 2.1: Transition Diagram for Process Pi of Milner's Cyclereither order. A property of the cycler is that the a-actions occur in cyclic order overthe processes in the ring. Initially, process P0 is ready to perform an a-action, whileall other processes are ready to receive synchronization signals from their respectiveneighbors.Figure 2.2 shows an encoding of the cycler for N processes as a UNITYprogram. The variable cyc:i indicates the state of process Pi (for 0 � i < N) andvariable last a records the most recently occurred a action.Program ExecutionsAn execution of a UNITY program is any unconditionally fair execution of theassociated TDLSTS. Operationally, an execution is obtained by selecting a startstate satisfying the conditions of the initially section and then repeatedly selectingstatements of the assign section and executing them (if the guard of a selectedstatement evaluates to false in the current state, the entire statement is equivalentto a skip operation, i.e., it doesn't change the state). The selection of statementsis subject to the unconditional fairness constraint, i.e., every statement is selectedin�nitely often.Concerning the example in �gure 2.2 it should be noted how the asynchronous24



program Cyclerdeclaretype PC = enum(start; sync; choose; bc; cb);type Index = int(0::N � 1);var last a : Index;var cyc : Index! PC;initiallylast a = N � 1;cyc:0 = start;h8i : 1 � i < N : cyc:i = bci;assignh[]i : 0 � i < N :last a; cyc:i := i; sync if cyc:i = start[] cyc:i := bc if cyc:i = choose[] cyc:i := start if cyc:i = cb[] cyc:(i� 1); cyc:i := choose; start if cyc:(i� 1) = sync ^ cyc:i = bc[] cyc:(i� 1); cyc:i := choose; cb if cyc:(i� 1) = sync ^ cyc:i = chooseiend Figure 2.2: UNITY program of Milner's Cycler
25



aspects of the scheduler (i.e., the interleaving execution of a and b actions of di�erentprocesses) are expressed by separate statements in the UNITY program, whereasthe synchronous communication is modeled by multiple assignment statements, up-dating several state variables simultaneously.2.2.2 UNITY LogicThe logic of UNITY is a simple temporal logic providing many proof rules for rea-soning about programs and their properties. Di�erent from many state-based com-putational models that reason about individual executions of programs, the UNITYoperators characterize properties of programs, i.e., properties of all unconditionallyfair program executions.The UNITY programming theory provides many powerful rules for reasoningabout program properties. Using these rules one can replace an often tedious anderror-prone operational argument by a calculational proof, in which properties ofprograms are derived by applying inference rules. Moreover, these rules can be usedto derive properties of programs, as well as { when applied in reverse order { toguide the designer of a program who has to meet certain speci�cations, by suggestingprogram re�nements corresponding to the structure of the rules [CM88, Kna92].In the following we introduce the UNITY operators and some rules for rea-soning with them to the extent needed for this work. Proofs of most rules arestraightforward and can be found in [Mis95b, Mis95a].SafetyThe most fundamental safety property of UNITY logic is the constrains property, orco property for short. The co operator is a binary relation over state predicatesand is de�ned by the following inference rule:h8� : � 2 F:A : [[p) wp :�:q]]i; [[p) q]]p co q 26



The property p co q asserts that in any execution a state satisfying p is alwaysfollowed by a state satisfying q. In order to model stuttering steps p is required toimply q. Several other safety operators are expressed in terms of co :p co pstable ph8e :: stable x = eiconstant xstable p; [[F:I ) p]]invariant pp ^ :q co p _ qp unless qA predicate is stable, if it remains true once it becomes true. An expression x isconstant if for any possible value e the predicate x = e is stable. A predicate isinvariant if it is stable and holds in all initial program states. Finally, the unlessoperator is a binary relation over state predicates, such that p unless q holds ifin any state satisfying p either p continues to hold forever, or holds up to (but notnecessarily including) a state satisfying q.2.2.3 The Substitution AxiomThe operational semantics of UNITY programs is usually given with respect to thereachable part of the state space of the program. For instance, program F enjoys theproperty p 7! q if and only if for any unconditionally fair execution of F startingin an initial state of F any state satisfying p is also a state satisfying q or is followedby such a state.On the other hand, the UNITY proof rules do not explicitly refer to the setof reachable states. Instead, the so-called substitution axiom can be invoked in orderto restrict attention to a superset of the reachable part of the state space as needed.The substitution axiom can be formulated as follows:27



invariant p[[p]]Since an invariant of a program is true over the reachable part of the state space,it is equivalent to true in any program property. Thereby the substitution axiomallows us to replace any invariant predicate of a program F by true (and vice versa)in any proof of a property of F .ProgressThe most fundamental progress property is called transient and is a unary relationon state predicates. A predicate p is transient in a program F , if there is a programaction that falsi�es p in all program states in which p holds:h9� : � 2 F:A : [[p) wp :�:(:p)]]itransient pThe other basic progress property of UNITY logic is called ensures . It is a binaryrelation on state predicates and is de�ned in terms of unless and transient :p unless q; transient p ^ :qp ensures qIf p ensures q holds for a program F then there is, by virtue of the transientpart, an action of F that establishes :p _ q when executed in any state in whichp ^ :q holds; together with the unless part we have that q is established in anyexecution starting in a state satisfying p and that p holds up to the point at whichq is established.Progress properties are expressed in UNITY in general with the 7! (leads-to) operator. The 7! operator is a binary relation on state predicates and isformally de�ned as the transitive, disjunctive closure of the ensures relation, i.e.,as the strongest relation satisfying the following three conditions:28



p ensures qp 7! qp 7! q; q 7! rp 7! rh8w : w 2 W : p:w 7! qih9w : w 2 W : p:wi 7! q for any set WThe UNITY programming theory provides many laws for reasoning about progressproperties [CM88]. Among them is the so-called induction principle for leads-toproperties, which can be stated as follows: for a well-founded set (W;�) and afunction M mapping program states to W we haveh8w : w 2 W : p ^M = w 7! (p ^M � w) _ qip 7! qSince there is only one rule for establishing an ensures property of a programF , we can derive from the ensures rule and the substitution axiom the followingequivalence:p ensures q � [p^ :q ) wco :(p_ q)]^ [h9� : � 2 F:A : p ^:q ) wp :�:qi]We will also make use of another property, ensures� , which is similar to ensuresbut explicitly names the helpful action. For an action � in F:A we de�ne:p ensures� q � [p ^ :q ) wco :(p _ q)]^ [p ^ :q ) wp :�:q]2.2.4 Program CompositionFor dealing with large programs a methodology is needed that makes it possible todecompose large programs into smaller components, to reason about the componentsindividually, and to derive properties of the large program from the properties of itscomponents. The UNITY programming theory is compositional in the sense that itprovides many rules for reasoning about multiple programs and their composition.29



Although we do not exploit the UNITY compositionality theory in this work,we mention a few results because of their relevance to future work on automatedprogram veri�cation.UNITY de�nes two forms of program composition: the symmetric programunion combines two programs with compatible state spaces and initial conditionsby forming the union of their actions. The union theorem [CM88] makes it possibleto derive safety and basic progress properties of the composed program from itscomponents. In program superposition, an underlying program is augmented bysuperimposed variables, additional actions, and restricted synchronous extensionsto existing actions. Due to the restricted way in which the program is augmented,it is possible to state the superposition theorem, saying that every property of theunderlying program is also a property of the superimposed one.Another way of dealing with program composition is by de�ning a notion ofclosure properties [Mis] as a generalization of the ordinary UNITY properties. Aprogram F is said to have a certain closure property, if the corresponding ordinaryproperty is enjoyed by any union of F with a program G that satis�es certaincompatibility constraints with respect to F . These compatibility constraints havethe form of syntactic link constraints, restricting the access to certain programvariables according to their interface characterizations.Although, in general, progress properties are not compositional, recent re-search has provided methods for establishing some progress properties of programsfrom properties of their components [Coh93, CK93, Rao95, Pra95].2.3 Model CheckingModel checking [CE81, QS82, CES86] has become one of the most successful tech-niques for verifying and analyzing certain classes of �nite-state programs. It hasbeen used to �nd subtle errors in industrial designs.30



2.3.1 Basic Idea of Model CheckingA model checking task consists of determining whether a given system satis�es aspeci�cation. Typically, the system is a program, circuit, or process, whereas thespeci�cation is a formula of some temporal or modal logic.When attempting to classify di�erent model checking problems, one can dis-tinguish di�erent approaches by the di�erent kinds of models used (such as au-tomata, process algebras, Kripke structures, or labeled transition systems), and bythe temporal logic employed for specifying properties (such as CTL, LTL, CTL* orthe modal mu-calculus).Another way to characterize di�erent model checking approaches is to askwhether they are global (i.e., they attempt to determine all the states of a givensystem satisfying a given speci�cation), or whether they are local (i.e., they attemptto determine whether a given speci�cation is satis�ed for a given set of states).Although the worst-case complexity of local and global algorithms for many systemsand logics is the same in general, the local approach can often be more practicalbecause it often avoids the (explicit or symbolic) construction of the entire statespace. The term model checking is usually reserved for decision procedures, mostof them dealing with �nite state spaces. However, some model checking algorithmshave been extended to unbounded or some restricted in�nite state spaces, and someprocedures have been developed { typically based on the local paradigm { to dealwith in�nite state spaces in general [Bra93].A feature of model checking algorithms that is essential for their use in in-dustrial environments is their ability to generate counterexamples from failed modelchecking attempts. In large scale applications it is often a serious problem to modelprograms in the context of insu�ciently speci�ed environments. Since this problemcannot be solved by formal veri�cation techniques alone, model checking algorithmstend to be used not so much as checkers but more often as analyzers and debuggers :31



instead of having the model checker simply decide whether a given program meetsits speci�cation, it is used as a tool for allowing the designer to experiment withdi�erent ways of modeling various aspects of the system. In these applications asimple yes/no answer to a model checker invocation is not satisfactory; instead a de-tailed counterexample exhibiting more information about the nature of an existingproblem is highly desirable.2.3.2 Symbolic Model Checking and OBDDsAnother characterization of model checking algorithms divides such algorithms intoenumerative and symbolic methods. Enumerative methods were the �rst ones intro-duced. They attempt to explicitly build (possibly in a lazy fashion) the state spaceof the system under investigation as part of the checking procedure. As such theyare limited by the size of the (part of the) state space that needs to be examined;in particular, they are generally restricted to �nite state systems. For some applica-tions, however, enumerative methods have been used with success, especially whencombined with reductions of symmetric state spaces ([ID93]).Symbolic methods, on the other hand, utilize some form of symbolic repre-sentation for the models under consideration (such as set of states and transitionrelations), and are thus capable of dealing with potentially much larger systems,provided a suitably compact symbolic representation can be found.A practical breakthrough in the application of model checking techniquesto large programs was accomplished through the introduction of ordered binarydecision diagrams (OBDDs) [Bry86] and their incorporation into model checkingalgorithms [McM92, Pix90, CBM89]. The idea behind OBDDs is to encode sets ofstates and transition relations that are relevant for the calculations of a symbolicmodel checking algorithm by boolean functions over the state space of the program.Using OBDDs it is possible in many applications to represent these functions in aconcise way and to manipulate them e�ciently. Much of the practical success of32



model checking can be attributed to the clever use of this symbolic representationin model checking algorithms for logics such as CTL.Recently, model checking algorithms have become even more powerful byexploiting symmetry, by using compositionality of the underlying models, and byutilizing abstraction mappings in order to reduce the size of the state space thatneeds to be examined. As a result some systems with more than 101000 statescan be handled today [CGL94]. Some of the inherent limitations of OBBDs havealso been successfully tackled for many practical applications. In particular, thee�ects of the strong dependence of OBDDs sizes on variable orderings and thedi�culty of �nding good orderings reliably, have been partially overcome by domain-speci�c ordering heuristics [Gro94] and by dynamic reordering algorithms [Rud93].Moreover, some programs that do not have an e�cient encoding using OBDDs(e.g. multiplier circuits) have been successfully veri�ed using extensions of OBBDs.By encoding word-level operations (instead of bit-level operations as done withOBDDs), data structures such as binary moment diagrams [BC95] made it possibleto solve previously intractable problems [CZ96].Altogether, model checking has become a very powerful veri�cation tech-nique, that can be easily used in practice (at least compared with approaches basedon theorem proving), due to its mostly automated nature. However, circuits andprotocols built today are still far too big and complex to be handled in general.It is expected that techniques capable of dealing with such large systems will haveto take advantage of modular and compositional veri�cation and of user supplieddesign knowledge.
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Chapter 3Model Checking for UNITYThe programming theory UNITY combines a simple yet expressive temporal logicwith a programming notation that is suitable for the formal speci�cation, design,and analysis of concurrent programs. Since its introduction in [CM88] the UNITYtheory has been thoroughly investigated [M+90] and simpli�ed [Mis95b], it has beenapplied to a variety of interesting problems [Sta92], and been used as a foundationfor other theories and formalisms [Car94, CWB94, CR90].UNITY is Suitable for Program Design and Veri�cationThere are several reasons why UNITY is an interesting formalism for designing,reasoning about, and verifying concurrent systems. First, UNITY logic is simpleand, therefore, more likely to be e�ectively used by designers of concurrent systemsthan more expressive though more complicated formalisms. In spite of its simplicityUNITY logic is expressive enough to state many important and desired propertiesof concurrent systems, such as invariants and progress properties. Secondly, theprogramming model makes it possible to abstract away from program control 
ow,one of the greatest hindrances in understanding concurrent systems. It is also ca-pable of describing synchronous and asynchronous aspects of concurrent systems.Moreover, UNITY logic has a well developed deductive system that allows formal34



reasoning about concurrent programs, thus providing several results about programcomposition. This is, undoubtedly, one of the most important requirements of anyformalism intended to deal with large and complex systems. Finally, UNITY alsocomprises a programming methodology that can aid the designer in building correctconcurrent systems.Combining UNITY with Model CheckingBecause of its suitability for designing and verifying concurrent programs, it is apromising idea to combine UNITY with one of the most successful techniques forprogram veri�cation, namely model checking. The goals of this project, modelchecking UNITY, are threefold: �rst, such a combination can result in a valuabletool for designers and users of UNITY, aiding them in developing and analyzingtheir programs by automating certain veri�cation tasks which are often tediousand error prone to perform manually; second and more fundamentally, we aim atsupporting the claim that a simple logic like UNITY is well suited for practical usein designing concurrent systems, both because of its simplicity that allows the userto conveniently reason within the logic, and because of its restrictions, that make ane�cient implementation of veri�cation procedures for that logic possible. Finally, asystem implementing model checking for UNITY is expected to serve as a platformfor exploring advanced ideas for verifying and reasoning about concurrent systemsin future research. In the remaining chapters of this thesis we demonstrate how eachof these goals has been achieved in our work.In the remainder of this chapter we investigate how the existing deductivesystem of UNITY logic can be exploited to derive e�cient model checking algo-rithms: in section 3.1 we derive veri�cation conditions for UNITY properties fromthe UNITY proof rules. In section 3.2 we discuss the important role invariantsplay in verifying properties with the UNITY veri�cation conditions. We present theUNITY model checking method in section 3.3 where we also discuss its advantages35



and limitations. An example in section 3.4 illustrates several aspects of the proposedmethod. We conclude this chapter with some remarks in section 3.5.3.1 Veri�cation Conditions for UNITYThe most interesting challenge in designing a model checking algorithm for UNITYlogic is to determine how one can take advantage of the simplicity of the logic inorder to improve its e�ciency compared to model checking algorithms for moregeneral logics such as CTL [CES86].The starting point for a derivation of a model checking method that takes ad-vantage of the deductive structure of UNITY is the UNITY proof system, presentedin section 2.2. As suggested by the substitution axiom, invariants play an importantrole in proving properties of programs. In the following we make invariants explicitby tagging properties with the invariant used in a proof:De�nition 1 (Tagged Properties) For a program F , a property � and an in-variant J of F , (�)J denotes the property obtained by replacing each predicate p in� by p ^ J.Tagging a property with an invariant J e�ectively restricts the property to the partof the state space characterized by J . Since the semantics of traditional untaggedproperties of a program F is given with respect to the reachable set of states char-acterized by the strongest invariant of F , si :F of F , it follows that a property �is satis�ed by F in the traditional sense, if and only if (�)si :F is satis�ed. Theidea of tagging properties with a restricting invariant is similar to the treatment ofinvariants in [San91].We call a property of a program F directly provable if it can be proved in theUNITY proof system for F without using the substitution axiom. The importanceof direct provability is emphasized by the theorem about normal forms of proofsdue to Misra [Mis90b]: 36



Theorem 4 For any property � of a program F there is an invariant J such that(�)J is directly provable.The signi�cance of this theorem for our derivation of a veri�cation methodis that any proof of a property � can be split into two parts, namely �rst �ndinga suitable invariant J and then proving the tagged property �J directly. In thefollowing we determine veri�cation conditions for characterizing direct provability.To this end, we restate the UNITY proof rules of sections 2.2.2 and 2.2.3 in termsof tagged properties for a given program F :invariant J; [[p ^ J ) q]]; h8� : � 2 F:A : [[p ^ J ) wp :�:(q ^ J)]]i(p co q)J (co)(p co p)J(stable p)J (stable)h8e :: (stable x = e)Ji(constant x)J (constant)(stable p)J ; [[F:I ) p]]invariant p (invariant)(p ^ :q co p _ q)J(p unless q)J (unless)invariant J; h9� : � 2 F:A : [[p ^ J ) wp :�:(:p ^ J)]]i(transient p)J (transient)(p unless q)J ; (transient p ^ :q)J(p ensures q)J (ensures)(p ensures q)J(p 7! q)J (promote)(p 7! q)J ; (q 7! r)J(p 7! r)J (trans)h8w : w 2W : (p:w 7! q)Ji(h9w : w 2 W : p:wi 7! q)J for any set W (disj)37



invariant true (true)(�)J� for any property � (lift)There are two additions to the usual UNITY proof rules dealing speci�cally with thetagging of properties: (true) serves as a base case for establishing invariants andthe lifting rule (lift) relates tagged properties to ordinary untagged ones. It shouldbe noted that in rules (co) and (invariant) some conjunctions of predicates withJ have been omitted, because they are equivalent to the predicates alone: in (co)the tagged condition [[p ^ J ) q ^ J ]] is propositionally equivalent to [[p ^ J ) q]],and in (invariant) the tagged condition [[F:I ) p ^ J ]] is equivalent to [[F:I ) p]]because J is an invariant and therefore satis�es [[F:I ) J ]].By virtue of tagging the properties with invariants we are assured thatthe rules (co), (stable), (constant), (unless), (transient), and (ensures) areequivalences; the same holds for (invariant) as well if the occurrence of J in theantecedent is existentially quanti�ed. Only the rules for leads-to { (promote),(trans), and (disj) { are proper implications in general.As a consequence of these equivalences, the proof rules for co , stable ,unless , invariant , transient , and ensures properties can be transformedinto formulae that refer only to the given program text (via wp) and to someinvariant needed for its proof. This form can be obtained by repeated substitutionof equivalences. For instance, we obtain for the stable operator:(stable p)J� f(stable)g(p co p)J� f(co)g(invariant J) ^ h8� : � 2 F:A : [[p ^ J ) wp :�:(p ^ J)]]iThis derivation makes it clear that stable p is provable for F if and only if thereis some invariant J of F satisfying the last line of the derivation. Together with the38



soundness and completeness of the UNITY logic [Kna92] we obtain a veri�cationcondition for F and the property stable p . Similar derivations for the other kindsof properties result in the following list of veri�cation conditions:F j= p co q i� for some invariant J of F :[[J ^ p) q]] ^ h8� : � 2 F:A : [[J ^ p ) wp :�:(J ^ q)]]iF j= stable p i� for some invariant J of F :h8� : � 2 F:A : [[J ^ p ) wp :�:(J ^ p)]]iF j= constant x i� for some invariant J of F :h8e :: h8� : � 2 F:A : [[J ^ x = e ) wp :�:(J ^ (x = e))]]iiF j= invariant p i� for some invariant J of F :[[F:I ) p]] ^ h8� : � 2 F:A : [[J ^ p ) wp :�:(J ^ p)]]iF j= p unless q i� for some invariant J of F :h8� : � 2 F:A : [[J ^ p ^ :q ) wp :alpha:(J ^ (p _ q))]]iF j= transient p i� for some invariant J of F :h9� : � 2 F:A : [[J ^ p ) wp :�:(J ^ :p)]]iF j= p ensures q i� for some invariant J of F :h8� : � 2 F:A : [[J ^ p ^ :q ) wp :�:(J ^ (p _ q))]]i^h9� : � 2 F:A : [[J ^ p ^ :q ) wp :�:(J ^ (:p _ q))]]iThe important feature of the above veri�cation conditions is that they are local,i.e., that they only refer to individual transitions (via wp) and do not rely on any�xpoint computations. We use these veri�cation conditions as the basis of a modelchecking method for UNITY. Before we present the method in section 3.3 we needto discuss the role of invariants for these veri�cation conditions in greater detail.39



3.2 The Role of InvariantsIt is obvious that �nding a suitable invariant is essential for taking advantage of thepreviously mentioned locality of the veri�cation conditions. An invariant suitablefor proving a property � of a program F is any invariant of F that is strong enoughto make the veri�cation condition for � true. We formalize this characterizationwith the following lemma:Lemma 5 For any program F , the set of invariants of F is a complete lattice withboolean implication as ordering relation, true as top, and si :F as bottom element.Proof . It su�ces to show that si :F is an invariant of F , and that for any invariantJ of F and any predicate K with [[J ) K]], K is also an invariant of F . By virtueof the �xpoint de�nition of si :P we have[[si :F � F:I _ sp :F:(si :F )]] (SI)from which [[F:I ) si :F ]] follows immediately. For the stability we observe withJ = true for all � in F:A:[[true^ si :F ) wp :�:(si :F )]]( fproperty of wp :�: [[Y ) wp :�:(�:Y )]]g[[wp :�:(�:(si :F ))) wp :�:(si :F )]]( fwp :� is monotonicg[[�:(si :F )) si :F ]]( fde�nition of sp :Fg[[sp :F:(si :F )) si :F ]]which follows from (SI). Together with the veri�cation condition for invariants we,therefore, have invariant si :F .For any invariant J of F , and any predicate K for which [[J ) K]] holds,we have, by virtue of the veri�cation condition for invariants and the transitivityof implication, that [[F:I ) K]]; also, since [[J ^ K � J ]] holds, we have, by virtue40



of the veri�cation condition for invariants and the monotonicity of wp :�, that forall � in F:A the stability condition [[J ^K ) wp :�:K]] is satis�ed. Hence K is aninvariant.End of Proof.It follows that a property � is satis�ed by a program F if and only if the veri�cationcondition for � with respect to si :F is true. On the other hand, any invariantof F for which the veri�cation condition of � becomes true su�ces to establish �.Therefore, it is not required to �nd the strongest invariant, but any su�ciently stronginvariant. In the following we describe di�erent ways for �nding such invariants. Apresentation of di�erent techniques in the context of linear temporal logic can befound in [MP95].3.2.1 The Strongest InvariantAs mentioned before, the strongest invariant of F , si :F , is su�cient for proving anyproperty of F . The main problem with si :F is, however, that it may not be possibleto be computed for a given program F . For in�nite state spaces and recursivelyenumerable (r.e.) sets of initial states, the set of reachable states is r.e. but notnecessarily decidable as can be seen by reduction from the Halting Problem (forthe de�nitions see for instance [HU79]): a deterministic universal Turing machinecan be modeled as a TDLSTS, hence it cannot be decided whether a �nal state isreachable. But even for �nite state programs F , where the computation of si :Fsuggested by the �xpoint de�nition of si :F is guaranteed to terminate, it mightnot be feasible to actually compute the strongest invariant due to limited resources(memory and time), even when using a symbolic representation.3.2.2 Automatically Generated InvariantsAs we have seen, it may not always be possible to compute the strongest invariantfor large and complex programs. In such a case we have to �nd ways of computing41



su�ciently strong invariants with which we are then able to prove the properties athand. The �rst guidance for this task can be found in the program for which wewant to verify properties: we can take advantage of type declarations and possiblyother syntactic restrictions in order to derive certain invariants automatically. Atype invariant for some variable x simply asserts that x takes on values only fromits declared domain. Other invariants can be derived for variables on which only arestricted set of operations is performed, e.g. integer variables which are incrementedor decremented only by some �xed constant. More elaborate techniques analyzecertain dependencies of sets of variables; e.g. the linear invariants of [M+94, MP95]are obtained by determining linear dependencies between certain program variables.3.2.3 User Supplied InvariantsIn most of the interesting cases automatically generated invariants do not su�ce toprove the desired properties of a given program. The reason for this is that typingand other syntactic features of a program description typically do not capture thefull semantic content of a program. A certain amount of design knowledge hasgone into the construction of such a program and cannot be extracted easily fromthe program description alone. In a situation in which the program veri�cation isperformed hand-in-hand with the program design, however, it is possible to transfersome of this design knowledge to the veri�cation task.A particular form of such design knowledge is state-based and has the form ofinvariants: the designer of a program often has an understanding about restrictionson possible values of certain variables that are present as part of the program design,but are very di�cult to calculate without that knowledge.It is therefore useful for the designer to supply such design invariants tothe veri�cation procedure. The veri�cation procedure has to establish �rst that theprovided invariants indeed are invariants of the program, and then to strengthenthe automatically generated invariants by the newly provided ones. It is often the42



case that some of these design invariants su�ce to prove the desired properties of agiven program. Heuristic evidence of this fact is presented in chapter 7.It should be noted that providing design invariants amounts to supplying apartial proof of a property. In fact, if a deductive proof of some property uses thesubstitution axiom on a series of invariants, it is clear that the conjunction of allthese invariants serves as a su�ciently strong invariant for the veri�cation condition.In chapter 5 we illustrate the relationship between proofs and design knowledge inmore detail.3.2.4 Strengthening InvariantsSometimes the above methods still do not su�ce: the automatically generated in-variants are too weak, design invariants are not available or are not strong enough,and the strongest invariant cannot be computed; another problem might be that asuggested design invariant cannot be established since it does not meet the stabilityrequirement with respect to the available invariants. In such cases an attempt canbe made to use a goal-oriented technique that takes the properties to be proved intoaccount.While all the suggested techniques for �nding invariants were independentof properties to be established, the idea behind invariant strengthening is to utilizethe information obtained from a failed property veri�cation to strengthen the usedinvariant; this is done under the assumption that the given property, in fact, holds.The procedure is as follows: a failed veri�cation condition for a property �results in a predicate characterizing certain illegal states. For instance, a failed checkfor the property stable p of program F with respect to the established invariantJ characterizes the set of states violating the stability condition as h9� : � 2 F:A :J^p^:wp :�:(J^p)i. Under the assumption that stable p holds, we can strengthenthe invariant from J to J ^ h8� : � 2 F:A : J ^ p) wp :�:(J ^ p)i. This, of course,requires us to establish that the strengthened invariant is indeed an invariant of43



F . We can repeat this strengthening procedure with respect to other properties orwith respect to the alleged invariant until we succeed in establishing the invariantand, thereby, con�rm the validity of all properties used for strengthening, or untilwe arrive at an alleged invariant that does not cover all reachable states (a simplecheck is to test whether the set of initial states is covered). In the latter case wehave established indirectly that some property used for strengthening is not satis�edby the program.It should be noted that for in�nite state programs the repeated strengthen-ing of alleged invariants need not terminate by reaching a stable predicate or byexcluding some reachable states. However, for �nite state programs this methodis guaranteed to strengthen invariants successfully. Of course, even in the �nitecase the method might not be practicable if the representation of the strengthenedinvariants grows too big.3.3 A Model Checking Procedure for UNITYAfter discussion of the two main ingredients of a veri�cation procedure for UNITY,namely the veri�cation conditions based on the notion of direct provability, andmethods for �nding su�ciently strong invariants, we describe below a model check-ing procedure for �nite state programs and propositional UNITY properties, anddiscuss its advantages and limitations.3.3.1 Description of the ProcedureA model checking procedure for UNITY logic can be constructed from three ingre-dients: the veri�cation conditions for the various properties, a method for �ndingsuitable invariants, and a representation for state predicates that is both conciseand allows e�cient calculation of the veri�cation conditions.Before we can present such a method for full UNITY logic we need to addressthe fact that we do not have a local veri�cation condition for leads-to properties.44



Even though for �nite state programs the disjunctivity rule (disj) is subsumed bythe transitivity rule (trans) [Mis95a], it is still not possible to de�ne an equivalencethat directly relates leads-to properties to state or transition predicates1.Dealing with leads-toWe can, however, express an equivalence involving leads-to by using the predicatetransformer wlt (weakest leads-to) from [JKR89]: for a state predicate q, the pred-icate wlt :q characterizes all states with the property that any unconditionally fairexecution starting from such a state eventually reaches a state in which q holds.Formally, wlt :q can be de�ned as[[wlt :q � h�Z :: q _we :Zi]][[we :q � h9� : � 2 F:A : stp :�:qi]][[stp :�:q � h�Z :: (wco :Z ^wp :�:q) _ qi]]and satis�es the following characterization:[p) wlt :q] � p 7! q.From this we can derive the following veri�cation condition for leads-to properties:F j= p 7! q i� for some invariant J of F :[[J ^ p ) wlt :(J ^ q)]]:With the given veri�cation conditions for UNITY properties, we present a (symbolic)model checking procedure. The procedure takes as input a UNITY program F anda set P of UNITY properties of F . The model checking procedure can be executedin one of two modes, automated or interactive. The automated mode is available ifthe strongest invariant si :F can be computed.1A transition predicate of program F is a state predicate over F:S�F:S, thereby characterizinga successor relation. 45



Automated ModeIf si :F has been computed, the veri�cation conditions for all input properties can beevaluated with respect to si :F . A veri�cation condition evaluating to true indicatesthat the property is satis�ed by F , whereas false means that the property is not metby F . It can be expected that all veri�cation conditions with the possible excep-tion of the one for leads-to properties can be handled e�ciently in the automatedcase, since they are typically much simpler than the computation of the strongestinvariant.Interactive ModeIn case it is not possible to compute si :F the procedure is executed in interactivemode. As long as there are unproven properties the user can select any such propertytogether with an established invariant, evaluate the veri�cation condition, and {depending on the result { be either done with the property by having successfullyestablished it, or be provided with some debugging information in case of failure.Throughout the interactive execution, properties are paired with sets of in-variant predicates, indicating which invariants have been used in checking the prop-erty. Two sets of tagged properties are maintained by the procedure: SUCCESScontains all the properties that have been proved for F , while TODO contains theproperties that have been checked but could not be proved yet. Furthermore, thevariable INV contains the strongest invariant established for F during the veri�ca-tion session. INV is initialized to the invariant automatically generated from theprogram text (or to true if no such procedure is available).Choosing a Property When choosing a property � and an invariant J for theveri�cation condition evaluation, two conditions have to be met: J has to be impliedby the current value of INV, and J has to be stronger than all invariant predicates� is tagged with. The �rst condition guarantees that J is an established invariant of46



F , the second makes sure that the subsequent veri�cation condition evaluation hassome chance of being successful. Unless the size of the representation of the currentvalue of INV is large, one should choose the current value of INV for J and select aproperty that has not been checked with respect to the current value of INV. If nosuch property exists, the user has to strengthen INV either by supplying a strongerinvariant property and successfully checking it, or by attempting an automatedinvariant strengthening with respect to one of the properties in TODO.Success of Checking Condition If the veri�cation condition for a property �and invariant J evaluates to true, the property is placed into the SUCCESS set; ithas been proved to be satis�ed by F . If � is an invariant property, its predicate isalso conjoined to INV.Failure of Checking Condition If the veri�cation condition does not evaluateto true, it could mean that J was not strong enough to establish �. In particu-lar, � is de�nitely not a property of F if the check with respect to the strongestinvariant, si :F , fails. The result of the computation of the veri�cation conditioncharacterizes a set of states that violate the veri�cation condition. For instance, thenegation of the veri�cation condition for stable properties characterizes the statesfor which the execution of some action violates the stability requirement. Based onthis information the user can decide either that there is an error in the property orthe program { in which case the property is removed, or the program is modi�ed{ or that the used invariant needs to be strengthened. This strengthening can bedone either manually by submitting a new invariant property to the model checkingprocedure, or by attempting an automatic invariant strengthening with respect to�.Automatic Strengthening Automatic strengthening proceeds by conjoining toINV the negation of the predicate characterizing the violating states. If the re-47



sulting predicate is not implied by the initial condition of F , the property used forautomatic strengthening is established as not satis�ed by F . Otherwise a new in-variant property with the resulting predicate is added as input to the model checkingprocedure, starting another veri�cation round.Simple OptimizationsWe point out four optimizations of the described procedure. First, when checkingan invariant property � with respect to some invariant J , where J is stronger thanthe invariant predicate of �, the result of the check can be asserted to be true.Second, when checking the condition for a leads-to property, an early termi-nation of a successful check is possible due to the monotonicity of the wlt �xpointiterations.Third, since the computation of wlt does not depend on the invariant withrespect to which a leads-to property is checked, the wlt result of an unsuccessfulcheck can be cached and reused for a later check of the same property with respectto some stronger invariant.Finally, the conjunction with J can be dropped from the arguments of wpand wlt in all veri�cation conditions provided J is inductive, i.e., satis�es the condi-tion [[J ) wco :J ]]. It can be shown that for any inductive invariant J and predicatesp and q the following equivalences hold:[[(J ^ p) wp :�:(J ^ q)) � (J ^ p) wp :�:q)]][[(J ^ p) wlt :(J ^ q)) � (J ^ p) wlt :q)]]The suggested simpli�cation of the veri�cation conditions is an application of theseequivalences. It is straightforward to show that the inductive invariants of a programF form a complete sub-lattice of the lattice of invariants of F with true as topelement and si :F as bottom element. Furthermore, if predicate p has been shownto be an invariant by using the veri�cation condition with respect to some invariant48



J , then predicate J ^ p is an inductive invariant. Also, the type invariant of aprogram is inductive. It follows that if only the type invariant of F , the strongestinvariant of F , or the conjunction of all established invariants of F are used forchecking other properties, the simpli�ed veri�cation conditions can be used.3.3.2 Properties of the Veri�cation ConditionsThe veri�cation conditions for safety and basic progress properties have two char-acteristics that make them well suited for e�cient model checking: they are simpleformulae of the underlying (non-temporal) logic, i.e., they do not contain any �x-point operations; furthermore, they are naturally partitioned by the actions of F .The simple form of the veri�cation conditions is a consequence of the factthat every action � in F:A corresponds to a deterministic conditional multiple as-signment, for which the weakest precondition wp :s can be computed easily. Moreprecisely, a deterministic conditional multiple assignment in the assign section of aUNITY program has the form~x := h[]i :: ~f:i:(~x; ~y) if b:i:(~x; ~y)iwhere ~x and ~y are tuples of state variables, the ~f:i and b:i are functions expressiblein the underlying logic, i ranges over some �nite set, and the choices satisfy thecondition that whenever any two of them are enabled in a state (i.e., their guardsevaluate to true in that state), then their right hand sides evaluate to the sametuples (this condition ensures determinism):h8i; j :: [[b:i:(~x; ~y) ^ b:j:(~x; ~y) ) ~f:i:(~x; ~y) = ~f:j:(~x; ~y)]]iSuch conditional multiple assignment statements always terminate, and the weakestprecondition wp :�:q of a state predicate q with respect to a statement � can becomputed as[[wp :�:q � h8i :: b:i:(~x; ~y)) (�:i):qi ^ (h8i :: :b:i:(~x; ~y)i ) q)]]49



where �:i = f~x  ~f:i:(~x; ~y)g is the substitution of the components of ~f:i for thecorresponding variables of ~x.Due to the expressiveness requirements of the logic we obtain a form of thechecking conditions entirely within the underlying logic without having to rely on�xpoint characterizations. We, thereby, eliminate �xpoint computations which mayrequire a number of iterations equal to the diameter of the state graph, by a singleformula evaluation whose complexity is comparable to a single step of the iteration.The second characteristic that makes checking of UNITY conditions favorablefor an actual implementation of a model checking algorithm is the partitioning ofthe global state transition relation by individual statements: the transition relationof program F is the disjunction of the transition relations corresponding to theindividual statements of F . Instead of computing the relational product for the fulltransition relation, we are able to use the representation of the transition relationby a set of statements. It is actually not necessary to compute a pre-image of someset of states under the global transition relation. Instead, the form of the checkingconditions makes it possible to compute independent pre-images (corresponding towp computations) for each disjunct of the transition relation corresponding to eachstatement of the program. Not only can we avoid building the global state transitionrelation, but the form of the checking conditions allows us to work exclusively withthe disjuncts of the global relation. This form of partitioning is long known to resultin a signi�cant increase of the applicability of BDD-based symbolic computations[BCM91], and can be directly derived from a given UNITY program at no extracost. Although the locality of the veri�cation conditions is responsible for theimproved e�ciency of verifying properties, it reduces the availability of debugginginformation that can be directly obtained from a failed veri�cation attempt: thefailed veri�cation condition typically contains only local information about somelocal violation of the required condition. By itself this information is not su�cient50



to generate complete counterexample traces. For instance, a failed check of theveri�cation condition for a stable property characterizes a set of states and anaction, so that execution of the action in any one of the states violates the stabilityrequirement. This violating transition represents valuable information that can beused for debugging. A complete execution trace of the program starting in an initialstate, however, cannot be derived from this result. In fact, there might be no suchtrace, because the stability may be veri�able with respect to a stronger invariant.For generating full traces non-local methods have to be used (cf. [McM92]).3.3.3 LimitationsThe proposed method for model checking UNITY programs has the potential toimprove the e�ciency of veri�cation tasks signi�cantly. However, there are alsoa few considerations that limit the applicability of the method: in particular, thenon-locality of the veri�cation condition for leads-to properties, the reliance on state-based design knowledge, and the dependence on asynchronous programs.The veri�cation condition for leads-to properties is non-local, since it involvesa �xpoint computation of alternation depth two (due to the fairness constraint ofUNITY) instead of just a simple evaluation involving pairs of states. Moreover,design invariants are only exploited for detecting a possible early termination of theouter �xpoint iteration. As a result, checking a general leads-to property amountsto a rather complicated �xpoint computation that is typically even more resource-consuming than the reachability computation for the strongest invariant. In thatsense our method does not improve the situation for checking general progress prop-erties. We will address this problem at length in chapter 4, where we extend the logicby a generalization of progress properties that often can be checked more e�ciently.The fact that the elimination of �xpoint computations relies on the avail-ability of suitable invariants is a clear disadvantage if the model checking methodis used in a posteriori veri�cation. When used as a tool during the design process,51



however, it is likely that some design knowledge is available in a form that can beexploited by our method.A more fundamental restriction to our approach is its dependence on asyn-chronous programs. Although UNITY can express synchronous composition, pro-grams that are mostly synchronous tend to consist of only a few very big statements,thereby increasing the complexity of local wp calculations while reducing the degreeof partitioning at the same time. The resulting size of the formulae that need to bemanipulated makes it mandatory to use very e�cient symbolic representations.3.4 An ExampleWe illustrate some aspects of the UNITY model checking procedure with a smallexample, an instance of Milner's cycler for two processes. A description of the pro-gram and its formulation in the UNITY programming notation has been presentedin section 2.2.1. Figure 3.1 shows the transition diagram for the two-process cy-cler for the state space determined by the variables cyc.0 and cyc.1 (i.e., we donot consider the auxiliary variable last a). The initial state is marked with a boldoutline; also, self loops, which exist for all states, have been omitted to improve thereadability of the diagram.For this programwe demonstrate the veri�cation of two properties, one safetyand one progress property. With the safety property we illustrate the locality of thechecking conditions, whereas with the progress property we show how the strength-ening of invariants is used in the model checking procedure.We start with a property asserting that process P0 leaves the sync state onlythrough the choose state:cyc:0 = sync co cyc:0 = sync _ cyc:0 = chooseThe veri�cation condition for this property with respect to the trivial invariant trueis 52
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Figure 3.1: Transition Diagram for Milner's Cycler with 2 Processes
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[[cyc:0 = sync) cyc:0 = sync _ cyc:0 = choose]] ^h8� : � 2 Cycler:A : [[cyc:0 = sync ) wp :�:(cyc:0 = sync _ cyc:0 = choose)]]iwhich is easily shown to be true. Evaluating this veri�cation condition correspondsto checking for each pair of successive states in the transition diagram that, if the�rst state satis�es cyc:0 = sync, then the second state satis�es cyc:0 = sync_cyc:0 =choose. This check is performed symbolically: all transitions with the same state-ment label are checked simultaneously. This property is established automaticallywithout a �xpoint computation because of the locality of the veri�cation condition.A traditional model checking procedure, on the other hand, would have exploredthe reachable state space starting from the initial state while checking that eachnew transition encountered does not violate the safety condition.With the second property we want to illustrate a situation in which a propertycannot be established directly. We consider the progress propertycyc:0 = start 7! cyc:1 = startwhich states that whenever process P0 is in the start state then, eventually, processP1 is in the start state as well.The veri�cation condition for this property requires us to compute the predi-cate wlt :(cyc:1 = start). The states characterized by wlt :(cyc:1 = start) are shownas �lled circles in �gure 3.2(a). Having computed this set of states, the modelchecker determines that the state in which cyc:0 = start and cyc:1 = sync violatesthe veri�cation condition [[cyc:0 = start) wlt :(cyc:1 = start)]]. In other words, themodel checker provides the debugging information that there exists a fair executionof the program starting in this marked state that never reaches a state in whichcyc:1 = start holds. This violating state is marked with a cross in �gure 3.2(a).After this initial veri�cation check failed the user can attempt to provide astronger invariant based on his design knowledge while taking the information aboutthe violating state into account. For instance, the user might provide the following54
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Figure 3.2: wlt-check: (a) failed, (b) with J , (c) with K
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invariant J :invariant cyc:0 2 S ) cyc:1 62 Swhere S = fcb; start; syncg2. Invariant J is established directly using the veri�ca-tion condition for invariants. Furthermore, using J , the leads-to property is alsoestablished because there are no violating states in the restriction of the state spaceto J . This situation is illustrated in �gure 3.2(b) in which the states characterizedby J are shaded.Alternatively, after the failure of the initial veri�cation check the modelchecker can be used to strengthen the current invariant automatically. This is ac-complished by starting with the current invariant (true in our example), eliminatingthe violating state(s), and then repeatedly eliminating those states that violate thestability of the remaining set of states (i.e., the predecessors of previously eliminatedstates). This process terminates with a stable predicate K, shown in �gure 3.2(c)as the shaded set of states. Since K contains the initial state of the program, itis an invariant. It follows that the leads-to property is established automaticallysince there is no state in the state space restricted to K that violates the leads-tocondition.3.5 DiscussionIn this chapter we have derived a model checking procedure for UNITY logic thattakes advantage of the structure of the UNITY proof system to obtain e�cientchecking conditions for all safety and basic progress properties. A big performancegain is achieved when �xpoint computations can be replaced by evaluation of cer-tain local checking conditions, possibly as a result of supplying state-based designknowledge in the form of invariants.2The rationale for this invariant is given in section 7.4.56



While a complete automation of mechanical veri�cation is an important goalin particular for industrial applications, we can argue that for a situation in whichprogram design and veri�cation are carried out together, it is at least worth tryingto utilize the available design knowledge for speeding up the veri�cation. If theseattempts fail, one can always resort to the fully automated methods based on �xpointcomputations.We also want to point out again that the suggested veri�cation method basedon direct provability and the �nding of suitable invariants is not per se limited to�nite state systems. For �nite state systems the method is decidable and, whencombined with suitable representation techniques, practical for possibly very largesystems. However, it can also be applied in a more general context such as a partof a theorem prover potentially capable of dealing with in�nite state spaces, or withunbounded families of parameterized programs.The results obtained in this chapter can also be applied to logics that con-tain (part of) UNITY as a sub-logic. For instance, the safety properties of UNITYlogic are contained in LTL and in CTL. Therefore a similar treatment of invari-ants and local checking conditions can be incorporated into LTL and CTL modelcheckers provided the speci�cation formulae are restricted to the UNITY subset. Inorder to take advantage of the checking conditions for the basic progress propertiestransient and ensures , a logic must be able to meet the unconditional fairnessof UNITY, and must be able to distinguish di�erent actions (e.g., indexed CTL ).We also note that with an encoding of transition labels into successor statesand with a suitable fairness constraint, Fair CTL ([EL85]) contains the leads-toproperties of UNITY logic. However, the veri�cation of such properties using theUNITY checking conditions is not improved; in fact, the calculation of wlt corre-sponds exactly to the �xpoint computations for leads-to properties in Fair CTL withthe appropriate fairness constraint. The checking of general progress properties is,therefore, not improved by the proposed method. In the next chapter we investigate57



a new extension to UNITY logic that will enable us to utilize action-based designknowledge for increasing the e�ciency and e�ectiveness of veri�cation of progressproperties.
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Chapter 4A Generalization of ProgressProgress properties constitute a large class of properties frequently encountered inthe speci�cation of concurrent systems. Informally characterized as expressing that\something good will happen" [Lam77], progress properties are used for specifyingor asserting important achievements of concurrent systems such as guarantee ofresponse to service requests, convergence, or absence of starvation. Di�erent fromsafety properties, which are informally described as expressing that \nothing badever happens", progress properties inherently refer to in�nite program executions inthat �nite pre�xes of program executions do not su�ce to characterize them [AS85].Automatic Checking of Progress Properties is Di�cult in PracticeIn chapter 3 we have seen how checking safety properties of UNITY programs can bereduced to checking certain local conditions and to �nding suitably strong invariants.A similar approach fails in general for progress properties, because such propertiescannot be characterized by local checking conditions asserting how pairs of successivestates are related to each other (if this were possible then progress properties couldbe characterized by �nite execution pre�xes as well); instead, some global varianceinformation needs to be provided in order to measure the progress towards somegoal. 59



There has been signi�cant success with various techniques and methods formechanical veri�cation or automated veri�cation support, in particular theoremprovers and model checkers, in dealing with and in reasoning about safety proper-ties. In practice, these veri�cation methods have been found to be often less usefuland attractive when applied to progress properties: establishing progress propertiesis complicated for theorem proving by the need to perform trans�nite inductionover a well-founded set, whereas for model checking the alternation depth 2 of char-acterizations of progress under fairness limits symbolic approaches that are so farthe most successful ones. As a consequence, it is not uncommon to formally verifyonly safety aspects of concurrent systems and to argue about progress propertiesinformally, or even to consider progress properties as practically not very impor-tant. With our work we want to help with improving the manageability of provingprogress properties while making mechanical checking of progress properties moree�cient.It is our goal in this chapter to propose a new notion of generalized progressproperties and to develop a theory for it that makes it possible to derive ordinary1progress properties from generalized ones, to utilize design knowledge during rea-soning about progress properties, and to improve the performance of automatedchecking procedures based on the new progress properties.Generalized Progress Theory Improves Checking Progress PropertiesThe key idea for accomplishing these goals is to formalize and thereby to makeexplicit the way in which progress is achieved by a program. We do so by introducinggeneralized progress properties of the formp W7�! q(pronounced p leads-to q by W ) for state predicates p and q and for regular ex-1We use the term ordinary in connection with progress properties from now on to indicate thetraditional notion of progress and to distinguish it from our new notion of generalized progress.60



pression W over the alphabet of actions of the program under consideration. Theregular expression W captures how progress is achieved from states satisfying p tostates satisfying q. Using generalized progress properties in the design process forconcurrent systems is advantageous in two ways: the designer can incorporate ac-tion based design knowledge in the design and veri�cation process, and the actualmechanical veri�cation can possibly be performed more e�ciently. The increase ine�ciency is due to the fact that a veri�cation system can utilize the informationcontained in the hints supplied in form of regular expressions in order to elimi-nate some unnecessary �xpoint computations and to simplify others. The e�ectiveuse of such action based design knowledge, however, is of great importance beyondimproving veri�er performance, by making it possible for the designer to providehints in a formal manner that become part of the veri�cation process and can beused in exploring and debugging programs and speci�cations. Moreover, the level ofprovided design knowledge is scalable in the sense that whatever is made availablecan be used, while without any speci�c design knowledge the generalized progressproperties coincide with the ordinary ones.The UNITY AdvantageIn section 3.1 we have seen how the local checking conditions for safety propertiesand for basic progress properties were derived from the corresponding proof rulesfor safety and basic progress of UNITY logic (cf. section 2.2). In a similar fashionthe formalization of progress via regular expressions is mostly determined by theUNITY proof rules for leads-to properties: progress by single actions corresponds toensures properties, where the helpful action is named explicitly; sequencing corre-sponds to transitivity, alternation to �nite disjunctions, and repetition to applicationof leads-to induction. The combination of simplicity of formal speci�cations and ofa rich structure of the deductive system makes UNITY a very suitable basis for thedevelopment of the theory of generalized progress and its practical application.61



Di�erent Semantics for Generalized ProgressThere are di�erent ways for developing and presenting an extension to an existinglogic and its semantics: properties can be described operationally in terms of pro-gram executions; they can be characterized in relational terms by a set of axiomsand proof rules; or they can be characterized by suitable predicate transformers. Inour presentation we use di�erent approaches in order to deal with di�erent aspectsof the theory in the most suitable way, while demonstrating the close relationshipof these approaches to each other.The operational characterization relates generalized progress properties toprogram executions that often play a signi�cant role in the conception and design ofprograms, either due to an informal operational speci�cation of the desired program,or as a complementary technique enabling the designer to deal with and to concretizeinherently informal aspects of a program speci�cation. An operational semantics istherefore an important tool for capturing and expressing design knowledge.De�ning a property as a relation over predicates gives rise to a proof systemwhich is often the most suitable formalism to establish properties of programs underconsideration.Finally, a characterization of generalized progress properties based on pred-icate transformers is appealing because its uniformity makes it suitable for calcu-lational proofs to be used for proving meta-theorems about properties as well asautomating proofs of properties for speci�c programs by model checking.Organization of This ChapterThe remainder of this chapter is organized as follows: in section 4.1 we introduce theidea of generalized progress properties and relate such properties informally to bothprogram executions and to proofs of ordinary progress properties. In section 4.2 wepresent a formal semantics for generalized progress properties based on predicatetransformers. In section 4.3 we provide a deductive system for proving generalized62



progress properties of given programs and relate it to predicate transformer seman-tics. An investigation of the algebraic structure of the family of generalized progressproperties for di�erent regular expressions is given in section 4.4. A presentation ofan operational semantics for the generalized progress properties in section 4.5 anda discussion of the new theory in section 4.6 conclude the chapter.4.1 IntroductionProgress properties are generally speci�ed using some temporal operator, be it theleads-to operator of UNITY logic, formulae of the form AG(p) AFq) of CTL, orformulae like G(p) Fq) of linear temporal logic. Common to the ways these oper-ators are de�ned is the fact that they abstract away from how progress is achievedby hiding any reference to individual program actions or variant functions. Thisabstraction makes it possible to characterize progress simply by pairs of state pred-icates; however, establishing such progress properties for a given program requiresthat individual program actions be made explicit (for instance in carrying out a de-ductive proof), or at least be handled anonymously (for instance in model checkingalgorithms).The Advantages of Providing Design KnowledgeAlthough the formal veri�cation of progress properties is highly desirable, it is oftenunrealistic to require the designer to provide a complete proof of such a property.The level of detail required to carry out a formal proof is often well beyond whatis considered practical during the design process; moreover, the designer's expertisemight not be su�cient to carry out such a proof e�ciently. In spite of these practicaldi�culties, it is undoubtedly the case that the designer has some (possibly partial)understanding of how progress is achieved by the designed program, either in theform of some operational argument, in the form of a high level proof sketch, or simplybased on experience with similar programs. In all these cases a formalism that allows63



the designer to express such partial, often operational, design knowledge in a simpleway and that takes advantage of that knowledge in the veri�cation process, hasthe potential of improving the e�ectiveness of the veri�cation task by conducting aproof (by model checking) of some properties without forcing the designer to supplya complete proof herself.If the partial knowledge supplied by the designer is su�cient to derive such aproof e�ciently, the interactive veri�cation has been completed successfully. If sucha proof cannot be found e�ciently (or cannot be found at all), the designer needsto be assisted in supplying further (more speci�c) design knowledge. If she can-not provide such knowledge, or if the provided knowledge causes any inconsistency,appropriate debugging information should be made available to aid in either debug-ging the design, or in pointing out parts that require additional design knowledgein order to be veri�ed e�ciently. However, not more information should be askedfor from the designer than what is necessary for establish the required properties.By providing a way of making this form of design knowledge formally ac-cessible to reasoning about programs, and by taking advantage of such knowledgein the veri�cation process, we could meet our goals of providing a more powerfuland e�ective way of dealing with progress properties than by the use of the leads-tooperator alone.An ExampleIn the following we present a small example to illustrate the idea of how progressproperties are generalized by including explicit action-based progress information.We then argue how this new theory and its associated methodology can be used inprogram veri�cation.Let us consider the following program UpDown, in which n is an integercounter, that can always be decremented, but can only be incremented if the booleanvariable b is false: 64



program UpDowndeclarevar n : integervar b : booleanassign[up] n := n+ 1 if :b[down] n := n� 1[set] b := trueendA progress property of program UpDown is that in any execution eventually nbecomes negative, which is expressed by the following UNITY leads-to property:true 7! n < 0:The following informal argument serves as a justi�cation for this claim: givenany execution and any state reached during the execution in which n is not negative,there is some subsequent state in which b holds: at the latest the �rst state after anexecution of [set] 2 satis�es b, due to the unconditional fairness there always is sucha next occurrence of [set], and no other action falsi�es b. In such a state satisfyingb, either n is negative or a �nite number of executions of [down] (namely, one morethan the value of n in that state) makes n negative. Again, due to the unconditionalfairness there are su�ciently many such occurrences of [down], and no other actioninterferes with [down] by increasing n or falsifying b. Therefore, for any executionand any state there is a future state3 satisfying n < 0.The above operational argument suggests that one can think of the progressfrom true to n < 0 as being achieved by virtue of a strategy expressed by the regularexpression2Square brackets are used in the following as part of the action labels.3possibly the current state 65



[set][down]�,over the alphabet of actions of UpDown, i.e., by one [set] action followed by some�nite number of [down] actions. Using the notation for generalized progress prop-erties, we can state that program UpDown satis�es the propertytrue [set][down]�7�! n < 0.Before we formalize the notion of a strategy for achieving progress and de�ne theoperational semantics of generalized progress properties, we show that there is notonly an operational interpretation of such regular expression strategies, but also aclose connection to proofs in the deductive system of UNITY logic.To this end we present a proof in UNITY logic of the property true 7! n < 0of program UpDown:0. true ensures b ; from program text via [set]1. true 7! b ; promotion from 02. b ^ n = k ensures b ^ n < k; from program text via [down]3. b ^ n = k 7! b ^ n < k; promotion from 24. b ^ jnj = k 7! (b^ jnj < k) _ n < 0; arithmetic case split and disjunction on 35. b 7! n < 0 ; leads-to induction on 4 with metric jnj over the naturals6. true 7! n < 0 ; transitivity with 1 and 566



Steps 0 and 1 of this proof correspond to the [set] action in our proposed strategy;similarly steps 2 and 3 correspond to the [down] action. The inductive argumentof steps 4 and 5 establishes the progress via [down]�; �nally, step 6, combines thesubstrategies by sequencing. We therefore can argue that the above proof has astructure corresponding to the regular expression [set][down]�. However, this regularexpression is much less detailed than the complete proof: in particular, the statepredicates needed to combine the di�erent parts of the proof together, are omitted.Hence, even a general idea about the structure of a proof of a progress property canbe turned into a strategy without requiring a complete and detailed proof.Some Ways for Providing Design KnowledgeIn summary, we have suggested that there are two ways in which the designer of aconcurrent system could formulate her design knowledge and come up with strategiesin the form of regular expressions for progress properties of the program underconsideration: suitable regular expressions can either be proposed based on theoperational understanding of the program under construction, or can be derived froma high-level approximation of a deductive proof of the property. Both techniqueshelp the designer to express design knowledge and to convey it to a veri�er thatcan take advantage of the information provided. Moreover, the expressed designknowledge can play an important role in reasoning about the program, in testinghypotheses, and in debugging both programs and properties.In the rest of this chapter we develop the theory of generalized progress. Thepractical application of this theory to model checking, as well as a demonstration ofthe techniques for utilizing design knowledge, follows in chapter 5.4.2 A Predicate Transformer SemanticsPredicate transformers have been successfully used for de�ning and reasoning aboutsemantics of both sequential ([Dij76, DS90]) and concurrent ([JKR89, Kna92]) pro-67



grams. In this section we present a predicate transformer semantics for the general-ized progress properties and use it for investigating some fundamental characteristicsof these properties.We are interested in a predicate transformer semantics for several reasons:the use of predicate transformers allows us to stay completely in the realm of predi-cate calculus, instead of having to introduce axioms for each relation of a deductivesystem, thereby facilitating a calculational style of reasoning; certain characteristicsof the generalized leads-to operator, such as monotonicity and continuity, can bestated and answered more easily using predicate transformers; moreover, the pred-icate transformers prove to be invaluable for investigating the algebraic structureof the generalized progress properties (cf. section 4.4); and �nally, the �xpoint def-initions of the predicate transformers for generalized progress give rise to symbolicalgorithms which we subsequently use in our new model checking procedures forprogress properties in chapter 5.The treatment of the predicate transformers for generalized progress is or-ganized as follows: in section 4.2.1 we introduce a family of predicate transformerswltr (for weakest leads-to by regular expression) by giving a �xpoint characteriza-tion and exhibiting some basic properties of them. In section 4.2.2, we investigatethe junctivity properties of the wltr predicate transformers. In section 4.2.3 weestablish the close connection between the wltr predicate transformers and the wltpredicate transformer (for weakest leads-to, [JKR89]) characterizing the ordinaryleads-to properties of UNITY logic.4.2.1 Predicate Transformers for Generalized ProgressWe begin the formal treatment of the semantics of generalized progress propertiesby de�ning a family of predicate transformers wltr :W for any W in RF inductivelyover the structure of W : 68



De�nition 2 For any W in RF , the predicate transformer wltr :W is de�ned in-ductively over the structure of W such that for all � in F:A, all U; V in RF , andall state predicates q in PF :[[wltr :":q � q]] (wltrEps)[[wltr :�:q � h�Z :: (wco :(Z _ q) ^wp :�:q) _ qi]] (wltrAct)[[wltr :(UV ):q � wltr :U:(wltr :V:q)]] (wltrSeq)[[wltr :(U + V ):q � wltr :U:q _ wltr :V:q]] (wltrAlt)[[wltr :U�:q � h�Z :: q _ wltr :U:Zi]] (wltrStar)Informally, the predicate wltr :W:q is intended to characterize all those states fromwhich any execution characterized by W leads to a state satisfying q, where thenotion of executions characterized by regular expressions will be made precise laterin section 4.5.Even with a very informal understanding of progress characterized by regularexpressions, we can attempt to motivate the above de�nitions. To this end we notethat (wltrEps) captures precisely the notion of progress without actions, where thestart predicate is the goal predicate, that (wltrSeq) captures the notion of sequenc-ing which corresponds to the functional composition of the predicate transformersof the subexpressions, and that (wltrAlt) captures the notion of choice which cor-responds to the disjunction of the predicate transformers of the subexpressions.The form of (wltrAct) is suggested by observing that for any action � inRF we expect wltr :�:q to be the weakest predicate that ensures q via �, i.e.,wltr :�:q ensures� q (E0)Z ensures� q ) [Z ) wltr :�:q] (E1)Manipulating the de�nition of ensures� we observeZ ensures� q� fde�nition of ensures� g 69



[Z ^ :q ) wco :(Z _ q)]^ [Z ^ :q ) wp :�:q]� fshunting, predicate calculusg[Z ) ((wco :(Z _ q) ^wp :�:q) _ q)]In order to characterize the weakest predicate that ensures q via � it therefore seemsreasonable to ask for the weakest solution of the following equation:Z : [[Z ) ((wco :(Z _ q) ^wp :�:q) _ q)]]The righthand side of this equation is monotonic in Z and therefore (by the Knaster-Tarski Theorem) has a weakest solution, which is the same as the weakest solutionof the equationZ : [[Z � ((wco :(Z _ q) ^wp :�:q) _ q)]]which we denote by h�Z :: (wco :(Z _ q) ^ wp :�:q) _ qi and which we use as ourde�nition of wltr :�:q. We note that by virtue of the above construction and bythe relationship between the everywhere operators it follows that wltr :�:q satis�es(E0) and (E1).For (wltrStar) we expect that wltr :U�:q be the weakest predicate thatleads to q by some �nite sequence of executions of U . Together with the observationthat wltr :U�:q certainly is at least as weak as q, this makes it seem reasonable toask for a solution of the equationZ : [[Z � q _wltr :U:Z]]Due to the required �niteness of the repetitions we need to consider the strongestsolution of the above equation. In the next paragraph, we establish that for any Win RF wltr :W is a monotonic predicate transformer, by induction on the structureof W . It follows that the righthand side of the above equation is monotonic in Z,and that therefore (again by the theorem of Knaster-Tarski) the equation has indeeda least �xpoint which we denote by h�Z :: q _wltr :U:Zi and which we use as our70



de�nition of wltr :U�:q.As some important properties of thewltr predicate transformers we establishthat each such predicate transformer is monotonic, strict, and weakening:Lemma 6 (Basic Properties of wltr) For any W in RF and any p; q in PF :[[p) q]] ) [[wltr :W:p) wltr :W:q]] (wltrMon)[[wltr :W: false � false]] (wltrStrict)[[q ) wltr :W:q]] (wltrWeaken)Proof . We prove each property by induction over the structure of W . For(wltrMon) we observe the following: wltr :" is the identity function and is there-fore obviously monotonic; wltr :� is de�ned as a �xpoint of a monotonic equationand is therefore monotonic itself; both wltr :(UV ) and wltr :(U +V ) are de�ned bymonotonic functions of the (by the induction hypothesis) monotonic predicate trans-formers wltr :U and wltr :V ; and wltr :U� is de�ned as a �xpoint of a monotonicequation using the (by the induction hypothesis) monotonic predicate transformerwltr :U , and is therefore monotonic as well.For (wltrStrict) we show only the cases corresponding to single actions andto repetition, the remaining cases are trivial. We observe for any � in F:A:wltr :�: false� f(wltrAct)gh�Z :: (wco :(p _ false) ^wp :�: false) _ falsei� fwp :� is strict, predicate calculusgh�Z :: falsei� fpredicate calculusgfalseand for any W in RF :wltr :W �: false 71



� f(wltrStar)gh�Z :: false _ wltr :U:Zi� finduction hypothesis, predicate calculusgfalseSimilarly, the proof for (wltrWeaken) is straight forward if we use the fact that inthe cases corresponding to single actions and repetition any �xpoint of the respectiveequations is implied by q.End of Proof.4.2.2 Junctivity Properties of the wltr Predicate TransformersWe have already established in the previous section that for each W in RF thepredicate transformerwltr :W is monotonic. In this section we show that in generalwltr :W does not enjoy other interesting junctivity properties. In particular wedemonstrate that wltr :W , where W contains some action from F:A, is neither�nitely disjunctive nor �nitely conjunctive, that it is not or-continuous, and is and-continuous only if the regular expressions W does not contain the � operator (seesection 2.1.4 for the de�nition of junctivity properties).We start with the results about and-continuity:Lemma 7 For any W in RF not containing the repetition operator �, wltr :W isand-continuous. Allowing the � operator in general destroys and-continuity.Proof . The proof proceeds by induction on the structure of W . We show thatall operators but the � operator preserve and-continuity, and that the � operator ingeneral destroys it.Since [[wltr :":q � q]] by (wltrEps), wltr :" is trivially and-continuous. By(wltrAct), wltr :�:q for some � in F:A is the weakest solution of the equationX : [[X � �:X:q]] 72



where[[�:X:Y � (wco :(X _ Y ) ^wp :�:Y ) _ Y ]]From the universal conjunctivity of wco and wp and the and-continuity of dis-junction it follows that � is and-continuous. Hence, by theorem 2, wltr :� is and-continuous as well. Function composition and disjunction preserve and-continuity,hence for and-continuous wltr :U and wltr :V both wltr :UV and wltr :(U+V ) areand-continuous as well.To show that the � operator does not preserve and-continuity we consider the pro-gramprogram AndContinuitydeclarevar n : integerassign[�] n := n+ 1endand de�ne for any natural i the predicate Q:i by [[Q:i � n � i]]. Clearly, h8i; j :: i �j ) [[Q:i ( Q:j]]i, hence fi : i 2 N : Q:ig is linear. For this set of predicates weobserve thatwltr :��:h8i : i 2N : Q:ii� fde�nition of Q:i, arithmeticgwltr :��: false� f(wltrStrict)gfalsebut thath8i : i 2 N : wltr :��:(Q:i)i� fcalculation using (wltrStar), (wltrAct)g73



h8i : i 2 N : truei� fpredicate calculusgtrueEnd of Proof.The remaining results are presented in the following lemma:Lemma 8 For any W in RF not containing actions from F:A, wltr :W is bothuniversally disjunctive and universally conjunctive. For any W containing at leastone action from F:A, wltr :W is in general(0) not or-continuous,(1) not �nitely disjunctive,(2) not �nitely conjunctive.Proof . It is easily seen by induction on the structure of W , that [[wltr :W:q � q]]for any W built from ", sequencing, alternation, and repetition alone. For such W ,wltr :W is therefore clearly universally disjunctive and universally conjunctive.For the three negative results we exhibit counterexamples:ad (0): Consider the programprogram OrContinuitydeclarevar n : integervar d : f�1; 1gassign[�] n; d := n+ d;�1[�] n := n+ dend 74



which is a slight modi�cation of the program of section 4.1.For each natural i de�ne Q:i by [[Q:i � n � 0 _ (d = �1 ^ n � i)]]. Clearly,h8i; j :: i � j ) [[Q:i) Q:j]]i, hence fi : i 2 N : Q:ig is linear. Furthermore, it canbe shown that [[wltr :�:(Q:i) � Q:(i+ 1)]]. From this it follows thatwltr :�:h9i : i 2 N : Q:ii� fde�nition of Q:i, arithmeticgwltr :�:(n � 0 _ d = �1)� f(wltrAct), from programgtruebut thath9i : i 2 N : wltr :�:(Q:i)i� f(wltrAct), see abovegh9i : i 2 N : Q:(i+ 1)i� fde�nition of Q:i, arithmeticgn � 0 _ d = �1ad (1): Consider the programprogram FiniteDisjunctivitydeclarevar n : f0; 1; 2; 3; 4ginitiallyn = 0assign[�] n := n+ 2 if n < 2[�] n := 4 if n = 2[
] n := n+ 1 if n = 0 _ n = 3end 75



which has the following state-transition diagram:
n = 0

n = 2

n = 1 n = 3

n = 4

α

α

β

γ γ

β

β,γ α,β

α,β,γ

α,γ

For the predicates p and q de�ned by [[p � n = 2_n = 4]] and [[q � n = 3_n = 4]]we observe thatwltr :�:(p _ q)� fde�nition of p, qgwltr :�:(n = 2 _ n = 3 _ n = 4)� fcalculation using (wltrAct)gtruebut thatwltr :�:p _ wltr :�:q� fcalculations using (wltrAct)g(n = 2 _ n = 4) _ (n = 1 _ n = 3 _ n = 4)� fpredicate calculusgn 6= 0ad (2): Consider the programprogram FiniteConjunctivitydeclare 76



var b : booleanassign[�] b := :bendand observe for the predicates b and :b thatwltr :�:(b^ :b)� fpredicate calculusgwltr :�: false� f(wltrStrict)gfalsebut thatwltr :�:b ^ wltr :�:(:b)� fcalculations using (wltrAct)gtrue^ true� fpredicate calculusgtrueEnd of Proof.4.2.3 Relating wltr to wltWe are now in the position to answer the important question about the relationshipbetween the ordinary leads-to properties of UNITY logic characterized by the wltpredicate transformer and our generalized progress properties. In the following weestablish the relationship between wltr and wlt, later in section 4.3.3 we use theresult obtained here to state the close connection of the proof systems for ordinaryand generalized progress properties.The relationship between wltr and wlt is characterized by the followingtheorem: 77



Theorem 9 (Relating wltr and wlt) For any W in RF , and state predicate qin PF :[[wltr :W:q ) wlt :q]] (wltrSound)h9W :W 2 RF : [[wlt :q � wltr :W:q]]i (wltrCompl)The �rst part of the theorem can be referred to as a soundness result since it assertsthat states from which a q state is reached by virtue of W are states from which a qstate is reached eventually in the sense of ordinary progress. Conversely, the secondpart can be seen as a completeness result since it shows that any state from whicha q state is reached eventually is a state from which a q state is reached by virtueof some regular expression W in RF .In order to prove these results we recall a few properties of the wlt predicatetransformer, either taken from [JKR89] or being simple consequences of results foundthere. First, wlt has the following �xpoint characterization:[[wlt :q � h�Z :: q _we :Zi]] (wlt0)[[we :q � h9� : � 2 F:A : stp :�:qi]] (wlt1)[[stp :�:q � h�Z :: (wco :Z ^wp :�:q) _ qi]] (wlt2)Furthermore, wlt and stp enjoy the following properties:[[q ) wlt :q]] (wlt3)[[stp :�:q ) wlt :q]] (wlt4)[[wlt :(wlt :q) � wlt :q]] (wlt5)We also need the following lemma relating stp and wltr:Lemma 10 For a program F and any action � in F:A:[[stp :� � wltr :�]] 78



Proof . stp :�:q is by (wlt2) the weakest solution of the equation X : [[X � f:X ]]with f de�ned by[[f:X � (wco :X ^wp :�:q) _ q]]and wltr :�:q is by (wltrAct) the weakest solution of the equation X : [[X � g:X ]]with g de�ned by[[g:X � (wco :(X _ q) ^wp :�:q) _ q]]Clearly both f and g are monotonic. Since wco is monotonic we have [[f ) g]], andhence by theorem 3 that [[stp :�) wltr :�]].For the converse, we observe that wltr :�, as a �xpoint of g, satis�es[[wltr :�:q � (wco :(wltr :�:q _ q) ^wp :�:q) _ q]] (0)and that stp :�, as the greatest �xpoint of f , satis�es[[X � f:X ]]) [[X ) stp :�:q]] (1)with which we have for all q:[[wltr :�:q ) stp :�:q]]( f(1)g[[wltr :�:q � f:(wltr :�:q)]]� f[[wltr :�:q � q _wltr :�:q]] from (0), de�nition of fg[[wltr :�:q � (wco :(wltr :�:q _ q) ^wp�:q) _ q]]� f(0)gtrueEnd of Proof.We are now ready to prove the soundness and completeness results.Proof of theorem 9. For (wltrSound) we observe for all q, and W by inductionover the structure of W : 79



case W = ":wltr :":q� f(wltrEps)gq) f(wlt3)gwlt :qcase W = � for some � 2 F:A:wltr :�:q� flemma abovegstp :�:q) f(wlt4)gwlt :qcase W = UV :wltr :UV:q� f(wltrSeq)gwltr :U:(wltr :V:q)) finduction hypothesis, twice, wltr :U is monotonicgwlt :(wlt :q)� f(wlt5)gwlt :qcase W = U + V :wltr :(U + V ):q� f(wltrAlt)gwltr :U:q _wltr :V:q) finduction hypothesis, twice, predicate calculusgwlt :q 80



case W = U�:[[wltr :U�:q ) wlt :q]]� f(wltrStar)g[[h�Z :: q _wltr :U:Zi ) wlt :q]]( finduction hypothesis, theorem 3, predicate calculusg[[h�Z :: q _wlt :Zi ) wlt :q]]( fleast �xpoint propertyg[[q _wlt :(wlt :q) � wlt :q]]� f(wlt3), (wlt5), predicate calculusgtrueFor (wltrCompl) it su�ces to exhibit a regular expression C in RF and to demon-strate that for C the implication [[wlt) wltr :C]] holds. Let L be a sequence of allelements of F:A and de�ne C asC = (h+i : L : L:ii)�:Using (wltrEps), (wltrAlt), and (wltrStar) it is easily seen that[[wltr :(h+i : L : L:ii):q � h9� : � 2 F:A : wltr :�:Zi]][[wltr :C:q � h�Z :: q _ h9� : � 2 F:A : wltr :�:Zii]]From [[wltr :� � stp :�]] (by the lemma above) and (wlt0), and (wlt1), we see thatindeed [[wltr :C � wlt]].End of Proof.4.3 Reasoning about Generalized ProgressIn the previous section we have introduced the notion of generalized progress prop-erties of a program F by de�ning a family of predicate transformers wltr charac-terizing progress by regular expressions. While such a semantics is very useful forinvestigating such properties and reasoning about them in a general way, it is often81



more practical to carry out proofs of progress properties of speci�c programs usinga deductive proof system. It is therefore our goal for this section to present such aproof system for generalized progress properties, to exhibit some useful proof rules,and to establish its connection to the previously presented predicate transformersemantics.We achieve this goal in three steps: in section 4.3.1 we introduce the gen-eralized leads-to relation over regular expressions and pairs of state predicates asthe strongest relation generated by a set of inference rules; in section 4.3.2 we showhow closely the generalized leads-to relation and the wltr predicate transformersare related. Finally, we list some useful proof rules in section 4.3.3.4.3.1 A Deductive SystemFor a given program F we de�ne in the following a ternary relation (�W:�p:�q: p W7�!q) (pronounced p leads-to q by W ) over state predicates p and q in PF and regularexpressions W in RF as the strongest relation generated by a set of inference rules.Such a characterization in terms of inference rules is well suited to carrying outproofs of properties of speci�c programs.In order to state the proof rules we need to introduce the notion of a metricover the reachable state space of F . In the following we use Ord to denote the setof ordinal numbers.De�nition 3 (Metric) A metric M for a given program F is a family of statepredicates fi : i 2 Ord : M:ig from PF , such that the following two conditions aremet:[h9i : i 2 Ord :M:ii] (MetricExh)h8i; j : i 2 Ord ^ j 2 Ord : i 6= j ) [:(M:i ^M:j)]i (MetricDis).The �rst condition states that the predicates inM exhaust the reachable state spaceof F , the second asserts that any two predicates with di�erent indices are disjoint.82



The predicates in M are totally ordered by the ordering relation � (pro-nounced precedes) obtained from lifting the total order relation on the ordinal indicesto the predicates:h8i; j : i 2 Ord ^ j 2 Ord : i � j � M:i �M:jiAfter these remarks we are ready to de�ne the generalized leads-to relation in termsof a set of generating inference rules as follows:De�nition 4 (Generalized Leads-To Relation) For a given program F the re-lation (�W:�p:�q: p W7�! q) is the smallest subset of RF � PF � PF satisfying thefollowing inference rules for all regular expressions U; V in RF , for all actions � inF:A, for all state predicates p, p0, q, r, and s in PF , and for all metrics M for F :[p) q]p "7�! q (PrEps)[p) p0]; p0 ensures� qp �7�! q (PrAct)p U7�! r; r V7�! qp UV7�! q (PrSeq)p U7�! q; r V7�! qp _ r U+V7�! q (PrAlt)[p) p0]; h8i : i 2 Ord : p0 ^M:i U7�! (p0 ^ h9j : j < i :M:ji) _ qip U�7�! q (PrStar)An important observation is that for any W in RF there is exactly one inferencerule that can be used for establishing that a triple (W; p; q) satis�es the relation.It follows that the above rules are actually equivalences rather than implications4 .For instance, if p U�7�! q holds for a program F , then there exists a metric M and4the lack of such equivalences for the ordinary leads-to relation was identi�ed as the mainshortcoming of leads-to in section 3. 83



a state predicate p0 at least as weak as p, such that for all ordinals i, p0 ^M:i U7�!(p0 ^ h9j : j < i :M:ji) _ q holds,We can therefore render the above proof rules in the form of the followingequivalences:p "7�! q � [p) q] (AxEps)p �7�! q � h9p0 : [p) p0] : p0 ensures� qi (AxAct)p UV7�! q � h9r :: (p U7�! r) ^ (r V7�! q)i (AxSeq)p U+V7�! q � h9r; s : [r _ s � p] : (r U7�! q) ^ (s V7�! q)i (AxAlt)p U�7�! q � h9p0 : [p) p0] : h9M :M is metric : (AxStar)h8i : i 2 Ord :p0 ^M:i U7�! (p0 ^ h9j : j < i :M:ji) _ qiiiBy virtue of these equivalences and by using structural induction over RF we canimmediately establish that the generalized leads-to relation is well de�ned:Theorem 11 (Well-De�nedness of W7�! ) For any given program F the equa-tions (AxEps), (AxAct), (AxSeq), (AxAlt), and (AxStar) uniquely de�ne afamily of relations fW :W 2 RF : (�p:�q: p W7�! q)g.Moreover, if a triple (W; p; q) satis�es the generalized leads-to relation, it can beshown to do so by a �nite number of applications of the above proof rules (dueto the �niteness of the structure of W ). Therefore every element (W; p; q) in therelation has a �nite proof; from now on we write F ` p W7�! q to denote that(W; p; q) satis�es the generalized leads-to relation.It is also worth mentioning that the use of ordinals is essential in (AxStar):under unconditional fairness it is generally not possible to bound the number of stepsrequired to achieve progress from any particular start state, it can only be assertedthat a �nite number of steps su�ces. Therefore natural numbers as metric are notsu�cient; instead all ordinals of cardinality less than or equal to the cardinality ofthe size of the state space have to be considered.84



4.3.2 A Characterization of ProvabilityThe main result of this section is to establish the very close connection betweenthe generalized leads-to relation just de�ned and the wltr predicate transformers ofsection 4.2. The result is analogous to the one relating the ordinary leads-to relationto the wlt predicate transformer in [JKR89, Kna92] and is stated in the followingtheorem:Theorem 12 For any W in RF and state predicates p and q in PF :[p) wltr :W:q] � p W7�! qProof . From theorem 11 the generalized leads-to relation is uniquely de�nedby the equations (AxEps), (AxAct), (AxSeq), (AxAlt), and (AxStar). It istherefore su�cient to show that the relation R de�ned asR:W:p:q � [p) wltr :W:q]solves the same equations. We establish this by induction over the structure of Wby observing for all p and q in PF :case W = ":R:":p:q� fde�nition of Rg[p) wltr :":q]� f(wltrEps)g[p) q]� f(AxEps)gp "7�! qcase W = � for some � 2 F:A:R:�:p:q � p �7�! q 85



� fde�nition of R, (AxAct)g[p) wltr :�:q] � h9p0 : [p) p0] : p0 ensures� qiwhich we prove by mutual implication:[p) wltr :�:q]) fpredicate calculus, (E0), wltr :�:q is witness for p0gh9p0 : [p) p0] : p0 ensures� qi) f(E1)gh9p0 : [p) p0] : [p0 ) wltr :�:q]i) fpredicate calculusg[p) wltr :�:q]case W = UV :R:(UV ):p:q� fde�nition of Rg[p) wltr :(UV ):q]� f(wltrSeq)g[p) wltr :U:(wltr :V:q)]� fmonotonicity of wltr :U , predicate calculus,wltr :V:q is witness for rgh9r :: [p) wltr :U:r] ^ [r) wltr :V:q]i� finduction hypothesis, twicegh9r :: (p U7�! r) ^ (r V7�! q)i� f(AxSeq)gp (UV )7�! qcase W = U + V :R:(U + V ):p:q� fde�nition of Rg[p) wltr :(U + V ):q]� f(wltrAlt)g[p) wltr :U:q _wltr :V:q] 86



� fpredicate calculus, p ^wltr :U:q is witness for r,p ^wltr :V:q is witness for sgh9r; s : [r _ s � p] : [r) wltr :U:q] ^ [s) wltr :V:q]i� finduction hypothesis, twicegh9r; s : [r _ s � p] : r U7�! q ^ s V7�! qi� f(AxAlt)gp U+V7�! qcase W = U�:R:U�:p:q � p U�7�! q� fde�nition of R, (AxStar)g[p) wltr :U�:q] �h9p0 : [p) p0] : h9M :M is metric :h8i : i 2 Ord :p0 ^M:i U7�! (p0 ^ h9j : j < i :M:ji) _ qiii� finduction hypothesisg[p) wltr :U�:q] �h9p0 : [p) p0] : h9M :M is metric :h8i : i 2 Ord :[(p0 ^M:i)) wltr :U:((p0 ^ h9j : j < i :M:ji) _ q)]iiiIn order to proceed with the proof we introduce some notation: �rst we use theabbreviation E:p0:M:i for the innermost quanti�cation term of the right-hand sideof the last formula:E:p0:M:i � [(p0 ^M:i)) wltr :U:((p0 ^ h9j : j < i :M:ji) _ q)]We also introduce the predicate transformer � by[[�:X � q _wltr :U:X ]]Repeated application of � is de�ned for any ordinal i in the usual way:87



[[�0:X � X ]]for step ordinal i: [[� i:X � �:(� i�1:X)]]for limit ordinal i: [[� i:X � h9j : j < i : � j :Xi]]Based on these de�nitions we state the following properties of � :� is monotonic (T0)wltr :U�:q is the strongest solution of X : [[�:X � X ]] (T1)[[wltr :U�:q � h9i : i 2 Ord : � i: falsei]] (T2)[[�: false � q]] (T3)h8i; j : i � j : [[� i: false ) � j : false]]i (T4)(T0) follows from wltr :U being monotonic, (T1) is a restatement of (wltrStar),(T2) is a consequence of (T1) and the Knaster-Tarski Theorem, (T3) follows from(wltrStrict), and (T4) �nally follows from (T0) and (T3).We restate our proof obligation using the above de�nitions:[p) wltr :U�:q] � (*)h9p0 :: [p) p0] ^ h9M :M is metric :h8i : i 2 Ord : E:p0:M:iiiiwhich we prove in the following by mutual implication.Proof of (*), ) :We choose as witnesses for p0 and M the following:[p0 � wltr :U�:q][M:0 � :wltr :U�:q]h8i : i > 0 : [M:i � � i: false ^ :h9j : j < i : � j : falsei]iIn appendix D.1 we show that M is indeed a metric, and furthermore satis�es thefollowing property for all ordinals i:[h9j : 0 < j � i :M:ji � � i: false] (M0)88



In order to prove the left-to-right implication of (*), it su�ces to show thatfor the choices for p0 and M above:h8i : i 2 Ord : E:p0:M:iiwhich we establish by trans�nite induction over i. For i = 0 we observeE:p0:M:0� fde�nitions of M:0, p0 and Eg[wltr :U�:q ^ :wltr :U�:q ) wltr :U:q]� fpredicate calculusgtrueFor i > 0 we haveE:p0:M:i� fde�nitions of M:i, p0 and Eg[wltr :U�:q ^ � i: false ^ :h9j : j < i : � j : falsei) wltr :U:((wltr :U�:q ^ h9j : j < i :M:ji) _ q)]� ffrom (T2): [� i: false) wltr :U�:q]g[� i: false ^ :h9j : j < i : � j : falsei) wltr :U:((wltr :U�:q ^ h9j : j < i :M:ji) _ q)]For a limit ordinal i the antecedent of the last formula is false, hence this last proofobligation is trivially satis�ed.For a step ordinal i we observe[� i: false ^ :h9j : j < i : � j : falsei) wltr :U:((wltr :U�:q ^ h9j : j < i :M:ji) _ q)]( fleft-hand side weakening, splitting the rangeg[� i: false) wltr :U:((wltr :U�:q ^ (M:0 _ h9j : 0 < j < i :M:ji))_ q)]� fde�nition of M:0, predicate calculus, i is step ordinalg[� i: false) wltr :U:((wltr :U�:q ^ h9j : 0 < j � i� 1 :M:ji) _ q)]89



� f(M0)g[� i: false) wltr :U:((wltr :U�:q ^ � i�1: false) _ q)]� f(T2), predicate calculusg[� i: false) wltr :U:(� i�1: false _ q)]( fmonotonicity of wltr :U , twice, predicate calculusg[� i: false) wltr :U:(� i�1: false) _ wltr :U:q]( f(wrltWeaken), predicate calculusg[� i: false) wltr :U:(� i�1: false) _ q]� fde�nition of � , predicate calculusgtrueProof of (*), ( :Let us abbreviate with B the following equation in p0:p0 : ([p) p0] ^ h9M :M is metric : h8i : i 2 Ord : E:p0:M:iii)In order to establish the right-to-left implication of (*), it clearly su�ces to showthat any solution p0 of B also satis�es also satis�es[p0 ) wltr :U�:q]i.e., that wltr :U�:q is the weakest solution of B. We therefore observe for any p0solving B, where M is some corresponding witness metric:[p0 ) wltr :U�:q]� f(MetricExh), (T2) and (T4)g[p0 ^ h9i : i 2 Ord :M:ii ) h9i : i 2 Ord : � i+2: falsei]( fpredicate calculusgh8i : i 2 Ord : [p0 ^M:i) � i+2: false]iWe establish this last proof obligation by trans�nite induction over i. For i = 0 weobserve:p0 ^M:0 90



) fp0 solves B, de�nition of Egwltr :U:q) fde�nition of �g�:q� f(T3)g�2: falseFor i > 0 we have:p0 ^M:i) fp0 solves B, de�nition of Egwltr :U:((p0 ^ h9j : j < i :M:ji) _ q)� fpredicate calculusgwltr :U:(h9j : j < i : p0 ^M:ji _ q)) finduction hypothesis, wltr :U is monotonicgwltr :U:(h9j : j < i : � j+2: falsei _ q)For any limit ordinal i we observewltr :U:(h9j : j < i : � j+2: falsei _ q)) fi is limit ordinalgwltr :U:(h9j : j < i : � j : falsei _ q)� fde�nition of � i for limit ordinal i, (T3)gwltr :U:(� i: false _ �: false)) f(T4), predicate calculusgwltr :U:(� i: false) _ q) fde�nition of � , (T4)g� i+2: falseand for any step ordinal i we observewltr :U:(h9j : j < i : � j+2: falsei _ q)� fi is step ordinalgwltr :U:(h9j : j � i� 1 : � j+2: falsei _ q)� f(T4), (T3)g 91



wltr :U:(� i+1: false _ �: false)) f(T4), predicate calculusgwltr :U:(� i+1: false) _ q� fde�nition of �g� i+2: falsewhich concludes the proof.End of Proof.As an immediate consequence of the above theorem we observe for all regular ex-pressions W in RF and all state predicates p and q on PF :wltr :W:q W7�! qp W7�! q ) [p) wltr :W:q]which together establish that wltr :W:q as de�ned by the equations (wltrEps),(wltrAct), (wltrSeq), (wltrAlt), and (wltrStar) is the unique weakest solutionof the equation p : (p W7�! q).4.3.3 Some Derived Proof Rules for Generalized Leads-ToIn this section we exhibit some useful laws that increase our repertoire of proof rulesand enable us to establish more easily generalized leads-to properties of programs.In the following let F be any program.Theorem 13 (Derived Proof Rules) For any V;W in RF and any state predi-cates p; p0; q; q0; and b in PF , for any set S and any mappings f; g : S ! PF :[p) q] ) (p W7�! q) (Imply)[p0 ) p] ^ (p W7�! q) ) (p0 W7�! q) (LhsStr)(p W7�! q) ^ [q ) q0] ) (p W7�! q0) (RhsWeak)h8m : m 2 S : f:m W7�! g:mi ) (GenDisj)(h9m :m 2 S : f:mi W7�! h9m : m 2 S : g:mi)92



(p W7�! false) ) [:p] (Impossible)(p V7�! q _ b) ^ (b W7�! r) ) (p VW7�! q _ r) (Cancel)(Imply) states that the generalized leads-to relation as a binary relation over pred-icates is weaker than implication. By (LhsStr) and (RhsWeak) the generalizedleads-to relation is weakening in its right and strengthening in its left argument.Finally,(GenDisj), (Impossible) and (Cancel) are generalizations of the generaldisjunction, impossibility and cancellation theorems of the ordinary leads-to relation(cf. [CM88]).Proof of Theorem 13. All proof rules are established by using the fundamen-tal connection between the generalized progress relation and the wltr predicatetransformers (theorem 12) and properties of wltr:For (Imply) we observe for all W , p and q:p W7�! q� ftheorem 12g[p) wltr :W:q]( f(wltrWeaken), predicate calculusg[p) q]We prove (LhsStr) and (RhsWeak) simultaneously by observing for all W , p; p0; qand q0:p0 W7�! q0� ftheorem 12g[p0 ) wltr :W:q0]( fantecedent [p0 ) p], predicate calculusg[p) wltr :W:q0]( fantecedent [q ) q0], (wltrMon), predicate calculusg[p) wltr :W:q]� ftheorem 12gp W7�! q 93



For (GenDisj) we observe for all W , S, f and g, where all quanti�cations are overelements in S:h8m :: f:m W7�! g:mi� ftheorem 12gh8m :: [f:m) wltr :W:(g:m)]i) fpredicate calculusgh8m :: [f:m) h9m :: wltr :W:(g:m)i]i) fpredicate calculus, (wltrMon)g[h9m :: f:mi ) wltr :W:h9m :: g:mi]� ftheorem 12gh9m :: f:mi W7�! h9m :: g:miFor (Impossible) we observe for all W and p:p W7�! false� ftheorem 12g[p) wltr :W: false]� f(wltrStrict)g[p) false]� fpredicate calculusg[:p]Finally, for (Cancel) we observe for all W , p, q, r, and b:b W7�! r� ftheorem 12, predicate calculusg[b) wltr :W:r]) fpredicate calculusg[q _ b ) q _wltr :W:r]) f(wltrWeaken), (wltrMon)g[q _ b ) wltr :W:(q _ r)]) f(wltrMon), (wltrSeq)g[wltr :V:(q _ b)) wltr :(VW ):(q _ r)]94



) ffrom antecedent: [p) wltr :V:(q _ b)]g[p ) wltr :(VW ):(q _ r)]� ftheorem 12gp VW7�! q _ rEnd of Proof.We conclude our listing of properties of the generalized leads-to relation by relatingit to the ordinary leads-to relation of UNITY logic. The soundness and completenessresult given below is an immediate corollary of theorems 9 and 12 and the followingconnection between the ordinary leads-to relation and the wlt predicate transformer(cf. [JKR89]):[p) wlt :q] � p 7! qPut together we obtain the followingCorollary 14 For any W in RF , and state predicates p and q in PF :(p W7�! q) ) (p 7! q) (Sound)(p 7! q) ) h9W :W 2 RF : p W7�! qi (Compl)In summary, we see that proving p W7�! q for some W establishes the ordinaryp 7! q as well, while conversely any ordinary progress property can be proved as ageneralized one.4.4 Progress and Regular ExpressionsAfter having established properties of the predicate transformers wltr :W for eachW in RF in section 4.2, we now turn to the task of investigating the structure of thefamily of such predicate transformers, i.e., to the task of determining the relationshipof predicate transformerswltr :U andwltr :V for di�erent regular expressions U andV in RF . 95



It is our goal to design an equational theory for such predicate transformersthat allows us to relate di�erent regular expressions that may be used as hints inthe veri�cation of progress properties. Based on such a theory we are able to de-sign methodologies for e�ectively using regular expressions in progress proofs, forinstance by replacing certain regular expressions by others that allow for a moree�cient mechanical veri�cation, or by experimenting with di�erent regular expres-sions in order to check di�erent hypothesis about design knowledge, to gain a clearerunderstanding of how progress is achieved, and to help in program and speci�cationdebugging.We will meet the goal of designing an equational theory forRF by introducingthe notion of a progress algebra which captures the essence of the algebraic structureof the wltr family of predicate transformers. We could have restricted ourselves toanalyzing this family directly, but the introduction of a special algebra for doing soprovides a layer of abstraction that makes it possible to separate algebraic issuesfrom the details of the �xpoint characterizations of the predicate transformers, andto compare the proposed algebraic structure to other familiar structures like Kleenealgebras [Koz90].The characterization of the algebraic structure of wltr is done in two parts:�rst, in section 4.4.1, we de�ne the notion of progress algebras and establish afew properties of such algebras. Then, in section 4.4.2, we demonstrate that thefamily wltr of predicate transformers can be considered a progress algebra, whichestablishes the algebraic characterization of wltr.4.4.1 Progress AlgebrasSo far we have regarded RF as a free algebra generated by the actions in F:A and bythe operators ", � (sequencing), + (alternation), and � (repetition). In the followingwe de�ne a coarser algebraic structure that we call a progress algebra by presentinga list of equalities and equational implications which de�ne a congruence relation96



on regular expressions and thereby an equivalence class structure.For a given program F we refer to the resulting algebraic structure as RFfrom now on and call it the progress algebra for program F . First we de�ne theequational Horn theory for RF , then we show that RF bears many similaritiesto the well known Kleene algebras and to the algebra of regular events. In thefollowing we use the familiar formalism and terminology of Kleene algebras [Koz90]where appropriate.We start with the de�nition of progress algebra in which the binary relation� (pronounced subsumed by) is de�ned by U � V � U + V = V .De�nition 5 (Progress Algebra) A progress algebra K is the free algebra withbinary operations � and +, unary operation �, and constant " satisfying the followingequations and equational implications for all U , V , and W in K:U + (V +W ) = (U + V ) +W (PrAlg0)U + V = V + U (PrAlg1)W +W = W (PrAlg2)U(VW ) = (UV )W (PrAlg3)"W = W (PrAlg4)W" = W (PrAlg5)UV + UW � U(V +W ) (PrAlg6)(U + V )W = UW + VW (PrAlg7)" � W (PrAlg8)"+WW � � W � (PrAlg9)"+W �W � W � (PrAlg10)UW � W ) U�W � W (PrAlg11)WU � W ) WU� � W (PrAlg12)A progress algebra satisfying (PrAlg11) but not necessarily (PrAlg12) is called aright-handed progress algebra, and a progress algebra satisfying (PrAlg12) but not97



necessarily (PrAlg11) is called a left-handed progress algebra.Axioms (PrAlg0), (PrAlg1) and (PrAlg2) characterize the + operatoras associative, commutative, and idempotent. The � operator is associative by(PrAlg3) and has " as a unit by (PrAlg4) and (PrAlg5). Axioms (PrAlg6)and (PrAlg7) de�ne how � and + interact, namely that � distributes over + onthe right, but not quite on the left. The next axiom (PrAlg8) identi�es " as aminimum element. Finally, the properties of the � operator are characterized byaxioms (PrAlg9) through (PrAlg12).The motivation for de�ning an algebraic structure by the above equationsand equational implications is twofold: �rst, we want to stay as close as possibleto the axioms of Kleene algebras ([Koz90]), which de�ne a very important andfamiliar structure that arises in many di�erent areas of computer science includingautomata theory and program semantics. Doing so allows us to reuse some theoremsof Kleene algebras and regular language theory. Second, we want to capture theequational structure of the family wltr of predicate transformers as an algebra. Thismakes it possible to characterize the essence of the structure of the wltr predicatetransformers in an abstract way.Comparing progress algebras with Kleene algebras we notice three majordi�erences:1. Progress algebras lack the equivalent of the ; constant of Kleene algebras.One could consider introducing such a constant by de�ning [[wltr :;:q � false]],which would actually satisfy the Kleene axioms referring to ;. Since such aregular expression does not have a counterpart in either the operational modelor the deductive system, we omit it from further consideration.2. A progress algebra does not have to satisfy the left distributivity of � over +.Only the weaker inequality (PrAlg6) is required instead.98



3. On the other hand any progress algebra satis�es an additional axiom notpresent in Kleene algebras (PrAlg8).The �rst two di�erences account for the fact, that progress algebras do not have aring structure. Whereas the omission of a unit element for + is somewhat arbitrary,the lack of left distributivity of � over + is essential. This lack is a well knownproperty of process algebras [Mil89], which, however, are substantially di�erent dueto their lack of any law corresponding to (PrAlg8).In the following we list some important properties of progress algebras thatcan be derived from the above axioms. The proofs can be found in appendix D.2.First we have the following properties of the subsumption relation �:Lemma 15 In any left-handed or right-handed progress algebra K, the subsumptionrelation � de�ned by U � V � U + V = V is a partial order. Moreover thesequencing, alternation, and repetition operators are monotonic with respect to �,i.e., for all U , V , U 0 and V 0 in K with U � V and U 0 � V 0:UU 0 � V V 0 (PrAlgSeq)U + U 0 � V + V 0 (PrAlgAlt)U� � V � (PrAlgStar)In spite of the di�erences from Kleene algebras many theorems of Kleene algebrasalso hold for progress algebras as stated in the following lemma:Lemma 16 In any left-handed or right-handed progress algebra K for all U , V , andW in K the following laws hold:"+WW � = W � (PrAlg13)"+W �W = W � (PrAlg14)W �W � = W � (PrAlg15)(W �)� = W � (PrAlg16)99



Furthermore, for right-handed K and all U , V , and W in K:V + UW � W ) U�V � W (PrAlg17)and for left-handed K and all U , V , and W in K:V +WU � W ) V U� � W (PrAlg18)(PrAlg13) through (PrAlg16) correspond to well-known properties of the � op-erator of Kleene algebras. Furthermore, as in Kleene algebras [Pra88], (PrAlg17)is equivalent to (PrAlg11), and (PrAlg18) is equivalent to (PrAlg12).Finally there are some interesting properties of progress algebras that arenot generally true in Kleene algebras:Lemma 17 In any left-handed or right-handed progress algebra K, for all n 2 Nwith n > 0 and sequences W in Zn ! K, for all permutations � of Zn, and for allU and V in K the following laws hold:UV � " ) U = " (PrAlg19)UV � " ) V = " (PrAlg20)U + V � " ) U = " (PrAlg21)U� � " � U = " (PrAlg22)UU� = U� (PrAlg23)U�U = U� (PrAlg24)h+U :W : Ui � h�U :W � � : Ui (PrAlg25)h+U :W : Ui� = h�U : W � � : Ui� (PrAlg26)(PrAlg19) through (PrAlg22) characterize " as an irreducible element,(PrAlg23) and (PrAlg24) show that arbitrary and positive repetitions are equiv-alent. (PrAlg25) states that the alternation of regular expressions is subsumedby any permuted sequencing of those expressions, and (PrAlg26) asserts that the100



repetitions of an alternation of regular expressions and of any permuted sequencingof those expressions are the same.In order to show that the equational theory of progress algebras is consistentand to illustrate the connection between Kleene algebras and progress algebras,consider Reg�, the algebra of regular events over the non-empty alphabet �, theelements of which are regular languages over �. This is an important instance of aKleene algebra that we relate to a progress algebra in the following.Clearly, Reg� is not a progress algebra, since (PrAlg8) is not satis�ed evenif W is restricted to denote only non-empty languages: for any � in �, " � � doesnot hold, since L:(" + �) = f"; �g 6= f�g = L:(�) . Conversely, a progress algebracan certainly not be embedded in a Kleene algebra because of the lack of equalityin (PrAlg6). However, if we interpret � as the subsumption order on strings (cf.section 2.1.6), and de�ne equality by U = V � U � V ^V � U , it is easy to checkthat the resulting structure meets all progress algebra axioms (see appendix D.2.4for details).4.4.2 RF as Progress AlgebraIn the previous section we have introduced the notion of progress algebras and haveexhibited many properties of them. It is our goal now to show that the family wltrof predicate transformers can be regarded as a progress algebra. This allows us tocharacterize the algebraic structure RF of the wltr predicate transformers for anyprogram F .In order to show that wltr is a progress algebra, we have to de�ne theequational theory of wltr, to relate the operators �, +, �, and the constant " of RFto operations on predicate transformers, and �nally to show that the equations andequational implications de�ning progress algebras are met by wltr.The equational theory and the algebraic structure of wltr are de�ned asexpected: any W in RF denotes the predicate transformer wltr :W over PS ; the101



meaning of the constant " is given by (wltrEps) as the identity transformer; themeaning of the operators �, +, and � is given by (wltrSeq), (wltrAlt), and (wl-trStar) as functional composition of predicate transformers, disjunction of pred-icate transformers, and a least �xpoint construction respectively; the meaning ofthe basic elements � in F:A is given by (wltrAct) as the wltr :� predicate trans-former. Finally, equality of regular expressions over F:A (written as =F ) is de�nedas equivalence of the corresponding predicate transformers, i.e., for all U , V in RF :U =F V � [[wltr :U � wltr :V ]] .The induced subsumption relation �F on RF is then given byU �F V � U + V =F V .It follows that for all U and V in RF :U �F V� fde�nition of �F gU + V =F V� f(wltrAlt), de�nition of =F g[[wltr :U _wltr :V � wltr :V ]]� fpredicate calculusg[[wltr :U ) wltr :V ]]In other words, the subsumption relation �F on RF is exactly the implicationof the corresponding predicate transformers. Based on this interpretation we cancharacterize the algebraic structure of RF as follows:Theorem 18 For any program F , the algebraRF is a right-handed progress algebra.Proof . We need to show that the progress algebra axioms (PrAlg0) through(PrAlg11) are satis�ed by RF .(PrAlg0), (PrAlg1), and (PrAlg2) follow by virtue of (wltrAlt) directlyfrom the associativity, commutativity, and idempotency of disjunction. Similarly,102



(PrAlg3) follows by virtue of (wltrSeq) from the associativity of functional com-position.From (wltrEps) we know that wltr :" is the identity transformer, which isthe left and right identity element of functional composition. This establishes (using(wltrSeq)) both (PrAlg4) and (PrAlg5).For (PrAlg6) we observe for all q in PF :wltr :U(V +W ):q� f(wltrSeq), (wltrAlt)gwltr :U:(wltr :V:q _wltr :W:q)( fwltr :U is monotonicgwltr :U:(wltr :V:q)_wltr :U:(wltr :W:q)� f(wltrSeq), (wltrAlt)gwltr :(UV + UW ):qSimilarly, for (PrAlg7) we observe for all q in PF :wltr :(U + V )W:q� f(wltrSeq), (wltrAlt)gwltr :U:(wltr :W:q) _wltr :V:(wltr :W:q)� f(wltrSeq), (wltrAlt)gwltr :(UW + VW ):q(PrAlg8) follows directly from (wltrEps) and (wltrWeaken). For (PrAlg9)we see by virtue of (wltrStar) that wltr :W �:q is a solution of the equation X :[[q _wltr :W:X ]], i.e., it satis�es[[wltr :W �:q � q _wltr :W:(wltr :W �:q)]]. (P0)With this we observe for all q in PF :wltr :("+WW �):q� f(wltrAlt), (wltrEps), (wltrSeq)gq _wltr :W:(wltr :W �:q) 103



� f(P0)gwltr :W �:qThe proof of (PrAlg10) is slightly more di�cult. We �rst observe for all q in PF :wltr :("+W �W ):q� f(wltrAlt), (wltrEps)gq _wltr :W �W:q� f[[q ) wltr :W �W:q]] from (wltrWeaken)gwltr :W �W:q� f(wltrSeq)gwltr :W �:(wltr :W:q)thus leaving us with the proof obligation[[wltr :W �:(wltr :W:q) � wltr :W �:q]], (P1)which we prove by mutual implication: the implication from right to left is an im-mediate consequence of (wltrWeaken) and the monotonicity of wltr :W �. For theother direction we introduce two predicate transformers f and g, that characterize,by virtue of (wltrStar), the left-hand and right-hand side of (P1) respectively:[[f:X � q _wltr :W:X ]][[g:X � wltr :W:q _wltr :W:X ]]Clearly, both f and g are monotonic. Furthermore wltr :W �:q is the strongest�xpoint of f , and wltr :W �:(wltr :W:q) is the strongest �xpoint of g. Since bothsides of (P1) are characterized as strongest �xpoints of some predicate transformers,it seems reasonable to attempt to conduct the proof by �nding an intermediatepredicate characterized as �xpoint of some other monotonic predicate transformerh: [[wltr :W �:(wltr :W:q) ) wltr :W �:q]]104



( f(wltrStar), properties of suitable hg[[h�Z :: g:Zi ) h�Z :: h:Zi]] ^ [[h�Z :: h:Zi ) h�Z :: f:Zi]]For h to satisfy the �rst conjunct it is su�cient, by theorem 3, to require that[[g ) h]]. Since h�Z :: h:Zi is the strongest �xpoint of h, the second conjunct issatis�ed by h if h�Z :: f:Zi is a �xpoint of h. Formally we hence require:[[g ) h]][[h:h�Z :: f:Zi � h�Z :: f:Zi]].Any iterated composition of f satis�es the second condition. Unfortunately [[g ( f ]]holds, but since f is weakening, we try f � f for h by observe for all X in PF :g:X� fde�nition of ggwltr :W:q _wltr :W:X� f(wltrWeaken), predicate calculusgq _wltr :W:q _wltr :W:X) fwltr :W is monotonicgq _wltr :W:(q _X)) fwltr :W is monotonic, (wltrWeaken)gq _wltr :W:(q _wltr :W:X)� fde�nition of f , twicegf:(f:X)Hence, choosing f � f , which is certainly monotonic, for h completes the proof of(PrAlg10).We �nish the proof of theorem 18 by observing that the antecedent of(PrAlg11) is[[wltr :U:(wltr :W:q) ) wltr :W:q]], (P2)whereas the conclusion has the form 105



[[wltr :U�:(wltr :W:q) ) wltr :W:q]].Since wltr :U�:(wltr :W:q) is, by (wltrStar), the strongest solution of the equationX : [[X � wltr :W:q _wltr :U:X ]], we haveh8X :: [[X � wltr :W:q _wltr :U:X ]] ) (P3)[[wltr :U�:(wltr :W:q)) X ]]i.We conclude the proof of (PrAlg11) by observing for all q in PF :[[wltr :U�:(wltr :W:q) ) wltr :W:q]]( f(P3) with X := wltr :W:qg[[wltr :W:q � wltr :W:q _wltr :U:(wltr :W:q)]]� fpredicate calculus, (P2)gtrueEnd of Proof.Two remarks about the axioms (PrAlg6) and (PrAlg12) are in order. First, wenote that (PrAlg6) cannot be strengthened to equality. By examining the prooffor (PrAlg6) above we see that for equality we need to prove[[wltr :U:(wltr :V:q _wltr :W:q) � wltr :U:(wltr :V:q)_wltr :U:(wltr :W:q)]]Clearly, we cannot expect this to hold in general, because from lemma 8 we know thatwltr :U is not �nitely disjunctive. In fact, the program FiniteDisjunctivity of section4.2.2 serves as a counter example: with U := �, V := �, W := 
, and q := (n = 4),we have [[wltr :�:(n = 4) � n = 2 _ n = 4]], [[wltr :
:(n = 4) � n = 3 _ n = 4]] andhence by virtue of the calculations in section 4.2.2[[wltr :�:(wltr :�:(n = 4) _wltr :
:(n = 4)) � true]]whereas 106



[[wltr :�:(wltr :�:(n = 4))_wltr :�:(wltr :
:(n = 4)) � n 6= 0]]Next, we show that RF is not left-handed, i.e., that (PrAlg12) is not satis�ed.An attempt at a proof of (PrAlg12) by trans�nite induction over the ordinals upto the ordinal i for which [[wltr :U�:q � � i: false]], where [[�:X � q _ wltr :U:X ]],fails because the inductive step for limit ordinals seems to require wltr :W to beor-continuous, which it is not in general by theorem 8.In the following we construct a counterexample from the failed proof. Sucha counterexample can be derived from two regular expressions U and V satisfying:[[wltr :U� ) h9i : i < ! : wltr :U ii]], (O0)i.e., wltr :U� is not stronger or equal to the ! - disjunction of all wltr :U i, but also[[wltr :V � h9i : i < ! : wltr :U ii]], (O1)i.e., the !-disjunction of all wltr :U i is expressible5 in RF .We show that such U and V constitute a counterexample by establishingthat the antecedent of (PrAlg12), [[wltr :V U ) wltr :V ]], holds, but that theconclusion [[wltr :V U� ) wltr :V ]] is not satis�ed. For the antecedent we have forall q in PFwltr :V U:q� f(wltrSeq), (O1)gh9i : i < ! : wltr :U i:(wltr :U:q)i� f(wltrWeaken), predicate calculusgh9i : i < ! : wltr :U i:qi� f(O1)gwltr :V:qA straightforward induction using (P0), (wltrWeaken), and (wltrSeq) allows us5We call a predicate transformer � expressible in RF if and only if there is a regular expressionV in RF such that wltr :V � � . 107



to establish that [[wltr :U� � wltr :U iU�]] for all i in N. For the conclusion we can,therefore, observe for all q in PFwltr :V U�:q� f(wltrSeq), (O1)gh9i : i < ! : wltr :U i:(wltr :U�:q)i� f(wltrSeq), observation abovegh9i : i < ! : wltr :U�:qi� fpredicate calculusgwltr :U�:qwhich by (O0) and (O1) does not imply wltr :V:q.The following example due to Cohen [Coh96] exhibits such regular expres-sions U and V , thereby establishing that RF is not left-handed. Consider theprogram LeftHanded given byprogram LeftHandeddeclarevar n : naturalvar b : booleanassign[�] n := n+ 1 if :b[�] n; b := n� 1; true if b ^ n > 0 � n; true if :b _ n = 0[
] n; b := 0; true if b � n; true if:bendFor this program we observe that properties (O0) and (O1) are satis�ed for U := �and V := 
. It can be checked easily that [[wltr :�i:(n = 0) � (n = 0)_(b^(n � i))]]for any i in N, [[h9i : i < ! : wltr :�i:(n = 0)i � n = 0 _ b]], and [[wltr :
:(n = 0) �n = 0 _ b]], but that [[wltr :��:(n = 0) � true]].We conclude our exploration of the algebraic structure of RF by combin-ing our results into the main theorem about relating the subsumption relation on108



progress algebras to implication of the corresponding wltr predicate transformers.From the characterization of �F we recall that that for all U and V in RFU �F V � [[wltr :U ) wltr :V ]]Since, by theorem 18, the family wltr of predicate transformers has the structureof a progress algebra, we also know thatU � V ) U �F V .where the �rst subsumption is the relation provable in progress algebras, and thesecond one is the semantic subsumption of elements of RF . Combining these resultswe obtain the following:Theorem 19 For any program F , wltr is monotonic with respect to � in its �rstargument, i.e., for all U and V in RF :U � V ) [[wltr :U ) wltr :V ]]An immediate consequence of the above theorem and of theorem 12 is the followingcorollary, which relates the subsumption of regular expressions to the generalizedleads-to relation:Corollary 20 For any program F and regular expressions U and V in RF withU � V :(p U7�! q) ) (p V7�! q).We conclude this section with a brief discussion of the question of how well thewltr family of predicate transformers can be characterized algebraically. Theorem19 establishes that for any given program the implication ordering on the trans-formers is at least as weak as the subsumption order on the corresponding regularexpressions. It is obvious that an exact characterization of the implication order109



for individual programs cannot be achieved by any order on the progress algebraRF : for a simple program with two (syntactically) identical actions � and �, thepredicate transformers wltr :� and wltr :� are certainly identical, whereas the tworegular expressions � and � cannot be related in any progress algebra.Instead of considering individual programs we might, however, ask about thealgebraic structure common to all programs sharing the same action alphabet. Moreprecisely, let A be a �nite set of actions, and let Reg:A be the progress algebra overA. For any regular expressions U and V in R:A we know that the axiom system forthe progress algebra (de�nition 5) is sound, i.e., that from U = V in R:A we canconclude [[wltr :U � wltr :V ]] for any program F with F:A � A. This follows formtheorem 19 and the fact that R:A is a sub-algebra of RF .The converse of this observation amounts to the formulation of a completenessproperty of the progress algebra axioms, which can be stated as follows:h8U; V : U; V 2 R:A : h8F : F:A � A : [[wltr :U � wltr :V ]]i ) U = V iIt asserts that whenever the predicate transformers corresponding to two regularexpressions U and V of some progress algebra R:A are equivalent for all programsF with suitable action set, U and V are provably equivalent in Reg:A. We pose thiscompleteness statement of progress algebras as an open question and remark that apositive answer would establish that the subsumption relation of progress algebrascharacterizes the uniform algebraic structure of the wltr predicate transformersexactly.4.5 Progress by ActionsSo far we have characterized generalized progress properties by predicate trans-formers and by a deductive proof system, but are still lacking a formal operationalsemantics. As mentioned earlier, the main motivation is to provide a link betweengeneralized progress properties characterizing how progress is achieved for a given110



program, and executions of the program as a sequence of program states and ac-tions, thereby allowing the designer to formulate some operational design knowledgein terms of regular expression hints. In order to allow this link to be exploited duringveri�cation, it is important that the operational semantics be as simple and intu-itive as possible, and be easily matched with an understanding of possible programexecutions.We base our presentation of an operational semantics for generalized progressproperties on a certain notion of games, inspired by [Dij95], where games are usedas a model for the DUALITY calculus. A game takes place between two players,called the progressor and the opponent, engaging in a series of game rounds. Thesequence of the rounds is governed by a strategy chosen by the progressor from a setof possible strategies determined by a regular expression characterizing the game.In a game corresponding to the property p W7�! q, the progressor tries to reacha state satisfying q whenever some state satisfying p has been reached previously,whereas the opponent attempts to prevent this from happening. A program satis�esa property p W7�! q if the progressor has a winning strategy for reaching q statesfrom p states.The remainder of this section is organized as follows: in section 4.5.1 weformalize the notions of games and strategies upon which our operational semanticsis based. In section 4.5.2 we state our de�nition of the operational semantics andillustrate it with a few simple examples. Finally, in section 4.5.3 we relate theoperational semantics to the deductive system by establishing a soundness and acompleteness result.4.5.1 Games and StrategiesIn order to give an operational semantics for the generalized progress properties, weneed to formalize the notions of games and strategies for a program F .A round of F is a non-empty, �nite run of F , i.e., an element of (F:A)+. If111



for some � in F:A a round r ends with �, i.e., if r = x� for some x 2 (F:A)�, wecall r an �-round. A game of F is a (�nite or in�nite) sequence of rounds, i.e., anelement of ((F:A)+)1. In the following, we denote this set of games of programF by GF . The concatenation operation ++ on the elements of GF is as de�ned insection 2.1.1.For every game g we denote by �g the run obtained by concatenating allrounds of g in order. Formally,�hi = hi�g = g:0 ++ tail :g if jgj > 0Note that �g is well de�ned also for in�nite g (cf. [Sto81, Bro93]).Next we will de�ne the notion of a strategy of F for regular expressionsW in RF . The algebra of strategies Str :A:P for a given sort A of actions and asort P of state predicates, is the free sorted algebra generated by the following �veconstructors, each listed with its respective type:eps : Str :A:Pact : A! Str :A:Pseq : (Str :A:P � Str :A:P )! Str :A:Palt : (P � Str :A:P � Str :A:P )! Str :A:Pstar : (P � Str :A:P )! Str :A:PThe mapping S from RF into Str :(F:A):PF associates with each regular expressionW the set of possible strategies S:W of F . The set S:W is de�ned inductively overthe structure of W as follows. For all � in F:A, and all U; V in RF :S:" = fepsgS:� = fact :�gS:(UV ) = fu; v : u 2 S:U ^ v 2 S:V : seq :(u; v)g112



S:(U + V ) = ft; u; v : t 2 PF ^ u 2 S:U ^ v 2 S:V : alt :(t; u; v)gS:U� = ft; u : t 2 PF ^ u 2 S:U : star :(t; u)gA strategy of F for the regular expression W in RF is simply an element of S:W .In order to de�ne what it means for a game to satisfy a given strategy, we introducethe relation sat over pairs of states and games, and strategies. For a state s, agame g and a strategy w we denote by (s; g) sat w that g started in s satis�es w.Formally, sat is a binary relation in (F:S � GF ) � Str :(F:A):PF , de�ned as thesmallest relation satisfying the following conditions for all states s in F:S, all gamesg in GF , all actions � in F:A, all predicates t in PF , and all strategies u and v inStr :(F:A):PF :(s; g) sat eps i� jgj = 0(s; g) sat act :� i� jgj = 1 ^ h9x : x 2 (F:A)� : �g = x�i(s; g) sat seq :(u; v) i� h9e; f : e++ f = g :((s; e) sat u) ^(�nite :�e) ((�e:s; f) sat v))i(s; g) sat alt :(t; u; v) i� ((s j= t)) ((s; g) sat u)) ^((s 6j= t)) ((s; g) sat v))(s; g) sat star :(t; u) i� ((s j= t)) jgj = 0) ^((s 6j= t)) (s; g) sat seq :(u; star :(t; u)))The de�nition of the algebras Str and the sets S follows very closely the structureof the algebra RF . The only notable addition to the algebraic structure is theoccurrence of the predicate arguments in the constructors alt and star, which webrie
y motivate in the following.For the regular expression " and for any action � in RF there is only onepossible strategy, namely eps and act :� respectively. Also the strategy for a se-quence UV is completely determined by the sub-strategies for U and for V , as agame for UV consists of a game for U followed by a game for V . On the other113



hand, in alternations and repetitions choices have to be made: in the case of analternation U +V the progressor can decide whether to play a game for U or a gamefor V , whereas in the case of a repetition U�, the progressor can decide after eachU game whether to terminate the repetition or to continue with more U games.It is this freedom of choice that is captured by the predicate arguments of the altand star strategies: for alternations it is the test predicate that determines whichsub-strategy to follow, for repetitions it determines termination.We illustrate the above de�nitions with an example: consider the programUpDown of the previous section and the regular expression [set][down]�. For the setof strategies for [set][down]� we obtainS:[set][down]� = ft : t 2 PUpDown : seq :(act :[set]; star :(t; act :[down]))g.Choosing for t the predicate n < 0, we consider the speci�c strategyw = seq :(act :[set]; star :(n < 0; act :[down])).We also consider the following games (for all k in N):g0 = hh[set]; [down]iig1 = hh[down]; [set]iig2:k = hh[set]i; h[up]; [down]ikiWith these de�nitions, the following statements about satisfaction of games hold,where s is an arbitrary reachable state of UpDown6:((s; g0) sat w) � false((s; g1) sat w) � (s j= n � 0)((s; g2:k) sat w) � (s j= (k > 0 ^ n = k � 1) _ (k = 0 ^ n < 0))Game g0 does not satisfy w for any start state because it consists of exactly oneround, which is not a [set]-round. Game g1, on the other hand, consists of a [set]-6Since the initial predicate of UpDown is true, all states of program UpDown are reachable.114



round followed by zero [down]-rounds. In order to satisfy w it is therefore requiredthat the termination predicate n < 0 be true at the end of the [set]-round, whichdetermines the set of possible start states as characterized by n � 0. Similarly, g2:kconsists of one [set]-round and k [down]-rounds, which imposes the requirement thatat the end of g2:k the termination predicate should be true, but that it should befalse at the end of any intermediate round. The reader can check easily that thisrequirement results in the above characterization of the possible start states.4.5.2 An Operational SemanticsBased on the formalization of games and strategies we are now ready to formallyde�ne the operational semantics of generalized progress properties; i.e., we de�newhat it means for a program F to be a model of such a property:De�nition 6 (Operational Semantics) For any program F , state predicates pand q in PF and regular expressionW in RF , we say F is a model for the generalizedprogress property p W7�! q, written F j= p W7�! q, and de�ne it by:F j= p W7�! q �h9w : w 2 S:W :h8s; g : s is reachable :(s j= p) ^ ((s; g) sat w) ) (s; �g) j= qiiAccording to the de�nition, F is a model for p W7�! q if and only if there existsa strategy w with a structure determined by W , such that any game started in areachable state satisfying p and following the rules of w reaches a state satisfyingq after a �nite number of actions. The existential quanti�cation in the formulaabove corresponds to the progressor's ability to choose a particular strategy, whereasthe universal quanti�cation re
ects the requirement that the strategy be successfulregardless of the actions the opponent decides to perform.115



We illustrate the operational semantics by considering some special casesfor the regular expression W . First, for W = � for some � in RF , the set S:� isthe singleton fact :�g. Any game satisfying act :� consists of exactly one �-round.Program F therefore satis�es the generalized progress property p �7�! q if and onlyif during any run starting in a reachable state satisfying p and ending with an �action, a state satisfying q is encountered.Next, we consider the case W = �� for some � in RF . Any strategy for�� is of the form star :t:(act :�) for some state predicate t. Any game satisfyingsuch a strategy is a (�nite or in�nite) sequence of �-rounds. In order to analyzethe operational behavior implied by such a strategy we demonstrate, that F j=p ��7�! q if and only if the condition in de�nition 6 is met by the speci�c strategyw = star :q:(act :�): clearly, by de�nition 6, if w satis�es the condition, then F j=p ��7�! q holds. Conversely, we need to establish that if the condition is met byany strategy in S:�� then it is also met by w. Let v be a strategy establishingF j= p ��7�! q and let t be the termination predicate of v. Furthermore let g beany game and s be any state satisfying p. If g is �nite then it terminates in a statesatisfying q, therefore (s; �g) j= q holds as required. If g is in�nite, we consider thesmallest pre�x e of g such that �e:s j= t (or e = g if t is not satis�ed after any roundof g). Due to the condition for the operational semantics satis�ed by v, we have(s; �e) j= q. If e is in�nite, we have e = g and therefore (s; �g) j= q. Finally, if e is�nite, then �e is a pre�x of �f , from which (s; �g) j= q follows as well. This establishesthat w is a characterizing strategy for p ��7�! q, i.e., a strategy that de�nes theoperational semantics of the given property.Combining this result with de�nition 6, we see that program F satis�esthe generalized progress property p ��7�! q if and only if during any run startingin a reachable state satisfying p and containing in�nitely many � actions, a statesatisfying q is encountered. 116



As a last example we have another look at programUpDown and demonstratethat it indeed satis�es the property true [set][down]�7�! n < 0. This can be seen bychoosing the strategy investigated at the end of section 4.5:w = seq :(act :[set]; star :(n < 0; act :[down])).Any game g started in some state s and satisfying w consists of one [set]-roundfollowed by a sequence of [down]-rounds. Since b is true at the end of the [set]-round, and since it remains true once it becomes true, the values of n at the endof each [down]-round form a strictly decreasing sequence. Because termination ofthe repetition occurs once n < 0 holds, we conclude from the well-foundednessof the naturals that g is �nite, and that �g:s j= n < 0 holds. Therefore we have(s; �g) j= n < 0 which establishes that F j= true [set][down]�7�! n < 0.4.5.3 Soundness and CompletenessIn order to relate the deductive system for the generalized leads-to relation of section4.3 to the operational semantics just de�ned, we will establish both a soundness anda completeness result. The deductive system is sound with respect to the operationalsemantics, if and only if any generalized leads-to property proved for a programF is indeed satis�ed by F ; the deductive system is complete, if and only if anygeneralized leads-to property that is satis�ed by F can actually be proved in thedeductive system for F .To be more precise, we will establish the completeness of the deductive systemrelative to the expressiveness of the assertion language, in our case the predicatecalculus part of the logic. We show that a generalized leads-to property satis�edby a program F can be proved under the assumption that certain sets of states canbe characterized by predicates of the assertion language, and that certain predicatetransformers and �xpoint operations are expressible in the assertion language aswell. This notion of completeness was �rst investigated by Cook [Coo78], a detailed117



discussion of some of the issues involved can be found in [Rao95].We establish the connection between operational semantics and deductivesystem in the following theorem:Theorem 21 (Soundness and Completeness) For any program F and regularexpression W in RF the deductive system de�ned for generalized leads-to propertiesis sound and relatively complete in the sense of Cook:F j= p W7�! q i� F ` p W7�! qIn order to prove the above theorem, the notion of a canonical strategy C:W:q for agiven regular expression W and predicate q is needed. It has the important propertythat it serves as a witness strategy in the de�nition of the operational semantics,i.e., whenever F ` p W7�! q holds, we can establish F j= p W7�! q by virtue ofC:W:q, and conversely, whenever F j= p W7�! q can be established by virtue of somestrategy, it also can be established by virtue of C:W:q. The de�nition of C:W:q andthe proof of the above theorem can be found in appendix D.3.4.6 DiscussionOur goals for developing the theory of generalized progress have been threefold: sucha theory should (i) provide a new way of establishing ordinary progress properties ofprograms by allowing the user to explicitly characterize how progress is achieved, (ii)make it possible to take advantage of design knowledge in order to more e�ectivelyverify programs, and (iii) increase the e�ciency of mechanical veri�cation proceduresbased on the developed theory.These goals have been achieved by our proposed theory in the following ways:we can (i) prove ordinary progress properties by our generalized ones due to theorem9; we have (ii) developed an algebraic theory for treating progress hints formallythat can be exploited in the veri�cation process; �nally, as will be demonstrated in118



subsequent chapters, we can (iii) take advantage of the new formalism in the formof improved model checking procedures for generalized progress properties.In summary, the theory of generalized progress makes it possible to incor-porate action-based design knowledge into the interactive veri�cation of concurrentsystems. This is accomplished by treating hints about how progress is achievedas formal objects (namely as elements of a progress algebra) and by providing acalculus for reasoning about such hints, for relating them to program executions,and for combining them with state-based reasoning methods (such as proving safetyproperties).With the theoretical foundations in place, future work on generalized progresswill be centered around two questions: the relationship to other formal approachesfor veri�cation of progress properties, and the practical application of the new theoryto program veri�cation.On the theoretical side it will be interesting to explore the relationship ofour theory to automata-theoretic approaches [Kur94], to deductive systems basedon linear temporal logic [M+94], or on the propositional mu-calculus [Koz83, Bra93].It will be worthwhile to investigate to which extent the ideas of formalizing hintsand of incorporating design knowledge at various levels of detail could be exploitedby these other approaches.The application of the our theory to the practical veri�cation of concurrentsystems is investigated in the following chapter in the context of �nite-state modelchecking. However, it is important to point out, that there is no inherent restrictionof the theory of generalized progress properties to neither �nite-state systems, orto model checking as a veri�cation technique. In particular the integration withtheorem provers [Gol92, OSR93, GM93] and with in�nite state-space model checkingapproaches, as well as the extension to the compositional structure of UNITY logic[Mis] and to compositional veri�cation in general are of great interest.119



Chapter 5Checking Progress PropertiesIn this chapter we show how we can improve the model checking procedure forUNITY logic, presented in chapter 3, by employing the theory of generalized progressdeveloped in the previous chapter. By incorporating this theory into the modelchecking procedure we achieve two important advantages: �rst, the expensive wltcomputation used in the veri�cation condition for ordinary progress properties canbe replaced by veri�cation conditions for generalized progress properties that oftenare signi�cantly easier to check. Second, a more expressive speci�cation language ismade available for the design and veri�cation process thus providing more possibil-ities for analyzing and debugging programs and their speci�cations.In the following, we describe the extensions to the model checking procedurefor UNITY in section 5.1 and discuss some heuristics for obtaining regular expressionhints in section 5.2. In section 5.3, we illustrate several aspects of the procedurewith a non-trivial example, an elevator control program. Section 5.4 concludes thechapter with a discussion of the extended procedure.120



5.1 Model Checking for Generalized ProgressThe idea for incorporating generalized progress properties into the UNITY modelchecking procedure is simple: by using the de�nition of thewltr predicate transform-ers (wltrEps), (wltrAct), (wltrSeq), (wltrAlt), and (wltrStar) and theorem12, we can derive a veri�cation condition for generalized progress properties similarto the one for ordinary progress properties:F j= p W7�! q i� for some invariant J of F :[[J ^ p ) wltr :W:(J ^ q)]]:As it is the case with the veri�cation conditions for the other properties of UNITYlogic, the conjunction with J in the argument of wltr :W can be dropped provided Jis an inductive invariant, i.e., satis�es [[J ) wco :J ]]. This is possible because it canbe shown that for any inductive invariant J , regular expression W , and predicatesp and q[[(J ^ p) wltr :W:(J ^ q)) � (J ^ p) wltr :W:q)]]holds. Whether or not such a replacement is advantageous depends on the com-plexity of the representation of the invariant. By virtue of the above equivalence,however, we can use any inductive invariant with which we may be able to reduce theargument and all intermediate results in the computation of wltr :W:q with respectto that invariant.Advantages of New Model Checking ProcedureThe model checking procedure of section 3.3 is simply extended by adding thenew veri�cation conditions for generalized progress properties. In particular, theveri�cation of safety properties and the managing of invariants is performed aspreviously. However, when verifying progress properties the user can experience athreefold improvement over the previous method:121



Shortened Veri�cation Time: the evaluation of the veri�cation conditions basedon the wltr predicate transformers is often simpler than the evaluation of theordinary progress condition based on wlt. This is the case because �xpointcomputations can be avoided or at least simpli�ed, since only a subset of theprogram actions needs to be considered as contributing to the progress of theprogram. Some examples illustrating the performance gains are discussed inchapter 7.Finer Speci�cation Detail: with the availability of a new set of progress prop-erties that are more expressive than the traditional transient , ensures ,and 7! operators alone, the user can re�ne the characterization of progressproperties in order to either con�rm his understanding of the program, or toanalyze the program by experimenting with di�erent regular expression hints.The algebraic structure of the progress algebras from section 4.4 is a valuabletool for relating such experiments to one another.Improved Debugging Information: a failed veri�cation of an ordinary progressproperty yields a set of violating states from which fair program executionsexist that do not reach any goal states; no additional information is givenabout how a counterexample trace can be obtained. The regular expressionhints provide such information that makes it possible to restrict the set oftraces among which counterexamples can be found.Crucial to the applicability of the generalized progress checking is the ability to �ndsuitable regular expression hints, that either help to improve the performance of theveri�cation, or help to analyze or debug the program more e�ectively. We addressthis issue in the next section. 122



5.2 Obtaining Regular Expression HintsIn section 4.1 we have mentioned the two primary ways of obtaining regular expres-sion hints for verifying generalized progress properties: the designer's operationalunderstanding can be captured by a regular expression hint, or such hints can beviewed as an abstract representation or an outline of a progress proof. At this point,we want to present two heuristics that can help with obtaining such hints: the �rst,called phase-splitting, takes advantage of the sequential structure of a program; thesecond, called action-grouping, derives hints for progress properties that depend ononly a few program actions.5.2.1 Phase-SplittingThe idea of phase-splitting is based on the transitivity rule for progress, capturedby (AxSeq): if it is possible to split the progress towards some goal predicate intosubsequent phases separated by intermediate sets of states, then a strategy for thedesired progress is obtained as the sequence of strategies for the individual phases.A simple example illustrating this technique is the counter of section 4.1.Progress from true to a negative counter value, i.e., n < 0, is achieved in two phases:the �rst phase establishes that the 
ag b is set, the second phase then decreases thecounter value below 0. Given strategies for the individual phases { [set] for the �rst,and [down]� for the second phase) { we derive a strategy for the progress propertyby sequencing, thus obtaining [set][down]� for our example.Two things are worth mentioning about this technique: although a predicatecharacterizing the intermediate states between two successive phases must exist, itdoes not have to be stated explicitly as part of the strategy; moreover, in the contextof program design by re�nement, re�ning a phase without changing its boundarypredicates corresponds to re�ning the strategy of that phase without a�ecting thestrategies of other phases. For instance, let us assume that in the above counterprogram, the 
ag b was used to model the completion of some process and is to be123



re�ned to model this process behavior in a more detailed way. In that case we canobtain a strategy for the re�ned program simply by concatenating the new strategyfor the re�nement of the �rst phase and [down]�, the strategy for the second phase.Phase-splitting does not improve the performance of progress checking di-rectly: if progress towards some goal exhibits a sequential structure, then ordinaryprogress checking handles these sequences of phases by repeated iterations, andgeneralized progress checking cannot decrease the number of these required itera-tions. However, by virtue of splitting the progress into phases it is often possible to�nd successful strategies for the individual phases that are much simpler than theiteration over all program actions performed by ordinary progress checking.5.2.2 Action-GroupingActions of a program can be classi�ed in three groups with respect to a givenprogress property: contributing actions actively help in achieving progress and needto be executed in order to reach the set of goal states; non-interfering actions haveno relevant e�ect on how progress is achieved; no execution of a non-interferingaction can prevent progress; interfering actions, on the other hand, not only do notcontribute to progress, they can even prevent it when being executed.An important observation is that in the absence of interfering actions, non-interfering actions can be ignored for achieving progress; i.e., a repetition of con-tributing actions su�ces to reach some goal state. In other words, if there are nointerfering actions with respect to the progress property p 7! q, and if W is theregular expression consisting of the concatenation of all contributing actions, thenp W �7�! q holds. By virtue of (PrAlg26) of lemma 17 the same holds for W beingthe alternation of all contributing actions; because of (PrAlg25), however, usingconcatenation often results in fewer outer iterations. When using concatenationthere might be di�erent orderings of the contributing actions that might a�ect thecomplexity and the number of iterations of the check. If there is a sequential de-124



pendency among the contributing actions, this should be re
ected in the ordering(cf. section 5.3.3 for an example).For the progress property b 7! n < 0 of the counter program, actions [set]and [up] are non-interfering, and action [down] is contributing. Hence, [down]� is asuccessful strategy. But even in the presence of interfering actions, action groupingcan be used: in a �rst step, interfering actions have to be eliminated, then themethod can be used as described above. Often the elimination of interfering actionscorresponds to an application of the phase-splitting heuristic. As an example weconsider again the counter program and the progress property true 7! n < 0. Forthis property [down] is contributing, [set] is non-interfering, and [up] is interfering.We can eliminate [up] by falsifying its guard b. Hence, we split the progress propertyin two parts, true 7! b and b 7! n < 0. The �rst phase is completed in one [set]step, the second phase is dealt with as described above. Together we obtain theexpected regular expression strategy [set][down]� in a mostly mechanical way.The performance gained when using action grouping compared with ordinaryprogress checking depends on the ratio of number of contributing actions to the totalnumber of actions: the fewer contributing actions there are, the smaller the numberof inner �xpoint computations is in each outer �xpoint iteration. Often the gainis more than linear, as the average complexity of the inner �xpoint computationstends to decrease with fewer contributing actions.5.3 An Example: An Elevator Control ProgramIt is the goal of this section to demonstrate the application of the model checkingprocedure for generalized progress properties to a small but non-trivial example.Such an example is the following elevator control program, which has been motivatedby similar programs of this kind discussed in the literature (e.g. [CWB94]).In the following, we describe the program in section 5.3.1 and state some ofits properties in section 5.3.2. Then, in section5.3.3, we derive a regular expression125



strategy for the main progress property of the program.5.3.1 The Program DescriptionThe program Elevator models an elevator for a building with N 
oors. There arethree variables describing the state of the elevator: pos is the number of the 
oor (inthe range from 1 to N ) the elevator is currently at; state tells whether the elevator iscurrently moving upwards (UP), moving downwards (DOWN ), or halting (STOP);�nally, dir records the preferred direction of the elevator, -1 for downwards and 1for upwards, while 0 indicates that there is no preferred direction.There are also two variables that model the behavior of the users of theelevator: req is an array of boolean variables, indexed by the 
oors. The elevatoris requested to go to 
oor i, 1 � i � N, if and only if req.i is true. There is nodistinction between whether the elevator is requested to go to some 
oor by a userwaiting on that 
oor, or by a user in the elevator wanting to go to that 
oor. Userscan only issue a request (i.e., set req.i to true), while the control program can onlyremove requests (i.e., reset req.i to false). The boolean variable user is introducedto model the situation in which from some point onwards for some (or even forall) 
oors no request is issued any more. Without this variable the unconditionalfairness constraint would guarantee that for every 
oor the elevator is requestedin�nitely often.At �rst glance, the use of both state and dir to model the elevator seemsunnecessary, since 1 and UP, as well as -1 and DOWN apparently correspond to eachother. However, there is a subtle and important di�erence: while state models thephysical status of the elevator, dir encodes a control strategy. More precisely, thevariable dir is used to resolve con
icting requests. A con
ict arises in a situation inwhich there are requests both above and below the current position of the elevator.In order to prevent starvation of some 
oors, the elevator control has to make a fairchoice between going upwards and going downwards. For instance, the strategy to126



always honor requests from below �rst (which might seem reasonable, since tra�cin the �rst 
oor is likely to be highest) is not fair: repeated requests on lower 
oorscould prevent requests on higher 
oors from being served forever.We employ the following fair strategy for the control program: wheneverthere is any request, the elevator has a preferred direction given by dir. As longas there is a request in the preferred direction, the elevator moves in that directionand services requests. If there is no request in the preferred direction, the preferreddirection can be changed to a new value. This strategy is fair, since there can alwaysbe only �nitely many requests in the preferred direction. After having serviced thelast such request the elevator changes its preferred direction and services all pending
oors in the new direction.The elevator program consists of the elevator control part and the user part.The program has N+7 actions, 6 for the elevator control, and the remaining for theusers. The control actions are: [service] services a request at the current 
oor; [move]moves the elevator in its preferred direction; [goOn] starts movement of the elevatorin the preferred direction; [up] and [down] set the preferred direction to upwardsand downwards respectively and start movement of the elevator. The user actionsare: [request.i ] for each 
oor i issues a request at 
oor i, provided the elevator isnot there already; [toggle] alternately enables and disables request actions in orderto model eventual absence of requests as explained above.The complete program is listed below. In addition to the variables and ac-tions described above it also contains two transparent variables: upReq is a booleanvariable indicating whether there is a pending request above the current elevatorposition; similarly downReq indicates such a request below the current position. Inthe initial state the elevator is halting on 
oor 1 and has no preferred direction; also,there are no user requests. 127



program Elevatordeclaretype Range = int(1::N)var state : enum(STOP;UP;DOWN)var dir : int(�1::1)var pos : Rangevar req : Range! booleanvar user : booleanalwaysupReq = (9i : Range; pos < i : req:i)downReq = (9i : Range; pos > i : req:i)initiallypos = 1(8i : Range : :req:i)dir = 0state = STOPassign[service] req:pos; state := false; STOPif req:pos[move] pos := pos+ dirif state 6= STOP ^ :req:pos[goOn] state :=UPif upReq ^ dir = 1 ^ state = STOP ^ :req:pos~ DOWNif downReq ^ dir = �1 ^ state = STOP ^ :req:pos[up] state; dir := UP; 1if upReq ^ (dir = 0 _ :downReq) ^ state = STOP ^ :req:pos[down] state; dir := DOWN;�1128



if downReq ^ (dir = 0 _ :upReq) ^ state = STOP ^ :req:pos[halt] dir := 0if :upReq ^ :downReq ^ state = STOP ^ :req:pos([] i : Range :[request] req:i := trueif pos 6= i ^ user)[toggle] user := :userend5.3.2 Properties of Program ElevatorThe key property we want to prove of the elevator program is its eventual serviceproperty: whenever a request is issued on some 
oor, the elevator will reach that
oor eventually and stop there. This is expressed as the following leads-to propertyin UNITY logic (the variable k is implicitly quanti�ed universally over all 
oors):req:k 7! pos = k ^ state = STOP (ES)There are also a few design invariants, which express design knowledge about theelevator control variables state and dir :invariant state = UP ) dir = 1 (I0)invariant state = DOWN ) dir = �1 (I1)invariant state = UP ) upReq _ req:pos (I2)invariant state = DOWN ) downReq _ req:pos (I3)(I0) and (I1) state that the elevator can move only in its preferred direction. (I2)asserts that the elevator can only move upwards if there is a request above or at thecurrent position (the request was issued above, but the elevator might have movedonto a 
oor with pending request). (I3) asserts the corresponding fact for moving129



downwards.All invariants above can be established directly from the program text. Theycan be checked by the model checking procedure using the veri�cation conditionsfor invariants with respect to true.5.3.3 Finding a Strategy for ElevatorIn order to establish the eventual service property, we want to �nd a regular expres-sion hint W allowing us to check successfully the generalized progress propertyreq:k W7�! pos = k ^ state = STOP .successfully. Instead of relying on some operational understanding, we use theheuristics presented in section 5.2 and a notion of abstract top-down proofs in orderto obtain a suitable strategy. Our goal is to �nd such a strategy as directly andwith as little e�ort as possible.A Simple Derivation Using HeuristicsWe start with the action-grouping method and observe that all actions of the userpart as well as the [halt] action can be classi�ed as non-interfering with respectto (ES): if the control program works correctly, no user action should be able tointerfere with the desired progress; furthermore, as long as the request at 
oor khas not been serviced, there is at least one request pending, hence [halt] is disabled.The remaining �ve control actions can be expected to be contributing: the elevatorhas to move, possibly change direction, and service requests at intermediate 
oors.This immediately yields the following strategy for establishing (ES):([service][move][goOn][up][down])� (H0)Checking (ES) with this regular expression fails, if we do not take some designinvariants into account. A direct check produces a set of violating start states130



containing, for instance, a state in which state = DOWN ^ pos = 1 ^ :req:1 holdsand which violates design invariant (I3). Using (I3) we are alerted to the fact thata state satisfying state = DOWN ^ dir = 1 is violating (ES), prompting us touse (I1) as well. Continuing the veri�cation process we are asked to supply (I0)and (I2) as well; of course, we could have added them directly together with (I1)and (I3) for reasons of symmetry. With these four design invariants in place, theprogress check for (ES) for the suggested strategy succeeds, proving the programcorrect and con�rming our understanding of the role the program actions play inachieving progress1.With a little additional thought we can improve the derived strategy further.There are some sequential dependencies among the contributing actions, which wecan re
ect in the ordering of the actions in the regular expression: [service] possiblystops the elevator; [goOn], [up], and [down] are e�ective only if the elevator isstopped, but they also start moving the elevator again; [move] is e�ective only if theelevator is not stopped. This suggests (among others) as possible orderings either([service][goOn][up][down][move])� (H1)or([service][up][down][goOn][move])� (H2)both of which result in fewer �xpoint iterations than (H0)2.A Detailed Derivation Based on a Progress ProofExamining the structure of how progress is achieved more carefully, we observethat progress from req:k to pos = k ^ state = STOP takes place in two phases.1We can explore this idea further by dropping any action from the hint; we then �nd thatthe property can no longer be checked successfully. This shows that all �ve actions are indeedcontributing.2(H2) performs better than (H1); a subtle sequential dependency between [up] and [goOn](similarly, between [down] and [goOn]) can be uncovered as part of a more detailed progress proof.131



In the �rst phase the elevator moves to the requested 
oor, thereby establishingreq:k ^ pos = k; in the second phase the elevator simply stops, which is easily seento be accomplished by one [service] action.The �rst phase, in which most of the progress takes place, cannot be directlysplit into smaller phases. It is possible, however, to proceed by constructing anabstract proof of the progress property corresponding to the �rst phase, namelyreq:k 7! req:k ^ pos = k (ES1)This proof obligation can be split into three new obligations depending on whetherthe elevator is initially at, above, or below the requested 
oor. More precisely wecan establish (ES1) by using the disjunctivity rule on the three propertiesreq:k ^ pos = k 7! req:k ^ pos = k (ES10)req:k ^ pos < k 7! req:k ^ pos = k (ES11)req:k ^ pos > k 7! req:k ^ pos = k (ES12)(ES10) is trivial (corresponding to the "-hint), while (ES11) and (ES12) aresymmetric. If we denote by W11 and W12 regular expression hints for (ES11) and(ES12) respectively, and if we denote by W for some hint W the hint obtainedby replacing every occurrence of [up] with [down] and vice versa, we expect thatW12 = W11. Using the rules (AxAlt) and (AxSeq) we obtain as a suitable hintfor (ES) the following expression:("+W11 +W11)[service]Hence, we consider in the following the progress property (ES11) and attempt to�nd a suitable W11. Our next idea is to distinguish between di�erent preferreddirections. Since our goal is to reach 
oor k from some 
oor below k, we will do soby eventually moving upwards. If the preferred direction is upwards, we can do sodirectly: 132



req:k ^ pos < k ^ dir = 1 7! req:k ^ pos = k (ES110)If the preferred direction is downwards, we have to switch it to upwards eventually:req:k ^ pos < k ^ dir = �1 7! req:k ^ pos < k ^ dir = 1 (ES111)Finally, if there is no preferred direction, we have to choose one:req:k ^ pos < k ^ dir = 0 7! req:k ^ pos < k ^ dir 6= 0 (ES112)Combining (ES110), (ES111), and (ES112) using the disjunction and cancelationrules of UNITY logic we can derive (ES11). Let us denote by W110, W111, andW112 the yet to be determined regular expression hints for (ES110), (ES111), and(ES112), respectively. Then, the derivation of (ES11) corresponds to the followingequation for W11:W11 = W110 +W111W110 +W112(W110 +W111W110),which is equivalent in the progress algebra toW11 = W112W111W110 .We could now continue with the top-down proof and re�ne the regular expressionsfurther until we reach basic ensures properties and are able to determine all regularexpression hints. Alternatively, we can resort to action-grouping and derive someregular expressions directly without having to be concerned with the details of in-termediate predicates. It turns out, that both (ES110) and (ES111) require theinduction principle as the next proof step. Hence, we do not lose much structure byusing action-grouping directly.For (ES110) we identify [service], [goOn], and [move] as contributing actionswith a sequential dependency in the listed order. Similarly, we �nd for (ES111),that [service], [up], [goOn], and [move] contribute to progress. Finally, for (ES112)133



no grouping is needed since the sequence [service][up] establishes the property. Com-bining these results we obtainW11 = [service][up]([service][up][goOn][move])�([service][goOn][move])�which is equivalent toW11 = ([service][up][goOn][move])� .Using the de�nition of W11 we obtain for the �nal regular expression hint the fol-lowing expression(([service][up][goOn][move])� + ([service][down][goOn][move])�)[service] ,which again is equivalent to (H2). This derivation illustrates two facts: �rst, a sim-ple method like action-grouping can produce accurate regular expression hints fora top-level progress property, i.e., a progress property for which we do not want toconsider intermediate predicates. On the other hand, although the detailed deriva-tion based on the abstract progress proof produced the same top-level result, it alsogenerated many auxiliary properties with associated intermediate predicates andregular expression hints. Deriving such a detailed structure with an abstract proofis certainly more di�cult than applying a simple heuristic to obtain some regularexpression hint. However, a detailed structure provides a collection of properties,which can be used to analyze the program and to track down errors in case the orig-inal property does not hold. Moreover, the detailed derivation is still more abstractthan a complete progress proof, particularly since at any level a detailed subproofcan be replaced by a regular expression hint obtained by some other method.5.4 DiscussionIn this chapter we have described how the theory of generalized progress can beincorporated into the model checking procedure for UNITY logic. This extension134



improves the model checking procedure by providing a new way of verifying progressproperties. The advantages of the new method are similar to the advantages of theprevious procedure for checking safety and basic progress properties: (i) by utilizinga certain form of design knowledge { regular expression hints { the veri�cationtask can often be sped up signi�cantly; (ii) the design knowledge has a simplestructure and is readily available by virtue of methods and heuristics for obtainingsuch knowledge from operational considerations and proof outlines; (iii) the extendedlogic makes it possible to re�ne progress speci�cations of programs and thus servesas a valuable tool for analyzing and debugging programs and their speci�cations.Several remarks about the model checking procedure of chapter 3 can beextended to the new augmented method: the veri�cation conditions for generalizedprogress are in principle not restricted to �nite state systems and could be combinedwith in�nitary representations and theorem proving systems; moreover, other logicslike LTL and Fair-CTL could be extended in a similar way in order to take advantageof at least some aspects of the new properties; however, several features speci�cto UNITY { such as the unconditional fairness, identi�cation of actions, and thestructure of the deductive system { have been exploited in order to de�ne these newproperties.A very appealing characteristic of the new method for verifying progressproperties is the 
exibility with which it can be used in the design and veri�cationprocess: at one extreme, a completely automated veri�cation based on the �xpointcharacterization of the leads-to operator can be attempted; at the other extreme, onecould start with a detailed proof outline and verify the correctness of the individualproof steps. The most promising application of the method, however, lies somewherein the middle: some design knowledge will be directly available and can be used atlittle or no extra cost due to the simplicity of the formalism in which the knowledgecan be stated; additional design knowledge can be provided in response to failedveri�cation attempts or when analyzing the program.135



It was not to be expected to �nd a method with which the veri�cation ofprogress properties under fairness could be reduced to the evaluation of some simpleand local checking conditions as it is the case for safety properties. However, thenew method is a step in the right direction by allowing us to simplify the veri�ca-tion conditions to be evaluated, while at the same time providing us with a moreexpressive logic as a means to reason about our programs.

136



Chapter 6The UNITY Veri�er SystemIn the previous chapters we have demonstrated how the temporal logic and pro-gramming notation of UNITY can be extended and exploited so to obtain e�cientmodel checking algorithms. In particular, we have argued that interactive veri�ca-tion based on UNITY logic makes it possible to incorporate design knowledge intothe veri�cation process, either by providing or establishing su�ciently strong invari-ants, or by supplying progress hints in the form of regular expressions. Moreover,the interactive model checking based on UNITY logic takes advantage of the asyn-chronous computation model of UNITY and of the design information supplied inorder to simplify or even eliminate some computations required for verifying prop-erties. In this chapter, we describe how the previously developed theory and theproposed algorithms are implemented as part of the UNITY Veri�er System, abbre-viated as UV System, an interactive symbolic model checker for �nite state UNITYprograms and propositional UNITY properties.The design and implementation of an interactive veri�cation system forUNITY (and our extensions of UNITY logic) is motivated by three goals: �rst,we need to substantiate our claim that the veri�cation of certain concurrent sys-tems can be aided by taking advantage of the simplicity and structure of UNITYlogic, and by employing a methodology for making design knowledge a formal in-137



gredient of the veri�cation process; second, we want to provide a useful tool fordesigners who routinely use UNITY for designing, analyzing, or modeling concur-rent systems, which can help them in performing certain tedious and error-proneveri�cation tasks; and third, we strive to construct a system that can serve as aplatform for further research on veri�cation techniques and methodologies.The above goals in
uenced the overall design of the UV system signi�cantly.In order to demonstrate the feasibility and advantages of the UNITY model checkingapproach and of the interactive use of it, a system has to be built that can be run onsizable and interesting examples, and that can be compared to other model checkerimplementations. The desire to build a useful tool calls for an intuitive user interfacethat allows for easy interactive access to the functionality provided by the modelchecker, while presenting information about veri�er invocations in a manageableway. Furthermore, the intention of using the system as a basis for future researchrequires its construction in a modular and extensible fashion.In the remainder of this chapter we describe how these design goals are metby our implementation of the UV System1. In section 6.1 we give an overview of thesystem architecture. Important features of the UV language, in which the programsand properties that are to be submitted to the veri�er are written, are discussedin section 6.2. We present some aspects of the user interface of the UV System insection 6.3 and explain how the system is used for interactive program veri�cation.We conclude this chapter with a summary of the implementation and a discussionof extensions to the system that are currently under way or are planned for the nearfuture. For up-to-date documentation of the UV system and for a more detaileddescription of various implementation issues, the reader is invited to visit the UVsystem home page on the world wide web at the following URL:http://www.cs.utexas.edu/users/markus/uv2/welcome.html1The system description is based on the current version, 2.3.3 , of the UV System.138



6.1 The UV System ArchitectureIn order to meet the requirements of modularity, extensibility, performance, andease of use, the architecture of the UV System has been designed to support thefollowing features:Object-oriented workspace: entities that are relevant for a veri�cation task,such as programs and properties, are available to the user for direct inspectionand manipulation.Separation of user interface from core functionality: the operations of theveri�er are independent from their representation in the user interface; dif-ferent interfaces can be provided for di�erent tasks or user preferences, exper-imenting with the interface does not require extensive changes to the systemcore.Scriptability: modifying the user interface, performing repeated tasks or series ofexperiments, or recording statistics in an automated fashion becomes possiblewithout having to recompile the entire system.Adequate Input Language: a strongly typed language with user de�nable ex-pressions and data types close to the original UNITY notation makes it pos-sible to conveniently state programs and properties.E�cient Symbolic Representation: expressions and formulae used to representvarious parts of the programs and properties under consideration are encodedand represented by ordered binary decision diagrams (OBDDs, [Bry86]), andcan, therefore, often be stored and manipulated very e�ciently.These features are implemented in a system architecture that consists of two sep-arate layers: the UV kernel provides the core functionality of the system, while aGUI (Graphical User Interface) allows the user to access the kernel in a convenient139



manner. The architecture is based on the Tcl/Tk system ([Ous94]), which makesit possible to separate kernel and user interface, to make the core functionality ofthe system available as a set of Tcl commands, and to interactively execute andcombine these commands as required by a speci�c veri�cation methodology or userinterface. Moreover, the use of Tcl/Tk as a GUI de�nition language signi�cantlyreduces both code size and development time needed to build a user interface (cf.section 6.4).The user can interact with the two layers in di�erent ways: the kernel isaccessible as the uvwish shell, which is an extension of the standard Tcl/Tk win-dowing shell wish. In addition to all the usual wish commands, several UV speci�ccommands have been added to provide the UV functionality. The user can interactdirectly with the command line interface of the uvwish shell. On the other hand, aGUI is entirely written as Tcl/Tk scripts on top of uvwish. There is a standard GUIprovided with the UV system distribution, but it can be modi�ed or replaced byanother one without a�ecting the kernel. Every interaction with the kernel througha GUI can be performed with the uvwish shell alone, although often in a far lessconvenient way. On the other hand, not all operations of the kernel are necessar-ily accessible through a GUI. The overall system structure of the UV system isillustrated in �gure 6.1. As can be seen the uvwish shell consists of three parts:The Tcl/Tk Library and Parser provide all the common wish commands andthe system initialization, as well as the main event loop for the entire system.UV Tcl Commands access the special functionality and data representations ofthe UV system core through a well de�ned script command interface. Typicalcommands are uv init for initializing the UV workspace, and uv parse forparsing a string as a UV input.The UV Workspace holds all the data objects generated and manipulated duringa veri�cation session such as formulae, programs, and properties. It contains140
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The user script .uvwishrc , also located in the user's home directory, is a user-supplied resource script that can contain additional setup or customizationcommands. These commands are executed after the user interface has beenset up.The UV system obtains its modular and extensible structure mainly from the sep-aration of the user interface from the system kernel, and from the modularizationof commands providing the kernel functionality. Moreover, certain implementation-level techniques have been used to keep the overall structure clean and manageable:�rst, the object-oriented features of C++ as the implementation language are usedextensively to ensure the design principles of data encapsulation and separationof functionality (model checking algorithms) from representation (symbolic repre-sentation as well as user interface). Second, the parser and the lexical analyzerfor the UV input language (cf. section 6.2) are generated from sets of augmentedgrammar rules, allowing for greater 
exibility in making modi�cations to the inputlanguage. Finally the OBDD package and its memory management (including anon-incremental version of a treadmill garbage collector [Bak92]) have been devel-oped as part of the system in order to facilitate a seamless interaction with the othersystem components while retaining the possibility of modifying the system as partof future research. Meeting the goals of seamless interaction and future extensibil-ity would have become more di�cult when using an existing package for symbolicrepresentations.In the remaining part of this section we discuss brie
y two important partsof the UV kernel: the workspace and its implementation in section 6.1.1, as well asthe OBDD package in section 6.1.2. Aspects of the GUI and the Tcl interface arepresented later in section 6.3, while an overview of the modules of the UV sourcecode can be found in appendix C. 142



Work-
space

User

Document Files

Command Input GUI Components

Shell OutputShell Input

Programs
Proper-

ties
Expres-
sions

Internal
Data
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For e�ective and convenient interactive operation of the UV system, theinternal representations of the relevant objects in the workspace need to be directlyaccessible through the user interface. This is accomplished by maintaining externalnames for those objects as well as mappings that allow the user to access objectsby their external names. These external names typically consist of a pre�x thatcharacterizes the kind of an object (for instance #expr for expressions) followedby a unique number for that category. Certain objects can also be referred to byuser-provided names.The most important entities a user deals with during a veri�cation sessionare the following:documents and user input externally represent workspace objects such as pro-grams and properties,programs are the system models to be analyzed and veri�ed,properties are speci�cations to be checked for certain programs,expressions are, in general, formulae over the state space of certain programscharacterizing sets of states, relations, invariants or parts of properties,invariants are expressions that play a special role in the veri�cation of UNITYprograms.regular expressions are formal hints used in checking progress properties.In the following we brie
y characterize these entities and describe typical operationsperformed with them.Documents and User InputIn order to introduce UNITY programs, properties, and expressions into the UVsystem the user provides an ASCII text description of these objects. The syntax of144



this external description is governed by the UV language. Input strings can be readfrom document �les or can be provided interactively through some user input win-dow. Document �les typically contain descriptions of programs and properties to bechecked, whereas interactive input is mostly used to evaluate interesting expressionsor to experiment with additional properties.Each input string provided by the user is processed by the UV Parser, whichperforms syntax and type checking and generates an internal representation forcorrectly described objects. In case syntax or type errors are encountered, a suitableerror message is returned and the location of the error in the input string is reported.Parsing and introducing new objects into the workspace is done incrementally asnewly described objects are added to the workspace without altering or removingexisting ones.ProgramsPrograms de�ne the models (state transition systems) for which model checking is tobe performed. In particular, any program de�nes a state space of all possible valuesof its variables, a set of initial states, and a labeled transition relation determiningwhich state can be reached by executing a program statement in a given state.Furthermore there are invariants associated with every program, corresponding tosets of states that are closed under the execution of the program.A successfully parsed program is entered into the workspace as part of theprogram table containing all currently de�ned programs. The user can display sta-tus information of all programs contained in the program table, and can invokeoperations on the programs such as computing the strongest invariant.PropertiesProperties are the speci�cation formulae that need to be checked for programs. Eachproperty is associated with one program, of which it expresses a certain behavior.145



A successfully parsed property is entered into the workspace as part of theproperty table containing all currently de�ned properties. The user can display statusinformation of all properties contained in the property table, can invoke operationson the properties, such as model checking the associated program for the givenproperty, or can remove properties from the workspace.ExpressionsExpressions represent typed values over some state space, typically the state spaceof a particular program or the global state space. Boolean expressions over thestate space of a program often denote sets of program states; similarly, booleanexpressions over the Cartesian product of a program state space with itself denotetransition relations.Expressions are introduced into the workspace either directly through parserinvocation on some user input, or as a result of certain operations on other expres-sions, programs, or properties. A successfully parsed or created expression is enteredinto the workspace as part of the expression table which contains all currently de�nedexpressions. The user can display information about expressions contained in theexpression table, and can, furthermore, refer to them by using external expressionnames when parsing subsequent input.InvariantsInvariants are boolean expressions over the state space of a program that play animportant role in the model checking of properties of that program. Finding suit-ably strong invariants is critical to e�cient interactive model checking of UNITYprograms.The UV system maintains at most three invariants for each program: thetype invariant expressing that every program variable takes on values only from thedomain determined by its type, the current invariant which is the conjunction of all146



invariants established for the program during a veri�cation session, and, optionally,the strongest invariant characterizing the set of reachable states of the program.Regular ExpressionsRegular expressions are part of generalized progress properties introduced in chapter4. They play an important role in utilizing action-based design knowledge in themodel checking of progress properties.Currently, the UV system maintains regular expressions only as part of gen-eralized progress properties. Additional operations, such as keeping regular expres-sions as separate objects and performing algebraic manipulations on them will beprovided in future system revisions.6.1.2 Symbolic Representation Using OBDDsOrdered binary decision diagrams are long known to be an e�cient symbolic repre-sentation for boolean functions encoding sets of states and transition relations (cf.2.3.2). We chose OBDDs as symbolic representation mostly because of the successof BDD based veri�cation methods and implementations. It is, however, importantto note that the model checking procedures for UNITY, presented in chapters 3and 5, are independent of any particular symbolic or even explicit representation.For us, OBDDs make it possible to verify a wide range of programs, but it mightstill be the case that other representations (such as explicit state enumeration, orcertain representations based on predicate calculus for in�nite state systems) arebetter suited for some classes of programs.Ideally, it should be possible to keep a strong separation of the symbolic rep-resentation and the actual veri�er operations. That makes it possible to incorporateimproved representations, or even to use multiple representations for di�erent ver-i�cation tasks or inputs. When work on the UV system was begun in 1992, anOBDD package was developed as a separate C++ class with the goal of supporting147



this separation by accessing the symbolic representation from the model checkerand parser only through a well de�ned interface (cf. appendix C). Although bynow there are complete OBDD packages and libraries available (for instance, DavidLong's OBDD package developed at CMU), we continued to use our own OBDDpackage for two main reasons: �rst, the intimate understanding of the package al-lows us to experiment with di�erent ideas and implementations; second, as partof a one-person prototype development it is more important to concentrate on thealgorithmic contributions than to attempt to incorporate all new ideas for the im-provement of symbolic representations. Nonetheless, it was important to providean e�cient implementation of the low-level symbolic representation structures andmanipulation operations documented in the literature. The techniques and methodscurrently implemented include the use of reduced OBDDs as described in [BBR90],of a combined and-exists operation in computing relational products ([McM93],of quanti�cation ordering in synchronous transitions similar to those described in[BCM91], of restriction [CM90], and generalized cofactoring [TSL+90].In addition to provisions for taking advantage of the monotonicity of predi-cate transformers in early termination of �xpoint computations, the current imple-mentation also uses a special second level cache for memoizing certain and-existscomputations in addition to the standard if-then-else (ITE) cache ([BBR90]. Weobserved, in particular, that in the presence of relatively small deterministic mul-tiple assignments, typical of many UNITY programs, a hit-rate of above 30% wasachieved for the and-exists cache, resulting in a signi�cant gain in performance.The and-exists caching technique has been used in other systems as well [Fil94],where somewhat smaller performance improvements on large examples have beenobserved. 148



6.2 The UV Input LanguageA user of the UV system describes most entities that play a role in a veri�cationsession by using the UV input language. UNITY programs, UNITY properties, andexpressions involving program variables and predicates are typical entities, whichare entered into the UV workspace after being parsed and compiled into an internalOBDD based form suitable for further processing. Therefore, the UV input languagede�nes the set of possible user inputs, and provides the user with a convenient way ofexpressing programs, properties, and expressions. These goals are met by designingthe UV input language to be close to the original UNITY notation while having thefollowing features:Finiteness: in order to ensure �niteness of all state spaces, the UV input languageallows only �nite data types.Strong Typing: a strong type system makes it possible to derive informationabout invariants from the program text.Complete Set of Properties: all properties of UNITY logic are implemented in-cluding the generalized progress properties introduced in chapter 4.Statement Labels: in extension to the traditional UNITY notation, all statementshave unique labels by which they can be identi�ed in debugging and formal-izing progress hints.In the following, we brie
y describe some aspects of the UV input language.In particular, we discuss parse units, types and type checking, expressions, programs,and properties. In our presentation we show some rules of the grammar for the UVinput language. A complete formal description of the grammar for the UV inputlanguage and of the UV type system can be found in appendix A.149



6.2.1 Name Space and ScopingThe UV system has two name spaces: one for variable, constant, type, program, and�eld names (henceforth referred to as object names), the other for action names.The structures of the name spaces determine the visibility of names in a systemdescription: associated with each action and each object is a scope, de�ned as partsof the description in the UV input language from which the action or object can bereferred to by its name. Both action and object name space have a tree structurewith the global scope as their roots and sub-scopes as their children. Sub-scopes forboth objects and actions are introduced with every program de�nition, additionalsub-scopes for objects (�eld names) are created for each record type.Every object and action is visible in the scope where it is declared and recur-sively in all children of that scope, subject to the restriction that names in sub-scopes(lower scopes) hide the same names in outer scopes. Names declared in the samescope of the same name space have to be unique, e.g. , it is illegal to declare twoenumeration types with a shared enumeration constant name in the same scope,since the enumeration constants are declared in the same scope.The action name space has an empty global scope and a local scope for eachprogram containing exactly the statement labels of that program.The object name space has a global scope containing certain prede�nednames, such as the type boolean and the constants true and false, as well asall object names declared by the user globally (e.g. , program names are globallydeclared constants of program type). On the other hand, object names declared in-side programs (or �eld names of record types) have local scope, i.e., are only visiblefrom within the program, or from within expressions and properties that are placedinto the program context. 150



6.2.2 TypesThe bene�ts of using type systems in programming are well known. In addition tothe ability of recognizing certain program errors at compile-time, a suitable typesystem provides the user with invariants that can be derived from the program textby simple syntactic operations. These invariants come at no cost for the programmersince there are no proof obligations to establish them.We, therefore, adopt a simple strong type system of �nite types for the UVinput language. In this type system every expression occurring in a program or in aproperty has a statically well de�ned type. In the following we describe the availabletypes together with the operations on them, and sketch the rules for correctly typingprograms and properties.The UV Type SystemThe type system of the UV input language consists of nine di�erent kinds of types.The simple types are boolean, number, cyclic, bits, int (�nite range integers),enum (enumeration), and program; the structured types are record and mapping.The simple types are all �nite, and the structured types are �nite types constructedfrom simpler �nite types.Among the simple types, the number and program types are restricted inthe sense that the user cannot declare variables of these types: any program can bethought of as the de�nition of a constant (the program name) of type program, andany expression made up from only number literals and arithmetic operators is givena number type. There are no operations de�ned on the program type, but programconstants are used in specifying the context of properties.The boolean type has two prede�ned constants true and false and theusual boolean operators. Finite enumeration types are given by ordered list ofunique enumeration constants; these constants de�ne the possible values of the typeas well as a linear order (from smallest to greatest element) on it. Additionally, the151



UV type system provides three �nite-range integer types, that di�er slightly in theway they relate to the actual set of integers, i.e., in the way the arithmetic operators+ and - are de�ned (the comparison relations are similarly de�ned for all integertypes, as the relation on the corresponding integers):Cyclic types: cyclic(n) represents the integers modulo the positive natural n,i.e., the cyclic group of n elements. Inequality relations are to be used carefully,since they do not obey monotonicity laws (e.g. , in cyclic(5), 2<4 but not2+2<4+2).Bits types: bits(n) represents n-bit numbers for which arithmetic is performedmodulo 2n. They are similar to the cyclic types, but support additionalbit-level operations2.Interval types: int(m..n): represents the intervals of integers from m up to andincluding n. The type of an expression involving interval type variables isthe syntactic minimal interval type suitable for the result; for instance, if xhas type int(2..7), the expression x-3 has type int(-1..4). No moduloarithmetic is performed.The two kinds of structured types are the record type and the mapping type, thelatter of which can be thought of as a generalization of array types. A record typeis de�ned by a non-empty set of pairs of �eld-names and previously de�ned types.A mapping type is determined by two previously de�ned types, an index type andan element type. A variable of a mapping type is a (�nite) mapping from the indextype to the element type. Arrays in languages like C++ or PASCAL are specialcases of mappings in which the index type is some integer or range type. A fewexamples of type declarations are:type Range = int(1..8);2not implemented currently 152



type State = enum{idle, trying, critical};type Process = {id: cyclic(16); state: State};var process: Process;var network: Range -> Process;type Monitor = Process -> enum{never, once, often};Note that the index type of a mapping type can be a structured type (see Monitor inthe example above). Accessing components of a record type or elements of an indextype is expressed with the function application operator . as in process.state ornetwork.(i+1) .SubtypesThe notions of subtypes and type coercion play an important role in determiningwhether a given program, property, or expression is typed correctly: only correctlytyped input is compiled into the internal representation, and any (sub-)expressionof a correctly typed input has a unique, statically determined type.Informally, a type S is a subtype of type T if every element of S can beregarded as an element of T . For instance, extending a record type R by a newcomponent yields a subtype of R, since any element of the new type can be regardedas an element of R (in which the value of the new component is ignored).The subtype relation on integer types is, at the �rst glance, somewhat un-usual: number types are subtypes of all other integer types, cyclic and bits typesare only subtypes of themselves, and int types are subtypes of any int type. Typescyclic and bits types are kept incompatible with other integer types because theyhave a di�erent algebraic structure. Compatibility of arbitrary int types was cho-sen in order to support the informal semantics of such types as providing a windowinto the in�nite set of integers. In particular, this compatibility is a requirement forbeing able to handle assignments of the form x := x+1 where x has interval typeint(m..n); the right-hand side has type int(m+1..n+1) which needs to be a sub-153



type of int(m..n) in order to comply with the type rule for assignments. Instead ofdisallowing such an assignment altogether, it is given the semantics that the valueof the right-hand side is some arbitrary value in the target range from m to n in casethe value of x+1 falls outside this range. An implementation is free to choose thatvalue arbitrarily.The rationale behind this semantics is the following: an assignment such asthe above is inappropriate for a �nite state program, since it can generate an in�niteprogram behavior. The only reasonable occurrence of such an assignment shouldbe guarded by some predicate b that e�ectively restricts the growth of the valueof x. The intention should be that in an actual program execution the statementis never enabled in a state in which the right-hand side produces an out-of-rangevalue. In other words, by including an assignment such as x := x + 1 if b in aprogram, the user actually generates the proof obligation invariant b ==> x<n,which should be checked as a required property of the program.The subtyping relation for structured types is de�ned recursively as follows:a record type R is a subtype of a record type S, if and only if every �eld-name ofS occurs in R and for each �eld-name f of S the type associated with f in R is asubtype of the type associated with f in S. A mapping type M de�ned as A->B is asubtype of a mapping type N de�ned as C->D, if and only if B is a subtype of D andC is a subtype of A.Type Checking of ExpressionsAn expression is well-typed if the UV type checking algorithm successfully labelsall subexpressions with their types. The type checking algorithm proceeds by la-beling subexpressions with their types in a bottom-up fashion starting with literalsand variables, while requiring that the types of any subexpressions occurring asarguments to some operator be compatible with that operator.154



6.2.3 Parse UnitsThe input to the UV parser (more precisely, to the uv parse command of the uvwishshell) consists of a sequence of input units, each of which either declares some typesor variables, or describes a program or a property, or de�nes an expression.All units that have been parsed correctly and have passed the type checkingsuccessfully are compiled into an internal OBDD-based representation. In partic-ular, programs are internally represented as a set of statements, each of which issymbolically represented by a boolean function characterizing the transition rela-tion of the statement. Similarly, the internal representation of a property includesthe OBDDs representing the expressions from which the property is built, and {in the case of generalized progress properties{ also a representation of the regularexpression that is part of the property. Expressions are compiled into vectors ofOBDDs, the size of which is determined statically by the type of the correspondingexpression.ProgramsA program consists of a program name and four sections: the declare-section de-clares local types and variables and, thereby, de�nes the local state space of the pro-gram; the always-section de�nes transparent variables ([CM88]) that serve mostly asabbreviations to render the program easier to read and understand; the initially-section de�nes the set of initial states of the program, and the assign-section de�nesthe state transition in terms of asynchronous program actions. Several examples ofprograms are given in chapter 7.A program is well-typed if the following conditions are met: all of its expres-sions are well-typed, the types of all expressions in the always section are subtypes ofthe declared types of the corresponding transparent variables, all expressions in theinitially section are of type boolean, all expressions appearing as guards in state-ments in the assign section are of type boolean, and the types of all expressions155



appearing on the right-hand side of the assignment operator are subtypes of thecorresponding types of the left-hand side variables, record components, or mappingcomponents.Properties and ExpressionsA property is de�ned in the context of exactly one program, which is named in acontext declaration preceding the property. As a consequence, all global symbolsand all local symbols de�ned in the associated program can be referred to in theproperty. Some examples of properties of a program named sample are:in sample: n=3 unless m>0;in sample: true --> n=3 by [alpha]*[beta];A property is well-typed if and only if all of its expressions are well-typed, and {unless the property is a constant property { are of type boolean.6.3 The User InterfaceInteraction with the UV system can take place at two di�erent levels: the Tclinterface provides access to the core functionality of the UV workspace, whereas aGUI makes some of that functionality accessible in a more convenient way. In thefollowing, we describe these two interfaces in some more detail: �rst, we describethe standard GUI that is provided with the UV system distribution; then, we brie
ysummarize the underlying Tcl interface.6.3.1 The Standard Graphical User InterfacesWhen interacting with the UV system through its graphical interface the user typ-ically deals with the following parts:The Command Window gives access to system commands, displays system mes-sages, and allows the user to invoke the parser.156



Document Windows are created for each document �le in use and allow the userto edit, save and parse documents.The Program Table Window lists all current programs and allows the user toexamine and perform operations on them.The Property Table Window lists all current properties and allows the user toexamine and perform operations on them.The Expression Table Window lists information about all current expressions.Property Information Windows display detailed status information about se-lected properties.In the following we show typical instances of these interface components and brie
yexplain how they can be used.The Command WindowThe command window consists of the following four parts arranged from top tobottom; see �gure 6.3 for an example.The Menu Bar provides access to various system operations.Command Buttons invoke operations on the command window.The System Message Area displays system messages such as parser error mes-sages or status messages.The User Input Area allows the user to interactively parse and process UV in-put.The menu bar contains a pull-down menu labeled File providing operations forcreating new documents (New), opening an already existing document (Open...),and for terminating a veri�cation session (Quit). Other menus for accessing system157



Figure 6.3: A Command Window
158



level information, setting preferences, or invoking tools like formulae browsers willbe added in future releases.There are two command buttons, one labeled Parse User Input for runningthe UV parser on the entire content of the user input area of the command window,the other labeled Clear for clearing both the message area and the user input areaof the command window. Status and error messages produced by the parser aredisplayed in the message area of the command window, and the error position isindicated in the user input area by highlighting the token that caused the error.Document WindowsA document window is used for viewing and editing input to the UV system, and for�ling and parsing operations on such input documents. A document window consistsof the following three parts listed as they appear in the layout of the window:Command Buttons allow the user to perform �ling and parsing operations onthe document.The Document Message Area displays messages that result from performingoperations on the document.The Document Content Area is an editable text area that can be used forbrowsing, writing, or modifying the document content.An example of a typical document window is shown in �gure 6.4.A document window contains four command buttons that cause the followingoperations to be performed:Parse runs the UV parser on the entire document content of the document win-dow. Status and error messages produced by the parser are displayed in themessage area of the document window, and the error position is indicated inthe document content area by highlighting of the token that caused the error.159



Figure 6.4: A Document Window
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Figure 6.5: A Program Table WindowClose closes the document window. Changes made to the document content thathave not been saved are lost.Save saves the document to a �le. If the document was opened from a �le, changesare saved to that �le. If the document was newly created, the user is promptedfor a new �lename under which the document is to be saved.Save As... saves the document to a �le, but always prompts the user for a �lenameunder which the document is to be saved.Clear Messages clears the message area of the document window.The Program Table WindowAll programs currently in use are listed in the program table window. The windowconsists of a command button labeled Compute Strongest Invariant and a scroll-able list of all programs currently in the UV workspace. An example of a typicalprogram table window is shown in �gure 6.5.For each program one line is displayed containing the program ID, the pro-gram name, and information about which invariant has been computed for theprogram so far. Program lines can be selected with the usual click and drag tech-niques: clicking the command button causes the strongest invariant to be computedfor all selected programs. Although the UV kernel implements di�erent algorithmsfor computing the strongest invariant (such as forward chaining and iterative squar-ing), the command button invokes the algorithm that has been found to be the most161



Figure 6.6: A Property Table Windowe�cient for most programs. This algorithm is called frontier forward chaining ; itsname is due to the fact that in successive iterations of the forward exploration ofthe state space successors of those states are determined that have been added onlyin the previous iteration.The Property Table WindowAll properties currently in use are listed in the property table window. The windowconsists of the following three parts given in the order in which they appear in thelayout of the window:Command Buttons allow the user to perform operations on selected properties.Invariant Radio Buttons are used to specify which invariant is to be used inchecking properties.The List of Properties is a scrollable list of all properties currently in the UVworkspace.An example of a typical property table window is shown in �gure 6.6.A property table window contains two command buttons: the �rst, labeledCheck, invokes the model checker on all currently selected properties; the second,162



labeled Delete, removes the selected properties from the workspace.The radio buttons are used to select whether a model checker invocationshould use the type invariant, the current invariant, or the strongest invariant of therespective programs for which properties are checked.For each property in the list of properties, one line is displayed containingsummary information about the property, namely the property ID, the name of theprogram associated with the property, the checking status of the property, and thebeginning of the textual representation of the property. The checking status is oneof the following four:new indicates that no checking attempt has been made for the property.? indicates that the property has not yet been proved to hold in the associatedprogram, but that there might be a suitably strong invariant with respect towhich the property could still be proved.ok indicates that the property has been proved to hold in the associated program.fail indicates that the property has been proved not to hold in the associatedprogram by checking it with respect to the strongest invariant of the program.Property lines are selected for subsequent operations with the usual click and dragtechniques. Double-clicking on a property line with the �rst mouse button bringsup a property information window for this property containing more detailed infor-mation about the checking status.The Expression Table WindowAll expressions currently in use are listed in the expression table window. Thewindow consists of a list of entries with one line for each expression. An example ofan expression table window is shown in �gure 6.7.163



Figure 6.7: An Expression Table WindowFor each expression in the UV workspace, one line is displayed characterizingthe expression. Each such line consists of the expression ID, the type of the expres-sion, the value of the expression (if the expression represents a constant, otherwisea number in square brackets showing the number of OBDD nodes required in thesymbolic representation of the boolean vector encoding of the expression), and thebeginning of the textual representation of the expression.Property Information WindowsFor each property listed in the property table, window a property information win-dow can be displayed by double-clicking on the entry of the property in the propertytable list.The property information window displays more detailed information about theproperty and is useful for analyzing model checker output and for debugging prop-erties and their associated programs. The information presented in a property in-formation window includes the name of the program associated with the property, atextual representation of the property, and a list of status items, each providing in-formation about a certain aspect of the checking status of the property. An exampleof a property information window is shown in the �gure 6.8.Each status item is labeled with an identifying category. Some status itemshave additional information associated with them in the form of some expression.If such an expression is present, a button labeled Add Expr appears at the right ofthe corresponding status item line. Pressing that button causes the expression to164



Figure 6.8: A Property Information Windowbe added to the expression table window, thereby being made available for furtherinvestigation.The following table lists all status items by their categories and describes theinformation available through them:Status shows the checking status of the property as displayed in the property tablewindow.Invariant identi�es the kind of invariant used for checking the property. Thisinvariant is made available by pressing the Add Expr button.Implication states the result of the implication check required for invariant andco properties. A predicate characterizing all states (within the checkinginvariant) falsifying the implication is available by pressing the Add Expr but-ton.Safety states the result of the safety check required for co , unless , stable ,invariant , constant , and ensures properties. In particular, it names aprogram statement violating the condition (if there is any). If there is sucha violating statement then a predicate characterizing all states (within thechecking invariant) from which an execution of named statement violates thesafety condition is available by pressing the Add Expr button.165



Transition states the result of the helpful transition check required for transientand ensures properties. In particular, it names a helpful program statement(if there is any).Value shows a value for the expression of a constant property for which thestability condition is violated (if there is such a value). If there is a value thatis changed by some statement, then such a value is made available by pressingthe Add Expr button.Iterations presents the number of outer (least) and inner (greatest) �xpoint it-erations in the checking of leads-to and generalized leads-to properties. Apredicate characterizing all states (within the checking invariant) for whichthere is a fair program execution not satisfying the leads-to property is madeavailable by pressing the Add Expr button.Furthermore, all status items characterizing counter-examples (i.e., the itemslabeled Implication, Safety, Value, and Iterations) have another button at-tached to them, which is labeled Debug. Pressing this button brings up a newwindow with a witness for the violation characterized by the corresponding statusitem. Pressing the Close button closes the property information window.6.3.2 The Tcl InterfaceThe Tcl interface of the UV system consists of a set of commands and some specialTcl variables added to the standard windowing shell wish. The entire functionalityis available through these commands and variables: in particular, the standard GUIpresented in the previous section is implemented completely as a set of Tcl/Tkscripts.The commands speci�c to the UV system as part of the uvwish shell arelisted brie
y in the following table; a detailed description of these commands canbe found in appendix B: 166



uv check invokes the model checker.uv expr accesses information about expressions.uv info accesses information about the UV system.uv init initializes the UV system.uv option sets and displays system options and parameters.uv parse parses a string of the UV language and adds the de�ned entities to theUV workspace.uv prog accesses information about programs.uv prop accesses information about properties.uv si computes strongest invariants.Currently, there are three Tcl variables that can be used to control the behavior ofsome UV commands, or communicate information between executing UV commandsand other active Tcl/Tk scripts:uvAbort is a boolean variable that when set to 1 causes the potentially time-consuming UV commands uv check and uv si to be aborted.uvProgress is an integer variable that counts the number of major iterations duringuv check invocations for leads-to properties and during uv si invocations.uvSubProgress is an integer variable that is set to the percentage of statementschecked in uv check invocations for safety and basic progress properties, andin each major iteration of a uv check invocation for a leads-to property.These variables are used in the standard GUI, for instance, in order to display com-putation progress bars indicating the status of a lengthy UV command execution167



(such as computing a strongest invariant or checking a property of a complex pro-gram). This is possible because the potentially time-consuming commands uv checkand uv si periodically process pending events, thereby updating the user interfacedisplay and checking the variables mentioned above.6.4 Implementation Summary and ExtensionsThe UV system in its current form is the result of a research and implementatione�ort that began in 1992 as an experimental OBDD based model checker for UNITYprograms, which was written in Scheme [RC86], and ran on a Macintosh computer.Since then, many signi�cant improvements to the symbolic representation have beenmade, the system has been written in C++ under UNIX and the X Windows system,and the theory of incorporating design knowledge has been developed. The �rstversion of the UV system was made publicly available in December 1994 [Kal94,Kal95b]. After a redesign and clean-up of the system architecture that had grownover a period of two years, the second and current version of the UV system wasreleased in October 1995. Besides the new structure and the interface based on theTcl/Tk package, version 2 improved the e�ciency of the symbolic representation andthe expressiveness of the UV input language. We expect the UV system to continueto be a platform for conducting and evaluating further research in veri�cation ofconcurrent programs in the near future.The current version, 2.3.3 , of the UV system is based on Tcl 7.4 and Tk 4.0,and has been successfully tested on SunOS 4.1.3 and Solaris 2.4. It was developedusing the GNU suite of development tools, including the parser generator bisonand the lexical scanner generator 
ex. The UV system source consists of about36,000 lines of commented code. About 24,500 lines are written in C++ , 9,000 linesare C++ code generated by bison, 
ex and the genclass type generator, and theremaining 2,500 lines are Tcl/Tk code de�ning the user interface. Overall, 32% ofthe code deals with parsing and compilation of UV input into the internal OBDD168



representation, 26% is needed to implement the symbolic OBDD representation andthe symbol table handling, about 23% is used on the model checking algorithmsand related data structures, 12% is spent on implementing the Tcl interface, andonly about 7% of the code makes up the standard GUI. It is worth mentioning thatthis con�rms one of the greatest alleged advantages of using a scripting languagelike Tcl/Tk for building user interfaces, namely that the code size and the timerequired to build, modify, and maintain such an interface is signi�cantly lower thantraditional user interface designs, in which the interface code is typically written inC++ using some interface toolkit. In the �rst version of the UV system, we hadwritten an interface based on the Motif[Hel92] toolkit, that not only took up morethan 30% of the entire code, but also was more di�cult to modify and adjust tothe changing requirements of a system that is used as an experimental platform forresearch.In spite of its current size and its established usefulness, there are someimplementation aspects of the UV system that need to be improved. They can bedivided into the following three groups:Symbolic Representation: several well established techniques for improving theOBDD performance need to be implemented, such as dynamic variable re-ordering [Rud93] and partitioned OBDD representations [HD93, Jai96];UV Language: quanti�ed statements and formulae need to be introduced in orderto improve the ease of expression of the input language; support for regularexpression hints as separate objects and for performing algebraic operationson them could simplify working with progress properties;User Interface: a better presentation of debugging information in the form ofcounter-example traces, and the addition of formula browsers could facilitatethe user's task of �nding and debugging program or speci�cation errors.In addition to these implementation-oriented extensions, future research concerning169



compositional reasoning will prompt the need for support of advanced structuringand reasoning methods, which are expected to utilize the modular and extensiblestructure of the current version of the UV system.
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Chapter 7Experimental ResultsIn this chapter we present some empirical results in applying the UV system to somepractical problems. Each example has been chosen with the intention to emphasizea particular aspect of the UV system and the model checking procedures it is basedon. In section 7.1 we present a two-process mutual exclusion protocol that hasbeen one of the �rst applications of the UV system, which detected errors in a manualcorrectness proof. A resource allocation protocol based on a dining philosopheralgorithm demonstrates the increased e�ciency of local safety checking in section7.2. The counter example of chapter 4 has been included in section 7.3 to documentthe savings obtained by generalized progress checking. The remaining two examples,Milner's cycler in section 7.4 and the elevator control program of chapter 5 in section7.5, are more elaborate examples that illustrate the advantages of using generalizedprogress properties.Each example is presented with the program and relevant properties writtenusing the UV input language. However, for the sake of conciseness of the listingssome language features not implemented in the current revision 2.3.3 of the UVsystem are used. In particular, quanti�ed assignments and formulae are used exten-sively. We refer to the language including these additional syntactic features as the171



extended UV input language.All examples were run on a SPARC-20 workstation with about 20 MB ofmain memory allocated to the model checker.7.1 Two-Process Mutual ExclusionThe following two-process mutual exclusion algorithm is taken from [Mis90a], whereit is derived by re�nement from a set of properties. Important properties of the al-gorithm, like mutual exclusion and absence of starvation, are established along withthe manual. Although these properties can be established, some of the intermediateinvariant proofs in the paper were indeed not correct. Some of these errors had beendiscovered independently [DF90], but they were all discovered automatically by theUV system.The mutual exclusion algorithm for two processes U and V is based on anencoding of a shared queue by three boolean variables u, v, and p. Processes entertheir IDs at the end of the queue if they are requesting to enter their critical sections;the ID at the head of the queue belongs to the process permitted to enter its criticalsection; upon leaving its critical section a process removes its ID from the headof the queue. The variables u and v indicate whether the IDs of U or V are inthe queue, respectively; variable p indicates which process ID is at the head of thequeue: if it is the ID of V then p is true, if it is the ID of U then it is false (its valueis immaterial if the queue is empty).The encoding of the mutual exclusion algorithm as a UNITY program is givenin the following listing. We have added two boolean variables hu and hv to model thepossibility that either process can remain in its non-critical section forever (withoutthese variables each process would request to enter its critical section eventually dueto the unconditional fairness constraint).172



program Mutexdeclaretype PC = enum(noncritical, requesting,trying, critical, exiting);var m, n: PC;var u, v, p: boolean;var hu, hv: boolean;alwaysinitially!u;!v;m = noncritical;n = noncritical;assign// first process (u)[u0] hu := !hu[u1] u, m := true, requesting if hu /\ m = noncritical[u2] p, m := v, trying if m = requesting[u3] m := critical if !p /\ m = trying[u4] u, m := false, exiting if m = critical[u5] p, m := true, noncritical if m = exiting// second process (v)[v0] hv := !hv[v1] v, n := true, requesting if hv /\ n = noncritical[v2] p, n := !u, trying if n = requesting173



[v3] n := critical if p /\ n = trying[v4] v, n := false, exiting if n = critical[v5] p, n := false, noncritical if n = exitingend;// invariantsin Mutex: invariant u == (m >= requesting /\ m <= critical);in Mutex: invariant v == (n >= requesting /\ n <= critical);// invalid invariantsin Mutex: invariant m = critical \/ m = exiting ==> !p;in Mutex: invariant n = critical \/ n = exiting ==> p;in Mutex: invariant (u == (m >= requesting /\ m <= critical))/\ (m = critical \/ m = exiting ==> !p);in Mutex: invariant (v == (n >= requesting /\ n <= critical))/\ (n = critical \/ n = exiting ==> p);// corrected invariantsin Mutex: invariant (u == (m >= requesting /\ m <= critical))/\ (m = critical ==> !p);in Mutex: invariant (v == (n >= requesting /\ n <= critical))/\ (n = critical ==> p);// misc. propertiesin Mutex: m = trying unless m = critical;in Mutex: m = requesting --> (p == v) /\ m = trying;in Mutex: m = critical --> p; 174



// mutual exclusionin Mutex: invariant !(m = critical /\ n = critical);// absence of starvationin Mutex: m = requesting --> m = critical;Due to the small size of programMutex the strongest invariant and all valid proper-ties can be checked almost instantaneously. Two facts, however, are worth noting:�rst, the four invariants in the sections labeled invariants and corrected invariantsare su�cient to establish all the other valid properties. Second, the number of inneriterations necessary for checking the absence of starvation property can be reducedfrom 116 to 22 by using the regular expression hint [u2]([v2][v3][v4][v5])[u3], whichcaptures the transition of process u from requesting to critical with the possiblynecessary pass of process v through its critical section.7.2 Resource Allocation: Dining PhilosophersThe dining philosophers program presented here is based on the distributed diningphilosophers algorithm found in [CM88]. It implements a ring topology in whichtwo neighboring processes share a fork. Each process is in one of three states,thinking, hungry, or eating. A process can transit from thinking to hungry at anytime, can move from hungry to eating only if neither of its neighboring processes isin its eating state, and moves from eating to thinking after �nite time. While thetransitions from thinking to hungry and from eating to thinking are under control ofthe processes, a scheduler has to determine when processes can transit from hungryto eating. An important property that need to be maintained by the scheduler is themutual exclusion property, stating that two neighboring processes are not eating at175



the same time.In order to resolve con
icts arising when two neighboring processes are readyto transit from hungry to eating, the algorithm for the scheduler maintains a par-tial order among the processes in which processes with higher priority are chosenover processes with lower one. To guarantee that no process is permanently dis-criminated against, the partial order needs to be dynamic and fair over time. Thisis accomplished my maintaining a directed acyclic graph over the topology of theprocesses, in which an edge from process u to process v indicates that u has higherpriority than v. A process chosen to enter its eating state decreases its priority bychanging all incident edges to point away from it.The algorithm implements the directed acyclic graph in a distributed fashionin which every pair of neighboring processes communicates via three variables, fork,clean, and rf. These variables encode both the ordering between the processes andtheir respective states. For a detailed description of this encoding and the derivationof the algorithm, the reader is referred to [CM88].In the following we show the program and several relevant properties writtenin the extended UV input language. The syntactic parameter N is instantiated toyield ring topologies of varying sizes. Syntactic features used in the presentation ofthis program that are not present in the current implementation of the UV inputlanguage include the quanti�cation of expressions and assignments, the use of arrayliterals (such as the one in the de�nition of other), and the if-then-else operator <||>.program diningdeclaretype State = enum(thinking, hungry, eating);type Neighbors = enum(left, right);type Index = cyclic(N); 176



var ready : boolean; // used for modeling the nondeterministic// behavior of a thinking processvar dine : Index -> State;var clean : Index -> boolean;var fork : Index -> Neighbors;var rf : Index -> Neighbors;alwaysother : Neighbor -> Neighbor =(-> n: Neighbor |: left <| n = right |> right);mayEat : Index -> boolean =(-> i: Index |: (fork.i = left /\ (clean.i \/ rf.i = right)) /\(fork.(i-1) = right /\ (clean.(i-1) \/rf.(i-1) = left)));sendReq : Index -> Neighbors -> boolean =(-> i: Index |:(-> n: Neighbors |: fork.i = n /\ rf.i = other.n /\dine.i = hungry));sendFork : Index -> Neighbors -> boolean =(-> i: Index |:(-> n |: Neighbors: fork.i = n /\ !clean.i /\rf.0 = n /\ !(dine.i = eating)));initially(/\ i: Index |: dine.i = thinking);(/\ i: Index |: !clean.i); 177



(/\ i: Index |: fork.i != rf.i);(/\ i: Index |: fork.i = left <| i != N-1 |> right);assign[toggle] ready := !ready([] i: Index |:[th] dine.i := hungry if dine.i = thinking /\ ready)([] i: Index |:[et] dine.i := thinking if dine.i = eating)([] i: Index |:[he] dine.i, clean.i, clean.(i-1) := eating, false, falseif (dine.i = hungry) /\ mayEat.i)([] i: Index |:([] n: Neighbor |:[r] rf.i := n if sendReq.i.(other.n)))([] i: Index |:([] n: Neighbor |:[f] fork.i, clean.i := n, true if sendFork.i.(other.n)))end;// auxiliary invariantsin dining: (/\ i: Index |:invariant (dine.i = eating) ==>178



(fork.i = left) /\ !clean.i);in dining: (/\ i: Index |:invariant (dine.i = eating) ==>(fork.i-1 = right) /\ !clean.i-1);// mutual exclusion propertyin dining: (/\ i, j: Index | i != j:invariant !(dine.i = eating /\ dine.j = eating));In order to establish the mutual exclusion of the two neighboring processes 0 and 1,we have to check the following property:in dining: invariant !(dine.0 = eating /\ dine.1 = eating);The attempt to compute the strongest invariant is not successful for all but smallvalues of N. For instance, the program for a ring with 10 processes has 71 assignmentstatements, requires 51 state bits for a syntactic state space of 1:27�1014 states whichhas a diameter of 104 (i.e., the number of iterations needed in the computation ofthe strongest invariant). Computing the strongest invariant takes about 45 minutesand produces a OBDD representation consisting of 844 nodes. The subsequent checkof the invariant property takes only a few milliseconds.We contrast this with the interactive approach in which the user suppliesdesign knowledge in the form of invariants. From the design of the algorithm, it isimmediately clear that a process can only be in its eating state if it holds both forksand both the forks are dirty. In particular, the following weaker invariants can beasserted for processes 0 and 1:in dining: invariant (dine.0 = eating) ==>(fork.0 = left) /\ !clean.0;in dining: invariant (dine.1 = eating) ==>(fork.0 = right) /\ !clean.0;179



The above invariants can be established directly with the type invariant, the mutualexclusion property can then be checked successfully with respect to the currentinvariant. For 10 processes all three checks together take only a few milliseconds.Checking mutual exclusion for all 10 processes requires 20 auxiliary invariants, allof which can be checked in about 0.5 seconds. For 20 processes with 101 statebits and 8 � 1024 states, checking of the 20 mutual exclusion properties and the 40auxiliary invariants establishes mutual exclusion in about 2 seconds. An importantpoint is that the auxiliary design invariants express a straightforward fact about thedesign of the algorithm and are therefore readily available in a situation in whichthe veri�cation is not entirely separated from the program design.7.3 Progress by Regular Expressions: A CounterIn chapter 4 the counter program UpDown was used as an illustrative example tointroduce the concept of generalized progress properties and was discussed therein detail. Here, we present some performance measurements that demonstrate theimproved e�ciency of using generalized progress properties as compared to ordinaryleads-to properties.In the following listing of the program and the two progress properties thesyntactic parameter N needs to be instantiated for di�erent counter sizes:program UpDowndeclarevar b: boolean;var x: int(0..N-1);alwaysinitiallyassign[set] b := true 180



[up] x := x+1 if !b /\ x < N-1[down] x := x-1 if x > 0end;in UpDown: true --> x=0;in UpDown: true --> x=0 by [set][down]*;In the following table we summarize performance measurements for di�erent countersizes. The two properties, for which model checking is compared, are the ordinaryleads-to property true 7! x = 0 (indicated by 7! in the table), and the gen-eralized leads-to property true [set][down]�7�! x = 0 (indicated by r- 7! ). Threemeasurements are listed: iterations states the number of inner �xpoint iterationsneeded to complete the check, ops states the number of OBDD node lookup requestsin thousands, and time shows the execution time in seconds. All model checker in-vocation establish the respective property as correct and use only the automaticallygenerated type invariant.N 10 20 50 100 200 500 1000 10000itera- 7! 107 320 1551 5608 21222 128000 506006 n/ations r- 7! 41 81 201 401 801 2001 4001 40001ops 7! 2.5 11 100 548 2810 22283 88933 n/ain 103 r- 7! 0.8 2.1 8.7 18 39 119 243 3844time 7! 0.3 0.3 1.1 4.8 27.3 227.9 1028.4 n/ain s r- 7! 0.2 0.3 0.3 0.4 0.5 1.1 2.2 38.0As can be seen from this table, the number of iterations for the ordinary leads-tocheck is quadratic in N, whereas it is only linear for the generalized leads-to check.181



7.4 Scheduling: Milner's CyclerThe scheduling problem known as Milner's Cycler ([Mil89]) has been described insection 2.2.1; it also has been used to illustrate the UNITY model checking procedurein section 3.4. In the following, we present some performance measurements forchecking di�erent properties.Milner's Cycler has been used as a benchmark in the literature in order tocompare di�erent veri�cation methods and systems. Preliminary results in [Kal95a]demonstrated the advantages of using design invariants for checking safety proper-ties. The following listing shows the program Cycler together with several relevantproperties written in the extended UV input language, where the syntactic param-eter N needs to be instantiated to the actual ring size.program Cyclerdeclaretype Index = cyclic(N);type PC = enum(start, sync, choose, bc, cb);var a: Index; // a holds the index of the last process// that performed its a-actionvar i: Index; // specification variablevar cyc: Index -> PC; // process statesinitiallya = N - 1;cyc.0 = start;(/\ i: I | i != 0: cyc.i = bc);182



assign([] i: Index |:[st] a, cyc.i := i, sync if cyc.i = start)([] i: Index |:[ch] cyc.i := bc if cyc.i = choose)([] i: Index |:[cb] cyc.i := start if cyc.i = cb)([] i: Index |:[sb] cyc.i, cyc.(i+1) := choose, startif cyc.i = sync /\ cyc.(i+1) = bc)([] i: Index |:[sc] cyc.i, cyc.(i+1) := choose, cbif cyc.i = sync /\ cyc.(i+1) = choose)end;// design invariantsin Cycler: invariant a = i ==> 183



cyc.i = sync \/ cyc.(i+1) = start \/ cyc.(i+1) = cb;in Cycler:invariant (/\ i: Index |: ((cyc.i = cb \/ cyc.i = start \/cyc.i = sync) ==>(/\ j: Index | i != j: (cyc.j = choose \/ cyc.j = bc))));// safety property characterizing cyclic behaviorin Cycler: a = i co a = i \/ a = i+1;// progress properties asserting absence of deadlockin Cycler: a = i --> a = i+1;in Cycler: a = i --> a = i+1 by([sc.i][cb.(i+1)][sb.i])[st.(i+1)];// specific versions of the above progress properties for i = 1in Cycler: a = 1 --> a = 2;in Cycler: a = 1 --> a = 2 by ([sc.1][cb.2][sb.1])[st.2];The design invariants are obtained from the design of the processes, or, alternatively,from inspection of the state transition diagram as follows. If the a-action of process ihas been taken most recently (modeled by the predicate a = i), then either process iis in state sync, or it has synchronized with process i+1 which has not yet performedits a-action, i.e., process i+1 is in state cb or in state start. This is formulated asthe �rst design invariant above.The second design invariant is derived from the following observation: pro-cess states can be divided into two classes, one containing cb, start, and sync, theother containing bc and choose. The two program statements e�ecting a processsynchronization, namely [sb] and [sc], have the property that the two participat-ing processes have states in di�erent classes, and each participating process changes184



its class as a result of the synchronization. Together with the fact, that initiallyexactly one process, namely process 0, has a state in the �rst class, it follows, thatthere is always at most one process with in a state from that �rst class. This isformulated in the second design invariant.In the following table we compare the checking of the safety property a =i co a = i _ a = i + 1 by computing the strongest invariant (indicated by si)and by using the design invariants (indicated by inv). The following table lists thenumber of OBDD node lookup requests in thousands under ops, the checking timein seconds under time, as well as the size of the syntactic state space under statesand the maximum distance of any state from the start state under diameter forvarious sizes of N.N 4 8 12 16 20states 1:00 � 104 2:50 � 107 3:52 � 1010 3:91 � 1013 3:81 � 1016diameter 20 44 68 92 116ops si 24 313 2479 9980 32990in 103 inv 5 21 54 86 170time si 0.4 2.2 16.6 74.0 296.5in s inv 0.3 0.5 0.7 1.1 1.9Next, we check the progress property, a = i 7! a = i+ 1 . Clearly, progress froma = i to a = i+1 is achieved in two phases: �rst, process i+1 has to reach its startstate, then a = i+ 1 is established by virtue of the [st.(i+ 1)] action. In the �rstphase synchronization between processes i and i+1 needs to take place, achieved byeither action [sb.i] or action [sc.i]. Action [sb.i]moves process i+1 to its startstate, whereas after action [sc.i] an execution of action [cb.(i+ 1)] is necessaryin order to complete the �rst phase. Since the choice between synchronization via[sb.i] or [sc.i] is not determined by the current state (for instance, if process iis in its sync state and process i + 1 is in its choose state, then executions with185



either synchronization action are possible), we choose as regular expression for the�rst phase the sequential composition [sc.i][cb.(i+ 1)][sb.i], which results inthe regular expression for the progress property as shown above.The following table compares the ordinary progress check (indicated by 7! )for the property a = 1 7! a = 2 with the generalized one (indicated by r- 7! ) usingthe regular expression hint derived above. As in the previous examples, the lineslabeled with iterations show the total number of inner �xpoint iterations, the oneslabeled with ops show the number of OBDD node lookup requests in thousands,and the ones labeled with time show the checking time in seconds:N 4 8 12 16 20itera- 7! 86 174 268 370 480tions r- 7! 12 12 12 12 12ops 7! 22 287 2030 8917 29334in 103 r- 7! 7 24 52 87 145time 7! 0.4 2.3 16.5 87.7 369.8in s r- 7! 0.3 0.5 0.8 1.3 1.8In this example the e�ect of using a generalized progress property is particularlyimpressive. Since the regular expression hint does not contain a �-operator, theveri�cation condition evaluation is reduced to a few simple �xpoint computations ofdepth 1. We are thereby able to take advantage of the local nature of the achieve-ment of progress, something we could not have done with ordinary leads-to prop-erties. We could have attempted to establish the progress property by a series ofensures properties; in that case, however, we would have been required to comeup with suitable intermediate predicates, a task which the veri�cation check usinggeneralized progress properties performs implicitly.186



7.5 An Elevator Control ProgramThe elevator control program has been discussed in detail in section 5.3. Here wepresent the program source in the extended UV language and report some of theperformance results for checking progress properties.The following listing shows the program Elevator, four design invariants, andthe leads-to properties we are interested in. The syntactic parameter N needs to beinstantiated to obtain programs for various number of 
oors:program Elevatordeclaretype Range = int(1..N);var state: enum(STOP, UP, DOWN); // state of elevatorvar dir : int(-1..1); // direction of movementvar pos : Range; // current floorvar req : Range -> boolean; // array of requested floorsvar user : boolean; // user enable flagalwaysupReq : boolean = (\/ i: Range | pos < i: req.i);// indicates request abovedownReq : boolean = (\/ i: Range | pos > i: req.i);// indicates request belowinitiallypos = 1 /\ dir = 0 /\ state = STOP;(/\ i: Range |: !req.i); 187



assign[service] req.pos, state := false, STOPif req.pos[move] pos := pos + dirif state != STOP /\ !req.pos[goOn] state := UPif upReq /\ dir = 1 /\ state = STOP /\ !req.pos~ DOWNif downReq /\ dir = -1 /\ state = STOP /\ !req.pos[turnUp] state, dir := UP, 1if upReq /\ (dir = 0 \/ !downReq)/\ state = STOP /\ !req.pos[turnDown] state, dir := DOWN, -1if downReq /\ (dir = 0 \/ !upReq)/\ state = STOP /\ !req.pos[halt] dir := 0if !upReq /\ !downReq /\ state = STOP /\ !req.pos([] i: Range |:[request] req.i := trueif pos != i /\ user)[toggle] user := !user 188



end;// auxiliary invariantsin Elevator: invariant state = UP ==> dir = 1;in Elevator: state = DOWN ==> dir = -1;in Elevator: invariant state = UP ==> upReq \/ req.pos;in Elevator: invariant state = DOWN ==> downReq \/ req.pos;// quantified leads-to propertiesin Elevator: (/\ i: Range |:req.i --> pos = i /\ state = STOP);in Elevator: (/\ i: Range |:req.i --> pos = i /\ state = STOP by([service][turnUp][turnDown][goOn][move])*);// specific leads-to properties for i = 3in Elevator: req.3 --> pos = 3 /\ state = STOP;in Elevator: req.3 --> pos = 3 /\ state = STOP by([service][turnUp][turnDown][goOn][move])*;The strategy for the generalized leads-to properties has been derived and motivatedin section 5.3. We compare the veri�cation of the speci�c leads-to properties, �rstusing the ordinary leads-to, then using the regular expression strategy. The resultsare summarized in the following table, where iterations states the number of inner�xpoint iterations needed to complete the check, ops states the number of OBDD189



node lookup requests in millions, and time shows the execution time in seconds. Theproperties have been checked with respect to the current invariant, being the con-junction of the four auxiliary design invariants. All checks establish the respectiveproperties to hold for program Elevator. The ordinary leads-to property is indicatedby 7! , the generalized by r- 7! :N 20 50 100states 3:77 � 108 1:01 � 1018 2:28 � 1033itera- 7! 2264 13248 51576tions r- 7! 658 1798 3698ops 7! 2.25 18.3 659in 106 r- 7! 1.17 7.6 95time 7! 10.8 280 >10000in s r- 7! 5.3 83 1150Using the regular expression hint reduces the number of required �xpoint iterationssigni�cantly. The actual checking time does not decrease by the same factor, becausethe fewer inner iterations are expected to correspond on average to more complicatedformulae, since they are more likely to contribute to progress (some iterations in theordinary progress computation are more likely to terminate very quickly since theydo not contribute to the desired progress). Also, some implementation speci�c issuemay play a role; for instance, the hit ratio of the and-exists cache was signi�cantlyworse for the generalized progress checking than for the ordinary one. A di�erentchaching strategy or cache organization could lead to even better results.It should be pointed out again that the observed results con�rm that theincrease in performance observed when using regular expression hints is closely re-lated to the ratio of the number of actions that contribute to progress versus thetotal number of actions. Even in a program like the above that does not have abehavior that can be described in sequential phases, the possibility of restricting190



one's attention to the actions that are helpful for the property under considerationproduces signi�cant performance improvements.
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Chapter 8ConclusionsIn this thesis, we have investigated how a combination of the programming notationand temporal logic of UNITY and the veri�cation technique of model checking canaid in the veri�cation of concurrent programs. We have shown that the structureof UNITY logic can be exploited to obtain e�cient model checking procedures forsafety and basic progress properties that take advantage of user-supplied state-based design knowledge. We have extended the UNITY logic by the theory ofgeneralized progress, which we have used to improve the checking and the reasoningabout progress properties by utilizing user-supplied action-based design knowledge.Finally, we have designed and implemented a model checker for UNITY that makesour methods available for practical use, and have demonstrated the advantages ofour techniques by verifying several example programs.It is important to note that the techniques we have developed and investi-gated in this work contribute mostly to the algorithmic and methodological aspectsof program veri�cation. In particular, they are orthogonal to issues related to thechoice of suitable symbolic representations and { to some lesser degree { program-ming notations. For instance, it can be expected that improvements in representa-tion techniques (OBDDs or others), can be combined with our methods to furtherincrease the performance of program veri�cation.192



Our results on model checking for UNITY have not only been encouraging,they also suggest several research directions for future work. In the following section,8.1, we brie
y discuss some of these ways of extending our work. We conclude thisthesis with some �nal remarks in section 8.2.8.1 Directions for Future ResearchThroughout this thesis we have pointed out several possible extensions to our workon model checking for UNITY. Among these are the improvement of some aspects ofthe implementation of the UV system, in particular of the symbolic representationby OBDDs, the application of our methods to larger examples, and the investigationof how our methods can be adapted to other logics and formalisms { including thecombination of our theory with fairness assumptions other than the unconditionalfairness of traditional UNITY logic [CM88, Rao95, Fra86]. In the following, webrie
y discuss some additional topics for future research that can build on our workpresented here.Veri�cation for SeussRecently, Misra has proposed a new discipline for multiprogramming [Mis94] calledSeuss that is aimed at addressing both the need to reason about complex concurrentsystems, and the requirement for e�cient execution of the designed systems.A principal problem in dealing with multiprograms is that the requirementsfor a modular structure (being essential for understanding a complex system) and for�ne-grained interaction of the program components (being important for an e�cientimplementation) are contradictory in nature: when reasoning about a program onewants to be able to consider its components independently, whereas an e�cientexecution implies the possibility of interference.Seuss addresses this con
ict by disentangling sequential and multiprogram-ming aspects of concurrent systems. This approach is based on the observation193



that concurrent systems typically consist of substantial sections of sequential codeembedded into multiprograms. These sequential sections can be understood andreasoned about like sequential programs, in particular they can be given a trans-formational semantics based on pre- and postconditions. Furthermore, they canbe regarded as atomic as far as the interference with other parts of the concurrentsystem is concerned. On the other hand there are multiprogramming aspects ofconcurrent systems that cause synchronization and waiting of di�erent parts of asystem. These multiprogramming parts of a concurrent system can be given seman-tics as reactive systems, re
ecting their ongoing interaction with their environment.The computational model of Seuss separates the transformational from the reactiveaspects of a concurrent system and allows for disciplined interactions between them.For the Seuss programming model one can de�ne computations in two ways.A tight execution maintains a single thread of control and is well suited for reasoningabout a program. On the other hand, a loose execution of a Seuss program allows fora �ne-grained asynchronous distributed implementation. Central to a realization ofsuch an execution strategy is the notion of compatibility of atomic actions. Roughlyspeaking, two such actions are compatible if their order of execution can be serializedin the context of a certain class of program executions. Compatibility can be seenas a generalization of the notion of commutativity of procedures, which proves to betoo restrictive for most practical forms of process interaction.The fundamental theorem about Seuss relates the two notions of executionstrategies by asserting that for every loose execution of a given program there existsan equivalent tight execution of the same program (conversely, every tight executionis trivially also a loose execution). By virtue of this theorem it becomes possibleto reason about a program and deduce its properties in terms of the simple tightexecution strategy, and still obtain all properties even for the more general ande�cient loose executions.While the model of computation of Seuss extends much beyond that of194



UNITY with respect to hierarchical program structuring, communication by proce-dure calls, and the distinction between the sequential and concurrent aspects of aprogram, there are many features of UNITY logic that are applicable to the Seussmodel as well. By virtue of the disciplined interaction of sequential and concurrentparts and the hierarchical structure of programs, the Seuss model is very suitablefor the design of actual concurrent systems (e.g. GUI or window managers) thatare well beyond the size and complexity of typical UNITY programs. Therefore,automated or interactive design support for Seuss can have a signi�cant impactin both a theoretical and a practical way: it can take advantage of the additionalstructure of programs by providing a compositional theory of concurrency, and itcan be used for a class of applications that could not be dealt with e�ectively usingtraditional formalisms. Work on de�ning a UNITY-like logic for reasoning aboutSeuss programs and their properties is under way ([Ada95, Mis96]).Composition and ClosureThe importance of compositional reasoning as a means for dealing with large systemsis well understood, and several approaches have been proposed to exploit composi-tional techniques for model checking (e.g. [GL94]). The performance gains observedin checking safety and basic progress properties with the UV system are closely re-lated to the inherent compositionality of UNITY logic. However, there is an evenricher theory of compositionality of UNITY related to closure properties [Mis], thatshould be explored for its applicability to model checking. By hierarchically struc-turing programs and imposing syntactic restrictions (e.g. by typing and by accessrestrictions) on shared variables, a notion of program composition can be de�nedthat makes it possible to deduce even progress properties of a composite systemfrom properties of its components.This work may lead to a simpli�cation of the rely/guarantee style of reasoning[Col93, CK93, McM92]. Any results obtained in this direction will also be usable in195



the context of the hierarchically structured program model of Seuss.Model Checking of Parameterized SystemsA very desirable extension to traditional model checking is the ability to verify notjust one �xed program but a whole class of parameterized programs simultaneouslywhile not having to resort to general theorem-proving techniques.Several ideas for dealing with parameterized systems have been investigatedin the literature. On one hand, one can try to eliminate the parameterization alto-gether without the use of induction [EN95]; on the other hand, methods for eliminat-ing induction in certain cases have been proposed by either choosing a canonical pa-rameterized representation [GF93], or by reducing the parameterized checking prob-lem to a few �nite model checking problems of �xed size [KM89, McM92, MCB89].Common to these approaches to reducing parameterized systems is their linear struc-ture, i.e., the constant di�erence (by some measure) of the structures of successiveinstantiations of the parameterized system.Two ideas for expanding the class of parameterized problems that can behandled in a (mostly) automated way should be investigated. First, the linearityrequirement could be relaxed by developing a second- (or higher-) order inductionscheme, in which the di�erence between successive instantiations is no longer re-quired to be constant, but could be in the form of a parameterized system as well,requiring an inductive treatment of a lower degree. Secondly, a combination of modelchecking with the deductive system of UNITY logic could be attempted in such away that an interactive proof checker could verify the validity of the transformationof proof obligations within the logic, while the model checker could deal with thegenerated �nite state checking tasks. The idea of combining theorem proving andmodel checking is certainly not new ([Hun93, RSS95]), but the simplicity and thedeductive system of UNITY logic might be used e�ectively.196



8.2 Final RemarksThe formal veri�cation of concurrent systems will remain a challenging researcharea for the foreseeable future. As concurrent systems, in particular safety-criticalsystems such as tra�c or process control systems, continue to grow in size andcomplexity, we will have to �nd ways of extending formal methods to be able tocope with increasingly complex veri�cation tasks. Arguably, there are three ways inwhich we can hope to improve the applicability of formal methods and the feasibilityof their use in an industrial environment:1. It will be of utmost importance to take advantage of the modular structureof systems in order to overcome the complexity problems related to the stateexplosion problem, i.e., the exponential growth of the size of state spaces whencombining component programs to larger systems. In general, one does nothave to �nd a modularization of a complex system, as any reasonable designmethod relies on some form of modularization in order to manage design com-plexity. However, it is necessary to devise methods for taking advantage ofsuch modularizations, and to suggest suitable modularizations to the designerof complex systems.2. The exploitation of design knowledge will prove to be crucial for verifyingintricate components and systems. It seems that one cannot a�ord to ignorethe information about a design, the assumptions that led to certain designdecisions, and the designer's understanding of how and why he expects hisprogram to meet its speci�cations. Much of this information is no longerpresent in the �nal program text, but was available at some point duringthe design of the program. This observation emphasizes again the need ofperforming design and veri�cation hand-in-hand. It will be necessary to �ndways of exploiting this design knowledge, even if it is not possible to formalizethe entire design process. 197



3. It cannot be expected that a general design and veri�cation method will beequally applicable to all di�erent kinds of concurrent systems. Clearly, therequirements and properties of a highly synchronous circuit are very muchdi�erent from the ones of an asynchronous communication protocol. It willbe necessary to take advantage of the speci�ca of systems and applicationdomains as part of a successful design and veri�cation method.It is widely recognized that the application of formal techniques to the design andveri�cation of concurrent systems yields a degree of understanding of such systemsand con�dence in their correct and reliable operation that is unmatched by anyother design method. However, the acceptance of formal methods in an industrialenvironment is greatly hindered by complexity issues, by the lack of training andexperience in using formal methods, and { as a consequence { by the adherence toestablished design processes and tools, and the reluctance to adopt new ideas.It would be naive to assume that the e�ective use of formal techniques inan industrial setting could be accomplished without having to redesign at leastparts of the program development process. However, the use of simple and elegantformalisms that have highly automated support can lessen the impact of adoptingformal methods and enlarge the class of practical problems that can be dealt withe�ectively. Our work constitutes a step in this direction, in particular by showingnovel ways for taking advantage of user supplied design knowledge. Our approachcan be considered successful if it is able to contribute to lowering the thresholdof applying formal design and veri�cation methods to practical problems, therebyhelping to establish design methodologies that result in the construction of morereliable and maintainable systems. 198



Appendix AThe UV Input LanguageIn this appendix we present the complete grammar of the UV input language ofversion 2.3.3 of the UV system. First we introduce our grammar notation in sectionA.1, and describe lexical conventions in section A.2. Then we show the grammarrules in section A.3. We conclude this appendix in section A.4 with a brief presen-tation of language extensions that will be implemented in future revisions of the UVsystem.A.1 Grammar NotationThe grammar for the UV input language is presented in an extended Backus-NaurForm (EBNF). There are three EBNF meta symbols, namely ::= for separating leftand right-hand side of grammar rules, j for separating alternative right-hand sidesof a grammar rule, and ( )� to denote any �nite repetition of the items enclosed inparentheses.Non-terminals of the grammar are represented as strings enclosed in anglebrackets, as in <name> , while terminals are represented using typewriter font,as in initially or =!= . 199



A.2 Lexical ConventionsThe UV input language is case sensitive. The input is made up from a sequence of to-kens and whitespace (i.e., blanks, tabs, and newline characters as well as comments).Whitespace is signi�cant only for separating tokens, beyond that it is ignored.Tokens are either terminals as appearing in the grammar rules below, orstrings of characters representing the <number> , the <name> , or the<external> non-terminals.A comment starts with the characters "//" (without the quotation marks)and ends with the �rst subsequent newline character.A number as generated by the non-terminal <number> is a string ofone or more digits, restricted by some implementation dependent limitations on thenumber size. It is guaranteed that 15 bit numbers (i.e., numbers from 0 to 32767)are supported.A name as generated by the non-terminal <name> is any string of oneor more characters made up from letters and digits starting with a letter. Namesare case-sensitive and the following keywords of the UV language are not avail-able for names: assign, by, co, const, constant, declare, end, ensures, if, in,initially, invariant, program, stable, transient, type, unless, and var.Names are used for denoting variables, programs, types, statement labels,and record �elds. Examples of names are hello, isDone, and t34y0.An external name as generated by the non-terminal <external> consistsof the string #expr followed (without any whitespace in between) by a string ofone or more digits. The maximum number of allowed digits is implementationdependent, but at least four digits are guaranteed. External names are used fordenoting expressions that have been generated interactively during a session withthe UV system. Examples of external names are #expr76 and #expr003.For ease of reference we list in the following the remaining tokens of the UVinput language: :=, (, ), [, ], ;, :, ,, .., and -->.200



A.3 Grammar RulesThe following presentation is divided by the syntactic categories of the grammar.A.3.1 ExpressionsExpressions are generated by the non-terminal <expr> . The following tablelists all operators in increasing order of their binding power (operators in the samegroup share the same binding power, in which case the operators associate to theleft { if allowed by the typing rules):== (boolean equivalence), =!= (boolean antiequivalence, exclusive or)==> (boolean implication), <== (boolean follows-from)/\ (boolean conjunction), \/ (boolean disjunction)! (boolean negation)= != > >= < <= (nonboolean relational operators)+ (addition), - (subtraction)+ (unary plus), - (unary negation). (record �eld access, mapping indexing)<expr> ::= <name>j <external>j <number>j ( <expr> )j <expr> . <name>j <expr> . <expr>j + <expr>j - <expr>j <expr> + <expr>j <expr> - <expr>j <expr> = <expr>201



j <expr> != <expr>j <expr> > <expr>j <expr> < <expr>j <expr> >= <expr>j <expr> <= <expr>j truej falsej ! <expr>j <expr> /\ <expr>j <expr> \/ <expr>j <expr> ==> <expr>j <expr> <== <expr>j <expr> == <expr>j <expr> =!= <expr><exprList> ::= <expr> (, <expr>)�A.3.2 Types<type> ::= <name>j booleanj int( <expr> .. <expr> )j cyclic( <expr> )j bits( <expr> )j enum( <nameList> )j f <compList> gj <type> -> <type><nameList> ::= <name> (, <name>)�202



<compList> ::= <compItem> (, <compItem>)�<compItem> ::= <name> : <type>A.3.3 Programs<program> ::= program <name><declare><always><initial><assign>end<declare> ::= declare (<declItem> ;)�<declItem> ::= var <declSymbols> : <type>j type <declSymbols> = <type><declSymbols> ::= <name> (, <name>)�<always> ::= always (<defItem> ;)�<defItem> ::= <name> : <type> = <expr><initial> ::= initially (<expr> ;)�<assign> ::= assign (<statement>)�203



<statement> ::= <statLabel> <simpleStat><statLabel> ::= []j [ <name> ]<simpleStat> ::= <assignment> (|| <assignment>)�<assignment> ::= <lhs> := <rhs><lhs> ::= <var> (, <lvalue>)�<lvalue> ::= <name>j <lvalue> . <name>j <lvalue> . <expr><rhs> ::= <exprList>j <condRhs> (~ <condRhs>)�<condRhs> ::= <exprList> if <expr>A.3.4 Properties<property> ::= constant <expr>j invariant <expr>j stable <expr>j transient <expr>j <expr> co <expr>j <expr> ensures <expr>j <expr> unless <expr>204



j <expr> --> <expr>j <expr> --> <expr> by <regexp><regexp> ::= []j [ <name> ]j ( <regexp> )j <regexp> + <regexp>j <regexp> <regexp>j <regexp> *A.3.5 Parse Units<input> ::= (<unit>)�<unit> ::=j <scopedUnit> ;j in <name> : <scopedUnit> ;j <program> ;j <declItem> ;<scopedUnit> ::= <expr>j <property> ;A.4 Future Extensions to the Input LanguageTwo important features of the UV input language not implemented in version 2.3.3are quanti�ed formulae, statements, and assignments and variable ordering direc-tives. In order to introduce quanti�cation to the language we need to add a quan-ti�er construct: 205



<quant> ::= <quantDummies> : <type> | <quantRange> :<quantDummies>::= <nameList><quantRange> ::=j <expr>The range of a quanti�cation starting with such a quanti�er construct consists ofa type for the dummy variables and an optional boolean expression restricting thevalues of the dummies to those satisfying the expression.Quanti�ed statements are introduced by modifying the grammar rule for thestatement non-terminal <statement> as follows:<statement> ::= <statLabel> <simpleStat>j <quantStat><quantStat> ::= ( [] <quant> (<statement>)� )Similarly, quanti�ed assignments are introduced by modifying the assignment non-terminal <assignment> :<assignment> ::= <lhs> := <rhs>j ( || <quant> <simpleStat> )Finally, quanti�ed expressions are obtained by adding the following alternative tothe rule for the expression non-terminal <expr> :<expr> ::= ( <op> <quant> <expr> )where <op> stands for any commutative and associative binary operator with aunit element. 206



As far as directives for in
uencing the variable ordering for the OBDD repre-sentation of program variables are concerned it might be argued that such informa-tion should be separated from the actual program text, as it constitutes informationnot so much about the program but about how to make it manageable for a speci�csymbolic representation. Therefore, we plan to include commands for managingvariable orderings as separate entities that can be loaded, modi�ed, browsed, andsaved. However, until this will be implemented, a simple mechanism that gives theuser some additional control over the variable ordering seems desirable.Such a mechanism is the one that has been implemented in an earlier revi-sion (1.19) of the UV system, in which the user can cause certain variables to beinterleaved by tagging them with the %interleaved directive. This mechanism isincluded by extending the grammar rule for the declare section as follows:<declare> ::= declare (<ditem> ;)�<declItem> ::= var <declSymbols> : <type> <interl>j type <declSymbols> = <type><declSymbols> ::= <name> (, <name>)�<interl> ::=j %interleavedj %interleaved <name>The directive %interleaved after a list of variables causes all variables in thelist to have interleaved BDD indices. The directive %interleaved followed by avariable name after a list of variables causes all the variables in the list to haveBDD indices that are interleaved not only for the list of variables, but also for thenamed variable (and all variables the named variable is interleaved with). <name>in the last variation must be a previously declared variable name (including the207



immediately preceding list of declared variables), there is no restriction on its type(in particular it does not need to match the type of the declared variables).
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Appendix BThe Tcl Interface of UVThe overall structure of the UV System has been described in section 6 as consistingof a kernel providing the functionality of the UV workspace and of a graphical userinterface making the core functions of the kernel accessible in a convenient fashion.This separation is possible due to the use of an interface layer between kernel anduser interface: the kernel makes its operations and data structures available througha number of Tcl commands, the user interface is built as a collection of Tcl/Tkscripts that rely solely on the commands provided by the kernel.This appendix serves as a reference section for the Tcl commands imple-mented in the current version of the UV system (2.3.3 ). Each command is describedin its own entry with information about command syntax, parameters and returnvalues, and general usage description.For displaying the command syntax, the following conventions are used:typewriter font is used to show text that is to be typed literally, italics denotevariables or options that need to be replaced with some suitable text. Moreover thecommon meta-symbols [ ] for optional occurrence, fg for grouping, j for separatingalternatives, and + for indicating one or more occurrences of the preceding item areused. There are also a few additional commands and command options that will209



be made available in future releases of the UV system. Such commands includeuv symbol for accessing symbol table information about identi�ers, uv order foraccessing and modifying the OBDD variable ordering of variable encodings, and�nally uv regexp for accessing information about regular expressions used as hintsin generalized leads-to properties.
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B.1 uv checkInvoke the model checker on a property.Synopsisuv check n [inv ]n ID number of property to check,inv option indicating which invariant is to be used invariant to use forchecking; one of -type, -current, and -strongest.ResultA two-element list of the form invoke status is returned, where invoke in-dicates, whether the checker was actually invoked:0 if checker was not invoked (e.g. because checking resultcould be determined from invariants alone),1 if checker was invoked,and status indicates the checking status of the property:ok if property has been proved correct,? if checking status is not known yet,fail if property has been proved incorrect.DescriptionThe model checker is invoked on the property with ID #propn using the invari-ant indicated by inv as follows:-type use type invariant211



-current use current invariant (default)-strongest use strongest invariantSpecial ConsiderationsThe UV workspace must have been initialized prior to executing uv check.
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B.2 uv exprAccess information about an expression.Synopsisuv expr n [-context j -def j -sat j -size j -type j -value]n ID number of expression to access information aboutResultAn exception is raised if n is not an integer or if there is no expression in theworkspace with ID n. Otherwise a value is returned depending on the selectedoption:no option The empty string is returned.-context The context of the expression is returned as a list ofscope names denoting the path from the global scope(corresponding to the empty list) to the scope of theexpression-def The source text de�ning the expression is returned.-sat An exception is raised if the expression is not of typeboolean or is not satis�able; otherwise a satisfying vari-able assignment is returned in the form of a list of scopeassignment lists. Each scope assignment list is orderedfrom outmost (global) scope to innermost (local) scope,and each scope list consists of the scope name (fg for theglobal scope) followed by lists of two elements, the �rstbeing a variable name and the second being its assignedvalue. 213



For instance, the satisfying variable assignment for theexpression x=3 =n b where x is a program variable ofprogram P and b is a global variable, is represented asffg fb truegg fP fx 3gg.-size The number of OBDD nodes used in internally repre-senting the expression is returned.-type The type of the expression is returned.-value The value of the expression is returned: if the expressionis a constant, that constant value is returned; otherwiseall variables the expression depends on are displayed ina list of scope lists, where scope lists are ordered fromoutmost (global) scope to innermost (local) scope, andwhere each scope list consists of the scope name (fg forthe global scope) followed by all variables of that scopethe expression depends on.For instance, the value of an expression of program P de-pending on the program variable x and the global vari-able b is represented as ffg bg fP xg.DescriptionInformation about an expression in the UV workspace is returned. An expres-sion is referred to by the ID number that is part of the expression identi�ergenerated by the parser or by certain expression setting commands at the timethe expression was entered into the workspace. Without an option uv expr canbe used to check whether an expression with a given ID number is present inthe UV workspace. Speci�c information about an expression can be obtainedby using one of the listed options as shown above.214



Special ConsiderationsThe UV workspace must have been initialized prior to executing uv expr.
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B.3 uv infoAccess information about the UV system and the UV workspace.Synopsisuv info f-flags j -memory j -versiongResultDepending on the chosen option the following information is returned:-flags A list of compile-time 
ags is returned, indicating howthe UV system was built. Currently the only supported
ag is the DEBUG 
ag indicating whether the UV systemwas compiled in debug mode.-memory Information about the current memory usage is returnedas a list of �ve lists containing (in that order) informa-tion about the OBDD heap, the OBDD hash table, theITE cache, the AEN cache, and the function cache. Ifa certain cache is not enabled (cf. the uv option com-mand), the corresponding list is empty. The informationin each list is structured as follows:OBDD heap: total number of OBDD nodes, number ofused OBDD nodes, number of allocated OBDD nodes;OBDD hash table: total number of slots, number of freeslots, number of entries, maximum, average, and vari-ance of length of entry chains, number of �nd operations,percentage of hits, average chaining length;ITE cache, AEN cache, function cache: total number ofslots, number of free slots, number of �nd operations,percentage of hits.216



-version the revision number of the UV system presented in theform n.m.p where n is the major revision number,m is the minor revision number, and p is the patch level.DescriptionInformation about the UV system and about the UV workspace is returned.Special ConsiderationsThe UV workspace must have been initialized prior to executing uv info withthe -memory option.
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B.4 uv initInitialize the UV workspace.Synopsisuv init [-mem n]n Natural number in the range from 6 to 24, specifying the amountof memory allocated (see below). The default value is 16.Resultnone, or message string if workspace has already been initializedDescriptionThe UV workspace is initialized by allocating a OBDD heap of 2n nodes, aOBDD hash table of 2n�2 entries, and proportionally sized cache tables. Theinitial global symbol table is set up as well.Special ConsiderationsUV init needs to be called once at the beginning of a session. Subsequent callshave no e�ect.
218



B.5 uv optionSet system options or return their current status.Synopsisuv option f-bdd j -reduceg [value]value the value to which the speci�ed option is set.ResultIf no value parameter is given, the current value of the speci�ed option isreturned.DescriptionWithout a value parameter the current status of the speci�ed system option isreturned. If a value parameter is given, then the speci�ed option is set to theindicated value. The values for the di�erent options and their meaning are asfollows:The -bdd option enables certain OBDD-level caches; its value is the sum of anyof the following:1 use a general function cache (default),2 use a separate AEN cache.The -reduce option controls the use of the reduction operation on OBDDs; itsvalue is the sum of any of the following:1 use during strongest invariant computations (default),2 use during wlt-computations.219



B.6 uv parseParse input string according to UV language grammar and update UV workspaceaccordingly.Synopsisuv parse var fstringg+var Tcl variable receiving list of parse resultsstring input stringResultNo value is returned if input is parsed successfully, otherwise a list of the formpos len msg is returned, where pos is the character o�set into the concatenationof input strings of the �rst character of the o�ending token, len is the numberof characters of the o�ending token, and message is an error message stringdescribing the nature of the parse error. (The �rst character of the input haso�set 1.)The Tcl variable var contains a list of result items, one for each successfullyparsed input unit, of the following form:#exprn for expressions: expression ID,#progn for programs: programs ID,#propn for properties: property ID,symbollist for declarations: list of declared symbols,where the numbers n are uniquely assigned for each input unit in each category.220



DescriptionThe parser for the UV language is invoked on the concatenation of all stringarguments. The input string can represent any number of input units likedeclarations, expressions, programs, or properties. Each successfully parsedunit is compiled into the UV workspace, and a suitable result item identifyingthe unit is appended to the Tcl variable var (see results above).Parsing is terminated upon the �rst encountered error, in which case some errorinformation is returned. Possible errors include syntax errors, type errors, andcompilation errors (e.g. exhausted resources).Special ConsiderationsThe UV workspace must have been initialized prior to executing uv parse.

221



B.7 uv progAccess information about a program.Synopsisuv prog nuv prog n -defuv prog n -invariant [inv ]uv prog n -nameuv prog n -statement [s ]n the ID number of the program to be accessedinv an option indicating which invariant of the program is to be ac-cessed; one of type, current, or strongests the number of the statement the label of which is to be returned(counting form 0).ResultAn exception is raised if n is not an integer or if there is no program in theworkspace with ID number n. Otherwise a value is returned depending on theselected option:no option The empty string is returned.-def The source text de�ning the program is returned.-invariant Without a inv parameter a characterization of the in-variant of the program is returned in the form of a twoelement list, each element being one of type, current,or strongest. The �rst element is the weakest charac-terization of the invariant or the program, the secondis its strongest characterization (type is weaker thancurrent, which is weaker than strongest).222



For instance, the result type strongest means thatthe strongest invariant has been computed and is thesame as the type invariant.If the inv parameter is given, the indicated invariantis entered into the workspace as an expression and anexpression identi�er of the form #exprn is returned,where n is the unique ID number which the new ex-pression can be referenced by. An exception is raised ifthe strongest invariant is requested without having beencomputed.-name The program name is returned.-statement Without an s parameter the number of statements ofthe program is returned; otherwise the label of statementnumber s is returned.DescriptionInformation about a program in the UV workspace is returned. A program isreferred to by the ID number that is part of the program identi�er generated bythe parser at the time the program was entered into the workspace. Withoutan option uv prog can be used to check whether a program with a given IDnumber is present in the UV workspace. Speci�c information about a programcan be obtained by using one of the listed options as shown above.Special ConsiderationsThe UV workspace must have been initialized prior to executing uv prog.223



B.8 uv propAccess information about a property or delete a property.Synopsisuv prop nuv prop n -arg [a]uv prop n -defuv prop n -deleteuv prop n -info [key ]uv prop n -infoexpr keyuv prop n -opuv prop n -proguv prop n -statusn the ID number of the property to be accesseda number indicating which argument is to be accessed (counting from0),key key indicating which checking information is to be returned; oneof implication, invariant, iterations, safety, transition, orvalue.ResultAn exception is raised if n is not an integer or if there is no property in theworkspace with ID number n. Otherwise a value is returned depending on theselected option:no option The empty string is returned.-arg Without an a parameter the number of predicate ar-guments of the property is returned; otherwise argu-ment number a (counting from 0) is entered into theworkspace and a unique expression identi�er is returned.224



-def The source text de�ning the property is returned.-delete The empty string is returned and the property is re-moved from the workspace.-info Without a key parameter, a list of all key values forwhich there is checking information for the property isreturned. If a key parameter is given, the following spe-ci�c information about the checking status of the prop-erty is returned (if present) depending on the value ofkey :implication: 1 if and only if the implication part of theproperty is true, 0 otherwise;invariant: characterization of the checking invariant asa list of two items each having one of the values type,current, or strongest; cf. the -invariant option ofthe uv prog command for a description of the format;iterations: list of numbers of major and minor itera-tions;safety: label of a violating statement (or empty string);transition: label of a helpful statement (or emptystring);value: 1 if and only if there is value violating constantcondition, 0 otherwise.-infoexpr Depending on the key parameter the following expres-sions are entered into the workspace and an expressionidenti�er is returned (provided expression information isavailable):invariant: checking invariant,implication: negation of implication check,225



safety: negation of safety check of a violating statement(or empty string if there is no violation),transition: empty string (no expression entered),value: value for which constant condition is violated (orempty string if there is no violation),iterations: negation of leads-to check.Note that the negated check expressions for the keysimplication, iterations, and safety characterize thestates that do not satisfy the required property.-op The operator of the property is returned.-prog The program identi�er of the program to which the prop-erty belongs is returned,-status The checking status of the property is returned; it is oneof ok, ?, fail, or new.DescriptionInformation about a property in the UV workspace is returned. A property isreferred to by the ID number that is part of the property identi�er generated bythe parser at the time the property was entered into the workspace. Withoutan option uv prop can be used to check whether a property with a given IDnumber is present in the UV workspace. Speci�c information about a propertycan be obtained by using one of the listed options as shown above.Special ConsiderationsThe UV workspace must have been initialized prior to executing uv prop.226



B.9 uv siCompute strongest invariant of program.Synopsisuv si n [opt ]n ID number of program for which strongest invariant is to be com-puted,opt option indicating which operation is to be performed; one of -clear,-forward, -frontier, and -square.ResultReturn the number of iterations performed for computing the strongest invari-ant for options -forward, -frontier, and square, or the empty string foroption -clear. Raise an exception if workspace does not contain a programwith ID number n.DescriptionCompute the strongest invariant of the program with ID number n in the UVworkspace using an algorithm determined by the option opt as follows (if thestrongest invariant has been computed previously, it is simply recalled from aspecial cache):-clear do not compute the strongest invariant but forget it incase it has been computed previously; useful for com-paring strongest invariant computations using di�erentalgorithms,-forward use the standard forward chaining algorithm to explorethe reachable state space,227



-frontier use a modi�cation of the forward chaining algorithms inwhich only successors of states are considered that are atthe frontier of the state space exploration, i.e.that havebeen added to the set of reachable states in the previousiteration (default),-square use an iterative squaring algorithm.Special ConsiderationsThe UV workspace must have been initialized prior to executing uv si.
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Appendix CThe UV System SourceStructureThe UV System consists in its current revision, 2.3.3 , of about 35000 lines of C++and Tcl/Tk code. Here we give an overview of the structure of the UV sourceswith a brief description of each �le. In our presentation we follow the hierarchicalstructure of the UV source directory. For every �le we show its size in bytes and ashort description of its content. We start with the UV root directory:Filename: UV/ Size Descriptionuvwish.make 3396 Make�le for UV systemuvwish.cc 2240 Contains main procedure; startsextended Tcl/Tk shell uvwishUVVersion.h 27 Current revision number of UVprojectGlobal.h 1422 Some global de�nitionsUVPackage.hUVPackage.cc 186296021 Interfaces of Tcl commands andimplementation of UV workspace229



Filename: UV/ Size DescriptionFailure.hFailure.cc 13111534 Procedures for dealing with seriousand catastrophic system failuresOptions.hOptions.cc 16671085 Data structure for dealing withglobal system optionsint.defs.hWSExpression.defs.h 26962818 Auxiliary declarations for integersand workspace expressions; gener-ated by GNU genclassint.WSExpression.AVLMap.hint.WSExpression.AVLMap.ccint.WSExpression.Map.hint.WSExpression.Map.cc 47971441036262494 AVL map from integer indices toworkspace expressions; generatedby GNU genclassuvwish.init.tcl 6537 Tcl/Tk startup script; handlescommand line arguments and thepreference �leuvwish.tk 1183 Tcl/Tk script de�ning user inter-faceuvwish.message 1045 Startup message about user noti�-cationThere are �ve subdirectories, which we describe in the following. The BDD subdirec-tory contains the �les implementing the OBDD package and the symbol table:Filename: UV/BDD/ Size DescriptionBDDManager.hBDDManager.cc 62606254 Management and coordination ofBDD operationsBDD.hBDD.cc 2166142262 BDD data structures and opera-tionsBDDVector.hBDDVector.cc 1393212073 Data structures and operations forvectors of BDDs230



Filename: UV/BDD/ Size DescriptionBDDMemory.hBDDMemory.cc 1084414826 BDD memory managementCachetable.hCachetable.cc 899712551 Implementation of various cachesand hash tablesSymboltable.hSymboltable.cc 5858889479 Data structures and methods forsymbol tablesBDDMapping.hBDDMapping.cc 19911990 Data structures and algorithmsfor mapping program variables toBDD indicesThe MODELCHECKER subdirectory contains the �les implementing the UNITY modelchecking algorithm and internal representations of properties and programs:Filename: UV/MODELCHECKER/ Size DescriptionProgram.hProgram.cc 1002620597 Program related data structuresand algorithms, e.g. , strongest in-variant computationProgramTable.hProgramTable.cc 53685890 Management of program collec-tionsStatement.hStatement.cc 831616331 Statement related data structuresand algorithmsProperty.hProperty.cc 1068229443 Property related data structuresand algorithms, e.g. , veri�cationcondition evaluationPropertyTable.hPropertyTable.cc 34013459 Management of property collec-tionsPropertyStatus.hPropertyStatus.cc 1350319025 Data structures and methods formaintaining checking status ofproperties231



Filename: UV/MODELCHECKER/ Size DescriptionRegexp.hRegexp.cc 29136245 Data structures and model check-ing algorithms for regular expres-sionsint.defs.hBDDIndex.defs.hProgram.defs.hPropertyPtr.defs.h 2696277027612831 Auxiliary declarations for integers,BDD indices, programs, and point-ers to properties; generated byGNU genclassBDDIndex.AVLSet.hBDDIndex.AVLSet.ccBDDIndex.Set.hBDDIndex.Set.cc 46771897635283533 AVL set of BDD indices; generatedby GNU genclassint.Program.AVLMap.hint.Program.AVLMap.ccint.Program.Map.hint.Program.Map.cc 44971413535212464 AVL map from integer indicesto programs; generated by GNUgenclassint.PropertyPtr.AVLMap.hint.PropertyPtr.AVLMap.ccint.PropertyPtr.Map.hint.PropertyPtr.Map.cc 47531435536062488 AVL map from integer indices topointers to properties; generatedby GNU genclassThe PARSER subdirectory contains the �les describing the scanner and parser for theUV input language and implementing the BDD compiler:Filename: UV/PARSER/ Size DescriptionUVLanguage.lUVLanguage.y 610650471 Scanner and parser de�nitions for
ex and bisonParseTree.hParseTree.cc 48720116287 Data structures and methodsfor parse tree management, typechecking, and BDD compilation232



Filename: UV/PARSER/ Size DescriptionParseInfo.hParseInfo.cc 42381900 Data structure for communicationbetween parser and workspaceDisplay.hDisplay.cc 1342819550 Data structures and methods forexternal representation of dataitemsFontInfo.h 1408 Font codes for special symbolsBDDIndex.defs.hBitAssignment.defs.hBitAssRep.defs.h 277028292785 Auxiliary declarations BDD in-dices, and internal data structuresfor representing bit assignments;generated by GNU genclassBDDIndex.BitAssRep.AVLMap.hBDDIndex.BitAssRep.AVLMap.ccBDDIndex.BitAssRep.Map.hBDDIndex.BitAssRep.Map.cc 49271455536512521 AVL map from BDD indices to bitassignment representations; gener-ated by GNU genclassBitAssignment.List.hBitAssignment.List.cc 876222333 List of bit assignments; generatedby GNU genclassThe TCL subdirectory contains the �les implementing the Tcl commands for provid-ing the UV system functionality via the uvwish shell (cf. B). The headers for allthese �les are contained in UV/UVPackage.h:Filename: UV/TCL/ Size DescriptionUVCheck.cc 8141 Implementation of uv check com-mandUVExpr.cc 5881 Implementation of uv expr com-mandUVInfo.cc 7351 Implementation of uv info com-mand233



Filename: UV/TCL/ Size DescriptionUVInit.cc 2125 Implementation of uv init com-mandUVOption.cc 3436 Implementation of uv option com-mandUVParse.cc 13560 Implementation of uv parse com-mandUVProg.cc 6439 Implementation of uv prop com-mandUVProp.cc 16107 Implementation of uv prog com-mandUVSI.cc 4350 Implementation of uv si commandThe SCRIPTS subdirectory contains the Tcl/Tk scripts de�ning the various parts ofthe graphical user interface:Filename: UV/SCRIPTS/ Size DescriptionCommand.tcl 4672 Script for command windowDebugger.tcl 3539 Script for debugger windowDocument.tcl 6191 Script for document windowsExpression.tcl 2028 Script for expression table windowFSBox.tcl 43219 Script for �le selection dialogProgram.tcl 6098 Script for program table windowProperty.tcl 18687 Script for property table windowUtilities.tcl 2356 Utility scripts
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Appendix DAdditional ProofsIn this appendix we provide the remaining proofs of chapter 4.D.1 Properties of Metric M in Theorem 12For the predicate transformer � and the collection M of predicates de�ned by[[�:X � q _wltr :U:X ]][M:0 � :wltr :U�:q]h8i : i > 0 : [M:i � � i: false ^ :h9j : j < i : � j : falsei]iwe need to show the following:[h9j : 0 < j � i :M:ji � � i: false] (M0)[h9i : i 2 Ord :M:ii] (M1)h8i; j : i 2 Ord ^ j 2 Ord : i 6= j ) [:M:i _ :M:j]i (M2)(M1) and (M2) establish thatM is a metric, (M0) is an auxiliary result used bothin the proof of theorem 12 and in the proof of (M1).Proof . We �rst recall two properties of � from section 4.2.1:235



[[wltr :U�:q � h9i : i 2 Ord : � i: falsei]] (T2)h8i; j : i � j : [[� i: false ) � j : false]]i (T4)The proof of (M0) is by trans�nite induction over i. For i = 0 the proof obligationis satis�ed trivially. For any step ordinal i we observeh9j : 0 < j � i :M:ji� fsplitting the range, i is step ordinal, induction hypothesisgM:i _ � i�1: false� fde�nition of M:ig(� i: false ^ :h9j : j < i : � j : falsei) _ � i�1: false� fpredicate calculusg� i: false _ � i�1: false� f(T4), predicate calculusg� i: falseFor any limit ordinal i we observeh9j : 0 < j � i :M:ji� f[M:i � false] since i is limit ordinalgh9j : 0 < j < i :M:ji� fpredicate calculusgh9k; j : 0 < j � k < i :M:ji� fpredicate calculusgh9k : k < i : h9j : 0 < j � k :M:jii� finduction hypothesisgh9k : k < i : �k: falsei� fi is limit ordinalg� i: falseFor (M1) we observeh9i : i 2 Ord :M:ii� fsplitting the rangeg 236



M:0 _ h9i : i > 0 :M:ii� fpredicate calculusgM:0 _ h9i; j : 0 < j � i :M:ji� fpredicate calculusgM:0 _ h9i : i 2 Ord : h9j : 0 < j � i :M:jii� f(M0)gM:0 _ h9i : i 2 Ord : � i: falsei� fde�nition of M:0, (T2)g:wltr :U�:q _ wltr :U�:q� fpredicate calculusgtrueFinally, for (M2) we observe for any ordinal i with i > 0:M:i ^M:0) fde�nition of M:i, predicate calculusg� i: false^M:0) fde�nition of M:0, (T2)gwltr :U�:q ^ :wltr :U�:q� fpredicate calculusgfalseand for any ordinals i; j with i > j:M:i ^M:j) fde�nition of M , predicate calculusg:h9k : k < i : �k : falsei ^ � j : false) fpredicate calculus, i > jg:� j : false ^ � j : false� fpredicate calculusgfalseEnd of Proof. 237



D.2 Properties of Progress AlgebrasIn some of the following proofs of properties of progress algebras we use a small ex-tension of the proof format introduced in section 2.1.3: when transforming algebraicexpressions we allow =, �, and � as operators relating subsequent lines of a proofin the same way as we use �, ), and ( when relating lines of a proof consisting oftransformations of logical expressions.D.2.1 Proof of Lemma 15Lemma 15 In any left-handed or right-handed progress algebra K, the subsumptionrelation � de�ned by U � V � U + V = V is a partial order. Moreover thesequencing, alternation, and repetition operators are monotonic with respect to �,i.e., for all U , V , U 0 and V 0 in K with U � V and U 0 � V 0:UU 0 � V V 0 (PrAlgSeq)U + U 0 � V + V 0 (PrAlgAlt)U� � V � (PrAlgStar)Proof . Re
exivity, antisymmetry and transitivity of � are easily shown using(PrAlg0) through (PrAlg2)1. Furthermore, we observe for all U , V , U 0 and V 0 inK with U � V and U 0 � V 0:U + U 0 � V + V 0� fde�nition of �g(U + U 0) + (V + V 0) = V + V 0� f(PrAlg0), (PrAlg1)g(U + V ) + (U 0 + V 0) = V + V 0� fU + V = V , U 0 + V 0 = V 0 from assumptiongtrue1This is an instance of the Little Theory in [DS90], stating that a relation � de�ned in termsof a binary operator + is re
exive if + is idempotent, is antisymmetric if + is commutative, and istransitive if + is associative. 238



UU 0 � V V 0� fU + V = V , U 0 + V 0 = V 0 from assumptiongUU 0 � (U + V )(U 0 + V 0)� f(PrAlg7)gUU 0 � U(U 0 + V 0) + V (U 0 + V 0)( f(PrAlg6), (PrAlg0)gUU 0 � UU 0 + UV 0 + V (U 0 + V 0)� fde�nition of �gUU 0 + (UU 0 + UV 0 + V (U 0 + V 0)) = UU 0 + UV 0 + V (U 0 + V 0)� f(PrAlg0), (PrAlg2)gtrueFor the � operator we �rst assume K to be right-handed. The case of K beingleft-handed is dealt with similarly.U� � V �( ftransitivity of �, preparing for (PrAlg11)gU� � U�V � ^ U�V � � V �( f(PrAlgSeq), (PrAlg4)g" � V � ^ U�V � � V �� f(PrAlg8), predicate calculusgU�V � � V �( f(PrAlg11)gUV � � V �( f(PrAlg9)gUV � � "+ V V �� f(PrAlg8), (PrAlg2); de�nition of �, (PrAlgAlt)gUV � � V V �( f(PrAlgSeq)gU � V� fassumptiongtrueEnd of Proof. 239



D.2.2 Proof of Lemma 16Lemma 16 In any left-handed or right-handed progress algebra K, for all U , V ,and W in K the following laws hold:"+WW � = W � (PrAlg13)"+W �W = W � (PrAlg14)W �W � = W � (PrAlg15)(W �)� = W � (PrAlg16)Furthermore, for right-handed K and all U , V , and W in K:V + UW � W ) U�V � W (PrAlg17)and for left-handed K and all U , V , and W in K:V +WU � W ) V U� � W (PrAlg18)Proof . One direction of (PrAlg13) and (PrAlg14) is given by (PrAlg9)and (PrAlg10), respectively. The other direction follows easily from (PrAlg8),(PrAlgSeq), and the de�nition of �. For (PrAlg15) we observe for a right-handedprogress algebraW �W � � W �( f(PrAlg11)gWW � � W �� f(PrAlg13)gWW � � "+WW �� f(PrAlg2), de�nition of �gtrueand similarly for a left-handed progress algebra. We prove (PrAlg16) by mutualimplication: for one direction we observe for a right-handed progress algebra240



(W �)� � W �� f(PrAlg14)g"+ (W �)�W � � W �( f(PrAlg2), (PrAlgAlt), (PrAlg8)g(W �)�W � � W �( f(PrAlg11)gW �W � � W �� f(PrAlg15)gtrueand similarly for a left-handed progress algebra. For the other direction we haveW � � (W �)�( f(PrAlgStar)gW � W �� f(PrAlg13)gW � "+WW �( f(PrAlg8), (PrAlgSeq), (PrAlg2)gtrueFinally, we establish (PrAlg17) for a right-handed progress algebra; the proof of(PrAlg18) for a left-handed progress algebra is similar.V + UW � W) f(PrAlg8), (PrAlgAlt)gV � W ^ UW � W) f(PrAlg11)gV � W ^ U�W � W) f(PrAlgSeq)gU�V � WEnd of Proof. 241



D.2.3 Proof of Lemma 17Lemma 17 In any left-handed or right-handed progress algebra K, for all n 2 Nwith n > 0 and sequences W in Zn ! K, for all permutations � of Zn, and for allU and V in K the following laws hold:UV � " ) U = " (PrAlg19)UV � " ) V = " (PrAlg20)U + V � " ) U = " (PrAlg21)U� � " � U = " (PrAlg22)UU� = U� (PrAlg23)U�U = U� (PrAlg24)h+U :W : Ui � h�U :W � � : Ui (PrAlg25)h+U :W : Ui� = h�U : W � � : Ui� (PrAlg26)Proof . Due to (PrAlg8) it su�ces to establish � on the right-hand sides of(PrAlg19) through (PrAlg22). For (PrAlg19) we observeU= f(PrAlg5)gU"� f(PrAlg8) for V , (PrAlgSeq)gUV� fantecedentg"and similar for (PrAlg20). For (PrAlg21) we observeU� fde�nition of �, (PrAlg2)gU + "� f(PrAlg8) for V , (PrAlgAlt)gU + V 242



� fantecedentg"We prove (PrAlg22) by mutual implication:U � "( ftransitivity of �gU � U�� f(PrAlg13)gU � " + UU�( f(PrAlg8), (PrAlgSeq), (PrAlg2)gtrueand, for a right-handed progress algebra (the proof for a left-handed progress algebrais similar),"� � "� f(PrAlg5)g"�" � "( f(PrAlg11)g"" � "� f(PrAlg5)gtrue(PrAlg23) follows from (PrAlg13) and (PrAlg8); similarly, (PrAlg24) followsfrom (PrAlg14) and (PrAlg8).As preparation for (PrAlg25) we note that for any U and V in RF , U+V �UV holds by virtue of (PrAlg8), (PrAlgSeq), and (PrAlg2).We establish (PrAlg25) by induction over the length of W : the base casejW j = 1 is trivial; assuming that (PrAlg25) holds for allW of length n, we observe:h+U :W : Ui= f(PrAlg0),(PrAlg1)gh+U :W � � : Ui 243



= fquanti�cation over sequencesg(W � �):0 + h+U : tail :(W � �) : Ui� finduction hypothesisg(W � �):0 + h�U : tail :(W � �) : Ui� fobservation aboveg(W � �):0 � h�U : tail :(W � �) : Ui= fquanti�cation over sequencesgh�U :W � � : UiAs preparation for (PrAlg26) we note that for any U in RF and any natural n,Un � U�, where Un denotes the sequence of n copies of U . This fact is proved byinduction over n by virtue of (PrAlg8), (PrAlgSeq), and (PrAlg23).We establish (PrAlg26) by mutual implication. One direction follows from(PrAlg25) and (PrAlgStar), the other is shown by induction over the length ofW : the base case, jW j = 1, is trivial; assuming that (PrAlg26) holds for all W oflength n, we observeh�U :W � � : Ui�� f(PrAlg8), (PrAlgAlt), (PrAlgSeq)gh�U :W � � : h+U : W : Uii�= fsequence calculusg(h+U :W : Uin)�� fobservation above, (PrAlgStar)g(h+U :W : Ui�)�= f(PrAlg16)gh+U :W : Ui�End of Proof.
244



D.2.4 Regular Languages with Subsumption as an Example of aProgress AlgebraIn this section we show that the regular languages over an alphabet � are an in-stance of a progress algebra when ordered with respect to the subsumption relationintroduced in section 2.1.6. In the following we call the algebraic structure R anddenote for any W in R the language of W by L:W .First, we have to show that the subsumption order � is consistent with theequality de�ned as U = V � U � V ^ V � U ; i.e., we have to show thatU � V � U + V = V . This is done by observing that for any U and V in RL:(U + V ) = L:V� fde�nition of L and =g((L:U [ L:V ) � L:V ) ^ (L:V � (L:U [ L:V ))� fde�nition of �, predicate calculusgL:U � L:VNext, we have to show that all axioms of progress algebras are satis�ed by R. Tothis end, we establish a connection between R and the algebra of regular eventsReg�. In the following we distinguish the equality in R, written as =, from theequality on Reg�, which we write as �, denoting the set-equality of the languagesconsidered as sets of strings. It is obvious from the de�nitions of =, �, and �, thatfor any U and V in R, the following holds:(L:U � L:V ) ) (U = V )This shows that all axioms, with the exception of (PrAlg8), (PrAlg11), and(PrAlg12), are satis�ed by R since they are satis�ed by Reg�.For any W in R, L:" � L:W holds by virtue of the fact that the emptystring is subsumed by any string, and that L:W is not empty. This shows that(PrAlg8) is satis�ed. 245



Of the remaining (PrAlg11) and (PrAlg12) we show the �rst; the secondis established similarly. We have to show that for any U and V in R, (L:(UV ) �L:V ) ) (L:(U�V ) � L:V ) holds. We observeL:(U�V ) � L:V= fde�nition of Lg(h[i : i 2 N : L:U ii)(L:V ) � L:V� fset theorygh8i : i 2 N : (L:U i)(L:V ) � L:V iwhich is easily established by induction over i using the antecedent (L:U)(L:V ) �L:V :D.3 Soundness and Completeness of the GeneralizedLeads-To RelationIn this section we prove the soundness and completeness of the generalized leads-torelation with respect to the operational semantics given in section 4.5.2:Theorem 21 (Soundness and Completeness) For any program F and regularexpression W in RF the deductive system de�ned for generalized leads-to propertiesis sound and relatively complete in the sense of Cook:F j= p W7�! q i� F ` p W7�! qUsing the de�nition of the operational semantic (de�nition 6) and theorem 12 werewrite the proof obligation as follows: for any W in RF , and any p and q in PFh9w : w 2 S:W :h8s; g : (s j= p ^ si :F ) ^ ((s; g) sat w) : (s; �g) j= qii �[p) wltr :W:q] 246



We prove soundness (implication from right-to-left) and completeness (implicationfrom left-to-right) separately. First we introduce the notion of the canonical strategyC:W:q for W and q in section D.3.1. After having established some auxiliary lem-mata in section D.3.2, we then prove the soundness in section D.3.3 using canonicalstrategies by showing that[p) wltr :W:q] )h8s; g : (s j= p ^ si :F ) ^ ((s; g) sat C:W:q) : (s; �g) j= qi:Finally, in section D.3.4 we prove the completeness by establishing the contrapositive:[p) wltr :W:q] )h8w : w 2 S:W : h9s; g : (s j= p ^ si :F ) ^ ((s; g) sat w) : (s; �g) 6j= qii:D.3.1 Canonical StrategyFor a regular expression W in RF and a goal predicate q in PF we de�ne thecanonical strategy C:W:q inductively over the structure of W as a speci�c elementof S:W as follows. For all � in F:A and all U; V in RF :C:":q = epsC:�:q = act :�C:(UV ):q = seq :(C:U:(wltr :V:q); C:V:q)C:(U + V ):q = alt :(wltr :U:q; C:U:q;C:V:q)C:U�:q = star :(q; C:U:q)From the proofs of the completeness theorem in section D.3.4 below we obtain theresult that the canonical strategy is a most general strategy; i.e., if F j= p W7�! qcan be established with some strategy w in S:W , then it can be established withC:W:q as well. 247



D.3.2 Auxiliary LemmataBefore we embark on the proofs of the soundness and completeness theorem we stateand prove a few lemmata for later use. We start with a lemma that establishes a(conditional) stability result for wltr :W:q predicates:Lemma 22 For any � in F:A, q in PF , s in F:S, and W in RF :(s j= :q ^wltr :W:q) ) (�:s j= wltr :W:q)Proof . The proof proceeds by induction on the structure of W . We observe forany U and V in RF and any � in F:A:case W = ":The antecedent is false due to (wltrEps), hence the implication is satis�ed trivially.case W = �:s j= :q ^wltr :�:q) f(wltrAct)gs j= :q ^ (q _ (wco :(q _wltr :�:q) ^wp :�:q))) fpredicate calculusgs j= wco :(q _wltr :�:q)) fde�nition of wco, property of wp, (wltrWeaken)g�:s j= wltr :�:qcase W = UV :We consider two cases: for s 6j= wltr :V:q we observes j= :q ^wltr :(UV ):q� fs j= :wltr :V:q, (wltrWeaken), (wltrSeq)gs j= :wltr :V:q ^ wltr :U:(wltr :V:q)248



) finduction hypothesis for U with wltr :V:q for q, (wltrSeq)g�:s j= wltr :(UV ):qIf, on the other hand, s j= wltr :V:q holds, we observes j= :q ^wltr :(UV ):q� fs j= wltr :V:q, (wltrSeq), (wltrWeaken)gs j= :q ^wltr :V:q) finduction hypothesis for V g�:s j= wltr :V:q) f(wltrWeaken), (wltrSeq)g�:s j= wltr :(UV ):qcase W = U + V :s j= :q ^wltr :(U + V ):q� f(wltrAlt), de�nition of j=, predicate calculusg(s j= :q ^wltr :U:q) _ (s j= :q ^wltr :V:q)) finduction hypothesis, twiceg(�:s j= wltr :U:q) _ (�:s j= wltr :V:q)� fde�nition of j=, (wltrAlt)g�:s j= wltr :(U + V ):qcase W = U�:From s j= :q^wltr :U�:q we obtain by virtue of (wltrStar) that there is an ordinali satisfying s j= :q ^ � i: false, where � is de�ned by [[�:X � q _ wltr :U:X ]]. Weprove by induction over the ordinals that for all ordinals i(s j= :q ^ � i: false) ) (�:s j= � i: false) :This assertion, together with the observation about the existence of a suitable ordinaland with with (wltrStar), establishes the required result. For i = 0 and i = 1 the249



antecedent is false and the implication is satis�ed trivially. If i is a limit ordinal, wehave s j= :q ^ � i: false� fi is limit ordinalgs j= :q ^ h9l : l < i : � l: falsei� fde�nition of j=, predicate calculusgh9l : l < i : s j= :q ^ � l: falsei) finduction hypothesis for witness l, � is monotonicg�:s j= � i: falseIf i is a step ordinal i greater than 1, we observes j= :q ^ � i: false� fde�nition of � , i is step ordinal, predicate calculusgs j= :q ^wltr :U:(� i�1: false)Again, we consider two cases: for s 6j= � i�1: false we observes j= :q ^wltr :U:(� i�1: false)� fs j= :� i�1: false, [[q ) � i�1: false]]gs j= :� i�1: false^wltr :U:(� i�1: false)) finduction hypothesis for U with � i�1: false for qg�:s j= wltr :U:(� i�1: false)) fde�nition of � , (wltrStar)g�:s j= � i: falsewhereas for s j= � i�1: false we haves j= :q ^wltr :U:(� i�1: false)� fs j= � i�1: false, (wltrWeaken)gs j= :q ^ � i�1: false) finduction hypothesis for i� 1, � is monotonicg�:s j= � i: false 250



End of Proof.The intermediate assertion we established for the repetition case will be referred tolater on; therefore, we restate it as a corollary as follows:Corollary 23 For any � in F:A, q in PF , s in F:S, W in RF , and ordinal i:(s j= :q ^ � i: false) ) (�:s j= � i: false),where � is de�ned by [[�:X � q _wltr :W:X ]].The next lemma characterizes wltr :�:q in terms of program executions:Lemma 24 For any � in F:A, q in PF , and s in F:S:h8x : x 2 (F:A)� : (s; x�) j= qi � s j= wltr :�:qProof . The proof proceeds by mutual implication. Assuming s j= wltr :�:q,we de�ne for any x consisting of k actions, x:0 through x:(k � 1), a sequence tof states as follows: t:0 = s, t:(i + 1) = (x:i):(t:i) for all i with 0 � i < k, andt:(k + 1) = �:(t:k) . We show that there is an index i, 0 � i � k + 1, such thatt:i j= q by establishing that h8i : i < k + 1 : t:i 6j= qi ) (t:(k + 1) j= q):h8i : i < k + 1 : t:i 6j= qi) ft:0 j= wltr :�:q, lemma 22 k-timesgt:k j= :q ^wltr :�:q) f(wltrAct), predicate calculusgt:k j= wp :�:q) fproperty of wp, de�nition of t:(k + 1)gt:(k + 1) j= qConversely, we assume that h8x : x 2 (F:A)� : (s; x�) j= qi holds. We de�ne apredicate r by(t j= r) � h8x : x 2 (F:A)� : ((t; x) 6j= q) ) (�:(x:t) j= q)i251



Clearly, s j= r holds. Next, we observe for all states t (the range for quanti�cationsof x is understood to be x 2 (F:A)�):t j= r) fde�nition of r, predicate calculusg(t j= q) _ ((t 6j= q) ^ h8x :: ((t; x) 6j= q) ) (�:(x:t) j= q)i)) fpredicate calculus, instantiating hi and x� for xg(t j= q) _ ((�:t j= q) ^ h8�; x : � 2 F:A : ((t; x�) 6j= q) ) (�:(x�:t) j= q)i)� fpredicate calculus, de�nition of rg(t j= q) _ ((�:t j= q) ^ h8� : � 2 F:A : �:t j= ri)� fde�nition of wco, property of wpg(t j= q) _ ((t j= wp :�:q) ^ (t j= wco :r))) fwco is monotonic, predicate calculus, de�nition of j=gt j= q _ (wco :(r _ q) ^wp :�:q)This establishes by virtue of (wltrAct) that r is a solution of the equation de�ningwltr :�:q. By the theorem of Knaster-Tarski we conclude that [[r ) wltr :�:q]],which together with s j= r establishes s j= wltr :�:q as required.End of Proof.Lemma 25 For any W and R in RF , such that R� is a subexpression of W , and forany q in PF , there is an X in RF such that the sub-strategy of C:W:q correspondingto R� has the form star :(wltr :X:q; R) .Proof . The required result follows from showing that for all W and R in RF andall q and t in PF :star :(t; R) is a sub-strategy of C:W:q ) h9X : X 2 RF : [[t � wltr :X:q]]iThis is proved by a straightforward induction over the structure of W , which is leftas an exercise.End of Proof. 252



D.3.3 SoundnessBy virtue of the equivalence [p] � h8s : s j= si :F : s j= pi we can rephrase ourproof obligation as follows:h8s : s j= p ^ si :F :(s j= wltr :W:q) ) h8g : (s; g) sat C:W:q : (s; �g) j= qii.Proof . The proof proceeds by induction over the structure of W . We observe forall � in F:A, U and V in RF , p and q in PF , and s in F:S satisfying s j= p ^ si :F :case W = ":(s; g) sat C:":q� fde�nition of C:":q, de�nition of sat gg = hiand, therefore,(s j= wltr :":q) ) h8g : (s; g) sat C:":q : (s; �g) j= qi� ffrom above, (wltrEps)g(s j= q) ) ((s; �hi) j= q)� fpredicate calculusgtruecase W = �:(s; g) sat C:�:q� fde�nition of C:�:q, de�nition of sat gh9x : x 2 (F:A)� : g = hx�iiand, therefore,h8g : (s; g) sat C:�:q : (s; �g) j= qi� ffrom above, predicate calculusg253



h8x : x 2 (F:A)� : (s; x�) j= qi� flemma 24, antecedent, s j= wltr :�:qgtruecase W = UV :For any game g for which (s; g) sat C:(UV ):q holds, we obtain from the de�nitionsof C:(UV ):q and sat that there exist games e and f satisfying the followingconditions:g = e++ f (SC0)(s; e) sat C:U:(wltr :V:q) (SC1)�nite :�e ) (�e:s; f) sat C:V:q (SC2)Assuming that s j= wltr :(UV ):q, we need to show that (s; �g) j= q. We do this byconsidering two cases depending on whether �e is �nite or in�nite:First we consider the case that �nite :�e holds. Since s j= wltr :U:(wltr :V:q)by (wltrSeq), we have by virtue of (SC1) and the induction hypothesis for U(instantiating true for p and wltr :V:q for q):(s; �e) j= wltr :V:q (SC3)If (s; �e) j= q holds, we have (s; �g) j= q because of (SC0). Assuming (s; �e) 6j= qwe obtain from (SC3) that some state in the run (s; �e) satis�es :q ^ wltr :V:q.By repeated application of lemma 22 we obtain that �e:s j= wltr :V:q. Togetherwith (SC2) we have by virtue of the induction hypothesis for V (instantiating thereachable state �e:s for s and true for p):(�e:s; f) j= qWith the help of (SC0) we conclude (s; �g) j= q.254



For the second case we assume �e to be in�nite. By (SC1), e follows thestrategy C:U:(wltr :V:q) . There is only one way for �e to be in�nite: U contains asubexpression of the form R�, the canonical sub-strategy corresponding to R� is ofthe form star :(t; R) for some predicate t in PF , and from some point on e is madeup from an in�nite series of sub-games each of which follows the canonical strategyfor R and ends in a state satisfying :t.We de�ne the in�nite sequence E of runs by letting E:i for natural i be thepre�x of �e up to the beginning of the R-sub-game number i (counting from 0). SinceR is a subexpression of U , we have by lemma 25 that the sub-strategy for R hasthe form star :(wltr :(XV ):q; R) for some X in RF . As before, we have by virtueof (SC1) and the induction hypothesis for U :(s; �e) j= wltr :V:qLet y be a pre�x of �e such that y:s j= wltr :V:q and let j be the smallest naturalnumber for which y is a pre�x of E:j . We show that (s; E:j) j= q: if this werenot the case, we would have y:s j= :q ^wltr :V:q. Repeated application of lemma22 would establish (E:j):s j= wltr :V:q, which together with (wltrWeaken) and(wltrSeq) would yield (E:j):s j= wltr :(XV ):q, contradicting the non-terminationof e at the beginning of sub-game j. Hence, we have (s; E:j) j= q and, by thede�nition of E:j and by (SC0), that (s; �g) j= q holds as required.case W = U + V :Any game g, for which (s; g) sat C:(U+V ):q holds, satis�es the following conditionsby virtue of the de�nitions of C:(U + V ):q and sat :(s j= wltr :U:q) ) ((s; g) sat C:U:q) (SC4)(s 6j= wltr :U:q) ) ((s; g) sat C:V:q) (SC5)We consider two cases depending on whether wltr :U:q holds in s or not: if s j=255



wltr :U:q, we obtain from (SC4) and the induction hypothesis for U that (s; �g) j= q.Similarly, if s 6j= wltr :U:q, we obtain form the assumption s j= wltr :(U + V ):q,(wltrAlt), (SC5) and the induction hypothesis for V that (s; �g) j= q.case W = U�:From s j= wltr :U�:q and (wltrStar) we conclude that there is a least ordinal lsuch that s j= � l: false, where the predicate transformer � is de�ned as [[�:X �q _wltr :U:X ]].In the following we de�ne sequences k of ordinals, t of reachable states inF:S, e and f of games in GF , and E of �nite runs in (F:A)�. We de�nek:0 = lt:0 = sf:0 = gE:0 = hiand maintain the following conditions for all natural numbers i, for which the re-spective elements are de�ned:t:i j= �k:i: false (SC6)(t:i; f:i) sat C:U�:q (SC7)E:i++ �f:i = �g (SC8)t:i = (E:i):s (SC9)Clearly, all of these conditions are satis�ed for i = 0 by virtue of the above de�ni-tions. We now describe the construction of later elements of the various sequences.The construction will establish (s; �g) j= q eventually.Following the de�nition of sat we consider two cases: if t:i j= q holds thenwe have, by virtue of (SC8) and (SC9), that (s; �g) j= q and we are done.256



We now assume t:i 6j= q. From the de�nition of sat we know that thereexist games e:i and f:(i+ 1) satisfying the following conditions:f:i = e:i++ f:(i+ 1) (SC10)(t:i; e:i) sat C:U:q (SC11)�nite :( �e:i) ) (( �e:i):(t:i); f:(i+ 1)) sat C:U�:q (SC12)We, again, consider two cases depending on whether �e:i is �nite or in�nite. Forin�nite �e:i an argument similar to the one for the case of sequencing (W = UV )above establishes that (t:i; �e:i) j= q and we are done by virtue of (SC10) and (SC8).For �nite �e:i we either have (t:i; �e:i) j= q and we are done, or we have(t:i; �e:i) 6j= q. In this latter case we de�ne E:(i+ 1) = E:i++ �e:i and de�ne t:(i+ 1)according to (SC9). With this de�nition, (SC8) is maintained for i+ 1. (SC12)asserts (SC7) for i + 1 as well. From (SC6) we conclude that t:i j= wltr :U�:q;together with the fact that (t:i; �e:i) 6j= q we obtain by repeated application of lemma22 that t:(i + 1) j= wltr :U�:q as well. Hence, there is a least ordinal k:(i+ 1) forwhich t:(i+ 1) j= �k:(i+1): false, thereby establishing (SC6) for i+ 1.Next, we show that k:(i+1) < k:i. With this fact we see that, due to the well-foundedness of the ordinals, the above construction can be done only �nitely manytimes and has to terminate with one of the cases establishing the goal (s; �g) j= q.In order to establish that k:(i+ 1) < k:i, we summarize some properties ofelements of our construction:�nite :( �e:i) (SC13)(t:i; �e:i) 6j= q (SC14)(( �e:i):(t:i)) j= �k:(i+1): false (SC15)We prove that k:(i + 1) < k:i by induction over the ordinals. First, we note thatk:i > 0 by (SC6). Since k:i is the least ordinal satisfying (SC6), it is not a limitordinal. Hence k:i is a step ordinal. We observe by starting with (SC6)257



t:i j= �k:i: false) fk:i is step ordinal, de�nition of � , (SC14)gt:i j= wltr :U:(�k:i�1: false)) f(SC11), induction hypothesis for Ug(t:i; �e:i) j= �k:i�1: false) f(SC13), (SC14), repeated application of corollary 23g( �e:i):(t:i) j= �k:i�1: false) f(SC15), minimality of k:(i+ 1)gk:(i+ 1) < k:iEnd of Proof.D.3.4 CompletenessBy virtue of the equivalence [p] � h8s : s j= si :F : s j= pi we can rephrase ourproof obligation as follows:h9s : s j= p ^ si :F : s 6j= wltr :W:qi )h8w : w 2 S:W : h9s; g : (s j= p ^ si :F ) ^ ((s; g) sat w) : (s; �g) 6j= qii.This proof obligation is discharged by showing that for any strategy w in S:W , anys in F:S, and any q in PF :(s j= :wltr :W:q) ) h9g : (s; g) sat w : (s; �g) 6j= qiwhich we establish in the following for all W in RF .Proof . The proof proceeds by induction over the structure of W . We observe forall q in PF , all � in F:A, and all U and V in RF :case W = ":We choose g = hi which satis�es eps, the only strategy in S:" . We have(s; �g) 6j= q 258



� fg = hig(s j= :q)( fantecedent, (wltrEps)gtruecase W = � for some � 2 F:A:Careful inspection of the corresponding case in the soundness proof reveals thatcompleteness has been established there as well (due to the equivalence in lemma24).case W = UV :Any strategy w in S:W has the form seq :(u; v) for two strategies u in S:U andv in S:V . Since s j= :wltr :U:(wltr :V:q) by (wltrSeq), there is by virtue of theinduction hypothesis for U a game e satisfying (s; e) sat u , such that (s; �e) 6j=wltr :V:q.If �e is in�nite we have by (wltrWeaken) that (s; �e) 6j= q, and by the de�ni-tion of sat that (s; e) sat w. Hence we choose g = e.If �e is �nite, on the other hand, then from (s; �e) 6j= wltr :V:q it follows that�e:s j= :wltr :V:q. By virtue of the induction hypothesis for V there is a game fsatisfying (�e:s; f) sat v, such that (�e:s; �f) 6j= q. We choose g = e++ f which satis�esboth (s; g) sat w and (s; �g) 6j= q.case W = U + V :Any strategy w in S:W has the form alt :(t; u; v) for a predicate t and strategiesu in S:U and v in S:V . From the antecedent and from (wltrAlt) it follows thats j= :wltr :U:q ^ :wltr :V:q. By virtue of the induction hypothesis for U , thereis a game e with (s; e) sat u such that (s; �e) 6j= q. Similarly, there is a game f with259



(s; f) sat v such that (s; �f) 6j= q. If s j= t we choose g = e, otherwise we chooseg = f .case W = U�:We construct a game g for which (s; �g) 6j= q holds as follows: starting with f:0 = hiwe de�ne games f:i for natural i while maintaining the following two conditions:(s; �f:i) 6j= q (SC16)( �f:i):s j= :wltr :U�:q (SC17)Since s j= :wltr :U�:q, both (SC16) and (SC17) are satis�ed for i = 0. Anystrategy w in S:W has the form star :(t; u) for a predicate t and a strategy u inS:U . There are two possibilities for a game execution from state ( �f:i):s followingstrategy w: either s j= t, in which case the game terminates, or s 6j= t, in which casea game following strategy u is played. In the �rst case, we simply choose g = f:i,for which (SC16) establishes that (s; �g) 6j= q.In the non-terminating case we have ( �f:i):s j= :wltr :U:(wltr :U�:q), be-cause U� = UU� by (PrAlg23). By virtue of the induction hypothesis for U ,instantiating wltr :U�:q for q, there exists a game e satisfying (( �f:i):s; e) sat usuch that (( �f:i):s; e) 6j= wltr :U�:q, which implies by virtue of (wltrWeaken) that(( �f:i):s; e) 6j= q. We de�ne f:(i + 1) = f:i++ e. Clearly, (SC16) is satis�ed fori + 1. If �e is in�nite we choose g = f:(i + 1) and are done. If �e is �nite we havefrom (( �f:i):s; e) 6j= wltr :U�:q that �e:(( �f:i):s) j= :wltr :U�:q establishing (SC17)for i+ 1. Hence we can repeat the construction until it terminates with one of thecases above, or we choose for g the limit of the f:i . In either case we have (s; �g) 6j= qas required.End of Proof. 260
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