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1 INTRODUCTION 21 IntroductionThe well-known periodic task model by Liu and Layland(L&L) [1] assumes a worst-case executiontime bound for every task. While this is a reasonable assumption for process-control-type real-timeapplications, it may be overly conservative [5] for situations where the average-case executiontime of a task is signi�cantly smaller than that of the worst-case. In the case where it is criticalto ensure the completion of a task before its deadline, the worst-case execution time is used atthe price of excess capacity. Other approaches have been considered to make better use of systemresources when there is substantial excess capacity. For example, many algorithms have been devel-oped to schedule best-e�ort tasks for resources unused by hard-real-time periodic tasks; aperiodictask scheduling has been studied extensively and di�erent aperiodic server algorithms have beendeveloped to schedule them together with periodic tasks [7, 8, 9, 10]. In [11], etc., the imprecisecomputation model is used when a system cannot schedule all the desired computation. We havealso investigated an adaptive scheduling model where the timing parameters of a real-time task maybe parameterized [3]. However, none of the work mentioned above addresses the scheduleabilityof real-time tasks when the execution time of a task may vary greatly.Consider the following example. Suppose a computer system is used to track vehicles by reg-istering the status of every vehicle every 3 time units. To get the complete picture, the computertakes 3 time units to perform the tracking execution, i.e., the computer is 100% utilized. Supposein addition, the computer is required to execute some routine task which takes 1 time unit and



1 INTRODUCTION 30 5 10 15 20 25 30Routine:Tracking: Figure 1: Schedule of the Vehicle Tracking Systemthe task is to be executed every 5 time units. Obviously, the computer cannot handle both tasks.However, if the tracking task can be relaxed so that it requires only 1 time unit to execute everyother period, then the computer should be able to perform both the tracking and routine tasks (seethe timing diagram in �gure 1).This solution cannot be obtained by the L&L model since the worst-case execution time of thetracking task is 3, so that the periodic task set in the L&L model is given by f(3; 3); (1; 5)g (the �rstcomponent in a pair is the execution time and the second the period). This task set has utilizationfactor of 1:2 and is thus unscheduleable. Also notice that we cannot replace the tracking task by apair of periodic tasks f(3; 6); (1; 6)g since a scheduler may defer the execution of the (3; 6) task sothat its �rst execution extends past the interval [0,3], while in fact it must be �nished by time=3.To address real-time task with varying execution times in general, we �rst proposed in [4] amultiframe task model in which task execution time follows a known pattern. We showed thatbetter scheduleability bounds can be obtained. We are applying this model to multimedia analysis.In this paper, we further drop the pattern requirement and investigate the scheduleability oftask whose execution time varies arbitrarily. Our generalized task model only makes use of the



2 THE GENERAL TASK MODEL 4maximum total execution time of consecutive requests, no matter when and where it happens. Weshall establish the utilization bounds for our model which will be shown to subsume the L&L result[1]. It will be seen that the scheduleability bounds can be improved substantially if there is a largevariance in the execution time of a task. Using the generalized model, we can safely admit morereal-time tasks than the L&L model. We shall also note that the AM constraint for multiframetask model disappears in the general model.The paper is organized as follows. Section 2 introduces our general real-time task model. Section3 recaps the multiframe task model. Section 4 investigates the relation of the general task modelto the multiframe model and new results for both models are derived. Section 5 is the conclusion.2 The General Task ModelFor the rest of the paper, we shall assume that time values have the domain the set of non-negativereal numbers. All timing parameters in the following de�nitions are non-negative real numbers.We remark that all our results will still hold if the domain of time is the non-negative integers.De�nition 1 A general real-time task is a tuple (�; P ), where � is an array of execution times(�1; �2; : : :), and P is the minimum separation time, i.e., the ready times of two consecutiveframes(requests) must be at least P time units apart. The sum of any i (i > 0) consecutive executiontimes of the task is no larger than �i, the ith element of �. The deadline of each frame is P afterits ready time.



2 THE GENERAL TASK MODEL 5Example 1 The vehicle tracking system mentioned at the beginning of this paper can be modelledas f(�1; 3); (�2; 5)g where �1 = (3; 4; 7; 8; : : :); �2 = (1; 2; 3; 4; : : :).For task with constant execution time C, � = (C; 2C; 3C; 4C; : : :). Apparently, the more ele-ments in � we can make use of, the better the chance of task feasibility. The L&L model only makeuse of the �rst element in � and assumes all frames have execution time �1.Later in the paper, we will call the general model task just task when there is no confusion.Other speci�c model task will be called with its model name, such as L&L task or multiframe task.Corollary 1 The average execution time of a task (�; P ) is limi!1 �iiTo analyze the generalized task, we presume the knowledge of all elements of �. Unfortunately,it is not always possible practically. The following lemma solves this problem.Lemma 1 For task (�; P ) and any integer m and n, Let n = p�m+q; 0 � q < m. The maximumsum of n consecutive execution times is no larger than p � �m + �q. Let �q = 0 if q = 0.Proof. For any n consecutive frames of the task, we divide them into p+ 1 groups with everym frames a group and the last group contains q frames. By de�nition, All those p-frames groupshave total execution time no more than �m, and the last group has execution no more than �q . Sothe total of these n frame execution times is no more than p � �m + �q. QED.For a task with �rst m known elements of �, the best estimate for �k(here k > m) ismin1�i�m(pi � �i + �qi), where k = pi � i + qi; 0 < qi < i. Note we are using the minimum



2 THE GENERAL TASK MODEL 6instead of pm ��m+�qm simply because the minimum may not happen in the latter. For example,with � = (4; 6; 9; : : :), the best estimate for �10 is 30 when i = 2, not 31 when i = m = 3.With lemma 1 in mind, we will later assume that every element in � is available.In the proofs to follow, we shall often associate a task with a periodic task in the L&L modelwhich has the same execution time as the maximum frame time and whose period is the same asthe minimum separation of the multiframe task. Consider a task T = (�; P ), its correspondingL&L task is (�1; P ). We shall call �1 the peak execution time of task T .De�nition 2For a set S of n tasks fT1; T2; : : : ; Tng:We call Um = �ni=1�1i =Pi, the peak utilization factor of S.Given a scheduling policy A, we call UmA the utilization bound of A if for any task set S, S isscheduleable by A whenever Um � UmA ,We note that Um is also the utilization factor of S's corresponding L&L task set.A pessimistic way to analyze the scheduleability of a task set is to consider the schedulabilityof its corresponding L&L task set. This, however, may result in rejecting many task sets whichactually are scheduleable. For example, the task set in Example 1 will be rejected if we use theL&L model, whereas it is actually scheduleable by a �xed priority scheduler under RMA (RateMonotonic Assignment), as we shall show later.



2 THE GENERAL TASK MODEL 7De�nition 3 With respect to a scheduling policy A, a task set is said to be barely utilizing theprocessor if it is scheduleable by A, but increasing the execution time of some frame of some taskwill result in the modi�ed task set being unscheduleable by A.We note that UmA is the greatest lower bound of all barely utilizing task sets with respect to thescheduling policy A.Lemma 2 For any scheduling policy A, UmA � 1.Proof. We shall prove this by contradiction. Suppose there is an UmA larger than 1, we arbitrarilyform a L&L task set whose utilization factor is UmA > 1. Since a L&L task is just a special case ofa general task, this set is supposed to be scheduleable by the de�nition of UmA . But obvoiusly thisis not possible. So our assumption is wrong. So UmA cannot exceed 1. QED.Lemma 3 Suppose A is a scheduling policy which can be used to schedule both general and L&Ltask sets. Let the utilization bound of A be UmA for generalized task sets. Let the utilization boundof A for the corresponding L&L task sets be U cA. Then UmA � U cA.Proof. Proof is by contradiction. Consider a task set S of size n. Suppose Um � U cA and the setis unscheduleable. Its corresponding L&L task set S 0 has the same utilization factor as Um. S 0 isscheduleable.Suppose the �rst deadline missing happens with ith frame of task Tj at time tj . For every taskTk; 1 � k � n, locate the time point tk which is the ready time of the latest frame of Tk such that



2 THE GENERAL TASK MODEL 8tk � tj . We transform the ready time pattern as follows. In the interval from 0 to tk , we push theready times of all frames toward tk so that the separation times of all consecutive frames are allequal to Pk . We now set all execution times to be the peak execution time. If tj � tk > Pk forsome k, we add more peak frames of Tk at its maximum rate in the interval between tk and tj .The transformed ready time pattern is at least as stringent as the original case. So the ith frameof Tj still misses its deadline. However, the transformed case is actually a ready time pattern of S0which should be scheduleable, hence a contradiction QED.Is the inequality in Lemma 3 strict? Intuitively, if Um of a task set is larger than U cA andthere is not much variance in the execution times of the tasks in the set, the task set is unlikely tobe scheduleable. However, if the variance is su�ciently big, the same scheduling policy will admitmore tasks. This can be quanti�ed by determining the utilization bound for our task model.De�nition 4 The worst running case of a task (�; P ) is such that it requests at the maximum rateand the total execution time of its �rst i frames is �i for any i > 0. In other words, all consecutiveframes are separated by P time units, and the �rst frame has execution time �1; the ith frame hasexecution time �i � �i�1 for i > 1.De�nition 5 The critical instance of a task is the period when its peak execution time is requestedsimultaneously with all higher priority tasks, and all higher priority tasks have worst running cases.It turns out that the critical instance is the worst case for a task. In other words, it has thelongest �nish time in the critical instance.



2 THE GENERAL TASK MODEL 9Theorem 1 A task (�; P ) is scheduleable by a �xed priority scheduler if it passes the criticalinstance test.Proof. Suppose a task Tk = (�k; Pk) is scheduleable in its critical instance. We shall provethat all its frames are scheduleable regardless of their ready times.First, we prove that the �rst frame of Tk is scheduleable. Let Tk be ready at time t and its �rstframe �nishes at tend. We trace backward in time from time=t to locate a point t0 when none ofthe higher priority tasks was being executed. t0 always exists, since at time 0 no task is scheduled.Let us pretend that Tk's �rst frame becomes ready at time t0. It will still �nish at time tend . Nowlet us shift the ready time pattern of each higher priority task such that its frame which becomesready after t0 now becomes ready at t0. This will only postpone the �nish time of Tk's �rst frameto a point no earlier than tend, say t1end. In other words, tend � t1end . Then for each higher prioritytask, we shift the ready time of every frame after t0 toward time=0, so that the separation betweentwo consecutive frames is always the minimum separation time. This will further postpone the�nish time of Tk's �rst frame to no earlier than t1end, say t2end. In other words, t1end � t2end . Now, were-assign the execution time of all higher priority tasks such that they run the worst case startingat time t0. This re-assignment has the e�ect of postponing(if any) the �nish time of Tk to t3end,t2end � t3end. At last, we change Tk's execution time to be �1k. This further(if any) postpones the�nish time to t4end, t3end � t4end . By construction, the resulting request pattern is the critical instancefor Tk. Since Tk is scheduleable in its critical instance, we have t4end � t0 � Pk , so tend � t � Pk,



2 THE GENERAL TASK MODEL 10which means Tk's �rst frame is scheduleable.Next, we prove that all other frames of Tk are also scheduleable. This is done by induction.Induction base case: The �rst frame of Tk is scheduleable.Induction step: Suppose �rst i frames of Tk are scheduleable. Let us consider the (i+1)th frameand apply the same argument as before. Suppose that this frame starts at time t and �nishes attend. Again, we trace backward from t along the time line until we hit a point t0 when no higherpriority tasks is being executed. t0 always exists, since no higher priority task is being executedat the �nish time of the ith frame. Let the (i+ 1)th frame start at time t0. It will still �nish attime tend . Now shift the requests of each higher priority task such that its frame which starts aftert0 now starts at t0. This will only postpone the �nish time of Tk's (i + 1)th frame to a point intime no earlier than tend , say t1end where tend � t1end. Then for each higher priority task, we shiftthe ready time of every frame after t0 toward time=0 so that the separation time between any twoconsecutive frames is always the minimum separation time of the task. This will further postponethe �nish time of Tk's (i+ 1)th frame to no earlier than t1end, say t2end. In other words, t1end � t2end.Now, we re-assign the execution time of all higher priority tasks such that they run the worst casestarting at time t0. This re-assignment has the e�ect of postponing(if any) the �nish time of Tk tot3end, t2end � t3end. At last, we change Tk's execution time to be �1k. This further(if any) postponesthe �nish time to t4end, t3end � t4end . This last case is actually the critical instance for Tk. Since Tkis scheduleable in its critical instance, we have t4end � t0 � Pk , so tend � t � Pk , which means Tk's(i+ 1)th frame is also scheduleable. We have thus proved the theorem. QED.



3 THE MULTIFRAME TASK MODEL 11Example 2 The task set mentioned in example 1 is scheduleable because it passes the criticalinstance test. However, the corresponding L&L task set f(3; 3); (1; 5)g with utilization factor 1:2 isobviously unscheduleable by any scheduling policy.Theorem 2 If a feasible priority assignment exists for some task set, the rate-monotonic priorityassignment is feasible for that task set.Proof. Suppose a feasible priority assignment exists for a task set. Let Ti and Tj be two tasksof adjacent priority in such an assignment with Ti being the higher priority one. Suppose thatPi > Pj . Let us interchange the priorities of Ti and Tj. It is not di�cult to see that the resultantpriority assignment is still feasible by checking the critical instances. The rate-monotonic priorityassignment can be obtained from any priority ordering by a �nite sequence of pairwise priorityreordering as above. QED.We are now ready to analyze the utilization bound for �xed priority scheduling. But beforethat, we will stop here and introduce in the next section a multiframe task model. With the resultderived from multiframe task model, we shall come back in section 4 and prove a higher utilizationbound for the generalized task model.3 The Multiframe Task ModelWe will use the result of the multiframe task model [4] to derive a higher utilzation bound forthe generalized task model. To make this paper self-consistent, we will provide in this section



3 THE MULTIFRAME TASK MODEL 12necessary infomation about the multiframe model. Also to save space, we leave out some not toodi�cult parts. Please note that the multiframe task model itself is a complete model and hasspecial properties that are used by us to analyze multimedia scheduling. Please see [4] for moredetail.De�nition 6 A multiframe real-time task is a tuple (�; P ), where � is an array of N executiontimes (C0; C1; : : : ; CN�1) for some N � 1, and P is the minimum separation time, i.e., the readytimes of two consecutive frames (requests) must be at least P time units apart. The execution timeof the ith frame of the task is C((i�1) mod N), where 1 � i. The deadline of each frame is P afterits ready time.Example 3 the vehicle tracking system mentioned before can also be modelled as a multiframe taskset S = fT1; T2g = f((3; 1); 3); ((1); 5)g. Its corresponding L&L task set S 0 is still f(3; 3); (1; 5)g.The peak utilization factor of S is still Um = 1:2. The maximum average utilization factor of S is0:867.To derive the utilization bound, we require that all multiframe tasks satisfy following AMproperty.De�nition 7 Let Cm be the maximum in an array of execution times (C0; C1; : : : ; CN�1). Thisarray is said to be AM (Accumulatively Monotonic) if �m+jk=mC(k mod N) � �i+jk=iC(k mod N), 1 � i �N � 1, 1 � j < N � 1. A task T = f(C0; C1; : : : ; CN�1); P )g is said to be AM if its array ofexecution times is AM.



3 THE MULTIFRAME TASK MODEL 13Name Pattern Frames Max-I(bits) Max-P Max-B Average Max-I/Max-Bbike.mpeg IBBPBB 150 116288 75752 26184 34270 4.441Table 1: Statistics of a Video Script from Terminator-IIntuitively, an AM task is a task whose total execution time for any sequence of L � 1 framesis the largest among all size-L frame sequences when the �rst frame in the sequence is the framewith the peak execution time. For example, all tasks in Example 3 are AM. As another example,tasks in multimedia applications usually satisfy this restriction. The well known MPEG(MovingPicture Experts Group) [12] has de�ned a standard to encode video. There are three kinds of videoframes in MPEG: I-frame, P-frame, and B-frame. I-frame uses intra-frame encoding. P-frame andB-frame use inter-frame encoding. P-frame is encoded with the data of its own and its previousI-frame or P-frame. B-frame is encoded with the data of its own and both its previous and followingI(P)-frames. Between any two successive I-frames there are a �xed number of P-frames; Betweenany two successive I- or P-frames there are also a �xed number of B-frames. In other words, thevideo frame sequence follows a pattern such as \IBBPBBPBBIBB. . . ". Generally the size of anI-frame is larger than that of a P-frame, and the size of an I-frame or a P-frame is much larger thanthat of a B-frame. Table 1 lists the statistics of a video clip from the movie \Terminator-I" whenArnold Schwarznegger is riding a motor cycle. This video clip can be modelled as a multiframe AMtask f(116288; 34270; 34270; 75752; 34270; 34270); Tg where T is the inverse of frame frequency, asis typically the case.



3 THE MULTIFRAME TASK MODEL 14The utilization bound for the L&L model is given by the following theorem in the much citedpaper [1].Theorem 3 (Theorem 5 from [1]) For L&L task sets of size n, the utilization bound of thepreemptive �xed priority schuduling policy is n(21=n � 1).De�nition 8 The critical instance of a multiframe task is the period when its peak execution timeis requested simultaneously with the peak execution times of all higher priority tasks, and all higherpriority tasks request execution at the maximum rate.Theorem 4 ([4]) For the preemptive �xed priority scheduling policy, a multiframe task is sched-uleable if it is scheduleable in its critical instance.We shall say that a task passes its critical instance test if it is scheduleable in its critical instance.Corollary 2 A task set is scheduleable by a �xed priority scheduler if all its tasks pass the criticalinstance test.From now on, we can assume, without loss of generality that C0 is the peak execution time ofa task without a�ecting the schedulability of the task set. This is because we can always replacea task T whose peek execution time is not in the �rst frame by one whose execution time array isobtained by rotating T 's array so that the peek execution time is C0. Thinking about the criticalinstance test, it is clear that such a task replacement does not a�ect the result of the criticalinstance test.



3 THE MULTIFRAME TASK MODEL 15Note that a multiframe task (�; P ) is a special case of a general task (�; P ) with �i = p ��N�1j=0 Cj +�q�1j=0Cj , where i = p �N + q; 0 � q < N .Example 4 Again, the vehicle tracking system modelled in example 3 is scheduleable by RMAsince it is AM and passes the critical instance testLemma 4 ([4]) If a feasible priority assignment exists for some multiframe task set, the rate-monotonic priority assignment is feasible for that task set.To compute the utilization bound for multiframe tasks, we need the following lemma. The ideaof this lemma comes from [6].De�nition 9 Let 	(n; �) denote the minimum of the expression �n�1i=1 (Pi+1 � Pi)=Pi + (� � P1 �Pn)=Pn, subject to the constraint: P1 � ::: � Pn � � � P1 and 1 < � � 2.Lemma 5 	(n; �) = n � (�1=n � 1):Proof. With the substitution xi = log2 Pi+1Pi where 1 � i < n; xn = log2 �P1Pn , we can compute	(n; �) by:minimize �ni=1(2xi � 1) subject to xi � 0 and �ni=1xi = log2 �:This is a strictly convex problem. There is a unique critical point which is the absolute minimum.The symmetry of the minimization problem in its variables means that all xi's are equal in thesolution. So we have xi = (log2 �)=n. So 	(n; �) = �ni=1(2xi � 1) = �ni=1(2(log2 �)=n � 1) =n � (�1=n � 1). QED.



3 THE MULTIFRAME TASK MODEL 16We will use the result of Lemma 5 in Lemma 6.De�nition 10 A multiframe task set is said to be extremely utilizing the processor if it is sched-uleable but increasing the peak execution time of the lowest priority task by any amount will resultin a task set which is unscheduleable.We shall use U e to denote the greatest lower bound of the utilization factors of all extremelyutilizing multiframe task sets.In the following, we shall adopt the convention C0i =C1i = 1 if a multiframe task has only oneexecution time.Lemma 6 Consider all multiframe task sets of size n satisfying the restriction P1 < P2 < ::: <Pn < 2 � P1. Let r = minni=1(C0i =C1i ). Then U e = r � n � (( r+1r )1=n � 1).Proof. From theorem 4 and lemma 4, we only need to consider the case where all multiframetasks start at time 0 and request at their maximum rates thereafter. We can use rate-monotonicpriority assignment and check for scheduleability in the interval from time 0 to Pn. Since P1 <P2 < ::: < Pn < 2 � P1, we know that only C0 and C1 of a task may be involved in all the criticalinstance tests.First, we note that the utilization bound corresponds to the case where the ratio C0=C1 ofevery multiframe task equals r, since we can increase C1 without changing Um, and increasing C1will only take more CPU time. So without loss of generality we assume that all the C0=C1 ratiosare equal to r.



3 THE MULTIFRAME TASK MODEL 17For any scheduleable and extremely utilizing multiframe task set S with Um = U e, we shallprove four claims.Claim 1: The second request of Ti; 1 � i < n must be �nished before Pn.Suppose � of C1i is scheduled after Pn, we can derive a multiframe new task set S 0 by onlychanging the following execution times of Ti and Tn,C00i = C0i � � � rC01i = C1i � �C00n = C0n + � � rC01n = C1n + �and arbitrarily reducing other execution times of Ti to maintain the AM property of the executiontime arrays. It is easy to show that S0 is schedulable and also extremely utilizes the processor.U 0m = Um + (C 00i � C0i )=Pi + (C 00n � C0n)=Pn= Um + � � r � (1=Pn � 1=Pi)< Um= U eThis contradicts the assumption that U e is the minimum of all extremely utilizing multiframetask set. So the second request of any Ti 1 � i < n should be completed before Pn.Claim 2: If Pi < ( rr+1)Pn, then C0i = 0



3 THE MULTIFRAME TASK MODEL 18If C0i 6= 0, we can derive a new task set S0 by only changing the following execution times of Tiand Tn, and arbitrarily reducing other execution times of Ti to maintain the AM property of theexecution time arrays. C 00i = 0C 01i = 0C 00n = C0n + C1i � (r+ 1)C 01n = C1n + C1i � (r+ 1)=rIt is easy to check that S0 is scheduleable and also extremely utilizes the processor.U 0m = Um + (C 00i � C0i )=Pi + (C 00n � C0n)=Pn= Um + (Pi � ( rr+ 1)Pn) �C1i =((r+ 1) � Pi � Pn)< Um= U eThis contradicts the assumption that U e is the minimum. So C0i = 0.Claim 3: If Pi > ( rr+1)Pn, then C0n should be �nished before Pi.Instead of proving claim 3, we prove the following equivalent claim:Consider an extreme utilizing multiframe task set S satisfying claim 1 and claim 2. If the lastpart of C0n �nishes between Pi and Pi+1, and Pi > ( rr+1)Pn, then S does not correspond to theminimal case.



3 THE MULTIFRAME TASK MODEL 19As in claim 2, we can derive a new multiframe task set S0 by only changing the followingexecution times of Ti and Tn, and arbitrarily reducing other execution times of Tn to maintain theAM property of the execution time arrays.C00i = C0i + r � �=(r + 1)C01i = C1i + �=(r+ 1)C00n = C0n � �C01n = C1n � �=rSuppose Pj is the smallest value satisfying Pj < ( rr+1)Pn. Pj � Pi. According to claim 1 andclaim 2, the second requests of all multiframe tasks other than Tn are scheduled between Pj andPn. Since Pn � Pj < Pj , we know the �rst requests of all tasks other than Tn are all scheduledbefore Pj . Since S extremely utilizes the CPU, we know that the part of Cn scheduled before Pjis larger than that scheduled after Pj . This guarantees that the new multiframe task set S 0 is stillscheduleable and extremely utilizes the CPU.U 0m = Um + (C 00i � C0i )=Pi + (C 00n � C0n)=Pn= Um + �(( rr+ 1)Pn � Pi)=(Pi � Pn)< Um= U e



3 THE MULTIFRAME TASK MODEL 20Hence, the multiframe task set S cannot be the minimal case. This establishes claim 3.Claim 4: If Pi > ( rr+1)Pn, then the second request of Ti; i < n should be completed exactlyat time Pi+1.If the second request of Ti; 1 � i < n completes ahead of Pi+1, the processor will idle betweenits completion time and Pi+1, which shows S does not extremely utilize processor. So this cannotbe true.If � of the second request of Ti; i < n completes after Pi+1, we can derive a new multiframetask set S0 by only changing the following execution times of Ti and Ti+1, and arbitrarily reducingother execution times of Ti to maintain the AM property of the execution time arrays.C00i = C0i � r � �C01i = C1i � �C 00i+1 = C0i+1 + r � �C 01i+1 = C1i+1 + �Again it is easy to check that S0 is schedulable and also extremely utilizes the process.U 0m = Um + (C 00i � C0i )=Pi + (C 00i+1 � C0i+1)=Pi+1= Um + r � � � (1=Pi+1 � 1=Pi)< Um= U e



3 THE MULTIFRAME TASK MODEL 21This contradicts the assumption that U e is the minimum.So the second request of Ti; i < n should be completed exactly at time Pi+1.From these four claims and Lemma 5, we can conclude:U e = minnk=1(r �	(k; r+1r )) = r �	(n; r+1r ) = r � n � (( r+1r )1=n � 1).Finally, we note that in the case where Pi = ( rr+1)Pn, we can safely transfer all the executiontime of task Ti to Tn without invalidating the previous argument. QEDLemma 7 Let r = minni=1(C0i =C1i ). For multiframe task sets of size n, U e = r �n � (( r+1r )1=n� 1).Proof. Again, we assume all C0=C1 equals r, and all multiframe tasks request at the maximumrate. For any task Ti in an extremely utilizing multiframe task set with Pi � 2 < Pn, let Pn =pi � Pi + qi; pi > 1 and qi � 0. We replace Ti with T 0i such that P 0i = pi � Pi and C 0ji = Cji for0 � j � Ni� 1, and we increase C0n by the amount needed to again extremely utilize the processor.This increase is smaller than C0i � (pi � 1). Let the old and new utilization factors be Um and U 0mrespectively. U 0m � Um + (pi � 1) �C0i =Pn + C0i =P 0i � C0i =Pi= Um + C0i � (pi � 1)=(1=(pi � Pi + qi)� 1=(pi � Pi))� UmTherefore we can conclude that the minimum utilization occurs among multiframe task sets inwhich the longest period is no larger than twice of the shortest period. This establishes Lemma 7.



4 FIXED PRIORITY SCHEDULING 22QEDTheorem 5 Let r = minni=1(C0i =C1i ). For multiframe task sets of size n, the utilization bound isgiven by r � n � (( r+1r )1=n � 1).Proof. By de�nition, the least upper bound is the minimum of the U e for task sets of sizeranging from 1 to n, and we have minni=1(r � i � (( r+1r )1=i � 1)) = r � n � (( r+1r )1=n � 1). QED4 Fixed Priority SchedulingIn the last section we proved that there is a much better utilization bound for the multiframe taskmodel. We will show in this section that the same result applies to the general task model.De�nition 11 For a general task Tg = (�; P ), de�ne its corresponding multiframe task w.r.t. aninteger n to be Tm = (�; P ), where � = (�1; �2 � �1; : : : ; �n � �n�1).Lemma 8 The total execution time of i (i > 0) consecutive frames of a general task is no morethan the total execution time of the �rst i frames of its corresponding multiframe task.Proof. It is easy to calculate that for the task Tg = (�; P ), the total execution time of the�rst i frames of its corresponding multiframe task is �i if i � n or p � �n + �q if i > n, wherei = p � n+ q (0 � q < n). By de�nition and lemma 1, this is the upper bound. QED.



4 FIXED PRIORITY SCHEDULING 23Lemma 9 For a task in a task set, if its corresponding multiframe task passes its criticail instancetest in the corresponding multiframe task set, then the original task also passes its critical instancetest in the original task setProof. Suppose a task's corresponding multiframe task is scheduleable but itself is unsched-uleable. Let's say it misses deadline at time t in the critical instance test. We now substituteeach task Tg with its corresponding multiframe task Tm. According to lemma 8, Tm will haveno less pending execution time than Tg at any time in (0; t). This makes the situation worse. Soafter substitute all random tasks with their corresponding multiframe tasks, we still have a un-scheduleable situation. This contradicts that the corresponding multiframe task is scheduleable.So if its corresponding multiframe task is scheduleable by the scheduling policy, the original taskis scheduleable in the original task set QED.Example 5 A AM multiframe task Tm = ((4; 2; 3; 3; 3; 2); P ) can be modeled as a random taskTg = ((4; 6; 9; 12; 15; : : :); P ). Tg's corresponding multiframe task w.r.t. n = 3 is ((4; 2; 3); P ),which is, unfortunately, not AM.Note in lemma 9 if all the multiframe task pass the critical instance test, we know the originaltask set will be feasible. However, the multiframe task set may still not be feasible because somemultiframe task may not be AM.Theorem 6 A set of tasks is scheduleable by a scheduling policy if its corresponding multiframetask set is scheduleable by the same scheduling policy.



4 FIXED PRIORITY SCHEDULING 24Proof. Suppose its corresponding multiframe task set is scheduleable but itself is unsched-uleable. Let's say some task miss deadline at time t. We go backward from t until hit a pointt0 when CPU is idle. t0 always exists since at time 0 no task is scheduled. We now substituteeach task Tg with its corresponding multiframe task Tm such that the �rst frame of Tm in thetime frame (t0; t) is the maximum frame. According to lemma 8, Tm will have no less pendingexecution time than Tg at any time in (t0; t). This makes the situation worse. So after substitute allrandom tasks with their corresponding multiframe tasks, we still have a unscheduleable situation.This contradicts that the corresponding multiframe task set is scheduleable. So if its correspondingmultiframe task set is scheduleable by the scheduling policy, the random task set is scheduleableQED.Note theorem 5 does not require if the scheduling policy has �xed or dynamic priority assign-ment.Theorem 7 For random task sets of size n, let r = minni=1(�1i =(�2i � �1i )). The utilization boundis given by r � n � (( r+1r )1=n � 1).Proof. For a task Tg = ((�1; �2; : : :); P ) in the task set, let's transform it into a multiframe taskw.r.t. integer 2: Tm = ((�1; �2 � �1); P ). It is trivial to see that Tm is AM. According to theorem5, if �ni=1�1i � r �n � (( r+1r )1=n� 1), the corresponding multiframe task set is scheduleable by a �xedpriority scheduler. Therefore, according to theorem 6, the random task set is scheduleable. QED.



4 FIXED PRIORITY SCHEDULING 25UL&L r=2 3 4 5 6 7 8 9 10 1n=2 0.828 8.5 12.0 14.0 15.2 16.1 16.7 17.2 17.5 17.8 20.73 0.780 11.4 16.2 18.8 20.5 21.7 22.6 23.2 23.8 24.2 28.24 0.757 12.8 18.2 21.3 23.2 24.6 25.6 26.4 27.0 27.4 32.15 0.743 13.6 19.5 22.8 24.9 26.3 27.4 28.2 28.9 29.4 34.510 0.718 15.3 22.0 25.8 28.2 29.9 31.1 32.1 32.8 33.4 39.320 0.705 16.2 23.3 27.3 29.8 31.6 33.0 34.0 34.8 35.5 41.830 0.701 16.4 23.7 27.8 30.4 32.2 33.6 34.6 35.5 36.1 42.640 0.699 16.6 23.9 28.0 30.7 32.5 33.9 35.0 35.8 36.5 43.050 0.698 16.7 24.0 28.2 30.8 32.7 34.1 35.2 36.0 36.7 43.3100 0.696 16.8 24.3 28.5 31.2 33.1 34.5 35.5 36.4 37.1 43.81 0.693 17.0 24.5 28.8 31.5 33.4 34.9 35.9 36.8 37.5 44.3Table 2: Utilization Bound Percentage ImprovementWe observe that Liu and Layland's Theorem 3 is a special case of Theorem 7 with r = 1 andthe frame separation time equals the period.Table 2 shows the percentage improvement of our bound over the Liu and Layland bound.Speci�cally, the table entries denote 100 � (Um=UL&L � 1), for di�erent combination of r andn mentioned in theorem 7. For example, suppose we have a system capable of processing oneGigabyte of data per second, and a set of tasks each of which needs to process one Megabyte of



4 FIXED PRIORITY SCHEDULING 26
3

U

0.9

0.8

0.7

0.6

r5 7 9  1   Figure 2: Utilization Bound with n=10data per second. Using a utilization bound of ln 2, we can only allow 693 tasks. By Theorem 7,we can allow at least 863 tasks (over 24% improvement) when r � 3.As r increases, the bound improvement increases. Actually, as r ! 1, a simple calculationshows that the bound ! 1. Figure 2 plots the bound against r when there are 10 tasks. Thisgraph supports the observation that our model excels when the execution time of the task variessharply from frame to frame.Previously we observed that tasks in multimedia applications varies signi�cantly frame by frame.We randomly select 20 MPEG �les. The distribution of their r is shown in Figure 3. In all cases,r is bigger than 1.Note in theorem 5, the utilization bound for �xed priority is derived on the condition that themultiframe task satis�es AM property. This can be removed if we treat the multiframe task as aspecial case of random task and determine its r by that in theorem 7.
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