A General Model for Real-Time Tasks *

Aloysius K. Mok, Deji Chen
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712

{mok,cdj}@Qcs.utexas.edu

Abstract

The well-known periodic task model of Liu and Layland [1] assumes a worst-case execution
time bound for every task and may be too pessimistic if the worst-case execution time of a
task is much longer than the average. In this paper, we give a generalized real-time task model
which allows the execution time of a task to vary from one instance to another by capturing
the maximum total execution time of consecutive instances. We investigate the scheduleability
problem for this model with the help of the multiframe task model we introduced in [4]. We
show that a significant improvement in the utilization bound can be established for the general

model and the requirement of AM property in the multiframe model can be dropped.

*This work is supported by a grant from the Office of Naval Research under grant number N00014-94-1-0582.

1 INTRODUCTION 2

1 Introduction

The well-known periodic task model by Liu and Layland(L&L) [1] assumes a worst-case execution
time bound for every task. While this is a reasonable assumption for process-control-type real-time
applications, it may be overly conservative [5] for situations where the average-case execution
time of a task is significantly smaller than that of the worst-case. In the case where it is critical
to ensure the completion of a task before its deadline, the worst-case execution time is used at
the price of excess capacity. Other approaches have been considered to make better use of system
resources when there is substantial excess capacity. For example, many algorithms have been devel-
oped to schedule best-effort tasks for resources unused by hard-real-time periodic tasks; aperiodic
task scheduling has been studied extensively and different aperiodic server algorithms have been
developed to schedule them together with periodic tasks [7, 8, 9, 10]. In [11], etc., the imprecise
computation model is used when a system cannot schedule all the desired computation. We have
also investigated an adaptive scheduling model where the timing parameters of a real-time task may
be parameterized [3]. However, none of the work mentioned above addresses the scheduleability
of real-time tasks when the execution time of a task may vary greatly.

Consider the following example. Suppose a computer system is used to track vehicles by reg-
istering the status of every vehicle every 3 time units. To get the complete picture, the computer
takes 3 time units to perform the tracking execution, i.e., the computer is 100% utilized. Suppose

in addition, the computer is required to execute some routine task which takes 1 time unit and

1 INTRODUCTION 3

Routine: - — O™ O™ | |
Tracking: | - | | - | | - | | - | | -

Figure 1: Schedule of the Vehicle Tracking System

the task is to be executed every 5 time units. Obviously, the computer cannot handle both tasks.
However, if the tracking task can be relaxed so that it requires only 1 time unit to execute every
other period, then the computer should be able to perform both the tracking and routine tasks (see
the timing diagram in figure 1).

This solution cannot be obtained by the L&L model since the worst-case execution time of the
tracking task is 3, so that the periodic task set in the L&L model is given by {(3,3), (1,5)} (the first
component in a pair is the execution time and the second the period). This task set has utilization
factor of 1.2 and is thus unscheduleable. Also notice that we cannot replace the tracking task by a
pair of periodic tasks {(3,6), (1,6)} since a scheduler may defer the execution of the (3,6) task so
that its first execution extends past the interval [0,3], while in fact it must be finished by time=3.

To address real-time task with varying execution times in general, we first proposed in [4] a
multiframe task model in which task execution time follows a known pattern. We showed that
better scheduleability bounds can be obtained. We are applying this model to multimedia analysis.

In this paper, we further drop the pattern requirement and investigate the scheduleability of

task whose execution time varies arbitrarily. Our generalized task model only makes use of the

2 THE GENERAL TASK MODEL 4

maximum total execution time of consecutive requests, no matter when and where it happens. We
shall establish the utilization bounds for our model which will be shown to subsume the L&L result
[1]. Tt will be seen that the scheduleability bounds can be improved substantially if there is a large
variance in the execution time of a task. Using the generalized model, we can safely admit more
real-time tasks than the L&L model. We shall also note that the AM constraint for multiframe
task model disappears in the general model.

The paper is organized as follows. Section 2 introduces our general real-time task model. Section
3 recaps the multiframe task model. Section 4 investigates the relation of the general task model

to the multiframe model and new results for both models are derived. Section 5 is the conclusion.

2 The General Task Model

For the rest of the paper, we shall assume that time values have the domain the set of non-negative
real numbers. All timing parameters in the following definitions are non-negative real numbers.

We remark that all our results will still hold if the domain of time is the non-negative integers.

Definition 1 A general real-time task is a tuple (®, P), where ® is an array of execution times
(¢', 8%, ...), and P is the minimum separation time, i.e., the ready times of two consecutive
frames(requests) must be at least P time units apart. The sum of any i (¢ > 0) consecutive execution
times of the task is no larger than ¢', the ith element of ®. The deadline of each frame is P after

its ready time.

2 THE GENERAL TASK MODEL 5

Example 1 The vehicle tracking system mentioned at the beginning of this paper can be modelled

as {(®1,3), (P, 5)} where &1 = (3,4,7,8,...), &2 =(1,2,3,4,...).

For task with constant execution time C, ® = (C,2C,3C,4C,...). Apparently, the more ele-
ments in ¢ we can make use of, the better the chance of task feasibility. The L& model only make
use of the first element in ® and assumes all frames have execution time ¢'.

Later in the paper, we will call the general model task just task when there is no confusion.

Other specific model task will be called with its model name, such as L&L task or multiframe task.

B

Corollary 1 The average execution time of a task (®, P) is limi_mo%

To analyze the generalized task, we presume the knowledge of all elements of . Unfortunately,

it is not always possible practically. The following lemma solves this problem.

Lemma 1 For task (P, P) and any integer m and n, Let n = pxm+gq, 0 < g < m. The mazimum

sum of n consecutive execution times is no larger than px ¢™ 4+ ¢?. Let ¢ =0 if ¢ = 0.

Proof. For any n consecutive frames of the task, we divide them into p + 1 groups with every
m frames a group and the last group contains ¢ frames. By definition, All those p-frames groups
have total execution time no more than ¢™, and the last group has execution no more than ¢?. So
the total of these n frame execution times is no more than p * ¢™ + ¢?7. QED.

For a task with first m known elements of ®, the best estimate for ¢*(here k& > m) is

Ming <i<m (Pi * ¢ 4 ¢%), where k = p; xi +¢;, 0 < ¢ < i. Note we are using the minimum

2 THE GENERAL TASK MODEL 6

instead of p,, * @™ + @?™ simply because the minimum may not happen in the latter. For example,
with @ = (4,6,9,...), the best estimate for ¢'° is 30 when ¢ = 2, not 31 when ¢ = m = 3.

With lemma 1 in mind, we will later assume that every element in ® is available.

In the proofs to follow, we shall often associate a task with a periodic task in the L&L model
which has the same execution time as the maximum frame time and whose period is the same as
the minimum separation of the multiframe task. Consider a task 7' = (®, P), its corresponding

L&L task is (¢', P). We shall call ¢! the peak ewvecution time of task T.

Definition 2
For a set S of n tasks {1, Ty, ..., T,}:
We call U™ = X7 1/ P;, the peak utilization factor of S.
Given a scheduling policy A, we call W the utilization bound of A if for any task set S, S is

scheduleable by A whenever U™ < W,

We note that U™ is also the utilization factor of S’s corresponding L&L task set.

A pessimistic way to analyze the scheduleability of a task set is to consider the schedulability
of its corresponding L& task set. This, however, may result in rejecting many task sets which
actually are scheduleable. For example, the task set in Example 1 will be rejected if we use the
L&L model, whereas it is actually scheduleable by a fixed priority scheduler under RMA (Rate

Monotonic Assignment), as we shall show later.

2 THE GENERAL TASK MODEL 7

Definition 3 With respect to a scheduling policy A, a task set is said to be barely utilizing the
processor if it is scheduleable by A, but increasing the execution time of some frame of some task

will result in the modified task set being unscheduleable by A.

We note that U7 is the greatest lower bound of all barely utilizing task sets with respect to the

scheduling policy A.
Lemma 2 For any scheduling policy A, W < 1.

Proof. We shall prove this by contradiction. Suppose there is an W larger than 1, we arbitrarily
form a L&L task set whose utilization factor is W > 1. Since a L&L task is just a special case of
a general task, this set is supposed to be scheduleable by the definition of W. But obvoiusly this

is not possible. So our assumption is wrong. So W cannot exceed 1. QED.

Lemma 3 Suppose A is a scheduling policy which can be used to schedule both general and LEL
task sets. Let the utilization bound of A be W for generalized task sets. Let the utilization bound

of A for the corresponding LEL task sets be U_jl. Then W > U_jl.

Proof. Proof is by contradiction. Consider a task set S of size n. Suppose U™ < U_jl and the set
is unscheduleable. Tts corresponding L&L task set S’ has the same utilization factor as U™. S’ is
scheduleable.

Suppose the first deadline missing happens with ¢th frame of task 7} at time ¢;. For every task

Ty, 1 <k < n, locate the time point {5 which is the ready time of the latest frame of T} such that

2 THE GENERAL TASK MODEL 8

ty <t;. We transform the ready time pattern as follows. In the interval from 0 to ¢;, we push the
ready times of all frames toward ¢; so that the separation times of all consecutive frames are all
equal to P,. We now set all execution times to be the peak execution time. If ¢; — ¢, > P for
some k, we add more peak frames of T}, at its maximum rate in the interval between ¢; and ¢;.
The transformed ready time pattern is at least as stringent as the original case. So the ¢th frame
of T still misses its deadline. However, the transformed case is actually a ready time pattern of S’
which should be scheduleable, hence a contradiction QED.

Is the inequality in Lemma 3 strict? Intuitively, if U™ of a task set is larger than U§ and
there is not much variance in the execution times of the tasks in the set, the task set is unlikely to
be scheduleable. However, if the variance is sufficiently big, the same scheduling policy will admit

more tasks. This can be quantified by determining the utilization bound for our task model.

Definition 4 The worst running case of a task (¢, P) is such that it requests at the maximum rate
and the total execution time of its first i frames is ¢ for any i > 0. In other words, all consecutive
frames are separated by P time units, and the first frame has execution time ¢'; the ith frame has

execution time ¢' — &~ fori > 1.

Definition 5 The critical instance of a task is the period when its peak execution time is requested

stmultaneously with all higher priority tasks, and all higher priority tasks have worst running cases.

It turns out that the critical instance is the worst case for a task. In other words, it has the

longest finish time in the critical instance.

2 THE GENERAL TASK MODEL 9

Theorem 1 A task (P, P) is scheduleable by a fized priority scheduler if it passes the critical

instance test.

Proof. Suppose a task T = (P, Py) is scheduleable in its critical instance. We shall prove
that all its frames are scheduleable regardless of their ready times.

First, we prove that the first frame of T} is scheduleable. Let T} be ready at time ¢ and its first
frame finishes at t.,;. We trace backward in time from time=t to locate a point {5 when none of
the higher priority tasks was being executed. {y always exists, since at time 0 no task is scheduled.
Let us pretend that T}’s first frame becomes ready at time tg. It will still finish at time t.,4. Now
let us shift the ready time pattern of each higher priority task such that its frame which becomes
ready after tg now becomes ready at tg. This will only postpone the finish time of T}’s first frame
to a point no earlier than t.,4, say tind' In other words, tepg < ténd' Then for each higher priority
task, we shift the ready time of every frame after g toward time=0, so that the separation between
two consecutive frames is always the minimum separation time. This will further postpone the
finish time of T%’s first frame to no earlier than ¢! ., say ¢? ,. In other words, t! , < .. Now, we

re-assign the execution time of all higher priority tasks such that they run the worst case starting

3
end)?

at time to. This re-assignment has the effect of postponing(if any) the finish time of T} to ¢
t2 . <t .. At last, we change T}’s execution time to be ¢}. This further(if any) postpones the
finish time to t2 .. ¢2 < .. By construction, the resulting request pattern is the critical instance

end? Yend —=

for Tj. Since T} is scheduleable in its critical instance, we have tgnd —tg < P, 80 tepg —t < P,

2 THE GENERAL TASK MODEL 10

which means T3’s first frame is scheduleable.

Next, we prove that all other frames of T} are also scheduleable. This is done by induction.

Induction base case: The first frame of T}, is scheduleable.

Induction step: Suppose first ¢ frames of T} are scheduleable. Let us consider the (¢4 1)th frame
and apply the same argument as before. Suppose that this frame starts at time ¢ and finishes at
tend. Again, we trace backward from ¢ along the time line until we hit a point ¢, when no higher
priority tasks is being executed. tg always exists, since no higher priority task is being executed
at the finish time of the ith frame. Let the (i 4+ 1)th frame start at time to. It will still finish at
time t.,q. Now shift the requests of each higher priority task such that its frame which starts after
to now starts at to. This will only postpone the finish time of 7}%’s (i + 1)th frame to a point in
time no earlier than t.,4, say t;nd where t.,q < tind' Then for each higher priority task, we shift
the ready time of every frame after {5 toward time=0 so that the separation time between any two
consecutive frames is always the minimum separation time of the task. This will further postpone
the finish time of T}’s (¢ + 1)th frame to no earlier than ¢! . say ¢? ,. In other words, ¢! , <12 ..
Now, we re-assign the execution time of all higher priority tasks such that they run the worst case
starting at time to. This re-assignment has the effect of postponing(if any) the finish time of T} to

t3

end)?

t2 < t2 .. At last, we change T}’s execution time to be ¢}. This further(if any) postpones

end

the finish time to tgnd, t?nd < tgnd' This last case is actually the critical instance for Tj. Since T}

is scheduleable in its critical instance, we have tgnd —tg < Pp, 80 tepg — t < P, which means T}'’s

(¢4 1)th frame is also scheduleable. We have thus proved the theorem. QED.

3 THE MULTIFRAME TASK MODEL 11

Example 2 The task set mentioned in example 1 is scheduleable because it passes the critical
instance test. However, the corresponding LEL task set {(3,3), (1,5)} with utilization factor 1.2 is

obviously unscheduleable by any scheduling policy.

Theorem 2 If a feasible priority assignment exists for some task set, the rate-monotonic priority

assignment is feasible for that task set.

Proof. Suppose a feasible priority assignment exists for a task set. Let 7; and T} be two tasks
of adjacent priority in such an assignment with 7; being the higher priority one. Suppose that
P; > P;. Let us interchange the priorities of 7; and 7;. It is not difficult to see that the resultant
priority assignment is still feasible by checking the critical instances. The rate-monotonic priority
assignment can be obtained from any priority ordering by a finite sequence of pairwise priority
reordering as above. QED.

We are now ready to analyze the utilization bound for fixed priority scheduling. But before
that, we will stop here and introduce in the next section a multiframe task model. With the result
derived from multiframe task model, we shall come back in section 4 and prove a higher utilization

bound for the generalized task model.

3 The Multiframe Task Model

We will use the result of the multiframe task model [4] to derive a higher utilzation bound for

the generalized task model. To make this paper self-consistent, we will provide in this section

3 THE MULTIFRAME TASK MODEL 12

necessary infomation about the multiframe model. Also to save space, we leave out some not too
difficult parts. Please note that the multiframe task model itself is a complete model and has
special properties that are used by us to analyze multimedia scheduling. Please see [4] for more

detail.

Definition 6 A multiframe real-time task is a tuple (I', P), where I' is an array of N execution
times (CY,C', ... ,CN=1) for some N > 1, and P is the minimum separation time, i.c., the ready
times of two consecutive frames (requests) must be at least P time units apart. The execution time
of the ith frame of the task is C\G=1) mod N) ohere 1 < i. The deadline of each frame is P after

its ready time.

Example 3 the vehicle tracking system mentioned before can also be modelled as a multiframe task
set S = {T1, T2} = {((3,1),3),((1),5)}. Its corresponding LEL task set S’ is still {(3,3), (1,5)}.
The peak utilization factor of S is still U™ = 1.2. The mazimum average utilization factor of S is

0.867.

To derive the utilization bound, we require that all multiframe tasks satisfy following AM
property.
Definition 7 Let C™ be the mazimum in an array of evecution times (C°,C1, .. .,CN_l). This
array is said to be AM (Accumulatively Monotonic) if E;n:—"ﬂiC(k mod N) > EZ—Z»C(’“ mod N) 1 <4 <
N-1,1<j<N=1. AtaskT = {(C°C,...,CN=Y P)} is said to be AM if its array of

erecution times is AM.

3 THE MULTIFRAME TASK MODEL 13

Name Pattern | Frames | Max-I(bits) | Max-P | Max-B | Average | Max-1/Max-B

bike.mpeg | IBBPBB 150 116288 75752 | 26184 34270 4.441

Table 1: Statistics of a Video Script from Terminator-I

Intuitively, an AM task is a task whose total execution time for any sequence of L > 1 frames
is the largest among all size-IL frame sequences when the first frame in the sequence is the frame
with the peak execution time. For example, all tasks in Example 3 are AM. As another example,
tasks in multimedia applications usually satisfy this restriction. The well known MPEG(Moving
Picture Experts Group) [12] has defined a standard to encode video. There are three kinds of video
frames in MPEG: I-frame, P-frame, and B-frame. I-frame uses intra-frame encoding. P-frame and
B-frame use inter-frame encoding. P-frame is encoded with the data of its own and its previous
I-frame or P-frame. B-frame is encoded with the data of its own and both its previous and following
I(P)-frames. Between any two successive I-frames there are a fixed number of P-frames; Between
any two successive I- or P-frames there are also a fixed number of B-frames. In other words, the
video frame sequence follows a pattern such as “IBBPBBPBBIBB...”. Generally the size of an
I-frame is larger than that of a P-frame, and the size of an I-frame or a P-frame is much larger than
that of a B-frame. Table 1 lists the statistics of a video clip from the movie “Terminator-1” when
Arnold Schwarznegger is riding a motor cycle. This video clip can be modelled as a multiframe AM
task {(116288,34270,34270, 75752, 34270, 34270), T} where T is the inverse of frame frequency, as

is typically the case.

3 THE MULTIFRAME TASK MODEL 14

The utilization bound for the L&L model is given by the following theorem in the much cited

paper [1].

Theorem 3 (Theorem 5 from [1]) For LEL task sets of size n, the utilization bound of the

preemptive fized priority schuduling policy is n(21/” -1).

Definition 8 The critical instance of a multiframe task is the period when its peak execution time
is requested simultaneously with the peak execution times of all higher priority tasks, and all higher

priority tasks request execution at the maximum rate.

Theorem 4 ([4]) For the preemptive fixed priority scheduling policy, a multiframe task is sched-

uleable if it is scheduleable in its critical instance.
We shall say that a task passes its critical instance test if it is scheduleable in its critical instance.

Corollary 2 A task set is scheduleable by a fized priority scheduler if all its tasks pass the critical

instance test.

From now on, we can assume, without loss of generality that C° is the peak execution time of
a task without affecting the schedulability of the task set. This is because we can always replace
a task 7" whose peek execution time is not in the first frame by one whose execution time array is
obtained by rotating T’s array so that the peek execution time is C°. Thinking about the critical
instance test, it is clear that such a task replacement does not affect the result of the critical

instance test.

3 THE MULTIFRAME TASK MODEL 15

Note that a multiframe task (T, P) is a special case of a general task (®, P) with ¢' = p *

Eﬁy:_ole—l—E;;éCj,Wherei:p*N—l—q, 0<g<N.

Example 4 Again, the vehicle tracking system modelled in example 3 is scheduleable by RMA

since it is AM and passes the critical instance test

Lemma 4 ([4]) If a feasible priority assignment exists for some multiframe task set, the rate-

monotonic priority assignment is feasible for that task set.

To compute the utilization bound for multiframe tasks, we need the following lemma. The idea

of this lemma comes from [6].

Definition 9 Let W(n,«) denote the minimum of the expression Y= (Piyy — P)/ P + (o - Py —

P,)/P,, subject to the constraint: P, < ... < P, <a-P, and 1 < a <2.
Lemma 5 ¥(n,a) =n-(a'/"—1).

Proof. With the substitution z; = log, P}".#tl where 1 < i < n; 2, = log, %, we can compute
U(n, a) by:

minimize ¥7_, (2% — 1) subject to z; > 0 and X7_, z; = log, a.

This is a strictly convex problem. There is a unique critical point which is the absolute minimum.
The symmetry of the minimization problem in its variables means that all z;’s are equal in the
solution. So we have z; = (logya)/n. So W(n,a) = ¥ (2% — 1) = ¥ (2Mee)/n _ 1) =

n-(a'/* —1). QED.

3 THE MULTIFRAME TASK MODEL 16

We will use the result of Lemma 5 in Lemma 6.

Definition 10 A multiframe task set is said to be extremely utilizing the processor if it is sched-
uleable but increasing the peak execution time of the lowest priority task by any amount will result
in a task set which is unscheduleable.

We shall use U¢ to denote the greatest lower bound of the utilization factors of all extremely

utilizing multiframe task sets.

In the following, we shall adopt the convention C?/C} = 1 if a multiframe task has only one

execution time.

Lemma 6 Consider all multiframe task sets of size n satisfying the restriction P < P, < ... <

P, < 2% Py. Let r = minl_, (C?/CY). Then U = r-n- ((ZEL)/r —1).

r

Proof. From theorem 4 and lemma 4, we only need to consider the case where all multiframe
tasks start at time 0 and request at their maximum rates thereafter. We can use rate-monotonic
priority assignment and check for scheduleability in the interval from time 0 to P,. Since P, <
Py < ...< P, < 2% Py, we know that only C° and C! of a task may be involved in all the critical
instance tests.

First, we note that the utilization bound corresponds to the case where the ratio C°/C?! of
every multiframe task equals r, since we can increase C'! without changing U™, and increasing C*
will only take more CPU time. So without loss of generality we assume that all the C°/C? ratios

are equal to r.

3 THE MULTIFRAME TASK MODEL

17

For any scheduleable and extremely utilizing multiframe task set S with U™ = U¢, we shall

prove four claims.

Claim 1: The second request of 13, 1 <

1 < n must be finished before P,.

Suppose § of C} is scheduled after P,, we can derive a multiframe new task set S’ by only

changing the following execution times of T;

10
Ci

1
¢

10
Ch

/1
G

and T,

cP—6-r

!

K3

-4
02+5-r

Cl46

and arbitrarily reducing other execution times of 7; to maintain the AM property of the execution

time arrays. It is easy to show that S’ is schedulable and also extremely utilizes the processor.

U/m

UT)’L

Ue

U™ +(CF =)/ P+ (C =)/ P

U™ 461 (1/P, —1/P)

This contradicts the assumption that U¢ is the minimum of all extremely utilizing multiframe

task set. So the second request of any T; 1 < i < n should be completed before P,.

Claim 2: If P; < (45) Py, then CP =0

3 THE MULTIFRAME TASK MODEL 18

If C9 # 0, we can derive a new task set S’ by only changing the following execution times of T;
and T, and arbitrarily reducing other execution times of 7T; to maintain the AM property of the

execution time arrays.

cP o= CO4Ct(r41)

clto= clych-(r+1)/r
It is easy to check that S’ is scheduleable and also extremely utilizes the processor.

um = UM (CP =)/ P+ (CF = C) /Py

= UM (P ()P - CH (4 1) - P By)
< g™
= T

This contradicts the assumption that U€ is the minimum. So C? = 0.

Claim 3: If P, > (/?)Pn, then C? should be finished before P;.

Instead of proving claim 3, we prove the following equivalent claim:

Consider an extreme utilizing multiframe task set .S satisfying claim 1 and claim 2. If the last
part of 02 finishes between F; and P4y, and F; > (/?)Pn, then S does not correspond to the

minimal case.

3 THE MULTIFRAME TASK MODEL 19

As in claim 2, we can derive a new multiframe task set S’ by only changing the following
execution times of T; and T),, and arbitrarily reducing other execution times of T}, to maintain the

AM property of the execution time arrays.

C’Z(O = C’?—I—r-&/(r—l—l)
ctt = Cl46/(r41)
o= 09—

co= Cos/r

Suppose F; is the smallest value satisfying P; < (/?)Pn P; < P;. According to claim 1 and
claim 2, the second requests of all multiframe tasks other than 7}, are scheduled between P; and
P,. Since P, — P; < P;, we know the first requests of all tasks other than 7}, are all scheduled
before P;. Since S extremely utilizes the CPU, we know that the part of ', scheduled before P;

is larger than that scheduled after P;. This guarantees that the new multiframe task set S is still

scheduleable and extremely utilizes the CPU.

um = U (CF =)/ P4 (CF =)/ Py

r

= Um+5«r+1

)Pn_Pz)/(Pan)
< Uum

= Ue

3 THE MULTIFRAME TASK MODEL 20

Hence, the multiframe task set S cannot be the minimal case. This establishes claim 3.

Claim 4: If P, > (/?)Pn, then the second request of T;, ¢ < n should be completed exactly
at time FPiqq.

If the second request of T3, 1 <7 < n completes ahead of F;11, the processor will idle between
its completion time and P;4q, which shows S does not extremely utilize processor. So this cannot
be true.

If & of the second request of T;,¢ < n completes after P,y;, we can derive a new multiframe
task set S’ by only changing the following execution times of T; and T;41, and arbitrarily reducing

other execution times of T; to maintain the AM property of the execution time arrays.

cO o= Oy
o= -

02(3-1 = C?—l—l +r-d

1 1
Cz{—l—l = Ci—l—l +0
Again it is easy to check that S’ is schedulable and also extremely utilizes the process.

um = U4 (CP-CP)/Pi+ (C1}, — CPy1)/ P
= U"+r-6-(1/Py1 - 1/P)
< ™

= Ue

3 THE MULTIFRAME TASK MODEL 21

This contradicts the assumption that U€ is the minimum.
So the second request of T;,7 < n should be completed exactly at time Pyq.

From these four claims and Lemma 5, we can conclude:

Ue = minf_, (r- ¥k, L

—
[l
-~
S
=
=
+
—

)=rone (B 1),

r

Finally, we note that in the case where P, = (/?)Pn, we can safely transfer all the execution

time of task T; to T,, without invalidating the previous argument. QED

Lemma 7 Let r = min’_ (C?/C}). For multiframe task sets of size n, U = r-n - ((“EL)1/» - 1),

Proof. Again, we assume all C°/C" equals r, and all multiframe tasks request at the maximum
rate. For any task T; in an extremely utilizing multiframe task set with P; x 2 < P,, let P, =
pi- Pi4+ qi, pi > 1 and ¢; > 0. We replace T; with T/ such that P/ = p; - P, and C;j = Cf for
0 < j < N;—1, and we increase C° by the amount needed to again extremely utilize the processor.
This increase is smaller than C? - (p; — 1). Let the old and new utilization factors be U™ and U™

respectively.

Um < U™+ (pi—1)-CP /P + CY/P = CP /Py

= U"+CP-(pi—1)/(1/(pi- P+ @) = 1/(pi- P2))

UT)’L

IN

Therefore we can conclude that the minimum utilization occurs among multiframe task sets in

which the longest period is no larger than twice of the shortest period. This establishes Lemma 7.

4 FIXED PRIORITY SCHEDULING 22

QED

Theorem 5 Let r = min?_(C?/Cl). For multiframe task sets of size n, the utilization bound is

given by r-n - ((ZEH)/" — 1),

r

Proof. By definition, the least upper bound is the minimum of the U¢ for task sets of size

ranging from 1 to n, and we have min’_ (r-i- (ZEL)Y = 1)) = r-n - ((ZE)/" ~1). QED

r r

4 Fixed Priority Scheduling

In the last section we proved that there is a much better utilization bound for the multiframe task

model. We will show in this section that the same result applies to the general task model.

Definition 11 For a general task T, = (®, P), define its corresponding multiframe task w.r.t. an

integer n to be T,, = (T, P), where T' = (¢!, ¢* — @1, ..., ¢" — ¢"71).

Lemma 8 The total execution time of i (i > 0) consecutive frames of a general task is no more

than the total execution time of the first v frames of its corresponding multiframe task.

Proof. It is easy to calculate that for the task 7, = (®, P), the total execution time of the
first ¢ frames of its corresponding multiframe task is ¢* if i < n or p* ¢™ + ¢? if i > n, where

i=pxn+q (0<qg<n). By definition and lemma 1, this is the upper bound. QED.

4 FIXED PRIORITY SCHEDULING 23

Lemma 9 For a task in a task set, if its corresponding multiframe task passes its criticail instance
test in the corresponding multiframe task set, then the original task also passes its critical instance

test in the original task set

Proof. Suppose a task’s corresponding multiframe task is scheduleable but itself is unsched-
uleable. Let’s say it misses deadline at time ¢ in the critical instance test. We now substitute
each task 7T, with its corresponding multiframe task 73,. According to lemma 8, T}, will have
no less pending execution time than 7, at any time in (0,¢). This makes the situation worse. So
after substitute all random tasks with their corresponding multiframe tasks, we still have a un-
scheduleable situation. This contradicts that the corresponding multiframe task is scheduleable.
So if its corresponding multiframe task is scheduleable by the scheduling policy, the original task

is scheduleable in the original task set QED.

Example 5 A AM multiframe task T,, = ((4,2,3,3,3,2), P) can be modeled as a random task
T, = ((4,6,9,12,15,...), P). T,’s corresponding multiframe task w.r.t. n = 3 is ((4,2,3),P),

which is, unfortunately, not AM.

Note in lemma 9 if all the multiframe task pass the critical instance test, we know the original
task set will be feasible. However, the multiframe task set may still not be feasible because some

multiframe task may not be AM.

Theorem 6 A set of tasks is scheduleable by a scheduling policy if its corresponding multiframe

task set is scheduleable by the same scheduling policy.

4 FIXED PRIORITY SCHEDULING 24

Proof. Suppose its corresponding multiframe task set is scheduleable but itself is unsched-
uleable. Let’s say some task miss deadline at time t. We go backward from ¢ until hit a point
to when CPU is idle. ty always exists since at time 0 no task is scheduled. We now substitute
each task T, with its corresponding multiframe task 7, such that the first frame of T}, in the
time frame (fp,t) is the maximum frame. According to lemma 8, T}, will have no less pending
execution time than T} at any time in (fo,¢). This makes the situation worse. So after substitute all
random tasks with their corresponding multiframe tasks, we still have a unscheduleable situation.
This contradicts that the corresponding multiframe task set is scheduleable. So if its corresponding
multiframe task set is scheduleable by the scheduling policy, the random task set is scheduleable
QED.

Note theorem b5 does not require if the scheduling policy has fixed or dynamic priority assign-

ment.

Theorem 7 For random task sets of size n, let r = min™ (¢} /(6? — ¢1)). The utilization bound

is given by r-n - (FELH)Y/" — 1),

r

Proof. For a task T, = ((¢', ¢%,...), P) in the task set, let’s transform it into a multiframe task
w.r.t. integer 2: T,,, = ((¢', ¢* — ¢'), P). It is trivial to see that T, is AM. According to theorem

5,if B ¢t < ron- ((2E)Y/" 1), the corresponding multiframe task set is scheduleable by a fixed

r

priority scheduler. Therefore, according to theorem 6, the random task set is scheduleable. QED.

4 FIXED PRIORITY SCHEDULING 25

Urgr || r=2 3 4 5 6 7 8 9 10 o0

n=2 || 0.828 8.5 12.0 | 14.0 | 15.2 | 16.1 | 16.7 | 17.2 | 17.5 | 17.8 | 20.7

30 0.780 || 11.4 | 16.2 | 18.8 | 20.5 | 21.7 | 22.6 | 23.2 | 23.8 | 24.2 | 28.2

41 0757 || 12.8 | 182 | 21.3 | 23.2 | 24.6 | 25.6 | 26.4 | 27.0 | 274 | 32.1

5 0.743 || 13.6 | 19.5 | 22.8 | 24.9 | 26.3 | 27.4 | 28.2 | 28.9 | 29.4 | 34.5

10 || 0.718 || 15.3 | 22.0 | 25.8 | 28.2 | 29.9 | 31.1 | 32.1 | 32.8 | 33.4 | 39.3

20 || 0.705 || 16.2 | 23.3 | 27.3 | 29.8 | 31.6 | 33.0 | 34.0 | 34.8 | 35.5 | 41.8

30 || 0.701 || 16.4 | 23.7 | 27.8 | 30.4 | 32.2 | 33.6 | 34.6 | 35.5 | 36.1 | 42.6

40 || 0.699 || 16.6 | 23.9 | 28.0 | 30.7 | 32.5 | 33.9 | 35.0 | 35.8 | 36.5 | 43.0

50 || 0.698 || 16.7 | 24.0 | 28.2 | 30.8 | 32.7 | 34.1 | 35.2 | 36.0 | 36.7 | 43.3

100 || 0.696 || 16.8 | 24.3 | 28.5 | 31.2 | 33.1 | 34.5 | 35.5 | 36.4 | 37.1 | 43.8

oo || 0.693 || 17.0 | 24.5 | 28.8 | 31.5 | 33.4 | 34.9 | 359 | 36.8 | 37.5 | 44.3

Table 2: Utilization Bound Percentage Improvement

We observe that Liu and Layland’s Theorem 3 is a special case of Theorem 7 with r =1 and
the frame separation time equals the period.

Table 2 shows the percentage improvement of our bound over the Liu and Layland bound.
Specifically, the table entries denote 100 * (U™ /Uy — 1), for different combination of r and
n mentioned in theorem 7. For example, suppose we have a system capable of processing one

Gigabyte of data per second, and a set of tasks each of which needs to process one Megabyte of

4 FIXED PRIORITY SCHEDULING 26

0.9 r

0.7 r

0.6 | | | | | | | | |

Figure 2: Utilization Bound with n=10

data per second. Using a utilization bound of In 2, we can only allow 693 tasks. By Theorem 7,
we can allow at least 863 tasks (over 24% improvement) when r > 3.

As r increases, the bound improvement increases. Actually, as r — oo, a simple calculation
shows that the bound — 1. Figure 2 plots the bound against » when there are 10 tasks. This
graph supports the observation that our model excels when the execution time of the task varies
sharply from frame to frame.

Previously we observed that tasks in multimedia applications varies significantly frame by frame.
We randomly select 20 MPEG files. The distribution of their r is shown in Figure 3. In all cases,
r is bigger than 1.

Note in theorem 5, the utilization bound for fixed priority is derived on the condition that the
multiframe task satisfies AM property. This can be removed if we treat the multiframe task as a

special case of random task and determine its r by that in theorem 7.

5 CONCLUSION 27

%0

30

20 ’_,—,7

10 1
R |

Figure 3: Distribution of max(I)/max(B) of 20 MPEG Videos

5 Conclusion

In this paper we proposed a generalized task model which allows a task’s execution time to vary
arbitrarily. Our model does not require any special constraint on the tasks. The more the task
execution time varies, the more feasible a task set will be. A much higher utilization bound for

fixed priority scheduling is achieved by our model.

References

[1] C. L. Liu and James W. Layland, Scheduling Algorithms for Multiprogramming in a Hard-

Real-Time Fnvironment, Journal of ACM, Vol. 20, No. 1, January 1973.

[2] Al. Mok, Fundamental Design Problems of Distributed systems for the Hard-Real-Time Envi-

ronment, Ph.D. Thesis, MIT, 1983

[3] Tei-Wei Kuo and Aloysius K. Mok, Load Adjustment in Adaptive Real-Time Systems, IEEE

12th Real-Time Systems Symposium, December 1991.

REFERENCES 28

[4]

Aloysius K. Mok and Deji Chen, A Multiframe Model for Real-Time Tasks, IEEE 17th Real-

Time Systems Symposium, December 1996.

J. Lehoczky, L. Sha, and Y. Ding, The Rate Monotonic Scheduling Algorithm - Fract Char-
acterization and Average Case Behavior, Proceedings of the IEEE Real-Time System Sympo-

sium, 1989

A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son, Assigning Real-Time Tasks to Homogeneous
Multiprocessor Systems, IEEE Transactions on Computers, vol. 44, no. 12, pp 1429-1442,

December 1995.

Jay K. Strosnider, John P. Lehoczky, and Lui Sha, The Deferrable Server Algorithm for Fn-
hanced Aperiodic Responsiveness in Hard Real-Time Fnvironments, IEEE Transactions on

Computers, Vol. 44, No. 1 January 1995

A. Burns and A. J. Welling, Dual Priority Assignment: A Practical Method for Increasing
Processor Utilization, Proceedings of Fifth Euromicro Workshop on Real-Time Systems, Oulu,

pp. 48-55, 1993

T. M. Ghazalie, T. P. Baker, Aperiodic Servers in a Deadline Scheduling Fnvironment, Real-

Time Systems, Vol. 9, No. 1, July 1995

REFERENCES 29

[10] B. Sprunt, L. Sha, and J. Lehoczky, Aperiodic Task Scheduling for Hard Real-Time Systems,
Real-Time Systems: The International Journal of Time-Critical Computing Systems, Vol. 1,

pp. 27-60, 1989

[11] Jen-Yao Chung, J.W. S. Liu, and Kwei-Jay Lin, Scheduling Periodic Jobs That Allow Imprecise

Results, IEEE Transactions on Computer, Vol. 39, No. 9, September 1990

[12] D. Le Gall MPEG: A Video Compression Standard for Multimedia Applications Communica-

tions of the ACM, Vol. 34, No. 4, P46-58, April 1991

