
Scheduling on airdisks: E�cient access to personalized informationservices via periodic wireless data broadcastVeena GondhalekarDept. of Electrical & Computer Eng.Univ. of Texas at Austin Ravi Jain�Applied ResearchBellcoreJohn WerthDept of Computer SciencesUniv. of Texas at AustinAbstractRecently there has been considerable interest in delivering information to distributed mobileclients via wireless broadcast. Information transmitted periodically over wireless media can beregarded as a virtual disk, which we call an airdisk, analogous to a standard magnetic disk. Airdiskso�er an e�cient mechanism for delivering personalized information services from a �xed server tolarge numbers of geographically distributed mobile clients, by broadcasting data and allowingclients to �lter out the items of interest to them.Mobile clients are typically portable devices or Personal Digital Assistants which have restrictedresources, and operate using limited battery power. We study the problem of scheduling the orderin which data items are broadcast so as to minimize the access time of the clients. We observethat the problem is analogous to that of determining how data should be laid out on the disk, andshow that the problem is in general NP-complete. We then focus on the data layout problem inthe situation where the server inserts an index at the start of each broadcast period. We developa branch-and-bound procedure for solving the problem optimally, and then develop a fast, simpleheuristic. We present the results of simulation experiments to evaluate these procedures. Asexpected, the branch-and-branch procedure produces optimal solutions substantially faster than anaive enumeration algorithm. However, the heuristic is found to run substantially faster than thebranch-and-bound procedure, and yet produces schedules that are only slightly longer. We endwith a brief discussion of further experimental work in progress and conclude with a summary.�Address correspondence to Ravi Jain, Applied Research, Bellcore, 445 South St, Morristown, NJ 07960. e-mail:rjain@thumper.bellcore.com 1

1 IntroductionThe delivery of information over wireless media is rapidly becoming an important and expandingapplication area. It seems likely that the use of various wireless media, such as paging, FM subcar-rier, cellular data, and PCS wireless networks [23], will continue to increase for delivery of a widevariety of data applications. Applications in the realm of personal information services, such as thedelivery of periodically updated news, weather, stock, tra�c, and sports information to users whoare geographically distributed and mobile, appear to be poised for explosive growth and widespreadproliferation [21]. We focus on this class of distributed information systems and applications in thispaper.The constraints imposed by wireless communication and user mobility, and the resulting limitationsin user terminal capabilities, pose interesting challenges in the design of schemes for e�cient deliveryof personal information services. A signi�cant amount of attention has been paid to the developmentof wireless data protocols for the various wireless communication media mentioned above. Imielinskiet al [14] have considered the problem of retrieving data using an index, as is commonly done formagnetic disks, where both the data and the index are broadcast periodically over a wirelessmedium. This approach builds upon previous work done at Bellcore on the Datacycle computerarchitecture [11, 10], in which data is periodically broadcast over a �xed high-bandwidth wirednetwork to clients that �lter the information relevant to them, rather than being sent via point-to-point messages to individual clients. This approach is particularly well-suited for applications, suchas tra�c information [21], where it is expected that there will be substantial commonality in theitems of interest to users, and the wireless communication bandwidth is at a premium. Note that amobile client device need not necessarily be continuously \tuned in" at full power while waiting foritems of interest; as we will discuss later, by slipping into a doze mode while waiting, substantialsavings in power consumption can be achieved.The ideas of Datacycle and Imielinski et al can be taken a step further by modeling the periodicbroadcast of data as a virtual disk, which we call an airdisk [15, 16]. This is similar to the notion ofbroadcast disks developed by Acharya et al [1]; in section 7 we will brie
y compare our work withother related work in this area. Once the periodic data broadcast has been modeled as a magneticdisk, its performance characteristics can be cast in the same terms as those used for magnetic disks,such as rotational latency, seek time and transfer rate. (In the rest of this paper, the term \disk" or\airdisk" is used to refer to a virtual disk, while a standard magnetic disk will be explicitly calleda \magnetic disk".) In sec. 2 we describe the airdisk model, where a (logically) centralized serverbroadcasts data (writes on the disk) and many clients can receive the broadcast (read the disk) andalso send messages to the server to modify the content of the next broadcast (i.e., write the disk).In sec. 3 we consider the case where the airdisk is a One-Writer Many-Reader (OWMR) disk. Inthis case only the server can write the disk. We show expressions for the maximum and meanrotational latency of such a disk under certain assumptions.2

One of the signi�cant advantages of an airdisk compared to a magnetic disk is that the layout ofthe data on the disk can be changed easily in response to changes in the data access patterns. Formagnetic disks such operations are sometimes carried out in order to overcome the I/O performancebottleneck presented by magnetic disks in parallel computing. For example, del Rosario et al [9]describe compiler techniques to detect di�erent data access patterns in di�erent phases of a parallelprogram; they then show how changing the data layout between two phases of a parallel programcan signi�cantly improve overall performance. However, such operations are expensive for magneticdisks as they involve reading, bu�ering, and re-writing of data. For airdisks, on the other hand,where data is broadcast afresh at every period, they involve negligible overhead at the sender andcan be of substantial bene�t in improving performance and conserving the limited resources ofmobile clients.In sec. 4 we study how the data layout on an airdisk could be changed, if information aboutdata access patterns is available, so as to minimize mean access time. The data layout for a givenbroadcast period is determined simply by the order in which data items are broadcast by thesender. We use airdisk access time as a measure of performance. (We also brie
y discuss issuesof energy consumption at the mobile client.) We model two problems of determining the optimalbroadcast scheduling (i.e., airdisk data layout) in graph-theoretical terms and show that they areNP-complete [12], i.e., computationally intractable. The two problems correspond to situations inwhich an index is included in the broadcast and where it is not.In sec. 5 we focus on the data layout problem in the situation where an index is broadcast alongwith the data. We develop an optimal algorithm for solving the problem using the branch-and-bound procedure, developing a simple and provably correct lower bound for this purpose. In sec.6 we develop a pair of fast simple heuristics for this problem, and present experimental results onthe behavior of the more sophisticated one of them. In sec. 7 we have a brief discussion of ongoingwork, and we end with a summary.2 Disks and airdisksWe �rst summarize magnetic disk terminology [13]. A magnetic disk consists of a set of circularplatters, each of which rotates under a read/write head which can move radially across the plattersurface. Typically, only a single platter can be read or written at a time. The platter is dividedradially into sectors. An annular portion of data on the platter, which can be accessed by movingthe head only once to the appropriate radial position, is called a track. The time to access dataon the magnetic disk can be roughly divided into three components. The seek time is the time tomove the head from its current position to the appropriate track. The rotational latency is the timewhich the head spends waiting for the platter to rotate so that the desired sector is accessible. Thetransfer time is the time required by the head to then physically read or write the data.3

2.1 System modelWe consider the delivery of personal information services via wireless broadcast described as follows.An information services provider generates data. A �xed, (logically) centralized information serverperiodically broadcasts the data to a large number of mobile clients via a wireless medium. Asan example, the server receives updates of current stock prices from the stock exchange, updatesits database, and periodically broadcasts the updated information to the clients. The informationmay also be road tra�c information, e.g., similar to the personalized information provided bythe SCOUT tra�c information system [21]. The clients receive the broadcasts and �lter out theinformation which is not desired. A client typically consists of a battery-powered portable device,such as a palmtop Personal Digital Assistant (PDA) or a laptop computer. (Note that a client isa device, while the ultimate human recipient of the data is called the user.)In the simplest case, data transmission is simplex (one-way), from the server to the clients. Com-munication could also be half- or full-duplex. The communication channel from the server to theclients is called the downlink, and from the clients to the server is called the uplink. If an uplinkchannel exists it is shared amongst the clients by means of ALOHA or Ethernet-type contentionprotocols, or using TDMA, FDMA, or CDMA multiplexing [22]. The clients can use the uplinkchannel to send read or write requests to the server. The server responds to read and write requestsby modifying the stream of data items sent in subsequent broadcast periods. In this paper we willassume that the uplink, if any, is not used for sending acknowledgements to the server about whichdata items have been correctly received, since the data items sent by the server are not addressedto individual clients and, depending upon radio channel conditions, some clients may receive themcorrectly and some may not. Thus the server cannot know which clients received the informationcorrectly and which did not. The server inserts forward error correction [22] encoding into the datawritten onto the airdisk, and typically periodically re-broadcasts the data even if it has not beenupdated by the information provider.The architecture and details of the communications system depend upon the technology used. Ifpaging is used, the wireless bandwidth is low and (until very recently) limited to simplex commu-nication. FM subcarrier communication can potentially provide higher bandwidth and full-duplexcommunication, although currently most systems are used in low-bandwidth simplex mode. Cel-lular data communication typically provides full-duplex communication, with a low to moderatebandwidth. PCS systems such as Bellcore's WACS [6] typically provide full-duplex services anddata rates up to around 32 kbps. We omit further details of the architecture of the server and ofthe communication network.Each broadcast period (see Fig. 1) consists of a preamble, a pattern of zero or more bits knownto the clients and used for synchronization. The preamble is followed by a broadcast period
ag, apattern of bits indicating the start of the data in the period. In general, the period
ag is followedby an index which gives the sequence of data items broadcast in this period. Each data item hasan item header at the start and a trailer indicating its end. Typically, the item header identi�es4

Pre-

amble

Pre-

amble

Pre-

amble

Period

Flag Index

H
ea

de
r Item

T
ra

ile
r

H
ea

de
r Item

T
ra

ile
r

H
ea

de
r Item

1

T
ra

ile
r

2 n

Broadcast PeriodFigure 1: A general periodic wireless broadcastthe item (e.g., it speci�es that the item contains current market information about gold prices) andmay contain other information also (e.g. length of the item), while the trailer is simply a knownpattern of bits marking the end of the item.Depending upon the scheme used for sending the data, the preamble, index, headers and trailersmay be of zero or more bits. The item headers and trailers are not required if all items are of thesame length, and that length is �xed and known to the clients. An index is not required if the dataitems are �xed and sent in a �xed sequence known to the clients.In this paper we will consider situations where the length and sequence of data items is �xed, aswell as those where it is not.3 Simplex broadcast communicationIn this section we consider the situation in which communication is simplex and the clients simply�lter the data broadcast by the server. The server broadcasts all the information it has at the startof each broadcast period. Thus suppose the broadcast channel is capable of supporting C bits/sec,and the server has Di bits of data to send during period i, for i � 0. Then broadcast period i takesRi = Di=C seconds.From the clients' point of view, the broadcast data can be modeled as an airdisk, with each periodcorresponding to an airdisk rotation, where the airdisk has a data transfer rate of C. Since thereis only one track, the airdisk has a seek time S = 0. If the server sends a maximum of Dmax bitsduring any period, the maximum rotational latency of the airdisk is Rmax = Dmax=C, since a clientmay have to wait up to Rmax seconds for the next rotation if it just misses the data it needed inthe current rotation.Suppose the average amount of data in any rotation is D. Then the average length of a rotation isR = D=C seconds. Suppose also that each data item has a header, which can be read by the clientto determine if the data item is of interest, and the sequence of data items on the disk is �xed,but the length of each item can vary from rotation to rotation. It might seem that the averagerotational latency for a client which is reading data from the disk is R=2, and in fact this value has5

sometimes been used in previous work on periodic wireless data broadcast [14]. However, it can beshown that mean rotational latency depends not only upon the mean rotation length but also onits variance. (This argument has been described qualitatively in [1].)Lemma 3.1 Consider an airdisk where each item is broadcast once per rotation, the sequence ofdata items in every rotation is �xed, but the length of each item, and hence of each rotation, canvary. The mean rotational latency for a client accessing a given data item from such an airdisk, ifthe airdisk has mean rotation length R and variance s, isR2 + s22Rproof. The proof follows directly from the \residual life paradox" (e.g. see [17].) We sketch theunderlying intuition here. Assume that a client begins reading the airdisk at at an arbitrary pointof time, and is interested in item x. On average, item x will appear every R seconds. However,some of the intervals between appearances of x are long, and some are short. Since the client beginsreading the airdisk at an arbitrary point of time, it is statistically more likely that the client willbegin reading during a long interval than during a short one. Thus the mean rotational latencyexperienced by the client will be more than R=2. (For the derivation of the formula, see [17].) Notethat only if all the items were of the same length, and the rotation length were R for every rotation(i.e., zero variance), would the mean latency be R=2. 2The mean rotational latency a�ects not only the access time experienced by the user, but alsoa�ects the energy consumption at the client. If the mobile client has a limited energy source (e.g.standard battery cells), energy is a very precious resource and needs to be conserved [5, 14]. Inthe scenario just described, suppose the clients know the sequence of data items. If, in addition,the length of the data items were �xed, the variance of the rotation length would be zero and themean rotational latency would be reduced to R=2. The smaller mean rotational latency will resultin reduced energy consumption at the mobile. In addition, the �xed rotation length could be usedto substantially reduce the mobile's energy consumption, as follows. Initially, the client reads thepreamble and period
ag of one rotation. It is then able to synchronize its internal clock to that ofthe server, so that for subsequent reads of the airdisk, it knows where on each rotation each itemappears, and waits until a very short interval before that time to start reading the airdisk. Notethat during the waiting interval, the client can slip into doze mode, as provided by most laptopand portable computers, resulting in substantial savings in energy consumption. Then althoughthe mean rotational latency remains R=2, the energy consumed by the mobile will be much less.In order to correct for clock drifts at the server or client, the client can maintain synchronizationby periodically re-reading the preamble or period
ag.In Lemma 3.1 it was assumed that the sequence of data items on the airdisk was �xed. If thesequence of data items can change from one rotation to the next, the calculation of mean rotationallatency is more complicated. First, the client has to wait until the end of the current period; this6

time interval equals that given in Lemma 3.1. The client then has to read the index and wait untilthe desired item appears on the airdisk; this second time interval depends upon the manner inwhich data items are scheduled for broadcast, i.e., for layout on the airdisk, at each rotation.Note that for simplex data broadcast described in this section, the airdisk is a One-Writer, Many-Readers (OWMR) disk, where the single writer is the server. In such an airdisk the data layouton the disk may be changed by the server in response to the frequency with which the values ofdata items change. Thus the server may change the data layout in response to the pattern of datawrites by the information provider. (This is in contrast to the situation considered in previous work[14, 8] where the data layout is changed in response to the pattern of data reads by the clients;we will consider this in the next section also.) For example, if a data item is changing rapidly theserver may write it multiple times during a single rotation.4 Changing data layout in response to client read patternsWe now consider the situation where the server has some information about the data items whichclients are interested in. We have discussed schemes for obtaining this client interest informationin [15]; for the moment, suppose this information is available. In that case, it may be possible toimprove the performance of the airdisk system by exploiting this client interest information. Forexample, it is likely that some items will be more popular (i.e., of interest to more clients) thanothers. Imielinski et al [14] and Chiueh [8] have referred to these popular items as hot spots, byanalogy with hot spots in magnetic disks, and Chiueh has essentially proposed replicating hot spotson each airdisk rotation in order to minimize the mean access time. As Chiueh has pointed out,while replication can be very useful, it consumes more wireless bandwidth and, if not performedcorrectly, can actually result in increased mean access times.In this paper we examine another method of exploiting client interest information to improve airdiskperformance, which does not rely on replication (although possibly could be used in conjunctionwith it.) We consider two problems of laying out the data on the airdisk. We �rst consider thesituation in which there is no index on the airdisk (as assumed in [8]), and then consider thesituation where there is an index (as assumed in [14].) Note that in the �rst situation client energyconsumption may be high since the client has to read the airdisk all the time, while in the secondsituation more wireless bandwidth is consumed for the index.4.1 Non-indexed data layoutSuppose that the airdisk has no index but the sequence of data items can be varied at each rotation.Every item has a header identifying the item, and, for simplicity, assume that the items are all ofthe same length. A client then reads the airdisk, examining each item header to see if the item7

is of interest. In general, a client will be interested in one or more items in each rotation, and aclient's access is not considered completed unless it has read all the items it is interested in. Asbefore, suppose a client starts reading the disk at an arbitrary instant of time. The access time fora client will be the sum of four components: (1) the rotational latency, i.e., waiting for the �rstitem the client is interested in to appear, (2) the data transfer time to read the �rst item, (3) theitem spread, i.e., the time waiting until the last item the client is interested in appears, and (4)the data transfer time to read the last item. Note that if the client is interested in more than twoitems, the data transfer time for those items is overlapped with the item spread and so need notbe counted. Also note that the client may slip into doze mode between data items of interest toreduce energy consumption. We are interested in minimizing the mean access time over all clients.The mean rotational latency and data transfer times are �xed once the set of items in a givenrotation is decided. However, the item spread can still be varied by varying the sequence of theitems on the disk. Since client interest information is known in advance, a disk layout can be chosento reduce the mean item spread and hence the mean access time.We cast the problem of minimizing item spread in graph-theoretic terms as follows. Let each dataitem be represented by a vertex of a graph, and let the vertices be numbered consecutively. We willintroduce a hyperedge for representing the items of interest to each client. Recall that a hyperedgeis simply an edge that can connect more than two vertices; i.e., a hyperedge is an arbitrary subsetof the set of vertices, instead of only a pair of vertices. Self-loops (i.e., hyperedges which connectonly one vertex) are allowed. Thus, for each client we introduce one hyperedge which connects thevertices corresponding to the data items the client is interested in. As an example, in Fig. 2 (a),we show a graph corresponding to a broadcast period with �ve data items, numbered 1 to 5, whichare modeled as �ve vertices numbered 1 to 5. There are eleven clients, shown by eleven edges; inthis example each client is interested in only two items and so there are no hyperedges. Paralleledges, such as the two edges connecting vertices 1 and 2, correspond to clients which are interestedin the same data items.The length of a hyperedge is the di�erence between its lowest and highest numbered vertex. Forexample, in Fig. 2 (a), the length of the edge connecting vertices 1 and 4 is 3. Thus the lengthof a hyperedge represents the item spread for that client. The non-indexed data layout problemthen becomes the problem of numbering the vertices so as to minimize the mean of the hyperedgelengths.Theorem 4.1 The problem of minimizing the mean access time, over all clients, for the non-indexed data layout problem, is NP-complete, even if each client is interested in only two items.proof. As discussed, the mean access time is minimized by minimizing mean item spread. Theproblem of minimizing mean item spread can be rewritten as follows for the case where each clientis interested in only two items. Given a graph G = (V;E) with vertex set V and edges E, �nd a8

one-to-one function f : V ! f1; 2; :::; jV jg such thats1 = X(u;v) 2 E jf(u)� f(v)j (1)is minimized. This problem is identical to the known NP-complete problem Optimal Linear Ar-rangement [4]. 2The Non-indexed data layout problem has been studied extensively in other contexts (e.g. see [7])and optimal as well as heuristic algorithms have been designed for it. We will not consider it furtherin this paper. Instead, we will consider the situation where the airdisk contains an index, whichwill allow the client to save power by simply reading the index, and then only reading the items ofits interest. We de�ne this in the following.4.2 Indexed data layoutSuppose the airdisk has an index which speci�es the sequence of data items in each rotation, andfor simplicity, assume that all the data items are of the same length. A client then accesses thedata items of interest by �rst reading the index and then reading only each data item of interest. Aclient starts reading the disk at an arbitrary instant of time, and a client's access is not consideredcompleted unless it has read all the items it is interested in. The access time for a client will be thesum of four components: (1) the rotational latency for the index, i.e., waiting for the index of thenext rotation to appear, (2) the data transfer time to read the index, (3) the item reach, i.e., thetime until the last item the client is interested in appears, and (4) the data transfer time to readthe last item. (Note that as for the non-indexed data layout problem, the data transfer time foritems other than the last one is overlapped with the item reach.) We are interested in minimizingthe mean access time over all clients; we call this the Indexed Data Layout (IDL) problem.Once again, the problem reduces to minimizing one component, namely the item reach. We canexpress it in graph-theoretic terms using the formulation used for the non-indexed data layout, i.e.,create a graph using the set of vertices and hyperedges as before. We can show that the item reachminimization problem is also NP-complete; however, the proof requires designing a polynomial-timereduction.Theorem 4.2 The problem of minimizing the mean access time, over all clients, for the indexeddata layout problem is NP-complete, even if each client is interested in only two items.proof. Minimizing mean access time reduces to minimizing mean item reach. The problem ofminimizing mean item reach can be rewritten as follows. Given a graph G = (V;E) with vertex set9

V and edges E, �nd a one-to-one function f : V ! f1; 2; :::; jV jg such thats2 = X(u;v) 2 Emax(f(u); f(v)) (2)is minimized.The proof is by a reduction from the problem Optimal Linear Arrangement (OLA). The proof isin three steps. We �rst de�ne a weighted version of IDL, (weighted IDL, or WIDL) in which edgesmay have positive or negative integer weights, and show in Lemma 4.1 that the known NP-completeproblem OLA can be reduced to this weighted layout problem. We then show in Lemma 4.2 thatWIDL layout problem can be reduced to a version of WIDL with positive weights, problem PWIDL.Finally in Lemma 4.3 we show that PWIDL can be reduced to the target problem, IDL. 2In the following G = (V;E) denotes a graph G with vertex set V and edge set E.Def. The weighted indexed data layout problem (WIDL) is that given a graph G = (V;E) and aweight function w : E ! I where I is the set of integers, and a positive integer K, does there exista one-to-one function f : V ! f1; 2; :::; jV jg such thats3 = X(u;v) 2 Ew((u; v)) �max(f(u); f(v))� KDef. The Optimal Linear Arrangement problem (OLA) is that given a graph G = (V;E) and apositive integer K, does there exist a one-to-one function f : V ! f1; 2; :::; jV jg such thats1 = X(u;v) 2 E jf(u)� f(v))j � KLemma 4.1 The OLA problem reduces to WIDL.proof. For an arbitrary instance of OLA, de�ne a graph G0 = (V 0; E 0) and a positive integer K 0such that: V 0 = VE 0 = E [f(u; u) : u 2 V g8 u 2 V; w(u; u) = �d(u)8 u; v 2 V : u 6= v; w(u; v) = 2Now letK0 = X(u;v) 2 E0 w(u; v) �max(f(u); f(v)) (3)10

= 2 X(u;v) 2 Emax(f(u); f(v))� X(u;u) 2 E0 d(u)max(f(u); f(u))= 2 X(u;v) 2 E(min(f(u); f(v))+ jf(v)� f(u)j)� Xu 2 V d(u)f(u)= 2 X(u;v) 2 E(:5(f(u)+ f(v)) + :5(jf(v)� f(u)j))� Xu 2 V d(u)f(u)= X(u;v) 2 E jf(v)� f(u)j+ X(u;v) 2 E f(u) + f(v)� Xu 2 V d(u)f(u)= X(u;v) 2 E jf(v)� f(u)j= K (4)The construction can clearly be performed in polynomial time. 2Def. The Positive-weighted indexed data layout problem (PWIDL) is identical to WIDL exceptthat the weight function maps the edges to non-negative integers instead of the set of integers.Lemma 4.2 The WIDL problem reduces to PWIDL.proof. Given an arbitrary instance of WIDL, construct an instance of PWIDL in polynomial timeas follows. Let 8 u 2 V; w(u; u) = jEj � d(u)Then,K0 = 2 X(u;v) 2 Emax(f(u); f(v))� Xu 2 V d(u)f(u) + Xu 2 V jEjf(u)= X(u;v) 2 E jf(u)� f(v)j+ jEj Xi 2 f1;:::;jV jg i= K + jEjjV j(jV j � 1)2 (5)2Note that in the reduction from WIDL to PWIDL, it su�ces to set w(u; u) to some value whichwill be positive for all u 2 V ; thus for instance, one could choose w(u; u) = �� d(u)+ 1, where �is the degree of the graph in the instance of WIDL.Finally, we will show that PWIDL can be reduced to IDL.Lemma 4.3 The OLA problem reduces to IDL.11

proof. From Lemmas 4.1 and 4.2 we know that an arbitrary instance of OLA can be transformedinto an arbitrary instance of PWIDL in polynomial time. The reduction from PWIDL to IDL canbe done simply by replacing any edge of weight w in an instance of PWIDL by w edges of unitweight in IDL. This is also clearly a polynomial time reduction. 2Note that for the special case where every client is only interested in one item on every rotation,the indexed data layout problem can be solved trivially by ordering the items in descending orderof popularity, i.e., items with the most client interest �rst.Several variations and generalizations of these problems can be considered. The generalizationwhere data items are not of the same length may make the problems signi�cantly more complicated.It may also be possible to allow clients to specify not only their interest in a data item, but alsotheir degree of interest. In the graphical formulation, this corresponds to assigning weights to thevertices of the graph.The indexed data layout problem is of interest as it corresponds to situations of practical appli-cability, e.g. for delivery of stocks or tra�c information [21]. In the following section we describemethods for solving the problem optimally as well as by e�cient suboptimal heuristics.5 An optimal algorithm for data layoutWe will continue further discussion of the indexed data layout problem, and its solution, in termsof its graphical formulation: a vertex corresponds to a data item, and a (hyper)edge correspondsto the (two or more) data items of interest to a given client. Multiple (hyper)edges correspondto multiple clients with identical items of interest, and can be represented by a single (hyper)edgewith weight equal to the number of multiple edges.The naive algorithm for solving the indexed data layout problem is by exhaustive enumeration. Forn vertices (items of data), there are obviously n! permutations which need to be examined. Foreach permutation of the vertices, the item reach for each client can be computed given the verticesin which it is interested, and hence the mean item reach over all clients can be calculated. It is clearthat the execution time for exhaustive enumeration will be prohibitively large for all but small n.We develop an optimal algorithm for this problem using a branch-and-bound approach. The branch-and-bound method is well-known [19] and we only summarize it's application to our situation. Thealgorithm (which we call B&B) begins with a candidate (generally, non-optimal) solution for theproblem. In our case, for instance, it may simply be a random permutation of the vertices. TheB&B algorithm essentially consists of traversing a tree, where the root node of the tree (level 0)is the situation in which no vertices have been decided in the permutation. (Note that we use theterm \node" to refer to the nodes in the branch-and-bound search tree; while the term \vertices"12

refers to the vertices which represent the data items to be scheduled.) Each leaf node of the treecorresponds to a complete permutation of all n vertices, and each interior node at level i, 0 < i < n,corresponds to the situation in which the positions of i � 1 vertices have been decided. At eachnode in the branch-and-bound tree, the B&B algorithm computes a lower bound on the value of theobjective function for all the leaves in the subtree rooted at that node; only if this lower bound isless than the candidate solution does the algorithm proceed further down this path, i.e., investigatethe vertex permutations represented by the nodes in the subtree. If the lower bound exceeds thecurrent candidate solution, the subtree is not considered further. If a leaf node for which theobjective function is less than the candidate solution is found, it becomes the current candidate;the search continues until all leaves have either been eliminated or evaluated in this fashion.Clearly, the better the lower bound used in the B&B algorithm, the more branches of the treewill be eliminated. Thus the execution e�ciency of B&B depends critically upon how good thelower bound is. In the following we present a lower bound on the mean item reach, and prove itscorrectness (i.e., it is indeed a lower bound.) We will use the following observations.Def. For a permutation f of the vertices of G, where f is a one-to-one function f : V !f1; 2; :::; jV jg, the left degree of a vertex under f is the number of edges it has connected to verticeswhich are placed earlier in f , i.e., the left degree of vertex v isld(v) = jf(u; v) : (u; v) 2 E ^ f(u) < f(v)gjObservation. For a given vertex permutation f of the vertices of graph G = (V;E),s2 = X(u;v) 2 Emax(f(u); f(v)) (6)= Xv 2 V f(v)ld(v) (7)This observation can be explained operationally as follows. The �rst equation above calculates s2by considering each edge, and �nding the position of its right endpoint, while the second does socounting the number of edges which are terminated at each vertex, and multiplying by the positionof that vertex.It is clear from Eq. 7 that to minimize s2 a permutation f which places vertices in descendingorder of left degree is desired. We use this to motivate the following lower bound.Lemma 5.1 Suppose that i out of n vertices have been placed, i.e., the �rst i positions of thepermutation have been decided. Let Ei � E denote the edges which are completed, i.e, have bothendpoints placed, after i � n vertices have been placed. Then a lower bound on the objective function13

s2 of Eq. 2 for the remaining vertices is given byL1 = nXj=i+1 j �max(0;min(jEj � jEj j; d(S(j� i)))) (8)where d(S(k)) is the degree of the kth vertex in the list S created by sorting the remaining verticesin order of descending degree.proof. After i vertices have been placed, jEj � jEij edges remain which need to have one or bothendpoints placed. To minimize s2, these edges should be completed, i.e., have both endpointsplaced, as early in the vertex permutation as possible. In the best case, for every vertex from i+1onwards, all its incident edges are completed at that vertex, i.e. it has its left degree equal to itsdegree. From Eq. 7, the vertices from i + 1 onwards should be arranged in order of descendingdegree.The max term of L1 ensures that the calculation of L1 stops when all the remaining edges havebeen completed. The min term ensures that at the last vertex for which edges remain, only theremaining number of edges, and not the vertex's degree, is used in the calculation; otherwise, theformula calculates an estimate based upon Eq. 7 assuming that the left degree of each remainingvertex equals its degree. 2We studied the e�ectiveness of the B&B algorithm with the lower bound of Lemma 5.1 by im-plementing it as a C program and running simulation experiments in which it was presented withrandom graphs as input. For the sake of comparison, and to check the correctness of the implemen-tation, an exhaustive enumeration algorithm was also implemented as a C program and run on thesame inputs. B&B was very signi�cantly faster than exhaustive enumeration, even for a broadcastperiod with only 8 items (n = 8); for larger n, B&B's speed advantage increases even more. Sincethis is as expected, we omit details of these experimental results in this paper.6 A fast heuristic for data layoutAlthough the B&B algorithm is much faster than exhaustive enumeration, it is likely to be too slowfor many practical applications. It may be the case that B&B could be made faster by designinga more sophisticated lower bound. An alternative approach is to design a heuristic which, whilenot guaranteeing optimality, gives results close to optimal for a much smaller execution time thanB&B. We design two such heuristics below, and for the second, more sophisticated one, presentresults of simulation experiments showing that, for the situations studied, it does indeed behave asdesired. The B&B algorithm is henceforth used only for the purposes of comparing its performancewith the heuristic; it is expected that in any practical situation the heuristic would be preferable.14

To motivate the �rst heuristic, consider again the special case we mentioned in sec. 4, namely,where every client is only interested in one item. In that case the data items should simply beordered in descending order of degree.Def. The MAX heuristic consists of ordering the vertices (data items) by descending degree.Clearly, MAX will not produce an optimal layout when (some) clients may be interested in morethan one item; an example is shown in Fig. 2. Here the �ve vertices, which are ordered in somerandom permutation as shown in Fig. 2 (a), are ordered by descending degree in Fig. 2 (b), withties broken arbitrarily. While the random permutation has an objective function value of 43, thelayout by MAX improves it to 39. However, it can be shown that the optimal layout is the oneshown in Fig. 2 (c), which has an objective function value of 37.However, the virtue of MAX is that for a graph with n vertices and m edges it takes O(m) time tocalculate the vertex degrees, and O(n logn) to sort, giving a total time of only O(m+ n logn).A better heuristic would be to modify the ordering obtained fromMAX by an iterative improvement.Recall from our observation in Eq. 7 that the objective can be written as s2 =P v 2 V f(v)ld(v),where ld(v) is the left-degree of vertex v under the permutation f . Thus to minimize s2 a permu-tation which places vertices in descending order of left degree is desired.Def. The MAX-LD heuristic consists of two steps. The �rst step is to obtain an initial orderingby sorting the vertices by descending degree, i.e., using MAX. In the second step, the followingoperation is repeated for i = 1; :::; n� 1: if the left degree of vertex i + 1 exceeds that of vertex i,the positions of the two vertices are interchanged.MAX-LD will also not always produce an optimal ordering. For example, considering the instanceG shown in Fig. 2, MAX-LD will obtain the vertex ordering (1, 5, 4, 3, 2). We leave it to thereader to verify that this ordering has a cost of 38, which, while better than the cost obtained byMAX, is still not optimal.The MAX-LD heuristic will take O(m+ n logn) time to run MAX, followed by O(m+ n) time toperform the left-degree check, for a total of O(m+ n logn).6.1 Experimental resultsWe show preliminary experimental results from a set of experiments which compare the performanceof MAX-LD with B&B.The MAX-LD algorithm was implemented as a C program. The experiments were all performed bycompiling the programs (with optimization level 4 enabled) and executing on a Sun Sparc 1 station.15

3 4 51 2

degrees: 7 2 3 5 5

left-degrees: 0 2 2 2 5 s = 43

Original graph G(a)

24 5 1 3

degrees: 5 5 7 3 2

left-degrees: 0 3 3 3 2 s = 37

An optimal layout(c)

1 4 5 3 2

degrees: 7 5 5 3 2

left-degrees: 0 1 5 3 2 s = 39

A layout by MAX(b)

Figure 2: Example of (a) an input graph G, whose ordering is improved by MAX as shown in (b),but which is greater than the cost of (c) an optimal layout.16

Typically, the CPU execution time of the heuristic was of the same order as of the granularity oftime measurement (16.66 ms). To obtain an accurate estimate of CPU time, the heuristic wasrepeated a number of times for each input graph, so that the time measured was of the order ofminutes; the execution time for a single run of the heuristic for that input graph was then calculatedby dividing this measured time by the number of repetitions of the heuristic.Expt. 1. The experiment was performed for several values of the number of vertices n. For eachvalue of n, 25 random graphs with edges of unit weight were generated (i.e., no parallel edges wereallowed.) The edge density was 0.5, i.e., the number of edges is half the maximum possible numberof edges. For each graph, the CPU time for executing the heuristic was computed as describedabove, as was the CPU time for executing B&B; these values were averaged over the 25 randomgraphs. In addition, for each input graph, the cost s2(MAX � LD) of the ordering obtained byMAX-LD was found, as was the optimal cost s2(B&B) found by B&B, and the ratios2(MAX �LD)� s2(B&B)s2(B&B)was computed; this ratio was always averaged over the 25 random graphs.In Fig. 3, the mean CPU time for B&B is compared with that for MAX-LD, for values of n =5; 8; 10; 11. Because of the very large di�erence in CPU times, note that a log-scale is used for they-axis. It is clear that MAX-LD takes much less time than B&B in this case. Fig. 4 shows thatthe penalty paid by MAX-LD in terms of the increased cost s2 is only a few percent on average forthis experiment.The comparison of the cost penalty paid by MAX-LD cannot be extended for large n in general,because the execution time to calculate the optimal solution, even using B&B, becomes prohibitive.We can, however, measure the running time of MAX-LD.Expt. 2. The experiment consisted of running the MAX-LD heuristic in the same manner as forExpt. 1 above, but continuing it for n = 15; 20; 50; 100. (The B&B was not run.)Fig. 5 shows the mean CPU time for the heuristic for various values of n. It can be shown that themeasured mean CPU time grows roughly as O(n2). Recall that the edge density of the input graphsis 0.5., i.e., the expected number of edges is 0:5 � n(n � 1)=2 = O(n2). Thus theoretical runningtime of O(m+ n logn), where m is the number of edges, becomes O(n2 + n logn) = O(n2) in thiscase. Thus the measured values for execution time are consistent with the theoretical analysis.7 Discussion and related workThe simulation experiments shown above have been extended to consider the case that the edgesare weighted (i.e., there are parallel edges in the graph). The results are qualitatively similar to17

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

5 6 7 8 9 10 11

C
PU

 e
xe

cu
tio

n
tim

e
(s

ec
s)

Number of vertices, n

HEURISTIC

B&B

Figure 3: Comparison of mean execution time of B&B and the MAX-LD heuristic for graphs withunit-weight edges and edge density 0.5. Note log scale on y-axis. Each data point is the mean for25 random input graphs. The comparison of MAX-LD with B&B cannot be continued for muchbeyond n = 11 as B&B rapidly becomes prohibitively time consuming to execute.
0

1

2

3

4

5

5 6 7 8 9 10 11

Pe
rc

en
ta

ge
 c

os
t i

nc
re

as
e

du
e

to
 h

eu
ri

st
ic

Number of vertices, nFigure 4: Comparison of mean percentage increase in cost s2 when the heuristic MAX-LD is used,compared to the optimal solution. (Graphs with unit-weight edges and edge density 0.5.)18

0

5

10

15

20

10 20 30 40 50 60 70 80 90 100

M
ea

n
C

PU
 ti

m
e

(m
ill

is
ec

on
ds

)

Number of vertices, nFigure 5: Mean CPU time for MAX-LD heuristic for graphs with unit-weight edges and edgedensity 0.5.those shown here, and are omitted for brevity. We are currently also experimenting with di�erent(sparser) edge densities and hyperedges. In general we expect that a simple heuristic like MAX-LDwill provide excellent results. We are considering additional heuristics which may provide slightlybetter results, as well as a more sophisticated lower bound which can be used to improve theperformance of B&B and hence allow experimentation with larger graphs. We are currently alsoinvestigating an implementation of the airdisk model in an experimental wireless LAN environment.In other directions related to this work, we have considered the problem of obtaining informationabout data access patterns in a wireless mobile environment, and discussed several alternativesolutions [15]. Another issue with airdisks is that as the quantity of data to be broadcast increases,the delays involved in accessing data increase. We use the airdisk model to borrow the solution tothis problem used for magnetic disks, i.e., to improve performance via parallelism while maintainingavailability via redundancy, as in the Redundant Arrays of Inexpensive Disks (RAID) approach[20, 13] which is in successful and widespread use. We call this design the AirRAID, and we havedescribed it brie
y in [15].There has been a surge of related work on periodic wireless broadcast recently. As mentionedpreviously, the airdisk model [15] is similar to the notion of broadcast disks studied by Acharya etal [1]. In [1] the authors address two issues, the �rst being related to how to select the frequencywith which data items are broadcast in a broadcast period (the second issue deals with how anindividual client should best manage its cache, and is not directly related to the present paper.)19

Thus [1] considers how data items should be replicated in the broadcast so as to minimize meanaccess times, with the most popular items being broadcast most often. However, [1] does notexplicitly consider the ordering of individual data items within the broadcast period. In contrast,we consider how, once the data items to be broadcast have been selected, they are to be orderedso as to minimize the total access time for each client (averaged over all clients), where clients maybe interested in one or more data items.Other work on broadcast disks [2, 3] has focused on policies by which clients may prefetch data,and is not directly related to the work in the present paper. Some of the recent work in the areaof periodic broadcast has considered alternatives to indexing for data retrieval from the broadcast.In [18] the authors present single and multi-level signature schemes, as well as schemes for cachingthe signatures at the mobile clients.
8 ConclusionsWe have previously presented a model, called the airdisk model, for representing periodic wirelessdata broadcast in terms of a magnetic disk [15, 16]. In this paper we have shown expressions forits mean and maximum rotational latency under certain assumptions. We have then de�ned twoproblems of laying out the data on the airdisk based upon information about which items are ofinterest to clients. We have shown that both problems, if the data is to be laid out so as to minimizemean client access time, are NP-complete.For the data layout problem in which an index is broadcast with the data, we have developedan optimal algorithm using the branch-and-bound method, and also a fast, simple heuristic. Wehave carried out a set of simulation experiments to evaluate the behavior of these algorithms andfound that the heuristic runs much faster than the branch-and-bound algorithm, yet, for theseexperiments, produces orderings whose cost is within a few percent of the optimal cost.We are currently continuing the work reported here in two ways. The �rst is to expand theexperimental and theoretical results presented here for the MAX-LD and related heuristics. Thesecond is implement the airdisk model in a server connected to mobile clients connected by anexperimental wireless LAN. We are also continuing to investigate other directions [15], such asthe use of multiple parallel airdisks to increase airdisk storage and performance via the concept ofairRAID. 20

AcknowledgementsWe thank Bill Aiello and Sandeep Bhatt of Bellcore for several useful and stimulating discussionsregarding the indexed data layout problem.References[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast disks: Data management forasymmetric communication environments. In Proc. SIGMOD, June 1995.[2] S. Acharya, M. Franklin, and S. Zdonik. Dissemination-based data delivery using broadcastdisks. IEEE Pers. Comm., Dec. 1995.[3] S. Acharya, M. Franklin, and S. Zdonik. Prefetching from a broadcast disk. In Proc. Intl.Conf. Data Eng., Feb. 1996.[4] D. Adolphson and T. C. Hu. Optimal linear ordering. SIAM J. Appl. Math., 25:403{423, 1973.[5] B. R. Badrinath and T. Imielinski. Data management issues in mobile computing. In WirelessDatacomm '92, 1992.[6] Bellcore. Generic criteria for Version 0.1 Wireless Access Communications Systems (WACS).Technical Advisory TA-NWT-001313, Issue 1, Bellcore, July 1992.[7] J. Bhasker and S. Sahni. Optimal linear arrangement of circuit components. Journal of VLSIand Comp. Sys., 2(1-2):87{109, 1987.[8] T. Chiueh. Scheduling for broadcast-based �le systems. In Proc. MOBIDATA Workshop.Rutgers University, Nov. 1994.[9] Juan Miguel del Rosario, R. Bordawekar, and Alok Chaudhary. Improved parallel I/O via atwo-phase run-time access strategy. In Proc. Workshop on I/O in Parallel Computer Systems,pages 56{70, 1993. Also in ACM SIGARCH Comp. Arch. News., Dec. 1993.[10] G. Herman et al. The Datacycle architecture for very large high throughput database systems.In Proc. SIGMOD, pages 97{103, 1987.[11] T. F. Bowen et al. The Datacycle architecture. Comm. ACM, pages 71{81, Dec. 1992.[12] M. Garey and D. Johnson. Computers and intractability: A guide to the theory of NP-completeness. Freeman, 1979.[13] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. MorganKaufmann, San Mateo, CA, 1990. 21

[14] T. Imielinski, S. Viswanathan, and B.R. Badrinath. Energy e�cient indexing on air. In Proc.SIGMOD, pages 25{36, 1994.[15] Ravi Jain and John Werth. Airdisks and AirRAID: Modeling and scheduling periodic wirelessdata broadcast. DIMACS Tech. Report 95-11, Rutgers Univ., May 1995.[16] Ravi Jain and John Werth. Airdisks and AirRAID: Modeling and scheduling periodic wirelessdata broadcast. ACM SIGARCH Comp. Arch. News., Oct. 1995.[17] Leonard Kleinrock. Queuing Systems Volume I: Theory. Wiley, 1975.[18] W. C. Lee and D. K. Lee. Using signature techniques for information �ltering in wireless andmobile environments. Distrib. and Par. Databases, 4(3), 1996. (To appear: Special Issue onDatabases and Mobile Computing.).[19] C. H. Papadimitriou and K. Stieglitz. Combinatorial Optimization: Algorithms and Complex-ity. Prentice Hall, 1982.[20] David Patterson, Garth Gibson, and Randy Katz. A case for redundant arrays of inexpensivedisks (RAID). In ACM SIGMOD Conference, pages 109{116, June 1988.[21] S. Schulman, R. Jain, M. Kramer, and A. Virmani. Traveler information: Tailored to meetthe needs of the traveler. In Proc. Intl. Transp. Sys. (ITS) America Conf., Apr. 1996.[22] A. Tanenbaum. Computer Networks. Prentice-Hall, 1988.[23] G. Varrall. Data Over Radio. Quantum Publishing, 1992.

22

