
Implementing Abstract Protocols in C1Tommy Marcus McGuire, M.A.The University of Texas at Austin, 1994Supervisor: Mohamed G. GoudaThe goal of this work is the creation of a system to aid the implementation of anetwork communication protocol speci�ed in the Abstract Protocol notation. Therequirements of this system are primarily faithfulness to the formal notation and atleast a semblance of e�ciency. To this end, a suite of functions has been written toallow the creation of the processes involved in the protocol, originally speci�ed inthe Abstract Protocol notation, in the programming language C.The basic idea of the suite is the registration of functions whose executiona�ects the protocol state and which are enabled or disabled by the protocol state.The core of the suite is the function engine(), which invokes the functions inresponse to state changes.Several example protocols and their implementations will be presented, in-cluding an evolution of a simple request/reply protocol into a more complex form.Also, a reference has been provided for the functions in the suite.
1This thesis was presented to the faculty of the Graduate School of The Universityof Texas at Austin in December, 1994. This edition has also been published as Tech-nical Report TR96-31 from the Department of Computer Sciences at The Universityof Texas at Austin.

ii

ContentsAbstract iChapter 1 Introduction 11.1 De�nitions . 21.2 The nuweb system of structured documentation 3Chapter 2 Language Issues 72.1 Abstract Protocols . 72.1.1 AP syntax . 72.2 The C language . 92.2.1 Function pointers . 102.2.2 \Subclassing" variables . 102.2.3 C implementation issues . 11Chapter 3 Abstract Protocols in C 133.1 Implementing processes . 133.1.1 Implementing actions . 143.2 Vending machine protocol . 153.2.1 Process identi�ers and message types 163.2.2 The vendor . 163.2.3 The customer . 203.2.4 Elaborations . 233.3 The request/reply protocol . 243.3.1 Process identi�ers and message types 253.3.2 Process p . 26Chapter 4 Parameters, Timeouts, and Process Arrays 314.1 Request/reply protocol revisited . 324.1.1 Process identi�ers, message types, and new constants 334.1.2 Process p . 34iii

4.2 Reliable request/reply . 394.2.1 Constants and message types 404.2.2 Process p . 404.3 Request/reply using multiple processes 484.3.1 Constants and message types 494.3.2 Process p . 50Chapter 5 Reference Guide and Conclusion 595.1 The APC engine . 595.1.1 Initializing and executing the engine 595.1.2 Receive and local actions . 615.1.3 Timeout actions . 635.1.4 Sending messages . 655.1.5 Types and variables . 675.1.6 The APC engine header �le 695.2 Compiling and executing APC protocols 695.2.1 Compiling the programs . 705.2.2 Executing the protocol . 705.2.3 APC driver internals . 725.3 Conclusion . 735.3.1 Design and implementation 735.3.2 Future work . 74
iv

Chapter 1IntroductionThe Abstract Protocol (AP) notation solves many problems involved in the formalspeci�cation of networking protocols. Its syntax is very simple. Combined withprotocol properties stated in its notation, it o�ers a set of proof obligations thatmake ensuring that a protocol satis�es a certain property relatively easy. For moreinformation, see [Brown 91], [Burns 93], [Gouda 91], and [Gouda 93].However, the gap between the speci�cation and the implementation remains.For the most part, this is due to the relatively low-level nature of the communica-tion primitives supplied by many operating systems and programming languages.The most advanced of these languages, such as Ada [Barnes 82] and Distributed C[Pleier 93], provide primitives for sending and receiving messages as well as struc-tures such as select for building a networking protocol from those primitives. How-ever, they are based on the idea of communicating sequential processes rather thanon reactive systems which respond to state changes with action. It is not obviousthat translation between AP and the structures such as select would be easy. Morewidely available systems, such as the Unix socket interface [Stevens 90], do not evenprovide the framework available in Ada; the focus in these systems is only on thesending and receiving primitives.The large gap between an AP speci�cation and its implementation in C usingTCP/IP sockets lies primarily in bookkeeping, syntax, and structure. Initializinga socket in order to use it to send and receive messages is a multi-step procedurerequiring considerable information that is not available (and should not be available)from the speci�cation. Additionally, due to the lack of structure from the languageand the socket interface, the implementation is required to provide such structure asis required. This structure actually has nothing useful to do with the protocol itself,but its presence in the implementation can cause many bugs and much confusion.It is very easy, when implementing an AP speci�cation, to be led down a bad path1

which results in complex, di�cult, specialized, and almost unmaintainable code.This system provides a framework which makes the implementation of anAP protocol straightforward, if not easy. With the suite of functions provided bythe APC system, the implementation should closely resemble the speci�cation informat. Much of the bookkeeping required to handle TCP/IP sockets is hiddenfrom the protocol implementation, as well.1.1 De�nitionsOne of the major problems with discussing networking protocols and their imple-mentation is that the terms seem to have multiple meanings. This work uses severalspeci�c de�nitions in order to avoid confusion.� A protocol is collection of two or more processes which are involved in a schemefor communicating with each other. This collection can either be of abstractspeci�cations of processes or running programs. This contrasts with the de�ni-tion of \protocol" which involves only the list of messages passed between pro-cesses and their hypothetical transactions|the de�nition of \protocol" whichis used here implies that information, but does not speci�cally focus on it asit is not overwhelmingly useful when looking at the behavior of a group ofprocesses.� A process is a list of actions along with supporting de�nitions. In general, thesingle term \process" is used to mean an abstract speci�cation, particularlyusing the Abstract Protocol notation.� A program corresponds with an abstract process speci�cation; it is a concretespeci�cation written either in a programming language or in machine instruc-tions (presumably after having been compiled from a programming language).� A running process is a program which is actually executing; more precisely,it is the thread of machine states which is following a program's instructions.This term corresponds to the normal operating system de�nition of \process."The Abstract Protocol notation is a system for de�ning the abstract speci�-cation of a protocol. The system described in this paper is a toolkit for implementinga protocol as one or more programs, starting from the abstract speci�cation of theprotocol in AP. 2

1.2 The nuweb system of structured documentationLarge portions of this work are, in fact, the source code to various programs andfunctions. This source code has been split up and the pieces rearranged and format-ted in an e�ort to make them easier to understand, both for the person maintainingand updating the source code as well as the person reading the material withoutany intention of working with the code.In order to support the formatting e�ort, a tool called nuweb was used topreprocess the LATEX input �le before it was passed to LATEX. nuweb reads the input�le (which has the extension \.w") and parses it into two di�erent sets of output.The �rst set is a LATEX �le with the documentation (this text) passed throughunchanged. In this �le, the embedded source code is changed to a typewriter fontand notations are added which allow the relations between the source code sectionsto be followed.The second set of output is one or more source code �les, suitable for passingto a compiler if necessary. In the code �les, the source has been patched togetherin the order speci�ed by the relations between the sections.Source code sections, called \scraps" or \macros" in nuweb terminology, looksomething like:hClear the arrays 3i �for (k = 1; k <= n; k++){a[k] = 0;str[k] = "";}3Macro referenced in scrap 4a.The code section e�ectively de�nes a macro, in this case called \Clear the arrays,"with the replacement text of \for (...) f...g". When discussing the section interms of the name and replacement text, the term \macro" is generally used; whenreferring to the whole element as part of a document, the term \scrap" is used.When the name of a macro is seen inside another macro, the replacementtext is substituted into the replacement text of the second macro. If the scrap,3

hInitialize the data structures 4ai �sum = 0;hClear the arrays 3i3Macro referenced in scrap 4b.is seen while nuweb is processing a �le, it will set the replacement text for \Initializethe data structures" to something likesum = 0;for (k = 1; k <= n; k++){a[k] = 0;str[k] = "";}and this whole text will be substituted for the use of \Initialize the data structures."The numbers which follow the macro name indicate the page number onwhich the scrap referred to can be found; the optional letter appended to the numberindicates the scrap on that page.If several scraps have the same name, their replacement texts are concate-nated before they are substituted into the scrap using the name.Finally some scraps have names in a typewriter font surrounded by quotationmarks rather than angle brackets. The names of these scraps are used as the �lenames of the source code �les which can be passed to a compiler or another tool.For example,"example.c" 4b �/** Preliminary material...*/hInitialize the data structures 4ai/** Following material...*/3produces the �le example.c which has the useful, compilable source code in it.Normally within this document several related scraps (perhaps de�ning vari-ables along with the code that uses them) have been grouped together, along with4

some text which discusses the scraps. These groups are marked o� from the sur-rounding text by thin horizontal lines.For more information on structured documentation, see [Knuth 92],[Sewell 89], [Knuth 86], and [Knuth 93].

5

6

Chapter 2Language Issues2.1 Abstract ProtocolsThis section will present a brief look at those aspects of AP which are used by theexample protocols described later|most of these aspects are either unique to APor raise signi�cant implementation issues.Unfortunately, it is not within the scope of this work to present the completeAP notation. It would seem that this is a requirement for writing a protocol inAP, which would be a prerequisite for implementing it from the AP speci�cation.On the other hand, many portions of AP, particularly those which are common tomany abstract programming notations, can be straightforwardly translated into theprogramming language of choice. Some of these portions are do loops, if statements,assignments|indeed, almost any local statements|arrays, constants, and otherde�nitions. For further information on these topics, see many of the references inthe bibliography. The purpose of this paper is only to examine those issues raisedby the e�ort to implement a protocol.2.1.1 AP syntaxThis brief look at AP begins with the top level syntax, that of the process.process hprocess nameiinp hprocess constant namei : htype de�nitioni;. . . ;hprocess constant namei : htype de�nitionivar hvariable namei : htype de�nitioni;. . . ;hvariable namei : htype de�nitioni 7

par hparameter namei : htype de�nitioni;. . . ;hparameter namei : htype de�nitionibeginhaction guardi ! hstatement listi[] : : :[] haction guardi ! hstatement listiend The hprocess namei can be either a single identi�er or the speci�cation of anarray of processes:process p [i : hlower boundi : : : hupper boundi]In the process array, the �rst identi�er, p, is the array name and the second, i, isthe index of the array that refers to the current process.The inp section de�nes constants that are e�ectively local to the currentprocess speci�cation. Constants which are global to the protocol can be de�nedusing a glob section, but this is not needed in the examples. var de�nes variableswhich are local to the process. The par section provides parameters, which are usedin statements such asreadyp [j]! hdo somethingiIf j were a constant value, this guard would allow only one element of readyp ever tocontrol the execution of the action. If j were a variable, the �ring of the action woulddepend on the value of the jth element, using the current value of j. However, if j isa parameter ranging across a set of values, 0 : : :N , this action is virtually replacedby a set of actionsreadyp [0]! hdo somethingi[] : : :[] readyp [N]! hdo somethingiwith j replaced by the corresponding member of the range. The parameter allows anenabled action to be nondeterministically picked based on the entire readyp array.The guard of the action can have one of three forms:� hlocal guardi|a local guard is a predicate that involves only local variables.8

� rcv hmessagei from hprocess namei|a receive statement which is true whena message of the correct form is at the head of the channel from the processnamed in the receive statement. If the action is executed, the receive statementremoves the message from the channel.� timeout hglobal guardi|a global guard is a predicate that can involve allof the variables of all of the processes as well as the state of all of the chan-nels. Timeout actions are di�cult to implement and should be avoided wherepossible.The lists of statements consist of either statements dealing with local vari-ables or send statements of the form send hmesssagei to hprocess namei. A mes-sage consists of an identi�er plus zero or more optional �elds. For example,msg (val; seq), is a message msg with two �elds, val and seq.Between each pair of processes (p; q) there exists a shared variable, a channel,C:p:q, into which p can send messages and from which q can receive them. At anyone time, C:p:q contains the sequence of messages which have been sent by p butnot received by q. The number of messages in the channel can be represented by#C:p:q, and the number of any particular type of message, msg, can be representedas msg#C:p:q.At each time step, one action is picked from the set of all of the actions whoseguard predicates are true. (A rcv predicate is true if the message at the head of thechannel that it is receiving from matches the message that the predicate speci�es.)This action is executed. (At which time the rcv predicate removes the message fromthe channel before the statements of the action are begun.) Fortunately, due to thesemantics associated with AP, picking one action at a time from the whole protocolis equivalent to picking one action each from the processes|no synchronization isrequired between processes.2.2 The C languageThis work assumes that the reader is relatively familiar with programming in C.However, one technique is used that is normally regarded as \advanced" C and maynot be familiar to all readers. Also, another \trick" is used which is not necessarilygood C and which may not be portable. Finally, a couple of issues are raisedregarding the relationship between C and formal notations in general and betweenC and network programming. 9

2.2.1 Function pointersThe \advanced" technique is the manipulation of function pointers. A C functionfoo has the de�nition syntax ofint foo(int i){/* C code */}foo takes an int argument and returns an int. foo is called byval = foo(4);If the program uses the bare identi�er foo without the trailing parenthesesand argument, its value is a pointer to the implementation of the function. There-fore, it is possible to writeint (*a)(int);a = foo;in which case the address of the start of foo is assigned to a. The de�nition of ashows it to be a pointer to a function taking an int and returning an int.a can be used to call foo (or any other function whose address is assigned toit) by writingval = (*a)(4);in which case val is assigned the same value as the statement above.This technique is often used by graphical user interface systems to give anapplication the ability to set up handlers for input events from the user such as keypresses and mouse actions.2.2.2 \Subclassing" variablesThe \trick" mentioned above is the use of casts of pointers to point to similar lookingstructures. For example, say the structurestruct bar{int size;}; 10

is used by a program. Also, assume that the program uses a structurestruct mybar{int size;char *name;}to hold some extra information about a struct bar-like entity. It is possible to casta pointer to a struct mybar to a pointer to a struct bar, use it as a pointer toa struct bar, and then recast it to a struct mybar without altering or losing thename �eld. For example,bar *b;mybar *c = malloc(sizeof(mybar));mybar *d;char *nm;int sz;/* Assign the elements of c */b = (struct bar *) c;sz = b->size;/* Use sz */d = (struct mybar *) b;nm = d->name;/* Use nm */This technique allows a struct mybar to be inserted into a list of struct bars, forexample, manipulated by some functions expecting a struct bar, and eventuallyused again as a struct mybar.2.2.3 C implementation issuesTwo issues are raised by using C in relation to formal notations and in relation tonetworks of heterogeneous machines.� An int is not an integer. Due to the �xed representation of an int, it has alimited range of values|a true integer does not. Due to the representationof a double, it is not a real real number; a double has limited precision and11

limited range. In general, it is a good idea to ensure that integers, when usedin formal notations that are aimed at non-trivial implementations, have upperand lower bounds.� Di�erent machines may have di�erent representations for the same data types.For example, on one machine an int may be represented in 16 bits, with theleast signi�cant 8 bits at the lower addressed byte and the most signi�cant 8bits at the higher address. Another machine may use 32 bit ints with the orderof bytes being, starting from the lowest address, most signi�cant, second mostsigni�cant, second least signi�cant, and least signi�cant. On most machines,a short int is 16 bits and a long int is 32 bits. Also, most implementationsof the TCP/IP networking functions provide a set of macros htonl, htons,ntohl, and ntohs. It is best to use both speci�c types and the conversionmacros when necessary.

12

Chapter 3Abstract Protocols in CThe APC suite is designed to ease the transition from the abstract speci�cation ofa protocol in AP to the concrete implementation in C. It does this in two ways:� Providing a simple structure for the implementation of actions, and� Hiding some of the required but uninteresting bookkeeping.For the moment, this discussion will ignore the timeout actions and a few otherparts of AP. For information on those, see the next chapter.The basic premise of the APC suite is to provide a central protocol \engine,"which is given C functions representing AP actions and which calls those functionswhen they are enabled. This call-back approach is used in several user interfacesystems where the application writer (or in this case, protocol writer) needs theability to specify how a system will respond to an outside event, such as a key pressor a message from another process.3.1 Implementing processesEach of the AP processes is mapped in the obvious way to a C program, completewith a function main. The program �rst initializes whatever variables are neededby the protocol, then initializes the suite. Then the program registers the functionsimplementing actions with the APC \engine." All of this set-up work is simpli�edby the program only needing to know information about the local process. Once theset-up work is complete, the program activates the engine and starts the protocolproper. If and when the protocol terminates (another area not covered by the APnotation, but sometimes necessary), the engine cleans up after itself and the programexits. 13

Variables local to the process (and a few other things, as will be seen later) aretranslated into C variables at the �le scope|global to the functions implementingthe actions as well as the main function.Initializing the suite is the task of the function initialize_engine whichtakes a single argument, an integer which is equivalent to the process name inthe AP notation. This integer is used as an index into an array containing theinformation required to send messages to and receive messages from other processes.How initialize_engine determines this information is described in section 5.2.2.If initialize_engine discovers a problem, it exits with a return code. In orderto simplify writing the program further, a macro, INITIALIZE_ENGINE, has beende�ned which calls initialize_engine and, in the event of an error, writes anerror message to the standard error output and exits the running program.Registering the actions is done by a pair of functions that are speci�c to thetypes of action; add_local_action is used for local actions; add_receive_actionfor receive actions. Both of these functions have error-handling macros,ADD_LOCAL_FUNCTION and ADD_RECEIVE_ACTION, respectively. Both of these func-tions take two arguments|the function pointers mentioned earlier. The �rst func-tion argument implements the guard of whatever action is being registered. Thesecond function argument implements the body of the action. Writing the guardand body functions is the subject of the next section.Once the set-up work has been done, the program should call the functionengine or its error-handling wrapper, ENGINE. engine takes no arguments.3.1.1 Implementing actionsThe implementation of an action consists of two functions, a guard function and abody function. For guard functions, there are two basic rules:� The guard returns true if the guard predicate should evaluate to true andfalse otherwise. While there are some instances where the guard function willdi�er from the AP guard predicate, they should not di�er radically.� The guard function does not change the state of the protocol. It should notchange the state of any variables (although the next chapter will consider apair of seeming exceptions to this rule) and it should not send any messages.If the guard predicate is simply the state of some boolean variable, a comparison ofa variable and a value, or better still a boolean constant, the implementation of theguard is straightforward. Receive actions, however, require a little more work. Thereceive guard and body functions will be passed a structure when they are called14

by the engine. This structure contains a process identi�er, sender, which indicatesthe process sending the message, and a pointer to the message structure that wasreceived. The receive guard will generally check the message type, sometimes checkthe sending process's id, and may also look at any additional �elds that were partof the message as sent.The body functions of both kinds of actions are very similar. These functionsimplement the right-hand side of the process's actions and change the state of theprotocol by changing local variables and sending messages. The body function of areceive action does have available the structure passed to the guard in order to sendreplies or pick data out of the message.Sending messages is handled by the function send_message, or its error-handling wrapper, SEND_MESSAGE. send_message takes two arguments, a pointer toa message structure that minimally has a type �eld and a len �eld. The type isused to send particular kinds of messages, and the len is used to inform the enginefunctions of how much data to send, i.e., the size of the message structure in bytes.Receive functions, both the guard and the body, should not attempt to mod-ify or delete their arguments. The memory for the arguments is managed by theengine itself.When an action ascertains that the processing of the protocol is complete,for example that the data to be transferred has been transferred, it can set thevariable prtcl_dne to true. This will tell the engine that it should clean up afteritself and terminate.For more detailed information about the suite functions, see section 5.1.3.2 Vending machine protocolIn order to demonstrate the basic use of these functions, a simple protocol will bede�ned and implemented.The vending machine protocol consists of two processes, a vendor and a cus-tomer. The vending machine accepts money and item selections (in that order) fromcustomers and returns items to them. The customer, a sort of generic individual,presents money and selections to the vending machine and accepts items in return.The vending machine process isprocess vvar readyv : booleanbeginrcv money from c! readyv := true15

[] rcv selection from c! if readyv ! send item to c[] :readyv ! skip�;readyv := falseendand the customer process isprocess cvar readyc : booleanbeginreadyc! send money to v;send selection to v;readyc := false[] rcv item from v ! readyc := trueend3.2.1 Process identi�ers and message typesIn order to properly implement the protocol, several constant values are required.C and V identify the process in question, the values of these constants are knownas the process identi�ers. Also, the protocol uses three di�erent kinds of messages,MONEY, SELECTION, and ITEM. The value of these constants are the message types.hProtocol constants 16i �#define C 0#define V 1#define MONEY 1#define SELECTION 2#define ITEM 33Macro referenced in scraps 20a, 23a.3.2.2 The vendorIn the speci�cation of the vending machine protocol, the vending machine process(known from here on as the vendor) has one variable, a state readyv. The Booleanvariable becomes an integer in traditional C.16

The protocol speci�cation does not mention process initialization. In orderto properly start the process, it is reasonably clear that readyv should be false.The macro FALSE is de�ned to be zero, which in C is false.hVendor variables 17ai �int readyv = FALSE;3Macro referenced in scrap 20a.The vendor has two actions. The �rst allows the vending machine to acceptmoney from the customer. The guard for the action (which is somewhat stricterthan absolutely necessary|there is only one other process in the protocol) is truewhen the message type is MONEY and the message was sent by the customer, processid C. The body of the �rst action sets readyv to TRUE, indicating that the vendoris ready to accept a selection and deliver an item. In the AP notation, the actionisrcv money from c! readyv := trueThe C implementation is somewhat more complex, but in this instance isalmost a direct translation. The value rcvd passed to the guard when the enginepoints to a structure with two components. The �rst component points to themessage that was sent by the other process, msg. The second component, sender,is the process identi�er of the sending process. The message can have several �elds,depending on the requirements of the protocol, but it should have a �eld, type,indicating what message it is. The guard returns either zero or non-zero dependingon whether the vendor has received a MONEY message and on whether the senderis the process C. If those conditions are ful�lled, the guard will return a non-zerovalue and the engine will call the corresponding body function which sets readyvto true. (For the moment, ignore the code scraps labelled \hElaborate. . . i." Theydo nothing to change the state of the protocol.)In order to inform the protocol engine of the vendor's action, the vendor willneed to call ADD_RECEIVE_ACTION with the guard and body functions for the action.hVendor actions 17bi � 17

int action1g(RCVD_MSG *rcvd){return(rcvd->msg->type == MONEY && rcvd->sender == C);}void action1b(RCVD_MSG *rcvd){readyv = TRUE;hElaborate on vendor action 1 23bi}3Macro de�ned by scraps 17b, 19a.Macro referenced in scrap 20a.hAdd vendor actions 18i �ADD_RECEIVE_ACTION(action1g, action1b);3Macro de�ned by scraps 18, 19b.Macro referenced in scrap 20a.The vending machine's second action is used to respond to selections fromthe customer. The guard function therefore returns true when the message receivedhas a type of SELECTION and the sender is the customer, process id C.In the AP notation, the second action isrcv selection from c! if readyv ! send item to c[] :readyv ! skip�;readyv := falseThe vendor's response to the selection varies; if MONEY has been sent previ-ously, then readyv will be true and the vendor will send a message ITEM to thecustomer. If MONEY has not been sent, readyv is false and the vendor will not senda message ITEM. In either case, readyv is set to false.The body function contains the odd looking line,MSG_BUFF msg = {ITEM, sizeof(MSG_BUFF)};18

which de�nes and initializes a C variable, msg. The MSG_BUFF structure has twoelements, the type mentioned above and the size of the structure in bytes, the len.For the message being sent by this function, the only type being used is ITEM. Thesize of the structure is generally constant and generally set with sizeof. The lenis needed by send_message, which would not otherwise know how many bytes tosend to the other process, in this case, C.This example demonstrates that, while the syntax of the AP notation andthe C implementation are di�erent, the di�erence at this stage is largely a matterof format, terminology, and a little record keeping.hVendor actions 19ai �int action2g(RCVD_MSG *rcvd){return(rcvd->msg->type == SELECTION && rcvd->sender == C);}void action2b(RCVD_MSG *rcvd){MSG_BUFF msg = {ITEM, sizeof(MSG_BUFF)};hElaborate on vendor action 2, pt. 1 23ciif (readyv){SEND_MESSAGE(&msg, C);hElaborate on vendor action 2, pt. 2 23di}readyv = FALSE;}3Macro de�ned by scraps 17b, 19a.Macro referenced in scrap 20a.hAdd vendor actions 19bi �ADD_RECEIVE_ACTION(action2g, action2b);3Macro de�ned by scraps 18, 19b.Macro referenced in scrap 20a. 19

The vending machine process de�nes all of the information above and in itsfunction, main, initializes the engine with the process identi�er V and the actions,and calls the engine."v.c" 20a �#include <stdio.h>#include "APC.h"hProtocol constants 16ihVendor variables 17aihVendor actions 17b, . . . ivoid main(){INITIALIZE_ENGINE(V);hAdd vendor actions 18, . . . iENGINE();}33.2.3 The customerSimilar to the vending machine, the customer has one state variable, readyc, whichbecomes an integer in C.hCustomer variables 20bi �int readyc = TRUE;3Macro referenced in scrap 23a.The customer's �rst action is of a di�erent type than the vendor's two.Rather than receiving a message, its guard is based only on the process's localstate variable.When readyc is true, the customer sends money followed by a selection tothe vending machine and sets readyc to false.20

readyc! send money to v;send selection to v;readyc := falseRather than using two variables to de�ne the messages, the implementationuses one, msg. msg's len is set to the size of the structure, and its type is �rst setto MONEY and then to SELECTION.Notice that the customer process uses ADD_LOCAL_ACTION to notify the engineof the action, rather than ADD_RECEIVE_ACTION.hCustomer actions 21ai �int action1g(void){return(readyc);}void action1b(void){MSG_BUFF msg;msg.len = sizeof(MSG_BUFF);msg.type = MONEY;SEND_MESSAGE(&msg, V);hElaborate on customer action 1, pt. 1 24aimsg.type = SELECTION;SEND_MESSAGE(&msg, V);hElaborate on customer action 1, pt 2 24bireadyc = FALSE;}3Macro de�ned by scraps 21a, 22a.Macro referenced in scrap 23a.hAdd customer actions 21bi �ADD_LOCAL_ACTION(action1g, action1b);3Macro de�ned by scraps 21b, 22b. 21

Macro referenced in scrap 23a.The customer's second action is a receive action. The guard becomes truewhen the customer receives an ITEM message from the vending machine, process V.When the customer process receives an item from the vending machine, thecustomer becomes ready again, continuing the great tradition of customers every-where. Compare the AP notation of this �nal action,rcv item from v ! readyc := truewith the implementation.hCustomer actions 22ai �int action2g(RCVD_MSG *rcvd){return(rcvd->msg->type == ITEM && rcvd->sender == V);}void action2b(RCVD_MSG *rcvd){readyc = TRUE;hElaborate on customer action 2 24ci}3Macro de�ned by scraps 21a, 22a.Macro referenced in scrap 23a.hAdd customer actions 22bi �ADD_RECEIVE_ACTION(action2g, action2b);3Macro de�ned by scraps 21b, 22b.Macro referenced in scrap 23a.Overall, the customer process follows basically the same steps as the vendingmachine process. The major di�erence is that the customer initializes its enginewith the process id C. 22

"c.c" 23a �#include <stdio.h>#include "APC.h"hProtocol constants 16ihCustomer variables 20bihCustomer actions 21a, . . . ivoid main(){INITIALIZE_ENGINE(C);hAdd customer actions 21b, . . . iENGINE();}33.2.4 ElaborationsThe programs as written above are correct, but somewhat uninteresting. Neither ofthe programs produces any visible output despite the fact that they are exchangingmessages at a furious rate. Therefore, the following elaborations have been addedin order to show the activity of the processes. Refer back to the implementationsabove if the printing statements described here are not understandable.hElaborate on vendor action 1 23bi �printf("Received money\n");3Macro referenced in scrap 17b.hElaborate on vendor action 2, pt. 1 23ci �printf("Received selection\n");3Macro referenced in scrap 19a.hElaborate on vendor action 2, pt. 2 23di �23

printf("Sent item\n");3Macro referenced in scrap 19a.hElaborate on customer action 1, pt. 1 24ai �printf("Sending money\n");3Macro referenced in scrap 21a.hElaborate on customer action 1, pt 2 24bi �printf("Sending selection\n");3Macro referenced in scrap 21a.hElaborate on customer action 2 24ci �printf("Received item\n");3Macro referenced in scrap 22a.3.3 The request/reply protocolThe vending machine protocol is a particular instance of a very broad class ofprotocols|client/server protocols. Client/server protocols generally feature a spe-ci�c, well-known process which provides services to other, client processes. Theseprotocols are, in turn, a subset of request/reply protocols in which one or moreprocesses make requests and receive replies from each other.In order to provide a larger example of how to use the APC suite, let ustake a simple request/reply protocol and, in subsequent sections, elaborate on it inorder to show the usefulness of the APC suite in approaching more complex APconstructions.For this simple protocol, de�ne the process p asprocess pvar readyp : booleanbegin 24

readyp! send request to q;readyp := false[] rcv request from q ! send reply to q[] rcv reply from q! readyp := trueendThe process q is symmetrical.3.3.1 Process identi�ers and message typesThe basic request/reply protocol needs two processes, p and q, and therefore the twoprocess identi�ers P and Q. It also has two di�erent kinds of messages, REQUEST'sand REPLY's. For variety's sake, the numerical constants associated with the messagetypes are not 0 and 1.Since this protocol will be expanded on in later sections, the string \pass n"is added to the end of the scrap names in order to prevent them from conictingwith di�erent versions of the same scrap.hRequest/reply protocol constants, pass 1 25i �#define P 0#define Q 1#define REQUEST 44#define REPLY 543Macro referenced in scrap 29.The �rst advanced feature that this protocol demonstrates is the use of spe-ci�c message types, rather than the generic MSG_BUFF. Note that, however, the two�elds of the types are the same as type �elds of MSG_BUFF. In practice, it is a goodidea to use the names type and len for the �elds, but only the order and thesize of the two �elds matter; the type of the message is assumed to be in the �rstsizeof(long) bytes of a received message and the size of the whole message is as-sumed to be in the second sizeof(long) bytes. This technique is not useful in thisparticular case, but will become important later when a message type will need oneor more extra �elds. 25

hMessage types, pass 1 26ai �typedef struct{long type;long len;} REQUEST_MSG;typedef struct{long type;long len;} REPLY_MSG;3Macro referenced in scrap 29.3.3.2 Process pWhen the process is ready, it will generate a request message to be sent to the otherprocess, Q.readyp! send request to q;readyp := falsehProcess variables, pass 1 26bi �int readyp = TRUE;3Macro referenced in scrap 29.P's �rst action reects the use of readyp above; when readyp is true, P sendsa request to Q.hP 's actions, pass 1 26ci �int action1g(void){if (readyp) return(TRUE);26

return(FALSE);}void action1b(void){REQUEST_MSG msg;msg.type = REQUEST;msg.len = sizeof(REQUEST_MSG);SEND_MESSAGE((MSG_BUFF *) &msg, Q);readyp = FALSE;printf("Sending request\n");}3Macro de�ned by scraps 26c, 27b, 28b.Macro referenced in scrap 29.hAdd action 1, pass 1 27ai �ADD_LOCAL_ACTION(action1g, action1b);3Macro referenced in scrap 29.In order to uphold P's end of the protocol, when the process receives a requestfrom Q it needs to send a reply. This is a very generic reply, however, not involvingany actual information transfer.rcv request from q ! send reply to qhP 's actions, pass 1 27bi �int action2g(RCVD_MSG *rcvd){return(rcvd->msg->type == REQUEST && rcvd->sender == Q);}void action2b(RCVD_MSG *rcvd){REPLY_MSG msg; 27

msg.type = REPLY;msg.len = sizeof(REPLY_MSG);SEND_MESSAGE((MSG_BUFF *) &msg, Q);printf("Sending reply: %d\n", msg.slot);}3Macro de�ned by scraps 26c, 27b, 28b.Macro referenced in scrap 29.hAdd action 2, pass 1 28ai �ADD_RECEIVE_ACTION(action2g, action2b);3Macro referenced in scrap 29.Finally, when P receives a reply to it's request from Q, it can become readyagain.rcv reply from q! readyp := truehP 's actions, pass 1 28bi �int action3g(RCVD_MSG *rcvd){if (rcvd->msg->type == REPLY && rcvd->sender == Q) return(TRUE);return(FALSE);}void action3b(RCVD_MSG *rcvd){readyp = TRUE;printf("Receiving reply: %d\n", j);}3Macro de�ned by scraps 26c, 27b, 28b.Macro referenced in scrap 29.hAdd action 3, pass 1 28ci � 28

ADD_RECEIVE_ACTION(action3g, action3b);3Macro referenced in scrap 29.The implementation of P needs to� include the APC suite header �le and the stdio.h header,� de�ne its constants, types, variables, and actions,� initialize the engine,� inform the engine of the actions of the process,� and call the engine itself."p1.c" 29 �#include "APC.h"#include <stdio.h>hRequest/reply protocol constants, pass 1 25ihMessage types, pass 1 26aihProcess variables, pass 1 26bihP 's actions, pass 1 26c, . . . iint main(){INITIALIZE_ENGINE(P);hAdd action 1, pass 1 27aihAdd action 2, pass 1 28aihAdd action 3, pass 1 28ciENGINE();return(0);}3Like the speci�cation of p, the implementation of Q is symmetrical to thatof P. (This is a very useful phrase. In this instance, it means that Q can be con-structed from P through the simple expedient of swapping the characters `p' and `q'in appropriate places.) 29

30

Chapter 4Parameters, Timeouts, andProcess ArraysThere are three major AP implementation issues which have not been discussedthus far. These are parameters, timeouts, and process arrays.Parameters are actually rather simple to implement, although the idea behindthem may not be obvious. In most cases parameters are used to allow the enabling ofan action which picks some value nondeterministically from some range. Therefore,it is possible to implement them by de�ning a C variable for them and setting theirvalue in the guard function of their action. This is a violation of the rules presentedabove, but only technically|the parameters are not used to determine the state ofthe protocol. Therefore, the action presented above,readyp[j] ! hdo somethingiwhere j is a parameter ranging over 0 : : :N , can becomeint guard(void){for (j = 0; j <= N; j++) if (readyp[j]) return(TRUE);return(FALSE);}which leaves j set to the appropriate value for the processing of the body function.Process arrays are similarly easy to handle. Since the process identi�er usedby each process is already implemented as an integer beginning at 0 for some pro-cess and ranging upwards for each of the rest, it is reasonable to skip the arraypart entirely and use the process array index from the speci�cation as the process31

identi�er. This will generally require reading the identi�er for each process fromthe command line, or some similar method which assigns it at run time. The suitemakes the variable proc_count available to the actions|proc_count contains thenumber of processes participating in the protocol.Timeouts, however, are somewhat more complex. Since the global informa-tion available to their predicates is not available to the implemented program, it isnecessary to replace that global information with locally available information. Theonly truly global information that is available to a process is the current time. Theglobal predicate of the speci�cation should be replaced in the implementation witha delay in the execution of the timeout action which will hopefully have the samee�ect as the global predicate. For example, this often means that the implementa-tion, rather than resending a message when that message has been lost, must senda replacement message after enough time has passed to indicate that the messagehas probably been lost.The mechanics of timeout actions are rather simple. They are implementedas two functions in the same way as local and receive actions. Since the globalinformation used by timeout implementations is a delay value, this delay is speci�edas one of the arguments to add_timeout_action, the function that noti�es the suiteof the presence of a timeout. Since the delay of the timeout execution must beginat a reasonable point, add_timeout_action should only be called from the body ofanother action; for example, right after the sending of a message which may need tobe resent. Also, since the continued re-execution of a given timeout would not beuseful in most cases, the timeout action set by add_timeout_action is a one shota�air; after the delay, after the guard of the action is attempted, no matter whetherthe body of the action was executed or not, the record of the pointers to the guardand body functions is deleted from the engine.As a slight service to the timeouts, an extra parameter, data, can be associ-ated with the action functions when they are added to the engine. This parameteris a long value which is passed on to the timeout functions when they are invoked.4.1 Request/reply protocol revisitedThe request/reply protocol in section 3.3 is certainly interesting, but it is not verygeneral. An immediate idea that springs to mind is to allow each process to havemore than one outstanding request. For example, process p might need to send Nrequests to process q without waiting; likewise, q could send N request to p beforebecoming unable to send further requests.A process p with this ability might look like32

process pinp N : integervar readyp : array [0 : : :N � 1] of booleanpar j : 0 : : :N � 1beginreadyp [j]! send request (j) to q;readyp [j] := false[] rcv request (j) from q! send reply (j) to q[] rcv reply (j) from q ! readyp [j] := trueend Remember that a protocol parameter, such as j above, turns any action itis used in into an \action template," which is replaced, in this case, with N nearlyidentical actions. The only di�erence between the new actions is that j is replacedby one (and only one, for each instance of j in a particular new action) of the valuesfrom its range.4.1.1 Process identi�ers, message types, and new constantsThis version of p has the constants and message types of the previous one, but itadds a constant N, which represents the number of outstanding requests that P canhave. In the current version of the protocol, each message has a �eld into which avalue is placed and from which it is read. This value corresponds with one of theelements of the array readyp. The message types for the implementation, therefore,need an additional �eld which can be used to index into the array readyp. This�eld is known as slot.hProtocol constants, pass 2 33i �#define P 0#define Q 1#define REQUEST 44#define REPLY 45#define N 53Macro referenced in scrap 38b. 33

hMessage types, pass 2 34ai �typedef struct{int type;int len;int slot;} REQUEST_MSG;typedef struct{int type;int len;int slot;} REPLY_MSG;3Macro referenced in scrap 38b.4.1.2 Process pIn this version of the request/reply protocol process P, the readyp state variablehas been expanded to be an array. Also, a variable which is used to represent theparameter j is added.Because readyp is now an array, it requires some explicit initialization code.hProcess variables, pass 2 34bi �int readyp[N];int j;3Macro referenced in scrap 38b.hInitialize variables, pass 2 34ci �for (i = 0; i < N; i++){readyp[i] = TRUE;}3 34

Macro referenced in scrap 38b.p's �rst action represents a serious departure from the previous protocol. TheAP speci�cation of it isreadyp [j]! send request (j) to q;readyp [j] = falseremembering that j is a parameter. There would be two ways of implementing thisaction. The �rst would be to make N copies of it, with each value from 0 : : :Nreplacing j in some fashion. This is clearly the wrong way to go; it would requiremultiple copies of the code with only minor changes and it would break if the valueof N was changed.The alternative is to implement j as a variable, as was done with j. Then,when j was e�ectively set (actually, the action was chosen with j having an ap-propriate value), the implementation sets j to the correct value. In the case of thisaction, j is used to test the values of readyp until one is found which is true or untilall have been checked. The function implementing the body of the action also usesthe value of j set in the guard. This use of variables to substitute for parameters isone exception to the rule that the functions implementing action guards should nothave any side e�ects.The body, by the way, sets the �elds of msg correctly and then passes thething to send_message. The cast of the address of msg to a pointer to a MSG_BUFF isrequired since that is what send_message expects, and it is safe since the resultingaddress actually does point to a MSG_BUFF (plus an extra �eld tacked on the end).hP 's actions, pass 2 35i �int action1g(void){for (j = 0; j < N; j++) if (readyp[j]) return(TRUE);return(FALSE);}void action1b(void){REQUEST_MSG msg; 35

msg.type = REQUEST;msg.len = sizeof(REQUEST_MSG);msg.slot = j;SEND_MESSAGE((MSG_BUFF *) &msg, Q);readyp[j] = FALSE;printf("Sending request: %d\n", j);}3Macro de�ned by scraps 35, 36b, 37b.Macro referenced in scrap 38b.hAdd action 1, pass 2 36ai �ADD_LOCAL_ACTION(action1g, action1b);3Macro referenced in scrap 38b.The second action,rcv request (j) from q ! send reply (j) to qis implemented in a way very similar to the �rst, except that the value of j is simplyset from the �eld of the received message. A loop such as that above is not requiredhere to give j its parameter nature.hP 's actions, pass 2 36bi �int action2g(RCVD_MSG *rcvd){REQUEST_MSG *req;if (rcvd->msg->type == REQUEST && rcvd->sender == Q){req = (REQUEST_MSG *) rcvd->msg;j = req->slot;return(TRUE);}return(FALSE);} 36

void action2b(RCVD_MSG *rcvd){REPLY_MSG msg;msg.type = REPLY;msg.len = sizeof(REPLY_MSG);msg.slot = j;SEND_MESSAGE((MSG_BUFF *) &msg, Q);printf("Sending reply: %d\n", msg.slot);}3Macro de�ned by scraps 35, 36b, 37b.Macro referenced in scrap 38b.hAdd action 2, pass 2 37ai �ADD_RECEIVE_ACTION(action2g, action2b);3Macro referenced in scrap 38b.Finally, p's third action isrcv reply (j) from q ! readyp [j] = trueand it is implemented much like the second action.hP 's actions, pass 2 37bi �int action3g(RCVD_MSG *rcvd){REPLY_MSG *reply;if (rcvd->msg->type == REPLY && rcvd->sender == Q){reply = (REPLY_MSG *) rcvd->msg;j = reply->slot;return(TRUE);} 37

return(FALSE);}void action3b(RCVD_MSG *rcvd){readyp[j] = TRUE;printf("Receiving reply: %d\n", j);}3Macro de�ned by scraps 35, 36b, 37b.Macro referenced in scrap 38b.hAdd action 3, pass 2 38ai �ADD_RECEIVE_ACTION(action3g, action3b);3Macro referenced in scrap 38b.The major change the to remaining parts of the implementation is the scrapto initialize the values of readyp."p2.c" 38b �#include "APC.h"#include <stdio.h>hProtocol constants, pass 2 33ihMessage types, pass 2 34aihProcess variables, pass 2 34bihP 's actions, pass 2 35, . . . ivoid main(){int i;hInitialize variables, pass 2 34ciINITIALIZE_ENGINE(P);hAdd action 1, pass 2 36ai 38

hAdd action 2, pass 2 37aihAdd action 3, pass 2 38aiENGINE();}3As before, the implementation of q is symmetrical and only requires somesubstitutions.4.2 Reliable request/replyThe request/reply protocol described in section 4.1 su�ers from one fatal aw; itwill not resend lost messages, and therefore is unreliable.The timeout mechanism can be used to correct this aw. This requiresconsiderable changes in both the protocol speci�cation and in the implementation.The protocol now looks like:process pinp N : integervar readyp : array [0 : : :N � 1] of booleanpar j : 0 : : :N � 1beginreadyp [j]! send request (j) to q;readyp [j] := false[] rcv request (j) from q! send reply (j) to q[] rcv reply (j) from q ! readyp [j] := true[] timeout :readyp[j] ^ request (j)#C:p:q = 0 ^ reply (j) #C:q:p= 0!send request (j) to qend The last action (whose guard is true when a slot is marked as in use and thereis no corresponding message, either the request or a reply in the channel between pand q) is used to resend a request after either the request or the reply has been lost.The change to the process has several far-reaching consequences to the pro-gram. 39

4.2.1 Constants and message typesIn this case, the constants and message types needed by the implementation havenot changed from the last version.hProtocol constants, pass 3 40ai �#define P 0#define Q 1#define REQUEST 44#define REPLY 45#define N 53Macro referenced in scrap 47c.hMessage types, pass 3 40bi �typedef struct{int type;int len;int slot;} REQUEST_MSG;typedef struct{int type;int len;int slot;} REPLY_MSG;3Macro referenced in scrap 47c.4.2.2 Process pThe variables, however, have changed considerably. Rather than a single booleanvalue or an array of boolean values, the readyp state variable becomes an array(with one element for each possible message slot value) of structures|the �rst40

element of the structure is the ready ag, which does actually serve the purposeof the previous readyp array. The other two slots are used in the processing of thetimeout for resending requests.The initialization of the readyp variable is as complex as the variable itself.j, however, is still used the same as it was, and seems rather innocuous now.hProcess variables, pass 3 41ai �struct{int ready;int sent;int timed;} readyp[N];int j;3Macro referenced in scrap 47c.hInitialize variables, pass 3 41bi �for (i = 0; i < N; i++){readyp[i].ready = TRUE;readyp[i].sent = 0;readyp[i].timed = 0;}3Macro referenced in scrap 47c.The �rst complex change required for the timeout implementation is in thevery �rst action. Recall that the AP timeouts have access to global informationabout the state of the protocol. The global information required in this protocol isthe state of the channel between p and q. The implementation clearly cannot easilygain access to that global information, and therefore must use with the informationthat it has available, the time.In the APC suite, the timeout handlers use this timing information to allowthe use of timeout actions by specifying a delay after a certain time during a pro-tocol's execution. After the delay expires, the engine will attempt to execute thetimeout action by testing the guard function. This use of a delay, however, requiresa starting time|the time after which the delay will expire.41

The choice of this time requires in-depth knowledge of the protocol. Inthe case of this protocol, the timeout action is being used to resend a presumablymissing message. Therefore, the start time of the delay should be the time theoriginal message is sent. In this way, the add_timeout_action function di�ers fromthe other add_..._action functions. The others are called from the main functionbefore invoking the engine and are set up permanently. add_timeout_action iscalled from the place in one of the protocol actions which represents its start time.Also, after a call to add_local_action, the guard and body functions of the localaction remain in e�ect for the duration of the process; a particular invocation ofadd_timeout_action results in one speci�c invocation of the timeout guard andpossibly body actions after a given delay.One di�culty arises when using the timeout action implementation systempresented here|the timeout action functions are too limited to know when not towork. This, then, is the reason for the additional �elds (after ready) in the readyparray. The protocol needs some way of telling a timeout action that it is not actuallynecessary to resend a message. In the action below, after setting ready to false for aslot, the process increments a counter of the number of times a message bearing thatslot number has been sent. For more information on this topic, see the discussionof action 4 below.For comparison, the AP speci�cation for this action isreadyp [j]! send request (j) to q;readyp [j] := falsehP 's actions, pass 3 42i �int action1g(void){for (j = 0; j < N; j++) if (readyp[j].ready) return(TRUE);return(FALSE);}void action1b(void){REQUEST_MSG msg;msg.type = REQUEST;msg.len = sizeof(REQUEST_MSG);msg.slot = j; 42

SEND_MESSAGE((MSG_BUFF *) &msg, Q);hAdd action 4, pass 3 47aireadyp[j].ready = FALSE;readyp[j].sent++;printf("Sending request: %d\n", j);}3Macro de�ned by scraps 42, 43b, 44b, 46.Macro referenced in scrap 47c.hAdd action 1, pass 3 43ai �ADD_LOCAL_ACTION(action1g, action1b);3Macro referenced in scrap 47c.Action 2 is speci�ed asrcv request (j) from q ! send reply (j) to qand the implementation here does not di�er from it more than the implementationin the previous version did. One characteristic of this protocol that is worth notingis that loss of reply messages is handled in the same way as the loss of requestmessages. The sender of the request notices that no reply is forthcoming and resendsthe request. No additional processing is required on the replying end.hP 's actions, pass 3 43bi �int action2g(RCVD_MSG *rcvd){REQUEST_MSG *req;if (rcvd->msg->type == REQUEST && rcvd->sender == Q){req = (REQUEST_MSG *) rcvd->msg;j = req->slot;return(TRUE);}return(FALSE); 43

}void action2b(RCVD_MSG *rcvd){REPLY_MSG msg;msg.type = REPLY;msg.len = sizeof(REPLY_MSG);msg.slot = j;SEND_MESSAGE((MSG_BUFF *) &msg, Q);printf("Sending reply: %d\n", msg.slot);}3Macro de�ned by scraps 42, 43b, 44b, 46.Macro referenced in scrap 47c.hAdd action 2, pass 3 44ai �ADD_RECEIVE_ACTION(action2g, action2b);3Macro referenced in scrap 47c.Action 3 does not materially di�er from the third action of the previousversion of the request/reply protocol. The actual di�erence is the use of the ready�eld of the readyp array rather than a whole element of the array.This action does not do anything with the other two slots of the array. Bysetting the ready slot to false this action temporarily removes the problem (un-needed resends of request messages will not be done if there are no outstandingrequests). It is handled more permanently by action 1 incrementing the sent countwhen that action brings the problem up again.hP 's actions, pass 3 44bi �int action3g(RCVD_MSG *rcvd){REPLY_MSG *reply;if (rcvd->msg->type == REPLY){reply = (REPLY_MSG *) rcvd->msg;44

j = reply->slot;return(TRUE);}return(FALSE);}void action3b(RCVD_MSG *rcvd){readyp[j].ready = TRUE;printf("Receiving reply: %d\n", j);}3Macro de�ned by scraps 42, 43b, 44b, 46.Macro referenced in scrap 47c.hAdd action 3, pass 3 45i �ADD_RECEIVE_ACTION(action3g, action3b);3Macro referenced in scrap 47c.The timeout action speci�ed in the protocol above istimeout :readyp[j] ^ request (j)#C:p:q = 0 ^ reply (j)#C:q:p = 0 !send request (j) to qThe implementation, or at least the guard of it, is radically di�erent.First, the check of the ready element is similar to the AP action. However,the other two conjuncts of the AP guard are handled by the delay associated withthe timeout implementation. For the following discussion, assume that ready istrue, i.e., that there is an outstanding request.The implementation imposes some other processing on the guard functionand adds a new conjunct. The increment of the timed element is used to insurethat unneeded message resends do not occur. In its simplest form,� the sent element counts the number of request messages sent by this processfor each slot of readyp,� the timed element counts the number of timeout action delay expirations thathave occurred for each slot of readyp;45

� and if sent equals timed then the currently expiring delay (associated with thisinvocation of the guard function) refers to the currently outstanding request,� in which case the request or reply message is missing (inferred from the delay)and needs to be resent.The d used by the guard is the general data item recorded byadd_timeout_action. In this process it is used to let this timeout guard knowwhich readyp element is expiring.The body function of this action simply resends the message; and becausethe resent message counts as a request, it increments the sent counter and resets atimeout.The call to add_timeout_action de�ned here is used in the timeout bodyfunction as well as the body of action 1. It records the value of j in both cases,remembering the slot number from which this request is being sent. The �nalparameter to the call is the delay associated with this timeout. The value of 50000microseconds is an arbitrary choice|it needs to be large enough to actually indicatethat a message has been lost rather than delayed but small enough to insure thatthe protocol does not su�er too greatly in the event that a resend is needed.Finally, action 4's guard and body functions are declared early in the program�le to satisfy the C compiler as to how they are called, since they are used beforethey are de�ned.hP 's actions, pass 3 46i �int action4g(long d){readyp[d].timed++;if (!readyp[d].ready && readyp[d].timed == readyp[d].sent){j = d;return(TRUE);}return(FALSE);}void action4b(long d){REQUEST_MSG msg;msg.type = REQUEST; 46

msg.len = sizeof(REQUEST_MSG);msg.slot = j;SEND_MESSAGE((MSG_BUFF *) &msg, Q);hAdd action 4, pass 3 47aireadyp[j].sent++;printf("Resending request: %d\n", j);}3Macro de�ned by scraps 42, 43b, 44b, 46.Macro referenced in scrap 47c.hAdd action 4, pass 3 47ai �ADD_TIMEOUT_ACTION(action4g, action4b, j, 50000);3Macro referenced in scraps 42, 46.hDeclare action 4, pass 3 47bi �int action4g(long d);void action4b(long d);3Macro referenced in scrap 47c.The program �le does not require many changes to use the timeout handlersof the APC suite."p3.c" 47c �#include "APC.h"#include <stdio.h>hProtocol constants, pass 3 40aihMessage types, pass 3 40bihProcess variables, pass 3 41aihDeclare action 4, pass 3 47bihP 's actions, pass 3 42, . . . i 47

void main(){int i;hInitialize variables, pass 3 41biINITIALIZE_ENGINE(P);hAdd action 1, pass 3 43aihAdd action 2, pass 3 44aihAdd action 3, pass 3 45iENGINE();}3As always, the process q is symmetrical to this process.4.3 Request/reply using multiple processesAnother extension to the previous request/reply protocol of section 4.2 that comesto mind is to use more than two processes; suppose M processes are created whichspread requests among themselves in order to distribute some processing load. Eachof the M processes could have N requests outstanding among the collection.This extension introduces process arrays, which require only a small change inthe implementation strategy. On the other hand, in order to improve the exibilityof the implementation, it reads the values for M and N from the command line|therefore, the number of processes and the number of outstanding messages perprocess may be set at runtime. Also, because this protocol uses a process array, allof the processes are identical. The only di�erence is in the process identi�ers usedby each, and this information can be read from the command line as well.The protocol isprocess p [i : 0 : : :M � 1]inp N : integer f# of outstanding requestsgvar readyp : array [0 : : :N � 1] of 0 : : :M ;k : 0 : : :M � 1; fNext process for requestsgl : 0 : : :M � 1par j : 0 : : :N � 1begin 48

readyp [j] = M ! k := (k + 1) mod M ;if k = i ! k := (k + 1) mod M[] k 6= i ! skip�;readyp [j] := k;send request (j) to p [k][] rcv request (j) from p [l]! send reply (j) to p [l][] rcv reply (j) from p [l] ! readyp [j] := M[] timeout readyp[j] 6= M^ request (j)#C:p [i] :p [readyp [j]] = 0^ reply (j) #C:p [readyp [j]] :p [i] = 0!send request (j) to p [readyp [j]]endIn this instance, there is no process q to be symmetrical to p.One change to the protocol, from the previous versions, is evident. Theelements of readyp are not now boolean; they are used to store the process identi�erto which the corresponding message has been sent. A special value, M , is used toindicate that the slot is available; it is not a valid process array index.4.3.1 Constants and message typesThe constants and message types remain almost unchanged from the last version ofthe request/reply protocol. Notably, N is absent. By reading it from the commandline, the implementation requires N to be a variable although after it is set from thecommand line it is not changed.hProtocol constants, pass 4 49i �#define REQUEST 44#define REPLY 453Macro referenced in scrap 56c. 49

hMessage types, pass 4 50ai �typedef struct{int type;int len;int slot;} REQUEST_MSG;typedef struct{int type;int len;int slot;} REPLY_MSG;3Macro referenced in scrap 56c.4.3.2 Process pThe variables and structure of the process are also unchanged|almost. Additionalvariables are i, used to hold the current processes' process identi�er; M and N, used tohold the constants used by the process; and k, which is used to spread the requestsaround the process array fairly.The initialization is slightly more complex. i, N, and M are read from thecommand line arguments and converted to integers. The readyp array is now al-located dynamically from the known size of the structures making up its elementsand the number of elements required, N.hProcess variables, pass 4 50bi �struct ready_struct{int ready;int sent;int timed;};int i;int M; 50

int N;int k = 0;int j;struct ready_struct *readyp;3Macro referenced in scrap 56c.hInitialize process variables, pass 4 51ai �i = atoi(argv[1]);M = atoi(argv[2]);N = atoi(argv[3]);readyp = malloc(N * sizeof(struct ready_struct));for (l = 0; l < N; l++){readyp[l].ready = M;readyp[l].sent = 0;readyp[l].timed = 0;}3Macro referenced in scrap 56c.The �rst action of the process isreadyp [j] = M ! k := (k + 1) mod M ;if k = i ! k := (k + 1) mod M[] k 6= i ! skip�;readyp [j] := k;send request (j) to p [k]This action sets k to a good, next process identi�er; sets readyp[j].ready (thestructure element used to hold the actual state of the slot) to k; and sends therequest.The implementation, however, is required to do the bookkeeping required formessage resends using the timeout action, action 4.hP 's actions, pass 4 51bi � 51

int action1g(void){for (j = 0; j < N; j++) if (readyp[j].ready == M) return(TRUE);return(FALSE);}void action1b(void){REQUEST_MSG msg;k = (k + 1) % M;if (k = i){k = (k + 1) % M;}readyp[j].ready = k;msg.type = REQUEST;msg.len = sizeof(REQUEST_MSG);msg.slot = j;SEND_MESSAGE((MSG_BUFF *) &msg, k);hAdd action 4, pass 4 56aireadyp[j].sent++;printf("Sending request %d to %d\n", j, k);}3Macro de�ned by scraps 51b, 53, 54b, 55b.Macro referenced in scrap 56c.hAdd action 1, pass 4 52i �ADD_LOCAL_ACTION(action1g, action1b);3Macro referenced in scrap 56c.The second action of the process isrcv request (j) from p [l] ! send reply (j) to p [l]52

The implementation of this action is relatively straightforward. Two di�erencesneed examination:� The variable l from the protocol speci�cation is not present. It is actuallynot needed; the information it carries is held in the sender element of theRCVD_MSG structure. Contrast l, which is not needed, with j in this action,which is also not needed but is present because it actively simpli�es the pro-gramming here. If j was not used here, the information it carries is availablefrom the slot element of the REQUEST_MSG structure. However, accessing thatinformation requires a cast (and a temporary, simplifying variable) since thefunction only has access to a pointer to a MSG_BUFF. Thus, j is a useful valuewhereas l is not.� The guard function does not check who the sending process is. This check,which appears in the previous protocols, is not necessary|it is unlikely thatan unknown process will be sending messages to this one. If it were to behere and if this protocol did di�erentiate between between some processes ofthe array, it would most likely take the form of a range check in the guard ifstatement.hP 's actions, pass 4 53i �int action2g(RCVD_MSG *rcvd){REQUEST_MSG *req;if (rcvd->msg->type == REQUEST){req = (REQUEST_MSG *) rcvd->msg;j = req->slot;return(TRUE);}return(FALSE);}void action2b(RCVD_MSG *rcvd){REPLY_MSG msg;msg.type = REPLY;msg.len = sizeof(REPLY_MSG);53

msg.slot = j;SEND_MESSAGE((MSG_BUFF *) &msg, rcvd->sender);printf("Sending reply %d to %d\n", j, rcvd->sender);}3Macro de�ned by scraps 51b, 53, 54b, 55b.Macro referenced in scrap 56c.hAdd action 2, pass 4 54ai �ADD_RECEIVE_ACTION(action2g, action2b);3Macro referenced in scrap 56c.p[i]'s third action isrcv reply (j) from p [l]! readyp [j] := MThe implementation is straightforward given an understanding of the points dis-cussed by the previous action.hP 's actions, pass 4 54bi �int action3g(RCVD_MSG *rcvd){REPLY_MSG *reply;if (rcvd->msg->type == REPLY){reply = (REPLY_MSG *) rcvd->msg;j = reply->slot;return(TRUE);}return(FALSE);}void action3b(RCVD_MSG *rcvd){readyp[j].ready = M; 54

printf("Receiving reply: %d from %d\n", j, rcvd->sender);}3Macro de�ned by scraps 51b, 53, 54b, 55b.Macro referenced in scrap 56c.hAdd action 3, pass 4 55ai �ADD_RECEIVE_ACTION(action3g, action3b);3Macro referenced in scrap 56c.The timeout action for the process istimeout readyp[j] 6= M^ request (j)#C:p [i] :p [readyp [j]] = 0^ reply (j) #C:p [readyp [j]] :p [i] = 0!send request (j) to p [readyp [j]]Fortunately, this action has also not changed materially from the previous version.hP 's actions, pass 4 55bi �int action4g(long d){readyp[d].timed++;if (readyp[d].ready != M && readyp[d].timed == readyp[d].sent){j = d;return(TRUE);}return(FALSE);}void action4b(long d){REQUEST_MSG msg;msg.type = REQUEST; 55

msg.len = sizeof(REQUEST_MSG);msg.slot = j;SEND_MESSAGE((MSG_BUFF *) &msg, readyp[j].ready);hAdd action 4, pass 4 56aireadyp[j].sent++;printf("Resending request: %d to %d\n", j, readyp[d].ready);}3Macro de�ned by scraps 51b, 53, 54b, 55b.Macro referenced in scrap 56c.Nor has the steps needed to use the action.hAdd action 4, pass 4 56ai �ADD_TIMEOUT_ACTION(action4g, action4b, j, 50000);3Macro referenced in scraps 51b, 55b.hDeclare action 4, pass 4 56bi �int action4g(long d);void action4b(long d);3Macro referenced in scrap 56c.Finally, the entire �le implementing the process (and indeed, the whole pro-tocol) is p4.c. Since it does read some required information from the command line,it prints out a \Usage" message and exits when the information is not available."p4.c" 56c �#include <malloc.h>#include <stdio.h>#include <stdlib.h>#include "APC.h"hProtocol constants, pass 4 49ihMessage types, pass 4 50ai 56

hProcess variables, pass 4 50bihDeclare action 4, pass 4 56bihP 's actions, pass 4 51b, . . . ivoid main(int argc, char *argv[]){int l;if (argc < 4){fprintf(stderr,"Usage: %s <proc id> <proc count> <rqsts>\n", argv[0]);exit(1);}hInitialize process variables, pass 4 51aiINITIALIZE_ENGINE(i);hAdd action 1, pass 4 52ihAdd action 2, pass 4 54aihAdd action 3, pass 4 55aiENGINE();}3
57

58

Chapter 5Reference Guide and Conclusion5.1 The APC engineThis section presents a short guide to using the functions provided by the APCsuite. It is divided into sections describing the two functions for initializing andexecuting the engine, the two functions for adding local and receive actions to thelists maintained by the engine, the function for setting up a timeout action, thefunction for sending a message, and �nally the types and variables exported by thelibrary for use by programs implementing protocols.5.1.1 Initializing and executing the engineGenerally, the �rst function from the library to be called will beinitialize_engine. This function assigns initial values to the variables in-ternal to the library such as the lists of actions.proc is the process identi�er of the process invoking the engine. Dependingon the form of process identi�er con�guration, this value may need to be coordi-nated with the process's con�guration information. For more information, checkthe various forms of con�guration, such as APC-driver. In any case, the pro-cess identi�er will need to be unique among the processes making up the proto-col. initialize_engine handles this con�guration, including setting the callingprocess's identi�er and locating the sending and receiving information for the otherprocesses.Like all of the functions here, initialize_engine returns a false value if noerrors occurred. If an error did occur, it returns a true value and sets prtcl_errto a text string describing the error.In order to simplify the use of the functions, C preprocessor macros arede�ned which test the value returned by the functions and print out the value of59

prtcl_err on stderr. Furthermore, if the cpp identi�er CONTINUE_ON_ERROR isnot de�ned before the APC header �le is included, the macro causes the programto halt with an error. The macros are capitalized versions of the functions whichthey call. For example, INITIALIZE_ENGINE invokes and tests the error conditionof initialize_engine.hPrototype initialize_engine 60ai �int initialize_engine(int proc);3Macro referenced in scrap 69.hMacro de�nitions 60bi �#ifdef CONTINUE_ON_ERROR#define EXIT#else#define EXIT exit(1)#endif#define INITIALIZE_ENGINE(p) \if (initialize_engine(p)) \{ \fprintf(stderr, "%s\n", prtcl_err); \EXIT; \}3Macro de�ned by scraps 60b, 61b, 62b, 63b, 65b, 66b.Macro referenced in scrap 69.engine executes the calling process's part of the protocol. The suite main-tains lists of local, receive, and timeout actions and engine enters a loop in whichthe local actions' guards are called until all have returned false, then the processwaits for either a message to arrive or the next timeout to happen. When one ofthose events takes place, the guards of either the receive actions (if a message hasarrived) or the timeout actions (if a timeout has expired) are called and then engineloops back to try the guards of the local actions. In the cases of all three actions, ifthe guard function returns true, the body function is immediately called.engine takes no arguments; any information required by it shouldhave been supplied by initialize_engine above or add_local_action,60

add_receive_action, and add_timeout_action below. It returns after an errorhas occurred or after the variable prtcl_dne has been set to true by the processingof some action.engine returns false if there has been no error or true if there has, in whichcase it sets prtcl_err to a text string describing the problem.The C preprocessor macro ENGINE can be used to simplify the error conditionhandling for calls to engine.hPrototype engine 61ai �int engine(void);3Macro referenced in scrap 69.hMacro de�nitions 61bi �#define ENGINE() if (engine()) \{ \fprintf(stderr, "%s\n", prtcl_err); \EXIT; \}3Macro de�ned by scraps 60b, 61b, 62b, 63b, 65b, 66b.Macro referenced in scrap 69.5.1.2 Receive and local actionsWhen the engine discovers that a message has arrived, it calls the functions imple-menting the guards of the receive actions in order to determine if one of those actionsis applicable to the new message. If a guard returns true, indicating that the actionis applicable, the function implementing the corresponding action body is invoked.If the guard returns false, the engine continues with the next guard function untilall have been exhausted; if none returns true, the message is discarded.It is intended that the guard functions should not have an e�ect on the stateof the process (except in the limited sense required to handle parameterized actions).The body functions will need to modify variables or send messages, however.A structure is passed to the functions implementing receive actions, givingthem 61

1. A copy of the message itself, including the default �elds of the type and lengthof the message as well as any �elds sent along with them, and2. The process identi�er of the process that sent the message.The structure is de�ned by the RCVD_MSG type.In order to initialize the list of receive actions, each pair of functions imple-menting a receive action should be passed to the engine by the functionadd_receive_action. The guard function takes a pointer to a RCVD_MSG as an ar-gument and returns either true or false, and is the �rst argument toadd_receive_action. The body function gets the same argument but does notreturn a value; it is the second argument to add_receive_action. The memorypointed to by rcvd is managed by the engine and should not be modi�ed, allocated,or deallocated by either of the two user-speci�ed functions. Once added to the listof receive actions by add_receive_action, a pair of functions remains in use untilthe process is terminated.If add_receive_action detects an error while adding the pair of functionsto the list, it will return true; otherwise it will return false. If there is an error,prtcl_err will be set to a string describing the problem. ADD_RECEIVE_ACTION isthe macro simplifying error handling for add_receive_action.hPrototype add_receive_action 62ai �int add_receive_action(int (*guard)(RCVD_MSG *rcvd),void (*body)(RCVD_MSG *rcvd));3Macro referenced in scrap 69.hMacro de�nitions 62bi �#define ADD_RECEIVE_ACTION(g, b) if (add_receive_action(g, b)) \{ \fprintf(stderr, "%s\n", prtcl_err); \EXIT; \}3Macro de�ned by scraps 60b, 61b, 62b, 63b, 65b, 66b.Macro referenced in scrap 69. 62

Local actions are very similar to receive actions; the only major di�erencebetween the functions implementing the two is that the local actions' functions donot have any parameters. They are assumed to be able to read the state from thevariables of the process directly.Most of the ideas required for the implementation of receive actions remainthe same for local actions. The guard function should return either true or false,the body should not return any value, and they should be introduced in that orderto the engine by the function add_local_action. Additionally, once added to thelist of local actions maintained by the engine, the guard and body functions of alocal action will continue to be used until the process is terminated.add_local_action returns true and sets prtcl_err in the case of an error.Otherwise it returns false.hPrototype add_local_action 63ai �int add_local_action(int (*guard)(void),void (*body)(void));3Macro referenced in scrap 69.hMacro de�nitions 63bi �#define ADD_LOCAL_ACTION(g, b) if (add_local_action(g, b)) \{ \fprintf(stderr, "%s\n", prtcl_err); \EXIT; \}3Macro de�ned by scraps 60b, 61b, 62b, 63b, 65b, 66b.Macro referenced in scrap 69.5.1.3 Timeout actionsTimeout actions are more di�cult to implement. In addition to the guard andbody functions which are otherwise similar to receive and local actions, timeoutsrequire more information in order to perform their role. In particular, since theglobal information used by an Abstract Protocol timeout action is not available tothe implementation, alternate information must be substituted. In this case, a delayreplaces any non-local information needed by a timeout action.63

The delay, delay, is passed along with the guard and body functions tothe engine by add_timeout_action. delay is speci�ed in microseconds from thetime add_timeout_action is called. However, due to the nature of Unix processscheduling, it can only represent a minimum delay; the guard (and possibly thebody) functions will be invoked sometime after the delay has expired.An additional argument is required to add_timeout_action, the data. Thisis an integer value which is passed without modi�cation or examination to the guardand body functions as their only argument when they are invoked. This data can beused to provide information to the guard and body functions such as to speci�callyidentify the particular timeout among all similar expiring timeouts.For example, imagine a timeout used to resend a message after it is presumedlost. Because there is no way in the APC suite to remove a timeout action afterit has been added to the list maintained by the engine, a timeout will expire foreach message sent; yet most of these expiring timeouts are unnecessary because anacknowledgement of the message sent will be received before the delay has expired.Therefore, it is necessary to keep track of the messages sent versus the timeoutswhich have expired, in order to ignore those expiring timeouts which need to beignored while responding to those which need further action. The data can be usedto inform the function implementing the guard of a timeout action of the numberof messages sent at the time the timeout is entered into the system; comparing thiscount with the number of timeouts which have expired at the time that the guardis invoked will separate the bogus timeouts from the needed ones|if the numberof timeouts expired is less than the number of messages sent, then the currentlyexpiring timeout delay does not refer to the currently outstanding message; if theyare equal, then the current timeout does refer to the current message which thereforeneeds to be resent.1Alternatively, the data could be used as an index into some larger structurewhich would provide more information to the functions implementing the timeoutaction. Another di�erence between timeout and receive/local actions is that theformer are single-shot events; the guard, body, and data are added to the engineassociated with a speci�c delay and when the delay expires, regardless of whetherthe guard returns false or if any action is taken by the body, the guard, body,1This idea does have certain problems, and it is related to the situation in which the numberof expired timeouts is greater than the number of messages sent. In time, the two counts willwrap around since each is a �nitely-represented value. If the delay is long enough and enoughmessages are sent and received the count could wrap around so that a current-message count lapsthe current-timeout count and provides falsely equal values. In practice, this is not expected to bea problem since there are a great many possible values in a long and even the longest timeout isshort compared to the time required to send that many messages on current networks.64

and data are removed from the system. Further calls to add_timeout_action arerequired each time a message is sent, for example.In all other ways, add_timeout_action behaves just asadd_receive_action and add_local_action do.hPrototype add_timeout_action 65ai �int add_timeout_action(int (*guard)(long),void (*body)(long),long data,long delay);3Macro referenced in scrap 69.hMacro de�nitions 65bi �#define ADD_TIMEOUT_ACTION(g, b, da, de) \if (add_timeout_action(g, b, da, de)) \{ \fprintf(stderr, "%s\n", prtcl_err); \EXIT; \}3Macro de�ned by scraps 60b, 61b, 62b, 63b, 65b, 66b.Macro referenced in scrap 69.5.1.4 Sending messagesWhen a process wishes to send a message to another process, send_message isinvoked. The �rst argument, buffer, is a pointer to a bu�er containing the messageto be sent. The second argument, receiver, is the process identi�er of the processwhich is to receive the message. A process can send a message to itself or any otherprocess in the protocol whose identi�er is known to the engine.The message bu�er should contain at least two �elds: a type, type, and alength, len. The type is a protocol-speci�c value which is uninterpreted by theengine but is designed for user code to determine the kind of message being sentor received. On the other hand, the len is used by the engine to determine thenumber of bytes in the message; the size of the data which needs to be transmitted.Additional �elds needed in the message can be tacked on after these two.65

Di�ering machines can have di�ering representations for the �elds in the datamessage, for example the conict between little-endian and big-endian representa-tions of integers. In order to prevent this conict from causing problems in theexecution of a protocol, the �elds should be transformed to canonical representa-tions before being sent and back to machine representations after being received.The standard socket programming systems provide four simple functions to handlethese steps: htonl, htons, ntohl, and ntohs. The �rst four letters specify theaction, net to host or host to net. The last letter indicates the size of the numberbeing transformed, long or short. Using the functions is simple:Sending Process Receiving Processmsg.field = htonl(4); var = ntohl(msg.field);This code, assuming the msg was transferred in the mean time, puts 4 into var. Inorder to simplify the protocol writer's responsibilities, the type and len �elds aretransformed to and from the network representations by the engine.In the case of a problem, send_message returns true and sets prtcl_err;otherwise it returns false.hPrototype send_message 66ai �int send_message(MSG_BUFF *buffer,int receiver);3Macro referenced in scrap 69.hMacro de�nitions 66bi �#define SEND_MESSAGE(b, r) if (send_message(b, r)) \{ \fprintf(stderr, "%s\n", prtcl_err); \EXIT; \}3Macro de�ned by scraps 60b, 61b, 62b, 63b, 65b, 66b.Macro referenced in scrap 69. 66

5.1.5 Types and variablesA message is handled in a protocol implementation as an instance of the MSG_BUFFdata type. It is the basic building block of the messages passed between the processesin a protocol. Simple messages can be created using the structure as it is, byassigning the type �eld a long integer indicating a particular message type and thelen �eld the value sizeof(MSG_BUFF).More complex messages require additional �elds, such as sequence numbers,data, and so forth. These more complex messages can be constructed by creatingadditional data types whose �rst two elements are the type and len. For example,a connection request with a sequence number might be:typedef struct{long type;long len;long seq;} CRQST_TYPE;#define CRQST 4...CRQST_TYPE crqst;...crqst.type = CRQST;crqst.len = sizeof(CRQST_TYPE);crqst.seq = i++;...SEND_MESSAGE((MSG_BUFF *) &crqst, Q);hExported types 67i �typedef struct msg_buff_struct{long type;long len;} MSG_BUFF;3Macro de�ned by scraps 67, 68a.Macro referenced in scrap 69.When a message is received, it and the process identi�er of the sender issupplied to the guards of the receive actions, and potentially to the bodies. This is67

done by passing a pointer to a RCVD_MSG to the functions. The �rst �eld is a pointerto the received message structure and the second is the sender's process identi�er.hExported types 68ai �typedef struct rcvd_msg_struct{MSG_BUFF *msg;int sender;} RCVD_MSG;3Macro de�ned by scraps 67, 68a.Macro referenced in scrap 69.The engine exports three variables. The �rst is proc_count, which is thenumber of processes involved in the protocol. Acceptable process identi�ers rangefrom 0 : : :proc count� 1.hExported variables 68bi �extern int proc_count;3Macro de�ned by scraps 68bc.Macro referenced in scrap 69.The other two variables are prtcl_err, which is used to return a zero-terminated text string describing an error condition, and prtcl_dne, which haltsthe engine function when set to true.hExported variables 68ci �extern char *prtcl_err;extern int prtcl_dne;3Macro de�ned by scraps 68bc.Macro referenced in scrap 69. 68

5.1.6 The APC engine header �leThe �le APC.h should be #included by any implementation �le using the APC suiteto create a protocol's process.If they are not already de�ned, APC.h de�nes TRUE and FALSE for the use ofthe implementation. It also #includes netinet/in.h, which has the de�nitions ofhtonl and related functions. netinet/in.h requires sys/types.h"APC.h" 69 �#include <sys/types.h>#include <netinet/in.h>hExported types 67, . . . ihExported variables 68b, . . . ihPrototype initialize_engine 60aihPrototype engine 61aihPrototype add_receive_action 62aihPrototype add_local_action 63aihPrototype add_timeout_action 65aihPrototype send_message 66aihMacro de�nitions 60b, . . . i#ifndef TRUE#define TRUE 1#define FALSE 0#endif35.2 Compiling and executing APC protocolsWhile the rest of this work deals mainly with writing the programs which implementprotocols, this section discusses compiling and executing those programs. The APCsuite is designed to be exible and could be embedded within a larger framework toproduce a more useful application; but, since that has not been a focus of this workup until this point, this section will not deal with the issues raised by such an e�ort.Speci�cally, this section will assume that the task at hand is to produce a \toy"implementation of a protocol, perhaps to get a feel for how the protocol behaves orto compare di�ering protocols. 69

Therefore, assume that you have several source �les implementing the variousprocesses of the protocol; i.e., p.c and q.c. These source �les contain the de�nitionsof the functions implementing actions as well as a main function and the variablesrequired for each process. In actuality, you may need to break these up into sepa-rate �les, but linking them together only modestly complicates the procedures thatfollow.5.2.1 Compiling the programsA modest feature of the APC suite is that compiling a program which uses functionsfrom the APC suite is no more di�cult than compiling any program written in C.Assuming that the APC library is in a directory libdir, the APC header �le is in thedirectory includedir, the source program is p.c, and that the executable will be p,all that is required to compile the program is the command,cc -Iincludedir -Llibdir -o p p.c -lAPCif the C compiler is known as \cc" and no other libraries are needed. Generally,the -Idirectory argument to a C compiler tells the compiler to look into directory to�nd header �les in addition to those in the standard places, such as /usr/include.Similarly, -Ldirectory tells the compiler to look for libraries in directory. Finally,-llibrary tells the compiler to look for a library called liblibrary.a. libAPC.a is thename of the library which contains the APC suite functions. Additional libraries,directories, or other arguments may be necessary, depending on the protocol andimplementation.Assuming the compilation succeeds, the resulting p will be an executableprogram for the machine on which the compilation was done (and similar machines,of course, and assuming the compiler was not con�gured for cross-compilation).However, due to the fact that most interesting protocols involve several executingprocesses, running the protocol requires additional steps.5.2.2 Executing the protocolThere are two possible di�culties in starting a protocol involving several processes.1. It may be necessary to invoke the programs on several di�erent machines.2. It is necessary to provide each of the running processes with the \addresses"of all of the other processes. In TCP/IP terms, an address is a (host name,port number) pair. The host name is the name of the machine on which agiven process is running; the port number is a serial number, unique on thathost, to which messages to a process can be addressed.70

For current purposes, the APC suite solves both of those problems with adriver program. The driver program reads a con�guration �le consisting of a hostname, a process identi�er, and a command line for each process. The commandline speci�es the program implementing the process along with any arguments thatit may need. The program on the command line should be either in the executionpath for the user on the remote machine, or should be speci�ed by a path, eitherfully quali�ed from the root directory on the remote machine or relative to the homedirectory of the user. The host name identi�es the host on which the process is torun and the identi�er is the process identi�er to be used by the program; it needsto match the identi�er speci�ed by the call to initialize_engine by the program.The format of the �le is just that, a sequence of lines each containing the triple hostname, process id, command line. Blank lines are ignored and anything that followsthe character \#" on a line is assumed to be a comment and is also ignored.An example con�guration �le would be:bovina 0 p # The executable ~/p on bovina should be process 0jeckle.cs.utexas.edu 1 testing/bin/q foo # q needs an argument, fooBy default, the con�guration �le should be called APC-configuration.To start the driver program and begin the protocol, invoke$ APC-driverBecause the driver program is a short script which may not satisfy all requirements,it is described in more detail in the next section.As an example, the con�guration �le for the multi-process request/replyprotocol is"APC-configuration" 71 �homsona 0 ./p 0 5 6 > p0.out 2>&1homsona 1 ./p 1 5 6 > p1.out 2>&1homsona 2 ./p 2 5 6 > p2.out 2>&1homsona 3 ./p 3 5 6 > p3.out 2>&1homsona 4 ./p 4 5 6 > p4.out 2>&13This con�guration starts all of the processes on a machine homsona, with 5 processesallowed 6 outstanding messages. All of the output and errors from the programs are71

logged in �les called pn.out. Notice that the second and fourth columns match|the second tells the con�guration system which process id to use for which process,and the fourth tells each running process which process id to assume.5.2.3 APC driver internalsIn order to understand the peculiarities of the APC driver program, more discussionis needed about how it works. The driver is a Perl script which calls many otherprograms to actually do the work. The three most important are:� rsh|The TCP/IP remote program execution command. In order to start pon the remote machine, the driver uses rsh to start a program, APC-remote,executing on that machine. For more information on the use of rsh, see itsdocumentation.� APC-remote|The �rst part of the APC suite con�guration system.APC-remote takes as arguments the address of the APC-server (described be-low), the process identi�er, and the command line to be executed. APC-remotecontacts the server, informs it of the address that the process will be using, getsfrom it the addresses of all of the processes, and executes the command line, be-coming the protocol process. The con�guration information, including all therequired addresses for the other processes is passed to initialize_enginethrough environment variables by APC-remote.� APC-server|The protocol con�guration hub. APC-server provides the driverscript with the port number which it will be using (the driver can �nd the hostname on its own), and waits for the appropriate number of APC-remote's tocontact it. Then it distributes the protocol con�guration and exits. Any errorsthat it discovers after giving the driver script its port number will be describedin a text �le APC-server.err that it creates before it dies.If the protocol does not have well-de�ned termination conditions, in particu-lar if all of the programs implementing the protocol do not set prtcl_dne and exit(this is the case with several of the example protocols presented here), it will be nec-essary to terminate the running protocol with whatever normal interrupt proceduresare available. Usually, this will mean typing Cntrl-C one or more times.72

5.3 Conclusion5.3.1 Design and implementationThis paper deals covertly with many implementation issues. This section will lookat some of those issues, but not to the depth of the complete implementation.The basic design issue was whether to try to implement a compiler or to builda toolkit to which a compiler front end could be added later if deemed necessary.This work focused on a toolkit approach for two reasons:� It would get to the interesting problems faster and easier. Building a compilerrequires describing the grammar of AP in a formal way, working to imple-ment things such as standard arrays and statements, and a variety of otherthings which are not directly related to the task of implementing a networkingprotocol.� It was philosophically more interesting. This was a problem of AP being bothtoo close and too far away from a standard programming language. Most ofthe work of a compiler, such as if statements, do loops, and so forth are imple-mented perfectly well in the compiler for any procedural language. Therefore,writing a compiler to transform an if statement to an if statement seemedrelatively pointless. On the other hand, some features of AP, particularlytimeout actions, do not easily lend themselves to machine translation. (Thehandling of timeout actions is described in chapter 4.) The guards of theseactions in particular require access to global state information which is notavailable in a distributed system. It is therefore necessary to transform theglobal predicate into a predicate using only local information and the onlykind of global information available to a process, the current time. This sortof transformation is di�cult or impossible for a compiler; it requires humanintervention anyway.For both of the above reasons the current design was chosen. It is small, to thepoint, and it avoids di�cult and possibly error-inducing machine transformations.Most of the secondary design issues, such as which language to use, werearbitrary choices|no issues forced an particular choice.The key to the design is the recognition that AP protocols are reactive. Eachaction examines the current state and potentially transforms it into another state.This recognition made it possible to create a generic model of local and receiveactions, and to use that model to create an engine for executing those actions. Thismodel was then extended to allow timeout actions.73

5.3.2 Future workCurrently, the APC suite serves well as a testbed for protocol designs. Severalavenues of future work are available:� The use of pseudo-inheritance to implement di�erent message types with dif-ferent sizes and kinds of �elds is particularly unpleasant. It should be possibleto rid the suite of this particular blight by reimplementing the system in anobject-oriented language such as C++. A smart message class should have amethod of converting its own representation into a form suitable for transmis-sion, and a way of recreating itself upon receipt from another machine. Sucha class would also handle the processing required to convert message elementsinto network-oriented canonical formats.� The suite as currently implemented is small and apparently exible, and theprograms created with it are also fairly small and quick. It would be interest-ing to compare the performance of this method of implementing a networkingprotocol with a traditionally implemented network, both in the realm of mes-sages sent per time unit and load on the machines involved. If the protocolimplemented with this suite is not terribly worse than the traditional protocolimplementation, it might be worthwhile to look at improving the performanceof protocols in general with this style of implementation and at improving theperformance of this suite.� The timeouts remain a thorny issue. While it is di�cult to imagine a way ofgetting more information for their guards or of a di�erent kind of informationwhich could better be used to implement them, it seems that it should bepossible to improve the suite's use of the timeout idea or, at least, the interfacesthat the suite uses to access that idea.� This suite has, until this point, been used only to implement \toy" protocols.It might be interesting to examine what kind of issues are raised by the useof this suite in a production protocol, such as tftp. Since actions invoked bythe engine can easily call other functions, in order to get data, for example, itshould be feasible to embed the engine in a larger framework to put togethera robust application. However, signi�cant changes to the APC driver wouldbe required. 74

Bibliography[Barnes 82] Barnes, J.G.P. Programming in ADA.Wokingham, England: Addison-Wesley, 1982.[Brown 91] Brown, Ge�o�rey M., Mohamed G. Gouda, and Raymond E. Miller.\Block Acknowledgment: Redesigning the Window Protocol." IEEETransactions on Communications, Vol. 39, No. 4 (April 1991).[Burns 93] Burns, James E., Mohamed G. Gouda, and Raymond E. Miller. \Sta-bilization and pseudo-stabilization." Distributed Computing, 7 (1993).[Gouda 91] Gouda, Mohamed G., and Nicholas J. Multari. \Stabilizing Commu-nication Protocols." IEEE Transactions on Computers, Vol. 40, No 4(April 1991).[Gouda 93] Gouda, Mohamed G. \Protocol veri�cation made simple: a tutorial."Computer Networks and ISDN Systems, 25 (1993).[Knuth 86] Knuth, Donald E. TEX: The Program. Reading, Massachusetts:Addison-Wesley, 1986.[Knuth 92] Knuth, Donald E. hh Literate Programmingii. Center for the Study ofLanguage and Information Lecture Notes Number 27 (1992).[Knuth 93] Knuth, Donald E. The Stanford GraphBase. New York: ACM Press,1993.[Pleier 93] Pleier, Christoph. \The Distributed C Development Environment." In-stitut f�ur Informatik, Technische Universit�at M�unchen, 1993.[Sewell 89] Sewell, Wayne. Weaving a Program: Literate Programming in WEB.New York: Van Nostrand Reinhold, 1989.[Stevens 90] Stevens, W. Richard. UNIX Network Programming. Englewood Cli�s,New Jersey: PTR Prentice Hall, 1990.75

