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The goal of this work is the creation of a system to aid the implementation of a
network communication protocol specified in the Abstract Protocol notation. The
requirements of this system are primarily faithfulness to the formal notation and at
least a semblance of efficiency. To this end, a suite of functions has been written to
allow the creation of the processes involved in the protocol, originally specified in
the Abstract Protocol notation, in the programming language C.

The basic idea of the suite is the registration of functions whose execution
affects the protocol state and which are enabled or disabled by the protocol state.
The core of the suite is the function engine(), which invokes the functions in
response to state changes.

Several example protocols and their implementations will be presented, in-
cluding an evolution of a simple request/reply protocol into a more complex form.
Also, a reference has been provided for the functions in the suite.

!This thesis was presented to the faculty of the Graduate School of The University
of Texas at Austin in December, 1994. This edition has also been published as Tech-
nical Report TR96-31 from the Department of Computer Sciences at The University
of Texas at Austin.
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Chapter 1

Introduction

The Abstract Protocol (AP) notation solves many problems involved in the formal
specification of networking protocols. Its syntax is very simple. Combined with
protocol properties stated in its notation, it offers a set of proof obligations that
make ensuring that a protocol satisfies a certain property relatively easy. For more
information, see [Brown 91}, [Burns 93], [Gouda 91], and [Gouda 93].

However, the gap between the specification and the implementation remains.
For the most part, this is due to the relatively low-level nature of the communica-
tion primitives supplied by many operating systems and programming languages.
The most advanced of these languages, such as Ada [Barnes 82] and Distributed C
[Pleier 93], provide primitives for sending and receiving messages as well as struc-
tures such as select for building a networking protocol from those primitives. How-
ever, they are based on the idea of communicating sequential processes rather than
on reactive systems which respond to state changes with action. It is not obvious
that translation between AP and the structures such as select would be easy. More
widely available systems, such as the Unix socket interface [Stevens 90], do not even
provide the framework available in Ada; the focus in these systems is only on the
sending and receiving primitives.

The large gap between an AP specification and its implementation in C using
TCP/IP sockets lies primarily in bookkeeping, syntax, and structure. Initializing
a socket in order to use it to send and receive messages is a multi-step procedure
requiring considerable information that is not available (and should not be available)
from the specification. Additionally, due to the lack of structure from the language
and the socket interface, the implementation is required to provide such structure as
is required. This structure actually has nothing useful to do with the protocol itself,
but its presence in the implementation can cause many bugs and much confusion.

It is very easy, when implementing an AP specification, to be led down a bad path



which results in complex, difficult, specialized, and almost unmaintainable code.

This system provides a framework which makes the implementation of an
AP protocol straightforward, if not easy. With the suite of functions provided by
the APC system, the implementation should closely resemble the specification in
format. Much of the bookkeeping required to handle TCP/IP sockets is hidden
from the protocol implementation, as well.

1.1 Definitions

One of the major problems with discussing networking protocols and their imple-
mentation is that the terms seem to have multiple meanings. This work uses several
specific definitions in order to avoid confusion.

e A protocol is collection of two or more processes which are involved in a scheme
for communicating with each other. This collection can either be of abstract
specifications of processes or running programs. This contrasts with the defini-
tion of “protocol” which involves only the list of messages passed between pro-
cesses and their hypothetical transactions—the definition of “protocol” which
is used here implies that information, but does not specifically focus on it as
it is not overwhelmingly useful when looking at the behavior of a group of

processes.

o A processis a list of actions along with supporting definitions. In general, the
single term “process” is used to mean an abstract specification, particularly

using the Abstract Protocol notation.

e A program corresponds with an abstract process specification; it is a concrete
specification written either in a programming language or in machine instruc-
tions (presumably after having been compiled from a programming language).

o A running process is a program which is actually executing; more precisely,
it is the thread of machine states which is following a program’s instructions.
This term corresponds to the normal operating system definition of “process.”

The Abstract Protocol notation is a system for defining the abstract specifi-
cation of a protocol. The system described in this paper is a toolkit for implementing
a protocol as one or more programs, starting from the abstract specification of the

protocol in AP.



1.2 The nuweb system of structured documentation

Large portions of this work are, in fact, the source code to various programs and
functions. This source code has been split up and the pieces rearranged and format-
ted in an effort to make them easier to understand, both for the person maintaining
and updating the source code as well as the person reading the material without

any intention of working with the code.

In order to support the formatting effort, a tool called nuweb was used to
preprocess the INTEX input file before it was passed to WTEX. nuweb reads the input
file (which has the extension “.w”) and parses it into two different sets of output.
The first set is a ITEX file with the documentation (this text) passed through
unchanged. In this file, the embedded source code is changed to a typewriter font
and notations are added which allow the relations between the source code sections
to be followed.

The second set of output is one or more source code files, suitable for passing
to a compiler if necessary. In the code files, the source has been patched together

in the order specified by the relations between the sections.

Source code sections, called “scraps” or “macros” in nuweb terminology, look

something like:

(Clear the arrays 3)

for (k = 1; k <= n; k++)
{
alk] = 0;
strlk] = "";
¥
<&

Macro referenced in scrap 4a.

The code section effectively defines a macro, in this case called “Clear the arrays,”
with the replacement text of “for (...) {...}”. When discussing the section in
terms of the name and replacement text, the term “macro” is generally used; when

referring to the whole element as part of a document, the term “scrap” is used.

When the name of a macro is seen inside another macro, the replacement
text is substituted into the replacement text of the second macro. If the scrap,



(Initialize the data structures 4a) =

sum = O;
(Clear the arrays 3)
&

Macro referenced in scrap 4b.

is seen while nuweb is processing a file, it will set the replacement text for “Initialize
the data structures” to something like

sum = 0;
for (k
{
alk] 0;
str[k] = "";

}

1; k <= n; k++)

and this whole text will be substituted for the use of “Initialize the data structures.”

The numbers which follow the macro name indicate the page number on
which the scrap referred to can be found; the optional letter appended to the number
indicates the scrap on that page.

If several scraps have the same name, their replacement texts are concate-
nated before they are substituted into the scrap using the name.

Finally some scraps have names in a typewriter font surrounded by quotation
marks rather than angle brackets. The names of these scraps are used as the file
names of the source code files which can be passed to a compiler or another tool.
For example,

"example.c" 4b =

/*

* Preliminary material...
*/

(Initialize the data structures 4a)
/*

* Following material...

*/

<

produces the file example.c which has the useful, compilable source code in it.
Normally within this document several related scraps (perhaps defining vari-
ables along with the code that uses them) have been grouped together, along with



some text which discusses the scraps. These groups are marked off from the sur-
rounding text by thin horizontal lines.
For more information on structured documentation, see [Knuth 92],

[Sewell 89], [Knuth 86], and [Knuth 93].






Chapter 2

Language Issues

2.1 Abstract Protocols

This section will present a brief look at those aspects of AP which are used by the
example protocols described later—most of these aspects are either unique to AP
or raise significant implementation issues.

Unfortunately, it is not within the scope of this work to present the complete
AP notation. It would seem that this is a requirement for writing a protocol in
AP, which would be a prerequisite for implementing it from the AP specification.
On the other hand, many portions of AP, particularly those which are common to
many abstract programming notations, can be straightforwardly translated into the
programming language of choice. Some of these portions are do loops, if statements,
assignments—indeed, almost any local statements—arrays, constants, and other
definitions. For further information on these topics, see many of the references in
the bibliography. The purpose of this paper is only to examine those issues raised

by the effort to implement a protocol.

2.1.1 AP syntax

This brief look at AP begins with the top level syntax, that of the process.

process (process name)

inp (process constant name) : (type definition);
(process constant name) : (type definition)

var (variable name) : (type definition);
(variable name) : (type definition)



par (parameter name) : (type definition);

(parameter name) : (type definition)
begin

(action guard) — (statement list)

] ...

[ (action guard) — (statement list)

end

The (process name) can be either a single identifier or the specification of an
array of processes:

process pi : (lower bound) ... {upper bound)]

In the process array, the first identifier, p, is the array name and the second, ¢, is

the index of the array that refers to the current process.

The inp section defines constants that are effectively local to the current
process specification. Constants which are global to the protocol can be defined
using a glob section, but this is not needed in the examples. var defines variables
which are local to the process. The par section provides parameters, which are used
in statements such as

readyp [j] — (do something)

If j were a constant value, this guard would allow only one element of readyp ever to
control the execution of the action. If 7 were a variable, the firing of the action would
depend on the value of the j** element, using the current value of j. However, if j is
a parameter ranging across a set of values, 0...N, this action is virtually replaced
by a set of actions

readyp [0] = (do something)

] ...

| readyp[N] — {(do something)

with j replaced by the corresponding member of the range. The parameter allows an
enabled action to be nondeterministically picked based on the entire readyp array.
The guard of the action can have one of three forms:

e (local guard)—a local guard is a predicate that involves only local variables.



e rcv (message) from (process name)—a receive statement which is true when
a message of the correct form is at the head of the channel from the process
named in the receive statement. If the action is executed, the receive statement

removes the message from the channel.

e timeout (global guard)—a global guard is a predicate that can involve all
of the variables of all of the processes as well as the state of all of the chan-
nels. Timeout actions are difficult to implement and should be avoided where

possible.

The lists of statements consist of either statements dealing with local vari-
ables or send statements of the form send (messsage) to (process name). A mes-
sage consists of an identifier plus zero or more optional fields. For example,
msg (val, seq), is a message msg with two fields, val and seq.

Between each pair of processes (p, ¢) there exists a shared variable, a channel,
C.p.q, into which p can send messages and from which ¢ can receive them. At any
one time, C.p.q contains the sequence of messages which have been sent by p but
not received by . The number of messages in the channel can be represented by
#C.p.q, and the number of any particular type of message, msg, can be represented
as msg#C.p.q.

At each time step, one action is picked from the set of all of the actions whose
guard predicates are true. (A rcv predicate is true if the message at the head of the
channel that it is receiving from matches the message that the predicate specifies.)
This action is executed. (At which time the rev predicate removes the message from
the channel before the statements of the action are begun.) Fortunately, due to the
semantics associated with AP, picking one action at a time from the whole protocol
is equivalent to picking one action each from the processes—no synchronization is

required between processes.

2.2 The C language

This work assumes that the reader is relatively familiar with programming in C.
However, one technique is used that is normally regarded as “advanced” C and may
not be familiar to all readers. Also, another “trick” is used which is not necessarily
good C and which may not be portable. Finally, a couple of issues are raised
regarding the relationship between C and formal notations in general and between

C and network programming.



2.2.1 Function pointers

The “advanced” technique is the manipulation of function pointers. A C function
foo has the definition syntax of

int foo(int i)

{
/* C code */
¥

foo takes an int argument and returns an int. foo is called by
val = foo( 4 );

If the program uses the bare identifier foo without the trailing parentheses
and argument, its value is a pointer to the implementation of the function. There-
fore, it is possible to write

int (*a)(int);

a = foo;

in which case the address of the start of foo is assigned to a. The definition of a
shows it to be a pointer to a function taking an int and returning an int.
a can be used to call foo (or any other function whose address is assigned to

it) by writing
val = (xa)( 4 );

in which case val is assigned the same value as the statement above.

This technique is often used by graphical user interface systems to give an
application the ability to set up handlers for input events from the user such as key
presses and mouse actions.

2.2.2 “Subclassing” variables

The “trick” mentioned above is the use of casts of pointers to point to similar looking
structures. For example, say the structure

struct bar

{
int size;

};

10



is used by a program. Also, assume that the program uses a structure

struct mybar
int size;
char *name;

¥

to hold some extra information about a struct bar-like entity. It is possible to cast
a pointer to a struct mybar to a pointer to a struct bar, use it as a pointer to
a struct bar, and then recast it to a struct mybar without altering or losing the
name field. For example

bar *b;
mybar *c = malloc( sizeof( mybar ) );
mybar *d;
char *nm;

int SZ;
/* Assign the elements of c */

b = (struct bar *) c;
sz = b->size;

/* Use sz */

d = (struct mybar #*) b;
nm = d->name;

/* Use nm */

This technique allows a struct mybar to be inserted into a list of struct bars, for
example, manipulated by some functions expecting a struct bar, and eventually
used again as a struct mybar.

2.2.3 C implementation issues

Two issues are raised by using C in relation to formal notations and in relation to
networks of heterogeneous machines.

e An int is not an integer. Due to the fixed representation of an int, it has a
limited range of values—a true integer does not. Due to the representation
of a double, it is not a real real number; a double has limited precision and

11



limited range. In general, it is a good idea to ensure that integers, when used
in formal notations that are aimed at non-trivial implementations, have upper
and lower bounds.

Different machines may have different representations for the same data types.
For example, on one machine an int may be represented in 16 bits, with the
least significant 8 bits at the lower addressed byte and the most significant 8
bits at the higher address. Another machine may use 32 bit ints with the order
of bytes being, starting from the lowest address, most significant, second most
significant, second least significant, and least significant. On most machines,
a short int is 16 bits and a long int is 32 bits. Also, most implementations
of the TCP/IP networking functions provide a set of macros htonl, htons,
ntohl, and ntohs. It is best to use both specific types and the conversion
macros when necessary.

12



Chapter 3

Abstract Protocols in C

The APC suite is designed to ease the transition from the abstract specification of
a protocol in AP to the concrete implementation in C. It does this in two ways:

e Providing a simple structure for the implementation of actions, and
e Hiding some of the required but uninteresting bookkeeping.

For the moment, this discussion will ignore the timeout actions and a few other
parts of AP. For information on those, see the next chapter.

The basic premise of the APC suite is to provide a central protocol “engine,”
which is given C functions representing AP actions and which calls those functions
when they are enabled. This call-back approach is used in several user interface
systems where the application writer (or in this case, protocol writer) needs the
ability to specify how a system will respond to an outside event, such as a key press

or a message from another process.

3.1 Implementing processes

Each of the AP processes is mapped in the obvious way to a C program, complete
with a function main. The program first initializes whatever variables are needed
by the protocol, then initializes the suite. Then the program registers the functions
implementing actions with the APC “engine.” All of this set-up work is simplified
by the program only needing to know information about the local process. Once the
set-up work is complete, the program activates the engine and starts the protocol
proper. If and when the protocol terminates (another area not covered by the AP
notation, but sometimes necessary), the engine cleans up after itself and the program

exits.

13



Variables local to the process (and a few other things, as will be seen later) are
translated into C variables at the file scope—global to the functions implementing
the actions as well as the main function.

Initializing the suite is the task of the function initialize_engine which
takes a single argument, an integer which is equivalent to the process name in
the AP notation. This integer is used as an index into an array containing the
information required to send messages to and receive messages from other processes.
How initialize_engine determines this information is described in section 5.2.2.
If initialize_engine discovers a problem, it exits with a return code. In order
to simplify writing the program further, a macro, INITTALIZE_ENGINE, has been
defined which calls initialize_engine and, in the event of an error, writes an
error message to the standard error output and exits the running program.

Registering the actions is done by a pair of functions that are specific to the
types of action; add_local_action is used for local actions; add_receive_action
for receive actions. Both of these functions have error-handling macros,
ADD_LOCAL_FUNCTION and ADD_RECEIVE_ACTION, respectively. Both of these func-
tions take two arguments—the function pointers mentioned earlier. The first func-
tion argument implements the guard of whatever action is being registered. The
second function argument implements the body of the action. Writing the guard
and body functions is the subject of the next section.

Once the set-up work has been done, the program should call the function

engine or its error-handling wrapper, ENGINE. engine takes no arguments.

3.1.1 Implementing actions

The implementation of an action consists of two functions, a guard function and a
body function. For guard functions, there are two basic rules:

e The guard returns true if the guard predicate should evaluate to true and
false otherwise. While there are some instances where the guard function will
differ from the AP guard predicate, they should not differ radically.

e The guard function does not change the state of the protocol. It should not
change the state of any variables (although the next chapter will consider a
pair of seeming exceptions to this rule) and it should not send any messages.

If the guard predicate is simply the state of some boolean variable, a comparison of
a variable and a value, or better still a boolean constant, the implementation of the
guard is straightforward. Receive actions, however, require a little more work. The
receive guard and body functions will be passed a structure when they are called

14



by the engine. This structure contains a process identifier, sender, which indicates
the process sending the message, and a pointer to the message structure that was
received. The receive guard will generally check the message type, sometimes check
the sending process’s id, and may also look at any additional fields that were part
of the message as sent.

The body functions of both kinds of actions are very similar. These functions
implement the right-hand side of the process’s actions and change the state of the
protocol by changing local variables and sending messages. The body function of a
receive action does have available the structure passed to the guard in order to send
replies or pick data out of the message.

Sending messages is handled by the function send_message, or its error-
handling wrapper, SEND_MESSAGE. send_message takes two arguments, a pointer to
a message structure that minimally has a type field and a len field. The type is
used to send particular kinds of messages, and the len is used to inform the engine
functions of how much data to send, i.e., the size of the message structure in bytes.

Receive functions, both the guard and the body, should not attempt to mod-
ify or delete their arguments. The memory for the arguments is managed by the
engine itself.

When an action ascertains that the processing of the protocol is complete,
for example that the data to be transferred has been transferred, it can set the
variable prtcl_dne to true. This will tell the engine that it should clean up after
itself and terminate.

For more detailed information about the suite functions, see section 5.1.

3.2 Vending machine protocol

In order to demonstrate the basic use of these functions, a simple protocol will be
defined and implemented.

The vending machine protocol consists of two processes, a vendor and a cus-
tomer. The vending machine accepts money and item selections (in that order) from
customers and returns items to them. The customer, a sort of generic individual,
presents money and selections to the vending machine and accepts items in return.

The vending machine process is

process v
var readyv : boolean
begin

rcv money from ¢ — readyv := true

15



rcv selection from ¢ — 1If  readyv — send item to ¢
Yy
| -—readyv — skip
ﬁ.

readyv := false

end

and the customer process is

process ¢
var readyc : boolean
begin

readyc — send money to v;
send selection to v;
readyc .= false

[ rev item from v — readyc := true

end

3.2.1 Process identifiers and message types

In order to properly implement the protocol, several constant values are required.
C and V identify the process in question, the values of these constants are known
as the process identifiers. Also, the protocol uses three different kinds of messages,
MONEY, SELECTION, and ITEM. The value of these constants are the message types.

(Protocol constants 16) =

#define C 0
#tdefine V 1

#define MONEY 1
#define SELECTION 2
#define ITEM 3

<

Macro referenced in scraps 20a, 23a.

3.2.2 The vendor

In the specification of the vending machine protocol, the vending machine process
(known from here on as the vendor) has one variable, a state readyv. The Boolean
variable becomes an integer in traditional C.

16



The protocol specification does not mention process initialization. In order
to properly start the process, it is reasonably clear that readyv should be false.
The macro FALSE is defined to be zero, which in C is false.

(Vendor variables 17a) =

int readyv = FALSE;
&

Macro referenced in scrap 20a.

The vendor has two actions. The first allows the vending machine to accept
money from the customer. The guard for the action (which is somewhat stricter
than absolutely necessary—there is only one other process in the protocol) is true
when the message type is MONEY and the message was sent by the customer, process
id C.

The body of the first action sets readyv to TRUE, indicating that the vendor

is ready to accept a selection and deliver an item. In the AP notation, the action
is

rcv money from ¢ = readyv := true

The C implementation is somewhat more complex, but in this instance is
almost a direct translation. The value rcvd passed to the guard when the engine
points to a structure with two components. The first component points to the
message that was sent by the other process, msg. The second component, sender,
is the process identifier of the sending process. The message can have several fields,
depending on the requirements of the protocol, but it should have a field, type,
indicating what message it is. The guard returns either zero or non-zero depending
on whether the vendor has received a MONEY message and on whether the sender
is the process C. If those conditions are fulfilled, the guard will return a non-zero
value and the engine will call the corresponding body function which sets readyv
to true. (For the moment, ignore the code scraps labelled “(Elaborate...).” They
do nothing to change the state of the protocol.)

In order to inform the protocol engine of the vendor’s action, the vendor will
need to call ADD_RECEIVE_ACTION with the guard and body functions for the action.

(Vendor actions 17b) =

17



int actionlg( RCVD_MSG *rcvd )
{
return( rcvd->msg->type == MONEY && rcvd->sender == C );

}

void actionib( RCVD_MSG *rcvd )
{
readyv = TRUE;
(Elaborate on vendor action 1 23b)
¥

O

Macro defined by scraps 17b, 19a.
Macro referenced in scrap 20a.

(Add vendor actions 18) =
ADD_RECEIVE_ACTION( actionlg, actionib );

&

Macro defined by scraps 18, 19b.
Macro referenced in scrap 20a.

The vending machine’s second action is used to respond to selections from
the customer. The guard function therefore returns true when the message received

has a type of SELECTION and the sender is the customer, process id C.
In the AP notation, the second action is

rev selection from ¢ — if  readyv — send item to ¢
[ -—readyv — skip
ﬁ.

bl

readyv := false

The vendor’s response to the selection varies; if MONEY has been sent previ-
ously, then readyv will be true and the vendor will send a message ITEM to the
customer. If MONEY has not been sent, readyv is false and the vendor will not send
a message ITEM. In either case, readyv is set to false.

The body function contains the odd looking line,

MSG_BUFF msg = {ITEM, sizeof( MSG_BUFF )};

18



which defines and initializes a C variable, msg. The MSG_BUFF structure has two
elements, the type mentioned above and the size of the structure in bytes, the len.
For the message being sent by this function, the only type being used is ITEM. The
size of the structure is generally constant and generally set with sizeof. The len
is needed by send_message, which would not otherwise know how many bytes to
send to the other process, in this case, C.

This example demonstrates that, while the syntax of the AP notation and
the C implementation are different, the difference at this stage is largely a matter
of format, terminology, and a little record keeping.

(Vendor actions 19a) =

int action2g( RCVD_MSG *rcvd )

{
return( rcvd->msg->type == SELECTION && rcvd->sender == C );

}

void action2b( RCVD_MSG *rcvd )

{
MSG_BUFF msg = {ITEM, sizeof( MSG_BUFF )};

(Elaborate on vendor action 2, pt. 1 23c)

if (readyv)
{
SEND_MESSAGE( &msg, C );
(Elaborate on vendor action 2, pt. 2 23d)
}

readyv = FALSE;

}

&

Macro defined by scraps 17b, 19a.
Macro referenced in scrap 20a.

(Add vendor actions 19b) =

ADD_RECEIVE_ACTION( action2g, action2b );
<&

Macro defined by scraps 18, 19b.
Macro referenced in scrap 20a.
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The vending machine process defines all of the information above and in its
function, main, initializes the engine with the process identifier V and the actions,
and calls the engine.

"y.c" 20a =

#include <stdio.h>
#include "APC.h"

(Protocol constants 16)
(Vendor variables 17a)
(Vendor actions 17b, ... )

void main()
{
INITIALIZE_ENGINE( V );
(Add vendor actions 18, ... )
ENGINE() ;
¥

O

3.2.3 The customer

Similar to the vending machine, the customer has one state variable, readyc, which
becomes an integer in C.

(Customer variables 20b) =

int readyc = TRUE;
&

Macro referenced in scrap 23a.

The customer’s first action is of a different type than the vendor’s two.
Rather than receiving a message, its guard is based only on the process’s local
state variable.

When readyc is true, the customer sends money followed by a selection to
the vending machine and sets readyc to false.

20



readyc — send money to v;
send selection to v;
readyc .= false

Rather than using two variables to define the messages, the implementation
uses one, msg. msg’s len is set to the size of the structure, and its type is first set
to MONEY and then to SELECTION.

Notice that the customer process uses ADD_LOCAL_ACTION to notify the engine
of the action, rather than ADD_RECEIVE_ACTION.

(Customer actions 2la) =

int actionig( void )
{
return( readyc );

}

void actionib( void )

{
MSG_BUFF msg;

msg.len = sizeof( MSG_BUFF );

msg.type = MONEY;
SEND_MESSAGE( &msg, V );
(Elaborate on customer action 1, pt. 1 24a)

msg.type = SELECTION;
SEND_MESSAGE( &msg, V );
(Elaborate on customer action 1, pt 2 24b)

readyc = FALSE;
b
&

Macro defined by scraps 21a, 22a.
Macro referenced in scrap 23a.

(Add customer actions 21b) =

ADD_LOCAL_ACTION( actionlg, actionlb );
<&

Macro defined by scraps 21b, 22b.
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Macro referenced in scrap 23a.

The customer’s second action is a receive action. The guard becomes true
when the customer receives an ITEM message from the vending machine, process V.
When the customer process receives an item from the vending machine, the
customer becomes ready again, continuing the great tradition of customers every-

where.
Compare the AP notation of this final action,

rcv item from v = readyc := true

with the implementation.

(Customer actions 22a) =

int action2g( RCVD_MSG *rcvd )
{
return( rcvd->msg->type == ITEM && rcvd->sender == V );

}

void action2b( RCVD_MSG *rcvd )
{
readyc = TRUE;
(Elaborate on customer action 2 24c)
¥
<&
Macro defined by scraps 21a, 22a.

Macro referenced in scrap 23a.

(Add customer actions 22b) =

ADD_RECEIVE_ACTION( action2g, action2b );
<&

Macro defined by scraps 21b, 22b.
Macro referenced in scrap 23a.

Overall, the customer process follows basically the same steps as the vending
machine process. The major difference is that the customer initializes its engine
with the process id C.
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“"c.c" 23a =

#include <stdio.h>
#include "APC.h"

(Protocol constants 16)
(Customer variables 20b)
(Customer actions 21a, ... )

void main()
{
INITIALIZE_ENGINE( C );
(Add customer actions 21b, ... )
ENGINE() ;
¥

O

3.2.4 Elaborations

The programs as written above are correct, but somewhat uninteresting. Neither of
the programs produces any visible output despite the fact that they are exchanging
messages at a furious rate. Therefore, the following elaborations have been added
in order to show the activity of the processes. Refer back to the implementations
above if the printing statements described here are not understandable.

(Elaborate on vendor action 1 23b) =

printf( "Received money\n'" );

&

Macro referenced in scrap 17b.

(Elaborate on vendor action 2, pt. 1 23c) =

printf( "Received selection\n" );

&

Macro referenced in scrap 19a.

(Elaborate on vendor action 2, pt. 2 23d) =
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printf( "Sent item\n" );
<

Macro referenced in scrap 19a.

(Elaborate on customer action 1, pt. 1 24a) =

printf( "Sending money\n" );
<

Macro referenced in scrap 21a.

(Elaborate on customer action 1, pt 2 24b) =

printf( "Sending selection\n" );

&

Macro referenced in scrap 21a.

(Elaborate on customer action 2 24c) =

printf( "Received item\n" );

&
Macro referenced in scrap 22a.

3.3 The request/reply protocol

The vending machine protocol is a particular instance of a very broad class of
protocols—client /server protocols. Client/server protocols generally feature a spe-
cific, well-known process which provides services to other, client processes. These
protocols are, in turn, a subset of request/reply protocols in which one or more
processes make requests and receive replies from each other.

In order to provide a larger example of how to use the APC suite, let us
take a simple request/reply protocol and, in subsequent sections, elaborate on it in
order to show the usefulness of the APC suite in approaching more complex AP

constructions.
For this simple protocol, define the process p as

process p

var readyp : boolean
begin
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readyp — send request to q;
readyp := false

[ rev request from ¢ — send reply to q

[ rev reply from ¢ — readyp := true

end

The process ¢ is symmetrical.

3.3.1 Process identifiers and message types

The basic request/reply protocol needs two processes, p and ¢, and therefore the two
process identifiers P and Q. It also has two different kinds of messages, REQUEST’s
and REPLY’s. For variety’s sake, the numerical constants associated with the message
types are not 0 and 1.

Since this protocol will be expanded on in later sections, the string “pass n”
is added to the end of the scrap names in order to prevent them from conflicting

with different versions of the same scrap.

(Request /reply protocol constants, pass 1 25) =

#tdefine P 0
#define Q 1

#define REQUEST 44
#define REPLY 54
<

Macro referenced in scrap 29.

The first advanced feature that this protocol demonstrates is the use of spe-
cific message types, rather than the generic MSG_BUFF. Note that, however, the two
fields of the types are the same as type fields of MSG_BUFF. In practice, it is a good
idea to use the names type and len for the fields, but only the order and the
size of the two fields matter; the type of the message is assumed to be in the first
sizeof (long) bytes of a received message and the size of the whole message is as-
sumed to be in the second sizeof (long) bytes. This technique is not useful in this
particular case, but will become important later when a message type will need one
or more extra fields.
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(Message types, pass 1 26a) =

typedef struct
{
long type;
long len;
} REQUEST_USG;

typedef struct
{
long type;
long len;
} REPLY_MNSG;
&

Macro referenced in scrap 29.

3.3.2 Process p

When the process is ready, it will generate a request message to be sent to the other
process, Q.

readyp — send request to ¢;
readyp := false

(Process variables, pass 1 26b) =

int readyp = TRUE;
&

Macro referenced in scrap 29.

P’s first action reflects the use of readyp above; when readyp is true, P sends
a request to Q.

(P’s actions, pass 1 26c) =
int actionig( void )

{
if (readyp) return( TRUE );
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return( FALSE );
¥

void actionib( void )

{
REQUEST_MSG msg;

msg.type = REQUEST;

msg.len = sizeof( REQUEST_MSG );
SEND_MESSAGE( (MSG_BUFF *) &msg, Q );
readyp = FALSE;

printf( "Sending request\n" );
}
<

Macro defined by scraps 26c¢, 27b, 28b.
Macro referenced in scrap 29.

(Add action 1, pass 1 27a) =

ADD_LOCAL_ACTION( actionlg, actionlb );
<&

Macro referenced in scrap 29.

In order to uphold P’s end of the protocol, when the process receives a request
from Q it needs to send a reply. This is a very generic reply, however, not involving
any actual information transfer.

rcv request from ¢ — send reply to ¢

(P’s actions, pass 1 27b) =

int action2g( RCVD_MSG *rcvd )
{
return( rcvd->msg->type == REQUEST && rcvd->sender == Q);
}

void action2b( RCVD_MSG *rcvd )

{
REPLY_MSG msg;
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msg.type = REPLY;
msg.len = sizeof( REPLY_MSG );
SEND_MESSAGE( (MSG_BUFF *) &msg, Q );

printf( "Sending reply: %d\n", msg.slot );
}
<

Macro defined by scraps 26c¢, 27b, 28b.
Macro referenced in scrap 29.

(Add action 2, pass 1 28a) =

ADD_RECEIVE_ACTION( action2g, action2b );
<&

Macro referenced in scrap 29.

Finally, when P receives a reply to it’s request from Q, it can become ready
again.

rcv reply from ¢ — readyp := true

|
(P’s actions, pass 1 28b) =

int action3g( RCVD_MSG *rcvd )
{
if (rcvd->msg->type == REPLY && rcvd->sender == Q) return( TRUE );
return( FALSE );
}

void action3b( RCVD_MSG *rcvd )
{
readyp = TRUE;

printf( "Receiving reply: %d\n", j );
}
O

Macro defined by scraps 26c¢, 27b, 28b.
Macro referenced in scrap 29.

(Add action 3, pass 1 28c) =
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ADD_RECEIVE_ACTION( action3g, action3b );
<&

Macro referenced in scrap 29.

The implementation of P needs to

e include the APC suite header file and the stdio.h header,
e define its constants, types, variables, and actions,

e initialize the engine,

e inform the engine of the actions of the process,

e and call the engine itself.

|
"pl.c" 29 =

#include "APC.h"
#include <stdio.h>

(Request /reply protocol constants, pass 1 25)
(Message types, pass 1 26a)
(Process variables, pass 1 26b)

(P’s actions, pass 1 26c, ... )

int main()
{
INITIALIZE_ENGINE( P );
(Add action 1, pass 1 27a)
(Add action 2, pass 1 28a)
(Add action 3, pass 1 28c)
ENGINE() ;
return( 0 );
}

&

|

Like the specification of p, the implementation of Q is symmetrical to that
of P. (This is a very useful phrase. In this instance, it means that Q can be con-
structed from P through the simple expedient of swapping the characters ‘p” and ‘q’

in appropriate places.)
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Chapter 4

Parameters, Timeouts, and
Process Arrays

There are three major AP implementation issues which have not been discussed

thus far. These are parameters, timeouts, and process arrays.

Parameters are actually rather simple toimplement, although the idea behind
them may not be obvious. In most cases parameters are used to allow the enabling of
an action which picks some value nondeterministically from some range. Therefore,
it is possible to implement them by defining a C variable for them and setting their
value in the guard function of their action. This is a violation of the rules presented
above, but only technically—the parameters are not used to determine the state of
the protocol. Therefore, the action presented above,

readyp[j] — (do something)

where j is a parameter ranging over 0.../N, can become

int guard(void)
{
for (j = 0; j <= N; j++) if (readypl[jl) return( TRUE );
return( FALSE );
+

which leaves j set to the appropriate value for the processing of the body function.

Process arrays are similarly easy to handle. Since the process identifier used
by each process is already implemented as an integer beginning at 0 for some pro-
cess and ranging upwards for each of the rest, it is reasonable to skip the array
part entirely and use the process array index from the specification as the process
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identifier. This will generally require reading the identifier for each process from
the command line, or some similar method which assigns it at run time. The suite
makes the variable proc_count available to the actions—proc_count contains the
number of processes participating in the protocol.

Timeouts, however, are somewhat more complex. Since the global informa-
tion available to their predicates is not available to the implemented program, it is
necessary to replace that global information with locally available information. The
only truly global information that is available to a process is the current time. The
global predicate of the specification should be replaced in the implementation with
a delay in the execution of the timeout action which will hopefully have the same
effect as the global predicate. For example, this often means that the implementa-
tion, rather than resending a message when that message has been lost, must send
a replacement message after enough time has passed to indicate that the message
has probably been lost.

The mechanics of timeout actions are rather simple. They are implemented
as two functions in the same way as local and receive actions. Since the global
information used by timeout implementations is a delay value, this delay is specified
as one of the arguments to add_timeout_action, the function that notifies the suite
of the presence of a timeout. Since the delay of the timeout execution must begin
at a reasonable point, add_timeout_action should only be called from the body of
another action; for example, right after the sending of a message which may need to
be resent. Also, since the continued re-execution of a given timeout would not be
useful in most cases, the timeout action set by add_timeout_action is a one shot
affair; after the delay, after the guard of the action is attempted, no matter whether
the body of the action was executed or not, the record of the pointers to the guard
and body functions is deleted from the engine.

As a slight service to the timeouts, an extra parameter, data, can be associ-
ated with the action functions when they are added to the engine. This parameter

is a long value which is passed on to the timeout functions when they are invoked.

4.1 Request/reply protocol revisited

The request/reply protocol in section 3.3 is certainly interesting, but it is not very
general. An immediate idea that springs to mind is to allow each process to have
more than one outstanding request. For example, process p might need to send N
requests to process ¢ without waiting; likewise, ¢ could send N request to p before
becoming unable to send further requests.

A process p with this ability might look like

32



process p

inp N : integer

var readyp : array [0...N —1] of boolean
par 5 : 0...N-—-1

begin

readyp [j] = send request (j) to ¢;
readyp [J] := false

| rev request (j) from ¢ — send reply (j) to ¢
| rev reply (j) from ¢ — readyp[j] := true

end

Remember that a protocol parameter, such as j above, turns any action it
is used in into an “action template,” which is replaced, in this case, with N nearly
identical actions. The only difference between the new actions is that j is replaced
by one (and only one, for each instance of j in a particular new action) of the values

from its range.

4.1.1 Process identifiers, message types, and new constants

This version of p has the constants and message types of the previous one, but it
adds a constant N, which represents the number of outstanding requests that P can
have.

In the current version of the protocol, each message has a field into which a
value is placed and from which it is read. This value corresponds with one of the
elements of the array readyp. The message types for the implementation, therefore,
need an additional field which can be used to index into the array readyp. This

field is known as slot.

(Protocol constants, pass 2 33) =

#tdefine P 0
#define Q 1

#define REQUEST 44
#define REPLY 45

#tdefine N 5
<&

Macro referenced in scrap 38b.
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(Message types, pass 2 34a) =

typedef struct
{
int type;
int len;
int slot;
} REQUEST_MSG;

typedef struct
{
int type;
int len;
int slot;
} REPLY_MNSG;
<

Macro referenced in scrap 38b.

4.1.2 Process p

In this version of the request/reply protocol process P, the readyp state variable
has been expanded to be an array. Also, a variable which is used to represent the
parameter j is added.

Because readyp is now an array, it requires some explicit initialization code.

(Process variables, pass 2 34b) =

int readyp[N];
int j;
&

Macro referenced in scrap 38b.

(Initialize variables, pass 2 34c) =

for (1 = 0; 1 < N; i++)
{
readypl[i] = TRUE;
¥

<&
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Macro referenced in scrap 38b.

p’s first action represents a serious departure from the previous protocol. The
AP specification of it is

readyp [j] — send request (j) to ¢;
readyp [j] = false

remembering that j is a parameter. There would be two ways of implementing this
action. The first would be to make N copies of it, with each value from 0...N
replacing j in some fashion. This is clearly the wrong way to go; it would require
multiple copies of the code with only minor changes and it would break if the value
of N was changed.

The alternative is to implement j as a variable, as was done with j. Then,
when j was effectively set (actually, the action was chosen with j having an ap-
propriate value), the implementation sets j to the correct value. In the case of this
action, j is used to test the values of readyp until one is found which is true or until
all have been checked. The function implementing the body of the action also uses
the value of j set in the guard. This use of variables to substitute for parameters is
one exception to the rule that the functions implementing action guards should not
have any side effects.

The body, by the way, sets the fields of msg correctly and then passes the
thing to send_message. The cast of the address of msg to a pointer to a MSG_BUFF is
required since that is what send_message expects, and it is safe since the resulting
address actually does point to a MSG_BUFF (plus an extra field tacked on the end).

(P’s actions, pass 2 35) =

int actionig( void )
{
for (j = 0; j < N; j++) if (readyp[jl) return( TRUE );
return( FALSE );
}

void actionib( void )

{
REQUEST_MSG msg;
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msg.type = REQUEST;

msg.len = sizeof( REQUEST_MSG );
msg.slot = j;

SEND_MESSAGE( (MSG_BUFF *) &msg, Q );
readyplj] = FALSE;

printf( "Sending request: %d\n", j );
¥
&

Macro defined by scraps 35, 36b, 37b.
Macro referenced in scrap 38b.

(Add action 1, pass 2 36a) =

ADD_LOCAL_ACTION( actionlg, actionlb );
<&

Macro referenced in scrap 38b.

The second action,

rev request (§) from ¢ — send reply (j) to ¢

is implemented in a way very similar to the first, except that the value of j is simply
set from the field of the received message. A loop such as that above is not required

here to give j its parameter nature.

|
(P’s actions, pass 2 36b) =

int action2g( RCVD_MSG *rcvd )
{
REQUEST_MSG *req;

if ( rcvd->msg->type == REQUEST && rcvd->sender == Q)
{
req = (REQUEST_MSG *) rcvd->msg;
j = req->slot;
return( TRUE );
}
return( FALSE );
}
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void action2b( RCVD_MSG *rcvd )
{
REPLY_MSG msg;

msg.type = REPLY;

msg.len = sizeof( REPLY_MSG );
msg.slot = j;

SEND_MESSAGE( (MSG_BUFF *) &msg, Q );

printf( "Sending reply: %d\n", msg.slot );
}
<

Macro defined by scraps 35, 36b, 37b.
Macro referenced in scrap 38b.

(Add action 2, pass 2 37a) =

ADD_RECEIVE_ACTION( action2g, action2b );
<&

Macro referenced in scrap 38b.

Finally, p’s third action is

rev reply (§) from ¢ — readyp [j] = true

and it is implemented much like the second action.

|
(P’s actions, pass 2 37b) =

int action3g( RCVD_MSG *rcvd )
{
REPLY_MSG *reply;

if (rcvd->msg->type == REPLY && rcvd->sender == Q)
{
reply = (REPLY_MSG *) rcvd->msg;
j = reply->slot;
return( TRUE );
}
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return( FALSE );
¥

void action3b( RCVD_MSG *rcvd )
{
readyp[j] = TRUE;

printf( "Receiving reply: %d\n", j );
}
O

Macro defined by scraps 35, 36b, 37b.
Macro referenced in scrap 38b.

(Add action 3, pass 2 38a) =

ADD_RECEIVE_ACTION( action3g, action3b );
<&

Macro referenced in scrap 38b.

The major change the to remaining parts of the implementation is the scrap
to initialize the values of readyp.

|
"p2.c" 38b =

#include "APC.h"
#include <stdio.h>

(Protocol constants, pass 2 33)
(Message types, pass 2 34a)
(Process variables, pass 2 34b)
(P’s actions, pass 2 35, ... )
void main()

{

int i;

(Initialize variables, pass 2 34c)

INITIALIZE_ENGINE( P );
(Add action 1, pass 2 36a)
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(Add action 2, pass 2 37a)
(Add action 3, pass 2 38a)
ENGINE() ;
}

&

As before, the implementation of ¢ is symmetrical and only requires some
substitutions.

4.2 Reliable request /reply

The request/reply protocol described in section 4.1 suffers from one fatal flaw; it
will not resend lost messages, and therefore is unreliable.

The timeout mechanism can be used to correct this flaw. This requires
considerable changes in both the protocol specification and in the implementation.
The protocol now looks like:

process p

inp N : integer

var readyp : array [0...N —1] of boolean
par 5 : 0...N-—-1

begin

readyp [j] = send request (j) to ¢;
readyp [J] := false

| rev request (j) from ¢ — send reply (j) to ¢
| rev reply (j) from ¢ — readyp[j] := true

| timeout -—wreadyp[j] A request (§) #C.p.q=0Areply (j)#C.qp=0—
send request (j) to q

end

The last action (whose guard is true when a slot is marked as in use and there
is no corresponding message, either the request or a reply in the channel between p
and ¢) is used to resend a request after either the request or the reply has been lost.

The change to the process has several far-reaching consequences to the pro-
gram.
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4.2.1 Constants and message types

In this case, the constants and message types needed by the implementation have
not changed from the last version.

(Protocol constants, pass 3 40a) =

#tdefine P 0
#define Q 1

#define REQUEST 44
#define REPLY 45

#tdefine N 5
<&

Macro referenced in scrap 47c.

(Message types, pass 3 40b) =

typedef struct
{
int type;
int len;
int slot;
} REQUEST_USG;

typedef struct
{
int type;
int len;
int slot;
} REPLY_MSG;
<&

Macro referenced in scrap 47c.

4.2.2 Process p

The variables, however, have changed considerably. Rather than a single boolean
value or an array of boolean values, the readyp state variable becomes an array
(with one element for each possible message slot value) of structures—the first
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element of the structure is the ready flag, which does actually serve the purpose
of the previous readyp array. The other two slots are used in the processing of the
timeout for resending requests.

The initialization of the readyp variable is as complex as the variable itself.
j, however, is still used the same as it was, and seems rather innocuous now.

(Process variables, pass 3 41a) =

struct

{

int ready;

int sent;

int timed;

} readyplN];
int j;
&

Macro referenced in scrap 47c.

Initialize variables, pass 3 41b) =
, P

for (1 = 0; 1 < N; i++)
{
readypl[i].ready = TRUE;
readypl[i].sent = 0;
readypl[i].timed = 0;
}

<

Macro referenced in scrap 47c.

The first complex change required for the timeout implementation is in the
very first action. Recall that the AP timeouts have access to global information
about the state of the protocol. The global information required in this protocol is
the state of the channel between p and ¢. The implementation clearly cannot easily
gain access to that global information, and therefore must use with the information
that it has available, the time.

In the APC suite, the timeout handlers use this timing information to allow
the use of timeout actions by specifying a delay after a certain time during a pro-
tocol’s execution. After the delay expires, the engine will attempt to execute the
timeout action by testing the guard function. This use of a delay, however, requires
a starting time—the time after which the delay will expire.
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The choice of this time requires in-depth knowledge of the protocol. In
the case of this protocol, the timeout action is being used to resend a presumably
missing message. Therefore, the start time of the delay should be the time the
original message is sent. In this way, the add_timeout_action function differs from
the other add_..._action functions. The others are called from the main function
before invoking the engine and are set up permanently. add_timeout_action is
called from the place in one of the protocol actions which represents its start time.
Also, after a call to add_local_action, the guard and body functions of the local
action remain in effect for the duration of the process; a particular invocation of
add_timeout_action results in one specific invocation of the timeout guard and
possibly body actions after a given delay.

One difficulty arises when using the timeout action implementation system
presented here—the timeout action functions are too limited to know when not to
work. This, then, is the reason for the additional fields (after ready) in the readyp
array. The protocol needs some way of telling a timeout action that it is not actually
necessary to resend a message. In the action below, after setting ready to false for a
slot, the process increments a counter of the number of times a message bearing that
slot number has been sent. For more information on this topic, see the discussion

of action 4 below.
For comparison, the AP specification for this action is

readyp [j] — send request (j) to ¢;
readyp [j] := false

(P’s actions, pass 3 42) =

int actionig( void )
{
for (j = 0; j < N; j++) if (readypl[j].ready) return( TRUE );
return( FALSE );
}

void actionib( void )

{
REQUEST_MSG msg;

msg.type = REQUEST;

msg.len = sizeof( REQUEST_MSG );
msg.slot = j;
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SEND_MESSAGE( (MSG_BUFF *) &msg, Q );
(Add action 4, pass 3 47a)
readypl[j].ready = FALSE;
readypl[j].sent++;

printf( "Sending request: %d\n", j );
}
<
Macro defined by scraps 42, 43b, 44b, 46.

Macro referenced in scrap 47c.

(Add action 1, pass 3 43a) =

ADD_LOCAL_ACTION( actionlg, actionlb );
<&

Macro referenced in scrap 47c.

Action 2 is specified as

rev request (§) from ¢ — send reply (j) to ¢

and the implementation here does not differ from it more than the implementation
in the previous version did. One characteristic of this protocol that is worth noting
is that loss of reply messages is handled in the same way as the loss of request
messages. The sender of the request notices that no reply is forthcoming and resends

the request. No additional processing is required on the replying end.

|
(P’s actions, pass 3 43b) =

int action2g( RCVD_MSG *rcvd )

{
REQUEST_MSG *req;

if ( rcvd->msg->type == REQUEST && rcvd->sender == Q )
{
req = (REQUEST_MSG *) rcvd->msg;
j = req->slot;
return( TRUE );

¥
return( FALSE );
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void action2b( RCVD_MSG *rcvd )
{
REPLY_MSG msg;

msg.type = REPLY;

msg.len = sizeof( REPLY_MSG );
msg.slot = j;

SEND_MESSAGE( (MSG_BUFF *) &msg, Q );

printf( "Sending reply: %d\n", msg.slot );
}
<
Macro defined by scraps 42, 43b, 44b, 46.

Macro referenced in scrap 47c.

(Add action 2, pass 3 44a) =

ADD_RECEIVE_ACTION( action2g, action2b );
<&

Macro referenced in scrap 47c.

Action 3 does not materially differ from the third action of the previous
version of the request/reply protocol. The actual difference is the use of the ready
field of the readyp array rather than a whole element of the array.

This action does not do anything with the other two slots of the array. By
setting the ready slot to false this action temporarily removes the problem (un-
needed resends of request messages will not be done if there are no outstanding
requests). It is handled more permanently by action 1 incrementing the sent count

when that action brings the problem up again.

|
(P’s actions, pass 3 44b) =

int action3g( RCVD_MSG *rcvd )
{
REPLY_MSG *reply;

if (rcvd->msg->type == REPLY)

{
reply = (REPLY_MSG *) rcvd->msg;
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j = reply->slot;
return( TRUE );
¥

return( FALSE );

¥

void action3b( RCVD_MSG *rcvd )
{
readypl[j].ready = TRUE;

printf( "Receiving reply: %d\n", j );
}
O

Macro defined by scraps 42, 43b, 44b, 46.
Macro referenced in scrap 47c.

(Add action 3, pass 3 45) =

ADD_RECEIVE_ACTION( action3g, action3b );
<&

Macro referenced in scrap 47c.

The timeout action specified in the protocol above is

timeout -—wreadyplj] A request (j) #C.p.q=0Areply (j)#Cqp=0—
send request (j) to q

The implementation, or at least the guard of it, is radically different.

First, the check of the ready element is similar to the AP action. However,
the other two conjuncts of the AP guard are handled by the delay associated with
the timeout implementation. For the following discussion, assume that ready is
true, i.e., that there is an outstanding request.

The implementation imposes some other processing on the guard function
and adds a new conjunct. The increment of the timed element is used to insure
that unneeded message resends do not occur. In its simplest form,

e the sent element counts the number of request messages sent by this process
for each slot of readyp,

e the timed element counts the number of timeout action delay expirations that
have occurred for each slot of readyp;
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e and if sent equals timed then the currently expiring delay (associated with this
invocation of the guard function) refers to the currently outstanding request,

e in which case the request or reply message is missing (inferred from the delay)
and needs to be resent.

The d used by the guard is the general data item recorded by
add_timeout_action. In this process it is used to let this timeout guard know
which readyp element is expiring.

The body function of this action simply resends the message; and because
the resent message counts as a request, it increments the sent counter and resets a
timeout.

The call to add_timeout_action defined here is used in the timeout body
function as well as the body of action 1. It records the value of j in both cases,
remembering the slot number from which this request is being sent. The final
parameter to the call is the delay associated with this timeout. The value of 50000
microseconds is an arbitrary choice—it needs to be large enough to actually indicate
that a message has been lost rather than delayed but small enough to insure that
the protocol does not suffer too greatly in the event that a resend is needed.

Finally, action 4’s guard and body functions are declared early in the program
file to satisfy the C compiler as to how they are called, since they are used before
they are defined.

(P’s actions, pass 3 46) =

int action4g( long d )

{

readypld] . timed++;

if ('readypld].ready && readypl[d].timed == readyp([d].sent)
{
j=d;
return( TRUE );
}

return( FALSE );

}

void action4b( long 4 )
{
REQUEST_MSG msg;

msg.type = REQUEST;
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msg.len = sizeof( REQUEST_MSG );
msg.slot = j;

SEND_MESSAGE( (MSG_BUFF *) &msg, Q );
(Add action 4, pass 3 47a)
readypl[j].sent++;

printf( "Resending request: %d\n", j );
}
<

Macro defined by scraps 42, 43b, 44b, 46.
Macro referenced in scrap 47c.

(Add action 4, pass 3 47a) =

ADD_TIMEOUT_ACTION( action4g, action4b, j, 50000 );
<&

Macro referenced in scraps 42, 46.

(Declare action 4, pass 3 47b) =

int action4g( long d );
void action4b( long d );
&

Macro referenced in scrap 47c.

The program file does not require many changes to use the timeout handlers

of the APC suite.
[

"p3.c" 47c =

#include "APC.h"
#include <stdio.h>

(Protocol constants, pass 3 40a)
(Message types, pass 3 40b)
(Process variables, pass 3 41a)

(Declare action 4, pass 3 47b)

(P’s actions, pass 342, ... )
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void main()
{

int i;
Initialize variables, pass 3 41b
, P

INITIALIZE_ENGINE( P );
(Add action 1, pass 3 43a)
(Add action 2, pass 3 44a)
(Add action 3, pass 3 45)
ENGINE() ;
}

&

As always, the process ¢ is symmetrical to this process.

4.3 Request/reply using multiple processes

Another extension to the previous request/reply protocol of section 4.2 that comes
to mind is to use more than two processes; suppose M processes are created which
spread requests among themselves in order to distribute some processing load. Each
of the M processes could have N requests outstanding among the collection.

This extension introduces process arrays, which require only a small change in
the implementation strategy. On the other hand, in order to improve the flexibility
of the implementation, it reads the values for M and N from the command line—
therefore, the number of processes and the number of outstanding messages per
process may be set at runtime. Also, because this protocol uses a process array, all
of the processes are identical. The only difference is in the process identifiers used
by each, and this information can be read from the command line as well.

The protocol is

process p[i : 0... M — 1]

inp N : integer {# of outstanding requests}

var readyp : array [0...N —1] of 0...M;
k : 0...M —1; {Next process for requests}
l 0. M-1

par 5 : 0...N-—-1

begin
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readyp[jl=M — k:=(k+1) mod M;
if k=i - k:=(k+1)mod M
Il k+#i — skip
fi;
readyp [j] = k;
send request (j) to p[k]

| rev request (j) from p[l] — send reply (j) to pll]
| rev reply (§) from p[l] — readyp[jl =M

| timeout readyp[j] # M

A request () #C.p[i] .p[readyp[§]]

A vty ) $Cp e 1 ] = 05
send request (j) to p[readyp[j]]

end

In this instance, there is no process ¢ to be symmetrical to p.

One change to the protocol, from the previous versions, is evident. The
elements of readyp are not now boolean; they are used to store the process identifier
to which the corresponding message has been sent. A special value, M, is used to
indicate that the slot is available; it is not a valid process array index.

4.3.1 Constants and message types

The constants and message types remain almost unchanged from the last version of
the request/reply protocol. Notably, N is absent. By reading it from the command
line, the implementation requires N to be a variable although after it is set from the

command line it is not changed.

(Protocol constants, pass 4 49) =

#define REQUEST 44
#define REPLY 45
<

Macro referenced in scrap 56c¢.
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(Message types, pass 4 50a) =

typedef struct
{
int type;
int len;
int slot;
} REQUEST_MSG;

typedef struct
{
int type;
int len;
int slot;
} REPLY_MNSG;
<

Macro referenced in scrap 56c¢.

4.3.2 Process p

The variables and structure of the process are also unchanged—almost. Additional
variables are i, used to hold the current processes’ process identifier; M and N, used to
hold the constants used by the process; and k, which is used to spread the requests
around the process array fairly.

The initialization is slightly more complex. i, N, and M are read from the
command line arguments and converted to integers. The readyp array is now al-
located dynamically from the known size of the structures making up its elements
and the number of elements required, N.

|
(Process variables, pass 4 50b) =

struct ready_struct
{
int ready;
int sent;
int timed;

};
int i;
int M;

50



int N;
int k = 0;
int Js
struct ready_struct *readyp;

&

Macro referenced in scrap 56c¢.

(Initialize process variables, pass 4 51a) =

i = atoi( argv[1] );

atoi( argv[2] );
N

atoi( argv[3] );

readyp = malloc( N * sizeof( struct ready_struct ) );

for (1 = 0; 1 < N; 1++)
{
readyp[1l] .ready = M;
readyp[l].sent = 0;
readyp[1l].timed = O;
}

<

Macro referenced in scrap 56c¢.

The first action of the process is

readyp[jl=M — k:=(k+1) mod M;
if k=i - k:=(k+1) mod M
| k#i — skip
fi;
readyp [j] = k;
send request (j) to p[k]

This action sets k to a good, next process identifier; sets readyp[j].ready (the
structure element used to hold the actual state of the slot) to k; and sends the
request.

The implementation, however, is required to do the bookkeeping required for
message resends using the timeout action, action 4.

|
(P’s actions, pass 4 51b) =
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int actionig( void )
{
for (j = 0; j < N; j++) if (readyp[j].ready == M) return( TRUE );
return( FALSE );
}

void actionib( void )
{
REQUEST_MSG msg;

k=(k+ 1) Y% M;

if (k = i)
{
k=(k+1) %M
3

readypl[j].ready = k;

msg.type = REQUEST;

msg.len = sizeof( REQUEST_MSG );
msg.slot = j;

SEND_MESSAGE( (MSG_BUFF *) &msg, k );

(Add action 4, pass 4 56a)
readypl[j].sent++;

printf( "Sending request %d to %d\n", j, k );
}
<

Macro defined by scraps 51b, 53, 54b, 55b.
Macro referenced in scrap 56c¢.

(Add action 1, pass 4 52) =

ADD_LOCAL_ACTION( actionlg, actionlb );
<&

Macro referenced in scrap 56c¢.

The second action of the process is

rev request (§) from p[l] — send reply (j) to p[l]
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The implementation of this action is relatively straightforward. Two differences

need examination:

e The variable [ from the protocol specification is not present. It is actually

not needed; the information it carries is held in the sender element of the
RCVD_MSG structure. Contrast [, which is not needed, with j in this action,
which is also not needed but is present because it actively simplifies the pro-
gramming here. If j was not used here, the information it carries is available
from the slot element of the REQUEST_MSG structure. However, accessing that
information requires a cast (and a temporary, simplifying variable) since the
function only has access to a pointer to a MSG_BUFF. Thus, j is a useful value

whereas 1 is not.

The guard function does not check who the sending process is. This check,
which appears in the previous protocols, is not necessary—it is unlikely that
an unknown process will be sending messages to this one. If it were to be
here and if this protocol did differentiate between between some processes of
the array, it would most likely take the form of a range check in the guard if

statement.

(P’s actions, pass 4 53) =

int action2g( RCVD_MSG *rcvd )
{
REQUEST_MSG *req;

if ( rcvd->msg->type == REQUEST)
{
req = (REQUEST_MSG *) rcvd->msg;
j = req->slot;
return( TRUE );
¥
return( FALSE );
¥

void action2b( RCVD_MSG *rcvd )
{
REPLY_MSG msg;

msg.type = REPLY;
msg.len = sizeof( REPLY_MSG );
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msg.slot = j;
SEND_MESSAGE( (MSG_BUFF *) &msg, rcvd->sender );

printf( "Sending reply %d to %d\n", j, rcvd->sender );
}
<

Macro defined by scraps 51b, 53, 54b, 55b.
Macro referenced in scrap 56c¢.

(Add action 2, pass 4 54a) =

ADD_RECEIVE_ACTION( action2g, action2b );
<&

Macro referenced in scrap 56c¢.

pli]’s third action is

rev reply (§) from p[l] = readyp[j] = M

The implementation is straightforward given an understanding of the points dis-
cussed by the previous action.

(P’s actions, pass 4 54b) =

int action3g( RCVD_MSG *rcvd )
{
REPLY_MSG *reply;

if (rcvd->msg->type == REPLY)
{
reply = (REPLY_MSG *) rcvd->msg;
j = reply->slot;
return( TRUE );
}
return( FALSE );
}

void action3b( RCVD_MSG *rcvd )

{
readypl[j].ready = N;
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printf( "Receiving reply: %d from %d\n'", j, rcvd->sender );
}
<

Macro defined by scraps 51b, 53, 54b, 55b.
Macro referenced in scrap 56c¢.

(Add action 3, pass 4 55a) =

ADD_RECEIVE_ACTION( action3g, action3b );
<&

Macro referenced in scrap 56c¢.

The timeout action for the process is

timeout readyplj] # M

A request (§) #C.pi] .p[readyp[j]] =
A reply (j) #C.p[readyp [§]] p[i] = 0
send request (j) to plreadyp[j]]

Fortunately, this action has also not changed materially from the previous version.

|
(P’s actions, pass 4 55b) =

int action4g( long d )

{

readypld] . timed++;

if (readypld].ready !'= M && readypl[d].timed == readypl[d].sent)
{
j=d;
return( TRUE );
}

return( FALSE );

}

void action4b( long 4 )
{
REQUEST_MSG msg;

msg.type = REQUEST;
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msg.len = sizeof( REQUEST_MSG );

msg.slot = j;

SEND_MESSAGE( (MSG_BUFF *) &msg, readyp[j].ready );
(Add action 4, pass 4 56a)

readypl[j].sent++;

printf( "Resending request: %d to %d\n", j, readypl[d].ready );
}
<

Macro defined by scraps 51b, 53, 54b, 55b.
Macro referenced in scrap 56c¢.

Nor has the steps needed to use the action.

(Add action 4, pass 4 56a) =

ADD_TIMEOUT_ACTION( action4g, action4b, j, 50000 );
<&

Macro referenced in scraps 51b, 55b.
(Declare action 4, pass 4 56b) =

int action4g( long d );
void action4b( long d );
&

Macro referenced in scrap 56c¢.

Finally, the entire file implementing the process (and indeed, the whole pro-
tocol) is p4.c. Since it does read some required information from the command line,

it prints out a “Usage” message and exits when the information is not available.

| |
"p4.c" 56c =

#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>
#include "APC.h"

(Protocol constants, pass 4 49)
(Message types, pass 4 50a)
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(Process variables, pass 4 50b)
(Declare action 4, pass 4 56b)

(P’s actions, pass 4 51b, ... )

void main( int argc, char *argv[] )

{
int 1;

if (argec < 4)
{
fprintf( stderr,
"Usage: %s <proc id> <proc count> <rgsts>\n", argv[0] );
exit( 1 );
}

(Initialize process variables, pass 4 51a)

INITIALIZE_ENGINE( i );
(Add action 1, pass 4 52)
(Add action 2, pass 4 54a)
(Add action 3, pass 4 55a)
ENGINE() ;

}
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Chapter 5

Reference Guide and Conclusion

5.1 The APC engine

This section presents a short guide to using the functions provided by the APC
suite. It is divided into sections describing the two functions for initializing and
executing the engine, the two functions for adding local and receive actions to the
lists maintained by the engine, the function for setting up a timeout action, the
function for sending a message, and finally the types and variables exported by the

library for use by programs implementing protocols.

5.1.1 Initializing and executing the engine

Generally, the first function from the library to be called will be
initialize_engine. This function assigns initial values to the variables in-
ternal to the library such as the lists of actions.

proc is the process identifier of the process invoking the engine. Depending
on the form of process identifier configuration, this value may need to be coordi-
nated with the process’s configuration information. For more information, check
the various forms of configuration, such as APC-driver. In any case, the pro-
cess identifier will need to be unique among the processes making up the proto-
col. initialize_engine handles this configuration, including setting the calling
process’s identifier and locating the sending and receiving information for the other
processes.

Like all of the functions here, initialize_engine returns a false value if no
errors occurred. If an error did occur, it returns a true value and sets prtcl_err
to a text string describing the error.

In order to simplify the use of the functions, C preprocessor macros are
defined which test the value returned by the functions and print out the value of
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prtcl_err on stderr. Furthermore, if the cpp identifier CONTINUE_ON_ERROR is
not defined before the APC header file is included, the macro causes the program
to halt with an error. The macros are capitalized versions of the functions which
they call. For example, INITIALIZE_ENGINE invokes and tests the error condition

of initialize_engine.

(Prototype initialize_engine 60a) =

int initialize_engine( int proc );

&

Macro referenced in scrap 69.

(Macro definitions 60b) =

#ifdef CONTINUE_ON_ERROR
#define EXIT

#else

#define EXIT exit( 1 )
#endif

#define INITIALIZE_ENGINE( p )
if (initialize_engine( p ))
{
fprintf( stderr, "%s\n", prtcl_err );
EXIT;
¥

P e

&

Macro defined by scraps 60b, 61b, 62b, 63b, 65b, 66b.
Macro referenced in scrap 69.

engine executes the calling process’s part of the protocol. The suite main-
tains lists of local, receive, and timeout actions and engine enters a loop in which
the local actions’ guards are called until all have returned false, then the process
waits for either a message to arrive or the next timeout to happen. When one of
those events takes place, the guards of either the receive actions (if a message has
arrived) or the timeout actions (if a timeout has expired) are called and then engine
loops back to try the guards of the local actions. In the cases of all three actions, if
the guard function returns true, the body function is immediately called.

engine takes no arguments; any information required by it should
have been supplied by initialize_engine above or add_local_action,
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add_receive_action, and add_timeout_action below. It returns after an error
has occurred or after the variable prtcl_dne has been set to true by the processing
of some action.

engine returns false if there has been no error or true if there has, in which
case it sets prtcl_err to a text string describing the problem.

The C preprocessor macro ENGINE can be used to simplify the error condition

handling for calls to engine.

(Prototype engine 6la) =

int engine( void );

&

Macro referenced in scrap 69.

(Macro definitions 61b) =

#define ENGINE() if (engine())
{
fprintf( stderr, "¥%s\n", prtcl_err );
EXIT;
¥

P

&

Macro defined by scraps 60b, 61b, 62b, 63b, 65b, 66b.
Macro referenced in scrap 69.

5.1.2 Receive and local actions

When the engine discovers that a message has arrived, it calls the functions imple-
menting the guards of the receive actions in order to determine if one of those actions
is applicable to the new message. If a guard returns true, indicating that the action
is applicable, the function implementing the corresponding action body is invoked.
If the guard returns false, the engine continues with the next guard function until
all have been exhausted; if none returns true, the message is discarded.

It is intended that the guard functions should not have an effect on the state
of the process (except in the limited sense required to handle parameterized actions).
The body functions will need to modify variables or send messages, however.

A structure is passed to the functions implementing receive actions, giving
them
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1. A copy of the message itself, including the default fields of the type and length
of the message as well as any fields sent along with them, and

2. The process identifier of the process that sent the message.

The structure is defined by the RCVD_MSG type.

In order to initialize the list of receive actions, each pair of functions imple-
menting a receive action should be passed to the engine by the function
add_receive_action. The guard function takes a pointer to a RCVD_MSG as an ar-
gument and returns either true or false, and is the first argument to
add_receive_action. The body function gets the same argument but does not
return a value; it is the second argument to add_receive_action. The memory
pointed to by rcvd is managed by the engine and should not be modified, allocated,
or deallocated by either of the two user-specified functions. Once added to the list
of receive actions by add_receive_action, a pair of functions remains in use until
the process is terminated.

If add_receive_action detects an error while adding the pair of functions
to the list, it will return true; otherwise it will return false. If there is an error,
prtcl_err will be set to a string describing the problem. ADD_RECEIVE_ACTION is
the macro simplifying error handling for add_receive_action.

(Prototype add_receive_action 62a) =

int add_receive_action( int (*guard)( RCVD_MSG *rcvd ),
void (*body)( RCVD_MSG *rcvd ) );
&

Macro referenced in scrap 69.
(Macro definitions 62b) =

#define ADD_RECEIVE_ACTION( g, b ) if (add_receive_action( g, b )) \

{ \
fprintf( stderr, "¥%s\n", prtcl_err ); \
EXIT; \
¥

&

Macro defined by scraps 60b, 61b, 62b, 63b, 65b, 66b.
Macro referenced in scrap 69.
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Local actions are very similar to receive actions; the only major difference
between the functions implementing the two is that the local actions’ functions do
not have any parameters. They are assumed to be able to read the state from the
variables of the process directly.

Most of the ideas required for the implementation of receive actions remain
the same for local actions. The guard function should return either true or false,
the body should not return any value, and they should be introduced in that order
to the engine by the function add_local_action. Additionally, once added to the
list of local actions maintained by the engine, the guard and body functions of a
local action will continue to be used until the process is terminated.

add_local_action returns true and sets prtcl_err in the case of an error.
Otherwise it returns false.

|
(Prototype add_local_action 63a) =

int add_local_action( int (*guard)( void ),
void (*body)( void ) );
&

Macro referenced in scrap 69.

(Macro definitions 63b) =

#define ADD_LOCAL_ACTION( g, b ) if (add_local_action( g, b )) \
{ \
fprintf( stderr, "¥%s\n", prtcl_err ); \
EXIT; \
¥

<&

Macro defined by scraps 60b, 61b, 62b, 63b, 65b, 66b.
Macro referenced in scrap 69.

5.1.3 Timeout actions

Timeout actions are more difficult to implement. In addition to the guard and
body functions which are otherwise similar to receive and local actions, timeouts
require more information in order to perform their role. In particular, since the
global information used by an Abstract Protocol timeout action is not available to
the implementation, alternate information must be substituted. In this case, a delay
replaces any non-local information needed by a timeout action.
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The delay, delay, is passed along with the guard and body functions to
the engine by add_timeout_action. delay is specified in microseconds from the
time add_timeout_action is called. However, due to the nature of Unix process
scheduling, it can only represent a minimum delay; the guard (and possibly the
body) functions will be invoked sometime after the delay has expired.

An additional argument is required to add_timeout_action, the data. This
is an integer value which is passed without modification or examination to the guard
and body functions as their only argument when they are invoked. This data can be
used to provide information to the guard and body functions such as to specifically
identify the particular timeout among all similar expiring timeouts.

For example, imagine a timeout used to resend a message after it is presumed
lost. Because there is no way in the APC suite to remove a timeout action after
it has been added to the list maintained by the engine, a timeout will expire for
each message sent; yet most of these expiring timeouts are unnecessary because an
acknowledgement of the message sent will be received before the delay has expired.
Therefore, it is necessary to keep track of the messages sent versus the timeouts
which have expired, in order to ignore those expiring timeouts which need to be
ignored while responding to those which need further action. The data can be used
to inform the function implementing the guard of a timeout action of the number
of messages sent at the time the timeout is entered into the system; comparing this
count with the number of timeouts which have expired at the time that the guard
is invoked will separate the bogus timeouts from the needed ones—if the number
of timeouts expired is less than the number of messages sent, then the currently
expiring timeout delay does not refer to the currently outstanding message; if they
are equal, then the current timeout does refer to the current message which therefore
needs to be resent.!

Alternatively, the data could be used as an index into some larger structure
which would provide more information to the functions implementing the timeout
action.

Another difference between timeout and receive/local actions is that the
former are single-shot events; the guard, body, and data are added to the engine
associated with a specific delay and when the delay expires, regardless of whether
the guard returns false or if any action is taken by the body, the guard, body,

'This idea does have certain problems, and it is related to the situation in which the number
of expired timeouts is greater than the number of messages sent. In time, the two counts will
wrap around since each is a finitely-represented value. If the delay is long enough and enough
messages are sent and received the count could wrap around so that a current-message count laps
the current-timeout count and provides falsely equal values. In practice, this is not expected to be
a problem since there are a great many possible values in a long and even the longest timeout is
short compared to the time required to send that many messages on current networks.
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and data are removed from the system. Further calls to add_timeout_action are

required each time a message is sent, for example.

In all other ways, add_timeout_action  behaves just as
add_receive_action and add_local_action do.
[
(Prototype add_timeout_action 65a) =
int add_timeout_action( int (*guard)( long ),
void (*body)( long ),
long data,
long delay );
<&
Macro referenced in scrap 69.
(Macro definitions 65b) =
#define ADD_TIMEOUT_ACTION( g, b, da, de ) \
if (add_timeout_action( g, b, da, de )) \
{ \
fprintf( stderr, "¥%s\n", prtcl_err ); \
EXIT; \
¥

&

Macro defined by scraps 60b, 61b, 62b, 63b, 65b, 66b.
Macro referenced in scrap 69.

5.1.4 Sending messages

When a process wishes to send a message to another process, send_message is

invoked. The first argument, buffer, is a pointer to a buffer containing the message
to be sent. The second argument, receiver, is the process identifier of the process
which is to receive the message. A process can send a message to itself or any other

process in the protocol whose identifier is known to the engine.

The message buffer should contain at least two fields: a type, type, and a
length, len. The type is a protocol-specific value which is uninterpreted by the

engine but is designed for user code to determine the kind of message being sent

or received. On the other hand, the len is used by the engine to determine the

number of bytes in the message; the size of the data which needs to be transmitted.

Additional fields needed in the message can be tacked on after these two.
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Differing machines can have differing representations for the fields in the data
message, for example the conflict between little-endian and big-endian representa-
tions of integers. In order to prevent this conflict from causing problems in the
execution of a protocol, the fields should be transformed to canonical representa-
tions before being sent and back to machine representations after being received.
The standard socket programming systems provide four simple functions to handle
these steps: htonl, htons, ntohl, and ntohs. The first four letters specify the
action, net to host or host to net. The last letter indicates the size of the number

being transformed, long or short. Using the functions is simple:

Sending Process Receiving Process
msg.field = htonl( 4 ); var = ntohl( msg.field );

This code, assuming the msg was transferred in the mean time, puts 4 into var. In
order to simplify the protocol writer’s responsibilities, the type and len fields are
transformed to and from the network representations by the engine.

In the case of a problem, send_message returns true and sets prtcl_err;

otherwise it returns false.

(Prototype send_message 66a) =

int send_message( MSG_BUFF *buffer,

int receiver );
<&
Macro referenced in scrap 69.
(Macro definitions 66b) =
#define SEND_MESSAGE( b, r ) if (send_message( b, r )) \
{ \
fprintf( stderr, "¥%s\n", prtcl_err ); \
EXIT; \
¥

&

Macro defined by scraps 60b, 61b, 62b, 63b, 65b, 66b.
Macro referenced in scrap 69.

66



5.1.5 Types and variables

A message is handled in a protocol implementation as an instance of the MSG_BUFF
data type. It is the basic building block of the messages passed between the processes
in a protocol. Simple messages can be created using the structure as it is, by
assigning the type field a long integer indicating a particular message type and the
len field the value sizeof (MSG_BUFF).

More complex messages require additional fields, such as sequence numbers,
data, and so forth. These more complex messages can be constructed by creating
additional data types whose first two elements are the type and len. For example,
a connection request with a sequence number might be:

typedef struct
{
long type;
long len;
long seq;
} CRQST_TYPE;
#define CRQST 4

CRQST_TYPE crqgst;

crqst.type = CRQST;
crgst.len = sizeof( CRQST_TYPE );
it+:

b

crqst.seq

SEND_MESSAGE( (MSG_BUFF *) &crqst, Q );

(Exported types 67) =

typedef struct msg_buff_struct

{

long type;

long len;

¥ MSG_BUFF;
&

Macro defined by scraps 67, 68a.
Macro referenced in scrap 69.

When a message is received, it and the process identifier of the sender is
supplied to the guards of the receive actions, and potentially to the bodies. This is
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done by passing a pointer to a RCVD_MSG to the functions. The first field is a pointer
to the received message structure and the second is the sender’s process identifier.

(Exported types 68a) =

typedef struct rcvd_msg_struct

{

MSG_BUFF *msg;

int sender;

¥ RCVD_MSG;

&

Macro defined by scraps 67, 68a.
Macro referenced in scrap 69.

The engine exports three variables. The first is proc_count, which is the
number of processes involved in the protocol. Acceptable process identifiers range
from 0...proc_count — 1.

(Exported variables 68b) =

extern int proc_count;

&

Macro defined by scraps 68bc.
Macro referenced in scrap 69.

The other two variables are prtcl_err, which is used to return a zero-
terminated text string describing an error condition, and prtcl_dne, which halts
the engine function when set to true.

(Exported variables 63c) =

extern char *prtcl_err;
extern int prtcl_dne;
&

Macro defined by scraps 68bc.
Macro referenced in scrap 69.
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5.1.6 The APC engine header file

The file APC.h should be #included by any implementation file using the APC suite
to create a protocol’s process.

If they are not already defined, APC.h defines TRUE and FALSE for the use of
the implementation. It also #includes netinet/in.h, which has the definitions of

htonl and related functions. netinet/in.h requires sys/types.h

|
"APC.h" 69 =

#include <sys/types.h>
#include <netinet/in.h>

Exported types 67, ... )

Exported variables 68b, ... )
Prototype initialize_engine 60a)
Prototype engine 61a)

(
(
(
(
(Prototype add_receive_action 62a)
(Prototype add_local_action 63a)
(Prototype add_timeout_action 65a)
(Prototype send_message 66a)
(Macro definitions 60b, ... )

#ifndef TRUE

#define TRUE 1

#define FALSE O

#endif

&

5.2 Compiling and executing APC protocols

While the rest of this work deals mainly with writing the programs which implement
protocols, this section discusses compiling and executing those programs. The APC
suite is designed to be flexible and could be embedded within a larger framework to
produce a more useful application; but, since that has not been a focus of this work
up until this point, this section will not deal with the issues raised by such an effort.
Specifically, this section will assume that the task at hand is to produce a “toy”
implementation of a protocol, perhaps to get a feel for how the protocol behaves or
to compare differing protocols.
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Therefore, assume that you have several source files implementing the various
processes of the protocol; i.e., p.c and q.c. These source files contain the definitions
of the functions implementing actions as well as a main function and the variables
required for each process. In actuality, you may need to break these up into sepa-
rate files, but linking them together only modestly complicates the procedures that
follow.

5.2.1 Compiling the programs

A modest feature of the APC suite is that compiling a program which uses functions
from the APC suite is no more difficult than compiling any program written in C.
Assuming that the APC library is in a directory libdir, the APC header file is in the
directory includedir, the source program is p.c, and that the executable will be p,
all that is required to compile the program is the command,

cc -Tincludedir -Llibdir -o p p.c -1APC

if the C compiler is known as “cc” and no other libraries are needed. Generally,
the =Idirectory argument to a C compiler tells the compiler to look into directory to
find header files in addition to those in the standard places, such as /usr/include.
Similarly, -Ldirectory tells the compiler to look for libraries in directory. Finally,
-1library tells the compiler to look for a library called 1iblibrary.a. 1ibAPC.a is the
name of the library which contains the APC suite functions. Additional libraries,
directories, or other arguments may be necessary, depending on the protocol and
implementation.

Assuming the compilation succeeds, the resulting p will be an executable
program for the machine on which the compilation was done (and similar machines,
of course, and assuming the compiler was not configured for cross-compilation).
However, due to the fact that most interesting protocols involve several executing
processes, running the protocol requires additional steps.

5.2.2 Executing the protocol
There are two possible difficulties in starting a protocol involving several processes.

1. It may be necessary to invoke the programs on several different machines.

2. It is necessary to provide each of the running processes with the “addresses”
of all of the other processes. In TCP/IP terms, an address is a (host name,
port number) pair. The host name is the name of the machine on which a
given process is running; the port number is a serial number, unique on that
host, to which messages to a process can be addressed.
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For current purposes, the APC suite solves both of those problems with a
driver program. The driver program reads a configuration file consisting of a host
name, a process identifier, and a command line for each process. The command
line specifies the program implementing the process along with any arguments that
it may need. The program on the command line should be either in the execution
path for the user on the remote machine, or should be specified by a path, either
fully qualified from the root directory on the remote machine or relative to the home
directory of the user. The host name identifies the host on which the process is to
run and the identifier is the process identifier to be used by the program; it needs
to match the identifier specified by the call to initialize_engine by the program.
The format of the file is just that, a sequence of lines each containing the triple host
name, process id, command line. Blank lines are ignored and anything that follows
the character “#” on a line is assumed to be a comment and is also ignored.

An example configuration file would be:

bovina O p # The executable “/p on bovina should be process 0

jeckle.cs.utexas.edu 1 testing/bin/q foo # q needs an argument, foo

By default, the configuration file should be called APC-configuration.

To start the driver program and begin the protocol, invoke
$ APC-driver

Because the driver program is a short script which may not satisfy all requirements,
it is described in more detail in the next section.

As an example, the configuration file for the multi-process request/reply
protocol is

"APC-configuration" 71 =

homsona 0 ./p 0 5 6 > p0.out 2>&1
homsona 1 ./p 1 5 6 > pl.out 2>&1
homsona 2 ./p 2 5 6 > p2.out 2>&1
homsona 3 ./p 3 5 6 > p3.out 2>&1
homsona 4 ./p 4 5 6 > p4d.out 2>&1
<

This configuration starts all of the processes on a machine homsona, with 5 processes
allowed 6 outstanding messages. All of the output and errors from the programs are
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logged in files called pn.out. Notice that the second and fourth columns match—
the second tells the configuration system which process id to use for which process,
and the fourth tells each running process which process id to assume.

5.2.3 APC driver internals

In order to understand the peculiarities of the APC driver program, more discussion
is needed about how it works. The driver is a Perl script which calls many other
programs to actually do the work. The three most important are:

e rsh—The TCP/IP remote program execution command. In order to start p
on the remote machine, the driver uses rsh to start a program, APC-remote,
executing on that machine. For more information on the use of rsh, see its
documentation.

e APC-remote—The first part of the APC suite configuration system.
APC-remote takes as arguments the address of the APC-server (described be-
low), the process identifier, and the command line to be executed. APC-remote
contacts the server, informs it of the address that the process will be using, gets
from it the addresses of all of the processes, and executes the command line, be-
coming the protocol process. The configuration information, including all the
required addresses for the other processes is passed to initialize_engine
through environment variables by APC-remote.

e APC-server—The protocol configuration hub. APC-server provides the driver
script with the port number which it will be using (the driver can find the host
name on its own), and waits for the appropriate number of APC-remote’s to
contact it. Then it distributes the protocol configuration and exits. Any errors
that it discovers after giving the driver script its port number will be described
in a text file APC-server.err that it creates before it dies.

If the protocol does not have well-defined termination conditions, in particu-
lar if all of the programs implementing the protocol do not set prtcl_dne and exit
(this is the case with several of the example protocols presented here), it will be nec-
essary to terminate the running protocol with whatever normal interrupt procedures
are available. Usually, this will mean typing Cntrl-C one or more times.
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5.3 Conclusion

5.3.1 Design and implementation

This paper deals covertly with many implementation issues. This section will look
at some of those issues, but not to the depth of the complete implementation.

The basic design issue was whether to try to implement a compiler or to build
a toolkit to which a compiler front end could be added later if deemed necessary.

This work focused on a toolkit approach for two reasons:

o It would get to the interesting problems faster and easier. Building a compiler
requires describing the grammar of AP in a formal way, working to imple-
ment things such as standard arrays and statements, and a variety of other
things which are not directly related to the task of implementing a networking

protocol.

e It was philosophically more interesting. This was a problem of AP being both
too close and too far away from a standard programming language. Most of
the work of a compiler, such as if statements, do loops, and so forth are imple-
mented perfectly well in the compiler for any procedural language. Therefore,
writing a compiler to transform an if statement to an if statement seemed
relatively pointless. On the other hand, some features of AP, particularly
timeout actions, do not easily lend themselves to machine translation. (The
handling of timeout actions is described in chapter 4.) The guards of these
actions in particular require access to global state information which is not
available in a distributed system. It is therefore necessary to transform the
global predicate into a predicate using only local information and the only
kind of global information available to a process, the current time. This sort
of transformation is difficult or impossible for a compiler; it requires human

intervention anyway.

For both of the above reasons the current design was chosen. It is small, to the
point, and it avoids difficult and possibly error-inducing machine transformations.

Most of the secondary design issues, such as which language to use, were
arbitrary choices—no issues forced an particular choice.

The key to the design is the recognition that AP protocols are reactive. Each
action examines the current state and potentially transforms it into another state.
This recognition made it possible to create a generic model of local and receive
actions, and to use that model to create an engine for executing those actions. This

model was then extended to allow timeout actions.
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5.3.2 Future work

Currently, the APC suite serves well as a testbed for protocol designs. Several
avenues of future work are available:

e The use of pseudo-inheritance to implement different message types with dif-
ferent sizes and kinds of fields is particularly unpleasant. It should be possible
to rid the suite of this particular blight by reimplementing the system in an
object-oriented language such as C+4. A smart message class should have a
method of converting its own representation into a form suitable for transmis-
sion, and a way of recreating itself upon receipt from another machine. Such
a class would also handle the processing required to convert message elements

into network-oriented canonical formats.

e The suite as currently implemented is small and apparently flexible, and the
programs created with it are also fairly small and quick. It would be interest-
ing to compare the performance of this method of implementing a networking
protocol with a traditionally implemented network, both in the realm of mes-
sages sent per time unit and load on the machines involved. If the protocol
implemented with this suite is not terribly worse than the traditional protocol
implementation, it might be worthwhile to look at improving the performance
of protocols in general with this style of implementation and at improving the
performance of this suite.

e The timeouts remain a thorny issue. While it is difficult to imagine a way of
getting more information for their guards or of a different kind of information
which could better be used to implement them, it seems that it should be
possible to improve the suite’s use of the timeout idea or, at least, the interfaces

that the suite uses to access that idea.

e This suite has, until this point, been used only to implement “toy” protocols.
It might be interesting to examine what kind of issues are raised by the use
of this suite in a production protocol, such as tftp. Since actions invoked by
the engine can easily call other functions, in order to get data, for example, it
should be feasible to embed the engine in a larger framework to put together
a robust application. However, significant changes to the APC driver would

be required.
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