
Square Roots in ACL2: A Study in Sonata FormRuben A. Gamboa�Computer Sciences DepartmentThe University of Texas at AustinTaylor Hall 2.124Austin, TX 78712-1188ruben@lim.com, ruben@cs.utexas.eduhttp://www.lim.com/~ruben/November 18, 1996PreludeOne of ACL2's extensions over its predecessor Nqthm is the directsupport for a richer set of numbers, including the rationals and complex-rationals but not including the irrationals. The absence of the irrationalsis strong, in the sense that ACL2's typing mechanism asserts that all num-bers are integers, rationals, or complex-rationals, and all other objects areindistinguishable from zero, as far as arithmetic operations are concerned.This is in contrast to an approach where the irrationals exist, but the ax-ioms are simply too weak to prove much of anything about them thatisn't also true about all the real numbers; in other words, a logic roughlyequivalent to our everyday understanding of the reals.This brings up the question of what is the proper way to reason abouttranscendental functions in ACL2, since strictly speaking ACL2 can onlyreason about rational functions. In this paper, we explore this issue byfocusing on the square root function. We begin by showing that thisfunction does not exist in the ACL2 universe. In particular, we use theabsence of the irrationals to prove that for all x, x2 6= 2. This illustratesthat when dealing with assertions about the real number line, one bestremember that ACL2 can prove them only for the rationals | and theequivalent assertions about the reals may be false.One can argue, however, that to a computer scientist the rationalsshould be enough. After all, computers don't support the irrational num-bers, either, so we have to approximate any transcendental function by arational equivalent. We show how this can be done for square root and useACL2 to prove that our approximation is arbitrarily close to the squareroot function. Our technique is to prove that a speci�c function (namelya bisection algorithm) serves as an approximation.�Author is supported by a salary from LIM International, Inc.1

1 ExpositionACL2 allows the user to reason about entire classes of functions by selectingthe relevant properties of these functions, and only allowing these propertiesto be used in subsequent proofs. However, it does not allow the introductionof partially de�ned functions. That is, one cannot introduce a function byspecifying only its fundamental theorem. For example, the fundamental theoremof square root is that 8x;px�px = x; however, ACL2 will not allow the following\de�nition" of square root:(encapsulate((sqrt (x) t))(defthm sqrt-*-sqrt(equal (* (sqrt x) (sqrt x)) x)))ACL2 rejects the encapsulate event on purely syntactic grounds: It fails toprovide a \witness function" for sqrt inside the encapsulate. That is, ACL2demands a de�nition of sqrt even if it is local to the encapsulate.There is a good semantic reason for this restriction as well. From the theoremsqrt-*-sqrt, one can easily establish that(equal (* (sqrt 2) (sqrt 2)) 2)However, this is a spurious assertion, since ACL2's universe does not includethe irrationals, so it seems possible that the following is also a theorem:(not (equal (* x x) 2))Such a situation would render ACL2 unsound. In section 2.1, we will show thatACL2 does in fact prove that the square of no object is equal to 2, thus defeatingany attempt to introduce a square root function. In section 2.2, however, we willshow that we can de�ne an approximation scheme to square root. That is, forany acceptable error tolerance, we can �nd a rational function that approximatessquare root within this error bound.2 Development2.1 First TreatmentTo prove that(not (equal (* x x) 2))is a theorem in ACL2, we proceed by ruling out suitable candidates for x. The�rst step is the most interesting from a mathematical viewpoint. We will showthat (implies (rationalp x)(not (equal (* x x) 2)))2

We do this by following the classic proof of the irrationality ofp2. Subsequently,we can rule out the complex rationals, since all their squares are either complexor negative. Since all other objects (i.e., non-numbers) in ACL2 have zerosquares, this will complete the proof.Let us begin by considering the rationals and show that none of them can beequal to p2. On paper, one would proceed as follows. Suppose p2 is rational.Then, we have that for some relatively prime integers p and q, (pq)2 = 2. Now,this implies that p2 = 2q2 and so p2 is even. But since p is an integer, thisimplies that p must be even as well. That is, there is some integer p0 withp = 2p0. But then, it follows that 4p02 = 2q2, and hence q2 is even. Again, thisimplies that q is even. But then, p and q are not relatively prime as claimed,and therefore p2 cannot be rational.The �rst step in formalizing this argument is to prove the following lemmas:(defthm even-square-implies-even(implies (and (integerp p)(divisible (* p p) 2))(divisible p 2)))(defthm even-implies-square-multiple-of-4(implies (and (integerp p)(divisible p 2))(divisible (* p p) 4)))Given the equation p2 = 2q2, we conclude from even-square-implies-eventhat p is even, from even-implies-square-multiple-of-4 that q2 is even,and �nally from even-square-implies-even again that q is even. That is, wecan prove the following lemmas in ACL2:(defthm lemma-1.1(implies (and (integerp p)(integerp q)(equal (* p p) (* 2 (* q q))))(divisible q 2)))(defthm lemma-1.2(implies (and (integerp p)(integerp q)(equal (* p p) (* 2 (* q q))))(divisible p 2)))To complete the argument, we need the key property that p and q are relativelyprime, or equivalently that pq is expressed in lowest terms. ACL2 provides thebuilt-in functions numerator and denominator that have this property. So,we proceed by showing how we can apply lemma-1.2 to the numerator anddenominator of an allegedly rational square root of 2:3

(defthm lemma-1.3(implies (and (rationalp x)(equal (* x x) 2))(equal (* (numerator x) (numerator x))(* 2 (* (denominator x)(denominator x))))))All these results can be succinctly combined into a single ACL2 lemma as follows:(defthm lemma-1.4(implies (and (rationalp x)(equal (* x x) 2))(and (divisible (numerator x) 2)(divisible (denominator x) 2))))At this point, we've dispensed with the mathematics. We have shown that if xis rational and its square is equal to 2, then its numerator and denominator arenot relatively prime. But this is absurd, since we know we can always write arational in lowest terms.However, ACL2 failed to prove the following simple fact:(defthm lemma-1.5(implies (and (divisible (numerator x) 2)(divisible (denominator x) 2))(not (rationalp x))))Odd indeed, since the documentation explicitly states that the numerator anddenominator functions always return the answer in lowest terms. After someexperimentation, we discovered the reason that ACL2 was skeptical of the factabove is that the relevant axiom about numerator and denominator is not en-abled in the ACL2 prover. The result in that while numerator and denominatorare guaranteed to be in lowest terms by the ACL2 logic, the ACL2 prover is un-aware of the fact. The disabled axiom (found in the �le axioms.lisp of theACL2 source distribution), is as follows:(defaxiom Lowest-Terms(implies (and (integerp n)(rationalp x)(integerp r)(integerp q)(< 0 n)(equal (numerator x) (* n r))(equal (denominator x) (* n q)))(equal n 1)):rule-classes nil)Notice the :rule-classes nil directive which e�ectively disables this axiomin the prover. To work around this, we need to explicitly ask the ACL2 proverto invoke this axiom. We do this by providing a hint as follows:4

(defthm lemma-1.5(implies (and (divisible (numerator x) 2)(divisible (denominator x) 2))(not (rationalp x))):hints (("Goal":use (:instance Lowest-Terms(n 2)(r (/ (numerator x) 2))(q (/ (denominator x) 2))))))From lemma-1.4 and lemma-1.5, ACL2 can now easily deduce that the squareroot of two cannot be rational:(defthm sqrt-2-is-not-rationalp(implies (rationalp x)(not (equal (* x x) 2))))Now that we have ruled out the rationals, we can turn our attention to theremaining numbers in ACL2, namely the complex rationals. A complex rationalhas the form a+bi, where b 6= 0 and a and b are rationals. None of these objectscan be the square root of 2, because their squares all have the form a2�b2+2abi,and for that to be equal to 2, a must be zero. But then, the square of bi is equalto �b2, which is negative since b is rational.Formalizing this argument in ACL2 is not too hard. The major stumblingblock is that the key axiom concerning complex arithmetic is disabled. So, wehave to begin by de�ning complex squares. The relevant axiom is as follows:(defaxiom complex-definition(implies (and (rationalp x)(rationalp y))(equal (complex x y)(+ x (* #c(0 1) y)))):rule-classes nil)where the term #c(0 1) is ACL2's version of i = p�1. We use this axiom inthe following lemma, which instructs ACL2 on how to square complex rationals:(defthm complex-square-definition(implies (and (rationalp x)(rationalp y))(equal (* (complex x y) (complex x y))(complex (- (* x x) (* y y))(+ (* x y) (* x y))))):hints (("Goal":use (:instance complex-definition))))Once we have this fact, it becomes simple to prove that the square of (complexx y) is rational if and only if (* x y), and therefore x, is equal to zero:5

(defthm complex-squares-rational-iff-imaginary(implies (and (complex-rationalp w)(rationalp (* w w)))(equal (realpart w) 0)))where the realpart returns the real component of a complex rational. ACL2can also prove that all complex rationals with zero realpart, that is to say pureimaginary numbers, have negative squares:(defthm imaginary-squares-are-negative(implies (and (complex-rationalp w)(equal (realpart w) 0))(< (* w w) 0)))Putting these results together, we have been able to prove that no complexrational can be the square root of two:(defthm sqrt-2-is-not-complex-rationalp(implies (complex-rationalp x)(not (equal (* x x) 2))))At this point, we have considered all the possible ACL2 numbers and foundthat none of them are equal to p2. ACL2 can dispense of the remaining ob-jects using simple type reasoning, thus we can now prove the following strongtheorem:(defthm there-is-no-sqrt-2(not (equal (* x x) 2)))2.2 Second TreatmentWe have shown that the fundamental theorem of square roots is inconsistentwith the axioms of ACL2. However, it is possible to prove weaker versions ofthis theorem. One such approach is to require that it only hold when both xand px are rational; at other points, no claims are made about the function, soit is free to take on any value, say zero. That such a function exists in the ACL2logic is clear, since for rational p=q in least terms, pp=q is given by pp=pq andsince p and q are relatively prime, this is rational if and only if pp and pq areintegers. Unfortunately, the likelihood that an arbitrary integer has an integersquare root is small, so this would only cover a small fraction of the rationals,and the modi�ed theorem would be too weak.A better alternative is to substitute closeness for strict equality. For example,we may require that jpx � px � xj < � for some � > 0. There are manydi�erent approximation schemes that can be used to come close to the squareroot function. A natural approach is to use an iterative algorithm, such asNewton's method, but proving its convergence rate within the ACL2 logic canbe cumbersome. From a reasoning perspective, a more natural approximationscheme is the bisection algorithm, since it is easy to predict its convergence rate;i.e., the uncertainty is precisely halved at each step.6

The convergence result is actually interesting, since the result px to whichwe are converging is not necessarily in the ACL2 universe, so we are not ableto guarantee something similar to jx̂ � pxj < �. It is for this reason, that wechose jx̂2 � xj < � as our convergence criterion, although we will have to provea variant of the former along the way.We begin by de�ning the iterative square root function. Because its conver-gence isn't obvious and ACL2 only accepts de�nitions whose termination it canprove, we chose to divorce the convergence result from the terminating conditionof the iterative function. The de�nition is given below:(defun iterate-sqrt-range (low high x num-iters)(if (<= (nfix num-iters) 0)(cons (rfix low) (rfix high))(let ((mid (/ (+ low high) 2)))(if (<= (* mid mid) x)(iterate-sqrt-range mid high x (1- num-iters))(iterate-sqrt-range low mid x (1- num-iters))))))The function iterates on the high-low range. That is, it returns the newhigh-low values after iterating num-iter times. We will use the low valueas the approximation to px.We split the convergence result into two parts. First, we show that if welet num-iters be large enough, the di�erence between the �nal high and lowis arbitrarily small. Then, we show that if the high and low are very close toeach other, (* low low) is very close to x.Before proceeding, however, we need to establish some basic propertiesof iterate-sqrt-range. For starters, we need to show that if the originalhigh-low range is not vacuous, then neither is the �nal high-low range afteriterating any number of times:(defthm iterate-sqrt-range-reduces-range(implies (and (rationalp low)(rationalp high)(< low high))(< (car (iterate-sqrt-range low high x num-iters))(cdr (iterate-sqrt-range low high xnum-iters)))))A particularly crucial lemma is that the �nal high estimate is not larger thanthe initial one. That is, no iteration can increase the current upper estimate.(defthm iterate-sqrt-range-non-increasing-upper-range(implies (and (rationalp low)(rationalp high)(< low high))(<= (cdr (iterate-sqrt-range low high xnum-iters))high))) 7

Nonetheless, the �nal high estimate is large enough that it doesn't cross belowthe square root of x:(defthm iterate-sqrt-range-upper-sqrt-x(implies (and (rationalp low)(rationalp high)(rationalp x)(<= x (* high high)))(<= x(* (cdr (iterate-sqrt-range low high xnum-iters))(cdr (iterate-sqrt-range low high xnum-iters))))))This gives us a tight bound on how far the values of high can range. Similarly,we can prove the analogous theorems for the low bound of the range.With these lemmas, we are now ready to make use of the continuity of x2 toshow that if the high-low range is small enough, then the range of their squaresis arbitrarily small. Speci�cally, for any � > 0 and a > 0, we can �nd a � sothat for a b with 0 < b� a < �, b2� a2 < �. In fact, algebraic manipulation willshow that this is true for any � � �=(a + b). Moreover, since we're interestedin ranges [a; b] such that a � px � b, we can replace b2 by x to conclude thatx� a2 < �. The continuity condition can be stated as follows:(defthm sqrt-epsilon-delta-aux-4(implies (and (rationalp a)(rationalp b)(rationalp x)(rationalp epsilon)(<= 0 a)(< a b)(<= x (* b b))(< (- b a) delta)(<= delta (/ epsilon (+ b a))))(< (- x (* a a)) epsilon)))Unfortunately, this result is unsatisfying because it is stated in terms of (+ ba), which will correspond to the �nal high-low estimates or our approximation,and we would rather �nd � from the original estimates or guesses. Since we knowthat the high estimates are monotonically decreasing, but the low estimates areincreasing, we can't readily conclude anything about the sum of the �nal highand low. However, we can proceed by observing that the claim remains truefor � � �=2b, since for 0 � a � b, �=2b � �=(a + b). Now, � will only dependon the �nal high estimate, and since we know high is monotically decreasingwe can replace the �nal high estimate with the initial guess. This is important,because it lets us compute a priori the number of iterations that will be required.Combining these observations gives the �rst half of the convergence result:8

(defthm iter-sqrt-epsilon-delta(implies (and (rationalp low)(rationalp high)(rationalp epsilon)(rationalp delta)(rationalp x)(< 0 epsilon)(<= 0 low)(< low high)(<= x (* high high))(<= delta (/ epsilon (+ high high))))(let ((range (iterate-sqrt-range low high xnum-iters)))(implies (< (- (cdr range) (car range)) delta)(< (- x (* (car range) (car range)))epsilon)))))Now, it only remains to be shown that if we iterate long enough, the �nalhigh-low estimate will be su�ciently close together so that the theorem abovecan apply. We start out by de�ning guess-num-iters which computes therequired number of iterations for a speci�c x and �. Since the iteration schemehalves the estimate at each step, it turns out that we only need to know the sizeof the initial estimate (which is derived from x). The routine, which essentiallycomputes the log of the initial range, is given below:(defun guess-num-iters-aux (range num-iters)(if (and (integerp range)(integerp num-iters)(> num-iters 0)(> range (2-to-the-n num-iters)))(guess-num-iters-aux range (1+ num-iters))(1+ (nfix num-iters))))(defmacro guess-num-iters (range delta)`(guess-num-iters-aux (ceiling ,range ,delta) 1))where the 2-to-the-n function returns 2n for non-negative integer n. Beforeproving that guess-num-iters does return a su�ciently large value for anychoice of range and epsilon, we consider how iterate-sqrt-range reducesthe high-low range after a number of iterations, speci�cally, it halves the rangeat each step:(defthm iterate-sqrt-reduces-range-size(implies (and (<= (* low low) x)(<= x (* high high))(rationalp low)(rationalp high)(integerp num-iters))9

(let ((range (iterate-sqrt-range low high xnum-iters)))(equal (- (cdr range) (car range))(/ (- high low)(2-to-the-n num-iters))))))With this result and much algebraic rewriting, we can prove the second half ofthe convergence theorem, namely that by iterating up to guess-num-iters the�nal high-low range is su�ciently small for the previous convergence theoremto apply:(defthm iterate-sqrt-range-reduces-range-size-to-delta(implies (and (rationalp high)(rationalp low)(rationalp delta)(< 0 delta)(< low high)(<= (* low low) x)(<= x (* high high)))(let ((range (iterate-sqrt-rangelowhighx(guess-num-iters (- high low)delta))))(< (- (cdr range) (car range)) delta))))The only thing left is the choice of appropriate starting values for high andlow. Given an x > 0, we let the initial range be [0; x] if x > 1, and [0; 1]otherwise. It is clear that this range includes px, is non-trivial, and includesonly non-negative numbers, hence we can use it to begin the iteration.The resulting ACL2 function that approximates square root can be de�nedas follows:(defun iter-sqrt (x epsilon)(if (and (rationalp x)(<= 0 x))(let ((low 0)(high (if (> x 1) x 1)))(let ((range (iterate-sqrt-rangelow high x(guess-num-iters (- high low)(/ epsilon(+ high high))))))(car range)))nil))With little more than propositional reasoning, ACL2 can now prove the mainconvergenge result: 10

(defthm convergence-of-iter-sqrt(implies (and (rationalp x)(rationalp epsilon)(< 0 epsilon)(<= 0 x))(and (<= (* (iter-sqrt x epsilon)(iter-sqrt x epsilon))x)(< (- x (* (iter-sqrt x epsilon)(iter-sqrt x epsilon)))epsilon))))3 RecapitulationWe began this project to explore how ACL2 can be used to reason about real-valued functions. Although the ACL2 universe includes only the rationals, mostof the ACL2 arithmetic axioms | algebraic equalities and inequalities | aretrue of both the rationals and irrationals, so it is tempting to believe that byexercising some care ACL2 proofs can be generalized to include the irrationals.This views the ACL2 logic as essentially unaware of the reals, but consistentwith them.However, in this paper we showed how dangerous this can be, since ratherthan ACL2 being too weak to prove that p2 exists, it is actually so strong itcan prove p2 does not exist. Any attempt to generalize an ACL2 proof abouta rational analogue of the square root function needs to be tempered with thefact that the existence of the real square root function is inconsistent with theaxioms of ACL2.However, for many real functions, we can construct rational approximationschemes. We showed how such a scheme can be de�ned for the square rootfunction, and also how ACL2 can prove the convergence of the approximationscheme to square root.4 CodaAll the theorems described here have been mechanically veri�ed by ACL2 ver-sion 1.8. The relevant ACL2 books are in the public domain, and they can beaccessed http://www.lim.com/~ruben/research/acl2/sqrt/. The �les con-tain considerably more detail than that discussed in this paper, not only in theforms of auxiliary lemmas (some of them with large syntax to semantics quo-tients) that are needed by ACL2 in its proof discovery but also in the form ofhints and directives to help guide the ACL2 prover.
11

AcknowledgmentsWe would like to thank Bob Boyer for being extraordinarily patient with usas we've tried to learn �rst Nqthm and then ACL2, as well as for helping uswith the structure of this paper; J Moore, Matt Kaufmann and the rest of theACL2 developers for giving us a wonderful toy to play with; Matt again forshowing us that playing with ACL2 can be fun; and Ludwig von Beethoven forimmeasurably enriching mankind.References[BM79] Robert S. Boyer and J Strother Moore. A Computational Logic. Aca-demic Press, Orlando, 1979.[BM88] Robert S. Boyer and J Strother Moore. A Computational Logic Hand-book. Academic Press, San Diego, 1988.[CB84] Ruel V. Churchill and James Ward Brown. Complex Variables andApplications. McGraw-Hill, fourth edition, 1984.[CLR90] Thomas H. Corman, Charles E. Leiserson, and Ronald L. Rivest. In-troduction to Algorithms, chapter 32. McGraw-Hill, New York, 1990.[KM] Matt Kaufmann and J Strother Moore. ACL2 Version 1.8. Compu-tational Logic, Inc.[KM94] Matt Kaufmann and J Strother Moore. Design goals for ACL2. Tech-nical Report 101, Computational Logic, Inc., 1994.[KP94] Matt Kaufmann and Paolo Pecchiari. Interaction with the Boyer-Moore theorem prover: A tutorial study using the arithmetic-geometric mean theorem. Technical Report 100, Computational Logic,Inc., 1994.[Str91] Gilbert Strang. Calculus. Wellesley-Cambridge Press, Wellesley, 1991.

12

